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ABSTRACT 

Alpha-helical membrane proteins constitute 25-30% of all proteins in all sequenced 

genomes and are vital for many biological processes, more than 50% of already reported 

drugs are transmembrane protein targeted. Due to the scarce 3D structure for this kind 

of protein, sequence-based interaction sites prediction tools are highly motivated for 

membrane protein structure prediction, mutagenesis, and better small molecular drug 

design. 

In this thesis, firstly, for the transmembrane domains (TMDs) of single-pass membrane 

proteins, we have created the first machine learning algorithm for the prediction of TM 

homodimer interface residues. The Transmembrane HOmodimer Interface Prediction 

Algorithm (THOIPA) utilized evolutionary sequence information alone. We used 54 

nonredundant self-interacting TMDs (20 experimental ETRA , 8 NMR and 25 crystal) as 

training and validation dataset, THOIPA obviously outperformed other currently available 

prediction methods according to the overall prediction performance of AUC or AUBOC10, 

it was particularly powerful for the prediction of the top residues involved in the interaction. 

Furthermore, we found that the interface residues involved in protein-protein interactions 

are significantly conserved, more co-evolved and more polar than non-interface residues, 

and the GxxxG motifs were overrepresented at TM interfaces, particularly when 

investigated in a natural membrane environment. The THOIPA code and standalone 

predictor is available at https://github.com/bojigu/thoipapy. The online webserver is 

available at http://www.thoipa.com/. 

http://www.thoipa.com/
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Secondly, we developed MBPred (Membrane Binding-site Prediction) for the interfacial 

residues prediction of alpha-helical membrane proteins, which is a suite of four individual 

RF models – MBPredTM, MBPredCyto, MBPredExtra, and MBPredAll – trained to predict 

protein interaction sites in transmembrane, cytoplasmic, and extracellular segments as 

well as in entire amino acid sequences, respectively. This study found that in comparison 

of non-interacting residues, interacting residues are more conserved, more co-evolved, 

and have interface position preferences along the protein segment and full sequence. 

The overall prediction performance (AUC) over 10-fold cross-validation for each of the 

four individual RF models are higher than 0.78. While for the 36 new independent test 

dataset, the prediction performance AUC can also reach on average of 0.75. The MBPred 

code and the standalone predictor is available at https://github.com/bojigu/MBPred. 

 

 

 

 

 

 

 

https://github.com/bojigu/
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ZUSAMMENFAFSSUNG 

Alpha-helikale Membranproteine machen 25-30% aller Proteine in allen sequenzierten 

Genomen aus und sind für viele biologische Prozesse unerlässlich, mehr als 50% der 

bereits berichteten Medikamente sind auf Transmembranproteine ausgerichtet. Aufgrund 

der knappen 3D-Struktur für diese Art von Protein sind sequenzbasierte 

Interaktionsstellen-Prädiktionswerkzeuge hoch motiviert für die Vorhersage von 

Membranproteinstrukturen, Mutagenese und besseres kleinmolekulares Wirkstoffdesign. 

In dieser Arbeit, erstens, für die Transmembrandomänen (TMDs) von Single-Pass-

Membranproteinen, haben wir den ersten maschinellen Lernalgorithmus für die 

Vorhersage von TM-Homodimer-Schnittstellenresten entwickelt. Der Transmembran 

HOmodimer Interface Prediction Algorithmus (THOIPA) verwendete evolutionäre 

Sequenzinformationen allein. Wir verwendeten 54 nicht-redundante selbst-

interagierende TMDs (20 experimentelle ETRA, 8 NMR und 25 Kristall) als Trainings- und 

Validierungsdatensatz, THOIPA übertraf offensichtlich andere derzeit verfügbare 

Vorhersagemethoden entsprechend der gesamten Vorhersageleistung von AUC oder 

AUBOC10, es war besonders leistungsfähig für die Vorhersage der obersten Rückstände, 

die an der Interaktion beteiligt waren. Darüber hinaus fanden wir heraus, dass die an 

Protein-Protein-Interaktionen beteiligten Interface-Reste signifikant konserviert, ko-

evolutionärer und polarer sind als nicht-interface-Reste, und die GxxxG-Motive waren an 

TM-Schnittstellen überrepräsentiert, insbesondere wenn sie in einer natürlichen 

Membranumgebung untersucht wurden. Der THOIPA-Code und der eigenständige 
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Prädiktor sind verfügbar unter https://github.com/bojigu/thoipapy. Der Online-Webserver 

könnte auch unter http://www.thoipa.com/. verfügbar sein. 

Zweitens haben wir MBPred (Membrane Binding-site Prediction) für die Vorhersage von 

Grenzflächenrückständen von alpha-helikalen Membranproteinen entwickelt, eine Suite 

von vier einzelnen HF-Modellen - MBPredTM, MBPredCyto, MBPredExtra und 

MBPredAll -, die für die Vorhersage von Proteininteraktionsstellen in transmembranen, 

zytoplasmatischen und extrazellulären Segmenten sowie in ganzen 

Aminosäuresequenzen ausgebildet sind. Diese Studie ergab, dass im Vergleich zu nicht 

interagierenden Rückständen interagierende Rückstände konservierter, ko-evolutionärer 

und mit Präferenzen für die Schnittstellenposition entlang des Proteinsegments und der 

gesamten Sequenz sind. Die Gesamtvorhersageleistung (AUC) über die 10-fache 

Kreuzvalidierung für jedes der vier einzelnen HF-Modelle ist höher als 0.78. Während für 

den 36 neuen unabhängigen Testdatensatz die Vorhersageleistung AUC ebenfalls 

durchschnittlich 0.75 erreichen kann. Der MBPred-Code und der eigenständige Prädiktor 

sind verfügbar unter https://github.com/bojigu/MBPred.  

  

https://github.com/bojigu/MBPred
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CHAPTER 1. INTRODUCTION 

It was well known that proteins are the driving horse of the cellular machinery, they are 

responsible for diverse functions ranging from molecular motors to signaling. Membrane 

proteins represent about 20–30% of the genome in a variety of different organisms [15-

17]. Protein–protein interactions (PPI) within the membrane are involved in many vital 

cellular processes, especially understanding interface residue involved in PPI is critical to 

identity protein functions. Consequently, deficient oligomerization is associated with many 

diseases. The main target of this thesis is to analyze and predict the transmembrane PPI 

interfaces. 

The following introduction aims at summarize present knowledge about transmembrane 

PPI. The first chapter briefly outlines the current view of biology membrane and 

membrane protein. In the following, the interaction of transmembrane protein, including 

the popular experimental PPI methods, the experimental techniques to study 

transmembrane domain (TMD) -TMD interactions, also the sequence motifs that 

mediating TMD-TMD interactions. Further, the current knowledge regarding the 

computational methods for the transmembrane protein interface residues prediction, 

briefly introduced homology-based, machine learning and co-evolution methods. Finally, 

a motivation and overview of this thesis. 

1.1 Membranes and membrane proteins 

1.1.1 Biological membranes 
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Biological membranes are lipid bilayers composed of various phospholipids with average 

thickness of 60 Å [18]. Biological membrane plays very important role as barrier between 

the intracellular content and the extracellular environment, they are also found within 

eukaryotic cells surrounding intracellular compartments such as the nucleus, 

mitochondria, chloroplasts, the endoplasmic reticulum (ER) and the Golgi apparatus. The 

Fluid-Mosaic-Model of Singer and Nicolson describes membranes as two-dimensional 

viscous fluids containing freely diffusing membrane proteins [19]. However, different lipid 

species are not alone distributed among the leaflets of a bilayer but also organized 

laterally in the plane. 

1.1.2 Membrane proteins 

Membranes are barriers which molecules generally cannot pass without assistance, and 

transmembrane proteins (TMP) embedded into the bilayer providing aid to transport 

signal or molecular. Around 30% of the genes in eukaryotic species are encoding integral 

membrane proteins [15-17]. In humans, approximately 6,000 different TMPs are 

expressed [20, 21]. They take part in countless cellular processes, and comprise the 

majority of targets for pharmaceutical compounds [22]. Based on the secondary structure 

difference, TMPs could be classified into alpha-helical TMP and beta-barrel TMP. Alpha-

helical TMP constitutes between 20 and 30 percent of all ORFs in already sequenced 

genomes [23]. Beta-barrel TMPs are dominant in the outer membrane of gram-negative 

bacteria, and a small number are also found in the mitochondria and chloroplast 

organelles, which are of prokaryotic origin. The available information for TMP is scare in 

comparison with soluble proteins, there are less than 2% of all structure in the Protein 
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Data Bank (PDB) are corresponding to TMPs. Even though the number of TMP structures 

increases exponentially doubling approximately every third year. 

 

1.2 Interaction of transmembrane proteins 

Proteins are the major players in molecular recognition at the heart of all processes of life, 

they bind with other proteins to form supramolecular assemblies and elaborate molecular 

machines that perform all kinds of functions. PPI within membrane are vital for many 

cellular processes, many diseases were caused by the deficient PPIs [24]. TMPs transmit 

different signals between extracellular and intracellular environments, these signals play 

crucial roles such as homeostasis and signal transduction [25]. The signal transduction 

was initiated by the binding with ligands, which is believed to cause conformational 

change of the receptor and form oligomerization, this association will stimulate the 

function of many proteins, thus the deficient oligomerization will caused diseases such as 

cancer and amyloidal [26]. However, in contrast to PPI for soluble proteins, the knowledge 

on transmembrane protein interaction are quite limited because of the unique chemical 

and physical properties of membrane environment. Here I am going to introduce firstly 

the experimental methods used to detect protein-protein interactions. Secondly for 

transmembrane proteins, what are the art-of-state techniques to investigate the helix-

helix interaction. Finally, an overview of the sequence motifs that mediating TMD-TMD 

interactions, which are the key factors for transmembrane PPIs. 

 

1.2.1 Experimental methods for determining protein-protein interactions 
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During the last few decades, a variety of experimental methods for measuring PPIs have 

been developed [74]. Table 1-1 summarized most of the widely used experimental PPI 

detection methods. These methods were firstly categorized into high-throughput and low-

throughput methods, the advantage of high-throughput method is the usage to screen a 

large quality of interaction, while the later doesn’t have this capacity. Western blotting 

method [27] is the oldest method in the list, the second old method is the protein affinity 

chromatography [28], x-ray crystallography/NMR spectroscopy [29] are also the low-

throughput methods. Among the other high-throughput methods which are capable of 

detecting various possible protein-protein interactions. Here we briefly describe two high 

throughput methods: Yeast two hybrid (Y2H) [30], and Tandem affinity purification (TAP) 

[31]. 

Table 1-1: Experimental methods overview for the protein-protein interaction detection 

Name 
High-

throughput 

Type of 

interaction 
Summary 

Yeast two hybrid 

(Y2H) [30] 
+ Direct physical 

Yeast two-hybrid is typically carried out by screening a protein of 

interest against a random library of potential protein partners 

Tandem affinity 

purification (TAP) [31] 
+ Direct physical 

TAP is based on the double tagging of the protein of interest on 

its chromosomal locus, followed by a two-step purification process 

and mass spectroscopic analysis 

Protein microarrays  + Direct physical 
Microarray-based analysis allows the simultaneous analysis of 

thousands of parameters within a single experiment 

X-ray crystallography 

[29] 
- 

Direct physical, 

and structure 

X-ray crystallography enables visualization of protein structures at 

the atomic level and enhances the understanding of protein 

interaction and function 
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NMR spectroscopy 

[29] 
- 

Direct physical, 

and structure 

NMR spectroscopy can even detect weak protein-protein 

interactions 

Far western blotting 

[27] 
- Direct physical 

far-western blotting uses a non-antibody protein which can bind 

the protein of interest to detect protein-protein interaction. 

Protein affinity 

chromatography [28] 
- Direct physical 

Affinity chromatography is highly responsive, can even detect 

weakest interactions in proteins, and also tests all the sample 

proteins equally for interaction 

Synthetic Lethality [32] + 
Genetic 

interaction 

Synthetic lethality is based on functional interactions rather than 

physical interaction 

Co-expression [33] + 
Genetic 

interactions 

proteins from the genes belonging to the common expression-

profiling clusters are more likely to interact with each other than 

proteins from the genes belonging to different clusters 

 

1.2.1.1 Yeast two hybrid (Y2H) 

A yeast two-hybrid (Y2H) [30] experiment is a high-throughput screening method for 

protein interactions, and it greatly accelerated the speed for measuring protein 

interactions. It detects the physical interactions of proteins through the downstream 

activation of a reporter gene. How exactly this transcription is measured depends on the 

reporter gene. But most commonly it is done by auxotrophic selection, i.e. the ability of 

the yeast to grow on nutrient-restricted medium. 

The advantages of a Y2H screen include: 1) that it is relatively fast and easy way to 

screen for PPIs; 2) it requires little hands-on time and technical skill and; 3) it is also able 

to be scaled up by screening yeast libraries of tagged “prey” proteins against a single 

“bait”, allowing thousands of potential interactions to be screened rapidly. 
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However, there are several disadvantages in the Y2H method. First, the interaction might 

not happen in yeast, since a queried protein may require a species specific folding protein, 

which may lack in yeast. Secondly the whole Y2H screening takes place in the yeast 

nucleus, thus if the proteins are not co-localised there, the interacting proteins are found 

to be noninteracting (false negative). Nonetheless, Y2H has been used to measure PPIs 

in worm [34], fly [35], and human [36]. 

1.2.1.2 Tandem affinity purification 

Tandem affinity purification (TAP) is a method for rapid protein complex purification, which 

allows rapid purification under native conditions of complexes, even when expressed at 

their natural level [31]. In first step of the technique, the protein of interest with the TAP 

tag first binds to beads coated with IgG, the TAP tag is then broken apart by an enzyme, 

and finally a different part of the TAP tag binds reversibly to beads of a different type. 

After the protein of interest has been washed through two affinity columns, it can be 

examined for binding partners [37]. 

There are some advantage of this method. Firstly, it doesn’t require the prior knowledge 

of complex composition and can determine the protein partners quantitatively. Secondly, 

it often provides high yield [31]. Lastly, the TAP offers an effective and highly specific 

means to purify target protein. 

However, there are also some disadvantages of this methods. Firstly, it is possible a tag 

added to a protein might obscure the new protein bind to its interacting partner. Also, the 

tag might influence the protein expression levels. Lastly a tag added to a protein might 

https://en.wikipedia.org/wiki/IgG
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not be sufficiently exposed to allow binding of the protein to the affinity beads or might 

affect protein function [31]. 

 

1.2.2 Techniques for studying TMD-TMD interactions within membrane 

Transmembrane PPIs are partially or fully mediated by transmembrane domains (TMD), 

thus studying TMD-TMD interaction becomes very critical. Due to the hydrophobic 

property, TMPs are relatively insoluble in aqueous solution, which makes the structure 

study for TMD-TMD interaction experimentally difficult [38]. As helix-helix interactions in 

membrane are many times flexible by nature, in order to better understand the interaction 

flexibility within membrane, many techniques were developed in the past decades. 

1.2.2.1 The ToxR system 

The ToxR system [39] is based on the ToxR transcriptional activator and can detect weak 

TMD–TMD interactions within the membrane environment of E. coli. In response to an 

external stimulus, the ToxR protein dimerises via its periplasmic domain. This leads to 

ToxR interactions at the cytoplasmic side, where the ToxR dimer binds to a tandemly 

repeated DNA segment within the ctx promoter dimerisation thereby activates 

transcription of linked virulence genes [40]. For the detection and characterization of high-

affinity transmembrane domains with the ToxR system (Figure 1-1), the membrane-

spanning domain of the ToxR protein is replaced with the TMD of interest [39],  

Furthermore, the maltose-binding protein (MBP, encoding by MalE) is attached as 

periplasmic domain which serves as control for correct membrane insertion as only 

constructs placing the MalE domain within the periplasm are able to complement the MalE 
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deficiency of E.coli PD28 cells. A plasmid coding for the chimeric protein (pToxRV) is 

introduced into the E. coli indicator-strain FHK12. In FHK12 cells, the reporter gene lacZ 

is under the control of the ctx-promoter [41]. TMD-TMD interaction mediates the self-

interaction of ToxR proteins in the cytoplasm leading to transcription activation of ctx-

promoter. 

The ToxR system was designed to detect homo-oligomerization, but was modified further 

to detect hetero-oligomerization as well [42]. 

 

Figure 1-1: The ToxR system overview.After self-interaction of transmembrane domains, 

cytoplasmic ToxR dimers activate the transcription of reporter genes under the control of a ctx 
or ompU promoter. Periplasmic MalE domains allow for the analysis of correct membrane 
insertion. Adapted from [39]. 

 

1.2.2.2 ETRA (E. coli TM Reporter Assay) methods 

In combination with scanning mutagenesis, ETRA techniques have now been used for 

over 20 years to determine interfacial residues of TM homodimers. ToxR-based assays 

such as ToxR [39], TOXCAT [43], or the recently developed dsTβL [44] were mostly used 

in studies. Other ETRA techniques include GALLEX [45], BACTH [46, 47] and AraTM [48], 
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which all uses transcription activator domains, and BLaTM [49], which is based on a split 

enzyme. 

In biological membranes, using ETRA techniques can confirm the interface seen in NMR. 

Early research on glycophorin A (GpA) and BNIP3 revealed interfacial residues that were 

generally consistent between SDS-assays [50, 51], ToxR [39, 52], and NMR analyses [1, 

3, 53].  

 

1.2.2.3 NMR (Nuclear magnetic resonance) spectroscopy 

NMR spectroscopy can be used to obtain information about the dynamic structure of small 

proteins. Thus, NMR is a good tool to analyse the isolated TMD homodimers, which are 

typically analysed in detergent micelles or bicelles. The early NMR structure 

determination of GpA, for example [1], showed a good correspondence with interface 

residues from earlier SDS-PAGE [50] and ETRA [39] experiments. To date, over 15 TM 

homodimer structures have been generated using NMR spectroscopy method (Table 5-1) 

[1-14]. These studies have been reviewed extensively [54, 55], and was used as the test 

dataset for de-novo structure determination [56-58]. A problem with the NMR dataset is 

the observation of multiple structures for each TMD, depending on the conditions of the 

experiment. In some cases, this has been attributed to differences in the lipid-like 

environment [4, 59], while in other cases it has been proposed that the TMD has multiple 

biologically relevant homodimer interfaces [59]. It should be noted that the protein 

concentrations used in a typical NMR experiment are far higher than that seen for 

individual proteins in biological membranes. 
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1.2.2.4 X-ray crystallography 

Membrane proteins are poorly amenable to crystallisation. The repertoire of TM helix-

helix interactions is therefore poorly understood in comparison to soluble proteins. This 

is due to difficulties in expression, purification and crystallisation [60, 61]. As a 

consequence, no more than 2% of proteins in the PDB are TMPs [62]. Furthermore, many 

of these are close homologues, whose structures are not unique. As an example, 

stringent redundancy reduction of the entire PDB database resulted in the identification 

of less than 200 unique TMPs [63]. 

Protein Data Bank of Transmembrane Proteins (PDBTM) database was created to collect 

TMPs from the PDB and defined their TMD by the TMDET algorithm [64]. The “crystal 

contacts” within the structures are often considered to be biologically relevant PPI sites 

[65-68]. Some of these TMD interactions are “homodimer-like,” in that they involve a self-

interaction of the same TM helix, between two identical proteins. However, until now, no-

one has analysed the self-interacting helices explicitly, despite the fact that they might 

yield insights into the homotypic interactions of the TM helices of bitopic proteins. 

 

1.2.3 Sequence motifs mediating TMD-TMD interactions 

1.2.3.1 Conserved motifs 

A variety of conserved motifs in TMD were reported to mediate the TMD-TMD interactions: 

(i) GxxxG motif, which is the most common and best characterized motif for TMD-TIMD 

interaction, and it was detected to dimerize the of human glycophorin A (GpA) [69]; (ii) 
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Leucine zipper motif, which is loosely defined as a pattern of leucine, isoleucine or valine 

residues on one side of the helix face [70], and it controls the dimerization of the 

transmembrane domain of the platelet-derived growth factor β-receptor (PDGFβR) 

receptor [71]; (iii) PolarxxxPolar motif, in which the polar residue could be Ser, Thr, Glu, 

Gln, Asp and Asn, a specific case is the QxxS motif which forms the bacterial aspartate 

receptor (RAR-1) [72]; (iv) A Ser/Thr rich motif, This motif was found later in the 

transmembrane domain of Hepatitis C virus (HCV) non- structural protein 4B (NS4B) [73].  

