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Abstract 

This thesis deals with a formability consideration in the bead optimization. The formability 

should be analyzed by simulation techniques in order to connect it with the bead optimization 

procedure.  The anisotropic material behavior and the nonlinear deformation history are 

considered since sheet metal parts usually undergo the deep drawing as a preforming and the 

bead forming as a subsequent forming during their manufacture. The advanced anisotropic yield 

function Yld2000-2d with the non-associated flow rule achieves accurate simulation of the 

anisotropic material behavior of the sheet metal. The forming limit prediction model named 

Generalized Forming Limit Concept (GFLC) also predicts the accurate forming limit under any 

loading changes. Based on that, the initial bead height can be suggested after the preforming. 

This can efficiently improve the design of the optimal bead geometries inconsideration of the 

manufacturability. 

 



IV Kurzfassung 

 
 

Kurzfassung 

Diese Arbeit behandelt die Berücksichtigung der Herstellbarkeit bei der Sickenoptimierung. 

Die Herstellbarkeit sollte durch Simulationstechniken zur Verbindung mit dem 

Sickenoptimierungsablauf analysiert werden. Das anisotrope Werkstoffverhalten und die 

nichtlineare Verformungsgeschichte werden berücksichtigt, da Blechteile während ihrer 

Herstellung  einen Tiefziehprozess als Vorformung und einer Sickenformung als Nachformung 

durchlaufen. Die fortgeschrittene anisotrope Fließfunktion Yld2000-2d mit der nicht-

assoziierten Fließregel ermöglicht die akkurate Simulation des anisotropen 

Werkstoffverhaltens der Blechteile. Das Vorhersagensmodell für die Umformgrenze namens 

Generalized Forming Limit Concept (GFLC) prognostiziertauch die genaue Umformgrenze 

unter jeder Belastungsänderung. Basierend darauf kann die anfängliche Sickenhöhe nach der 

Vorformung vorgeschlagen werden. Hierdurch kann die optimale Sickengeometrie unter der 

Berücksichtigung der Herstellbarkeit effizienter gestaltet werden. 
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𝐮̈ mm Acceleration vector 

𝜃 ° Angle  
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𝐂𝑒 N/mm2 Elastic tangent modulus 

𝐮̂𝑒 mm Elemental displacement vector 

𝑎 - Exponent 

𝐟𝑒𝑥𝑡 N External force vector 

𝐹𝑏𝑒𝑎𝑑 - Formability (GFLC value) 

𝐹𝑙𝑖𝑚 - Forming limit (= 1 for GFLC) 

ℎ𝑠 mm Height of bead geometry 

ℎ mm Height of bead geometry 
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𝜉 - Horizontal axis of isoparametric formulation 

∆ - Increment 

𝑆0 N/mm2 Initial stress for Hochett-Sherby 
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1 Introduction 

For decades, researchers have been trying to reduce the weight of machine parts. In particular, 

a development of the lightweight technology has been the focus of the automobile industry. 

Carbon dioxide (CO2) emissions from internal combustion engines cause a global warming, 

and the lightweight technology is a means of reducing CO2 emissions (Goede, 2009, Heuss et 

al., 2012). It is not only to pave the way for an efficient use of the finite fuel, but also to lighten 

the running performance. In recent years, the production and the use of electric vehicles is on 

the increase. Even though the problem of the CO2 emission disappears due to the use of electric 

vehicles, it is pointed out that the driving distance of the electric vehicles is relatively short 

compared to that of the internal combustion engines. The vehicle weight reduction can be 

carried out so as to increase the driving distance even a little.  

To achieve the weight reduction, a concept design is implemented (Schmidt and Puri, 2000). 

Depending on the purpose and the design, the number of parts and their shape and size are 

determined. The weight of the product is roughly determined by determining the body structure, 

the parts for each function, and the number of joints between the parts. 

 

Figure 1.1: Strategies for light weight automobile 

Next, the weight reduction can be achieved by using appropriate materials and designing a 

suitable structure (Schmidt and Puri, 2000). Lightweight and durable materials are used to 

reduce weight. For example, aluminum, high-strength steel, carbon fiber, composite materials, 

or mixtures are used. The lightweight materials can have expensive costs in 50% to 500% more 

than steels (Heuss et al., 2012). It was tried to reduce the cost of the carbon fiber by a recycling, 

but it still offers 20 to 30 percent a higher component cost than the steels (ELG Carbon Fibre 

Ltd., 2017). This is the most classical and the widely used lightweight method and it is also 

based on the technology to understand the mechanical properties of each material. When using 



2 Introduction  

 
 

the mixed materials, the techniques of joining different materials should also be taken into 

consideration. 

On the structural side, one way of increasing the stiffness of the part is by changing its geometry. 

Since the stiffness of the part increases with a thickness, the weight of a particular part can be 

reduced by reducing it to the thickness that has the minimum stiffness satisfying the stiffness 

condition if the maximum stiffness exceeds the stiffness criteria based on a safety or a stability. 

The precondition for this method is to know the space a part can occupy and the stiffness against 

any load condition. There are two types of optimization methods: topology, which uses the 

addition and the subtraction of materials, and topography, which uses a shape changes 

(Harzheim and Lieven, 2007). The difference in the method is that the material forming method 

used varies greatly. The optimization of the topology approach can increase or decrease the 

volume of the structure by increasing or reducing the material thickness. As a result, the 

thickness variation of the parts can be significant, and punching techniques for forging or 

punching a bulk forming process are mainly required. The topography optimization, on the 

other hand, changes the shape by inserting a regular bead into a part. This method is suitable 

for sheet metal parts with an almost constant thickness. For this purpose, a bending or a 

stretching method is used. However, as the part geometry becomes complicated to satisfy the 

design conditions, the forming becomes a challenge without causing material failures. This 

research focuses on a method to insert a bead into a sheet metal part as the shape change of the 

topography aspect to increase the specific stiffness.  

For all of these lightweight methods, parts must ultimately be manufactured in production 

processes. Process parameters or geometries can be modified and optimized even if a part is 

manufactured with defect. A number of parameters can be investigated until a process condition 

to actually manufacture a complex target shape is determined. A material flow under various 

lubrication conditions can be investigated (Dietrich and Tschätsch, 2013). On a rough surface 

with an insufficient amount of a lubricating oil, a frictional force increases, so the material do 

not flow well in tools in deep drawing. As a result, an unexpected early fracture of the material 

occurs. A blank holding force also has a large effect on the material flow (Dietrich and 

Tschätsch, 2013). If the blank holding force is too large, a fracture may be occurred, and if the 

blank holding force is too small, a wrinkle defect may appear. In addition, a higher forming 

speed and a temperature positively affect the material formability (Fritz and Schulze, 2004). If 

the formability of parts is not satisfied under various forming process conditions, influences of 

the part geometry should also be investigated. If the corner radius is too small to be sharp, or if 
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the depth or height of the drawing is too large, there are chances that the part with extreme 

geometry constraints may have the significantly reduced formability. The material limitation in 

the forming process must be also taken into account. The mechanical properties according to 

each material affect differently on constraints of a part geometry. A proper selection and 

understanding of the material behavior are needed to manufacture parts. In the forming 

technology, it is needed to consider various cases regarding to processes, geometries and 

materials to accurately find the optimal production condition.  

An experimental study can be prepared and carried out to investigate parameter influences on 

the production quality. For that, various tools with different geometries, various process 

conditions will be studied. However, only the experimental study is not proper to the 

optimization performance. The optimization requires at least numerous iteration although 

investigating some parameters. The experiment spends a lot of cost and time, moreover, hardly 

give a quantitative index for the optimization. For the reason, the numerical simulation is used 

to check a manufacturability and to efficiently find an optimal condition under various cases in 

the forming technology. The finite element method (FEM) is used to find a mathematical 

approximate solution using the plasticity theory. The FEM can solve complex nonlinear 

materials and geometries by dividing them into several linear elements and establishing linear 

simultaneous equations. A great advantage of using the FEM is that the simultaneous equations 

made by linearizing the nonlinear equations transforms complex partial differential equations 

(PDEs) into mechanical iterative equations. This allows complex problems to be solved quickly 

and repetitively using a computer. The plasticity theory expresses the irreversible deformation 

of metal materials by external forces or energies. In order to analyze the material behavior, the 

plastic behavior of materials is expressed as a single continuum and approximated with a 

mathematical model. Such a model is called a yield function or a yield locus, and von Mises 

(von Mises, 1913) is a representative example to describe an isotropic plastic deformation. By 

using this model, the stress due to the plastic deformation of the material can be calculated with 

the hardening model. Material yield functions are determined using the FEM. 

Although stresses can be calculated efficiently by the forming simulation, it is not sufficient to 

accurately predict the forming limit. The formability can be determined based on thinning. 

Alternatively, the forming limit diagram (FLD) may determine a material failure. Although 

these methods are relatively simple, they are more effective when deformed under a constant 

load condition; otherwise, they are generally different from deformations in practical processes. 

When making actual parts, a continuous process with various load conditions is carried out 

rather than a one-step process with a simple part geometry mostly under a constant load 
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condition. The strain state after the continuous process may be nonlinear strain paths. The 

analysis of the forming limit under the nonlinear loading conditions should be required. The 

stress or strain values were analyzed to predict the forming limit under the nonlinear strain paths 

with inherent methods of the stress diagram (Stoughton, 2000), the polar effective strain 

diagram (Stoughton and Yoon, 2012) and the strain-based method (Volk et al., 2012). 

These models have different material parameters that are determined using different types of 

material tests. Usually, the tests that can express tensile, compressive, and shear strain are 

performed to numerically determine the material properties. Under the various material 

deformation conditions, the stress, the strain, the Lankford coefficient (or r-value), etc. The 

anisotropy expression is derived and used to define the various parameters mentioned above. 

As a concrete sheet test method, a uniaxial tensile test, a bulge test and a Nakazima test are 

usually used. The uniaxial tensile and the bulge tests are used to determine the stress and the r-

values calculated from the strains, and the Nakazima test is used to determine the necking or 

the fracture strain at the various deformation states using various initial specimen geometries. 

Since these measurements determine the parameters of the material models required for the 

analysis, a high accuracy of the test and measurement is presupposed. 

The FEM and the optimization skill have been already used in the bead optimization regarding 

to material formability (Majić, 2014). The study showed that the optimal bead location to stiffen 

a sheet metal part can be determined along the direction of major bending stress. Furthermore, 

the bead geometry was considered in the formability by the conventional FLD. The 

conventional FLD inaccurately predict the material failure in different loading paths. It means 

that an actual bead part manufactured from multi-stage forming has not been considered in the 

bead optimization. Therefore, other method is required to improve the prediction accuracy in 

any forming case. 

This research will deal with the formability consideration in the bead optimization to stiffen 

deep drawn parts by using the FEM, since the existing bead optimization techniques have not 

considered the part manufacturability. Furthermore, the efficient optimization procedure for the 

bead forming is suggested with a database that set an initial bead geometry. A study of the bead 

optimization considering the material formability is motivated. The FEM, a material model, a 

prediction model for the forming limit, and a sensitivity analysis are summarized. Explanations 

of the test machines and a measuring equipment are introduced to understand the experimental 

procedures. The material tests to identify the parameters of the material model are performed. 

The determined models are validated by comparing them with the measured values of the 
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material tests. A method to determine optimal bead locations has been developed by the 

Institute of Production Engineering (IPEK), Karlsruhe Institute of Technology (KIT). Thus, the 

optimal bead locations that maximize the stiffness of sheet parts are determined based on an 

optimization criterion by cooperation with IPEK. Influences of the bead geometries on the 

formability and the stiffness are investigated with the FE simulation. To validate the reliability 

of these analysis results, one representative case is selected to design a structure of the bead 

tool and to perform the bead forming in the experiment. The material model is validated by 

comparing the calculated and measured strains of the preformed and the bead formed part. The 

prediction model for the forming limit and the FE simulation for the stiffness are validated by 

the material failure and the loading tests, respectively. 
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2 State of art 

2.1 Bead geometry 

One of the ways to increase the stiffness of sheet parts is to insert bead geometries. The insertion 

of the bead improves not only the stiffness, but also the material behavior for noise and 

vibration. The cross-section of the bead geometry can be optimized according to purposes to 

satisfy a target stiffness or noise. As shown in the Figure 2.1, representative types of the bead 

geometry can be classified into four types of box, trapezoidal, triangle, and round. 

 

Figure 2.1: Cross-sections of representative bead geometries 

The box bead has the highest stiffness for a vertical load, and the triangle bead has the lowest. 

However, the bead geometry should be chosen to account for the high stiffness of a part under 

a certain load condition (Majić, 2014). 

 

Figure 2.2: Simple box bead (Emmrich, 2005) 

 

The stiffness of sheet metal parts is generally highly resistant to deflection and increases by the 

increase in the area moment of inertia. The bead geometry moves weight line of the sheet and 

increases the area moment of inertia based on the Steiner’s theorem. Especially, the bead height 
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has a great influence on that increases the stiffness of sheets. It was already investigated that 

the stiffness increase is strongly dependent on the bead height (Emmrich, 2005). The area 

moment of inertia I can be expressed by the following Equation 2.1 based on the simple box 

bead as shown in Figure 2.2. 

Here 𝑏𝑜, 𝑏𝑝, h, and t are the upper width, the total width, the height, and the thickness of the 

bead geometry, respectively. 𝑒1, 𝑒2, and 𝑒3 are defined as the distance of gravity line from the 

upper width, the lower width, and the middle of height, respectively. 

It is clear from Equation 2.1 that increasing the thickness can increase the area inertia moment. 

On the one hand, the thickness increase is not meaningful to stiffen sheet metal parts, since it 

increases the weight of the parts. The heavy parts are an unexpected result and a critical problem 

for the strategy of the lightweight. On the other hand, the bead height has also the great influence 

on the area moment of inertia. The increase in the bead height increases the area moment of 

inertia and the stiffness of sheet parts exponentially. If the increased stiffness is large than the 

target stiffness, the part weight can be reduced using a sheet with a lower thickness. Therefore, 

the height of the bead geometry is the main parameter in the bead optimization to achieve the 

lightweight of the sheet parts. 

The bead rate was defined as ratio of the area of the upper bead 𝐴𝑢 to the area of the lower bead 

𝐴𝑙 to find an optimal width of the bead geometry based on the box bead as shown in Figure 2.2. 

The definition of the bead rate 𝜑 is expressed by the following (Emmrich, 2005). 

When the bead rate is equal to 1, the effect of the stiffening is maximized (Emmrich, 2005), 

indicating that the upper and the lower widths have the same value. Therefore, the width of the 

bead geometry is optimized based on the bead rate. 

With the box bead, the influence of the bead geometry was introduced. However, the flank 

angle of 90° may not be produced in practice in the aspect of the manufacturability. The local 

deformation increases with a large flank angle and it can lead to cracks. The flank angle between 

60 and 70 can be selected generally (Schwarz, 2002). Furthermore, the flank angle of the bead 

geometry mainly influence the strength but not the stiffness (Herrmann, 1997). The flank angle 

is not the main control parameter for maximizing the stiffness of the part. 

 𝐼 =
𝑏𝑝𝑡3

12
+ 2

𝑡(ℎ − 𝑡)3

12
+ 𝑒1

2𝑡𝑏𝑜 + 𝑒2
2(𝑏𝑝 − 𝑏𝑜) + 2𝑒3

2𝑡(ℎ − 𝑡) Equation 2.1 

 𝜑 =
𝐴𝑢

𝐴𝑙
=

𝑏𝑜

𝑏𝑝 − 𝑏𝑜
. Equation 2.2 
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When the bead forming in practice is performed, the flank angle has to be set smaller than 90 

degrees in order to improve the bead formability. Thus, it is not easy to determine the bead 

geometry in the above manner, but it can be confirmed that the bead height has the greatest 

influence on the increase in the stiffness. Therefore, in order to effectively increase the stiffness 

of the sheet part by the bead geometry, the bead optimization strategy is to increase the bead 

height as much as possible within the producible limit. 

2.2 Algorithm of bead optimization 

Empirical methods to design beads for stiffening thin-walled sheet metal parts have been 

developed in numerous studies from the 1950s to the mid-1990s. With the rapid development 

of a computer technology in the 1990's, as well as increasing demands on lighter and stiffer 

sheet metal structures, FEM-based simulation programs have been increasingly used. The work 

of (Bendsøe and Kikuchi, 1998) provided the basic study for numerous developments of 

processes whose common feature is the formation of an objective function, which is minimized 

by means of their analytically or approximately determined sensitivities. A method for an 

optimal bead pattern was developed using the topology optimization in the FE-simulation with 

a bead-and-shell element, in order to improve a stiffness and a NVH (noise, vibration, and 

harshness) performance of the metal sheet. This method creates a beam element at each edge 

of the shell element and removes the low-density beam elements by the topology optimization. 

The remaining beam elements are thus determined to be the optimized the bead locations (Yang 

et al., 1996). (Luo and Gea, 1998) optimized the bead locations with an energy-based 

optimization of the orientation of orthotropic materials. Since 1999, Altair Engineering Inc., 

Troy, USA, has been offering topography optimization within OptiStruct optimization software 

(Altair, 2000). The geometry of the FE model is modified using shape-base vectors, which 

represent a local node shifting of the structure. The OC-algorithm (Optimality Criteria) 

developed by Emmrich (Emmrich, 2005) in 2004 is based on the evaluation of the bending load 

of the sheet metal structure and is implemented in the commercial optimization software 

TOSCA (FE-DESIGN GmbH, Karlsruhe) as module TOSCA Structure.bead (TOSCA, 2009). 

In the OC-algorithm, the beads are aligned in the direction of the greatest bending stress (Majić, 

2014). The bead geometries are formed along the bead path generated based on the major 

bending stress trajectories. Nodes on the trajectories are shifted to form the designed bead 

geometry. The bead forming by the node shift fulfills only the geometrical requirement and 

does not take the material behavior into account. The main advantages of this method are the 
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short calculation time and the easier interpretability of the bead patterns. Thereafter, the 

numerical optimization methods for the bead design to improve NVH performance and stiffness 

of sheet parts have been improved in the efficiency and the stability (Maressa et al., 2010, Leiva, 

2011, Bilik et al., 2012).  

The optimization methods for a bead design have been developed so far, and efficiency and 

stability have also been continuously improved. The bead locations and geometries determined 

by the bead optimization have to be applied in actual sheet metal parts. For this, a production 

process for bead forming has to be required. When constraints are considered in the process, 

the bead locations or geometries are usually modified. The material formability was considered 

in bead optimization using FLC, but it did not involve the influence of the practical continuous 

processes on the formability (Krönauer et al., 2010 and Albers et al., 2010). An optimization 

process was developed to automate a bead generation for sheet metal stiffening and one-step 

inverse forming simulation for formability evaluation. The lager bead widths were suggested 

as a solution to improve the manufacturability without optimal stiffening effect (Majić et al., 

2013).  

In conclusion, the material formability in complex deformation histories was not considered in 

the bead optimizations having the optimal stiffening effect. 

2.3 Finite Element Method (FEM) 

The FEM is the most widely used method among the current numerical methods to solve 

engineering problems. Its greatest strength is that the nonlinear second-order PDEs can be 

replaced by linear simultaneous equations, which can be easily solved. Because of the nonlinear 

properties of geometry and materials in ordinary engineering problems, it is almost impossible 

to obtain the solutions of the nonlinear second order PDEs from the real problems. FEM 

transforms the nonlinear geometry into the combination of linear geometries through a 

geometric discretization, and the nonlinear material behavior can be approximated to the real 

solution by an iterative numerical processing and a gradual approach. The linear simultaneous 

equations system created by this method makes a mechanical iterative calculation possible. In 

other words, by using a computer that can do the fastest calculation, no matter how complex 

and vast the problems, we obtain the solution you want within a few hours to days. Due to the 

recent advances in the computational computation speed, the availability and importance of the 

FEM is increasing, and analytical methods in the virtual world are likewise more frequently 

selected than an experimental engineering design and a problem solving. 
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2.3.1 Weak form 

The linear moment balance gives the equilibrium equation for the material deformation as 

follows (Reddy, 1993): 

where σ is a tensor of the Cauchy stress, 𝐮̈ is the second derivative of a displacement over time 

and physically means the acceleration, ρ is the mass density, Ω is a domain and b is a body 

force vector. The stress is symmetric due to the balance of angular momentum (Lubarda, 2000).  

A weak form can be constructed by multiplying an appropriate arbitrary function, which has 

the same free indices as in the set of governing equations. The virtual work is a weak form in 

which the arbitrary function is a virtual displacement δu (Zienkiewicz et al., 2014). By this, the 

following form is obtained: 

where V is the volume of the domain. By the divergence theorem and the symmetric stress 

tensor, the volume integral form can be transformed into the surface integral form as shown in 

the following equations: 

where S is the surface on the domain. The virtual work can be represented by inserting the 

transformed term of div (𝛔𝛿𝐮) as 

The left-hand side is the virtual inner work and the right-hand side is the virtual outer work.  

It is shown that it is transformed into a weak form of integral expression in a PDE. This allows 

equations for material deformation problems to be solved into linear simultaneous equations, 

allowing nonlinear solutions of complex materials and geometries to be similarly obtained. 

 div 𝛔 + 𝐛 = 𝜌𝐮̈ in Ω, Equation 2.3 

 ∫(div 𝛔 + 𝐛 − 𝜌𝐮̈) ∙ 𝛿𝐮 𝑑𝑉

𝛺

= 0, Equation 2.4 

 div (𝛔𝛿𝐮) = 𝛔 ∙ grad 𝛿𝐮 + div 𝛔 ∙ 𝛿𝐮, Equation 2.5 

 ∫ div (𝛔 ∙ 𝛿𝐮)𝑑𝑉

𝛺

= ∫(𝛔𝛿𝐮) ∙ 𝐧𝑑𝑆

𝜕𝛺

= ∫(𝛔𝐧) ∙ 𝛿𝐮𝑑𝑆

𝜕𝛺

, Equation 2.6 

 
∫ 𝛔 ∙ grad 𝛿𝐮𝑑𝑉

𝛺

+ ∫ 𝜌𝐮̈ ∙ 𝛿𝐮𝑑𝑉

𝛺

= ∫ 𝐛 ∙ 𝛿𝐮𝑑𝑉

𝛺

+ ∫(𝛔𝐧) ∙ 𝛿𝐮𝑑𝑆

𝜕𝛺

. 

 

Equation 2.7 
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2.3.2 Boundary condition 

The boundary condition is divided into two kinds. One is the Neumann boundary condition 

(force boundary condition) and the other is the Dirichlet boundary condition (displacement 

boundary condition) (Reddy, 1993).  

The Neumann boundary condition is represented as 

where n has the components of the normal vector on boundary, 𝐭  is the surface traction, and 

∂Ω𝑡  is the force boundary of the domain. The Dirichlet boundary condition is represented as  

where 𝐮0 is the constant displacement vector, and ∂Ω𝑢 is the displacement boundary of the 

domain. At any location of the boundary 𝜕Ω, only one kind of boundary condition exists 

(Reddy, 1993). This rule is expressed as  

2.3.3 Discretization 

The description of laws of physics for space- and time-dependent problems is generally 

expressed in terms of PDEs. For the complex geometries, these PDEs cannot be solved with 

analytical methods. Industrial parts in a practice has complex geometries like lines, complex 

curves, convex or concave surfaces. The discretization method approximates the PDEs with 

numerical model equations that can be solved. This complex geometry can be transformed into 

a combination of linear geometries by the discretization method in order to solve the problem 

with the nonlinear geometries.  