1.2.3.2 Polar residues 

Within the membrane, the interhelical association can be stabilized by formation of 

hydrogen bonds, such hydrogen boding is formed between a pair of TMDs through one 

or more polar residues. It has been studied that amino acids with two polar side-chain 

atoms have a greater tendency to drive TMD association than residues with only one 

side-chain polar atom [74] [75].The amino acids with two polar atoms can act 

simultaneously as a good hydrogen bond donor and acceptor and therefore form a more 

stable oligomer. It has been also found that non-polar-to-polar mutations in the TMDs of 

membrane proteins are associated with several diseases [26] [76]. For example, a 

specific Val→Glu mutation within the TMD of the ErbB2 oncogene product (Neu) [77] is 

known to induce ErbB2 dimerization and activation. Such activation of ErbB2 has been 

detected in a large fraction of breast and ovarian cancers [77]. 

1.2.3.3 Charged residues 

Positively charged amino acids, which are localized within the TMDs of membrane 

proteins, are known to have both functional and structural roles in the activity of these 
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proteins. Examples include their involvement in substrate recognition [78]. Charge–

charge, or ionic, interactions between TMDs came from studies that probed the location 

of helices within the membrane. There, pairs of positively charged Lys and negatively 

charged Asp residues one helical turn apart placed a model helix deeper in the membrane 

than other spacings of the two residues [79]. Moreover, mutations that introduce positively 

charged residues into TMDs have been previously shown to be involved in human genetic 

diseases [76, 80]. TMDs are known to be involved in self- and hetero-assembly of 

membrane proteins. The charged amino acids may also affect the structure of the protein. 

Therefore, such mutations might interfere with the interactions and proper assembly of 

the TMDs[24]. 

1.2.3.4 Aromatic residues 

Aromatic residues serve as key structural elements that mediate the molecular 

recognition and the self-assembly of many membrane proteins including amyloid 

polypeptides, bacterial toxins and others [81, 82]. It has been reported that the indole, 

phenol, and imidazole groups of aromatic residues can participate in H-bonding across 

the TM helix packing interface, thus enhance the TMD dimerization [83]. Studies have 

also shown that a mutation of a single aromatic amino acid can abolish the ability of the 

corresponding amyloid peptide to form amyloid fibrils [84]. 

 

1.3 Computational prediction of protein-protein interaction 

interfaces 

Proteins are the major catalytic agents, as structural elements and transporter, play 

important roles for signal transduction in cells, individual protein doesn’t function alone, it 
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binds to other proteins through interaction sites, residue mutations at protein-protein 

interaction sites usually cause disease. Hence, understanding the characteristics of these 

binding sites becomes more and more important for the protein design and even for the 

rational drug design, in addition it helps to better understand the mechanisms of 

macromolecular recognition. Many biochemical experimental approaches have been 

developed to identify the protein-protein interfaces, these techniques include X-ray 

crystallography [85] and NMR spectroscopy [86]. Alana scanning mutagenesis is another 

method for the interface determination at the residue level. The experimental strategies 

have some technical challenges, labor-intensive and cost of lots of money. According to 

the disadvantages of experimental methods, the computational methods for PPI interface 

prediction becomes extremely valuable. The computational methods could be briefly 

classified into three categories: (1) knowledge-based method, which is heavily dependent 

on the experimental structure of the homology data as template. (2) machine learning 

base method which utilize a dataset of experimentally defined interface residues to train 

a classification model, and use this model to predict interfacial residues of new proteins. 

(3) method dependent on the residue co-evolution, which assumed that interacting 

residues were evolved simultaneously . The multiple sequence alignment was used to 

identify such kinds of interfacial residues [87, 88]. In the past years, a broad range of 

computational methods for PPI interface prediction have been developed, some 

representative methods are summarized in Table 1-2, for each method, it gives the input 

protein type, sequence or structure, and the available web server, also a brief description 

of the method. 
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Table 1-2: Three main types of protein-protein interaction interface prediction methods. 

Type Method Input Web server Description 

Homology-

based 
PS-

HornPPI 

[89] 

Sequence 

http://ailab1.ist.psu.edu/ 

PSHOMPPIv1.2/ 

PS-HomPPI predict interfacial residues from the interfacial residues of 

homologous interacting proteins. PS-HomPPI classifies the templates 

into Safe, Twilight or Dark Zone, and use multiple templates from the 

best available zone to infer interfaces for query proteins. 

 NPS-

HornPPI 

[89] 

Sequence 

http://ailab1.ist.psu.edu/ 

NPSHOMPPI/ 

NPS-HomPPI is the non-partner-specific version of PS-HomPPIs. 

Without knowledge of the specific binding partner protein, it predicts 

residues that are likely to interact with other proteins. 

 

PredUs 

[90] 
Structure 

https://bhapp. 

C2b2.columbia.edu/PredUs/ 

Inputs a query protein structure, PredUs uses a structural alignment 

method to identify structural neighbors, calculates the frequency of 

mapped contacts for each query protein residue and uses the logistic 

function to generate the residue-based interfacial score. 

 

IBIS [91] Structure 

https://www.ncbi.nlm.nih.gov 

/Structure/ibis/ibis.cgi 

IBIS searches the experimentally determined interfaces for structural 

homologs of the query protein,, then clusters the interfaces of the 

homologs, and rank the clustered interfaces. 

 

PriSE 

[92] 
Structure 

http://ailab1.ist.psu.edu/ 

prise/index.py 

PriSE calculates a surface patch consisting of this target residues and its 

special neighbors, then searches surface patch database for similar 

surface patches with experimentally determined interface information, 

and weight them according to the similarity with  the query surface patch. 

Machine 

Learning 

SPPIDER 

[93] 
Structure http://sppider.cchmc.org/ 

SPPIDER uses the difference between predicted relative solvent 

accessibility and actual RSA of a residue as a feature to predict 

interface.  

 PINUP 

[94] 
Structure 

http://sysbio.unl.edu/ 

services/PINUP/ 

PINUP uses a scoring function that is a linear combination of a side-

chain energy, interface propensity, and residue conservation scores 

 ProMate 

[95] 
Structure 

http://sysbio.unl.edu/ 

services/PINUP/ 

PINUP uses a scoring function that is a linear combination of a side-

chain energy, interface propensity, and residue conservation scores 

http://ailab/
http://ailab/
https://bhapp/
https://www/
http://ailab/
http://sppider/
http://sysbio/
http://sysbio/
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PIER [96] Structure 

http://abagyan.ucsd.edu/ 

PIER/ 

PIER predicts each surface patch as interfacial or not, using PLS (partial 

least squares) regression on the solvent accessibility values of 12 

significantly over- and under-represented atomic groups at the interface 

 
Cons-

PPISP 

[97] 

Structure 

http://pipe.scs.fsu.edu/ 

ppisp.html 

Cons-PPISP is a consensus neural network method for predicting 

protein–protein interaction sites. Features used include: position-specific 

scoring matrix, solvent accessibilities, and spatial neighbors of each 

residue 

 
Meta-

PPISP 

[98] 

Structure 

http://pipe.scs.fsu.edu/ 

meta-ppisp.html 

Meta-PPISP is built on three individual web servers: cons-PPISP, 

PINUP, and ProMate. A linear regression method, using raw scores of 

the three severs as input, was trained on a set of 35 non-homologous 

proteins 

 

CPORT 

[99] 
Structure 

http://haddock.science.uu. 

nl/services/CPORT/ 

CPORT is built on six individual web servers: WHISCY, PIER, ProMate, 

cons-PPISP, SPPIDER, and PINUP. The weights of a linear combination 

of the quantiles of the raw scores from the six servers were optimized on 

a set of complexes 

 

PAIRpred 

[100] 

Sequence 

/Structure 

http://combi.cs.colostate. 

edu/supplements/pairpred/ 

PAIRpred uses multiple pairwise kernel SVMs to predict interacting 

residue pairs. Structural features used include: relative accessible 

surface area (rASA), residue depth, half sphere amino acid composition, 

protrusion index. Sequence features used include: PSSM and predicted 

rASA 

 
PpiPP 

[101] 
Sequence 

http://tardis.nibio.go.jp/ 

netasa/ppipp/ 

PpiPP trains 24 neural network predictors, and returns the average score 

of the 24 predictors as the final score. It uses a binary encoding of 20 

types of amino acids plus PSSMs as features 

 
PSIVER 

[102] 
Sequence 

http://tardis.nibio.go.jp/ 

PSIVER/ 

PSIVER (Protein–protein interaction Sites prediction seVER) predicts 

protein–protein interaction sites using a PSSM and predicted 

accessibility as input for a Naive Bayes classifier 

 
WHISCY 

[103] 
Structure 

http://nmr.chem.uu.nl/ 

Software/whiscy/ 

WHISCY calculates a conservation score for each position of a MSA by 

summing up the scores in an adjusted Dayhoff matrix. It adjusts each 

conservation score using the interface propensity of the residue and 

http://abagyan/
http://pipe/
http://pipe/
http://haddock/
http://combi/
http://tardis/
http://tardis/
http://nmr/
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smooth scores by considering surface neighbors to obtain the final 

prediction score 

 
Yan et al 

[104]. 
Sequence N/A 

A two-stage classifier in which the first stage is a SVM interface 

predictor, and the second is a Naïve Bayes classifier trained on the 

predicted class labels from the SVM 

 

IntPred 

[105] 
Structure 

http://www.bioinf.org.uk 

/intpred/ 

For a given PDB structure, IntPred uses sequence and structure 

information to create features that are the input to a random forest 

machine learning predictor, which will output a prediction label at either 

the surface patch- or residue-level. 

Correlated  

Mutation 

[106] 

i-Patch  

MSA/ 

Structure 

http://portal.stats. 

ox.ac.uk/userdata/ 

proteins/i-Patch/home.pl 

The MSAs are concatenated based on knowledge about which pairs of 

proteins interact, and are used to calculate the correlated mutation 

scores for pairwise positions. A logistic model is trained on a combination 

of the propensities and the correlated mutation scores 

 

1.3.1 Homology-based methods 

Homology-based method also called template-based method, based on the assumption 

that homologous proteins have significant similar sequence, structure and functional sites, 

homology-based approaches infer biological properties of a new protein from its 

homologs. This method has been broadly used in protein structure prediction [107], 

protein interaction partners prediction and protein function annotation [108, 109]. 

 

1.3.2 Machine learning-based methods 

Even though homology-based methods are reliable, this kind of method also has some 

shortcomings because they require the experimentally determined interface residues of 

its homologs, this method is strictly limited when the homology template has no available 

http://www.bioinf.org.uk/
http://portal.stats/
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structure or unknown interfaces. In this case, machine learning method becomes an 

alternative approach for the interface prediction. The machine learning methods could be 

further categorized into structure-based or sequence-based methods, the former method 

required the input of 3D structure information, but the later method ask for only protein 

sequence. Structure method uses the protein structure to calculate the surface patch, 

based either on the residue-residue special distance, or based on a fixed number of the 

target residues, in which the surface patch consists of the target residue and its constant 

number of nearest surface residues. This type of methods have several obvious 

advantages over sequence-based methods. For example, it only needs to identify 

interfacial residues from the calculated surface patches instead of prediction for each 

protein residue. However, it also has some limitations, first of all, only few proportion of 

proteins exist structure, many functionally important proteins such as trans-membrane 

proteins are very hardly to be structurally conformed. Secondly, due to the conformational 

change existed before and after protein complex bound, the structural information 

extracted from unbound state may not exist in bound state anymore. Thirdly, structure-

based method is very hardly to get the structure information of disordered proteins, 

especially for these disordered regions which only form structure after binding with their 

partners [18]. Thus, developing sequence-based methods is of great interest but 

predicting interfacial residues from sequence alone is very challenging and 

underdeveloped. The common input features for the sequence-based predictors includes 

physico-chemical properties such as hydrophobicity, residue charge and volume, or 

predicted structures such as solvent accessibility. It is also common to add the features 

of neighboring residues (sliding window) to represent the feature of the center residue. 
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Currently most of the structure-based predictors have higher prediction accuracy than 

sequence-based ones, this is because normally the interface residues are on the surface 

patches and structure methods can easily identify surface residues from interior residues. 

In addition, pair-wise interacting residues sometimes are spatially close in the 3D 

structure but far apart in the primary sequence of the protein. The spatial positions of 

residues are key for macromolecular recognition and the lack of the special information 

will weak the performance of sequence-based predictors.  

 

1.3.3 Co-evolution methods 

Co-evolution based statistical models, which operate under the assumption that 

interacting residues at the interface are likely to co-evolve and use a large multiple 

sequence alignment (MSA) to identify such residues [87, 88, 110]. Some correlated 

mutation prediction methods have been extended to predict intermolecular contacts 

between protein domains or between proteins, by concatenating two paired sequences 

[106, 111, 112]. However, the accuracy for prediction of intermolecular pairs is estimated 

to be 10 times lower than that for intramolecular pairs, suggesting that the signals of 

correlated mutations are weak, and it has been suggested that current methodologies of 

correlated mutation analysis are not suitable for intermolecular contact prediction [113]. 

 

1.3.4 Transmembrane protein interfaces prediction 

Due to the experimental difficulty for transmembrane protein structure determination, 

many TMPs along with their homologous have no know 3D structure information. Hence, 
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it is not available to make the interface prediction using homology-based and the 

structure-based machine learning methods. Thus, a reliable sequence-based machine 

learning method becomes very necessary. In the past two decades, according to our 

knowledge, there was only one published paper in 2009 from Bordner [114] using random 

forest to predict the interface residues for alpha-helical and beta-barrel transmembrane 

proteins, this paper used only very basic features such as conservation, PSSM as input, 

and reached the prediction performance of AUC 0.75. Due to more TMP structures have 

been solved in recent years, more advanced multiple sequence alignment tools such as 

Hhblits [115] have been developed, more potentially useful prediction features could be 

calculated and used in the machine learning method. This method could be greatly 

improved and reach a high prediction accuracy. 

 

1.4 Motivation and overview of this work 

Helical integral membrane proteins are involved in diverse biological processes, with only 

a very limited number of available 3D protein structures and a high biological and medical 

importance, membrane proteins are an important research subject for structural 

bioinformaticians. Protein-protein interactions in membrane are involved in many cellular 

processes, the deficiency of oligomerization accounts for many diseases such as cancer 

and amyloidal diseases. Hence, here we will focus on PPIs in membrane milieu. 

Furthermore, reliable determining which specific amino acid residues form the interfaces 

between transmembrane protein-protein interactions is critical for understanding the 

structural and physicochemical determinants of protein recognition and binding affinity, 
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and has wide application in modeling and validating protein interactions predicted by high-

throughput methods, in engineering proteins, and in prioritizing drug targets.  

Within the following chapter 2 “Properties and prediction of homotypic transmembrane 

helix-helix interfaces”, results of experimental and computational study of self-interacting 

TMD interfaces will be presented. As mentioned in section 1.2.3, a variety of sequence 

motifs are known that promote TMD helix interaction within membrane proteins. Using 

the ToxR system, such sequence motifs for 10 new TMDs were identified by Yao Xiao 

from the group of Prof. Dieter Langosch (TUM). Subsequent properties of TMD interfacial 

residues were analyzed, we show that interfacial residues are statistically more 

conserved co-evolved, and polar than non-interfacial residues, and also more likely to be 

located in the hydrophobic core of the membrane. Using 60 features, I created The 

Transmembrane HOmodimer Interface Prediction Algorithm (THOIPA), which was 

particularly powerful for the prediction of the most important residues in the dimer. 

Within chapter 3, entitled “Prediction of interfacial sites in alpha-helical membrane 

proteins”, it present MBPred (Membrane-protein Binding-sites Prediction), a sequence-

based method for predicting interface residues in transmembrane proteins. MBPred 

utilizes a combination of four individual random forest models - MBPredTM, MBPredCyto, 

MBPredExtra, and MBPredAll – trained to predict residues involved in protein iterations 

in transmembrane, cytoplasmic, and extracellular segments as well as in the entire amino 

acid sequence, respectively. 

Altogether, the main goal of the work presented in this dissertation is to better understand 

membrane protein-protein interactions, especially the interfacial residue which prompt the 
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interactions. We utilized the already known 3D structures of membrane proteins, get 

predictive features from the protein sequence and its homologs, finally build predictive 

machine learning models to correctly predict the interfacial residues of query membrane 

protein sequences.  
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CHAPTER 2.  PROPERTIES AND PREDICTION OF 

HOMOTYPIC TRANSMEMBRANE HELIX-HELIX 

INTERFACES 

 

This chapter introduces the homotypic single-pass transmembrane protein helix-helix 

interfaces study, which is a cooperation work with Yao Xiao from the Biopolymer 

Chemistry department of TUM, I was responsible for the bioinformatic work such as data 

analysis and machine learning prediction software and web server development.  

The transmembrane (TM) domains of single-pass membrane proteins often dimerize in 

the lipid environment. However only a few NMR dimer structures are available, and there 

is little quantitative information concerning the sequence properties of interfacial residues. 

An alternative method to profile TM homodimer interfaces is to use an E. coli TM Reporter 

Assay (ETRA) such as the well-known ToxR assay. In this study we also show that crystal 

structures contain self-interacting TM helices that have never been studied in detail. To 

quantitively analyze interface properties, we created a dataset of 54 self-interacting TM 

helices by combining the data from NMR, ETRA, and crystal studies. In a detailed analysis 

of the sequence properties, we show that interfacial residues are statistically more 

conserved and polar than non-interfacial residues, and also more likely to be located in 

the hydrophobic core of the membrane. GxxxG motifs were overrepresented at TM 

interfaces, particularly when investigated in a natural membrane environment. We found 

some evidence for the theory that interfacial residues are more coevolved. From this 
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information, we created the first machine learning algorithm for the prediction of TM 

homodimer interface residues. The Transmembrane HOmodimer Interface Prediction 

Algorithm (THOIPA) was particularly powerful for the prediction of the most important 

residues in the dimer. An objective listing of feature importance in THOIPA confirmed the 

predictive power of conservation, coevolution, polarity, and also the GxxxG motif. The 

THOIPA code and standalone predictor is available at 

https://github.com/bojigu/thoipapy/wiki. The THOIPA webserver is available at 

www.thoipa.com .  

 

2.1 Introduction 

Bitopic (single-pass) proteins make up to half of all integral membrane protein [116]. Their 

transmembrane (TM) helices are known to form strong, specific homodimers in cellular 

membranes [117, 118], with consequences for the functionalities of these proteins.  

The ability to predict these PPIs would improve the knowledge of countless cellular 

processes, and pave the way for the design of therapeutic molecules. Due to technical 

difficulties associated with membrane proteins, the evolutionary profiles and structural 

forces of PPI interfaces in the membrane environment are poorly understood. Currently, 

the structures of only a handful of TM homodimers have been investigated by NMR 

spectroscopy and X-ray crystallography [119-121], and several of these belong to a single 

protein family, the receptor tyrosine kinases. Further interfaces have been identified in 

biological membranes using assays such as ToxR [122] and GALLEX [45], which we term 

E. coli TM reporter assay (ETRA) techniques. In combination with scanning mutagenesis, 

https://github.com/bojigu/thoipapy
http://www.thoipa.com/


24 

 

these assays have exhaustively explored several additional TM helix-helix interfaces. 

Consequently, hundreds of potential TMD-TMD interfaces remain unexplored although 

there are many reports where limited mutagenesis provides sparse information on 

interface residues.  

To close the gap between the numbers of well characterised TMD-TMD interfaces and 

the unknown ones, various methods have been devised previously to predict them from 

primary structure. These approaches rest on the known structural and evolutionary 

properties of TMD-TMD interfaces. These properties have been primarily derived from 

polytopic proteins the self-interaction of TMDs [123, 124]. 

There are currently four automated methods that identify TMD homodimer structures 

using energy functions: PREDDIMER [125, 126], EFDOCK-TM [56], TMDOCK [127] and 

CATM [128]. PREDDIMER and TMDOCK are easily accessible via online servers. 

EFDOCK-TM [56] relies on the output of the LIPS algorithm [129] and coevolution scores. 

LIPS was originally designed to predict lipid-facing residues in polytopic proteins and can 

identify a helix face with high conservation and polarity. EFDOCK-TM then identifies 

residue pairs via “evolutionary constraints”, as derived from sequence coevolution in the 

LIPS interface. Random combinations of evolutionary constraints are finally used to guide 

modelling via Rosetta. The PREDDIMER algorithm works by establishing the maximal 

complementarity of hydrophobic or hydrophilic surfaces of TMD homodimers. This is 

followed by geometry optimisation and structure refinement [125, 126]. The TMDOCK 

algorithm [127] threads a target amino acid sequence through several structural 

templates, followed by local energy minimisation. CATM is a specialised method that is 

only applicable to dimers driven by (small)xxx(small) motifs [128]. 
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The general applicability of the current generation of predictors is limited by several key 

challenges. Firstly, there are only a few well-characterised homotypic TMD-TMD dimer 

structures by which the above algorithms have been validated. Secondly, and depending 

on the individual study, validation has been conducted using the Cα root mean square 

deviation (RMSD) for all [125-128] or subsets [56] of TMD residues, rather than 

reproducing residue-residue contacts. This limits their informative value. While the 

validation of soluble PPI site predictions has been standardised in the Critical Assessment 

of PRediction of Interactions (CAPRI) initiative [130, 131], there are no such guidelines 

for membrane proteins, nor have comparative assessments of predictive success been 

conducted. Thirdly, each of the above prediction algorithms generates an ensemble of 

possible dimer structures, which the user must interpret subjectively. Taken together, the 

automated prediction of a TMD-TMD interface structure remains a non-trivial task.  

In this study, we create a comprehensive dataset of 54 self-interacting TM helices by 

combining data from ETRA, NMR and crystallography studies. We conducted a 

quantitative analysis comparing the sequence properties of interfacial and non-interfacial 

residues. We show that these PPI interfaces were associated with higher conservation, 

polarity, residue depth, and in some cases, higher coevolution. We also show the 

predictive power of motifs such as GxxxG. We then used such residue features to train 

the Transmembrane HOmodimer Interface Prediction Algorithm (THOIPA), a machine-

learning-based method that compares favourably in  its ability to predict TMD homodimer 

interfaces from primary structure. 
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2.2 Materials and Methods 

2.2.1 NMR, crystal and complete datasets for THOIPA training and validation 

An overview of the THOIPA datasets, machine learning features, and validation 

procedures is available in Figure 2-1. The “NMR” dataset was based on the 13 default 

dimer structures included in the validation by Wang et al. [132]. We updated the dataset 

to include the new NMR structures of the toll-like receptor 3 (PDB 2mk9, UniProt O15455, 

[133]), and high affinity nerve growth factor receptor (PDB 2n90, UniProt P04629, 

Nadezhdin et al. unpublished). Interface residues were defined based on the closest 

heavy-atom (non-hydrogen) distance between any atom in a residue pair. We first 

calculated the closest heavy-atom distance between the residue of interest and all other 

residues in any identical TMDs in the structure. Residue pairs with a heavy atom distance 

smaller than 3.5 Å were defined as interacting. The threshold of 3.5 Å was selected to 

ensure that the interface residues closely matched the interface provided by the authors 

of the published NMR studies [6, 9, 133-137]. All structures contained at least 4 interface 

residues. The NMR dataset contained 15 TMDs from 15 proteins, of which no two proteins 

shared more than 52% sequence identity, with a total of 115 interacting and 238 non-

interacting residues. 

The “crystal” dataset consisted of self-interacting TM helices extracted from crystal 

structures. The database “Non-redundant alpha” was downloaded from PDBTM [138], 

consisting of membrane proteins with annotated TM regions. Structures with a poor 

resolution (above 3.5 Å) were excluded. The dataset was made non-redundant by 

clustering full-length protein sequences with CD-HIT [139] using an amino acid sequence 
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identity cutoff of 40%. Interface residues for the crystal dataset were defined as described 

above for the NMR dataset. Self-interacting TMD helix pairs that had at least 4 unique 

interacting residues were retained. A second round of CD-HIT redundancy reduction was 

conducted based only on the TMD sequences. The final dataset was non-redundant at 

the 40% and 60% amino acid identity level for the full and TMD sequences, respectively. 

An exception in redundancy reduction was made for the dual topology fluoride ion channel 

(PDB 5nkq), where a single polytopic protein contributed two self-interacting TMDs with 

less than 20% identity to each other, TM1 and TM4.  

Unlike the single-pass proteins within the NMR and ETRA datasets, most TM helices 

within the crystal dataset showed interaction with other helices within the multi-pass 

membrane protein. Such “folding contacts” are known to be conserved and polar [140, 

141], however in this study they were classified as “non-interface” residues due to the 

lack of relevance to protein-protein interactions. To increase the accuracy of THOIPA 

towards TM homodimer interfaces within single-pass proteins, folding contacts were 

excluded from the training set. Folding contacts were still included in all validation 

procedures to allow a fair comparison between THOIPA and structure-based prediction 

algorithms. Folding contacts were defined based on heavy-atom distances to non-self TM 

helices using a 3.5 Å cut-off. The final crystal dataset contained 25 TMDs from 24 proteins, 

with a total of 167 interacting and 402 non-interacting residues, of which 55 were 

classified as folding contacts. 

The “complete” dataset consisted of the combined ETRA, NMR and crystal structure 

datasets, with redundant proteins removed. It was used for training and validation of the 

THOIPA algorithm, and also to validate the accuracy of the LIPS, PREDDIMER and 
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TMDOCK algorithms. For redundancy reduction, we excluded TMDs based on an amino 

acid identity cut-off of 60% for TMDs and 40% for full protein sequences. For redundant 

TMDs with both ETRA and NMR data, the ETRA data was retained. This procedure 

resulted in removal of one protein (DDR2) from the ETRA dataset and seven proteins 

(EphA2, EGFR, ErbB2, ErbB3, and ErbB4, GpA and BNIP3) from the NMR dataset. The 

final “complete” dataset contains 54 proteins. All residue information is available in the 

Open Science Framework (OSF) data repository (osf.io/5cxpn/). 

2.2.2 Key predictive features 

Protein homologues were obtained via BLASTp against the NCBI non-redundant (nr) 

database. The BLAST query sequence consisted of the TMDs plus 20 adjacent residues 

on each side of the membrane. BLAST was conducted using the relatively permissive 

default settings to recruit the largest possible number of candidate homologues, including 

those distantly related to the query sequence. The TMD in the match sequence was 

identified based on the alignment to the query. The number of false positive hits was 

reduced by keeping only the alignments with fewer than 6 gaps and at least 20% 

sequence identity in the TMD region. Homologues with gaps in the query sequence were 

excluded. The remaining sequences were used to derive a multiple sequence alignment 

(MSA) from the original BLASTp pairwise alignments. For lipophilicity calculations that 

required information outside the immediate TMD region, the TMD plus five surrounding 

residues was extracted from the alignments, and the filtering procedure repeated as 

described above. Based on a careful manual verification of the resulting alignments we 

estimate that the number of false positives in our data does not exceed 2%. All alignments 

are available in the Open Science Framework (OSF) data repository (osf.io/5cxpn/).  
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A number of features were extracted from the MSA. These were used to examine 

interfacial properties, and also as input for the machine learning classifier THOIPA. Full 

details including formulae are available in 5.1.1 (Appendix A Supplementary Method). 

Briefly, conservation was calculated as -Sentropy+3, yielding positive values that increase 

with a decreasing rate of evolution. Polarity refers to the mean hydrophobicity of the 

residues at that position of the MSA, calculated using the Engelman (GES) hydrophobicity 

scale [142]. Positions with many polar/charged residues (Gln, Glu, etc) are therefore 

associated with high polarity scores. Residue depth refers to the relative position of the 

residue in the TMD, which ranged from 0 (first or last residue) to 1 (central residue). We 

calculated nine coevolution scores, using both direct interaction (DI) and mutual 

information (MI) scoring methods, yielding 18 coevolution features in total. Coevolution 

DI and MI scores were calculated from the MSA using FreeContact [143], an open source 

implementation of EVfold-mf DCA [144] and PSICOV [145].  

2.2.3 Retrospective coevolution scores 

Unlike the predictive coevolution scores listed above, retrospective coevolution scores 

required a previously defined homodimer interface, and could not be included as THOIPA 

features. We calculated retrospective coevolution scores for the interface residues of 

each TMD within the structural NMR and crystal datasets as previously described [132]. 

Briefly, for each TMD a list was created of all residue pairs that could be classified as 

“interacting”, based on closest heavy-atom distances below 3.5 Å. All other residue pairs 

were classified as “non-interacting.” In both cases, any residue pairs separated by more 

than 8 residues in the sequence were excluded (only <4% of the interacting pairs). For 
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each TMD, the mean DI coevolution score was then calculated for either the interacting, 

or the non-interacting residue pairs.  

2.2.4 Machine learning and evaluation 

Machine learning was conducted using extremely randomized trees [146], as 

implemented in python (sklearn ExtraTreesClassifier). ET is a tree ensemble method 

similar to the popular random forest algorithm. Like random forest, ET randomizes the 

selection of K features at each node, from which the best is chosen for the split. However, 

ET also randomizes the cut thresholds for each feature, leading to increased variance 

within each tree, but improved performance for the ensemble of trees [146]. For THOIPA 

training, the prediction was treated as a classification problem with two possible outcomes, 

“interface” or “non-interface”, as defined above for ETRA, NMR and crystal datasets. The 

number of trees was set to 100 and the number of features tested per node was set as 

30% of the total number of input features (max_features = 0.3). The maximum tree depth 

was limited to 30 (max_depth = 30), and tree size was also limited by only splitting nodes 

with at least 3 samples (min_samples_leaf = 3). The quality of each split was judged using 

the entropy criterion. To improve the accuracy of measures of feature importance, each 

feature was only used once in the tree. 

We evaluated THOIPA using the “leave-one-out” (LOO) cross-validation method, 

whereby the training dataset contained all TMDs except the one being tested. Validation 

is presented here using the classical receiver operating characteristic (ROC) curve. 

However during THOIPA development we focused primarily on performance in predicting 

the top ten residues important for the interaction. For this we developed a new evaluation 
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metric which we call the best-overlap curve (BO-curve). For the BO-curve it was 

necessary to rank the most important residues in the interaction from one to ten. This was 

done for both the experimental data, and the prediction results. For ETRA experimental 

data we used the disruption after mutation to rank residue importance. For interfaces 

derived from structures (either experimental, or predicted with PREDDIMER/TMDOCK) 

we used the closest heavy-atom distance. Although ranking based on heavy-atom 

distances is less precise than the standard rmsd approaches, it allowed us to directly 

compare evolutionary and structural prediction methods. These methods were also 

considered appropriate due to the moderate performance level of all predictors in this 

study. The full method and explanation is given in the 5.1.2. An area under the BO-curve 

for the top 10 residues in the interaction (AUBOC10) was calculated from the BO-curve 

as per the standard ROC AUC, and used to estimate overall performance against a 

dataset.  

2.2.5 THOIPA implementation and prediction output availability 

The web server implementing the machine learning for interface prediction will be publicly 

available at http://www.thoipa.com/. The full source code and a standalone version of 

THOIPA is available online (https://github.com/bojigu/thoipapy). As input THOIPA 

requires only a full-length protein sequence, as well as the sequence of the TM region of 

interest. The THOIPA output is a numerical value describing the potential of that residue 

to be located at a homodimer interface. The THOIPA interface predictions for the 

complete datasets are show in in heatmaps (Figure 5-1).  

2.2.6 Comparison with other methods 

http://www.thoipa.com/
https://github.com/bojigu/thoipapy
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We evaluated THOIPA, LIPS [141], PREDDIMER[125, 147] and TMDOCK [127] as 

predictors of TM homodimer interfaces. For LIPS we modified the output slightly. The 

original output identifies whether or not the residue of interest belongs to the helix face 

with the highest conservation and polarity. For each residue, this gives a value of 0 or 1. 

Such binary values are poorly amenable to validation. As described in the supplementary 

methods, we therefore modified these values slightly, so the predicted interface and non-

interface residues were further ranked by their individual conservation and polarity. We 

submitted each TMD sequence to the online servers of PREDDIMER and TMDOCK. 

PREDDIMER required TMDs to be at least 20 residues. For TMDs shorter than 20 

residues, we therefore extended the sequence by one residue at each end (starting at the 

C-term) until the length reached 20. The top structure in the output PDB file was used for 

validation. Similarly, the best structure for TMDOCK was obtained after submission of the 

TMD sequence to the online server. TMDOCK automatically truncated many of the TMDs. 

Therefore for each predictor, each TMD was validated separately after excluding any 

residues for which there was no interface data (PREDDIMER) or predicted structure 

(TMDOCK). The mean TMD length was 22.8 residues for THOIPA, LIPS and 

PREDDIMER, and 20.7 residues for TMDOCK.  

2.2.7 Statistical significance.  

Pairwise comparisons were conducted using an independent Student’s t-test assuming 

equal variance, using bootstrapped data where indicated. P-values were represented as 

follows: *, p<0.05. **, p<0.01, ***, p<0.001. 
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2.3 Results 

The aims of this study are laid out in Figure 2-1. First, we assembled a set of 54 well-

characterised interfaces from a broad range of self-interacting TM helices (Table 2-1). 

The full homotypic TMD dataset comprises 21 TMDs investigated by ETRA techniques, 

8 TMDs investigated by NMR and 25 TMDs investigated by X-ray crystallography. 

Second, a quantitative analysis of interface residue properties was conducted. Third, we 

developed THOIPA and compared its performance to TMDOCK and PREDDIMER. 

 

Figure 2-1: Overview of datasets, residue properties, sequence analysis, machine 
learning and predictor validation conducted in this study. 
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Table 2-1: Interface residues of the homotypic TMD dataset. 

# protein (acca) (ref) TMD sequenceb 

ETRA TMDs  

1 Ire1 (O75460) ATIILSTFLLIGWVAFIITY 

2 ATP1B1 (P05026) [148] LLFYVIFYGCLAGIFIGTIQVMLLTI 

3 PTPRG (P23470) [149] IIPLIVVSALTFVCLILLIAVLV 

4 Tie1 (P35590) [150] LILAVVGSVSATCLTILAALLTLV 

5 DDR1 (Q08345) [150] ILIGCLVAIILLLLLIIALML 

6 PTPRO (Q16827) [149] VVVISVLAILSTLLIGLLLVTLIIL 

7 Armcx6 (Q7L4S7) [151] REVGWMAAGLMIGAGACYCV 

8 PTPRU (Q92729) [149] LILGICAGGLAVLILLLGAIIVII 

9 Siglec7 (Q9Y286) [151] VLLGAVGGAGATALVFLSFC 

10 GpA (P02724) [152] LIIFGVMAGVIGTIL 

11 ErbB2 (P04626) [152, 153] LTSIISAVVGILLVVVLGVVFGIL 

12 ITGB3 (P05106) [154] VLLSVMGAILLIGLAALLI 

13 ITGA2B (P08514) [155] WVLVGVLGGLLLLTILVLAMW 

14 FtsB (P0A6S5) [156] TLLLLAILVWLQYSLWF 

15 GP1BB (P13224) [157] GALAAQLALLGLGLLHALLL 

16 MPZ (P25189) [158] YGVVLGAVIGGVLGVVLLLLLLFYVV 

17 PTPRJ (Q12913) [149] ICGAVFGCIFGALVIVTVGG 

18 BNIP3 (Q12983) [118] LLSHLLAIGLGIYIG 

19 QSOX2 (Q6ZRP7) [159] CVVLYVASSLFLMVMY 

20 ADCK3 (Q8NI60) [160] LANFGGLAVGLGFGALA 

21 NS4A (Q99IB8) [161] TWVLAGGVLAAVAAYCLAT 

NMR TMDs  

22 TLR3 (O15455, 2mk9) FFMINTSILLIFIFIVLL 

23 TYROBP (O43914, 2l34) LAGIVMGDLVLTVLIALAVYFL 

24 NTRK1 (P04629, 2n90) LAVFACLFLSTLLLVL 

25 APP (P05067, 2loh) AIIGLMVGGVVIATVIVITLVML 

26 PDGFRB (P09619, 2l6w) VVVISAILALVVLTIISLIILIMLW 

27 CD3ζζ (P20963, 2hac) LCYLLDGILFIYGVILTALFL 

28 EphA1 (P21709, 2k1k) IVAVIFGLLLGAALLLGILVF 

29 FGFR3 (P22607, 2lzl) VYAGILSYGVGFFLFILVVAAVTLC 

X-ray TMDs  

30 KvAP (Q9YDF8, 1orqC4) GKVIGIAVMLTGISALTLLIGTVSNMFQ 

31 BR (Q8YSC4, 1xioA4) GFLMSTQIVVITSGLIADL 

32 PSII-M (Q8DHA7, 2axtM1)d ATALFVLVPSVFLIILYV 

33 Mgst1 (P08011, 2h8aA2) HLNDLENIVPFLGIGLLYSL 

34 Wza (Q9X4B7, 2j58A1)d SQLVPTISGVHDMTETVRYI 

35 OLI1 (P61829, 2wpdJ1) AAKYIGAGISTIGLLGAGIGIA 

36 MGST1 (O14684, 3dwwA2) CLRAHRNDMETIYPFLFLGFVYS 

37 p2X (Q6NYR1, 3h9vA2) KFNIIPTLLNIGAGLALLGLVNVICDWIV 

38 GluCl α (G5EBR3, 3rifA2) IPARVTLGVTTLLTMTAQSAGIN 

39 KCNJ12 (F1NHE9, 3spcA2) PLAVFMVVVQSIVGCIIDSFMIGAIMAKM 

40 fn ATPase F0 c-ring (Q8RGD7, 3zk1A1) LGCSAVGAGLAMIAGLGPGIGEG 

41 CorA (Q58439, 4ev6A1) TMVTTIFAVPMWITGIYGMNF 

42 CRACM1 (Q9U6B8, 4hksA1) SWTSALLSGFAMVAMVE 

43 CorA (Q9WZ31, 4i0uA1) TIIATIFMPLTFIAGIYGMNF 

44 NAD(P) transhydrogenase α2 (Q72GR9, 4o9pC1) WSALYIFVLTAFLGYEL 

45 AbgT (Q0VR69, 4r0cA7) ITAMEVTMASMAGYLVLMFFAAQFVAWF 

46 TspO (Q81BL7, 4ryiA2) PGMTIGMIWAVLFGLIALSVA 

47 mp ATPase F0 c-ring (A0A2S9G8T0, 4v1fA1) GGLIMGGGAIGAGIGDGIAGNALI 

48 TMEM16 (C7Z7K1, 4wisA10) LKAWGLLLSILFAEHFYLVVQLAVR 

49 Trpv1 (O35433, 5irzD6) KAVFIILLLAYVILTYILLLNMLIALM 

50 CRCB TM1 (Q7VYU0, 5nkqA1) FIAIGIGATLGAWLRWVLG 

51 CRCB TM3 (Q7VYU0, 5nkqA3) AAVTGFLGGLTTFSTFSAETV 

52 PC2 (Q13563, 5t4dA6) RVLGPIYFTTFVFFMFFILLNMFLAIIN 

53 BCNG-1 (O60741, 5u6oA6) ITMLSMIVGATCYAMFVGHATALI 

54 NadC (Q9KNE0, 5uldA9) WKEIQKTADWGILLLFGGGLCL 

a Accession number (acc) from the UniProt database. The X-ray identification code (e.g. 1orqC4) consists of the PDB accession (e.g. 1orq), the 
protein chain (e.g. C), and the TMD number in the protein (e.g. 4).b Homotypic interface residues in the TMD sequences are underlined. c Bold text 
indicates new interfaces identified in the current study.  d Two TMDs in the X-ray dataset derived from bitopic proteins. 
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2.3.1 Creation of a non-redundant dataset of TM homodimer interfaces 

We combined the self-interacting helices of the ETRA dataset with those from NMR and 

crystal studies, resulting in the “complete” dataset of 54 self-interacting helices. The 

complete dataset was non-redundant at the 40% and 60% amino acid identity level for 

the full and TMD sequences, respectively. This allowed us to quantitatively and 

objectively analyze interface properties, which until now have been using case studies, 

artificial selection, or the small, highly-redundant NMR dataset. Our original NMR dataset 

consisted of 15 homodimer structures in total, comprising the 13 default structures used 

by Wang and Barth (2015) [162], and two more dimers structures that have been recently 

submitted (Table 5-1). Only eight of the NMR TMDs were added to the complete dataset. 

This was firstly due to high internal redundancy, as the NMR dataset contained six RTKs, 

and secondly to redundancy via existing TMDs in the ETRA dataset, specifically GpA, 

BNIP3, and ErbB2.  

The novel crystal database consisted of 25 parallel, self-interacting TM helices within 

crystal structures of membrane proteins. The non-covalently associating, “homodimer-

like” helices were identified from crystal structures annotated according to PDBTM [163]. 

As described in the methods, we only included TM helices with at least four interface 

residues, as defined by a 3.5 Å cut-off in the closest heavy-atom distance between 

residues. The vast majority of these (23/25) were helices from oligomeric multi-pass 

proteins. For example in the structure of TRPV1 (PDB 5irz), one of the six TM helices 

formed close “crystal contacts” to itself on the opposing protein. Of the two single-pass 
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TM proteins in the crystal dataset, psbM is an important component of the PSII dimer 

interface (PDB 2axt), and Wza forms a homomeric octamer (PDB 2j58). The helices of 

the crystal dataset had an average absolute (i.e. positive) crossing angle of 38.91°, 

slightly higher than the more parallel helices of the NMR dataset (28.65°).  