A displacement u that depends on the material stiffness and the forces can be approximated by 

an approximate displacement ũ in the forming. The approximate displacement can be expressed 

using a shape function N as follows (Reddy, 1993): 

where 𝐮̂𝑒 is the elemental displacements. The shape function depends on the number of nodes 

per element, the element types, and the space dimensions. For example, the triangular and/or 

 𝛔𝐧 = 𝐭 on ∂Ω𝑡 , Equation 2.8 

 𝐮 = 𝐮0 on ∂Ω𝑢, Equation 2.9 

 𝜕Ω = 𝜕Ω𝑢 + 𝜕Ω𝑡 . Equation 2.10 

 𝐮 ≈ 𝐮̃ = ∑𝑁𝑖𝑢̂𝑖
𝑒

𝑛

𝑖=1

= [𝑁1, ⋯ , 𝑁n(x)] [
𝑢̂1

⋮
𝑢̂n

] = 𝐍𝐮̂𝑒 , Equation 2.11 
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quadrilateral elements are usually used in two dimensions. The tetrahedral and/or the brick 

elements are usually used in three dimensions. A quadrilateral element can have four-node or 

nine-nodes and their shape function can be a linear or a quadratic function, respectively 

(Zienkiewicz et al., 2014). The following equation shows the shape function of the quadrilateral 

element in the isotropic formulation as shown in Figure 2.3: 

 

Figure 2.3: The coordinates for a quadrilateral and node numbering for four nodes in 
isotropic formulation 

 

The isoparametric formulation leads to the simplification of the necessary integration. The 

Gauss-quadrature algorithm usually integrates in the isotropic formulation (Reddy, 1993). The 

deformation of the sheet metal follows the plane stress condition that assumes a negligible stress 

in the thickness direction. Because of this, the shell element with the same formulation as the 

quadrilateral element is used in the forming simulation with the sheet metal. Since the thickness 

change is considered, the strain in the thickness direction is calculated by the linear elasticity 

in the elastic deformation or by the volume constant in the plastic deformation. 

 

 

 

N1 =
1

4
(1 − 𝜉)(1 − 𝜁), N2 =

1

4
(1 + 𝜉)(1 − 𝜁), 

N3 =
1

4
(1 + 𝜉)(1 + 𝜁),N4 =

1

4
(1 − 𝜉)(1 + 𝜁). 

Equation 2.12 
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2.3.4 Finite element model 

The finite element model is built in a matrix form from the weak form with the approximate 

displacement as follows: 

where D is the tangent modulus obtained from the constitutive law, and 𝐁 is the displacement 

differentiation matrix. Equation 2.13 can be simplified as follows. 

where K and M are the stiffness matrix and the mass matrix depending on the material, 

respectively, and, 𝐟𝑏𝑜𝑑𝑦 and 𝐟𝑒𝑥𝑡 are the body and the external force, respectively.  

The matrix form of the linear simultaneous equations can be solved by the inverse of the 

stiffness matrix. The solution is carried out using a computer. For this reason, FEM 

approximates the complex PDEs, and the developed computer solves it rapidly. 

2.3.5 Simulation type and solver 

The simulation type in the material deformation can be divided into several types according to 

the physical cases. One is the static simulation used to predict the static deformation by the 

external force without the rigid body motion. The mass matrix M in the Equation 2.14 is treated 

as a zero matrix. The displacements are calculated with the stiffness matrix K in the static 

simulation. The static simulation is usually applied usually for the structure analysis to predict 

a stiffness. Another is the dynamic simulation that describes the rigid body motion and the 

inertia effect considering the mass matrix M in the Equation 2.15. The deformation and the 

rigid body motion can be simulated over time. The last is the quasi-static type that calculates 

the static deformations over time.  

The FEM solving has the two methods mathematically. The implicit method is carried out by 

the iterative procedure like the Newton-Raphson method to converge the solution with a 

convergence criterion. Thus, the equilibrium is satisfied with the converged solution per time 

 𝛿𝐮̂[∫ 𝐃𝐁𝐮̂ ∙ 𝐁𝑑𝑉

𝛺

+ ∫ 𝐍𝜌𝐮̈̂ ∙ 𝐍𝑑𝑉

𝛺

= ∫ 𝐛 ∙ 𝐍𝑑𝑉

𝛺

+ ∫ 𝐭 ∙ 𝐍𝑑𝑆

𝜕𝛺

], Equation 2.13 

 ∫ 𝐁T𝐃𝐁 𝑑𝑉

𝛺

𝐮̂ + ∫ 𝐍T𝐍𝜌𝑑𝑉

𝛺

𝐮̈̂ = ∫ 𝐍T𝐛𝑑𝑉

𝛺

+ ∫ 𝐍T𝐭𝑑𝑆

𝜕𝛺

, Equation 2.14 

 𝐊𝐮̂ + 𝐌𝐮̈̂ = 𝐟𝑏𝑜𝑑𝑦 + 𝐟𝑒𝑥𝑡 , Equation 2.15 
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step. The time step can be given relatively more than that of the explicit method. However, high 

nonlinear problems or contact problems often lead to the fact that the solution is not converged. 

In contrast, the explicit method gives the solution in most problems, since the explicit method 

do not consider the convergence and the equilibrium. The stable criterion for the time step is 

used to guarantee the accuracy of the solution. The stable criterion is expressed in the following. 

(Belytschko et al., 2000): 

where ∆𝑡 is the time step or time increment and  ∆𝑡𝑘𝑟𝑖𝑡 is the critical time step. The time step 

should not exceed the critical time step. 𝐿𝑚𝑖𝑛 is the minimum element length and 𝑐𝑑 is the wave 

speed calculated of a Lame constant 𝜆, a shear modulus 𝐺, and a density 𝜌 (Belytschko et al., 

2000). 

The die or the punch with the blanking holder in the drawing process moves to deform the sheet. 

The sheet has also the deformation and the rigid body motion by the contact with the tools. 

Thus, the forming simulation should consider the effects of the time and the mass by the 

dynamic/explicit method. 

2.4 Metal plasticity 

A yield function is needed to describe the permanent deformation of the material in the forming 

process simulation. In particular, the anisotropic yielding function is used in the sheet metal 

forming simulation, because the sheet metal has a planar anisotropy by the rolling process. This 

chapter introduces mathematical representations of the plastic deformation, various yield 

function models, and the material flow laws in the continuum state. 

2.4.1 Yield condition 

The plastic deformation is irreversible because the material deformation due to the load does 

not return to the original shape even when the load is removed. Conversely, when the load is 

restored to its original shape, the reversible deformation is called an elastic deformation. If the 

external force such as a load is smaller than the yield stress, which is the internal stress of the 

 ∆𝑡 ≤ ∆𝑡𝑘𝑟𝑖𝑡 ≈
𝐿𝑚𝑖𝑛

𝑐𝑑
, Equation 2.16 

 𝑐𝑑 = √
𝜆 + 2𝐺

𝜌
, Equation 2.17 
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material, an elastic deformation occurs. If it is equal to the internal stress, a plastic deformation 

occurs. This is a simple explanation of the elastic and plastic deformation. The yielding 

condition indicates that the internal stress and the external force of the material are the same 

(Simo and Hughes, 1998).  Mathematically, it is expressed as 

where Φ is the yield condition equation. 𝜎̅ is the effective stress of the yield function, which is 

a function of a Cauchy stress tensor 𝛔 and is calculated as a scalar value by a deformation under 

external loading. 𝜎𝑦 is a yield stress or flow stress, which is a function of an equivalent plastic 

strain 𝜀 ̅𝑝. When the effective stress reaches the yield stress, the material has the plastic 

deformation. 𝜎𝑦 is generally determined from the uniaxial yield stress. When the effective stress 

is lower than the yield stress, it is called the elastic deformation and satisfies the following: 

The important thing is that any stress states should not exceed the current yield stress and is 

called plastically admissible stresses. In other words, the internal stress of the material cannot 

be larger than the external force. The constraint on this is expressed as 

The yielding conditions should only be considered when an elastic stress, an unloading, and a 

plastic yield occur. Three cases can be expressed as shown in Figure 2.4, where the elastic 

region in the uniaxial state, the plastic load, and the elastic strain are expressed as the yield 

stress for the strain. 

 

 Φ(𝛔,𝜎𝑦) = 𝜎̅(𝛔) − 𝜎𝑦(𝜀 ̅𝑝) = 0, Equation 2.18 

 𝜎̅(𝛔) < 𝜎𝑦(𝜀 ̅𝑝). Equation 2.19 

 Φ(𝛔,𝜎𝑦) ≤ 0. Equation 2.20 

 if Φ(𝛔,𝜎𝑦) < 0 ⇒  𝜀 ̅̇𝑝 = 0,  Equation 2.21 

 if Φ(𝛔,𝜎𝑦) = 0 ⇒  {
𝜀 ̅̇𝑝 = 0 for elastic unloading,

𝜀 ̅̇𝑝 ≠ 0 for plastic loading.    
 Equation 2.22 
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Figure 2.4: Description of elastic and plastic deformation under loading and unloading  

2.4.2 Flow rule 

The flow rule can be expressed as an Equation 2.23 in relation to a plastic strain rate tensor as 

the product of the direction of a plastic strain rate 
𝜕𝑃

𝜕𝛔
 and a plastic multiplier 𝛾̇ under the plastic 

load: 

where 𝛆̇𝑝 is the plastic strain rate tensor, and 𝛔 is the Cauchy stress tensor. 𝛾̇ is the plastic 

multiplier and always has a positive value. 𝑃 is involved in the direction of the plastic strain 

rate and is called the potential function. 
𝜕𝑃

𝜕𝛔
 is the directional vector of the yield stress as a partial 

derivative of the potential function for the stress tensor, and its size is 1. If the potential function 

is not defined separately and the yield function is used, it is called the associated flow rule 

(AFR). In the AFR, the normal vector of the continuous, the differentiable yield function 

determines the direction of the plastic strain rate. 

The AFR generally exhibits an anisotropic material behavior in single-phase materials and 

polycrystalline materials. However, the AFR concept has been shown by various investigations 

to be an anisotropic representation of high anisotropic materials. For example, the AA48-T4 

and AA2090-T3 materials were not well calculated for the AFR-based anisotropic yield model 

 𝛆̇𝑝 = 𝛾̇
𝜕𝑃

𝜕𝛔
, Equation 2.23 
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Hill48 with r-values and yield stresses. Yld2000-2d and Hill48 did not accurately represent the 

material behavior for r-values and yield stresses of AA2090-T3 (Park and Chung, 2012). The 

need for a non-associated flow rule (non-AFR) has increased for high anisotropic material 

representations. It has been known that a plastic deformation generally does not depend on 

hydrostatic stress (Hill, 1948). However, a hydrostatic stress has been found to affect plastic 

deformation, and the non-AFR should be used to express it (Stoughton and Yoon, 2014). The 

importance of the non-AFR concepts that have not been previously considered in the 

development of metal materials, measurement techniques, and computational capabilities is 

increasing. 

The non-AFR, as the name suggests, defines the plastic potential function differently than the 

yield function, unlike the AFR. The difference between the yield function and the potential 

function is determined by the normal vector of the potential function, not by the normal vector 

of the yield function. The potential function, which is different from the yield function in non-

AFR, can be used in conjunction with the formula of the yield function or any other type of 

function. When the potential function borrows the same form as the yield function, the empirical 

values required to determine the coefficients of the function are different. The coefficients of 

the potential function are usually determined on the basis of r-values and the coefficients of the 

yield function are determined based on the stress (Safaei et al., 2014). 

The AFR and the non-AFR are introduced and they have a great influence on determining the 

direction of the plastic strain rate. Considering this, we try to predict the expression of material 

anisotropy with high accuracy, which has a significant influence on expressing the behavior of 

a thin sheet material. 

2.4.3 Hardening model 

As a deformation progress, the lattice rotation appears by the potential slip, and the phenomenon 

accumulates and becomes an obstacle to the next deformation. Thus, the resistance to 

dislocation slip increases during plastic deformation. When the load is removed during plastic 

deformation, the increased yield stress becomes the new yield stress (Cardoso and Yoon, 2009). 

It is said that a work hardening is caused by a plastic work and an increasing of a material 

strength. It is also referred to as a strain hardening because a plastic strain is increased by the 

plastic work. 

The hardening behavior can be expressed by a hardening model. Different hardening models 

are used for different hardening phenomena. The isotropic hardening is that the yield surface 
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simply expands in a size while retaining its shape during a plastic deformation. It is reasonably 

used in process analysis where the direction of the load does not change (Chung et al., 2005). 

The hardening behavior when the direction of the load is changed cannot be rightly represented 

by the isotropic hardening model. The hardening in a cyclic loading, reversed loading, and 

spring back can be represented by a kinematic hardening, because the kinematic hardening 

model is able to express the change in a yield surface by changing the loading direction by 

moving the yielding surface with a variable called the back-stress 𝐪. However, only the 

kinematic hardening model underestimates the stress from the reversed load. Only the isotropic 

hardening model gives a higher stress in the same case. Thus, a combination hardening with the 

isotropic and the kinematic hardening is proposed. The yield surface can have expansion and 

translation, and the ratio of the combinations is determined experimentally. The hardening 

models described are shown in Figure 2.5. 

 

Figure 2.5: Description of hardening models 

Following are the models for expressing isotropic hardening: 

Ludwik 𝜎 𝑖𝑠𝑜 = 𝜎0 + 𝐾𝜀̅𝑝𝑛, Equation 2.24 

Hollomon 𝜎 𝑖𝑠𝑜 = 𝐾𝜀̅𝑝𝑛, Equation 2.25 

Swift 𝜎 𝑖𝑠𝑜 = 𝐾(𝜀0̅ + 𝜀̅𝑝)𝑛, Equation 2.26 

Hockett-

Sherby 
𝜎 𝑖𝑠𝑜 = 𝑆𝑠𝑎𝑡 − (𝑆𝑠𝑎𝑡 − 𝑆0)exp(−𝑚𝜀̅𝑝𝑛), Equation 2.27 
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where 𝜎 𝑖𝑠𝑜 is an isotropic hardening stress, 𝜎0 is an initial yield stress, 𝐾 is a strength 

coefficient, 𝑛 is a strain hardening exponent, 𝑆𝑠𝑎𝑡 is a saturated stress, 𝑆0 is an initial stress for 

Hockett-Sherby, and 𝑚 is a material constant describing typical hardening behavior. The 

parameters in the hardening model equations are generally fitted to the flow stress determined 

by the experiment. The flow stress from the uniaxial tensile test is usually used as reference  to 

fit the hardening model. The uniaxial flow stresses of sheet metals are obtained up to an 

elongation of about 20 % without material instability like necking. Only the homogeneous flow 

stress can be used to fit the isotropic hardening model that do not consider the material 

softening. The hardening behavior over the elongation of 20 % is extrapolated depending on 

the selection of the hardening model. In order to obtain the actual material hardening curve over 

the elongation of 20 %, the bulge test can be used with the membrane theory (DIN EN ISO 

16808, 2014). Even if the flow curve in longer elongation is measured, one hardening model 

can express an analytical flow curve with some error. The different hardening models can be 

combined by the interpolation to express the accurate flow curve. Therefore, the isotropic 

hardening models can be accurately selected and combined based on the biaxial flow stress 

from the bulge test.  

Several kinematic hardening models are Prager (Prager, 1958) and Ziegler (Ziegler, 1959), 

which are linear models and have limitations describing the nonlinear hardening behavior, and 

the Armstrong-Frederick (Armstrong and Frederick, 1966), and the Chaboche models 

(Chaboche, 1986) for considering nonlinearity. (Yoshida and Uemori, 2002) announced the 

two-surface models to predict a very accurate elastic recovery, but the high complexity of 

implementation and parameter optimization is required to use this model. They can be used as 

combination hardening models mainly to calculate the elastic recovery in a reversed loading 

condition.  

2.4.4 Isotropic yield function 

The isotropic yield function describes the yielding in all directions of the yield surface. Tresca 

and von Mises are referred to the oldest yield functions. Tresca yield function (Tresca, 1864) is 

the theory due to maximum shear stress. This is expressed by the following equation. 

where 𝑆𝑠𝑦 is a shear yield stress, and 𝑆𝑦 is a tensile yield stress. The Tresca model has a 

hexagonal shape in the 3D principal stress space. The disadvantage is the vertex of the Tresca 

 
1

2
max(|𝜎1 − 𝜎2|,|𝜎2 − 𝜎3|,|𝜎3 − 𝜎1|) = 𝑆𝑠𝑦 =

1

2
𝑆𝑦 Equation 2.28 
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yield surface. This does not guarantee the yield of the material as a unique value in the 

numerical analysis. 

The von Mises model (von Mises, 1913) is widely used as an isotropic yield function so far and 

referred to as the representative isotropic model. The yielding of ductile materials begins with 

reaching the second invariant of deviatoric stress based on the von Mises. This is 

mathematically expressed as follows: 

where 𝑠𝑖𝑗 are the components of deviatoric stress. It is known that the yielding only depends on 

the deviatoric stress, not on the hydrostatic stress based on the theory. Taylor and Quinney 

investigated the yield stresses of a copper, an aluminum, and a mild steel by the material test 

and announced that the von Mises model has more accuracy of the material yielding than the 

Tresca model (Taylor and Quinney, 1931).  

Hershey firstly introduced a non-quadratic formulation of the yield criterion as the following 

(Hershey, 1954). 

where 𝜎𝑦 and 𝑎 are an uniaxial yield stress and an exponent, repectively. For 𝑎 = 2, the Hershey 

model has the same condition with the von Mises model. For 𝑎 = 1 or 𝑎 → ∞, it is translated to 

the Tresca model. Exponent 𝑎 is determined from the crystallographic structure of the material. 

The Hershey model is more flexible than the von Mises and Tresca model with the exponent 𝑎. 

The isotropic yield function is effective when predicting plastic deformation at the bulk 

forming, but there is a limit to expressing the yield of the thin metal sheet produced by the 

rolling process because thin sheets have different anisotropies at the yield point depending on 

the rolling direction.  

2.4.5 Anisotropy 

Sheet metals have an anisotropic material behavior due to the rolling process. The anisotropic 

property exhibits the symmetric characteristic with respect to three orthogonal planes and is 

called the orthotropic anisotropy. In general, the orientation of the sheet metals has three 

directions: the rolling direction (RD), the transverse direction (TD), and the normal direction 

(ND).  

 𝜎𝑣 = √
3

2
𝑠𝑖𝑗𝑠𝑖𝑗, Equation 2.29 

 (𝜎1 − 𝜎2)
𝑎 + (𝜎2 − 𝜎3)

𝑎 + (𝜎3 − 𝜎1)
𝑎 = 2𝜎𝑦

𝑎 , Equation 2.30 
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In order to define the anisotropic property quantitatively, the anisotropy coefficient or the 

Lankford coefficient was presented as a ratio of strain in the width direction 𝜀𝑤 to strain in the 

thickness direction 𝜀𝑡 (Lankford et al., 1950). The definition is expressed in the following 

equation:  

where 𝜃 is the angle to a rolling direction, because the Lankford coefficient depends on the in-

plane direction. The tensile specimen is cut having its longitudinal axis inclined with respect to 

the rolling direction and is carried out in the uniaxial tensile test to determine the Lankford 

coefficient. The width direction can be different from the transverse direction. 

The anisotropic material behavior was detected under equivalent biaxial loading (Banabic and 

Wagner, 2002, Barlat et al., 2003). (Barlat et al., 2003) called the quantitative expression as the 

coefficient of the biaxial anisotropy 𝑟𝑏 . The coefficient of the biaxial anisotropy is defined as 

where 𝜀11 and 𝜀22 are the major and minor strain on the elliptic surface, respectively.  

2.4.6 Anisotropic yield function 

Since the thin sheet is produced by the rolling process, it necessarily has a different yielding 

property depending on the direction different from the rolling direction. An anisotropic yield 

function was developed to account for this property, and Hill first published an anisotropic yield 

function (so-called Hill48) in the von Mises function to a quadratic function in 1948 (Hill, 

1948). This yield function expresses the anisotropy with three orthogonal symmetry planes. 

Hill48 is expressed by the following equation: 

where 𝑓𝐻𝑖𝑙𝑙48 is the Hill48 yield function and F, G, H, L, M, and N are the material constants. 

Axis 1 is usually the rolling direction, 2 is transverse to the rolling direction, and 3 is collinear 

with the normal direction. Since the sheet has a property of plane stress (𝜎33 = 𝜎31 = 𝜎23 = 0), 

Hill48 can be modified in the 2D plane stress as the follows: 

 𝑟𝜃 =
𝜀𝑤

𝜀𝑡
, Equation 2.31 

 𝑟𝑏 =
𝜀22

𝜀11
, Equation 2.32 

 
2𝑓𝐻𝑖𝑙𝑙48(𝜎𝑖𝑗) ≡ 𝐹(𝜎22 − 𝜎33)

2 + 𝐺(𝜎33 − 𝜎11)2 + 𝐻(𝜎11 − 𝜎22)
2

+ 2𝐿𝜎23
2 + 2𝑀𝜎31

2 + 2𝑁𝜎12
2 = 1, 

Equation 2.33 
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For a numerical analysis with Hill48 to determine the material parameters and a flow stress in 

one direction, Lankford coefficients (anisotropic coefficients) 𝑟0, 𝑟45, and 𝑟90 are required. The 

flow stress is usually determined from the uniaxial tensile test in the rolling direction. The 

relationship between 𝑟0, 𝑟45, 𝑟90, and F, G, H follows the following rules: 

Hill48, which can be determined by the material parameters with a relatively small number of 

experiments, is reasonably well represented in a mild steel compared to those used in the 

experiment (Hill, 1948). However, it does not coincide much with other materials, especially 

aluminums or its alloys. 

To overcome the limitations of Hill48, it has been developed as a yield function of Hill79 (Hill, 

1979) and Hill90 (Hill, 1990). Hill90 overcomes the limitations of the previous models and has 

relatively a high flexibility to demonstrate a similar material behavior in various materials. 

However, since the formulation is not user-friendly, it is difficult to use the same for the 

numerical analysis and it is not efficient because of a high computational cost (Banabic, 2010). 

Hersford, Barlat, Banabic, and others have published their yield functions in an equation 

designed from Hershey models in a different system from the Hill models. Typically, Barlat 

and Lian proposed Barlat89 as a planar anisotropic yield function (Barlat and Lian, 1989). The 

function is expressed in Equations 2.38, 2.39 and 2.40: 

 

 

 

 

 

 2𝑓(𝜎𝑖𝑗) ≡ (𝐺 + 𝐻)𝜎11
2 − 2𝐻𝜎11𝜎22 + (𝐻 + 𝐹)𝜎22

2 + 2𝑁𝜎12
2 = 1. Equation 2.34 

 𝑟0 =
𝐻

𝐺
, Equation 2.35 

 𝑟45 =
𝑁

𝐹 + 𝐺
−

1

2
, Equation 2.36 

 𝑟90 =
𝐻

𝐹
. Equation 2.37 

 𝑓𝐵89 = 𝑐|𝑘1 + 𝑘2|
𝑀 + 𝑐|𝑘1 − 𝑘2|

𝑀 + 𝑑|2𝑘2|
𝑀 = 2𝜎𝑒

𝑀 . Equation 2.38 
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Here 𝑘1 and 𝑘2 are given by 

where c, d, h, p, and M are the material parameters. M is approximately determined by 6 for 

BCC materials and 8 for FCC materials, respectively. c, d, and h are identified based on the 

Lankford coefficients 𝑟0 and 𝑟90 by the following equations: 

where p is calculated by a numerical procedure. Barlat89 predicts the material behavior of the 

aluminum rather than a simple and strong anisotropic, requiring only four material constants. 