For both the NMR and crystal datasets, interface residues were defined based on a 3.5 

Å cut-off in closest heavy-atom distances, as defined in the methods. The proportion of 

interacting residues was similar between the ETRA (27%), NMR (33%) and crystal (28%) 

datasets. After redundancy reduction, the final complete dataset comprised 54 TMDs, the 

subsets of which contained 21 ETRA, 8 NMR, and 25 crystal TMDs. The complete dataset 

contained 352 interface residues and 780 non-interface residues (9.6 % folding contacts 

from crystal TMDs were removed). This corresponded to an average of 6.5 interface 

residues per TMD, comprising 31% of the TM residues. These objectively identified 

interface residues contained 19 of the 20 natural amino acid residue types, with the only 

exception being Lys. An undesirable feature of the “non-interface” residues within the 

crystal dataset was the presence of residues participating in heterotypic helix-helix 

interactions, usually the folding of multi-pass membrane protein. These “folding contacts”  

were identified based on a cutoff of 3.5 Å heavy atom distance, and comprised 55 (13.7%) 

of the non-interface residues within the crystal dataset. Folding contacts were removed 

from analyses of interface properties. All sequences, interface residues, and folding 

contacts are detailed in Figure 5-1 and in the Open Science Framework (OSF) data 

repository (osf.io/5cxpn/). 

2.3.2 Determination of residue properties (THOIPA predictive features) 
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After creating the first large database of self-interacting TMDs, we began examining which 

residue properties could be used to distinguish interface from non-interface residues. We 

measured a large number of residue properties, which were also used as inputs (i.e. 

predictive features) for our machine learning predictor, THOIPA. Most of these properties 

were derived from multiple sequence alignments (MSA) against homologues, as outlined 

in Figure 2-1. A detailed description of all 60 features included in THOIPA is available in 

5.1.1. Four of these features are examined here in detail (conservation, coevolution, 

relative polarity and relative depth), and are calculated as described in the methods. 

Briefly, conservation is a normalized form of entropy, with higher values indicating highly 

conserved residue positions. For the relative polarity, we first calculated the mean polarity 

of the residues at that position in the MSA. The relative polarity was the polarity divided 

by the mean polarity of the six surrounding residues. An Arg residue in the center of the 

TMD therefore scores much more highly than an Arg residue in the juxta membrane 

region. The relative depth is a simple measure of the position in TMD sequence, from the 

most central (value=1) to the most peripheral TMD residue (value=0).  

Coevolution values are more complex. The output from EVfold includes pairwise scores 

between all possible residue pairs in the TMD[144]. Furthermore, the output includes a 

mutual information (MI) and a direct interaction (DI) value for each residue pair. The 

mutual information is a standard measure of coevolution between two residues, but is 

known to suffer a number of biases[145]. For example high scores can be seen for indirect 

contacts, such as when residues B and C are not in contact, but have a high MI score 

because they are both contacting and coevolving with residue A. A second bias in MI is 

the low score associated with high conservation. The EVfold algorithm calculates the DI 
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score by applying a statistical framework to the MI scores. The DI typically gives a better 

prediction of contacting residues. For prediction in THOIPA, and to understand interface 

properties, it was necessary to convert the pairwise coevolution scores to a single 

representative value at each residue position. For position i in the TMD, for example, we 

typically started with the MI and DI scores between i and all other residues in the TMD. 

For a 21 residue TMD, this comprises 20 residue pairs. One simple measure is simply 

the maximum DI value between all these residue pairs, which we refer to here as DImax. 

We also calculated this for the MI, yielding MImax. In total we calculated 16 different 

coevolution variants (5.1.1), in all cases for both MI and DI scores. These included mean 

values of selected residue pairs, maximum values of selected residue pairs, and finally 

whether or not the residue participated in a helical face with high overall coevolution. For 

all figures where a single representative coevolution metric was required, we used DImax. 

2.3.3 Interface residues are conserved, coevolved, polar, and central in the TMD 

The evolutionary conservation of residues was calculated from multiple sequence 

alignments (MSAs) against homologues. For interfacial residues, the average 

conservation is significantly (p = 2.14*10-6) higher than that of their non-interface 

counterparts (Figure 2-2A). Thus, the interfaces are less likely to change during evolution 

than the remainder of a TMD. This contrasts with PPI interfaces in soluble proteins, where 

a higher conservation is only seen in selected conditions [164], and in some studies has 

been disputed entirely [165]. The interface residues are also distinguished by polarity. 

The difference between interface and non-interface residues is higher for “relative 

polarity”, i.e. polarity relative to the surrounding six residues (Figure 2-2B; p=0.0018), than 

for absolute polarity (p=0.029). 
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Figure 2-2: Interface residues have a higher conservation, coevolution, relative polarity 
and relative depth in comparison to non-interface residues. The violin plots display the 
means (dotted line) and medians (straight line) as well as a smoothed distribution of the data. 
(A) Conservation. (B) Relative polarity. (C) Coevolution (DImax; see 5.1.1). (D) Depth in the 
bilayer. (E) Components of the violin plot. Statistical significance was measured using a 
bootstrapped t-test (*, p<0.05. **, p<0.01). 

 

Overall, the importance of conservation and polarity shown here is consistent with the 

known importance of these factors for polytopic membrane protein folding [129, 140, 166-

168]. Interfacial residues also tend to be located deeply in the membrane (Figure 2-2D; p 

= 7.94*10-4).  

Sequence coevolution has been utilised previously in the prediction of polytopic 

membrane protein structures [169, 170] and of contacting residues in homotypic TMD 

interfaces [56]. Here, we tested 16 measures of coevolution (5.1.1) that do not require a 

priori knowledge of the interface and are thus termed “predictive” measures. Briefly, 
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pairwise mutual information (MI) and direct information (DI) scores were calculated from 

MSAs using EVfold [169, 171]. The 16 coevolution measures used here comprise the 

means or maxima of different pairwise coevolution values. Predictive coevolution 

measures are specific to individual positions in a sequence, and can therefore be used in 

machine learning approaches that take residue properties of single residues as input 

[172]. The simplest of these measures, DImax, is used as an example in the respective 

figures. The DImax is the maximum coevolution value between the residue of interest and 

all other residues in a TMD. DImax tends to be higher at interfaces (Figure 2-2D, 

p = 0.015).  

From the 16 coevolution measures, ten differed significantly between interface and non-

interface residues (DImax, DI4cum, DItop4mean, DItop8mean, MI3mean, MI4cum, 

MI4max, MI4mean, MItop4mean, MItop8mean, bootstrapped t-test, p<0.05). Of these ten, 

the DI values are higher at the interface, while most of the MI values are lower at the 

interface (Table 2-2). This reflects the fact that the MI values are artificially low at positions 

of high conservation (Figure 2-3). In contrast to DI values, MI values also decrease with 

the number of homologues (Figure 5-3). The predictive power of the different coevolution 

measures is only partially additive, as each of the above ten coevolution measures is 

correlated with at least one other coevolution measure (R2 > 0.5). 

Table 2-2: Residue properties that differ between interface and non-interface residues 

feature higher for 

interface 

residues 

p-value 

(t-test) 

correlated features (R2 > 0.3) 

GxxxG True 6.38E-11 SmxxxSm, G 

conservation True 2.14E-06 cons4mean 

branched False 4.25E-05 I, V, LIV 

V False 7.99E-05 LIV, branched 

G True 0.000127 GxxxG, SmxxxSm 
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cons4mean True 0.000271 conservation 

residue_depth True 0.000794  

MI4max False 0.000823 MImax, MItop4mean, MItop8mean, MI1mean, MI3mean, MI4mean 

MI3mean False 0.001051 MImax, MItop4mean, MItop8mean, MI4max, MI1mean, MI4mean 

H True 0.001542  

SmxxxSm True 0.001822 GxxxG, A, G 

relative_polarity True 0.001973 polarity, polarity4mean, D, Q, DE, KR, QN 

MItop8mean False 0.002308 MImax, MItop4mean, MI4max, MI1mean, MI3mean, MI4mean 

MItop4mean False 0.00375 MImax, MItop8mean, MI4max, MI1mean, MI3mean, MI4mean 

E True 0.005398 polarity, polarity4mean, DE 

MI4mean False 0.00542 MImax, MItop4mean, MItop8mean, MI4max, MI1mean, MI3mean 

LIV False 0.008051 I, L, V, branched 

DItop8mean True 0.010235 DImax, DItop4mean, DI4max, DI4cum, MI4cum 

DImax True 0.014904 DItop4mean, DItop8mean, DI4max, DI4cum, MI4cum 

DItop4mean True 0.020809 DImax, DItop8mean, DI4max, DI4cum, MI4cum 

polarity True 0.029957 relative_polarity, polarity4mean, polarity1mean, D, E, K, N, Q, R, DE, KR, QN 

MI4cum True 0.040042 DImax, DItop4mean, DItop8mean, DI4max, DI4cum 

DI4cum True 0.040042 DImax, DItop4mean, DItop8mean, DI4max, MI4cum 

QN True 0.040126 polarity, relative_polarity, polarity4mean, polarity1mean, N, Q 

I False 0.047567 LIV, branched 

 

A previous study compared DI values of pairs of known interface residues and pairs of 

non-interface residues [56] (see: Figure 5-4). Since this approach requires a priori 

knowledge of the interface, we term it here a “retrospective” coevolution analysis which 

cannot be used for prediction. In a detailed analysis of retrospective coevolution (legend 

to Figure 5-4), we confirm that pairwise coevolution scores are higher between interface 

residues than between non-interface residues [56]. However, we also show that 

retrospective methods are biased by the non-random distribution of interface residues. 

Simply put, homotypic interfacial residues are often neighbours (Figure 5-4) and 

neighbouring residues have high coevolution scores [169, 171, 173]. In contrast, this bias 

is absent from predictive coevolution measures. Therefore, the higher predictive DI 

measures at interfaces (Figure 2-2C, Table 2-2) provide the first strong evidence of 
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enhanced coevolution between homotypic TMD interface residues. Our results suggest 

that the difference in coevolution between interfacial and non-interfacial residues exists, 

but is much more subtle than previously implied [56]. 

Separate analyses of the sub-datasets confirmed the general trends given in Figure 2-2 

(Figure 5-2, Figure 5-5). The preferential coevolution of interface residues is strongest for 

TMDs of the X-ray dataset. This dataset has the highest number of homologues (Figure 

5-5), which improves the accuracy of DI values [169, 171, 174].  

A different way of presenting the data shown in Figure 2-2 is to calculate the percentages 

of TMDs where the mean value of a given property is higher for interface vs. non-interface 

residues. This method minimises the effects of the varying TMD lengths, overall 

conservation, and overall polarity. Accordingly, 62% to 70% of TMDs in the homotypic 

TMD dataset share higher interface conservation, coevolution, relative polarity and depth 

in the membrane (Figure 5-5A). The situation is similar when the sub-datasets were 

analysed separately (Figure 5-5B). 
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Figure 2-3: Highly conserved residues have low mutual information (MI) coevolution 
scores.  For each residue in the complete dataset, conservation was plotted against coevolution. 
The coevolution score of coev_i4_MI is shown, which represents the mean coevolution of two 
residue pairs, i to i+4, and i to i-4. Folding contacts from crystal TMDs were removed from this 
analysis. (A) Scatterplot. Highly conserved residues (top 10%) are shown in a darker colour. (B) 
Barchart comparing the MI coevolution score of the most highly conserved residues (top 10%) 
with all other residues. In comparison to MI scores, the coevolution DI scores were less 
correlated to conservation, and tended to be high for highly conserved residues (data not shown). 
For data produced in this study, the mean ± SEM was shown. 

 

2.3.4 Creation of an algorithm to predict the homodimer interfaces of TM helices 

We developed THOIPA as the first machine-learning predictor of TM homodimer 

interfaces. Briefly, THOIPA uses extremely randomized trees [146], an ensemble 

technique similar to random forest [175]. It was trained as a classifier to predict the 

“interface” or “non-interface” definition of each residue in the complete dataset. A total of 

60 input features were included for each residue, comprising various properties such as 

conservation, polarity, coevolution, and residue depth. As input, THOIPA requires only 

the sequences of the TMD and full protein. The output score for each residue represents 
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the probability that it lies at a homodimer interface. THOIPA is primarily designed as a 

tool to aid experimental or modelling approaches. Our aim was therefore to predict the 

most important residues for the dimer, rather than to accurately judge the contribution of 

all amino acids in the sequence. To this end, we optimized THOIPA using an in-house 

developed validation method, the BO-curve, which judges performance in predicting the 

top one to ten residues for the interaction (see 5.1.2). The importance of the residue in 

interaction was calculated using the disruption after mutation (ETRA), or the closest 

heavy-atom distances (NMR/crystal).  

Here we show validation results with the BO-curve, but also with the more classical 

receiver operating characteristic (ROC)-curve methodology. We validated THOIPA 

against LIPS, PREDDIMER [125, 135, 147] and TMDOCK. Our validation could not 

include EFDOCK-TM [162], as the server was unavailable. We could not include another 

prediction algorithm, CATM [176], as this is only valid for interfaces based on 

(small)xxx(small) motifs. The energy minimization techniques PREDDIMER and 

TMDOCK each generate a number of feasible structures. In this case we simulated a de-

novo prediction by assessing the accuracy of the top output structure according to the 

relevant prediction algorithm. As described above for experimental structures, the 

importance of each residue to the TMDOCK and PREDDIMER structure was calculated 

based on closest heavy-atom distances. Further details are available in the methods and 

THOIPA code. Heatmaps showing residue distances, prediction results, and important 

features including conservation are available for each TMD (Figure 5-1). A standalone 

version of THOIPA is available (https://github.com/bojigu/thoipapy/wiki). 
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THOIPA is designed to aid experimental and modelling approaches by identifying a small 

number of key interface residues in a TMD. For this purpose, THOIPA is vastly superior 

to PREDDIMER and TMDOCK (Figure 2-4). In the precision-recall plot, THOIPA showed 

excellent precision when considering the top residues (left-hand side of Figure 2-4A, and 

Figure 2-4B). This is a consistent feature of THOIPA, regardless of the experimental 

source of the TMD interface ( Figure 5-7). According to the best overlap (BO) validation 

developed in this study, the top one to five residues ranked by THOIPA are much more 

likely to comprise true positives than those of PREDDIMER and TMDOCK (Figure 

2-4C,D). Performance peaked when the top two residues according to THOIPA were 

considered. Of the two most important residues in each of the 54 TMDs (108 residues in 

total), 34.2% were among the top two residues predicted by THOIPA. This compares 

favourably to a random prediction (9.4%). In the BO-validation curve, this yields a 

performance above random of 0.248 (i.e. 34.2% - 9.4%). Interestingly, THOIPA was also 

the best algorithm in the “fraction correctly predicted” analysis. This method was 

developed to assess the results of CAPRI competitions in terms of interface residue 

prediction [130], and represents a balanced assessment of overall predictive power 

towards all TMDs in a dataset. THOIPA performance was superior at nearly all precision-

recall cutoff values (Figure 2-4E,F), followed closely by TMDOCK. In the CAPRI study, a 

precision-recall cutoff of 0.5 demarked a successfully predicted interface. At this cutoff, 

THOIPA correctly predicted a fraction of 0.43 of all interfaces in our dataset. By 

comparison, the best automated predictor of soluble interfaces, HADDOCK, had correctly 

previously predicted a fraction of only 0.38 of 20 CAPRI targets [130]. Thus, the 

performance of THOIPA is comparable to that of the best automated predictors of PPI in 
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soluble proteins [130, 131]. It has been previously reported that LIPS could successfully 

identify the NMR homodimer interfaces [56]. However, for the larger dataset presented 

here, the performance of LIPS is much lower than that of THOIPA (Figure 5-8, LIPS 

MCC=0.06, THOIPA maximum MCC=0.23). At the level of individual TMDs, THOIPA 

performance was best for ErbB2, BCNG-1 TM6, and Siglec7 interfaces (Figure 2-5), 

corresponding to a variety of interface types. 
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Figure 2-4: THOIPA performance validation.  (A) Precision-recall curve. The closer the curve 
is towards the top right corner, the higher the overall performance. (B) Barchart of the area under 
the precision-recall curve. (C) Performance according to best overlap (BO) validation, a method 
developed here to report the number of residues at which peak performance is obtained (see 
5.1.2). (D) Area under the BO-curve for 1 to 10 examined residues (AUBOC10). (E) Fractions of 
correctly predicted interfaces at different accuracy levels. This is a validation method used 
previously in CAPRI [130]. (F) Fraction of TMDs with interfaces that were correctly predicted. An 
interface was defined as being correctly predicted if precision and recall both exceeded 0.5 [130]. 

 

 

 

Figure 2-5: Precision of predictors towards individual TMDs.  The precision-recall area 
under the curve (PR AUC) is shown. TMDs were ordered according to THOIPA performance 
within each dataset. For TMDs in the ETRA and NMR datasets, the respective UniProt accession 



48 

 

is shown. For TMDs in the X-ray dataset the reference number (e.g. 2h8aA2) is a concatemer 
of the PDB accession (e.g. 2h8a), the chain (e.g. A), and the TMD number (e.g. 2). 

 

Ensemble machine-learning classifiers such as THOIPA can objectively rank input 

features according to their importance within the decision trees. The top input features 

according to THOIPA exhibit the following rank order: 1) participation of the residue in a 

GxxxG motif, 2) residue conservation, 3) residue depth in the bilayer, 4) the number of 

TMDs in the alignment, and 5-12) several measures of sequence coevolution (Figure 2-6). 

This corresponds well with the analysis of interface properties described above, and the 

current understanding of factors that are important to TMD-TMD interactions. Accordingly, 

most of the features important to THOIPA differed significantly between interface and 

non-interface residues in a Student’s t-test (Table 2-2). 



49 

 

 

Figure 2-6: Feature importances as ranked by THOIPA.  The relative importance of each 
feature was ranked during machine-learning training using standard methods, based on the 
mean decrease in impurity over respective nodes in the decision tree. In comparison to random 
forest, the extra-trees algorithm used in THOIPA is less susceptible to masking effects geurts 
[177]. Correlated features with similar predictive power therefore show a similar a level of 
importance. 
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2.4 Discussion 

One of the major obstacles in understanding homotypic TMD-TMD interactions has been 

the small number of TMDs investigated via NMR. Our current knowledge of residue 

properties mostly stems from these case studies, artificial selection, or the analysis of TM 

helix pairs within polytopic membrane proteins. Until now, it was uncertain how many of 

these findings could be directly transferred to naturally evolved PPI interfaces. Here, we 

assembled the largest database of experimental, homotypic TMD-TMD interfaces. To do 

so, we extracted data from diverse sources, including our own experimental ToxR results, 

other ETRA and NMR studies from literature, and a novel database of self-interacting TM 

helices from crystal structures. This allowed us to compare the average sequence 

properties of interfacial and non-interfacial amino acids. We present several findings that 

are statistically robust, and directly relevant to the forces driving PPI in the membrane 

environment. However we show that there is a huge variability between TMDs in the 

properties of interfacial residues. We trained the first machine learning algorithm for the 

prediction of homotypic TM interfaces, which performed better than other automated 

methods. This also yielded an objective ranking of the most important features 

distinguishing interface and non-interfacial residues. 

We present a novel dataset, consisting of self-interacting TM helices from crystal 

structures. In other fields, the identification of crystal contacts as biological interfaces is 

quite controversial. In our case, we only included TM helices that showed a close self-

interaction. The helix pairs therefore resembled the TM homodimers seen in NMR studies. 

Their interfacial residues were highly conserved and coevolved, strongly suggesting that 

they are biologically important for the organism of interest. Most importantly, adding the 
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self-interacting helices from crystal studies greatly diversified the species of origin of the 

TMDs in our complete dataset. This makes our conclusions relevant to more than just 

human proteins, which comprised 93% of the proteins investigated by NMR and ETRA. 

Crystallography techniques are also completely unrelated to NMR and ETRA, reducing 

methodological bias in the analysis of the properties of interfacial residues. 

So what are the underlying properties of the homotypic TM interfaces? Firstly, interface 

residues are significantly more conserved. This has been previously implied in numerous 

case studies [159, 178-182]. We find that interface residues were statistically more 

conserved than non-interface residues for all datasets, regardless of the experimental 

approach used. Also, residue conservation was objectively ranked by THOIPA as one of 

the most important predictive features. The TMD-TMD interfaces involved in PPI therefore 

resemble the permanently interacting interfaces found in multi-pass membrane proteins 

[23, 183]. Therefore for most of the TMDs examined, the homotypic interfaces are ancient 

and play an important role in the cell. However for predictive purposes the relative 

conservation of interfacial residues varied immensely between TMDs. In some cases this 

could be attributed to the presence of both homo- and hetero-dimer interfaces as 

proposed for ATP1B1 [180] and FtsB [184]. In other cases the interface may only be 

recently evolved, or perhaps tolerant of substitutions to other residues with similar 

properties.  

The second feature associated with interface residues was their higher polarity. This 

suggests that PPI in the membrane are mediated by the same forces that drive the folding 

and stability within multi-pass membrane proteins [140, 141, 168]. The forces by which 

polar residues stabilise helix-helix interactions are described in detail elsewhere, but 
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typically involve H-bonds [185]. The strengths of these H-bonds between different 

functional groups and in different environments are still hotly disputed[186].  

The third feature of interface residues was their high coevolution. The coevolution of 

contacting residues has allowed powerful predictions of protein folding and even protein-

protein interacting partners [88, 187]. For the purposes of detecting TM homodimer 

interfaces, however, coevolution values had a modest contribution. Using a simple 

randomisation technique, we showed that retrospective methods may have 

overestimated the higher coevolution previously proposed for interface residues. 

Nevertheless this study provides support for hypothesis of Wang and Barth [162], who 

proposed that intra-helical coevolution values are stronger at homodimer interfaces. Our 

data supports this firstly by the observation that some coevolution values were higher for 

crystal interfaces (Figure 5-2), and secondly by the usefulness of coevolution values 

within THOIPA (FigBZ13). Biologically, this suggests that the TMD dimers, symmetric or 

not, depend on close contacts between non-identical interface residues. These contacts 

lead to coevolution, as a disruptive mutation in one residue is counterbalanced by a 

favourable mutation in the other. We attribute the lower predictive power of coevolution 

for the bitopic datasets (NMR/ETRA) to the lower number of available homologues, a 

problem that negatively impacts all coevolution methods [144]. The exponential increase 

in sequence data should greatly improve the usefulness of coevolution values in the future. 

A simple but novel feature associated with interface residues is their depth in the 

membrane. Why did interface residues have a preference for the membrane hydrophobic 

core? This may suggest that helix-helix pairs are more stable when their interacting sites 

are deeper in the membrane, increasing the favourability of polar residue-residue 



53 

 

contacts in the absence of water. The fact that this effect was seen in TMD homodimers 

investigated by ETRA, NMR and crystal studies suggests that this is a genuine biological 

feature, rather than an artefact associated with a particular experimental technique. 

Further research is necessary to determine if this is common feature of protein-protein 

interactions mediated by membrane helices. 

The excellent performance of THOIPA for the prediction of the most important interfacial 

residues suggests that it is a useful tool to guide experimental and structural modeling 

approaches. As yet it is not completely clear how evolutionary data and energy-based 

modeling can be most effectively combined to yield potential TM homodimer interfaces. 

Possibilities include 1) the addition of automatically generated structures as features 

within machine learning predictors, 2) the use of evolutionary data (e.g. THOIPA) to 

choose the most biologically relevant dimer structure, or 3) the use of evolutionary data 

to provide constraints during structural modeling. The latter approach was used in the 

EFDOCK-TM method of Wang and Barth, however the resultant structures have not yet 

been independently validated. In general, we support the premise that interface residues 

could be identified by combining LIPS and coevolution analyses. Our data suggest that 

EFDOCK-TM would be more successful for the ETRA than the NMR TMDs. For our small, 

non-redundant NMR subset, LIPS performed poorly, and coevolution was far inferior for 

interface prediction than simple measures such as residue depth. 

Our stringent validation of TMDOCK and PREDDIMER was not only independent but in 

many cases blind, as these algorithms have never been tested against the new TMDs of 

the ETRA and crystal datasets. Although we use different validation measures, the 

performance of these algorithms was approximately in line with their published results. 
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We confirm that the newer TMDOCK algorithm performs slightly better, as previously 

claimed [127], either due to better structures or improved structure ranking. Automated 

structure ranking is clearly challenging, and complicated by the possibility of multiple 

biological interfaces. Currently, for a TMD of interest, we use PREDDIMER and TMDOCK 

by subjectively selecting the best automatically generated structure, based on available 

experimental and evolutionary data. The latter is available from the standalone THOIPA 

program, whose output includes LIPS and THOIPA predictions, and also the conservation, 

coevolution, and relative polarity for each position in the TMD. 

In conclusion, we confirm that the interfaces of TM homodimers have a lot in common 

with the permanent interfaces within multi-pass membrane proteins. Key interface 

properties are conservation, coevolution, polarity, residue depth. However interfaces are 

diverse and difficult to predict. Nearly all residue types were found at interfaces. Many 

interfaces were poorly conserved, coevolved, or polar. Furthermore, our current 

knowledge suggests that many TMDs contain multiple homodimer interfaces [77], or 

additional heterodimer interfaces [180, 184]. In this challenging environment, we created 

THOIPA, the first machine-learning predictor of TM homodimer interfaces. The ranking of 

feature importances by THOIPA provided further support that these interface properties 

can help distinguish interface and non-interfacial residues within TM homodimers.   
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CHAPTER 3.  PREDICTION OF INTERACTION SITES IN -

HELICAL MEMBRANE PROTEINS 

 

Many integral membrane proteins, just like their globular counterparts, form either 

transient or permanent multi-subunit complexes to fulfil specific cellular roles. Although 

numerous interactions between these proteins have been experientially determined, the 

structural coverage of the complexes is very low. Therefore, the computational 

identification of the amino acid residues involved in the interaction interfaces is a crucial 

step towards the functional annotation of all membrane proteins. Here, we present 

MBPred (Membrane-protein Binding-residues Prediction), a sequence-based method for 

predicting the interface residues in transmembrane proteins. A unique feature of our 

method is that it contains separate random forest models for two different use cases: a) 

when the location of transmembrane regions is precisely known from a crystal structure, 

and b) when it is predicted from sequence. In stark contrast to the aqueous-exposed 

protein segments, we found that the interaction sites located in the membrane are not 

enriched for evolutionary conservation, most likely due to their restricted amino acid 

composition. On the other hand, residue co-evolution proved to be a very informative 

feature, which has not so far been used for predicting interaction sites. MBPred reaches 

AUC, precision and recall values of 0.79/0.73, 0.69/0.51 and 0.55/0.48 on the cross-

validation and independent test dataset, respectively, thus outperforming the previously 

published method of Bordner as well as all methods trained on globular proteins. 
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Moreover, we show that for the majority of complete interface patches, the method is 

capable of capturing more than 50% of the involved residues. 

 

3.1 Introduction 

A full understanding of a protein’s function requires not only a possibly complete 

knowledge of its interaction partners, but also of the binding site location on its surface. 

Modern high-throughput assays, such as yeast two-hybrid or tandem affinity purification 

have generated data on close to 900,000 binary interactions [188]. By contrast, 

information about the specific interaction interfaces remains relatively scarce. Out of the 

52,660 proteins from Human and the model organisms E. coli and Bacillus subtilis 

(bacteria), S. cerevisiae (fungi) and Mus musculus (Vertebrates) only 3,318 proteins 

(6.3%) have regions annotated as interaction sites in the Swiss-Prot [189] database, with 

only 12 of them annotated as 3D structure-derived. Furthermore, 1,722 and 39 proteins 

have annotations obtained by similarity-based transfer or motif and rule-based 

approaches, respectively. Less than a third of the proteins (1,296) were annotated based 

on publications involving experiments, such as alanine-scanning mutagenesis [190]. 

Manual inspection of these experimental annotations revealed that many of them are also 

based on 3d structures. In addition, 710 proteins have interface region annotations for 

which no evidence is provided. The percentage of proteins with available interface 

annotations ranges from less than 1% in bacteria to around 2% in yeast and 8-9% in 

vertebrates. For transmembrane proteins (TMPs), which constitute 20-30% of all proteins 
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the living cells [191], these numbers are even lower – only 0.5% in yeast and 5-6% in 

vertebrates. 

PPI interfaces possess specific physico-chemical (amino acid composition, 

hydrophobicity, polarity), geometrical (accessible area, planarity), and evolutionary 

(conservation) properties [192], which makes them amenable to recognition by machine 

learning methods. A number of sequence- [193-197] and structure-based [95, 198] 

computational methods have been proposed to predict PPI interfaces in globular proteins. 

The latter group of methods tends to be more accurate, because they can leverage 

structure-level information such as solvent accessibility and the proximity of residues to 

each other, while the former one has the advantage of being applicable to the vast 

majority of proteins for which no experimental atomic structure is available. Most methods 

use machine learning techniques such as neural networks [199-202], support vector 

machines [203-206] and random forest [207-209] and almost all of them have been 

trained on globular proteins. The only method specifically geared towards predicting the 

interface residues in TMPs from sequence was proposed by Bordner in 2009 [114]. His 

random forest model, trained on evolutionary profiles extracted from 128 TMPs, achieved 

an average AUC of 0.75. Over the past 10 years, not only has the number of 

experimentally determined 3D structures of TMPs significantly increased but also 

database search tools such as HHblits have become much more sensitive [115]; 

additionally, vastly improved sequence co-evolution measures have become available 

[144, 210], providing powerful features for training machine learning algorithms. 

Here we describe a novel computational method MBPred (Membrane-protein Binding-

residues Prediction), which utilizes a combination of four individual random forest models 
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- MBPredTM, MBPredCyto, MBPredExtra, and MBPredAll – trained to predict residues 

involved in protein interactions in transmembrane, cytoplasmic, and extracellular 

segments as well as in the entire amino acid sequence, respectively. MBPredCombined 

merges the output of MBPredTM, MBPredCyto, MBPredExtra and is used when the 

location of the TM segments is known from structure or other experiments. Alternatively, 

MBPredAll is used when the location of the TM segments is unknown and therefore has 

to be predicted from sequence. The method was trained on 171 structures of -helical 

membrane proteins from 133 complexes and tested on an independent dataset of 36 

structures. Since the Bordner’s method does not appear to be available, no direct 

comparison with MBPred was possible. However, in our own implementation, a similar 

method only using evolutionary features achieved the AUC of 0.75 on the much larger 

dataset, while adding further features, such as TM helix orientation, residue co-evolution, 

and relative residue position with respect to the membrane, improved the AUC-based 

performance to 0.79. We also demonstrate that the surface patches consisting of amino 

acid residues classified by MBPred as interacting exhibit a significant overlap with the 

structure-derived interface regions. In 75% of the proteins, more than a half of the 

residues in the interface patches were correctly predicted. 

 

3.2 Materials and Methods 

3.2.1 Datasets 

For training and benchmarking our method we created three datasets: i) comparison 

dataset (CompData), solely used for comparing the results with the previous work of 
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Bordner [114], ii) classification dataset (ClassData), for training and cross validating the 

classifier, and iii) an independent test dataset (TestData), for evaluating the performance 

of the final classifier. 

3.2.1.1 Comparison dataset 

In the work of Bordner [114] a manually curated non-redundant dataset of TMP structures 

solved at better than 3.5 Å resolution was created. The original dataset included 64 α-

helical multimeric complexes, 21 monomeric proteins, and 37 complexes of β-barrels. As 

our predictor is specialized on α-helical TMPs, we retained only the 135 α-helical subunits 

extracted from the α-helical multimeric complexes and the monomeric proteins. Although 

the Bordner dataset was claimed to be non-redundant, no specific information about the 

procedure used to reduce sequence redundancy is given in reference [114]. Clustering 

this dataset using CD-HIT [139] with a sequence identity cutoff of 30% resulted in a set 

of 101 unique protein sequences, further referred to as CompData (Table 5-2). The 

corresponding 3D coordinates were downloaded from the Protein Data Bank of 

Transmembrane Proteins (PDBTM) [138], which also provides information on the 

orientation of the TMP relative to the lipid bilayer calculated by TMDET [211]. This 

orientation information was used to extract the sequence positions of transmembrane and 

extramembranous regions, as explained below.  

 

3.2.1.2 Classification dataset 

The classification dataset (ClassData) of transmembrane protein complexes was created 

to train our final prediction method and to assess its accuracy. The “Redundant Alpha” 
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dataset comprising 7374 TMP chains was obtained from PDBTM (version of June 2015). 

Biological complexes were first constructed by using the BIOMATRIX record given in the 

PDB file. Only the protein chains which have at least one biological contact with another 

protein were retained, and this dataset was made non-redundant at 30% sequence 

identity level. The resulting ClassData dataset included 171 unique proteins (Table 5-3), 

a 70% increase compared with the CompData dataset described above. 

 

3.2.1.3 Independent test dataset 

In order to create an independent test dataset (TestData), all the new TMP chains added 

to the PDBTM database between June 2015 and June 2017 were downloaded and 

filtered using the same procedure as described for the classification data set (ClassData). 

Upon removing all proteins sharing more than 30% with any other sequence in ClassData 

or TestData itself, the latter dataset included 36 unique proteins (Table 5-4). 

 

3.2.2 Definition of interacting residues 

Defining interacting residues is a difficult task, as there are virtually as many definitions 

as there are publications on that topic. We selected three definitions, which use different 

distance cutoffs and different criteria for solvent accessible surface area (SASA) to 

determine whether or not two residues interact with each other, denoted as BordInter 

[114], FuchsInter [212] and RostInter [213]. The SASA is usually calculated using the 

'rolling ball' algorithm [214], which considers a sphere of a particular radius to 'probe' the 

surface of the molecule. A typical value of the 'probe radius' is 1.4 Å, which approximates 
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the radius of a water molecule. The relative solvent accessibility (RSA) is the per-residue 

ratio between the calculated SASA and the maximum SASA for a particular residue. 

According to the BordInter definition, a residue residing in a TM segment is involved in an 

interaction if its RSA in the unbound state is larger than 0.2 and the distance between this 

residue and a residue of another protein chain in the same complex is below 4 Å. In this 

case, the inter-residue distance is defined as the nearest distance between any heavy 

atoms of the given residue pair. FuchsInter defines two residues to be in contact if they 

are situated on different TM segments and the minimal distance between any pair of 

heavy atoms is below 5.5 Å. Finally, according to the RostInter definition, residues Rx 

and Ry from two different chains X and Y are interacting if at least one pair of non-

hydrogen atoms is closer than 6 Å, or Rx and Ry meet all of the following three conditions: 

(i) Rx and Ry change SASA after binding, (ii) Rx has no other interaction partners within 

6 Å, (iii) from all residues that change SASA in chain Y, Ry is the closest residue to Rx. 

The impact of the contact definition on the total number of binding residues in ClassData 

and the overall prediction accuracy will be discussed in the Results section. Based on the 

above residue contact definitions, all residues were categorized into either the interacting 

or the non-interacting class. 

3.2.3 Interface patches 

Interface patches for each of the 171 ClassData proteins were identified based on the 

procedure proposed by Northey et al. [105]: i) for each TMP, the patch center residues 

with a relative solvent accessibility (RASA) of more than 25% are chosen, ii) for each 

patch center residue, the patch center atom with the highest absolute solvent accessible 

area is selected, iii) BiopTools [215] was applied to each patch center atom, resulting in 
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a total of 652 surface patches, iv) surface patches in which the RASA of the interface 

residues determined from structure makes up more than 50% of the total RASA were 

considered to be interface patches. The total of 249 interface patches were delineated. 

 

3.2.4 TMP segments 

TMPs contain three types of segments, which define their topology: extracellular (Extra), 

transmembrane (TM), and cytoplasmic (Cyto) segments. The complete sequence of the 

TMP is denoted as ‘All’ in this article. As the structure of the proteins in the training dataset 

is known, the TM regions were extracted according to the PDBTM definitions. Since 

PDBTM does not always contain information about the localization of extramembraneous 

regions (inside or outside), we used Phobius [216] predictions to verify sequence topology. 

A non-TM segment as defined by PDBTM was confirmed as cytoplasmic if the overlap 

between this segment and the cytoplasmic region predicted by Phobius was larger than 

the overlap between this segment and the predicted extracellular region. The same 

approach was used for extracellular regions. 

Our classifier is solely trained on structure-derived topology, which is rarely available in 

real-world applications. We therefore benchmarked the method both on known and 

predicted topologies. If available, the experimentally determined topology can be 

submitted by the user for running predictions using the released model; otherwise, 

Phobius will be utilized to automatically predict the protein’s topology.  

3.2.5 Multiple sequence alignments 
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Evolutionary information for each protein was gathered by searching the entire UniProt 

database [217] for related sequences using HHblits [115], a fast HMM-HMM-based 

iterative sequence search tool. The benefit of HHblits is its ability to directly produce a 

multiple sequence alignment (MSA) out of the search results. In order to obtain maximum 

alignment size, we set the HHblits parameters to the following values: -Z 999999999 -B 

999999999 -maxfilt 999999999 –id 99 –diff inf, which disable alignment filtering [218]. 

The arbitrary high numbers for –B and –Z maximize the number of sequences in the 

alignment and the summary hit list, while –maxfilt removes the limit on searched 

sequences. -id controls the maximum allowed pairwise sequence identity between the 

hits and was set to 99 in order to retrieve as many of non-identical sequences as possible. 

Finally, setting -diff to infinity removes the diversity filter, which would otherwise reduce 

the number of sequences in the MSA. 

3.2.6 Random forest classification models 

Random forest (RF) is an ensemble machine learning method, which can be used 

for classification and regression. The algorithm relies on a large number of decision trees 

and predicts the class for a particular input instance by the majority vote. During the model 

training, the input data for each tree is randomized in two ways. First, a subset of the total 

available features is selected randomly. By default, the size of this subset is equal to the 

square root of the total number of features. Second, the training data for each tree is 

sampled with replacement. The two parameters, which have the highest impact on 

prediction performance of the method, are the total number of trees created per each 

forest, and the number of features used for each tree. We set the number of trees to 2000, 

https://en.wikipedia.org/wiki/Statistical_classification
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and the number of features per tree was left at the default value of the square root of the 

total number of available features.  

Since the data is highly unbalanced, i.e. the non-interacting class constitutes the majority 

of the data; the classifier will be biased towards the “major” class. To mitigate this problem, 

we tried two common approaches. The first one is based on cost sensitive learning and 

works by assigning a high cost to the misclassification of the minority class, therefore 

trying to minimize the overall cost. The second approach is to use a sampling technique, 

which can be either under-sampling the majority class, over-sampling the minority class, 

or a mixture of both. After comparing these methods, we chose the down-sampling 

method as it results in a lower prediction error (data not shown). 

The final method MBPred (Membrane-protein Binding-residues Prediction) is a suite of 

four individual RF models – MBPredTM, MBPredCyto, MBPredExtra, and MBPredAll – 

trained to predict protein interaction sites in transmembrane, cytoplasmic, and 

extracellular segments as well as in entire amino acid sequences, respectively (Table 

3-1). The combined output of the three segment-based models (MBPredTM, MBPredCyto, 

MBPredExtra) is referred to as MBPredCombined. The sole input for MBPredAll is a 

protein sequence, while MBPredCombined optionally takes as input the known 

membrane protein topology. If no user-supplied protein topology is available, 

MBPredCombined relies on Phobius predictions. Either way, MBPredCombined applies 

the three underlying models to predicted or known transmembrane, cytoplasmic, and 

extracellular segments and merges the predictions over the entire protein chain. Both 

MBPredCombined and MBPredAll thus classify all protein residues as interacting or non-
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interacting, but using MBPredCombined also creates the opportunity to assess segment-

based prediction quality. 

Table 3-1: The MBPred software suite consists of two main methods - MBPredCombined 
and MBPredAll. The former combines three individual classifiers trained and tested on specific 
segment types separately, while the latter is trained on full protein sequences. 

Method name Random 
forest 
classifier 

Training 
data 

Source of 
TM topology 
for training 

Source of TM 
topology for 
prediction 

Use case 

MBPredCombined MBPredTM TM 
segments  

Determined 
by structure 
and not used 
as feature 

Determined by 
structure and 
not used as 
feature 

TMP 
segments 
are 
known MBPredCyto Cyto 

segments 

MBPredExtra Extra 
segments 

MBPredAll MBPredAll Entire TMP Determined 
by structure 
and used as 
feature 

Predicted from 
sequence and 
used as feature 

TMP 
segments 
are not 
known 

 

3.2.7 Input features 

The MBPred RF models were trained with three types of features derived from primary 

sequences (relative position, physical properties and segment) and five types of features 

calculated from MSAs (residue conservation, evolutionary profile (PSSM), cumulative and 

maximum co-evolution strength, and lipid accessibility) (Figure 3-1). The predictor output 

for a particular residue can be either 1 (interacting) or 0 (non-interacting).  
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Figure 3-1: Schematic overview of the RF-based classifiers of the MBPred suite for 
predicting interacting residues in TMPs.  