However, in order to obtain the material constant p, a nonlinear equation is solved. And the 

materials with the strong anisotropy and biaxial stress prediction generally do not agree. 

For a continuous improvement, Barlat91, Barlat94, and Barlat96 have since been announced. 

Among them, Barlat96 shows a good agreement on the anisotropy coefficient and the stress in 

the uniaxial direction in the plastic material behavior of the aluminum alloy. However, the 

convexity of the yield function is not guaranteed, and the limitations that the derivative cannot 

be obtained analytically remain. (Barlat et al., 2003) 

In order to secure the limitations so far, Barlat published Yld2000-2d on plane stress (Barlat et 

al., 2003). The yield function is defined by a linear transformation. This function requires a 

total of eight material constants, 3 uniaxial yield stresses, 3 anisotropic coefficients, a biaxial 

yield stress, and a biaxial anisotropic coefficient, to determine them. To obtain the eight 

material constants, the nonlinear equations must be solved and the procedure is given in 

Appendix 11.1. Yld2000-2d proved the convexity of the yield function by overcoming the 

disadvantages of the previous Barlat96 (Barlat et al., 2003). 

Banabic et al. (Banabic et al., 2000) proposed own yield function named BBC2000 modified 

based on the isotropic yield function Hershey. BBC2000 and Yld2000-2d were compared with 

 𝑘1 =
𝜎11 + ℎ𝜎22

2
, Equation 2.39 

 𝑘2 = [(
𝜎11 − ℎ𝜎22

2
)
2

+ 𝑝2𝜎12
2 ]

1/2

, Equation 2.40 

 𝑐 = 2 − 𝑑 = 2 − 2√
𝑟0

1 + 𝑟0
∙

𝑟90

1 + 𝑟90
, Equation 2.41 

 ℎ = √
𝑟0

1 + 𝑟0
∙
1 + 𝑟90

𝑟90
, Equation 2.42 
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Yld2000-2d and experimental measurements in normalized stresses and r-values according to 

angles from the rolling direction. The both yield functions analyzed accurate distribution of the 

r-values, but Yld2000-2d could predict more accurate distribution of the normalized stresses 

than BBC2000. The yield function was improved in order to take the biaxial anisotropic 

coefficient into account as follows (Banabic et al., 2005):  

where k (≥ 1) and 0 ≤ α ≤ 1 are the material parameters. Γ, Ψ, and Λ are expressed as follows: 

where M, N, P, Q, R, S and T are also the material parameters.  

BBC2005 comparing Yld2000-2d also needs eight material characteristics: 0°, 45°, and 90° 

uniaxial stresses and r-values, a biaxial stress, and a biaxial r-value. It was proved that the yield 

function Yld2000-2d and BBC2003 are the same, when 𝛼 = 0.5 (Barlat et al., 2006). 

Yld2000-2d was expanded to a three-dimensional yield function in 2005 under the name 

Barlat2004-18p (Barlat et al., 2005). A total of 18 material constants were required to increase 

the complexity of the function. Therefore, the uniaxial stresses and anisotropy coefficients in 

seven directions must be measured. In addition, two simple shear stresses are required for the 

biaxial stress, the biaxial anisotropy, and four additional out-of-plane directions. Barlat2004-

18p are difficult to use and too complex, and earing in the prediction of the parts produced in 

the cup drawing shows a high degree of accuracy in comparison with the experimental than the 

previous models (Yoon et al., 2007).  

2.5 Deep drawing process 

The bead forming follows the deep drawing process according to DIN 8584-3. In the deep 

drawing process, a thin sheet metal is drawn into a concave shaped tool. Three tools, a punch, 

 𝜎 = [𝛼(Γ + Ψ)2𝑘 + 𝛼(Γ − Ψ)2𝑘 + (1 − 𝛼)(2Λ)2𝑘], Equation 2.43 

 Γ =
𝜎11 + 𝑀𝜎22

2
, Equation 2.44 

 
Ψ = √(

𝑁𝜎11 − 𝑀𝜎22

2
)
2

+ 𝑄2𝜎12𝜎21, Equation 2.45 

 Λ = √(
𝑅𝜎11 − 𝑆𝜎22

2
)

2

+ 𝑇2𝜎12𝜎21, Equation 2.46 
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a blanking holder, and a die, are used for this purpose, and a schematic procedure for the deep 

drawing process with the three tools is shown in Figure 2.6. In addition, the deep drawing is 

carried out using the active media and the active energy instead of mechanical tools. The active 

media includes a gas or a fluid, and the active energy is applied to the electrohydraulic or the 

electromagnetic forming. It is possible to increase a dimensional accuracy or to avoid contact 

problems without the mechanical tools, but the conditions of using the active media and the 

energy are difficult, such as being a magnetic or requiring a very large capacitor. 

 

Figure 2.6: Deep drawing process with tools (Schuler, 1996) 

2.6 Forming limit model 

A deformation failure of the material during a sheet metal forming should be avoided. The 

deformation failure in the sheet metal forming has a local instability and a fracture. The local 

instability, called necking, is apparently not a problem with the shape of the part, but it 

significantly reduces the strength of the part. The fracture is developed from instability, which 

is why the object shape cannot be made due to the separation of materials. In order to 

analytically identify these failures, an additional model is needed to predict the local instability 

and fracture of the material as well as the yield function that can represent the plastic 

deformation of the metal. Most of them are used to predict the forming limit by using the 

internal values of the material, that is, strain and stress. It is used as a criterion for predicting 

the forming limit by the internal variable values at the time of material failure or by calculating 

the damage by a combination of internal variables by a specific principle and estimating the 

forming limit of the material by accumulated damage. In the former case, strain-based FLD and 

stress-based FLSD are representative examples. In the latter case, there are Cockcroft-Latham 

and Gurson models as damage models. Damage models are mainly used to predict material 

failure through damage accumulation rather than local instability. Therefore, this chapter 

examines various types of modeling prediction models for predicting the forming limits of 

metal sheet materials. 



26 State of art  

 
 

2.6.1 Strain-based model 

2.6.1.1 Forming limit diagram  

A curve has the maximum main strain values at material failure in FLD. This was first invented 

by Keeler (Keeler, 1961) and Goodwin (Goodwin, 1968). This concept requires major strains 

and minor strains at the material instability or the fracture. Normally, the values of the limit 

strain obtained from various planar deformation states, from the uniaxial tension to the biaxial 

tension, of the thin metal sheet form the forming limit curve (FLC). The Nakazima test is 

typically performed to obtain the limit principal strains. The Nakazima test draws a rectangular 

sample of various widths with a hemispherical punch and a circular die. The shape of the 

specimen conforms to the ISO12004 standard, and the punch diameter is recommended to be 

100 mm. The punch draws the specimen, and the strain can be measured through the optical 

measuring system or the strain gauge until the fracture. In addition to the Marciniak test, the 

tensile test and the bulge test, a variety of deformations can be expressed through a tester to 

determine the state, but now through the Nakazima test to make FLD is the standard. 

In the Nakazima test, it is challenging to obtain the limit strain at the point of necking when the 

plate is deformed until it breaks. This is because it is not easy to determine the exact limit strain 

value because the section from the material to the fracture after the necking is much shorter 

than the plastic strain section. Thus, several methods have been introduced to determine the 

limit strain. We introduced a decision method based on interpolation of the limiting strain called 

the three circle method developed by (Bragard et al., 1972). Once the material breaks, the strain 

values around the fracture center on the cross-section of the plane including the fracture are 

internally divided. The maximum value of the subdivided line is defined as the limit strain. In 

1975, Hecker (Hecker, 1975) published another method of defining the limit strain. After the 

fracture, the surrounding oval shape was classified into three types: circle, fracture, 

quadrilateral due to the effect of necking or breaking, and triangle shape is classified as safe. 

However, with the development of the optical measurement system thereafter, the limit strains 

have appeared in a way different than before. It is known that the strain rate rapidly increases 

after the necking. A characterization point is defined where the strain rate changes rapidly over 

time as the strain measurement becomes possible in the real time. The intersection of the slope 

of the constant strain rate before the necking and the slope of the abruptly increased the strain 

rate is defined as the characterization point. The strain at this point is determined as the limit 

strain (Volk and Hora, 2011). Owing to the development of the optical measurement system, 
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Nakazima introduced a limit strain measurement method using a real-time interpolation. 

(Nakazima and Kikuma, 1967) This defines the marginal disease rate similar to that introduced 

by (Bragard et al., 1972). 

Recently, a method using a camera is mainly used, and two methods of measuring a limit strain 

using a time graph versus a strain rate versus a limit strain measuring method based on an 

interpolation of a peripheral strain according to a position are used. These methods have been 

developed with several commercial tools, and ARAMIS is typically used (DIN EN ISO 12004-

2). 

The FLC is used to check material failure in advance in order to produce the parts in safely. 

This allows investigating the range in which parts are safely produced in deep drawing. In 

addition, it can assist in a process design by identifying where a necking or a fracture occurs 

frequently. It is possible to know which a limit strain occurs in a certain region. Four typical 

deformation states in a deep drawing are shown with the FLC for the necking and the crack in 

Figure 2.7. Deformation paths (1) - (4) are called the ideal deep drawing, the uniaxial tension, 

the plane strain, and the biaxial tension, respectively. 

 

Figure 2.7: representative forming states in forming limit diagram 
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The FLD determined as above has the greatest advantage and can easily measure the material 

characteristics required for the experiment. Therefore, no additional numerical model is needed, 

so it is easy to identify the formability and improve the process conditions by a simple 

comparison after measuring the strain of the part. Unfortunately, the FLD cannot take into 

account nonlinear deformation paths. Therefore, it is difficult to predict the forming limit of a 

part made of a various deformation history by the FLD. 

2.6.1.2 Generalized Forming Limit Concept 

The traditional FLC is used to determine the forming limit of the material. However, the 

drawback of the traditional FLC is that it cannot predict the forming limit with almost the same 

linear and unbroken strain paths (Volk et al., 2012). Most of the automobile parts of the metal 

sheet are manufactured in many forming operations with the nonlinear strain paths. Generalized 

Forming Limit Concept (GFLC) was developed to overcome the limitations of the traditional 

FLC and to consider nonlinear strain paths. The GFLC has a posteriori material failure 

evaluation, which is the characteristic of the FLC, so it can be easily used in practice by the 

strain measurement. 

To predict material failure in the GFLC, the failure behaviors are described in bilinear loading 

conditions as a function of a true strain ratio (𝛽 = 𝜀2 𝜀1⁄ ) and a true strain length 𝑙(𝛽) at a pre- 

and a post-forming based on the experimental data for the GFLC as shown in Figure 2.8.  

 

Figure 2.8: Experimental FLD for bilinear strain paths and six different pre-strains (Volk et 

al., 2012) 
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Six different pre-deformations are carried out under the uniaxial, the plane-strain, and the 

equibiaxial tensile states with the two different forming degrees. Six subsequent FLC from each 

pre-deformation are generated to determine the GFLC data for one material. The FLC of the 

linear strain path is obtained as a reference data. The unique strain length 𝑙(𝛽) is calculated by 

each strain ratio (𝛽 = 𝜀2 𝜀1⁄ ) at the beginning of the instability. The strain path length ratio 𝜆𝑝𝑟𝑒 

and 𝜆𝑝𝑜𝑠𝑡 of the pre- and post-forming are calculated corresponding to the strain ratio 𝛽𝑝𝑟𝑒 and 

𝛽𝑝𝑜𝑠𝑡 , respectively. In this way, a metamodel of the total strain path length ratio 𝜆 is built by 

the following equation:  

Figure 2.9 shows an exemplary example for the parameterization of a bilinear strain path with 

the biaxial pre-forming. 

 

Figure 2.9: : Parameterization of a bilinear strain path with biaxial pre-forming (𝜀1 = 0.18, 
𝜀2 = 0.167, 𝛽𝑝𝑟𝑒 = 0.97) and uniaxial post-forming (𝜀1 = 0.12, 𝜀2 = 0.04, 𝛽𝑝𝑜𝑠𝑡  = 0.36) (Volk 

et al., 2012) 

Based on the isotropic approximation using the transformation for the four-node Lagrange 

element of the FEM, the meta-modeling is carried out. The phenomenological approach for the 

bilinear deformation histories can be extended to arbitrary nonlinear deformation histories 

consisting of an unlimited number of individual strain increments. The “corrected” strain path 

 

𝜆 = 𝑓(𝑙𝑝𝑟𝑒 ,𝛽𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡 ,𝛽𝑝𝑜𝑠𝑡) 

= 𝜆𝑝𝑟𝑒 + 𝜆𝑝𝑜𝑠𝑡 =
𝑙𝑝𝑟𝑒(𝛽𝑝𝑟𝑒)

𝑙𝐹𝐿𝐶(𝛽𝑝𝑟𝑒)
+

𝑙𝑝𝑜𝑠𝑡(𝛽𝑝𝑜𝑠𝑡)

𝑙𝐹𝐿𝐶(𝛽𝑝𝑜𝑠𝑡)
. 

Equation 2.47 
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length ratio 𝜆𝑐𝑜𝑟 is adopted as the following equation in order to that 𝜆 reaches always 1 (Volk 

and Suh, 2013): 

 

Figure 2.10: : Application of principle of equivalent pre-forming and modified 

parameterization with the fixed 𝜆 of 1: (a) equivalent pre-strain and post-strain in the plane 
strain direction at 𝛽𝑝𝑟𝑒=0.90, 𝜆𝑝𝑟𝑒=0.27, 𝛽𝑝𝑜𝑠𝑡=0.00 and 𝜆𝑝𝑜𝑠𝑡=0.40, (b) existing 

parameterization of bi-linear deformation history, (c) its linearization with a corrected strain 

path length ratio 𝜆𝑐𝑜𝑟 (Volk and Suh, 2013) 

It was investigated that the GFLC had a good agreement with an experimental local necking 

from various nonlinear strain paths generated by a cruciform specimen and a draw bead tool on 

a sheet metal testing machine, while the FLC had large errors (Jocham et al., 2017). The 

disadvantage of the GFLC is that the number of experiments required to make GFLC data of 

one material is more than the number of material tests required for the FLC or other forming 

limit models. The GFLC is a forming limit criterion based on the experimental strain 

measurements without an influence of material models. Therefore, it gives reliable results and 

is useful to evaluate the forming limit only with the strains in practice.  

2.6.1.3 Analytical methods for FLC  

The FLC is usually obtained through experiments. However, there are methods to obtain the 

FLC analytically instead of the experimental method. These are largely divided into two 

categories. Theories have been developed assuming that one is a homogeneous deformation 

and the other is a non-homogeneous deformation. 

Assuming the homogeneous deformation, the Swift (Swift, 1952) and Hill (Hill, 1952) theories 

were constructed by dividing them into a diffusion necking and a local necking, respectively. 

Considère (Considère, 1885) confirmed that the load began to decrease from the necking, and 

the maximum force in the tensile test was indicated as the starting point of the necking. From 

 
𝜆𝑐𝑜𝑟 = 𝜆𝑝𝑟𝑒 + 𝜆𝑑𝑖𝑓 = 𝜆𝑝𝑟𝑒 + {1 − (𝜆𝑝𝑟𝑒 + 𝜆𝑝𝑜𝑠𝑡)}

= 1 − 𝜆𝑝𝑜𝑠𝑡 . 
Equation 2.48 
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this, it is said that if the strain is equal to the hardening coefficient in the Ludwik-Holloman 

strain hardening equation, the necking begins. Swift extends from the uniaxial tension to the 

biaxial tension and allows for the calculation of the limit strain by the partial derivative of the 

yield function and the stress component for the stress component, and is defined by the Swift's 

model (Swift, 1952). 

Hora and Tong proposed a model named ‘Modified Maximum Force Criterion’ (MMFC) based 

on the Considère’s maximum force criterion (Hora et al., 1994). The derivation of a 

homogeneous stress condition and a strain rate ratio are used to predict the localized necking. 

The MMFC model can be used in any yield function with the stress ratio, equivalent stress and 

strain. Afterwards, an enhanced MMFC (eMMFC) model was announced in order to take into 

account the influence of a bending curvature and a sheet thickness (Hora et al., 2003). Some 

terms like curvature, thickness, young’s modulus and other empirical parameters are added to 

the MMFC formula. The eMMFC model has advantages that are the assumption of the 

homogeneous stress and the consideration for the non-linear strain path. However, the 

prediction of the eMMFC model is dependent on the selection of a yield function and can need 

a numerical optimization to identify the empirical parameters for a new material.  

 The Swift's model is mainly valid for the diffusion necking, and a Hill's model was devised to 

calculate the limit strain at local necking. The yield function for the stress component and the 

Hill's model are made with the partial differentiation and hardening coefficients. Unlike the 

Swift's model, the Hill's model considers hardening coefficients. Thereafter, it was proposed by 

Stören and Rice to predict the occurrence of the localized necking in biaxial stretched plates 

(Stören and Rice, 1975). A vertex on the subsequent yield surface based on the J2 plasticity 

theory (Simo and Hughes, 1998) becomes more pointed during a deformation and causes a 

bifurcation from the uniform deformation. By the above methods, it is possible to predict the 

instability from the uniform deformation in the range of the uniaxial to the biaxial tension, and 

to calculate the limit strains. 

The non-homogeneous deformation occurs due to the difference in the thickness of one 

material. A new model was proposed by (Marciniak and Kuczynski, 1967), analyzing the 

necking process of the material with different thicknesses, and is called the M-K model 

(Marciniak and Kuczynski, 1967). The schematic geometry for the M-K model is shown in 

Figure 2.11. The different thicknesses are referred to as regions A and B, respectively, and the 

region B has a lesser thickness than the region A. The interface of the two regions is 

perpendicular to the major direction 1 for the M-K model. The ratio of the thickness of one 
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specimen to another is called the coefficient of a geometrical non-homogeneity 𝑓𝑛ℎ, and its 

value is ≤ 1. 

Principal strains of 𝜀1
(𝐴)

and 𝜀1
(𝐵)

 are obtained from the regions A and B, respectively, of different 

thicknesses under a biaxial deformation. As the deformation progresses, 𝜀1
(𝐵)

 increases close to 

infinity and the value of 𝜀1
(𝐴)

 at this time is designated as the limit strain. The M-K model is a 

valid method in the region where the minor strain 𝜀2 is positive. Hutchinson and Neale extended 

the M-K model to be used in regions where the minor strain 𝜀2 is negative and is called the H-

N model (Hutchinson and Neale, 1979). By varying the angle of the interface between the two 

regions, the limit strains were calculated in all regions of the FLC. For the M-K and H-N 

models, the limit strain is calculated using the difference in thickness, and the value of the limit 

strain depends on the coefficient of geometrical non-homogeneity 𝑓𝑛ℎ. The larger 𝑓𝑛ℎ, the 

higher FLC is drawn (Chung et  al., 2014). The FLC is also calculated differently depending on 

the hardening model and strain rate, as well as the anisotropic yielding function and parameters. 

 

Figure 2.11:Simplified sheet with different thicknesses for M-K and H-N models 
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The analytical methods have continued to expand and evolve. The M-K model was combined 

with a general anisotropic yield criterion proposed by Karafillis and Boyce to calculate an 

analytical forming limit (Cao et al., 2000). The analytical forming limits were in a good 

agreement with an experimental FLC. The Stören and Rice bifurcation method attempts to 

determine a more general and improved FLD. For this, the left-hand side of the FLC can be 

obtained closer to the experimental value than the original model by using the optimization 

technique (Jaamialahmadi et al., 2012). Limit strains calculated by bifurcation analysis were 

well predicted in a biaxial stretching state for the rate-independent crystal plasticity model 

(Yoshida et al., 2012).    

The theoretical FLCs can be obtained by the analytical methods. The theoretically obtained 

limit strains are sensitive to the strain path. In addition, it is difficult to obtain the limit strain 

values constantly by the user’s selected yielding function or initial value. 

2.6.1.4 Other prediction models for forming limit  

FLC cannot accurately predict the material necking under nonlinear strain paths. The equivalent 

plastic strain limit is defined as the stress ratio of the stress ratio to predict the forming limit of 

the material regardless of the change in load paths (Yoshida et al., 2005). The only internal 

variable that can have a strain history under the assumption of isotropic material and isotropic 

hardening is the equivalent plastic strain. Thus, the necking can be predicted regardless of the 

strain path. A new strain-based forming limit criterion was proposed to predict the forming limit 

without getting affected by the nonlinear load path based on the equivalent plastic strain and 

the material flow direction at the end of forming (Zeng et al. 2008). The material flow direction 

is defined as the ratio of the principal strain rates. A polar diagram of the effective plastic strain 

𝜀𝑝̅ was also proposed with the angle defined as the arctangent of the ratio of the principal strain 

rates 𝜀1̇ and 𝜀̇2 (Stoughton and Yoon, 2012). The polar diagram is called polar effective plastic 

strain diagram (PEPS). For various nonlinear strain paths, the PEPS is also insensitive. The 

related equations for the PEPS are expressed as the following.  

Where 

This model has an advantage to appeal the similar shape in comparison to that of the 

conventional FLC. Therefore, the directions of the uniaxial strain, plane strain, and equibiaxial 

 (𝑦, 𝑥) = (𝜀 ̅𝑝 cos(𝜃) , 𝜀 ̅𝑝 sin(𝜃)) Equation 2.49 

 𝜃 = tan−1(𝜀1̇, 𝜀̇2) Equation 2.50 
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strain in the polar diagram are the same as those in the conventional FLC. It is easy to 

understand and easy to interpret the forming limit. Another advantage is that the stress-strain 

relationship is not necessary because of the strain-based forming limit. Since then, the PEPS 

implemented in commercial tools has been used in the tensile tests, automotive doorframes and 

beverage cans to confirm the reliability of nonlinear deformation paths (Dick et al., 2016). 

Based on the plastic work that is calculated by a strain and stress, the fracture criterion was 

proposed considering nonlinear load paths (Clift et al., 1990). The criterion called Forming 

Limit Plastic Work (FLPW) was sometimes used as a predictor of forming limits independent 

of nonlinear deformation (Chung et al., 2014). The FLPW was extended to a criterion based on 

the plastic deformation energy for the prediction of the forming limit independent of various 

loads (Chen et al., 2010). This was used to confirm the forming limit of the automobile parts. 

The criterion based on the plastic deformation energy was also applied to limit strain prediction 

under the bilinear strain path. The FLPW can predict the forming limit under the bilinear strain 

path but has a difficulty to consider the stress-strain relation, since the stress is also needed to 

calculate plastic work for the FLPW. 

Other strain-based methods to predict the forming limit under the bilinear strain path were also 

introduced, but they require the material model and theoretical understanding to calculate their 

own parameters. The prediction results can be differently obtained. 

2.6.2 Stress-based model 

In order to overcome the limitations of the FLC, which cannot predict the nonlinear path 

mentioned above, stress-based prediction of the forming limit was proposed by (Arrieux et al. 

1981). Since then, stress-based criteria have rarely been mentioned for some time, and 

Stoughton announced again the need for stress-based criteria with computing speed and 

dynamic code development in FEM (Stoughton, 2000). Stoughton calculated the principal 

stresses of the material failure from the Hill quadratic and non-quadratic, and the Hosford's 

non-quadratic anisotropic model (Hosford, 1972) with the power law of hardening model. The 

calculation for the limit stresses takes the limit strains of FLC as input. Moreover, it can account 

into the pre-strains. Figure 2.12 shows how FLCs change depending on various pre-strains.  