 

3.2.7.1 Residue entropy and conservation 

There is a strong selective pressure acting on functionally and structurally important 

residues [219], making them more evolutionary conserved. In particular, protein-binding 

interfaces are thought to be distinguishable from the rest of the protein surface by their 

higher degree of residue conservation [220]. The Shannon entropy for each residue at a 

certain position in the MSA was calculated according to the formula: 
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𝑆𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

20

𝑖=1

 

where pi represents the observed frequency of the amino acid i in the alignment 

column. Lower values of Shannon entropy correspond to higher conservation. Entropy 

values were normalized to the range between 0 and 1 and transformed in such a way that 

higher values account for a stronger conservation: 

Conservation = 1 −
𝑆𝑒𝑛𝑡𝑟𝑜𝑝𝑦

log⁡(20)
 

3.2.7.2 PSSM 

In this study, we used position specific scoring matrices (PSSM) to quantify the 

evolutionary profile of each amino acid in a protein sequence: 

PSSM(aa) =
𝑟𝑓𝑎𝑎
𝑏𝑓𝑎𝑎

 

where rfaa is the relative frequency of the amino acid aa in the MSA column at the position 

of interest and bfaa is the relative background frequency of the amino acid aa, which was 

calculated as the fraction of the given residue aa in the entire MSA. A 20-dimensional 

vector represents each PSSM position, with each element of the vector corresponding to 

one of the 20 amino acid types.  

3.2.7.3 Co-evolutionary strength 

The term residue co-evolution refers to coordinated mutations of amino acids in two 

sequence positions to maintain energetically favorable interactions. Residue co-evolution 

is thus indicative of physical contacts between amino acids. We used two computational 
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measures to assess the strength of the co-evolutionary relationship between a pair of 

residues i and j. One of them is mutual information MI(i,j), which is calculated as 

MI(i,j)=∑ 𝑓𝑖𝑗(𝐴𝑖, 𝐴𝑗)𝑙𝑛
𝑞
𝐴𝑖,𝐴𝑗=1

(
𝑓𝑖𝑗(𝐴𝑖,𝐴𝑗)

𝑓𝑖(𝐴𝑖)𝑓𝑗(𝐴𝑗)
) 

where fij(Ai,Aj) is the observed frequency of amino acid pairs Ai, Aj jointly occurring at 

positions i and j of a MSA, fi(Ai) and fj(Aj) are the overall probabilities of residue A at 

position i and residue A at position j, and q is the number of all possible residue pairs (Ai , 

Aj).  

MI calculation is solely based on the local residue pair probability in two MSA columns 

and does not consider transitivity effects [171]. This means that if residues in position i 

co-evolve with residues in position k, which in turn co-evolve with the residues in position 

j, the high value of MI(i,j) does not necessarily reflect a direct physical contact between 

these two protein sites. For this reason, we also employed an improved measure of 

residue co-evolution, called “direct information” [221], which is calculated as  

DI(i,j)=∑ 𝑃𝑖𝑗
𝐷𝑖𝑟(𝐴𝑖, 𝐴𝑗)ln⁡(

𝑃𝑖𝑗
𝐷𝑖𝑟(𝐴𝑖,𝐴𝑗)

𝑓𝑖(𝐴𝑖)𝑓𝑗(𝐴𝑗)
)𝑞

𝐴𝑖,𝐴𝑗=1
 

The local pair probability fij(Ai,Aj) used in MI is replaced by the global pair probability 

𝑃𝑖𝑗
𝐷𝑖𝑟(𝐴𝑖, 𝐴𝑗). The latter is calculated based on a global probability model using the entropy 

maximization approach, which calculates correlation scores for each pair of residues 

while taking into account all other pairs. For example, given a triple A, B and C where A-

B and B-C are contacting pairs, direct interactions will avoid high correlation scores for 

the non-contacting pair A-C which would otherwise arise from transitive influence of the 
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contacting pairs [222]. Both MI and DI scores were calculated using the software tool 

FreeContact with all default parameters [223]. 

Residues important for protein function and structure tend to be involved in a large 

number of contacts and thus co-evolve with a large number of other residues [222]. For 

each residue we assessed its cumulative co-evolutionary strength as a measure of 

functional importance [110]. This was done by first ranking either MI or DI scores between 

the residue in question and any other residue paired with it in descending order. Co-

evolutionary strength for this residue was then calculated as the sum of L best co-

evolution scores [222]: 

𝐶𝐷𝐼(𝑖)=⁡∑ 𝐷𝐼(𝑖𝑗)(𝑖,𝑗€𝑙)  

𝐶𝑀𝐼(𝑖)=⁡∑ 𝑀𝐼(𝑖𝑗)(𝑖,𝑗€𝑙)  

where j is a residue coevolving with i, 𝐶𝐷𝐼(𝑖) and 𝐶𝑀𝐼(𝑖) denote the cumulative DI and MI 

strength of the residue i, and 𝑙 is the list of top L highest ranking co-evolutionary pairs that 

residue i is involved in. L is either the sequence length of the whole protein (all) or the 

length of the segment (seg) where i and j are located in. Dependent on which definition 

of L was used, we distinguished between 𝐶𝐷𝐼
𝑠𝑒𝑔

, 𝐶𝐷𝐼
𝑎𝑙𝑙, 𝐶𝑀𝐼

𝑠𝑒𝑔
, 𝑎𝑛𝑑⁡𝐶𝑀𝐼

𝑎𝑙𝑙. 

In addition to the cumulative co-evolutionary scores, another vector containing the 

maximum co-evolutionary scores for the current residue was established. According to 

the two possible definitions of L and the two co-evolutionary measures DI and MI, the 

vector contains the four maximum co-evolutionary scores: 𝑀𝐷𝐼
𝑠𝑒𝑔

, 𝑀𝐷𝐼
𝑎𝑙𝑙, 𝑀𝑀𝐼

𝑠𝑒𝑔
, 𝑀𝑀𝐼

𝑎𝑙𝑙. 

3.2.7.4 Relative Position 
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Two values were used to encode the relative positions of residues in the protein: i) the 

relative position of a residue in the topological segment it is located in (Rp1), calculated 

as the distance from the N-boundary of the segment to the residue position divided by the 

segment length, and ii) the relative position of a residue related to the entire protein 

sequence (Rp2), calculated as the position of the residue in the protein divided by the 

length of the protein.  

3.2.7.5 Lipid accessibility 

LIPS (LIPid-facing Surface) [141] is a method for predicting TM helix-lipid interfaces from 

sequence information alone. The helix is split into seven helical faces, with each face 

being composed of a repeated pattern containing the anchor position i ranging from 1 to 

7 (i.e. one anchor position for each face) and the residues at the positions i+3, i+4 and 

i+7. Each helical face is assigned a LIPS score by multiplying the average alignment 

entropy with the lipophilicity of all residues contained in that face: 

LIPS = 
∑ 𝑒−∑ p(i)⁡∗⁡𝑙𝑜𝑔2p(i)

rn
𝑖=1 ⁡

𝑓𝑛
𝑛=1 ∗⁡∑ ∑ p(i)⁡∗⁡prop(i)rn

𝑖=1
𝑓𝑛
𝑛=1

𝑓𝑛
 

where fn is the number of residues in the face, p(i) and rn are the frequency of residue i 

and the number of residues in the alignment column, respectively and prop(i) is the 

lipophilicity propensity score of the residue i. The lipophilicity was calculated using the 

TMLIP2 scale [224], which provides two different lipophilicity values depending on 

whether the residue is located close (within 20% of the TM region length) to the 

membrane boundary or in the center of the TM. Amino acid residues Lys, Arg, Trp, Phe, 

and Leu get assigned a high lipophilicity value in the membrane boundary, while residues 

Ile, Leu, Phe and Val are given high lipophilicity values in the TM center. After ranking the 
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faces according to their LIPS score, each TM residue was represented as a vector 

consisting of three values: the rank of the predicted face (1-7) where the TM residue is 

situated (surfrank), the LIPS score of that face (surfscore), and the raw residue 

lipophilicity of the residue. Because surfrank, surfscore and the lipophilicity values are 

only applicable to the residues located in the TM segments, they were only used as input 

features for MBPredTM. 

3.2.7.6 Physico-chemical properties 

Six physico-chemical properties of amino acids were obtained from the AAIndex [225] 

database; four of them use a continuous scale (hydrophobicity, polarity, charge and 

volume), while the other two provide a discrete value indicating if an amino acid is aliphatic 

or aromatic.  

3.2.7.7 Protein regions 

The location of each residue was encoded by the letters ‘T’, ‘C’ or ‘E’ corresponding to 

the TM segments, the cytoplasmic or the extracellular parts of the protein (see section 

3.2.4). 

3.2.8 Feature importance  

Mean decrease Gini (GiniDec) is a measure of feature importance included in the 

‘randomForest’ R package. It is defined as the average gain of purity when splitting the 

data according to a given feature during the training process. Each time a variable is used 

for a split, the Gini coefficient is calculated before and after the split and the difference is 

averaged over all occurrences of that feature. Therefore, the higher the decrease in Gini 

coefficient is, the more important is the variable. 
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3.2.9 Measuring prediction performance 

The overall prediction accuracy of MBPred was assessed based on ten-fold cross-

validation. The dataset was randomly split into 10 equally sized bins. A random forest 

model was trained on data contained in 9 of these bins, and the remaining bin was used 

as a test data set to benchmark the model performance. This process was repeated 10 

times, with each of the subsets serving as the test dataset once. The overall prediction 

performance was assessed by calculating the area under the ROC (Receiver Operating 

Characteristic) curve (AUC). The AUC can range from 0.0 to 1.0, with 0.5 indicating a 

totally random, while 1.0 a perfectly correct prediction. 

To further quantify the overall prediction performance, we calculated precision, recall, 

Matthews Correlation Coefficient (MCC) and F1-score as follows: 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

MCC=
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)
 

F1-score=
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡∗⁡𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

where TP (true positive) means interacting residues are correctly predicted to be 

interacting, FN (false negative) means interacting residues are incorrectly predicted not 

to be interacting, TN (true negative) means non-interacting residues are correctly 

predicted not to be interacting, and FP (false positive) means non-interacting residues 

are incorrectly predicted to be interacting. 
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3.3 Results and discussion 

3.3.1 Feature analysis 

3.3.1.1 Binding residues are more conserved in the transmembrane 

portions of proteins 

Residues mediating inter-molecular interactions tend to be evolutionarily conserved [226]. 

We compared sequence conservation calculated by the entropy-based score (section 

2.6.1) between interacting and non-interacting residues in the three types of segments 

(TM, Cyto, and Extra) as well as in the full TMP sequences (All) (Figure 3-2). Alignment 

positions with more than 50% gaps were ignored. Interacting residues in the full TMP 

sequences are significantly more conserved than non-interacting residues (p = 2.3e-10, t-

test), but this difference is solely due to cytoplasmic (p = 2.4e-5) and extracellular (p = 

2.4e-14) segments. There is no significant difference in the evolutionary conservation 

between interacting and non-interacting residues within the TM segments, presumably 

due to their restricted amino acid composition, i.e. the increased content of hydrophobic 

residues. Overall, TM residues exhibit stronger evolutionary conservation than Cyto and 

Extra residues. 
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Figure 3-2: Comparison of conservation scores between interacting and non-interacting 
residues in different TMP segments as well as in full sequences.  Interacting residues in the 
cytoplasmic and extracellular segments are much more conserved than non-interacting residues, 
while in the TM segments this difference is not significant. 

 

3.3.1.2 Interface residues tend to co-evolve with other interface 

residues 

It has recently been shown that interacting residue pairs exhibit higher co-evolution 

scores than non-interacting residue pairs [132]. The cumulative and maximum co-

evolutionary scores considered in this study would therefore be expected to contain a 

strong signal for potential residue contacts. Figure 3-3 shows the comparison of these 

two scores between interacting and non-interacting residues in individual TMP segments 

as well as the in the full protein sequences. The only distributions that exhibit no significant 

difference are those of 𝑀𝐷𝐼
𝑎𝑙𝑙 and 𝑀𝑀𝐼

𝑎𝑙𝑙 in TM segments (p=0.6558 and p=0.01372). We 

find that 77% of the amino acid pairs used for the 𝑀𝐷𝐼
𝑎𝑙𝑙 scores occurred in TM-TM residue 
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pairs, while only 11% and 12% of them were in TM-Cyto and TM-Extra residue pairs, 

respectively. These results imply that the residue pairs with the highest values of the co-

evolutionary measures MI and DI in the TM segments are more likely to be involved in 

helix packing instead of intermolecular interactions. In all other cases, i.e. when 

considering either DI- or MI-based cumulative or maximum co-evolutionary scores in 

individual portions of proteins or in the entire sequences, the scores of interacting 

residues are significantly higher than the scores of non-interacting residues, thus 

constituting a promising signal for interface prediction. 

 

Figure 3-3: Distribution of DI and MI scores in interacting and non-interacting residues in 
the three types of TMP segments (TM, Cyto, Extra) and the full sequences (All).  P-values 
indicate the significance of difference between co-evolutionary scores of the interacting and non-
interacting residues.  

 

3.3.2 Prediction performance of MBPred 

Different portions of TMPs are known to have functionally and structurally distinct 

interaction landscapes. Interactions occurring in the transmembrane domains are critical 

for protein structure stabilization and biological activity [24], extracellular segments often 
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contain ligand binding sites, and cytoplasmic loops can be involved in intracellular signal 

transduction [227]. We therefore developed two alternative prediction techniques, one 

trained to recognize interaction sites in full-length protein sequences (MBPredAll), and 

another one (MBPredCombined) using an ensemble of three separate predictors 

(MBPredTM, MBPredCyto and MBPredExtra) trained on transmembrane, cytoplasmic, 

and extracellular portions of protein structures, respectively. These two techniques were 

compared based on four performance measures: ROC curve, precision-recall curve, 

MCC and F1-score, using ClassData for the 10-fold cross validation (Figure 3-4) and the 

independent TestData for benchmarking the final classifier (Figure 3-5). Because in real-

world applications the correct transmembrane topology is often not known, the 

comparison was conducted using both experimentally determined and predicted protein 

segments. In the first step, MBPredCombined was compared with MBPredAll in terms of 

the overall and segment-wise performance. Subsequently, the predictions of MBPredAll 

were split into three parts according to the specific topological segments, i.e. TM, Cyto 

and Extra, and compared them with MBPredTM, MBPredCyto, and MBPredExtra 

predictions, respectively (Figure 3-4).  

Using either ClassData or TestData, MBPredCombined performed slightly better than 

MBPredAll on segments derived from crystal structures (left part of Table 3-2). 

Consistently, MBPredTM, MBPredExtra and MBPredCyto achieved a higher accuracy on 

the segment types they were trained on, outperforming MBPredAll, which was trained 

without distinguishing between the topological segments. However, when using the 

segments predicted by Phobius (right part of Table 3-2), the opposite situation occurred, 

i.e. MBPredAll performed better than MBPredCombined when benchmarking the 
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segment-specific as well as the overall performance. MBPredCombined should therefore 

be preferred if the location of segments is exactly known, while MBPredAll works better 

for segments predicted from sequence. As expected, the performance of the three 

segment-based classifiers (MBPredTM, MBPredCyto, and MBPredExtra) drops 

significantly when applied to the segments they were not trained on (e.g. testing the 

performance of MBPredTM on extracellular segments) (Table 3-2).  

The output of a classifier, which gives values between zero and one can be converted 

into the prediction of a class by applying a cutoff. A cutoff of 0.5, which is the default in 

most cases, is usually not optimal especially for imbalanced datasets. In order to find a 

proper classification cutoff for unknown data, we plotted the F1-score against all possible 

cutoffs using the cross-validation results on ClassData (Figure 3-4D). The F1-score is 

widely used to evaluate the success of an imbalanced binary classifier as it represents 

the harmonic mean of precision and recall. The optimal cutoff values were determined by 

taking the maximum F1-score for each of the four RF models (MBPredTM, MBPredCyto, 

MBPredExtra and MBPredAll), which reached their highest F1-scores of 0.493, 0.565, 

0.479 and 0.509 at the cutoffs 0.31, 0.32, 0.27 and 0.27, correspondingly. Those optimal 

cutoffs, which maximized the F1-score are used in the final version of MBPred. Table 3-3 

shows several performance metrics on ClassData and TestData after the application of 

these thresholds. 
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Figure 3-4: Different performance measures of the classifiers during the 10-fold cross-

validation using the ClassData dataset:  ROC curve, precision-recall curve, MCC and F1-
score in MBPredTM, MBPredCyto, MBPredExtra and MBPredAll respectively.  
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Figure 3-5: Different performance measures of the classifiers on the new independent 

TestData dataset:  ROC curve, precision-recall curve, MCC and F1-score in MBPredTM, 
MBPredCyto, MBPredExtra and MBPredAll respectively. 

 

Table 3-2: AUC performance of predictors on ClassData or TestData. 

                  Structure Phobius 

 Cyto Extra TM All Cyto Extra TM All 

      ClassData    

MBPredAll 0.801 0.769 0.776 0.782 0.746 0.711 0.758 0.742 

MBPredCyto 0.818 0.695 0.696  0.722 0.690 0.680  

MBPredExtra 0.722 0.772 0.688  0.694 0.703 0.681  

MBPredTM 0.718 0.656 0.782  0.653 0.630 0.738  

MBPredCombined    0.791    0.721 

       TestData    

MBPredAll 0.745 0.672 0.724 0.721 0.709 0.674 0.720 0.704 

MBPredCyto 0.760 0.626 0.605  0.688 0.629 0.625  

MBPredExtra 0.581 0.685 0.581  0.628 0.644 0.614  

MBPredTM 0.612 0.594 0.753  0.594 0.597 0.714  

MBPredCombined    0.732    0.682 
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Note: Left part of the table: segments derived from crystal structures. Right part of the table: 

segments predicted by Phobius. Upper part of the table: average AUC values over 10-fold cross-

validation on ClassData. Lower part of the table: AUC values on TestData. Gray shading: segment 

classifiers applied to segments they were not trained on. Bold: higher scores when comparing 

MBPredAll and MBPredCombined. 

 

 

Table 3-3: Performance metrics using structure derived TM segments for ClassData and 
TestData after application of the adjusted threshold. 

 ClassData TestData 

 Precision Recall MCC F1-

score 

Precision Recall MCC F1-

score 

MBPredAll 0.842 0.432 0.351 0.571 0.692 0.402 0.346 0.509 

MBPredTM 0.747 0.507 0.389 0.604 0.591 0.422 0.328 0.493 

MBPredCyto 0.783 0.541 0.444 0.640 0.664 0.491 0.422 0.565 

MBPredExtra 0.865 0.418 0.386 0.563 0.633 0.385 0.324 0.479 

MBPredCombined 0.689 0.547 0.423 0.610 0.507 0.481 0.351 0.493 

                                            

3.3.3 Comparison of MBPred with Bordner’s method 

We investigated how well MBPred predicts interaction sites in transmembrane regions compared 

with the method of Bordner using the CompData dataset for training and BordCont as a 

contact definition (see Materials and Methods). Bordner’s method, which only takes into 

account evolutionary conservation, PSSMs, and physical properties, achieved an AUC of 

0.75 (Figure 3-6). Adding the LIPS related features, co-evolution features, and the relative 

position of residues in the protein, i.e. all the features used in MBPred, resulted in the 

AUC increase to 0.77, 0.78, and 0.79, respectively. 
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Figure 3-6: ROC curves.  (A) and precision-recall curves (B) for predicting interacting residues 
using different feature combinations. Green color: evolutionary features and physico-chemical 
properties (Bordner’s method) (AUC 0.75); orange color: with added LIPS-related features (AUC 
0.77); blue color: with added co-evolutionary signal (AUC 0.78); purple color: with added relative 
positions of residues (AUC 0.79). 

 

3.3.4 Variable importance 

As described in section 3.2.8, GiniDec measures how much a feature contributes to the 

separation of the classes and therefore how important it is for the classification success. 

Figure 3-7 shows the variable importance GiniDec for our four individual RF models. First 

of all, conservation, co-evolution, and relative positions are among the highly important 

features. In each of the four individual RF models, conservation was in the top five 

features with an average GiniDec of 240.61.  𝐶𝐷𝐼
𝑎𝑙𝑙 was among the top six features with an 

average GiniDec of 248.66, and Rp2 was placed in the top four features with an average 

GiniDec of 261.53. Among the three LIPS related features in MBPredTM, the surfscore 

(GiniDec of 153.53) was more important than lipophilicity (GiniDec of 143.72) and 

surfrank (GiniDec of 71.05). Secondly, Rp2 is always among the top four features and 
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performs better than Rp1. The average GiniDec of Rp1 (201.04) in the four RF models 

was lower than Rp2 (261.53). Thirdly, all the six physicochemical properties were always 

the least important features in each of the individual RF models. Finally, among the 20 

amino acids, we found that cysteine ranked first, first, fifth and first in MBPredTM, 

MBPredCyto, MBPredExtra, and MBPredAll, respectively, with an average GiniDec of 

283.02, probably due to its lower abundance compared to the other 19 residues (Figure 

3-8). Looking at the importance of amino acids in the individual segment types and the 

full protein sequence, it is noteworthy that the most important residues in MBPredTM were 

cysteine, methionine, histidine and aspartic acid, as opposed to alanine, leucine, glycine 

and valine reported by Bordner [26]. This could be due to the different contact definitions, 

larger training dataset, or the prevalence of our new features making the residue 

probabilities less important. In our dataset, the most prevalent residues at the interaction 

sites were all hydrophobic - leucine, isoleucine, valine, glycine and alanine - while the 

charged amino acids aspartic acid, glutamic acid, histidine, arginine and lysine were the 

least frequent. Overall, without distinguishing between interacting and non-interacting 

sites, polar and charged residues occur more frequently in cytoplasmic and extracellular 

regions than transmembrane regions, as one would expect. 
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Figure 3-7: Variable importance for four individual RF models  - MBPredTM, MBPredCyto, 
MBPredExtra and MBPredAll - measured with GiniDec. The importance of three LIPS related 
features was only measured in MBPredTM and one segment indicator feature (Seg) was 
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presented in MBPredAll. Features related to evolutionary conservation, co-evolution, and 
relative residue position exhibit the highest importance. 

 

 

Figure 3-8: Occurrences of amino acids in protein interaction sites (black) and non-
interacting sites (white) in the four segment types. 

 

3.3.5 Impact of residue interact definition on classifier performance 

To understand how residue contact definitions described in section 3.2.2 affect the 

classifier performance, we compared the average AUC of the four individual predictors 

using different contact definitions. In each segment type and therefore also in the entire 

sequence using RostInter results in the highest number of interacting residues, followed 

by FuchsInter and BordInter (Table 3-4). The same ranking becomes apparent when 

comparing the prediction performance; for example, for MBPredTM the AUC values were 

0.792 (RostInter), 0.784 (FuchsInter), and 0.776 (BordInter). The prediction performance 

is thus clearly correlated with the choice of the contact definition and the resulting number 
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of interacting residues. The RostInter, FuchsInter and BordInter definitions are based on 

the heavy atom distance thresholds of 6.0, 5.5 and 4.0 Å, respectively. Expectedly, the 

definition with the least strict distance threshold of 6.0 Å (RostInter) yields a higher 

number of interacting residues than a definition using 5.5 Å (FuchInter) or 4.0 Å 

(BordInter). The correlation between the number of interacting residues and the prediction 

performance can be attributed to the reduced class imbalance caused by a higher 

percentage of residues labeled as interacting. Based on this assessment, we utilized the 

RostInter definition of interacting residues in our final classifiers. 

Table 3-4: Predicted number of interacting residues and prediction performance  (AUC) of 
the four classifiers (MBPredTM, MBPredCyto, MBPredExtra and MBPredAll) when using three 
different residue contact definitions. 

 

 

Contact 

definition 

MBPredTM MBPredCyto MBPredExtra MBPredAll 

Ni Nni AUC Ni Nni AUC Ni Nni AUC Ni Nni AUC 

 

BordInter 

 

3308 13457 0.776 3815 14985 0.797 3171 14083 0.777 10294 42525 0.773 

 

FuchInter 

 

4552 12213 0.784 5085 13715 0.812 4335 12919 0.786 13792 38847 0.787 

 

RostInter 

 

5047 11718 0.792 5581 13219 0.824 4768 12486 0.802 15396 37423 0.804 

Note: Ni=the number of interacting residues, Nni=the number of non-interacting residues. 

 

3.3.6 Case study: predicting the interaction interface for the photosystem II D2 

protein 

To illustrate the performance of MBpred, we present the prediction of interface residues 

for the photosystem II (PSII) D2 protein from Thermosynechococcus elongates (PDB 
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entry 4PJ0, chain D [228]). Photosystem II (PSII), a large protein complex consisting of 

20 subunits, is a light-driven water plastoquinone oxidoreductase that uses light energy 

to abstract electrons from H2O, generating O2 and a proton gradient subsequently used 

for ATP formation [228]. PSII D2 is required for the assembly of a stable PSII complex. 

After excluding this protein from the ClassData, using the structure-derived topology of 

the protein, our classifier MBPredCombined achieved an AUC of 0.8549, with 193 out of 

205 binding residues predicted correctly (Figure 3-9) . Chain D is situated in the center of 

the PSII complex and has an interface to 15 out of 20 subunits, with the exception of 

chains I, R, Y and Z. MBPredCombined was able to infer all of the actual interfaces, from 

the smallest one, which consists of just one interacting residue with chain K, to the largest 

one with chain A. The latter consists of 126 residues of which 97 have been predicted 

correctly. Nine of the 15 interfaces were predicted with a perfect coverage (K, U, J, V, T, 

M, F, O, E). The only interface poorly predicted by MBPredCombined was to chain C, 

where only 2 out of 6 interface residues were predicted correctly.  

 

 

Figure 3-9: MBpred prediction for the photosystem II D2 protein (PDB entry 4PJ0, chain 
D). Amino acids of the photosystem II D2 protein are shown as colored spheres while the other 
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subunits are displayed using the cartoon representation. (A): Actual interacting (red spheres) 
and non-interacting (blue spheres) residues. (B): Interacting residues predicted by 
MBPredCombined. The spheres are colored depending on the random forest output, and 
therefore the interaction likelihood from red (interacting) to blue (not interacting).  

 

3.3.7 Prediction of interaction interfaces 

Functionally important residues often cluster together and form patches on the protein 

surface. Especially in TMPs, interactions tend to be quite large to exclude lipids between 

the interaction partners [229, 230]. Yet, most of the binding energy comes from small 

regions within interface patches, the so-called hot spots [231]. In order to determine how 

well MBPred predicts entire interface patches rather than individual residues, we 

calculated patches for the 171 ClassData proteins as described in Materials and Methods 

to measure the overlap between the predicted interface residues and the interface 

patches determined from the structure. For each interface patch the percentage of 

predicted interacting residues was determined. For 75% (186/249) of the interface 

patches the overlap was over 50% and 23 patches were exactly predicted (Figure 3-10).  
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Figure 3-10: Percentage of predicted interface residues in the interface patches.  Black 
and gray bars represent the numbers of interface patches which overlap with the interface 
residues predicted by MBPred by more and less than 50%, respectively. 

 

3.3.8 Comparison to PSIVER - a method for globular proteins 

To assess the benefits of a method tailored specifically to TMPs, we compared MBPred 

with PSIVER [195, 232], a sequence-based method for predicting interacting residues in 

globular proteins. PSIVER relies on the definition of interface residues based on the 

decrease of solvent accessibility during complex formation. More specifically, surface 

residues are defined as those having RASA greater than 5%, and if their absolute solvent 

accessibility decreases by more than 1 Å2 upon complex formation, such surface residues 

are considered to be part of an interface. We ran PSIVER predictions for the 36 TestData 

proteins and compared the ROC and precision-recall curves of MBPred and PSIVER 

using only those residues, for which both interface definitions were consistent (Figure 

3-11). MBPred achieved an AUC of 0.78 and average precision of 0.58, and thus 

outperformed PSIVER (AUC of 0.59 and an average precision of 0.22) by a wide margin. 

As PSIVER itself was reported to surpass other interface residue prediction methods in 

terms of accuracy, we conclude that TMPs with their distinct biophysical characteristics 

require a specialized method to achieve state of the art results. 
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Figure 3-11: Comparison of PSIVER and MBPred using ROC (left) and precision-recall 
(right) curves. 

 

3.3.9 Availability 

The full source code and a standalone version of MBPred are available from 

https://github.com/bojigu/MBPred.git. 

 

 

3.4 Conclusions 

-helical transmembrane proteins form complexes and bind to ligands in order to perform 

their biological functions. Elucidating the precise location of the binding sites is an 

indispensable part of protein functional annotation. Here we present a machine learning 

approach called MBPred for predicting interacting residues in -helical membrane 

proteins from sequence alone. MBPred was developed having two application scenarios 

in mind. In the first situation, the user wishes to identify potential interaction sites for a 
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protein whose 3D structure and therefore, the topology, is known. In this case, MBPred 

uses an ensemble of three classification models, MBPredTM, MBPredCyto, MBPredExtra, 

which were separately trained on transmembrane, cytoplasmic, and extracellular regions, 

respectively. In the second scenario, the 3D structure is not known and the protein 

topology is predicted from sequence by appropriate methods, in this case Phobius. In this 

context, MBPred uses a single model trained on the entire protein sequence without 

distinguishing between different protein regions. We demonstrate that employing the 

method specifically tailored to one of these two distinct use cases allows achieving a 

higher prediction accuracy. Compared to non-interacting residues, interacting residues 

are significantly more conserved in the cytoplasmic and extracellular segments while no 

significant difference in evolutionary conservation could be established in the 

transmembrane regions. We speculate that the interacting residues are more conserved 

than non-interacting residues independently of the location but the restricted amino acid 

composition does not allow discerning this trend in the transmembrane regions. 

Interacting residues also exhibit significant higher co-evolutionary scores, indicating that 

interfaces involving multiple residues evolve in a coordinated fashion. The only type of 

residue pairs exhibiting even higher co-evolutionary scores were those involved in 

transmembrane helix packing. It is hoped that MBPred will become a useful tool for 

guiding experimental and theoretical investigations of membrane protein interactions.  
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CHAPTER 4. SUMMARY 

Overall, this thesis aims at a better understanding of protein-protein interactions occurring 

in alpha-helical membrane proteins. It intends to provide new algorithms specially 

developed for membrane proteins that can be used to predict interfacial residues on either 

single-pass homodimers (THOIPA) or the full sequence of alpha-helical membrane 

protein (MBPred). THOIPA and MBPred methods only require a membrane protein 

sequence input, and the presented method can predict and give a prioritized list of which 

residues participate in transmembrane protein-protein interactions. These two  methods 

have potential application in guiding the experimental verification of membrane protein 

interactions, structure-based drug discovery, and also in predicting the membrane protein 

complex structures. Based on the obtained results presented in chapter 2 and 3, two 

interfacial residues prediction software were developed for membrane proteins.  

 

4.1.1 Software development for homotypic helix-helix interfaces prediction 

One of the major obstacles in understanding homotypic TMD-TMD interactions has been 

the small number of TMDs investigated via NMR. In order to compare the sequence 

properties of interfacial and non-interfacial residues, we firstly collected 54 experimental, 

NMR and crystal TMDs which form homotypic interfaces. We then analysed the 

underlying properties of the homotypic TM interfaces. We show that firstly, interface 

residues were statistically more conserved than non-interface residues for all datasets, 

regardless of the experimental approach used. Secondly, interface residues have their 

higher polarity, the forces by which polar residues stabilise helix-helix interactions are 
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described in detail elsewhere, but typically involve H-bonds. Thirdly, interfacial residues 

have higher co-evolution scores. Biologically, this suggests that the TMD dimers, 

symmetric or not, depend on close contacts between non-identical interface residues. 

These contacts lead to coevolution, as a disruptive mutation in one residue is 

counterbalanced by a favourable mutation in the other. Thirdly, interface residues have a 

preference in the membrane hydrophobic core. This may suggest that helix-helix pairs 

are more stable when their interacting sites are deeper in the membrane, increasing the 

favourability of polar residue-residue contacts in the absence of water. 

We trained the first machine learning algorithm for the prediction of homotypic TM 

interfaces (THOIPA), which performed better than other automated methods. The ranking 

of feature importance by THOIPA provided further support that these interface properties 

can help distinguish interface and non-interfacial residues within TM homodimers. The 

excellent performance of THOIPA for the prediction of the most important interfacial 

residues suggests that it is a useful tool to guide experimental and structural modelling 

approaches. 

 

4.1.2 Software development for alpha-helical membrane protein interface prediction 

Alpha-helical membrane proteins interact with other proteins to fulfil specific cellular 

processes, identifying the amino acid residues involved in the interaction is crucial to 

annotate the function of the protein. However, rare of these interactions have been 

experimental conformed. Therefore, we developed the machine learning method 

(MBPred) to predict the interface residues using the sequence information alone. MBPred 
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could be divided into MBPredCombined (when the location of transmembrane region is 

known from structure) and MBPredAll (the transmembrane region is unknown and need 

prediction). We show that interfacial residues are significantly more conserved than non-

interfacial residues in cytoplasmic and extracellular regions, but not significant difference 

in transmembrane regions, this may indicate that interface residues are indeed more 

conserved but do not allow discerning the trend perceived in soluble segments. We also 

found that interface residues have significant higher co-evolutionary scores. MBPred has 

an overall high prediction performance, reaches AUC, precision and recall values of 

0.79/0.73, 0.69/0.51 and 0.55/0.48 on the cross-validation and independent test dataset, 

respectively, thus outperforming the previously published method of Bordner as well as 

all methods trained on globular proteins. We believe that MBPred will become a useful 

tool for guiding experimental and theoretical investigations of membrane protein 

interactions.  
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CHAPTER 5. APPENDIX 

5.1 AppendixA: Supplementary Methods 

5.1.1 Calculation of residue properties 

In this section we describe the calculation of physico-chemical, structural and evolutionary 

properties of amino acid residues at each sequence position (designated i) of 

transmembrane domains (TMD). In total, 56 features were considered. Some of the 

properties were derived from multiple sequence alignments (MSA). These were gathered 

by searching the NCBI non-redundant database for related sequences using BLASTp. 

Homologues were filtered by keeping only the alignments with fewer than 6 gaps and at 

least 20% sequence identity in the TMD region. Only homologues with unique TM 

sequences were retained (non-redundant to 100% sequence identity). In addition, we 

calculated position specific scoring matrices (PSSM) to quantify the evolutionary profile 

of each amino acid in a TMD. A PSSM contains the frequencies of all 20 amino acids in 

each MSA column. 

 

Residue coevolution (16 features) 

We employed the FreeContact implementation [233] of EVfold [234] to calculate 

coevolution scores between all possible residue pairs in the TMDs. For each residue pair, 

the EVfold output includes the values of mutual information (MI) and direct interaction (DI). 

Mutual information is a standard measure of coevolution between two residues but is 

known to be prone to several biases [234, 235]. For example, high scores can be seen 
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for indirect contacts, e.g. when residues B and C are not in contact, but both make 

contacts and coevolve with residue A. A second bias in MI is the low score associated 

with high conservation (Figure 5-9). Direct coupling analysis (DCA) is a global statistical 

inference method that aims to disentangle direct and indirect contacts and counter the 

effects of high conservation. DCA yields an adjusted DI score for each residue pair. For 

prediction in THOIPA, and to understand interface properties, it was necessary to convert 

the pairwise coevolution scores to a single representative value at each residue position. 

We included 16 such coevolution measures, comprising nine MI and nine DI values, 

respectively. In all cases, the predictive coevolution value was the maximum or mean 

from a selected number of residue pairs that included the residue of interest.  

Briefly, for a pair of residues i and j, MI was calculated as: 

MI(i,j)=∑ 𝑓𝑖𝑗(𝐴𝑖, 𝐴𝑗)𝑙𝑛
𝑞
𝐴𝑖,𝐴𝑗=1

(
𝑓𝑖𝑗(𝐴𝑖,𝐴𝑗)

𝑓𝑖(𝐴𝑖)𝑓𝑗(𝐴𝑗)
) 

where fij(Ai,Aj) is the observed frequency of amino acid pairs Ai, Aj jointly occurring at 

positions i and j of an MSA, fi(Ai) and fj(Aj) are the overall probabilities of residue A at 

position i and residue A at position j, and q is the number of all possible residue pairs (Ai , 

Aj).  

 

DI was calculated according to the following equation: 

DI(i,j)=∑ 𝑃𝑖𝑗
𝐷𝑖𝑟(𝐴𝑖, 𝐴𝑗)ln⁡(

𝑃𝑖𝑗
𝐷𝑖𝑟(𝐴𝑖,𝐴𝑗)

𝑓𝑖(𝐴𝑖)𝑓𝑗(𝐴𝑗)
)𝑞

𝐴𝑖,𝐴𝑗=1
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Here, the local pair probability fij(Ai,Aj) used in MI is replaced by the global pair probability 

𝑃𝑖𝑗
𝐷𝑖𝑟(𝐴𝑖, 𝐴𝑗). The latter is calculated based on a global probability model using the entropy 

maximisation approach, which calculates correlation scores for each pair of residues 

while considering all other pairs [169, 171, 234]. 

MItop4mean, DItop4mean, MItop8mean, DItop8mean. The coevolution scores (MI or 

DI) between the residue of interest and all other residues in the TMD were calculated and 

ranked from highest to lowest. The mean was then calculated for the top-scoring 4 and 8 

residue pairs. 

MI1mean, DI1mean, MI3mean, DI3mean, MI4mean, DI4mean. Mean coevolution (MI or 

DI) between two residue pairs, i and i+x, as well as i and i-x, where x represents a distance 

of 1, 3 or 4 residues. 

MImax, DImax. The maximum coevolution value (MI or DI) between the residue of 

interest and all residues in the TMD. 

MI4max, DI4max. The maximum coevolution value (MI or DI) between the residue of 

interest and the eight neighbouring residue positions (i-4 to i+4). 

MI4cum, DI4cum. The coevolution values (MI or DI) between all possible residue pairs 

in the TMD were measured and sorted from highest to lowest. All unique residues in the 

top 4 residue pairs were identified. A boolean value was then created, describing whether 

the residue of interest was among these residues. 

Normalisation of coevolution-based features 
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For our data, the mean MI coevolution values were found to decrease with an increasing 

number of homologues (Figure 5-3). For both MI and DI, the standard deviation of the 

values decreased with the number of homologues (Figure 5-3). To minimise these effects, 

we normalised the coevolution features described above between 0 and 1 within each 

TMD before the application of statistical analyses or machine learning.  

 

Homologues and evolutionary sequence conservation (3 features) 

n_homologues. The number of homologues in the MSA. 

conservation. Conservation was assessed based on the Shannon entropy (Sentropy) as 

follows: 

𝑆𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑖 log 𝑝𝑖

20

𝑖=1

 

conservation = -Sentropy + 3 

 

where pi represents the observed frequency of amino acid i in the given MSA column. 

Conservation thus takes positive values that increase with a decreasing rate of evolution. 

cons4mean. Mean conservation of the three residue positions i, i-4 and i+4. 

 

Polarity (6 features) 
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polarity. Polarity was calculated for each position in the MSA. The PSSM of amino acid 

frequencies was first adjusted to exclude gaps, ensuring that the sum of the amino acid 

frequencies was 1. The proportion of each residue type was multiplied by the respective 

value in the GES (Engelman) hydrophobicity scale [142]. The GES scale was chosen as 

it offered consistently high performance during THOIPA development and validation. The 

final polarity score represented the sum of these products for all 20 residues. According 

to the GES scale, higher values correspond to higher polarity (e.g. positions rich in Lys 

or Glu). 

relative polarity. Polarity at position i divided by the mean polarity of the 6 surrounding 

residues (i-3 to i+3, excluding i).  

polarity1mean, polarity4mean. Mean polarity of three positions i, i-x, and i+x, where x 

is equal to one, or four. 

polarity3Nmean, polarity3Cmean. Mean polarity of the 3 N-terminal and 3 C-terminal 

residues relative to the residue of interest, respectively.  

 

Presence or absence of helix interaction motifs (2 features) 

GxxxG. A boolean variable describing whether a given residue participates in a GxxxG 

motif. 

SmxxxSm. A boolean variable describing whether a given residue participates in a 

(small)xxx(small) motif, with small residues defined as Gly, Ala, Ser or Cys. 
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Amino acid and di-peptide composition (27 features) 

A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, CS, QN, KR, DE, LIV. The 

evolutionary profile (position-specific scoring matrix, PSSM) comprised the fraction of 

each residue at that position in the multiple sequence alignment (MSA). In addition, the 

propensities for residue groups with highly similar properties were combined, such as 

positively charged (KR), negatively charged (DE), strongly polar uncharged (QN), and 

large aliphatic (LIV) residues. For example, the feature “LIV” is the combined fraction of 

Leu, Ile, and Val residues at that position in the multiple sequence alignment. 

mass. Mass of the amino acid in the TMD of interest, taken from AAindex [236]. 

branched. A boolean variable indicating whether or not a residue is classified as a β-

branched amino acid, according to AAindex [236]. β-branched residues comprised Ile, 

Val, and Thr. 