The dashed lines emanating from the origin show the pre-strain path for each condition, with 

the second leg showing the plane strain path of the secondary forming operation to the 

associated FLC. The FLCs with pre-strains are translated into principal stress plane to plot a 

FLSD. Figure 2.13 shows the independency of the FLSD on the pre-strains. 
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Figure 2.12: Dependency of FLCs after prestrain to several levels of strain in uniaxial, plane 

strain, and equibiaxial conditions (Stoughton and Zhu, 2004) 

 

 

Figure 2.13: Yield surfaces depending on prestrain and path independency of FLSD using 

Hill’s in-plane isotropic model with r = 0.58 (Stoughton and Zhu, 2004) 
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The limit stresses overlap in a similar region, which means that the FLSD can give coincident 

prediction of material failure under consideration of nonlinear deformation paths.  

If the limit strain is not experimentally determined, the limit strain is obtained from the model 

that predicts the forming limit and translated to the stress space. From the Swift, Hill, Stören 

and Rice in the bifurcation analysis, or the M-K model as the damage model, the limit strain is 

calculated, and the FLSD is obtained by translating to the stress space (Stoughton and Zhu, 

2004). 

When complex models are used, a FLSD can be obtained with the FEM. The FLSD determined 

from Hill48 and an experimental FLC showed higher accuracy than predicting a material failure 

of the traditional FLC in the forming analysis of the automotive panel with the FEM (Chen et 

al., 2007). The M-K model, which can calculate the limit strains of a FLC, was used to obtain 

a FLSD for prediction of necking in the hydroforming process, in which a nonlinear loading 

path is shown (Hashemi, 2009). The FLSD generated using the M-K model predicted well the 

forming limit independent on combined loading with and without unloading (Yoshida et al., 

2007). It was shown that a FLSD can be obtained using the GTN model to predict the nonlinear 

deformation of AA5052-O1. A FLC was also obtained and compared with the FLSD, and it 

was experimentally confirmed that the FLSD can consider nonlinear deformation (Min et al., 

2011). A FLSD from Yld2000-2d and the Swift hardening model predicted more accurate 

forming limit of AHS steels than the FLSD from others (Panich et al., 2013). The FLSD was 

dependent not only on hardening and yield models, but also on material tests (Werber et al., 

2013). This shows that the FLSD was significantly affected by the material models. An 

extended FLSD is proposed as another type of the FLSD. This plotted the FLSD in a plane that 

does not show limit stresses in the principal stress plane but has both hydrostatic stress and 

effective stress. This model is useful for use in processes such as a hydroforming where the 

pressure in the thickness direction is strong, depending on the thickness variation (Hashemi, 

2014). The necking time by combining the finite element simulation with a ductile fracture 

criteria, named Cockcroft and Latham, was calculated, and a FLSD was created using the 

calculated strains at the necking  (Kolasangiani et al., 2015). A forming limit stress calculation 

was simplified by the sheet thickness and a parameter Z that calculated using the ultimate tensile 

strength and uniform elongation from the uniaxial tensile test (Levi and van Tyne, 2016). This 

method calculated the forming limit stresses close to the FLSD based on the experimental FLD. 

The FLSD is used to predict the forming limits, taking into account various nonlinear loads and 

deformations. However, a complex formulas and a numerical analysis to determine the FLSD 
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could be required to improve accuracy of forming limit prediction. The FLSD strongly depends 

on the user's understanding of the model, the material tests, and the material models. It is 

difficult directly to validate the FLSD with the experiment because it is hard to measure the 

stress. 

2.6.3 Conclusion 

The many methods have been devised to overcome the inaccuracies of the traditional linear 

FLC predicting a material failures in nonlinear load paths. The analytical methods reduce the 

number of tests, but the complexity of the implementation is dependent on the model accuracy. 

The methods of predicting the material failures in nonlinear load paths in stressed space also 

depend on the material models, but it also lacks a direct model validation due to difficulties of 

the stress measurement. The GFLC is a material-model-independent, a strain-based prediction 

method that requires a relatively large number of experiments, but it is possible to directly 

validate the model by strain measurements. Thus, the material failures can be predicted with a 

higher accuracy and reliability than other different models. For this reason, in this study, the 

GFLC is used to predict the material forming limit in the bead forming where nonlinear load 

paths occur. 
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3 Objective 

The location and the geometry of the bead are the decisive factors to effectively increase the 

stiffness of the sheet metal parts by the bead insertion. Numerical algorithms have been 

developed to optimize these effects in the last few decades, but they have not optimized 

geometries that take a material formability into account. A prediction model of the material 

forming limit can be additionally used in the forming simulation to predict the material forming 

limits in the deep drawing and the bead forming. Therefore, the purpose of this study is to 

provide a simulation technique that can guarantee the formability of the bead-formed parts 

while considering the forming limit of the material in bead optimization according to the bead 

locations and geometries to maximize stiffness. Firstly, the bead optimization procedure and 

required elements are arranged regarding to stiffening and formability. In this simulation 

technique, a forming history of the deep drawn parts should be considered to optimize the bead 

geometries considering the manufacturability. In general, the forming history in the deep 

drawing and the bead forming is nonlinear. Generalized Forming Limit Concept (GFLC) is 

used in this study as a forming limit model to consider the nonlinear forming history. The GFLC 

receives the major and the minor strains after each forming step as input values. The anisotropic 

yield model Yld2000-2d is used to describe the material behavior of the thin sheet metal as 

accurate as possible. This makes it possible to calculate the near realistic strain distribution and 

history and to improve the reliability of the forming limit prediction of the GFLC. The tension, 

bulge, and Nakazima tests are carried out to obtain the material characteristics in order to use 

the material model. The bead tools are constructed based on the trajectories determined by a 

stress distribution under a pin loading on the preformed part. The influence of the bead 

geometries on the formability and stiffness with the prepared models to reveal the relationship 

between the formability and stiffness. The database is created based on the relation of influential 

parameters to formability to guess an initial bead geometry for the effective optimization. The 

deep drawing as the preforming and the bead forming as the subsequent forming are 

experimentally performed to validate the reliability of the numerical studies with the simulation 

models. The bead tools are manufactured based on the determined bead locations and 

geometries. The strain values, the material failure, and the load-displacement curves in 

experiments are compared with the results of the simulation model. If the compared results 

show a good agreement, the numerical technique for the formability consideration is reliably 

established in the bead optimization. This research flow is summarized as a diagram in Figure 

3.1. 
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Figure 3.1: Diagram for research flow 
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4 Test facilities and measuring equipment 

This section introduces experimental machines and measuring devices used in this study. In this 

study, the forming analysis is required to develop the bead optimization program. To use this, 

the material parameters that determine the parameters of the material model should be 

measured. The machines for the tension and bulge test are explained first. In addition, 

specimens for the material tests and the devices for measuring the strain of the deformed parts 

are introduced. Finally, a press machine is introduced that allows the parts to be formed directly.  

4.1 Universal test machine 

A universal test machine is used to determine the mechanical properties of the material. Quasi-

static uniaxial tensile loads are used to obtain the stress values and the anisotropy coefficients, 

which are the material values required to determine the yield function. Equipment Typ 1484 / 

DUPS-M from Zwick GmbH & Co. KG. KG, Ulm is used as shown in Figure 4.1.  

 

Figure 4.1: Universal test machine 200 kN 
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It operates up to a maximum load of 200 kN and can be deformed by the control of a 

displacement, speed, and the load unit. In order to measure the stress and strain, the tactile 

measuring equipment is necessary to measure the deformation in the direction of length and 

width. This is because, in the plastic deformation of metal, the deformation amount in the tensile 

direction and the width direction is measured using the property that the volume does not 

change, so that all the orthogonal deformations in three directions can be known. This allows 

the calculation of a true stress and strain as well as an engineering stress and strain. It also 

makes the measurement of the Lankford coefficient possible. 

4.2 Sheet metal testing machine 

The GFLC model is used for formability prediction. The conventional FLD is required first as 

experimental input data to use this model. In addition, the FLD should be made in a subsequent 

forming after a preforming of the uniaxial tension, plane strain, and equibiaxial tension. In this 

study, utg has the GFLC data of AA6016 and HC260LAD materials. However, the existing 

GFLC data is updated by replacing only the FLD with newly purchased material. To do this, a 

BUP-1000 machine as shown in Figure 4.2 is used to enable the FLD creation.  

 

Figure 4.2: BUP-1000 with ARAMIS 
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The maximum deformation load and blank holding force up to 1000 kN is possible and enables 

a plane deformation of metal plates such as the Nakazima, Marciniak, and bulge test. A stroke, 

and load can be measured, and strains can be measured by combining with ARAMIS optical 

measurement system. 

4.3 ARAMIS optical measurement system 

The Nakazima test is typically performed to generate the FLD of the sheet material as shown 

in Figure 4.2. This test requires that the hemispherical punch draws samples with varying widths 

and measures the principal strain at the top center of the sample that is deformed into 

hemispheres. To do this, we use the non-contact optical 3D deformation measurement system 

GOM ARAMIS. The ARAMIS analyzes the deformation of the material surface under static 

and dynamic loads. The surface of the sample to be measured is sprayed so that any black dots 

can be placed on a white background. Two cameras take pictures of the stereoscopic 3D objects 

during the experiment at regular time intervals. It is recognized that the pattern of the sample 

surface changes and the strain position is measured and analyzed. We can calculate the strain 

and thickness changes by using the measured location values and analyze the limit strain for 

the FLD creation. 

4.4 ARGUS 

The ARGUS measurement system allows for the measurement and analysis of deformation 

results on the surface of the part as shown in Figure 4.3. High-resolution images capturing 

formed parts are evaluated with the ARGUS software. A point detection algorithm and 

mathematical calibration calculations automatically calculate precise models of light sections, 

camera position and lens distortion. This corresponds to a structure in which the 3D object 

coordinates of the component surface are aligned on a finely resolved network and applied to 

the semi-finished products. The network reflects the surface of the formed part. 

From the 3D coordinates of the object point, the main strain and the negative strain, which are 

actual results of the shape change, are calculated. In addition, the sheet thickness is calculated 

taking into account the component geometry and the rules of plasticity theory. An optimization 

of the analytical model and comparative verification can be performed in practice. It can also 

find limit strain areas or suggest solutions to complex deformation problems. The strain 

measurement range is from 0.5 % to 300 % and the strain accuracy is up to 0.2 %. The 
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measurement range is from 100 mm2 to m2. In order to use the ARGUS, a recognizable pattern 

on the surface of the formed part must be printed and electrolytic marking is used for this 

purpose. The ARGUS compares the pattern changes before and after the forming of the parts 

to analyze the strain. 

 

Figure 4.3: B-pillar example of ARGUS usage for strain measurement 

4.5 Electrolytic marking 

Products with an electrically conductive surface can be marked with the EU CLASSIC 300 

devices of ÖSTLING GmbH. The marking is made by a current pulse, which is passed through 

the embossing of the template. This creates an exact image on the product to be marked. The 

surface shape of the product is arbitrary. The template used has an A3 size with a circle of 1 

mm diameter and a spacing of 2 mm. This pattern is semi-permanently engraved on the surface 

of the test material and is used to measure strain using the ARGUS system. The electrolyte fluid 

72 was used for this study through a specimen test by ÖSTLING GmbH for the electrical 

marking. This marking method is useful for measuring the amount of a deformation even after 

the bead forming on both sides because there is no influence of the lubricant used to lower the 

friction during the forming. 

 

Figure 4.4: EU CLASSIC 300, ÖSTLING GmbH 
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4.6 Hydraulic press 

An experimental validation is necessary to verify the forming analysis model used in the bead 

optimization program. The forming analysis model analyzes the deep drawing which is the 

preforming and the bead forming which is the post-forming. In order to perform these two 

processes, we need a hydraulic press to move the die and to create the selected part shape as an 

example. The Diffenbacher hydraulic press held in the utg as shown in Figure 4.5 is suitable 

for the purpose described and is used to manufacture the selected sample shape. The press has 

a maximum forming load of 3200 kN, a maximum blanking holding force of 1250 kN, a 

maximum stroke of 250 mm, and a working width of 1250 × 950 mm2.  

 

 

 

Figure 4.5: Diffenbacher hydraulic press 
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5 Test materials 

Steels and aluminums are mainly used in sheet metals. Still, the steels have relatively high 

strength and ductility and are easy to form into complex design. In addition, the steels are an 

important material for manufacturing parts with high strengths. The aluminums have a lower 

strength and ductility than the steels, but it has a third of the steels density and plays a major 

role in a weight reduction in the automotive and aircraft industry. These two materials are 

considered to be the main materials in the automobile production. Among the various steels and 

aluminums, HX260LAD and AA6016 have no high strength compared to high-strength steels, 

e.g., DP steels and high ductility. They can be deformed without excessive load. For this reason, 

the two materials are suitable for confirming a reinforcement effect by the bead forming in an 

academic study. The two sheet metals have same thickness of 1 mm. The test materials are used 

in the material tests to identify the material parameters for the forming simulation, and in 

experimental validation to produce the parts by the preforming and the bead forming. The test 

materials are summarized in Table 5.1.  

Table 5.1 Overview of test materials 

Designation Material standard Sheet thickness [mm] 

AA6016 DIN EN 573-3 1.00 

HX260LAD DIN EN 10292 1.00 

 

Section 5.1 explains the general mechanical characteristics of the test materials. Section 5.2 

explains the determination of the flow stress, which describes the isotropic hardening and 

obtains the directional stresses by material tests. Chapter 5.3 explains how to determine the 

Lankford coefficients for identifying the parameters of the material model. Section 5.4 

describes the material test to obtain FLCs. The obtained results from the material tests will be 

used for the forming simulation and validation. 

5.1 General mechanical characteristic 

The 6016 aluminum (AA6016) is a 6000-series aluminum alloy (DIN EN 573-3, 2009). This 

involves a significant alloying with both magnesium and silicon, and the alloy is developed for 

a primary forming into products. The 6016 is the Aluminum Association (AA) designation for 
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this material. In European standards, it will typically be given as EN AW-6016. A96016 is the 

UNS number. Additionally, the EN chemical designation is AlSi1.2Mg0.4. 

The mechanical property of the AA6016 has a density of 2.7 g/cm3 and Young’s modulus of 

69 GPa, yield strength between 110 and 210 MPa, tensile strength between 200 and 280 MPa, 

and elongation between 11 and 27 % until fracture.  

Ac-120, Ac-121, Ac122, and Ac-140 are a kind of AA6016. They are divided into a magnesium 

content and copper content. The Ac-120 and Ac-121 have approximately 0.4 wt% magnesium. 

The Ac-120 is a commonly used material, and the Ac-121 has improved bendability compared 

to the Ac-120. The Ac-122 and Ac-140 contain approximately 0.6 and 0.5 wt%, respectively. 

The Ac-122 and Ac-140 do not contain copper in common and had high strength. The general 

information of chemical composition of the AA6016 is shown in Table 5.2. 

Table 5.2 Chemical composition of AA6016 (unit: by wt%) 

 Si  Fe  Cu  Mn  Mg  Cr  Zn  Ti  Residuals 

Max. 1.5 0.5 0.2 0.2 0.6 0.1 0.2 0.15 0.15 

Min. 1.0 - - - 0.25 - - - - 

 

The detailed name of the test steel is HX260LAD + Z100MBO that is usually used for cold 

forming and has good formability in relation to high guaranteed yield strength. The steel 

HX260LAD belongs to the high-strength low-alloy (HSLA) steels that have a name of HC or 

HX according to the European standards (EN 10268: 2006 +A1 and 2013, EN 10346:2009). 

The HSLA has low carbon content (0.05 to 0.25% C) and manganese content up to 2.0%. 

The zinc (Z) coating has a composition consisting almost entirely of zinc (>99 %) and is lead 

free, resulting in finely crystallized zinc spangle that meets high requirements for a visual 

appearance. Z100 of the name has a minimum total coating mass of 100 g/m2 at both surfaces 

and a coating thickness of 7 µm per surface. The steel was rerolled with improved surface 

according to MB of the name. Furthermore, the test material was oiled as surface treatment, and 

a contact of the test steel with tools can basically be affected by undesired frictional defects 

such as scratch. The steel HX260LAD has a density of 7.8 g/cm3 and Young’s modulus of 210 

GPa, yield strength between 260 and 330 MPa, tensile strength between 350 and 430 MPa, and 

elongation until fracture more than 26 %. 

HX260LAD contains carbon, silicon, phosphorus, manganese, sulfur, titanium, niobium, and 

aluminum. The chemical compositions are summarized in Table 5.3. 
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Table 5.3 Chemical composition of HX260LAD (unit: by wt%) 

 C Si Mn P S Ti Nb Al 

Max. 0.110 0.500 1.00 0.030 0.025 0.150 0.09 - 

Min. - - - - - - - 0.015 

 

HC260LAD is not used as test material in the research but was used to generate GFLC data. As 

HC260LAD also belongs to HSLA, HC260LAD has similar chemical composition of 

HX260LAD as shown in Table 5.4. Only difference between HX260LAD and HC260LAD is 

the rolling condition. HX260LAD is not specified and HC260LAD is cold rolled steel. This 

difference can lead to the different formability. The mechanical properties of HC260LAD also 

are Young’s modulus between 240 and 310 MPa, tensile strength between 340 and 420 MPa 

and elongation more than 27 %.  

Table 5.4 Chemical composition of HC260LAD (unit: by wt%) 

 C Si Mn P S Ti Nb Al 

Max. 0.100 0.500 0.60 0.025 0.025 0.150 0.09 - 

Min. - - - - - - - 0.015 

 

The general material information of the test materials AA6016, HX260LAD and the used 

material HC260LAD is summarized. The steels HX- and HC260LAD show similar properties, 

however, the both material behaviors can be dependent on a delivery date, manufacturer and 

different additional process. Therefore, it is needed to identify the actual mechanical 

characteristic by experiments. 

5.2 Flow stress 

In order to know the isotropic hardening behavior of the sheet metal, the flow stress is obtained 

from the uniaxial tensile test or the bulge test. The uniaxial tensile test is performed based on 

(DIN EN ISO 6892-1, 2014). The tensile specimens are produced by a milling with H-type in 

(DIN 50125, 2004). The tensile specimens are prepared from 0° to 90° by 15° from the rolling 

direction. The deformation is measured in the length and width direction using a tactile 

extensometer. The deformation in the thickness direction can be calculated according to the 

volume constant during the plastic deformation. Thus, the true stress and the true strain are 
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calculated to determine the flow stress curve by the program TestXpert. These data are used as 

material characteristic values to use the anisotropic yield function. 

The biaxial tensile flow stress is measured by the bulge test with the optical measurement 

system ARAMIS (DIN EN ISO 16808, 2014). There are two relevant meanings for measuring 

the biaxial tensile flow stress. One is to use a biaxial anisotropic coefficient as a material 

characteristic values for the anisotropic yield model Yld2000-2d (Barlat et al., 2003) used in 

this study. The other is to confirm the material behavior for a more elongation than the flow 

stress from the uniaxial tensile test. In the uniaxial tensile test, the flow curve of the steel up to 

an elongation of 20% is obtained and the subsequent behavior is calculated by an extrapolation 

(Volk et al., 2011). However, when the sheet is deformed in the plane direction by a certain 

pressure or load in the thickness direction, it is possible to make a deformation larger than the 

deformation by the uniaxial tensile test. Therefore, the flow curve of the material in the more 

elongation can be measured. The biaxial tensile stress curves for each material are shown in 

Figures 5.1 and 5.2, respectively.  

 

Figure 5.1: Flow stresses determined from the uniaxial tensile test with the specimen in the 

tensile direction of 0° and the bulge test for AA6016 
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Figure 5.2: Flow stresses determined from the uniaxial tensile test with the specimen in the 

tensile direction of 0° and the bulge test for HX260LAD 

The flow stress equations that agreed with the biaxial stress curves determined for ease of use 

in the numerical model are set. In order to flexibly match the experimental values, the flow 

stress equation was determined by a combination of Swift with the curve to increase and 

Hockett-Sherby with the curve to converge. The fitting curves are shown in the figure. The 

equation and the determined coefficients are as follows: 

The stress values at 10% elongation for each direction are shown in Table 5.3. It is used as a 

material characteristic values to determine the parameters of the anisotropic yield function. 

Table 5.3 Summary of normalized stresses for each material 

 𝝈𝟎 𝝈𝟏𝟓 𝝈𝟑𝟎 𝝈𝟒𝟓 𝝈𝟔𝟎 𝝈𝟕𝟓 𝝈𝟗𝟎 𝝈𝒃  

AA6016 1.000 0.960 0.949 0.970 0.972 0.980 0.977 1.003 

HX260LAD 1.000 1.009 1.034 1.041 1.042 1.019 1.006 1.014 

 

 𝜎𝐻𝐶260𝐿𝐴𝐷 = 675.2(0.0051 + 𝜀𝑝)0.199 [𝑀𝑃𝑎], Equation 5.1 

 
𝜎𝐴𝐴6016 = 0.1[412.8(0.0059 + 𝜀𝑝)0.21] 

+0.9[369.5 − (369.6 − 146)exp (−4.12𝜀𝑝0.75)] [𝑀𝑃𝑎]. 
Equation 5.2 
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The flow stresses in different directions of the uniaxial and the biaxial tension are measured for 

the two test materials by the uniaxial and bulge tests, respectively. The stress measurements for 

these material behaviors are used to express the hardening and anisotropic properties of the 

sheet metal deformation. 

5.3 Lankford coefficients 

In the uniaxial tension and biaxial tension tests, not only a flow stress but also an anisotropic 

material behavior can be identified. The uniaxial tension test measures the anisotropy 

coefficient called the Lankford coefficient. This coefficient is defined as the ratio of the plastic 

strain to the transverse direction and the plastic strain to the thickness direction with respect to 

the tensile direction according to Equation 2.26. 

Since the volume of the material does not change during the plastic deformation, a strain in the 

thickness direction can be calculated by measuring a strain in the tensile direction and a strain 

in the width direction. It is possible to measure all the strains in three orthogonal directions. A 

total of the seven directional specimens were produced up to 90° from 0° to 15° in the rolling 

direction. The prepared specimens were uniaxial stretched using the universal test machine, 

Zwick, and the anisotropy coefficients for each tensile direction were measured for the tensile 

strain according to the Lankford coefficient definition. Table 5.3 shows the Lankford 

coefficients by the tensile directions. 

When the plate is deformed by the same load along both orthogonal axes on a plane, the amount 

of a deformation is not the same for the both axes. That is, anisotropic properties are exhibited 

even in a biaxial stretched state. In order to quantitatively express the behavior of these 

materials, the concept called biaxial anisotropy is defined. (Barlat et al., 2003) The 

mathematical definition is expressed as the ratio of strain to the both axes under the same load. 

One direction generally corresponds to the rolling direction, and the two directions refer to the 

vertical direction to the rolling direction. A disc compression test or bulge test may be used to 

maintain the same load or balanced biaxial stress state. In this study, the biaxial anisotropy 

coefficient was measured using the bulge test. The bulge test was carried out on the basis of 

(DIN EN ISO 16808, 2014) and the strain measured by the ARAMIS used to obtain the biaxial 

flow stress can be determined. The biaxial anisotropy coefficients calculated from the measured 

strain are plotted together with the uniaxial anisotropy factor in Table 5.4. All anisotropic 

coefficients were used as a reference for the equivalent strain of 0.1. 
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Table 5.5 Summary of normalized stresses for each material 

 𝒓𝟎 𝒓𝟏𝟓 𝒓𝟑𝟎 𝒓𝟒𝟓 𝒓𝟔𝟎 𝒓𝟕𝟓 𝒓𝟗𝟎 𝒓𝒃 

AA6016 1.29 1.14 1.01 0.95 1.03 1.38 1.58 0.80 

HX260LAD 0.82 0.73 0.58 0.48 0.56 0.65 0.72 1.13 

5.4 Forming limit curve  

In order to predict the forming limit using the GFLC, a linear FLC is used as input. For each 

material, the FLC was performed according to the standard (DIN EN ISO 12004-1, 2008, DIN 

EN ISO 12004-2, 2008). For the Nakazima test, a sheet metal test machine BUP-1000, Zwick 

GmbH was used. The ARAMIS was used to measure the strain over time during the test. The 

punch speed was set at 1 mm/s and the blank holding force was set to 400 kN. The sample of 

the Nakazima specimen used is shown in the Figure 5.3. 

 

Figure 5.3: Geometry of Nakazima speciemen sample (DIN EN ISO12004-2) 

 

In the figure 5.3, 1 is the length of the groove, 2 is the width of the cutting part, and 3 is the 

fillet radius, 20-30 mm. To measure the limit strain at various strain states, the width 

corresponding to 2 of the specimen shape was varied. The Nakazima specimens were used in 

seven different widths of 30, 50, 60, 90, 125, 150, and 235 mm and the specimens were 
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fabricated by a laser cutting. The specimens were sprayed with random black spots on a white 

background on the surface to be measured by the ARAMIS for an accurate measurement. 

The limit strain, at which the local necking occurs, is determined based on the change of strain 

rate (Volk and Hora, 2011). The method is based on the observation that the beginning of the 

necking is accompanied by a considerable increase in the strain rate. According to this method 

the start necking point corresponds to the dramatic changes in the strain-rate versus time 

variation (characteristic point). This point could be determined by the intersection of the two 

straight lines corresponding to the first and the last sector of the curve (Figure 5.4). The strain-

rate evolutions are automatically determined by the images analysis. 

 

Figure 5.4: Strain-rate versus time 
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6 Bead optimization 

In order to develop the bead optimization program under considering the material formability, 

the procedure for the bead optimization is built as shown in Figure 6.1. The process consists of 

modules in order to develop the systematic program.  

 

Figure 6.1: Procedure diagram for the bead optimization  

 

First, the CAD file of the part designed without the bead is input at the CAD part. In the 

preforming analyzer, the blank is preformed to the designed part by the forming simulation. In 

addition, the basic feasibility of the preformed part as the GFLC value of the part 𝐹𝑖
𝑝𝑎𝑟𝑡

. If the 

basic feasibility is insufficient, the initial geometry of the part is modified and the feasibility of 

the part 𝐹𝑖
𝑝𝑎𝑟𝑡

 is iteratively calculated. The preformed part otherwise goes to the stiffness 

analyzer. The stiffness analyzer carries out the forming simulation for the user-defined load 

case. The load case can be a vertical loading, bending, torsion and others depending on a 

required stiffness. The A-stage gives the feasibility 𝐹𝑖
𝑝𝑎𝑟𝑡

 of the preformed part without beads, 

the initial analyzed stiffness of the part 𝐾0
𝑝𝑎𝑟𝑡

, and the internal variables like coordinates, 

strains, stresses to the B-stage. The stress distribution results from the stiffness analyzer are 

used to generate the trajectory that is the optimal bead locations induced from the major bending 

stress vectors. The initial bead geometry on the generated bead location is modeled based on 

the database that takes the strain distribution from the preform analyzer in the A-stage. The 

relationship between the material formability and the bead geometry prepares the database in 
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advance. The initial bead geometry is close to the forming limit of at least up to 80 % level. The 

B-stage transfers the optimal bead locations and the initial bead geometries to the C-stage. The 

bead forming simulation and the forming limit analysis with the determined bead location and 

geometry are then carried out in an accurate formability analyzer. The accurate formability 

analyzer carries out the bead-forming simulation and the forming limit analysis with the optimal 

bead locations and geometries and calculates the feasibility 𝐹𝑖
𝑝𝑎𝑟𝑡

. If 𝐹𝑖
𝑝𝑎𝑟𝑡

 is less than the 

forming limit 𝐹𝑙𝑖𝑚, the stiffness of the bead-formed part 𝐾𝑖
𝑝𝑎𝑟𝑡

 is confirmed by the user-defined 

load case at the accurate stiffness analyser. If the feasibility and stiffness of the bead-formed 

part satisfies the defined convergence criterion, the C-stage outputs the optimized part to the D-

stage. The program ends the optimization process at the D-stage. If not, the bead geometry is 

modified and the stiffness and formability analyzed again until the criteria are satisfied. 

The program has two convergence criteria. One is the target stiffness 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 defined by the 

user and the other is the forming limit 𝐹𝑙𝑖𝑚 according to the material.  The criteria follow the 

Kuhn-Tucker condition. One of the both criteria should be satisfied, and the detailed conditions 

are described in the following equations (Cha et al., 2018): 

where 𝑓𝑠𝑎𝑓𝑒 is the safety factor and can set the forming limit criterion to 80 or 90 % considering 

statistic errors. 

When a 𝐾𝑖
𝑝𝑎𝑟𝑡

 is less than or equal to the 𝐾𝑡𝑎𝑟𝑔𝑒𝑡, the maximum stiffness of the 𝐾𝑖
𝑝𝑎𝑟𝑡

 is resulted 

satisfying the Equation 6.3. When a 𝐾𝑖
𝑝𝑎𝑟𝑡

 is more than or equal to the 𝐾𝑡𝑎𝑟𝑔𝑒𝑡, the minimum 

feasibility of the 𝐹𝑖
𝑝𝑎𝑟𝑡

 is resulted satisfying that the 𝐾𝑖
𝑝𝑎𝑟𝑡

 is equal to  the 𝐾𝑡𝑎𝑟𝑔𝑒𝑡. The 

convergence criteria can be expressed in the following Equation 6.4 (Cha et al., 2018): 

 

 (𝐾𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐾𝑖
𝑝𝑎𝑟𝑡)(𝐹𝑖

𝑝𝑎𝑟𝑡
− 𝑓𝑠𝑎𝑓𝑒𝐹𝑙𝑖𝑚) = 0, Equation 6.1 

 (𝐾𝑡𝑎𝑟𝑔𝑒𝑡 ≥ 𝐾𝑖
𝑝𝑎𝑟𝑡), Equation 6.2 

 (𝐹𝑖
𝑝𝑎𝑟𝑡

≤ 𝑓𝑠𝑎𝑓𝑒𝐹𝑙𝑖𝑚). Equation 6.3 

 𝑖𝑓 {
𝐾𝑡𝑎𝑟𝑔𝑒𝑡 ≥ 𝐾𝑖

𝑝𝑎𝑟𝑡
:max{𝐾𝑖

𝑝𝑎𝑟𝑡|𝐹𝑖
𝑝𝑎𝑟𝑡

≤ 𝑓𝑠𝑎𝑓𝑒𝐹𝑙𝑖𝑚}

𝐾𝑡𝑎𝑟𝑔𝑒𝑡 ≤ 𝐾𝑖
𝑝𝑎𝑟𝑡

:min{𝐹𝑖
𝑝𝑎𝑟𝑡|𝐾𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐾𝑖

𝑝𝑎𝑟𝑡}     
. Equation 6.4 
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Here 𝐾𝑝𝑎𝑟𝑡  and 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 are the analyzed stiffness and the target stiffness of the bead-formed 

part, respectively. If the user already knows the stiffness value with the unit of N/mm or 

kN/mm, the user can defines the  𝐾𝑡𝑎𝑟𝑔𝑒𝑡 as the stiffness value. If not, the user gives the scale 

factor how the target stiffness is more than the stiffness of the preformed part in the stiffness 

analyzer. The second criterion consists of the 𝐹𝑝𝑎𝑟𝑡, 𝑓𝑠𝑎𝑓𝑒, and 𝐹𝑙𝑖𝑚 that are the formability, 

safety factor and material forming limit of the bead-formed part, respectively. The 𝐹𝑏𝑒𝑎𝑑 is the 

calculated value of the GFLC depending on the material. The 𝐹𝑙𝑖𝑚 has the GFLC value of 1.0 

for any materials. Since the initial bead geometry can have approximately 80 % of the 

formability, the 𝑓𝑠𝑎𝑓𝑒 has a value between 0.8 and 1.0. Therefore, the formability criterion 

depends on the material and the 𝑓𝑠𝑎𝑓𝑒. 

A forming simulation model is needed to be prepared for preforming, bead forming, and 

stiffness analysis in order to perform the aforementioned optimization. A material model and 

an FE-model are used for this. Generalized Forming Limit Concept (GFLC) is used for 

formability analysis. This model accurately determines the formability of the sheet metal 

forming considering the strain history with a nonlinear path than the conventional linear FLC. 

A database to suggest the initial bead geometry is prepared in advance by means of the 

sensitivity analysis with the simulation. 
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7 Forming simulation model 

For the bead optimization, a forming simulation model capable of the preforming, the bead 

forming, and the stiffness analysis is required. The model for the formability prediction is used 

to prepare the database in the bead optimization to give the initial bead geometry, and to predict 

the formability of a determined bead position and geometry. Based on the calculated stress 

distribution after the preforming and the stiffness analysis, the bead path to maximize the 

stiffness is determined, and the bead geometry is determined from the strain distribution after 

the preforming to the forming limit before the bead forming. Therefore, it is required that the 

forming simulation model should accurately provide the stresses and strains as input values to 

the next step necessary for the bead optimization. 

The material model plays a major role in the accuracy of stresses and strains. The test materials 

are thin sheet metals with anisotropy. This is because the material has planar anisotropic 

properties, and an anisotropic yield model capable of expressing it is required. There are several 

anisotropic yield functions, among which the Yld2000-2d model is selected. The Yld2000-2d 

was developed not only for steel, but also for the aluminum alloy sheet (Barlat et al. 2003), so 

it is suitable for analyzing the test materials AA6016 and HX260LAD used in this study. This 

tries to improve the accuracy of the forming analysis model by considering the non-AFR, which 

can express the strong anisotropic material behavior more flexibly. The implementation for the 

Yld2000-2d is described to use in the commercial FE-Software Abaqus mentioned in Section 

7.1. 

The GFLC model for the analysis of the formability requires history of major and minor strain 

in all processes. (Volk et al. 2012) have generated the GFLC data for AA6016 and HC260LAD. 

However, the materials used in this study are HX260LAD and AA6016. HC260LAD and 

HX260LAD are the same series of materials, but there is only a difference. In addition, AA6016 

used has an aging effect over time as it produces the GFLC data. The GFLC model, which is 

retained to efficiently reflect changes in the same system or materials with aging effects, must 

be updated. The GFLC requires materials with two types of preparation: linear FLC and 

nonlinear strain paths. However, only the linear FLC is updated to that of the current material 

so that the determined GFLC is corrected. The GFLC model modification according to the 

general FLC test results for the test materials for this is described in Section 7.2. The updated 

GFLC is also introduced because of the differences with the linear FLC. Later, an experimental 

validation confirms the accuracy and flexibility of the GFLC. 
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The anisotropic yield function is implemented as a user-defined subroutine to the finite element 

model in Abaqus. The finite element model includes geometries of the dies and specimens, and 

boundary conditions considering preforming, bead forming or load case for the stiffness 

analysis. The GFLC for the forming limit prediction is used in conjunction with the Abaqus 

program, and such descriptions are mentioned in Section 7.3. When all of the above procedures 

are fulfilled, the establishment of the simulation models satisfying the requirements of this study 

is completed.  

7.1 Material model 

The anisotropic material model for the forming simulation is introduced. The model has two 

versions of the AFR and non-AFR, respectively, and then it is implemented in the commercial 

FEM software using a stress integration algorithm. The verification is carried out by comparing 

the theoretical and experimental values. In addition, it is also compared with the anisotropic 

model in commercial tools to support the validity of the selected model. 

7.1.1 Introduction of Yld2000-2d 

The yield function Yld96 before the Yld2000-2d does not guarantees the proof of the convexity 

for the yield surface (Barlat et al. 2003). This is an important condition for solving plastic 

deformation by numerical analysis to obtain a unique solution. The Yld2000-2d overcame the 

proof of the convexity and improved the accuracy in the equibiaxial state. In addition, it is a 

model that can express the yield stress and anisotropy coefficient in rolling, diagonal, transverse 

and biaxial tensile stresses well. The Yld2000-2d yield function has a linear transformation of 

two unconditionally convex functions and a deviatoric stress tensor.  

where 

where 𝑋1,2
′  and 𝑋1,2

′′  are the principal values of linear transformation on the stress tensor. 𝑎 is a 

material exponent and generally has a value of 6 for BCC and 8 for FCC, respectively, based 

on the crystallographic structure. The linear transformation of 𝐗 ′and 𝐗′′ can be made by the 

deviation function 𝐬. 

 
𝜙𝑦 = [

1

2
(𝜙′ + 𝜙′′)]

1
𝑎

, Equation 7.1 

 𝜑′ = |𝑋1
′ − 𝑋2

′ |𝑎 ,𝜑′′ = |2𝑋2
′′ + 𝑋1

′′|𝑎 + |2𝑋1
′′ + 𝑋2

′′|𝑎 , Equation 7.2 
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where 𝐂 ′ and 𝐂 ′′ are linear transformation matrices. Alternatively, using the transformation T, 

which transforms the deviation stress into Cauchy stress, the following relationship can be 

obtained: 

and 

The vectors 𝐗′and 𝐗′′ of the linear transformation can be directly related to the Cauchy stress 

tensor and the anisotropy parameters 𝐋′ and 𝐋′′. The anisotropy parameters 𝐋′ and 𝐋′′ can be 

expressed as: 

 

 [

𝑋̃𝑥𝑥
′

𝑋̃𝑦𝑦
′

𝑋̃𝑥𝑦
′

] = [

𝐶11
′ 𝐶12

′ 0

𝐶21
′ 𝐶22

′ 0

0 0 𝐶66
′

] [

𝑠𝑥𝑥

𝑠𝑦𝑦

𝑠𝑥𝑦

], Equation 7.3 

 [

𝑋̃𝑥𝑥
′′

𝑋̃𝑦𝑦
′′

𝑋̃𝑥𝑦
′′

] = [

𝐶11
′′ 𝐶12

′′ 0

𝐶21
′′ 𝐶22

′′ 0

0 0 𝐶66
′′

] [

𝑠𝑥𝑥

𝑠𝑦𝑦

𝑠𝑥𝑦

], Equation 7.4 

 𝐗′ = 𝐂 ′𝐬 = 𝐂 ′𝐓𝛔 = 𝐋′𝛔, Equation 7.5 

 𝐗 ′′ = 𝐂 ′′𝐬 = 𝐂 ′′𝐓𝛔 = 𝐋′′𝛔, Equation 7.6 

 𝐓 = [
   2/3 −1/3 0
−1/3    2/3 0

0 0 1

]. Equation 7.7 

 

[
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𝛼1

𝛼2

𝛼7

], Equation 7.8 
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, Equation 7.9 
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If the independent anisotropy parameters 𝛼𝑘 (for k from 1 to 8) is all 1, the yield function can 

express the isotropic material behavior. The principal values of 𝐗 ′and 𝐗′′ are expressed as 

follows. 

Eight experimental results are required to determine the eight anisotropy parameters. The eight 

required experimental values are determined by the yield stress and Lankford coefficients of 

the rolling, diagonal, transverse, and biaxial tensile stress states. The anisotropic parameter 

identification procedure requires the use of the Newton-Raphson iteration with the measured 

eight experimental results. The identification procedure is described in Appendix 11.1.1. 

7.1.2 Yld2000-2d with non-associated flow rule  

So far, the Yld2000-2d has been briefly introduced based on the AFR. Here, the non-AFR is 

introduced to can express complicated anisotropy more precisely. In the non-AFR, the plastic 

potential function to determine the direction of the plastic strain rate and the yield function to 

determine the yield stress are defined differently. The direction of the plastic deformation rate 

in the non-AFR is also different from the vertical direction of the yield function in the AFR. 

The plastic strain rate by the flow rule is expressed by the following equation: 

where 𝜙𝑝 is the plastic potential function of the Yld2000-2d. The potential function can have 

any formulations. In this study, the potential function has the same formulation of the yield 

function Yld2000-2d. The yield function and the potential function have different set of 

anisotropy parameters. Since the Yld2000-2d requires eight anisotropy parameters, the non-

AFR version of the Yld2000-2d requires a total of 16 independent anisotropy parameters. In 

order to identify the parameters, the yield stresses and Lankford coefficients at every 15° from 

the rolling direction and the balanced biaxial state are measured from the uniaxial tensile test 

 𝑋1 =
1

2
(𝑋̃𝑥𝑥 + 𝑋̃𝑦𝑦 + √∆), Equation 7.10 

 𝑋2 =
1

2
(𝑋̃𝑥𝑥 + 𝑋̃𝑦𝑦 − √∆), Equation 7.11 

 ∆= (𝑋̃𝑥𝑥 − 𝑋̃𝑦𝑦)
2
+ 4𝑋̃𝑥𝑦

2 . Equation 7.12 

 𝛆̇𝑝 = 𝛾̇
𝜕𝜙𝑝

𝜕𝝈
 Equation 7.13 
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and the bulge test. The measured directional yield stresses (𝜎0, 𝜎15, 𝜎30, 𝜎45, 𝜎60, 𝜎75, 𝜎90, and 

𝜎𝑏) are used to identify the anisotropy parameters for the yield function. The measured 

directional Lankford coefficients (𝑟0, 𝑟15 , 𝑟30, 𝑟45, 𝑟60, 𝑟75, 𝑟90, and 𝑟𝑏) are used to identify the 

anisotropy parameters for the potential function (Safaei et al., 2015). The yield function (𝜙𝑦) 

and the potential function (𝜙𝑝) are described in Equations 7.14 and 7.15, respectively: 

The 16 anisotropy parameters in Yld2000-2d with the non-AFR are optimized by minimizing 

an error function defined as the difference between the analytical and experimental values. The 

identification procedure is detailed in Appendix 11.1.2. 

More anisotropic parameters of the non-AFR increase the complexity of the model, but the 

more complicated anisotropic materials can be expressed flexibly by the non-AFR. As a result, 

it is expected that materials having any anisotropic behavior can be expressed in a similar 

manner to the actual ones. 

7.1.3 Stress integration algorithm for implementation of yield function 

The commercial program used for the forming simulation in this study is Abaqus. Abaqus is a 

commercial FEM program that allows various simulation methods, compatibility with other 

programs, and user-defined subroutines. However, Abaqus does not have the yield function 

Yld2000-2d and needs an implementation of it using a user material subroutine written in 

FORTRAN. The user material subroutine VUMAT is used to implement Abaqus/Explicit. In 

order to do this, the stress integration algorithm is explained and applied to VUMAT (Dassault 

System, 2012). 

The basic material model characteristic to represent the test material is elasto-plastic 

deformation. The problem of the elasto-plastic deformation is usually considered to be a strain-

driven problem. The strain tensor is treated as the main variable and has the relationship with 

the stress tensor. The yielding is checked based on the stress tensor driven from the strain tensor. 

That is, the stress depends on the strain, and the yielding is determined in the stress space. If 

the relation can be expressed in a mathematically. First, it is assumed that the total strain can 

be expressed by the sum of the elastic strain and the plastic strain as shown in Equation 7.16: 

 𝜙𝑦 = 𝜙𝑦(𝛼1−8), Equation 7.14 

 𝜙𝑝 = 𝜙𝑝(𝛽1−8). Equation 7.15 
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where ∆ means an increment. The increment expression can be replaced by the rate. The two 

terms have no difference in infinitesimal deformation. In this study, all deformation in FEM is 

assumed as infinitesimal deformation. The superscripts e and p mean elastic and plastic, 

respectively. The definition of the elastic strain is described as follows: 

The plastic strain tensor is defined by the AFR as the relationship between the equivalent plastic 

strain increment ∆𝛆𝑝 and the plastic multiplier Δγ as follows: 

where 𝐦 is the direction of the plastic strain increment and means the normal direction of the 

yield surface. The increment of the equivalent plastic strain ∆𝜀̅𝑝 according to the principle of 

plastic work equivalence (𝜙𝑦∆𝜀 ̅𝑝 = 𝛔 ∶ ∆𝛆𝑝) is expressed as follows: 

To find the plastic strain tensor, the unknown plastic strain increment ∆𝜀 ̅𝑝 or the plastic 

multiplier ∆𝛾 should be obtained, if the deformation is plastic. Prior to that, assume that the 

total strain increment is elastic, to determine whether if the strain is elastic or plastic, and 

calculate the stress as follows: 

where (n) means the reference state. 𝐂𝑒 is the elastic tangent modulus as fourth-order tensor. A 

trial stress tensor 𝛔𝑇  checks whether the material is yielded by the yield condition as follows. 

 

where (n+1) is the current state. If Φ < 0, the deformation is elastic. Therefore, 𝛔𝑇  replaces the 

current stress 𝛔(𝑛+1). If Φ ≥ 0, it is determined as the plastic deformation. The stress and 

internal values are updated based on the plastic multiplier ∆𝛾. When the plastic strain increment 

 ∆𝛆 = ∆𝛆𝑒 + ∆𝛆𝑝 , Equation 7.16 

 ∆𝛆𝑒 = ∆𝛆 − ∆𝛆𝑝 . Equation 7.17 

 ∆𝛆𝑝 = ∆𝛾
𝜕𝜙𝑦

𝜕𝛔
= ∆𝛾𝐦, Equation 7.18 

 
∆𝜀̅𝑝 =

𝛔 ∶ ∆𝛆𝑝

𝜙𝑦(𝛔)
= ∆𝛾

𝛔 ∶
𝜕𝜙𝑦

𝜕𝛔
𝜙𝑦(𝛔)

= ∆𝛾
𝜙𝑦(𝛔)

𝜙𝑦(𝛔)
= ∆𝛾. Equation 7.19 

 𝛔𝑇 = 𝛔(𝑛) + 𝐂𝑒 ∶ ∆𝛆, Equation 7.20 

 Φ(𝑛+1) = 𝜙𝑦(𝛔𝑇)− 𝜎𝑦(𝜀 ̅𝑝
(𝑛)

), Equation 7.21 
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is not zero, the stress increment and update are calculated as follows using the increment of the 

elastic strain. 

The update of the current stress is applied to the yield condition in Equation 7.21. The 

expression is described as follows (Yoon et al., 2004): 

To calculate the unknown plastic multiplier Δγ, a stress integration algorithm is used. In general, 

Eulerian backward algorithm (Crisfield, 1991) is used. The Eulerian backward algorithm leads 

to high accuracy and quadratic convergence rate, but it also increases the complexity more when 

a complex model is applied. In addition, explicit computation show no significant difference 

from other algorithms in terms of accuracy (Safaei et al., 2015). The convex cutting-plane 

(CCP) algorithm (Ortiz and Simo, 1986), which is relatively easy to use and computationally 

simple, is adopted for this study. The explicit computation is only used in this study, so it does 

not matter in terms of accuracy. Ortiz and Simo proposed that the main goal of the CCP is 

bypassing the need for computing the gradients, which is usually calculated in the Eulerian 

backward algorithm. The CCP considers the relationship between the elastic predictor and the 

plastic corrector. However, since the stress integral is calculated externally, the CCP is called 

to proceed in a semi-explicit manner. 