 

Structural properties (2 features) 

residue depth. Relative position of the residue in the TMD, where 1 represents a central 

residue, and 0 represents either the most N-terminal or C-terminal residue. This was 

rounded to one significant figure (0, 0.1, 0.2 etc) to prevent our machine learning method 

from remembering exact residue positions, rather than learning general interface 

properties. 

n_TMDs. The number of TM helices in the full protein, as predicted by Phobius [237]. 

This variable can take the following values: 0, 1, 2, 3, and 4. For the training dataset of 

well-studied membrane proteins, the value 0 indicated an erroneous prediction by 
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Phobius that the sequence encoded a soluble protein. The values 1, 2 and 3 represent 

the predicted number of TM helices, and 4 represents the prediction of 4 or more TM 

helices in the protein. 

 

5.1.2 Best overlap (BO) validation 

During THOIPA development, we aligned our validation method to the goal of predicting 

the small number of key residues involved in homotypic TMD interactions. This is 

especially appropriate for ToxR data, where a few key residues were usually mutation-

sensitive, and the remaining residues comprise a noisy background. The validation 

method required the following properties: 

1) to measure performance in identification of top interface residues within a TMD (rather than 

accuracy for all residues) 

2) to indicate the number of top residues at which performance is best 

3) to give a measure of individual performance for each TMD 

4) to give a measure of overall performance for a dataset that applies equal weights to each TMD, 

rather than to each residue 

Such validation is complicated by the wide range in TMD lengths, which varied from 15 

to 29 residues. Standard statistical analyses based on p-values were also unsuitable due 

to the small sample size in a single TMD (~20 residues). We therefore developed our own 

validation method that fulfilled all the above requirements. It is based on the overlap of 

two groups of selected residues from the TMD: 

1) the sample of residues corresponding to the top (top 1, top 2, top 3, etc) residues according to 

experimental data  

2) the sample of residues corresponding to the top (top 1, top 2, top 3, etc) residues according to a 

predictor 
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The method we refer to here as best overlap (BO) validation has been rigorously tested 

using randomly generated predictions. It is illustrated by the following example where we 

validate THOIPA prediction against experimental ToxR data represented by disruption 

after mutation (interface score). Dark shading indicates high disruption, or high THOIPA 

score. 

 

     
 

We first ranked the experimental and prediction scores, where 1 represented the most 

important residue for the TMD interaction. 

 

  
 

We assessed the overlap in residues between the experimental and prediction data for a 

particular sample size. The sample size represented the number of “top” residues 

examined according to the experiment or predictor. For example, at sample size 5, we 

determined how many of the top 5 residues according to experimental data were among 

the top 5 predicted by THOIPA. We calculated the observed overlap, and the expected 

overlap by random chance as follows 

𝑓 = ⁡
𝑛

𝑠
 , 𝑟 = ⁡

𝑠

𝑙
 

where f is the observed fraction of overlapping residues, r is the expected random fraction 

of overlapping residues, n is the observed number of overlapping residues at that sample 
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size, s is the sample size, and l is the length of the TMD. The performance is calculated 

as follows:  

𝑝 = ⁡𝑓 − 𝑟 

where p is simply the fraction of correctly predicted (overlapping) residues, minus the 

fraction expected by random chance. This is visually demonstrated below for sample 

sizes 1 to 4, where the “overlap” row represents whether the experiment and predictor 

have an overlap at that position: 

 

 

 

 

A plot of f, r and p over the entire TMD length of a single protein shows that the random 

values rise quickly, limiting the possible performance above random.  
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The accuracy of the calculated random scores is confirmed by processing shuffled 

prediction values (above right). The performance of shuffled predictions clearly conforms 

to calculated random values. For datasets of multiple proteins, we typically plotted the 

performance above random, p (observed – random), for sample sizes of 1 to 10.  

 

To visualise the overall performance for a dataset of multiple TMDs, we typically 

calculated the mean performance value for all proteins in the dataset at each sample size. 

As a performance value for individual TMDs or a dataset, we took the area under the 
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curve of p for the desired sample size (e.g. area under the BO curve from 1 to 10, 

AUBOC10). Considering that there were approximately 6.5 interface residues per TMD 

in our datasets, a smaller sample size (e.g. AUBOC6) is most appropriate. However, we 

show AUBOC10 values here to avoid bias against the structural predictors TMDOCK and 

PREDDIMER, whose performance in BO-curves tended to peak at a higher sample size 

than THOIPA.   
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5.2 Appendix B: Supplementary Figures 

 



106 

 

 



107 

 

 



108 

 

 

Figure 5-1: A comparison of interface scores (see Appendix A Supplementary Methods), 
designated interface residues, prediction scores and their evolutionary and physical 

properties.  Darker shading indicates higher values for the interface score (see Appendix 
A Supplementary Methods), interface (boolean value based on >0.24 disruption or 
<3.5 Å heavy atom distance), PREDDIMER and TMDOCK scores (as calculated from 
closest heavy-atom distances in the top structures and normalised from 8 Å to 2.5 Å; 
values of 8 Å and above correspond to 0, and values 2.5 Å and below correspond to 1), 
THOIPA score (derived from leave-one-out validation and normalised from 0.15 to 0.5), 
LIPS score (boolean value describing participation in the helix face with the highest 
conservation and polarity), conservation (normalised from 1.5 to 3), relative polarity 
(normalised from 0.5 to 2.5) and coevolution (DImax, normalised from 0 to 1). A hyphen 
(-) indicates TMD positions truncated by TMDOCK, for which there was no structural 
prediction. For TMDs of the X-ray dataset, a star (*) in the interface score indicates 
residues that were involved in heterotypic TMD interactions (heterotypic contacts). 
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Figure 5-2: Analysis of residue features associated with interface residues, within each 
dataset separately. 
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Figure 5-3: Relationship between coevolution values and the number of homologues.  

This figure justifies the use of normalised coevolution values in the statistical analyses 
and machine learning. Values were normalised was conducted within each TMD 
described in the SI Methods. (A, B) Raw data for MI and DI values at each residue position, 
plotted against the number of homologues. The number of homologues is a discrete value 
shared by all residues in a TMD. (C, D) The mean MI values within each TMD are 
negatively correlated to the number of homologues. (E, F) The standard deviation of MI 
and DI values within each TMD is negatively correlated with the number of homologues. 
Due to these factors, the normalisation of coevolution values within each TMD was 
necessary before analysis. 
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Figure 5-4: Coevolution of contacting (interface) residues in the NMR and X-ray datasets 

is biased by the “neighbour effect”. (A) Schematic illustration comparing the calculation 
of retrospective and predictive coevolution values. Retrospective methods require a 
known interface and thus can compare overall coevolution values between interface and 
non-interface residues. Predictive methods calculate the mean or maximum of pairwise 
values, involving any residue of interest[172]. A previous retrospective study [56] had 
proposed that in TM homodimers, coevolution is higher for interface than non-interface 
residues. This conclusion was drawn from an analysis comparing mean pairwise DI of 
contacting residue pairs to the mean pairwise DI of non-contacting residue pairs. In the 
previous study, non-contacting residues separated by up to 8 residues in sequence were 
considered. When we applied this method to our own NMR and X-ray dimers, we noticed 
a few effects and biases that compromised the retrospective evolution approach. (B) 
The neighbour effect. Coevolution scores are intrinsically higher for residues being close 
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in the protein sequence (i.e., at distances of 1 or 2), or close in space at α-helical 
periodicity. The relationship between the separation distance and coevolution scores 
was calculated using the MI and DI scores from the homotypic TMD dataset. The helical 
pattern followed by both scores shows good correspondence to that previously 
described for soluble α-helices [173]. Residues are aligned with the classical heptad 
motif (abcdefg), where a is the reference residue. Neighbours in sequence of the residue 
of interest, a, occupy positions b (direct neighbourhood) and c (separated by one 
residue). Direct neighbours of a in space comprise positions d and e, assuming perfect 
α-helicity. (C) There is a clear difference in the distribution of the distances separating 
contacting (interface) or non-contacting (non-interface) residue pairs. We noticed that 
the number of contacting residues was much smaller than the number of non-contacting 
residues. Thus, the distance in the sequence between contacting residues (median=2) 
was half the distance between non-contacting residues (median=4). Since the 
coevolution values are dependent on residue distance (part B) shorter distances 
between interface residues artificially raise coevolution values of interface residues. 
Interface residues generally appear more co-evolved, even for dimer configurations that 
are not found in the organism of interest. D) Mean DI coevolution values for all TMDs in 
the NMR and X-ray datasets. The mean DI was calculated between all contacting 
(=interface) and non-contacting (=non-interface) residue pairs as previously described 
[56]. For each TMD, we also calculated the score for a randomly chosen interface after 
substituting its contacting amino acids by contacting residue positions of an unrelated 
TMD. E) Mean values of the data shown in part D. Comparing original and randomly 
chosen interfaces shows that a proportion of the higher coevolution scores in the original 
interfaces is due to the fact that average distances between contacting residue pairs are 
smaller than those of non-contacting ones, i.e., the neighbour effect. Retrospective 
analyses comparing coevolution of interface and non-interface residues (compare red 
and light blue bars) are therefore biased. The comparison of real and randomly chosen 
interfaces leads to a reduction of this bias. However, with only 33 NMR and X-ray TMDs 
available, it is not certain if such randomisation can completely remove the bias inherent 
in retrospective analyses. In comparison, analyses based on predictive coevolution 
measures (Figure 2-2, Figure 5-2, Table 2-2) offer a far more rigorous comparison of 
residue properties between interface and non-interface residues.  
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Figure 5-5: Individual TMDs have unique structural requirements, leading to high 

variability in residue properties of interfaces.  (A) Percentage of TMDs of the homotypic 
TMD dataset (ETRA, NMR and X-ray) where the mean value of a given residue property 
is higher for interface or non-interface residues, respectively. (B) Values as in part A, but 
calculated for each dataset separately. 
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Figure 5-6: Number of valid homologues for TMDs of each dataset. The mean number of 
homologues was 201, 154, and 1040 for the ETRA, NMR and crystal datasets respectively. 
Filtering and redundancy reduction of homologues. Violin plots were constructed from the data 
as described in Figure 2-2. 
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Figure 5-7: Validation of THOIPA performance towards the ETRA, NMR and X-ray datasets.  
The underlying residue predictions are identical to those used in Fig. 6, however datasets were 
validated separately. For each dataset, the precision-recall curve (and AUC barchart) is shown 
on the left, and the fraction of correctly predicted interfaces (and associated barchart at cut-off = 
0.5) is shown on the right. (A) ETRA TMDs. (B) NMR TMDs. (C) X-ray TMDs. 
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Figure 5-8: Comparison of THOIPA and LIPS performance.  Validation is shown for the full 
TMD homodimer dataset. LIPS gives binary prediction results (interface or non-interface) that 
could not be analysed with precision-recall curves. Instead, LIPS predictions were validated 
against the interface residues from experimental data using the Matthews correlation coefficient 
(MCC). Higher values indicate stronger prediction. The MCC for LIPS was 0.06 (dotted line). For 
THOIPA, the MCC depended on the chosen threshold. For most THOIPA thresholds (0.2 to 0.8), 
the THOIPA performance is superior to LIPS. The maximum MCC achieved by THOIPA is 0.23, 
at a threshold of 0.58. Note that this threshold is far higher than the average THOIPA prediction 
(0.31, due to machine learning with 31% of the residues classified as interface residues). The 
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MCC analysis therefore provides further evidence that THOIPA performance is best at high 
thresholds, corresponding to a small number of key interface residues.  

 

 

 

Figure 5-9: Highly conserved residues are associated with low MI and high DI coevolution 
scores.  For each residue in the homotypic TMD dataset, conservation was plotted against 
coevolution, represented by MI4mean and DI4mean (see SI Methods), before normalisation of 
values within each TMD. (A) Scatterplot of MI values against conservation. Highly conserved 
residues (top 10%) are shown in a darker colour. (B) Barchart comparing the most highly 
conserved residues with all other residues, in respect to MI4mean values. (C) Scatterplot of DI 
values against conservation. (D) Barchart comparing the most highly conserved residues with 
all other residues, in respect to DI4mean values. Means ± SEM. Statistical significance was 
tested using a bootstrapped t-test.  
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5.3 Appendix C: Supplementary Tables 

Table 5-1: Accession and reference for TMDs with known NMR structures 

 

 

Table 5-2: Composition of the CompData dataset.  For 101 -helical transmembrane proteins PDB 
IDs and chain names are given. 

1FFT:A 1FFT:B 1FFT:C 1H2S:A 1JB0:A 1JB0:F 1JB0:I 1JB0:K 1JB0:M 1JB0:X 

1KF6:C 1KF6:D 1KQF:B 1KQF:C 1LGH:A 1LGH:B 1LNQ:A 1M56:B 1M56:C 1M56:D 

1NEK:C 1NEK:D 1NKZ:A 1OTS:A 1Q16:C 1Q90:A 1Q90:B 1Q90:G 1Q90:N 1Q90:R 

1RH5:A 1RH5:B 1RZH:L 1RZH:M 1S5L:B 1S5L:C 1S5L:D 1S5L:E 1S5L:F 1S5L:H 

PDBa protein (accb) reference 

1afo  GpA [P02724] [1] 

2hac CD3ζζ [P20963] [2] 

2j5d  BNIP3 [Q12983] [3] 

2jwa  ErbB2 [P04626] [4] 

2k1k  EphA1 [P21709] [5] 

2l34  TYROBP [O43914] [6] 

2k9y  EphA2 [P29317] [7] 

2l9u  ErbB3 [P21860] [8] 

2loh  APP [P05067] [9] 

2l6w  PDGFRB [P09619] [10] 

2lcx  ErbB4 [Q15303] [11] 

2m0b  EGFR [P00533] [12] 

2lzl  FGFR3 [P22607] [13] 

2mk9  TLR3 [O15455] [14] 

2n90  NTRK1 [P04629] Nadezhdin et al. unpublished 

a Accession number (PDB) is taken from the PDB database. 
b Accession number (acc) is taken from the UniProt database. 
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1S5L:I 1S5L:J 1S5L:K 1S5L:L 1S5L:M 1S5L:T 1S5L:X 1S5L:Z 1V54:D 1V54:G 

1V54:I 1V54:J 1V54:K 1V54:L 1V54:M 1VF5:B 1VF5:D 1VF5:F 1VF5:G 1VF5:H 

1XL4:A 1XME:A 1XME:B 1YEW:A 1YEW:B 1YEW:C 1ZCD:A 2BHW:A 2BL2:A 2BS2:C 

2FYU:E 2FYU:G 2FYU:K 2H88:C 2H88:D 2HYD:A 2IH3:C 2IUB:A 2J58:A 2J8S:A 

2NQ2:A 2NWL:A 2O01:G 2O01:H 2O01:I 2O01:J 2O01:L 2OAR:A 2Q67:A 2QTS:A 

2R6G:F 2RDD:B 2VL0:A 2VV5:A 2YVX:A 3CX5:C 3CX5:D 3CX5:H 3CX5:I 3D31:C 

3EAM:A          

 

Table 5-3: Composition of the ClassData dataset.  For 171 -helical transmembrane proteins PDB 
IDs and chain names are given. 

1E7P:F 1FFT:B 1FFT:C 1FX8:D 1H2S:A 1JB0:A 1JB0:F 1JB0:L 1KQG:E 1KQG:F 

1L0V:C 1L0V:D 1NTK:C 1NTK:D 1NTK:E 1NTK:G 1NTK:J 1NTK:K 1P84:T 1P8I:A 

1RWT:F 1SIW:F 1T9W:A 1ZCD:A 2ACZ:G 2B6P:D 2FBW:C 2FBW:D 2J7A:F 2NUU:A 

2NWL:A 2OAR:D 2OCC:A 2OCC:B 2OCC:C 2OCC:D 2OCC:G 2OCC:I 2ONK:D 2R9R:D 

2VPY:G 2VV5:D 2WX5:H 2WX5:L 2YEV:B 2ZW3:D 3B9W:A 3HD7:A 3HD7:B 3I5D:A 

3KCU:D 3KDP:D 3M6E:A 3MP7:B 3NCY:B 3NE5:A 3ODU:A 3OR6:D 3QNQ:A 3QS4:A 

3RKO:J 3RKO:L 3RKO:M 3SYP:D 3T9N:D 3TDR:D 3TIJ:A 3UX4:A 3WME:A 3WU2:C 

4A01:A 4BEM:J 4BPM:A 4BRB:A 4BW5:A 4C9Q:A 4CZ9:A 4DXW:D 4EV6:D 4FTP:A 

4FZ0:A 4GD3:A 4GD3:T 4GPO:A 4GX0:E 4H1D:A 4H1W:A 4HE8:D 4HEA:A 4HG6:B 

4HKS:E 4HUQ:T 4I0U:D 4IFF:A 4J72:A 4KHZ:F 4KHZ:G 4KJS:D 4LLH:A 4LMK:D 

4LP8:D 4LTO:D 4M8J:A 4MND:A 4N4Y:B 4N7W:A 4O93:A 4O93:D 4OR2:A 4P6V:B 

4P6V:C 4P6V:E 4P6V:F 4PHZ:E 4PHZ:F 4PHZ:G 4PIR:A 4PJ0:B 4PJ0:D 4PL0:A 

4PV1:A 4PV1:C 4PV1:D 4PXF:A 4Q4A:A 4Q7C:A 4QNC:A 4QTN:A 4R0C:A 4R6Z:D 

4R9U:A 4RDQ:D 4RFS:S 4RI2:A 4TL3:A 4TNW:D 4TPJ:A 4TQU:M 4TQU:N 4TSY:A 
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4U4W:A 4U5B:D 4U9N:A 4WD7:D 4WGW:A 4WIS:A 4XK8:H 4XU5:A 4Y7K:D 4YCR:A 

4YMK:D 4YMS:D 4YTM:C 4YZF:A 4YZI:A 4Z7F:A 4Z90:D 5A43:A 5A63:A 5A63:B 

5A63:C 5A63:D 5BW8:C 5C3L:A 5C3L:B 5C3L:C 5C65:B 5C78:D 5DJQ:B 5DJQ:C 

5EKE:D          

 

Table 5-4: Composition of the independent TestData dataset.  For 36 -helical transmembrane 
proteins PDB IDs and chain names are given. 

3JCU:H 3JCU:I 3JCU:T 3JCU:W 3JCU:X 4Y28:K 5AZD:A 5B0W:A 5B1A:J 5B1A:K 

5B1A:L 5B1A:M 5B57:A 5B5E:A 5B5E:M 5B5E:T 5B5E:Z 5BN2:A 5BQG:A 5C2T:D 

5DJQ:N 5EG1:A 5EIY:A 5FL7:K 5HV9:A 5I32:A 5JJE:B 5JNQ:A 5KAF:Y 5L22:B 

5MKK:A 5MRW:C 5MRW:D 5UL7:A 5X3X:Q 5X5Y:G     
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CHAPTER 6. LIST OF SYMBOLS AND ABBREVIATIONS 

TM   transmembrane 

TMPs   transmembrane proteins 

PPI   protein-protein interaction 

AUC   area under curve 

SASA   solvent accessible surface area 

RSA   relative solvent accessibility 

Mem   transmembrane 

Cyto   cytoplasmic segment 

Extra   extra-cellular segment 

MSA   multiple sequence alignment 

RF   Random Forest 

PSSM    position-specific scoring matrices 

MI   mutual information 

DI    direct interacting 

Rp   relative position 

Y2H   Yeast two hybrid 

TAP   Tandem affinity purification 

ETRA   E. coli TM reporter assay 

GPCR   G-protein coupled receptor  

GpA   glycophorin A 

IPTG   isopropyl β-D-1-thiogalactopyranoside 

lacZ   gene coding for β-galactosidase 

LB   lysogeny broth 

malE   maltose binding protein E (gene encoding MBP) 

MBP   maltose binding protein 

MAM   meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu 

NMR   nuclear magnetic resonance 

PDB   protein data bank 

PDBTM  Protein Data Bank of Transmembrane Proteins 

TrkC   receptor tropomyosin-related kinase C 
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RPTPs  receptor-like protein tyrosine phosphatases 

SDS   sodium dodecyl sulfate 

TMD   transmembrane domain 

TM   transmembrane  
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CHAPTER 7. PUBLICATIONS ARISING FROM THIS 

THESIS 
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