The yielding condition of the CCP algorithm is not different from the Equation 7.23. The yield 

condition notation at every iteration (k) can be written as 

To obtain the plastic multiplier ∆𝛾, the following relation is generated by the Newton-Raphson 

iteration scheme: 

The derivative of the plastic multiplier increment for the yield condition is expressed by the 

chain rule as 

 

 

𝛔(𝑛+1) = 𝛔(𝑛) + 𝐂𝑒:(∆𝛆 − ∆𝛆𝑝(𝑛+1)
) 

= 𝛔(𝑛) + 𝐂𝑒: ∆𝛆− 𝐂𝑒:∆𝛆𝑝(𝑛+1)
 

= 𝛔𝑇 − 𝐂𝑒:∆𝛆𝑝(𝑛+1)
 

= 𝛔𝑇 − ∆𝛾(𝑛+1)𝐂𝑒𝐦(𝑛+1). 

Equation 7.22 

 Φ(𝑛+1) = 𝜙𝑦(𝛔𝑇 − ∆𝛾(𝑛+1)𝐂𝑒𝐦(𝑛+1))− 𝜎𝑦(𝜀 ̅𝑝
(𝑛)

+ ∆𝛾(𝑛+1)) ≥ 0. Equation 7.23 

 Φ(𝑘)
(𝑛+1)

= 𝜙𝑦(𝛔(𝑘)
(𝑛+1)

) − 𝜎𝑦(𝜀 ̅𝑝(𝑘)
(𝑛+1)

). Equation 7.24 
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where 

where H is the slope of the flow stress defined generally by the uniaxial tensile test. 𝛿𝛾(𝑘)
(𝑛+1)

 is 

obtained by inserting the above Equations 7.26a – 7.26f into Equation 7.25: 

After the increment of the plastic multiplier is obtained, the stress and internal variables are 

updated in every iteration by the following: 

 𝛿𝛾(𝑘)
(𝑛+1)

= −
Φ(𝑘)

(𝑛+1)

(
𝜕Φ
𝜕∆𝛾

)
(𝑘)

(𝑛+1) , Equation 7.25 

 (
𝜕Φ

𝜕∆𝛾
)
(𝑘)

(𝑛+1)

= (
𝜕Φ

𝜕𝜙𝑦

𝜕𝜙𝑦

𝜕𝛔

𝜕𝛔

𝜕∆𝛾
+

𝜕Φ

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝜀 ̅𝑝
𝜕𝜀 ̅𝑝

𝜕∆𝛾
)

(𝑘)

(𝑛+1)

, Equation 7.26 

 
𝜕Φ

𝜕𝜙𝑦
= 1 Equation 7.26a 

 
𝜕𝜙𝑦

𝜕𝛔
= 𝐦 Equation 7.26b 

 
𝜕𝛔

𝜕∆𝛾
= −𝐂𝑒𝐦 Equation 7.26c 

 
𝜕Φ

𝜕𝜎𝑦
= −1 Equation 7.26d 

 
𝜕𝜎𝑦

𝜕𝜀 ̅𝑝
= 𝐻 Equation 7.26e 

 
𝜕𝜀 ̅𝑝

𝜕∆𝛾
= 1 Equation 7.26f 

 𝛿𝛾(𝑘)
(𝑛+1)

=
Φ(𝑘)

(𝑛+1)

𝐦(𝑘)
(𝑛+1)

𝐂𝑒𝐦(𝑘)
(𝑛+1)

+ 𝐻(𝑘)
(𝑛+1). Equation 7.27 



64 Forming simulation model  

 
 

 

 

 

The iteration of the stress integration continues until the updated stress and internal variables 

satisfy the yield condition in Equation 7.24.  

In the case of a non-AFR, the components of the plastic strain increment are determined by the 

normal direction of the potential function rather than the yield function. The flow rule for the 

non-AFR is expressed as follows: 

where 𝐧 is the normal direction of the potential function and the direction vector for the plastic 

strain increment. Again, considering the principle of plastic work equivalence, the equivalent 

plastic strain increment is 

 

where ℎ is the ratio of the potential function to the yield function. The equivalent plastic strain 

increment is not the same as the plastic multiplier increment in comparison to the associated 

flow rule. Therefore, the update of the current stress has a change: 

By changing the update of the current stress, the equations for finding the change of plastic 

multiplier increment are also changed. The two partial differentials in Equations 7.26c and 7.26f 

are modified as follows: 

 ∆𝛾(𝑘+1)
(𝑛+1)

= ∆𝛾(𝑘)
(𝑛+1)

+ 𝛿𝛾(𝑘)
(𝑛+1)

, Equation 7.28a 

 𝛆𝑝
(𝑘+1)
(𝑛+1)

= 𝛆𝑝
(𝑘)
(𝑛+1)

+ 𝛿𝛾(𝑘)
(𝑛+1)

𝐦(𝑘)
(𝑛+1)

, Equation 7.28b 

 𝛔(𝑘+1)
(𝑛+1)

= 𝛔(𝑘)
(𝑛+1)

− ∆𝛾(𝑘)
(𝑛+1)

𝐂𝑒𝐦(𝑘)
(𝑛+1)

. Equation 7.28c 

 ∆𝛆𝑝 = ∆𝛾
𝜕𝜙𝑝

𝜕𝛔
= ∆𝛾𝐧, Equation 7.29 

 
∆𝜀 ̅𝑝 =

𝛔 ∶ ∆𝛆𝑝

𝜙𝑦(𝛔)
= ∆𝛾

𝛔 ∶
𝜕𝜙𝑝

𝜕𝛔
𝜙𝑦(𝛔)

= ∆𝛾
𝜙𝑝(𝛔)

𝜙𝑦(𝛔)
= ∆𝛾ℎ, Equation 7.30 

 𝛔(𝑛+1) = 𝛔𝑇 − ∆𝛾(𝑛+1)𝐂𝑒𝐧(𝑛+1). Equation 7.31 
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In the case of the AFR, the formula for obtaining the change of plastic multiplier increment is 

finally obtained as follows: 

After the change in plastic multiplier increment is obtained, the iterative updates of the stress 

and the internal variables are expressed as follows: 

The iterative calculation continues as before during which the material is plastic deformed by 

the yield condition. The stress tensor differentials 𝐦 and 𝐧 required for stress integration are 

described in Appendix 11.2.  

The stress integration for applying the associated and non-AFR of Yld2000-2d to the user 

subroutine VUMAT in Abaqus/Explicit was described so far. This allows using the material 

model to represent the planar anisotropy of the test materials precisely. 

7.1.4 Verification of the implemented model 

The planar anisotropic yield function Yld2000-2d was implemented in the user subroutine 

VUMAT for Abaqus/Explicit. It is now necessary to ensure that the implemented model shows 

accurate strains and stresses directionally for this purpose. First, the theoretical values are 

 
𝜕𝛔

𝜕∆𝛾
= −𝐂𝑒𝐧, Equation 7.32a 

 
𝜕𝜀 ̅𝑝

𝜕∆𝛾
= ℎ, Equation 7.32b 

 𝛿𝛾(𝑘)
(𝑛+1)

=
Φ(𝑘)

(𝑛+1)

𝐦(𝑘)
(𝑛+1)

𝐂𝑒𝐧(𝑘)
(𝑛+1)

+ 𝐻(𝑘)
(𝑛+1)

ℎ(𝑘)
(𝑛+1). Equation 7.33 

 ∆𝛾(𝑘+1)
(𝑛+1)

= ∆𝛾(𝑘)
(𝑛+1)

+ 𝛿𝛾(𝑘)
(𝑛+1)

, Equation 7.34a 

 𝜀 ̅𝑝(𝑘+1)
(𝑛+1)

= 𝜀̅𝑝(𝑘)
(𝑛+1)

+ ∆𝛾(𝑘+1)
(𝑛+1)

ℎ(𝑘)
(𝑛+1)

, Equation 7.34b 

 𝛆𝑝
(𝑘+1)
(𝑛+1)

= 𝛆𝑝
(𝑘)
(𝑛+1)

+ 𝛿𝛾(𝑘)
(𝑛+1)

𝐧(𝑘)
(𝑛+1)

, Equation 7.34c 

 𝛔(𝑘+1)
(𝑛+1)

= 𝛔(𝑘)
(𝑛+1)

− 𝛿𝛾(𝑘)
(𝑛+1)

𝐂𝑒𝐧(𝑘)
(𝑛+1)

. Equation 7.34d 
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compared with the numerical calculation values. The theoretical normalized stresses and the 

Lankford coefficients can be calculated from the yield function considering the uniaxial tensile 

stress tensor for each direction. This method is summarized in Appendices 11.1 and 11.2 to 

calculate the analytical values. Numerical analysis by VUMAT in Abaqus gives the normalized 

stresses and the Lankford coefficients in various directions to the rolling direction as numerical 

values. The material used for the validation is AA2090-T3 (Safaei et al., 2014), taking the 

directionally normalized stresses and Lankford coefficients. For the numerical analysis, the 

information about isotropic hardening from the published paper (Safaei et al., 2014) is also 

used. Although AA2090-T3 differs from the test materials used in this study, it has a strong 

anisotropic property and is a published verification data, so it can give high reliability as a 

reference value to confirm the implementation of the yield function with the AFR and non-

AFR. 

 

Figure 7.1: Analytical and numerical values of normalized yield stress directionality for 

Yld2000-2d with different flow rule 

Figure 7.1 shows the calculated normalized stress values of the AFR and non-AFR compared 

with the analytical values in different tensile directions. The Yld2000-2d implemented with the 

above CCP algorithm shows a good agreement with the analytical values, the AFR and non-

AFR through VUMAT. This shows that VUMAT is well implemented in Abaqus and numerical 

calculations calculate the anisotropic stress as intended. A note is that the anisotropic material 

behavior for the AFR and non-AFR stresses is different. In the AFR, the Yld2000-2d considers 

stress input values of 0, 45, and 90° in the uniaxial tension direction. On the other hand, the 

non-AFR requires additional stress input values of 15°, 30°, 60° and 75°. Because of these 

differences, the material inputs behave in agreement with each other for 0°, 45°, and 90°, which 



Forming simulation model 67 

 

are the common input values for determining the anisotropy parameters, but they are different 

in other tensile directions. 

The Lankford coefficients also shows differences in the AFR and non-AFR compared with the 

analytical values in different tensile direction. As in the stress comparison, the accuracy of the 

VUMAT is verified, and the anisotropic material behavior differs also between the AFR and 

the non-AFR in the Lankford coefficients. In the tensile direction 0°, 45°, and 90°, they coincide 

with each other. In the other tensile directions, AFR shows higher values than non-AFR. 

 

Figure 7.2: Analytical and numerical values of Lankford coefficient directionality for 

Yld2000-2d with different flow rule 

By comparing with the analytical values, it is shown that the implementation of the yield 

functions succeeded whatever flow rule was used. However, depending on whether or not the 

potential function considered in each direction, the behavior of anisotropic materials is different 

even for the same material. In order to recognize which model represents the anisotropy of the 

material better, experiments should be performed, and the results are compared with the 

numerical values. Therefore, the results of the physical material anisotropy from the material 

test will be compared to the simulation results of the AFR and non-AFR. 

The tensile specimens from 0° to 90° by 15° from the rolling direction are made by the milling 

process. The stresses and Lankford coefficients at tensile elongation of 10% are measured in 

every direction by the uniaxial tensile test in Chapter 5. The measured results are used as a 

reference value for comparison with the simulated values of the material model to confirm the 

physical accuracy.  

The calculated stresses and Lankford coefficients of Hill48 (quadratic yield function) are 

compared with each other. Since the Hill48 is already implemented in Abaqus, the model can 
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be easily used to represent the anisotropic behavior of the test material compared to the 

Yld2000-2d. To identify the parameters of the Hill48, only the Lankford coefficients of r0, r45, 

and r90 and the uniaxial flow stress in the rolling direction are required. The Hill48 calculates 

the directional stresses and Lankford coefficients from 0° to 90° by 15°. Normalized stresses 

and Lankford coefficients are calculated by a uniaxial tensile of one element in the simulation 

and are shown in Figures 7.3 and 7.4 for AA6016 and HX260, respectively. 

 

Figure 7.3: Comparison of the experimental directional stresses and Lankford coefficients 

with the simulative results from various material models for AA6016  

 In the case of AA6016, the Hill48, and the Yld2000-2d with the AFR and non-AFR agree with 

the Lankford coefficients measured from the uniaxial tensile test. The Hill48 as a quadratic 

function agrees with the experimental Lankford coefficients. It is seen that the Lankford 

coefficients of AA6016 have a quadratic distribution with respect to the tensile direction from 

0° to 90°. 

On the contrary, the comparison of each material model with the directional normalized stress 

values shows different aspects. The Yld2000-2d with the non-AFR are consistent with almost 

all measured stress values. The non-AFR calculated the normalized stress to be slightly higher 

than the measured stress value only at the tensile direction of 15°. However, the difference is 

insignificant when compared with the simulated values of other models. The AFR shows no 

significant difference from the experimental stress values after 45°. The stress values simulated 

at the tensile directions of 15° and 30° are higher than the experimental values, and the 

qualitative trends do not fit much. It shows that the directional stresses of the Hill 48 do not 

match the experimental values except for the stress at 0° in the tensile direction. The Hill48 

does not qualitatively follow the stress distribution tendency with respect to the tensile 

direction. The comparison of the normalized stresses and Lankford coefficients shows that the 

non-AFR describes the most similar material behavior of AA6016. 
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Figure 7.4: Comparison of the experimental directional stresses and Lankford coefficients 

with the simulative results from various material models for HX260LAD 

In the case of the HX260LAD, all three models tend to be similar in quality to the measured 

Lankford coefficients in all tensile directions. However, the AFR and Hill48 calculated slightly 

higher simulated values than the experimental values at 15° and 60° in the tension direction. 

The difference in the tensile direction at 60° shows a large difference of about 10%. The 

Lankford coefficients of the non-AFR are consistent with all the measured Lankford 

coefficients. 

The normalized stress distribution compares with the experimental results of the Yld2000-2d 

with the AFR and non-AFR. However, the Hill48, like AA6016, does not match the 

experimental values except the tensile direction of 0°. The normalized stress at 45° in the tensile 

direction of the Hill48 is about 10% different from the experimental value. The non-AFR shows 

the most accurate material behavior in the directional stresses, and the AFR shows no 

significant difference too. 

To summarize, the directional stresses and Lankford coefficients were experimentally 

determined for both test materials AA6016 and HX260LAD, and these were determined as 

indicators of anisotropic material behavior. As a result, the non-AFR showed the highest 

accuracy in all aspects after comparing each model, and the AFR showed no significant 

difference from the experimental values except for the partial stress distribution of AA6016. 

However, the Hill48 is not suitable for expressing anisotropic materials because it does not 

properly express the anisotropic property of stress. Therefore, the use of the Yld2000-2d in this 

study seems reasonable. 

7.2 Prediction of the forming limit 

In the bead forming for the bead optimization, the strain path is usually nonlinear. The linear 

FLC does not predict the forming limit of the sheet including the nonlinear deformation paths. 
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Therefore, the Generalized Forming Limit Concept (GFLC) is used, which can consider the 

nonlinear deformation path for this study. In order to prepare a GFLC data, a FLC data are 

required from general linear FLCs and subsequent FLCs from six different pre-strains. Thus, 

tens to hundreds of material tests are required. 

In this study, the GFLC data of materials AA6016 and HC260LAD obtained from a pre-study 

in utg are used to reduce the effort of material tests. The materials used in this study are the 

aged AA6016 and HX260LAD. The experimental materials are different from the existing 

materials. The properties of aged AA6016 changes than when it is manufactured after a certain 

time. HX260LAD and HC260LAD are commonly manufactured by cold rolling, but the 

chemical contents are different. HX260LAD has a chromium content of 15–19 wt% and 64–68 

wt% nickel as a compound, HC260LAD has a nickel content of 26–30 wt%, max 4 wt% . In 

order to compare the macroscopic material behavior between the two materials by these, the 

obtained FLCs of aged AA6016 and HX260LAD from Section 5 is shown in Figure 7.5 and 

7.6, respectively. They are compared with the conventional FLC of AA6016 and HC260LAD. 

 

Figure 7.5: Comparison of FLC for AA6016 and old AA6016 

AA6016, which was previously for the GFLC data generation, and aged AA6016 overlap in the 

region, where the minor strain is less than 0.01. By the uniaxial stretching region, the slope of 

the aged AA6016 to the deep drawing region appears to be lower than the slope of AA6016. 

Thus, aged AA6016 is expected to have a slightly lower formability toward the uniaxial 

stretching region. Based on the minor strain of 0.01, the region between the plane strain and 

biaxial tensile state shows the difference between each other. Since the FLC of aged AA6016 

is higher than the FLC of AA6016, aged AA6016 exhibits higher formability in the biaxial 
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stretching region. In the biaxial tensile region, the slope of AA6016 is closer to the horizontal 

as it goes to the right, while the slope of the aged AA6016 shows a linear increase. It concludes 

that the difference between the two FLCs in the biaxial tensile region becomes larger as the 

minor strain increases.  

It is unusual that the aged AA6016 has more ductility than the AA6016. The aging effect of the 

aluminum alloy leads to more strengthen and reduce the elongation. The above unusual 

difference is caused by the difference of the manufacturing quality depending on usage purpose 

of the alloy. The AA6016 was not purposed on the usage for forming technology, otherwise, 

the aged AA6016 was specialized for sheet metal forming. Even though the AA6016 for 

forming is aged, it can have more ductility comparing with no optimized AA6016 for the sheet 

metal forming.  

 

Figure 7.6: Comparison of FLC for HC260LAD and HX260LAD  

HX260LAD exhibits significantly higher forming limits in all areas compared to HC260LAD. 

The difference is the largest in the region where the negative strain is near 0, that is, the plane 

strain region. That is, the FLC comparison shows a similar trend for the curves, but the 

formability is different. 

However, subsequent FLCs based from six preforming, which are data considering nonlinear 

paths, are not newly obtained, and the data are scaled by the scaling factor from the difference 

between the existing FLC and the actual FLC. This allows the existing GFLC data to fit into 

the current material. The precondition of this method is the same material or is valid for the 

same class of material. In the case of AA6016, the GFLC data can be scaled because they are 

the same material and aged AA6016 changes in material property only with time. HX260LAD 

and HC260LAD belong to the same class. Thus, by scaling from the difference between the 
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FLC of each material, the existing GFLC data are proportionally scaled. These are then verified 

through experimental verification of the accuracy and scalability of the GFLC. 

The prepared GFLC is implemented in Excel by Visual Basic. In order to calculate GFLC value 

regarding the forming limit, the strains are imported from the simulation result of Abaqus using 

the Python script. The Python script is able not only to make connection between Abauqs and 

Excel, but also to automate the procedure of the import and the analysis of the GFLC. The flow 

diagram of that is described in Figure 7.7. 

 

Figure 7.7: Flow diagram of the procedure for the analysis of GFLC from the Abaqus result  
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7.3 Forming simulation 

As an example to be used in developing this bead optimization program (Figure 7.8), a punch 

and die tool are used. This tool is a modified Maciniak tool to represent various forming states 

by various initial specimen shapes (Weinschenk and Volk, 2017). Typically, three specimen 

geometries are used to have different deformation states after a preforming. Figure 7.9 shows 

the specimen geometries for the uniaxial, plane strain, and biaxial loading state, respectively. 

The three states represent typical deformation states to indicate the direction of a strain path. A 

specimen is formed in a deep drawing analysis with the tools as the preforming. The strain 

distribution analyzed from the preforming is used to determine the initial bead shape. 

 

Figure 7.8: Tool geometries for preforming (Weinschenk and Volk, 2017) 

 

 

 

(a) uniaxial (b) plane strain (c) biaxial 

Figure 7.9: Geometries of test specimens (Weinschenk and Volk, 2017) 
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The bead tools consist of two parts. One is the upper bead, and other is the lower bead. The 

basic shape of the lower bead mimics the punch shape used in the preforming as shown in 

Figure 7.8. The contact surface of the upper bead is offset by 1 mm of material thickness from 

the surface of the lower bead. In all tools used for preforming, the punch for preforming is 

replaced with bead tools. The embossed bead geometry is positioned on the upper bead, and the 

lower bead is constructed to make the negative bead geometry. The bead position is determined 

based on the trajectory determined along the direction of the principal bending stress. The stress 

distribution is determined after the specified load case on the preformed part. The loading case 

used in this study is shown in Figure 7.10.  

 

Figure 7.10: Stiffness analysis in the forming simulation using pin loading on the middle of 

the part 

An example load case is to apply a vertical load at the center of the preformed part by a pin 

with a diameter of 20 mm and a load depth of 20 mm. The bead lines of the preformed and 

bead-formed part are fixed during the pin loading. The resulting stress distribution provides as 

an input to determine the position of the bead, which can maximize stiffness of the part. The 

stress distribution after the load case is shown in Figure 7.11 for each material.  
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Figure 7.11: Stress distribution of AA6016 (left) and HX260LAD (right) after loading by pin 

The maximum stress of AA6016 is almost half-maximum stress of HX260LAD. Middle of 

stress levels for each material is differently distributed, but the maximum levels are similarly 

distributed on the center and both side of middle position. The trajectory is generated based on 

AA6016 as shown in Figure 7.12. It is expected that the trajectory has a similar influence of the 

stiffening effect on both materials  

 

Figure 7.12: generated trajectory on the bead part based on stress distribution of AA6016  

The upper bead is constructed so that the bead geometry can be inserted into the groove in the 

upper bead in order to have adjustable bead heights. Therefore, the bead height from 3 mm to 

9 mm is adjustable in the upper die to check a bead height, which leads to material failure.  

The bead locations are the trajectories on the design area in the path determined. Splines are 

created based on the coordinates of the trajectories. The cross-section of the bead geometry 

with a bead height of 5 mm, an angle of 45°, a width of 30 mm, and a radius of 5 mm is created 

on the created splines to construct the bead dies as shown in Figure 7.13. 
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Figure 7.13: Bead tools for the experimental validation 

The frictional condition and blank holding force are used as values of 0.1 and 1400 kN, 

respectively. The influences of friction and blank holding force was investigated (Cha et al., 

2017). The bead-formed parts of the test materials were manufactured in safety with the friction 

coefficient of 0.1. But, the blank holding forces between 1200 and 1600 had a negligible 

influence on the formability. 
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8 Influence of preforming and bead geometry 

Before proceeding with the bead optimization, the initial bead cross sections should be 

suggested considering the formability. The determination of the initial bead geometry may also 

appear as an open problem. To determine this as a quantitative value, it is useful to parameterize 

the cross sections of the bead geometry. The quantitative parameter values can be determined 

using the deformation results from the preformed deep-drawn part. The available values include 

coordinates, strain, and stress of the preformed part. As mentioned above, the formability of the 

initial bead geometry should be taken into account, and the formability prediction is based on 

the strain by the GFLC. Therefore, the relationship between the strains of the preformed part 

and the initial value of the cross-sectional parameters can be defined as a function with a 

maximum formability reference. Before geometry parameterization, the type of bead geometry 

has been investigated. The bead geometry may have different cross-sectional geometry, and 

four types are generally mentioned: box, trapezoidal, half-round and triangular. We define the 

bead geometry as shown in Figure 8.1. This geometry definition consists of four geometry 

parameters (top and bottom chords, flank, radius). It was investigated how these five bead 

geometry parameters affect stiffness and manufacturability. 

 

Figure 8.1: Definition of the bead geometry parameters 

This geometry definition consists of four geometry parameters: radius 𝑟𝑠, flank angle 𝑎𝑠, bead 

width 𝑤𝑠, and bead height ℎ𝑠. The influence on the stiffness was investigated by comparing the 

load sizes at different radii. It was confirmed that the difference is not large. In addition, changes 

in width and flank angle do not have a large influence on the stiffness and the formability. Since 

the height of the bead cross section has a great influence on the stiffness and formability, and 

the height change plays an important role in maximizing the stiffness through the bead shape. 

It was also confirmed that the stiffness increases due to bead geometry when the forming limit 

is reached. (Cha et al., 2016) 
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8.1 Simulation model for sensitivity analysis 

In order to investigate the influence of the bead geometries on stiffness, the bead geometry is 

loaded after the bead forming. Figure 8.2 shows the bead-formed part, the loading pin, and the 

support plate for the load case. The pin giving the vertical load to the bead geometry has a 

contact surface with a diameter of 20 mm. Since the pin loads on the bead geometry in the z-

direction, a support plate is used to prevent the rigid body movement of the bead-formed part. 

To load ideally, the constraints in the x- and y-directions is applied to the bead line of the part. 

The load calculated according to the bead geometries is used as an index of stiffness. 

 

Figure 8.2: Simulation model of load case for sensitivity analysis of the bead geometry  

The bead geometry has a length of 100 mm, a radius of 5 mm, and a width of 30 mm. The gap 

between the bead geometries is varied based on the bead rate of 1.0, when the height and flank 

angle are changed. The flank angle, and height will be changed to investigate the influence on 

the stiffness and the formability. Furthermore, the mesh test is carried out to find proper element 

length that gives reliable results. The element lengths of 0.75, 1.0, 1.5 and 2.0 mm are meshed 

in bead geometry. The different element lengths show no big difference in load curve at pin 

loading, but the strain results are differently calculated at an element with maximum major 

strain and its neighbor elements. The mean and standard deviation of strains are compared 

according to element length in Figure 8.3. The element length of 2.0 mm only shows a big 

difference with others in mean and standard deviation of strain. Other element lengths have the 

mean value more than 0.24 and less the standard deviation than 5 %. The converging tendency 

is started after the element length 1.5 mm. The difference of the element lengths of 0.75 and 

1.0 mm has under 1.0 % in the mean value and the standard deviation. That difference is 

negligible. Therefore, the element length of 1 mm is set for the forming simulation regarding 

computing efficiency and precision.  
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Figure 8.3: Strain mean and standard deviation according to element length  

 

The GFLC is calculated with major and minor strains by the Python-script as mentioned in 

Section 7.2. The formability is evaluated by the maximum value of GFLC. The prepared 

forming simulation and the GFLC are used to investigate the parameters of the bead geometry 

regarding the stiffness and formability. 
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8.2 Bead flank angle 

It is known that the flank angle has a higher stiffness under vertical load and lower stiffness in 

the horizontal load (Schwarz, 2002). As an example, a pin vertically loads the beads with the 

different flank angles. The beads have a height of 6 mm, and the material taken as an example 

is AA6016. The load-displacement curves are shown in Figure 8.4. 

 

Figure 8.4: Influence of flank angle on stiffness 

 

 

Figure 8.5: Influence of flank angle on formability 

From the vertical load, the load-displacement curve does not show a large difference from 75° 

to 45°, but the load curve is lower at 30°. This results in an angle of more than 45° for the 

vertical load and a lower angle for a greater stiffness for the horizontal load. 
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The influence of the flank angle on the formability is also shown in Figure 8.5 according to the 

GFLC tendency. Generally, the GFLC value increases with the flank angle. The larger the flank 

angle, the lower the formability, but even if the flank angle increases, the stiffness is not 

significantly increased under the defined load case to identify normal stiffness. In addition, the 

flank angle of 45° and 60° has a minor effect on formability. It is proposed to select 

approximately 60° under a vertical load.  

8.3 Bead height 

The strains of the preformed parts can be subdivided into major and minor strains on the plane. 

The ratio of the major and minor strains can recognize the deformation state, and the size of the 

major strain can be the deformation degree in each deformation state. The influence of the bead 

height on the formability in the plane strain state is investigated in accordance with the change 

in the bead height. For this example, the flank angle is set at 60°, and the width and the radius 

are 30 mm and 5 mm, respectively. The drawing depth in the preforming is 70 mm, and then, 

the defined bead is formed at the middle of the preformed part. The highest strain values were 

shown at the radius of the bead, and the GFLC was calculated using the calculated strain history 

until the bead forming. The vertical pin load on the middle of the bead-formed part is defined 

as the load case. Figure 8.6 shows the influence of the bead height on the maximum load as 

stiffness for two test materials.  

 

Figure 8.6: Influence of bead height on the stiffness for test material AA6016 and HX260LAD 

 

The bead height increased from 4 mm to 7 mm by 1 mm. The maximum values at the load of 

the pin over the bead height are represented as a bar graph. Although the bead of the aluminum 

has a lower maximum load than that of the steel, the maximum load tendency of bead height is 
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the same. The increase in the maximum load between the bead heights of 6 mm and 7 mm is 

greater than the maximum load increase between the bead heights of 4 mm and 5 mm for the 

both test materials.  The increase in the bead height has a progressive influence on stiffness.  

Figure 8.7 shows the influence of the bead height on the GFLC value as formability for two test 

materials. 

 

Figure 8.7: Influence of the bead height on the formability for test material AA6016 and 

HX260LAD 

 

The influence of the bead height on the formability for both materials shows that the GFLC 

value increases almost linearly as the bead height increases from 4 mm to 7 mm. In formability, 

the aluminum has higher GFLC values than the steel. The steel has higher ductility and is 

capable of producing bead heights greater than the aluminum. The bead height needs to be 

considered in terms of the formability depending on the material. 

When the GFLC value reaches 1.0, it means that a local necking occurs. Therefore, it can be 

seen that the bead height of 7 mm is still producible. If the GFLC is reliable, the stiffness effect 

through the maximum load is a reliable result. Obviously, the higher the bead height, the closer 

the material is to the forming limit. For this reason, it is an object of the bead optimization 

method considering the manufacturability to determine the bead height close to the forming 

limit. 

8.4 Preforming 

The bead height of 6 mm is set, the flank angle is 60°, the width is 30 mm, and the radius is 5 

mm. The drawing depth of the preforming is defined the degree of the preforming and varies to 
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investigate the influence of the degree of the preforming on the formability according to the 

GFLC value. Furthermore, the investigation for the influence of the deformation state is carried 

out with three different geometries of the specimens as well as in the uniaxial, plane strain and 

biaxial state. The drawing depth of the preforming varies from 40 mm to 70 mm by 10 mm. 

The bead forming simulation as the subsequent forming is carried out, and the GFLC analyzes 

the forming limit of the bead formed parts as in the previous investigation for the influence of 

the bead height. Figures 8.8 and 8.9 summarize the influence of the preforming degree by 

varying the drawing depth on the formability of two test materials in the different deformation 

states. 

 

 

Figure 8.8: Influence of draw depth on formability for test material AA6016  

 

 

Figure 8.9: Influence of draw depth on formability for test material HX260LAD 

GFLC values are shown for each material with respect to the principal major strain. The GFLC 

behaves in the different deformation states proportional to the major strain as the preforming 

degree. For the aluminum, the GFLC values obtained after the biaxial preforming are closer to 

the forming limit than other preforming states. On the other hand, the GFLC value in the 
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uniaxial state tends to be the lowest. Even if the drawing depths are all the same, the uniaxial 

preformed part has a higher bead height than the other cases. For the steel, the uniaxial state 

shows the highest GFLC value. This is different from the aluminum, which is due to the 

different material behavior. In general, the biaxial state has a high slope. Next, the uniaxial state 

has an intermediate slope, and finally, the plane strain has a lowest slope. That is, the higher 

degree of the biaxial preforming lead the bead forming closer to the forming limit. The 

influences of the bead height and the preforming on GFLC have nearly linear relations. 

8.5 Initial bead height function 

Every proportional relationship has been adapted to the linear polynomial. The GFLC linear 

polynomial of the bead height is superimposed on the GFLC linear polynomial of the 

preforming degree according to the uniaxial, plane and biaxial strain state. The superposed 

equations are transformed to the bead height function of the preforming degree, respectively, 

and the GFLC value is set to a constant of 1.0. It is then possible to derive the bead height with 

the GFLC values of 1.0 depending on the preforming state and degree. 

Based on these results, two axes are built in the plane. An axis is the major strain as preforming 

degree. The other axis forms the ratio of minor strain to the major strain corresponding to the 

forming state. The bead height, which represents the GFLC value of 1.0, becomes the vertical 

axis. The maximum deformable bead height is shown as 3D area of the degree of preforming 

(𝜑1
𝑣𝑜𝑟) and of the forming state (

𝜑2
𝑣𝑜𝑟

𝜑1
𝑣𝑜𝑟) in Figure 8.10 for AA6016 and Figure 8.11 for 

HX260LAD, respectively. 
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Figure 8.10: Maximum deformable bead height as a 3D surface of the preforming degree 

(𝜀1
𝑣𝑜𝑟) and the deformation state (

𝜀2
𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟) for the test materials AA6016 

 

Figure 8.11: Maximum deformable bead height as a 3D surface of the preforming degree 

(𝜀1
𝑣𝑜𝑟) and the deformation state (

𝜀2
𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟) for the test materials HX260LAD 
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The strain distribution of the preformed part in the above 3D surface can determine the 

deterministic initial bead height near the forming limit. In addition, the 3D surface can only 

approximate the deformable bead height since each relationship is linearized using the principle 

of linear superposition. In practice, the determined bead height may have different probabilities 

of material failure. Therefore, a safety factor (𝑓𝑠𝑖𝑐ℎ𝑒𝑟) is adopted to account for the stochastic 

influence. The producible bead height, which is 0.9 or 0.8 in the GFLC, can be also determined 

using the safety factor. The 3D surfaces are adapted to the second polynomial equation. As a 

result, the maximum producible bead height function of the pre-strains for each material is 

derived as the following equations: 

 

This makes it possible to determine the initial bead height near the forming limit only based on 

the preform simulation without the exact formability prediction. The determination of the initial 

bead height reduces greatly the number of iterations in bead optimization using an accurate 

formability analysis. 

The radius and bead width are defined by the design constraint of the user, and the flank angle 

is determined according to the load case. If the bead path is adjacent, the spacing between the 

beads may not be closer to the same value as the overburden width. Since the bead height that 

a parameter has a strong influence on formability and stiffness, it is important to determine the 

initial height in the optimization procedure. 

 

 

 

ℎ𝑎𝑙𝑢(𝜀1
𝑣𝑜𝑟, 𝜀2

𝑣𝑜𝑟) = 3.14 (
𝜀2
𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟 )

2

− 59.5(𝜀1
𝑣𝑜𝑟)(𝜀2

𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟 ) 

−57.7(𝜀1
𝑣𝑜𝑟) − 2.33 (

𝜀2
𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟 ) + 10.6(𝑓𝑠𝑖𝑐ℎ𝑒𝑟)− 0.21, 

Equation 8.1 

 

ℎ𝑠𝑡𝑎ℎ𝑙(𝜀1
𝑣𝑜𝑟 ,𝜀2

𝑣𝑜𝑟) = 0.68(𝜀1
𝑣𝑜𝑟)2 − 5.66 (

𝜀2
𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟)

2

 

−26.77(𝜀1
𝑣𝑜𝑟)(𝜀2

𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟) − 74.1(𝜀1

𝑣𝑜𝑟) 

−2.64 (
𝜀2
𝑣𝑜𝑟

𝜀1
𝑣𝑜𝑟) + 20(𝑓𝑠𝑖𝑐ℎ𝑒𝑟)− 2.71. 

Equation 8.2 
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9 Experimental validation 

9.1 Experiment of bead forming 

Based on the bead construction, the bead tools were fabricated of die material 1.2312 without 

tempering, because the bead forming requires no more force than force in the deep drawing and 

the test materials have no high strength. The lower bead replaces the punch for the preforming 

in Figure 7.8. The upper bead is assembled on the upper die to perform the bead forming. The 

entire dies are installed in a hydraulic press DXU320B of Dieffenbacher GmbH & Co. KG to 

carry out the preforming and the bead forming as shown in Figure 9.1. 

 

Figure 9.1: installed entire tools for preforming and bead forming in hydraulic press  

Before manufacturing of parts, the pattern was engraved on a surface of sheets by the 

electrolytic marking device EU CLASSIC 300 in order to measure strains with ARGUS. The 

electrolytic fluid with number 76 for the electrolytic marking device was used for two materials. 

The marking power of the device was set as 16. The manufacturer of the device ÖSTLING 

GmbH confirmed the setting of the fluid and the marking power. 

The preformed and bead-formed parts are manufactured as shown in Figures 9.2 and 9.3, 

respectively, to perform the validations of strain, material failure and stiffness. The strain 

comparison validates the accuracy of the FE model and the material model. The location of the 

material failure at certain bead heights validates the accuracy of the GFLC as forming limit 

prediction. The load curves are recorded and calculated for the stiffness validation, and then the 

bead location based on the determined trajectory and the material model are validated. 
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Figure 9.2: a preformed part for HX260LAD as example  

 

 

Figure 9.3: a bead-formed part for HC2620LAD as example 

9.2 Strain comparison 

The measured strain distributions after the preforming and bead forming are compared with 

simulation results. The strain is calculated using the simulation model described above. The 

experimental measurements are carried out using the ARGUS optical measuring system. The 

experimental condition for the preforming was a drawing depth of 70 mm, and the bead forming 

is carried out with the bead height of 5 mm. The locations of the beads were determined based 

on the stress distribution generated under the defined load case. Figures 9.4 and 9.5 show the 

comparison of the logarithmic strains from the simulation and the experiment at various specific 

locations in according to materials and each forming. 
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The main and minor strains on the sheet surface after each forming were compared at the 

determined positions. The average value was calculated from ten data in the range of 5 mm 

radius per position. The error range was determined based on the maximum and minimum 

values. Overall, the simulative values in the major strain grade are slightly overestimated 

compared to the experiment. However, since the simulative values are all within the 

experimental measurement error range, the simulation model correctly describes the 

experiment. There was no noticeable difference in the minor strain. Generally, the measurement 

errors of the experimental values are large because the clarity of the printed pattern for the 

ARGUS detection is finely degraded by the printability and the lubricant influence. Since the 

strain distributions of the simulation and the experiment are consistent, it is nevertheless 

possible to guarantee the reliability of the strain results in the created simulation model. Thus, 

the strain, which is the input to the GFLC, can be used in the simulation. 

 

Figure 9.4: Comparison of the strains from the preformed parts between simulation and 

experiment at defined positions 
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Figure 9.5: Comparison of the strains from the bead-formed parts between simulation and 

experiment at defined positions 

9.3 Formability analysis 

The accuracy of the strain calculation in the validated simulation model has been confirmed 

and the strain from the forming simulation is used as the input value for the GFLC to allow a 

formability prediction. In order to predict the material failure correctly, the GFLC should also 

be validated. The state of the bead-formed part is thus compared at the material failure in the 

simulation and the experiment. Preforming is carried out to a drawing depth of 70 mm for 

AA6016 and 80 mm for HX260LAD, respectively. The bead height varies depending on the 

material until the material failure occurs. The material failures were detected after the bead 

forming. The material failures are compared with the simulation results in Figure 9.6. 
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Figure 9.6: Comparable forming limit prediction of GFLC with experimental material 

failures 

In the simulation, it was predicted that local necking would occur in aluminum at a bead height 

of 7.3 mm near the GFLC of 0.97. In the experiment, it was confirmed that local necking occurs 

at the same position when the part is formed by the bead height with 7.3 mm as shown in Figure 

9.6. The local necking at the corner of the bead geometry appears to be just before the fracture. 

The shape of the local necking represents a brittle behavior as a thin length of about 5-6 mm.  

In the case of steel, bead forming was carried out with a bead height of 9 mm in the preformed 

sample. It is shown in the experiment of Figure 9.6 that a local necking for HX260LAD begins, 

since the necking looks ductile deformation and diffuse necking. The failure occurred at the 

edge of the bead geometry. The position 2 that has the maximal value of the GFLC has good 

agreement with the experiment. The GFLC with the value of 0.91 is close to the beginning of 

the local necking in agreement with the experiment.  

The necking shape of AA6016 is different from that of HX260LAD due to the different 

anisotropic material behavior. Two materials have also the different flow curve, but the 

hardening behavior affects a magnitude of forming load and the ductility has an influence on 

the bead height. Hence, the higher bead formed the material HX260LAD that has more 
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elongation from the uniaxial test. The different locations of the necking can be attributed to the 

material anisotropy. The necking of the AA6016 occurred on the outside and on the upper 

surface of the bead geometry, and the necking of the HX260LAD was confirmed on the 

opposite side and on the under radius of the bead geometry. The implemented Yld2000-2d with 

the non-AFR described the accurate anisotropy of the test materials. Based on that, the GFLC 

achieved the reliable forming limit. In order to confirm that a nonlinear strain path is shown in 

a bead forming, the stain path at the failure is shown in Figure 9.7 for AA6016 and 9.8 for 

HX260LAD, respectively. Furthermore, the GFLC point that is away from the FLC according 

to the normalized GFLC-value is shown together to know that the GFLC takes the nonlinear 

strain path into account. 

Figure 9.7 shows the strain path at the necking location from the simulation and the GFLC point 

with the FLC of AA6016. The first point of the strain path from zero means the strains after the 

preforming. The subsequent points are the recorded strains each time the path direction changed 

in the bead forming. The strain path by the bead forming shows the nonlinear path. Thus, the 

nonlinear strain path can be represented in the bead forming. 

 

Figure 9.7: Accuracy of the GFLC considering nonlinear strain path for AA6016 
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The local necking would have already occurred and a crack could be predicted according the 

end strain of the strain path and the FLC. The conventional FLC needs only strains after end 

forming not strain path. However, the GFLC takes the strain path as input and analyzed the 

accurate time of the local necking. The GFLC could analyze that a deeper bead can be formed 

under these strain paths. Thus, it is confirmed in advance that it is possible to predict a 

producible bead geometry with a higher stiffness effect. 

The major and minor strain after the preforming were calculated 0.106 and -0.029, respectively. 

The strain ratio of the minor to major strain has -0.27. The derived function for initial bead 

height in Equation 8.1 can calculate an initial bead height of 6.9 mm. Assuming linear relation, 

the relative error between the limit bead height of 7.3 mm and the suggested initial bead height 

of 6.9 mm is 5.4%. The object of the function for initial bead height is that suggestion of an 

initial bead height by the database will reach 80 % of the optimization step corresponding to 

forming limit. The initial bead height function as database was also validated by comparison of 

the suggested initial bead height with the practical limit bead height. 

Figure 9.8 shows the strain path at the necking location from the simulation and the GFLC point 

with the FLC of HX260LAD. 

 

Figure 9.8: Accuracy of the GFLC considering nonlinear strain path for HX260LAD 
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The strain path in HX260LAD also shows nonlinear path. The direction of the strain is not 

much changed after the preforming. In addition, the almost linear path in the bead forming is 

represented. Thus, the analysis of the FLC and the GFLC shows similar the formability 

predictions. The GFLC calculates a little bit closer to the forming limit than the analysis of the 

FLC using the end strain of the strain path. This difference is regarded to be a characteristic of 

GFLC, which predicts formability regardless of strain path.  

The major and minor strain after the preforming for HX260LAD are 0.126 and -0.031, 

respectively. The strain ratio of minor and major strain is -0.246. The derived function in 

Equation 8.2 calculates an initial bead height of 9.1 mm. The relative error between the limit 

and the initial bead height suggested from the database is approximately calculated 1.1%. Thus, 

In the HX260LAD, the suggested initial bead height is offset by 1.1% from the forming limit. 

For the HX260LAD, the initial bead height was close to the forming limit of 1.1%, so the 

derived function in Equation 8.2 was also validated. 

The comparison of the direct strain at a local area proved difficult because the local necking 

area was smaller than the minimum distance of the pattern for the optical measurement system 

ARGUS (GOM). However, it was discovered that the difference between the local necking 

position and the bead height causing the material failure was small. 

Even if the existing data of the GFLC is only scaled by updating the FLC, there is no major 

error in the formability prediction and the manufacturability could be determined taking the 

nonlinear strain path into account. This validation guarantees the model of the formability 

prediction for the bead optimization program and supports the determination of the bead 

geometry based on a consideration of the manufacturability. 
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9.4 Stiffness  

The forming simulation should be able accurately to calculate not only the manufacturability 

of the bead geometry, but also the stiffness of the parts. To confirm that, tests for stiffness 

evaluation are carried out on the parts before and after the bead forming and the force-

displacement curves are recorded. The measured load-displacement curves show the validity of 

the forming simulation compared to the simulation results. A load sensor with a contact area of 

20 mm diameter is applied to the center on the upper side of the parts by the universal testing 

machine (Zwick & Roell, 200 kN) under the previously defined load case. The testing machine 

has no enough surface to place the part. Thus, one blank as support plate was placed to put the 

part on it.  The part slides on the support plate while receiving the vertical loading on the center 

of the part. In the defined load case, the blanking holding line of the part was fixed. Four 

clampers were used in order to avoid slip of the part on the support plate. Each clamper fastens 

at each corner of the part. The pin loading was carried out with the speed of 6 mm/min. The 

loading speed under 10 mm/min has no significant change of load curves for the test materials. 

The test setting is shown in Figure 9.9. 

 

Figure 9.9: Stiffness test for loading on the middle of the part 
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The stiffness is identified up to the path where the reversible force-displacement curves appear 

at the same position. If the load-displacement curve irreversibly differs from the previous curve 

after a repeat test under the same conditions, this is evidence that plastic deformation occurred 

in the previous experiment. Since the stiffness is effective only in the elastic deformation, the 

elastic deformation range showing a reversible load-displacement curve is confirmed. As a 

result, it is confirmed that the elastic deformation is in the stiffness tests up to 7 mm for the 

aluminum and 4 mm for the steel, respectively.  

The simulation for the load-case based on the experiment conditions is carried out to obtain the 

load curve. Since the simulation was carried out by the dynamic/explicit and the material model 

was only implemented for the dynamic/explicit method as Abaqus/VUMAT, The load curve 

has an oscillation. The load oscillation is not physical but is caused by the characteristics of the 

numerical analysis. The load curve was expressed as the median of the load values calculated 

using the FFT (Fast Fourier Transform) algorithm in the OriginPro 2017 program (OriginLab 

Corporation, 2017). The raw simulation and smoothed curve for AA6016 and for HX260LAD 

are shown in Figure 9.10 and Figure 9.11, respectively. 

 

Figure 9.10: the raw and smoothed load-displacement curves in the simulation of the load 

case test for AA6016 
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Figure 9.11: the raw and smoothed load-displacement curves in the simulation of the load 

case test for HX260LAD 

In contrast to the simulation, the experimental load curves do not have the oscillation due to the 

quasi-static loading and condition. The experimental load curves are directly compared with 

the filtered load curves of the simulation.  Figures 9.12 and 9.13 show the comparison according 

to the material, the preformed and bead-formed parts. 

 

Figure 9.12: the load-displacement curves from the stiffness test for AA6016  

The load-displacement curve of the preformed part for AA6016 recorded a small increase up to 

1 mm displacement and a decrease of load up to 3 mm displacement. Thereafter, the load 

increases sharply. The simulation result for the preformed part shows that the load has values 
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under 10 N from 0 mm to 2 mm displacement. The load increases up to 5 mm displacement and 

more rapidly after 5 mm displacement. The simulation showed a small difference from the 

experiment before 4 mm, but the experimental and simulation results were consistent after 5 

mm. For this reason, the small difference is shown but the simulation load is comparable with 

the experiment.  

The experiment and the simulation of the bead-formed part for AA6016 show that the load 

increases up to 6 mm displacement in the load-displacement curve. The both load has stationary 

curve after 6 mm displacement. The load curve of the simulation for the bead-formed part has 

more about 5 to 10 N than that of the experiment. The both results are consistent after 6 mm 

displacement. The difference is also caused by the simulation characteristic and the filter 

technique like FFT. Nevertheless, the simulation shows a good qualitative load curve. 

The load values and the slope of the bead-formed part are absolutely higher than the preformed 

component. The load slope of the preformed part has similar to that of the bead-formed part 

after 4 mm displacement. However, the load reduction of the preformed part after 1 mm is 

regarded as a defect called Oil-Canning. Thus, the determined bead location stiffened the deep 

drawn part for AA6016 and prevented the defect of the Oil-Canning. 

 

  

Figure 9.13: the load-displacement curves from the stiffness test for HX260LAD 

The load-displacement curve of the preformed part for HX260LAD increased almost linearly. 

The bead-formed part had also a linear load curve with a higher slope. The simulation results 
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have a good consistency with the experimental in aspect of quality and quantity, even if the 

load curves with the vibration were filtered by FFT.  

The load slope of the bead-formed part increased about 33 % more than that of the preformed 

part. The bead location and geometry well stiffened the deep drawn part of HX260LAD, since 

the stiffness is regarded as the slope of the load-displacement curve. The load values of 

HX260LAD has more about twice than that of AA6016, because the load difference caused by 

the stiffness of two materials. The different anisotropy differently and slightly affected the 

deformation and the stress distribution and caused that the tendencies of the load curve for two 

materials are different each other. In addition, a similar stiffness effect was observed for both 

materials because the main locations with high stress distribution were similar, even if the 

trajectory generated based on the stress distribution of AA6016 in Section 7.3 was applied to 

HX260LAD. 

The stiffening effect was confirmed by the determined bead locations based on direction of 

major bending stress, and the results of the stiffness simulation are consistent with the 

experimental test results. Consequently, the stiffness analyzer is validated and can be applied 

to the bead optimization program. 
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10 Summary and outlook 

As framework of the research, a method was developed for the optimization of cambered sheet 

metal components taking into account critical production conditions. The goal is to provide a 

numerical method as a tool, which helps to optimize a virtually constructed component in terms 

of stiffness and under consideration of manufacturing constraints. For the simplest possible use 

and the good interfaces, the commercial finite element software Abaqus forms the basis for the 

method.  

To consider the manufacturing conditions in the bead optimization program, the forming limit 

prediction model GFLC was used. The forming simulation was modeled with the anisotropic 

material model Yld2000-2d with the non-AFR to obtain the accurate strain history per forming 

step as an input value for GFLC. The forming simulation was validated for the strain calculation 

by the measured strain distribution from the experiment. The existing data for the GFLC were 

adapted to the current experimental materials from the difference in the FLC of the previous 

material and the current material. The optimal trajectories, which stiffen the component based 

on direction of the major bending stress, were generated from the stress distribution of the 

forming simulation. The beading tool with the identified optimization bead position was made 

which can change the bead height and made the bead formed parts experimentally. 

Subsequently, the GFLC calculation agreed with the experimental material failure. This makes 

it possible to account for the manufacturing in the bead optimization program using the forming 

simulation and the GFLC model. In addition, the stiffness of the components without and with 

beads was also measured as a force-displacement using a pin loading. The simulative force-

displacement curve was consistent with the experiment. From this, the accuracy of the stiffness 

analysis and the algorithm for determining the optimum bead location was verified. 

The forming simulation and GFLC investigated the influence of the preforming on the 

formability of the bead. Based on this, the maximum producible bead height function of the 

strain distribution was derived from the preforming. This is a database in the bead optimization 

process that provides an input value that allows efficient optimization calculation. Moreover, 

not only a 2 step forming but also a multi-stage forming history can be taken account due to the 

GFLC that consider any nonlinear loading paths. Sheet metal parts produced by a multi-stage 

forming can be also stiffened without material failure by the bead optimizat ion. 

A bead optimization program, taking the manufacturability into account, was developed by the 

forming simulation and GFLC. Since the simulative accuracy of each module is also physically 

verified, it is expected that this optimizer will be able to design the bead efficiently.  
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In this study, a method was presented to consider the bead formability of sheet metals. The 

demand for a high stiffness and lightweight structure is still high. As electric or hybrid cars are 

increasingly trying to take up a large part in the automotive market. There are also problems 

with a battery packing technology. The battery packing structure by a lithium-ion battery 

swelling that volume of battery cells expand has to withstand a lot of force, so a composite 

material of carbon fiber and metal can be used to strengthen it. Thus, a technique of combining 

the carbon fiber with the bead geometry to increase the maximum stiffness again can be 

developed. A new consideration for the bead geometries to prevent separation of the two 

materials will be required. In the bead optimization of new materials, an attempt is made to 

adapt an additional model that predicts delamination, or to extend the existing model to predict 

not only metal failure but also delamination in a single model. Finally, the bead optimization 

can be extended to an optimization program considering composite materials and can overcome 

limit of the maximum stiffness made of only metal. 
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11 Appendix 

11.1 Identification procedure for parameters of Yld2000-2d  

The determination method of the anisotropy parameters for the AFR and the non-AFR of the 

yield function Yld2000-2d are introduced respectively. In the case of the AFR, the number of 

anisotropic coefficients is 8 and the equilibrium equation for the value and slope of the yield 

function is relatively easy to obtain. In the case of a non-AFR, 16 anisotropic coefficients are 

required by adding a potential function, and it is easy to minimize the error function using the 

weight according to the number of unknown unknowns. 

11.1.1 Identification method for AFR 

The six input values from a total of eight input values are the measured yield stresses and 

Lankford coefficients of 0°, 45° and 90° from the rolling direction in the uniaxial tensile test. 

The other two are the yield stress and the biaxial anisotropy coefficient of the biaxial tensile 

stress state. To solve the unknown eight anisotropy coefficients, eight equations are required. 

The equilibrium equations are expressed as the follows: 

 

where 

 

where 𝐹𝑖  and 𝐺𝑖  as the equilibrium equations satisfies the yield stress 𝜎0, 𝜎90 and 𝜎𝑏, and the 

Lankford coefficient 𝑟0, 𝑟90 and 𝑟𝑏 , respectively. The deviatoric stresses are related to the 

 
𝐹𝑖 = |𝛼1𝛾𝑖 − 𝛼2𝛿𝑖|

𝑎 + |𝛼3𝛾𝑖 + 2𝛼4𝛿𝑖|
𝑎 

     +|2𝛼5𝛾𝑖 + 𝛼6𝛿𝑖|
𝑎− 2(𝜎̅ 𝜎𝑖⁄ )𝑎 = 0, 

Equation 11.1 

 𝐺𝑖 = 𝑞𝑥𝑖

𝜕𝜙𝑦

𝜕𝑠𝑥𝑥
− 𝑞𝑦𝑖

𝜕𝜙𝑦

𝜕𝑠𝑦𝑦
= 0, Equation 11.2 

 

𝜕𝜙𝑦

𝜕𝑠𝑥𝑥
= 𝑎{𝛼1|𝛼1𝛾𝑖 − 𝛼2𝛿𝑖|

𝑎−1sign(𝛼1𝛾𝑖 − 𝛼2𝛿𝑖)

+ 𝛼3|𝛼3𝛾𝑖 + 2𝛼4𝛿𝑖|
𝑎−1sign(𝛼3𝛾𝑖 + 2𝛼4𝛿𝑖)

+ 2𝛼5|2𝛼5𝛾𝑖 + 𝛼6𝛿𝑖|
𝑎−1sign(2𝛼5𝛾𝑖 + 𝛼6𝛿𝑖)}, 

Equation 11.3a 
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normal stresses with the constants according to the stress state. The relation is shown in the 

following equations:  

The values of the constants for the stress relation and the equilibrium equations are represented 

in Table 11.1. 

Table 11.1 the values of constants for the equilibrium equations 𝐹𝑖  and 𝐺𝑖  

 Index 𝑖 𝛾𝑖 𝛿𝑖 𝑞𝑥𝑖 𝑞𝑦𝑖
 

0° tension 1 2/3 -1/3 1 − 𝑟0 2 + 𝑟0 

90° tension 2 -1/3 2/3 2 + 𝑟90 1 − 𝑟90 

Balanced 
biaxial tension 

3 1/3 1/3 1 + 2𝑟𝑏 2 + 𝑟𝑏  

 

The equilibrium equations are expressed as the following in order to satisfy the yield stress 𝜎45 

and the Lankford coefficient 𝑟45. 

 

where 

 

 

 

𝜕𝜙𝑦

𝜕𝑠𝑦𝑦
=  𝑎{−𝛼2|𝛼1𝛾𝑖 − 𝛼2𝛿𝑖|

𝑎−1sign(𝛼1𝛾𝑖 − 𝛼2𝛿𝑖)

+ 2𝛼4|𝛼3𝛾𝑖 + 2𝛼4𝛿𝑖|
𝑎−1sign(𝛼3𝛾𝑖 + 2𝛼4𝛿𝑖)

+ 𝛼6|2𝛼5𝛾𝑖 + 𝛼6𝛿𝑖|
𝑎−1sign(2𝛼5𝛾 + 𝛼6𝛿𝑖)}, 

Equation 11.4b 

 𝑠𝑥𝑥 = 𝛾𝜎, Equation 11.4a 

 𝑠𝑦𝑦 = 𝛿𝜎. Equation 11.4b 

 

𝐹4 = |
√𝑘′1

2 + 4𝛼7
2

2
|

𝑎

+ |
3𝑘′′1 − √𝑘′′2

2 + 4𝛼8
2

4
|

𝑎

+ |
3𝑘′′1 + √𝑘′′2

2 + 4𝛼8
2

4
|

𝑎

− 2(𝜎̅ 𝜎45⁄ )𝑎 = 0 

Equation 11.5 
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where 

 

 

 𝑘′1 =
𝛼1 − 𝛼2

3
, Equation 11.6a 

 𝑘′′1 =
2𝛼5 + 𝛼6 + 𝛼3 + 2𝛼4

9
, Equation 11.6b 

 𝑘′′2 =
2𝛼5 + 𝛼6 − 𝛼3 − 2𝛼4

3
. Equation 11.6c 

 𝐺4 =
𝜕𝜙𝑦

𝜕𝜎𝑥𝑥
+

𝜕𝜙𝑦

𝜕𝜎𝑦𝑦
−

2𝑎(𝜎̅ 𝜎45⁄ )𝑎

(1 + 𝑟45)
= 0, Equation 11.7 

 

𝜕𝜙′′

𝜕𝜎𝑥𝑥
=

𝑎

2
[{|𝜙′′1|

𝑎−1sign(𝜙′′1)

+ 2|𝜙′′2|
𝑎−1sign(𝜙′′2)}{(1 + Γ)𝐿′′

11

+ (1 − Γ)𝐿′′
21}

+ {2|𝜙′′1|
𝑎−1sign(𝜙′′1)

+ |𝜙′′2|
𝑎−1sign(𝜙′′2)}{(1 − Γ)𝐿′′11

+ (1 + Γ)𝐿′′21}], 

Equation 11.8a 

 

𝜕𝜙′′

𝜕𝜎𝑦𝑦
=

𝑎

2
[{|𝜙′′1|

𝑎−1sign(𝜙′′1)

+ 2|𝜙′′2|
𝑎−1sign(𝜙′′2)}{(1 + Γ)𝐿′′

12

+ (1 − Γ)𝐿′′
22}

+ {2|𝜙′′1|
𝑎−1sign(𝜙′′1)

+ |𝜙′′2|
𝑎−1sign(𝜙′′2)}{(1 − Γ)𝐿′′12

+ (1 + Γ)𝐿′′22}], 

Equation 11.8b 

 
𝜙′′1 =

3𝑘′′
1 − √𝑘′′

2
2
+ 4𝛼8

2

4
 

Equation 11.8c 
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The components of 𝐋′′ are already defined in Equation 7.9. 

The eight equilibrium equations with the material characteristics obtained from the material 

tests are solved by the Newton-Raphson method. Subsequently, the anisotropy parameters of 

Yld2000-2d with the AFR are identified. 

11.1.2 Identification method for non-AFR 

The parameters of yield and potential functions are optimized, simultaneously. The normalized 

yield stresses are used in the Yld2000-2d. The directional tensile stresses 𝜎𝜃 are obtained by 

the uniaxial tensile test at 𝜃 degrees. The corresponding stress tensor can be represented by the 

following vectors of rank 3 for plane stress case [BARL05]. 

where 

where 𝜃 is 0°, 15°, 30°, 45°, 60°, 75° and 90° considering the non-AFR Yld2000-2d. 

The deviatoric stress should be directly given to the model. The Equation 11.9 and 11.10 are 

changed in the following equations: 

where  

The directional tensile stresses are normalized with respect to the tensile stress at the rolling 

direction. 

 
𝜙′′2 =

3𝑘′′
1 + √𝑘′′

2
2
+ 4𝛼8

2

4
 

Equation 11.8d 

 Γ =
𝑘′′2

√𝑘′′2
2 + 4𝛼8

2
 Equation 11.8e 

 𝑆 = 𝜎𝜃𝑆𝜃 Equation 11.9 

 𝑆𝜃 = [cos2𝜃 sin2 𝜃 cos 𝜃 sin 𝜃]𝑇 Equation 11.10 

 𝑆 = 𝜎𝜃𝑆𝜃
′ , Equation 11.11 

 𝑆𝜃
′ = [(cos2 𝜃 −

1

3
) (sin2 𝜃 −

1

3
) (cos𝜃 sin 𝜃)]

𝑇

. Equation 11.12 
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where 

where ‖𝜎𝜃‖ is the normalized yield stress, 𝜙𝑦 is the yield function in the Equation 7.1 and 7.14. 

For the balanced biaxial tension, the stress is expressed as the follows: 

where 

The deviatoric biaxial stress is expressed as the follows: 

where 

The normalized biaxial stress 𝜎𝑏 is 

The theoretical Lankford coefficient 𝑟𝜃 at the directional uniaxial direction is 

where 𝑑𝜀22
𝑝

 and 𝑑𝜀33
𝑝

 are the increment of the plastic strain in transverse and thickness direction, 

respectively. 𝑑𝜀33
𝑝

 is calculated based on the volume constant during the plastic deformation as 

the follows: 

 ‖𝜎𝜃‖ =
𝜎𝜃

𝜎0
=

1

𝜎̅(𝑆𝜃)
= (

2

𝜙𝑦(𝑆𝜃)
)

1
𝑎

, Equation 11.10 

 
𝜎̅ = (

1

2
𝜙𝑦)

1
𝑎
, Equation 11.51 

 𝑆 = 𝜎𝑏𝑆𝑏, Equation 11.12 

 𝑆𝜃 = [1 1 0]𝑇 . Equation 11.13 

 𝑆 = 𝜎𝑏𝑆𝑏
′ , Equation 11.14 

 𝑆𝑏 = [
1

3

1

3
0]

𝑇

, Equation 11.15 

 ‖𝜎𝑏‖ =
𝜎𝑏

𝜎0
=

1

𝜎̅(𝑆𝑏)
= (

2

𝜙𝑦(𝑆𝑏)
)

1
𝑎

. Equation 11.16 

 𝑟𝜃 =
𝑑𝜀22

𝑝

𝑑𝜀33
𝑝 , Equation 11.17 
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The calculation of 𝑟𝜃 is changed by the substitution of Equation 11.18 into Equation 11.17: 

where 𝑛11 and 𝑛22 are components of the direction vector for the plastic strain increment 𝐧 in 

Equation 7.29. 

For the balanced biaxial tension, the Lankford coefficient is expressed as the follows: 

 

The error function with the experimental and calculated stresses and Lankford coefficients 

should be minimized. The error function is expressed as the follows: 

The superscripts exp and cal indicate experimental and calculated values, respectively. The 

subscript p is the number of all experimental yield stresses, the subscript q is the number of 

experimental Lankford coefficients, and w is a weighting factor. The subscripts p and q have 

eight to identify the parameters 𝛼𝑖  and 𝛽𝑖   of the non-AFR Yld2000-2d (Barlat et al., 2005).  

11.2 Derivation of Yld2000-2d  

To implement the stress integration of Yld2000-2d with AFR and non-AFR based on the 

algorithm CCP, only the first derivation of yield and potential function is required. The effective 

stress of Yld2000-2d is already defined in Equation 11.11. The derivation of the effective stress 

to the stress tensor is expressed by the chain rule as follows: 

where k  (= 1 ~ 3) is the number of the tensor components for the plane stress condition. 𝜙𝑦 can 

be replaced by 𝜙𝑝 for non-AFR. 

 𝑑𝜀33
𝑝

= −(𝑑𝜀11
𝑝

+ 𝑑𝜀22
𝑝 ). Equation 11.18 

 𝑟𝜃 = −
𝑑𝜀22

𝑝

(𝑑𝜀11
𝑝

+ 𝑑𝜀22
𝑝 )

, Equation 11.19a 

 𝑟𝜃 = −
𝑛22(𝑆𝜃)

(𝑛11(𝑆𝜃) + 𝑛22(𝑆𝜃))
, Equation 11.19b 

 𝑟𝜃 =
𝑛22(𝑆𝑏)

𝑛11(𝑆𝜃)
. Equation 11.20 

 𝐸(𝛼𝑖 , 𝛽𝑖) = ∑ 𝑤𝑝 (
‖𝜎𝑝

𝑐𝑎𝑙‖

‖𝜎𝑝
𝑒𝑥𝑝‖

− 1)
𝑝

+ ∑ 𝑤𝑞 (
𝑟𝑞

𝑐𝑎𝑙

𝑟𝑞
𝑒𝑥𝑝 − 1)

𝑞
. Equation 11.21 
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Here, 

 

and 

where subscripts 1,2, and 3 are corresponding to subscripts xx, yy, and xy in Equation 7.3 and 

7.4.  

where 𝐋′ and 𝐋′′ are already explained in Equation 7.8 and 7.9, respectively. 

 

𝜕𝜎̅

𝜕𝜎𝑘
= {2𝑎𝜎̅(𝑎−1)}

−1𝜕𝜙𝑦

𝜕𝜎𝑘
 

= {2𝑎𝜎̅(𝑎−1)}
−1

∑∑ (
𝜕𝜙𝑦

𝜕𝑋𝑎
′

𝜕𝑋𝑎
′

𝜕𝑋̃𝑏
′

𝜕𝑋̃𝑏
′

𝜕𝜎𝑘
+

𝜕𝜙𝑦

𝜕𝑋𝑎
′′

𝜕𝑋𝑎
′′

𝜕𝑋̃𝑏
′′

𝜕𝑋̃𝑏
′′

𝜕𝜎𝑘

)

3

𝑏

2

𝑎

, 

Equation 11.22 

 
𝜕𝜙𝑦

𝜕𝑋𝑖
′ = [

𝑎{(𝑋1
′ − 𝑋2

′ )|𝑋1
′ − 𝑋2

′ |(𝑎−1)}

−𝑎{(𝑋1
′ − 𝑋2

′ )|𝑋1
′ − 𝑋2

′ |(𝑎−1)}
] ; Equation 11.23a 

 
𝜕𝜙𝑦

𝜕𝑋𝑖
′′ =

[
 
 
 
 𝑎 {

(2𝑋2
′′ + 𝑋1

′′)|2𝑋2
′′ + 𝑋1

′′|(𝑎−1)

+2(2𝑋1
′′ + 𝑋2

′′)|2𝑋1
′′ + 𝑋2

′′|(𝑎−1)
}

𝑎 {
2(2𝑋2

′′ + 𝑋1
′′)|2𝑋2

′′ + 𝑋1
′′|(𝑎−1)

+(2𝑋1
′′ + 𝑋2

′′)|2𝑋1
′′ + 𝑋2

′′|(𝑎−1)
}

]
 
 
 
 

, Equation 11.23b 

 
𝜕𝑋𝑖

′

𝜕𝑋̃𝑗
′ =

[
 
 
 
 
1

2
(1 +

𝑋̃1
′ − 𝑋̃2

′

√∆′
)

1

2
(1 −

𝑋̃1
′ − 𝑋̃2

′

√∆′
)

𝑋̃3
′

√∆′

1

2
(1 −

𝑋̃1
′ − 𝑋̃2

′

√∆′
)

1

2
(1 +

𝑋̃1
′ − 𝑋̃2

′

√∆′
) −

𝑋̃3
′

√∆′]
 
 
 
 

, Equation 11.24a 

 ∆′= (𝑋̃1
′ − 𝑋̃2

′ )
2
+ 4𝑋̃3

′ 2
, Equation 11.24b 

 
𝜕𝑋𝑖

′′

𝜕𝑋̃𝑗
′′ =

[
 
 
 
 
1

2
(1 +

𝑋̃1
′′ − 𝑋̃2

′′

√∆′′
)

1

2
(1 −

𝑋̃1
′′ − 𝑋̃2

′′

√∆′′
)

𝑋̃3
′′

√∆′′

1

2
(1 −

𝑋̃1
′′ − 𝑋̃2

′′

√∆′′
)

1

2
(1 +

𝑋̃1
′′ − 𝑋̃2

′′

√∆′′
) −

𝑋̃3
′′

√∆′′]
 
 
 
 

, Equation 11.24c 

 ∆′′= (𝑋̃1
′′ − 𝑋̃2

′′)
2
+ 4𝑋̃3

′′2, Equation 11.24d 
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11.3 Numerical differentiation  

The yield function derivation emerging in Yld2000-2d (11.2) may alternatively be calculated 

by means of numerical differentiation methods. In (Aretz, 2003) a central, as well as a forward 

difference scheme, has been presented for this purpose. It was shown that the computing effort 

of the central difference scheme for 3D stress states is approximately 1.7 times larger in 

comparison to the forward difference scheme. However, the accuracy of two difference 

schemes represented no significant differences. Thus, the forward difference scheme can be 

used to calculate the yield function derivation alternative to the analytical computation of the 

yield function derivation. It was also indicated in (Aretz, 2003) that the singularities in the 

analytical expressions of the derivation are easily avoided and that the implementation of 

anisotropic yield functions can be simplified significantly if numerical differentiation is 

employed. 

The forward difference expressions for the yield function gradient components are as follows: 

where the module of ∆𝛔 is ‖∆𝛔‖ = ∆𝜎. It was found that ∆𝜎 of approximately 10-5 is reasonable 

for general metal forming.

 
𝜕𝑋̃𝑖

′

𝜕𝜎𝑗
= [

𝐿11
′ 𝐿12

′ 0

𝐿21
′ 𝐿22

′ 0

0 0 𝐿66
′

], Equation 11.25a 

 
𝜕𝑋̃𝑖

′′

𝜕𝜎𝑗
= [

𝐿11
′′ 𝐿12

′′ 0

𝐿21
′′ 𝐿22

′′ 0

0 0 𝐿66
′′

], Equation 11.25b 

 𝜕𝜙

𝜕𝛔
≈

𝜕𝜙(𝛔 + ∆𝛔) − 𝜕𝜙(𝛔)

∆𝛔
, Equation 11.22 
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