
Synchronization between Run-Time and Design-Time View of Context-Aware
Automotive System Architectures

Philipp Obergfell∗, Christoph Segler∗, Eric Sax† and Alois Knoll‡
∗BMW Group Research, New Technologies, Innovations, Parkring 19-23, 85748 Garching bei München

{philipp.obergfell, christoph.segler}@bmwgroup.com
†Karlsruhe Institute of Technology, Engesserstraße 5, 76131 Karlsruhe, eric.sax@kit.edu

‡Technical University of Munich, Boltzmannstr. 3, 85748 Garching bei München, knoll@in.tum.de

Abstract—In contrast to current automotive system architec-
tures, future architectures will continuously gain knowledge at
run-time with the help of machine learning techniques. For
making this knowledge visible to the developer, synchroniza-
tion mechanisms between run-time systems and design-time
models have to be introduced. In this paper, we propose a
framework for continuously updating design-time models with
learned knowledge from the run-time system. The core of our
framework is a system architecture with a gateway which
retrieves data from different car functions. On this gateway,
feature selection algorithms are implemented in order to select
a data subset that describes the nominal behavior for the usage
of car functions. Considering the resulting nominal model as
baseline, the run-time system is able to detect violations of
the nominal behavior. For assessing these violations from the
perspective of a developer, we connect the run-time system
with the design-time models by means of a semi-automatic
feedback loop. For the evaluation, we test our approach on an
exemplary scenario based on the function of the window lever
by using real car data.

1. Motivation

In order to learn the nominal behavior of an user, we first
have to identify the context in which a function is used by
the user. Context can be characterized as "any information
that characterizes the situation of an entity. An entity is a
person, place, or object that is considered relevant to the
interaction between a user and an application, including
the user and application themselves" [1]. Some context
information for the usage of a car function are caused by
functional dependencies and are therefore always present.
As an example, the usage context of a cruise control function
is correlating to the status of the engine because the cruise
control is functionally depending on a running engine. In
contrast to this interaction, some context information are
only caused by the behavior of the user, e.g. the context for
using the seat heating includes the car’s inside temperature.

In this paper, we apply machine learning techniques on
automotive system architectures for deriving a model that
describes the nominal behavior when using a car function.
This model is considered as the nominal model. On this

Run-Time View Design-Time View

Gateway with
Machine Learning Capabilities

Feature Selection

for Function Context
2

Data Subset

ECU SW-C

Si
gn

al
s

1

ECU SW-C

Si
gn

al
s

Learning

Nominal Model
3

Nominal Model

4

Anomaly

5
Design Models

of Functions

6

Developer

7

SW Update

8

Figure 1: Proposed context aware framework for synchro-
nization between run-time and design-time in automotive
system architectures

basis, it is possible to continuously compare the learned
nominal model with the actual behavior of the user in order
to detect anomalies that might give indications for potential
threats. For making the anomalies visible to developers, we
suggest to automatically update the design-time models and
deploy possible mitigation techniques.

2. Approach

Within our framework (shown in Figure 1), we propose
an approach that consists out of five steps within the run-
time view and three steps within the design-time view.
The overall goal is to detect anomalies compared to the
nominal use of functions and reflect those using design-time
models within the development department. On this basis,
the assessment of possible threats for users, their mitigation,
and deployment on the run-time system are supported.

2.1. Run-Time View

Our approach is based on a conventional automotive
system architecture. This architecture implements functions
using software-components (SW-C) that are deployed on a
topology of electronic-control-units (ECUs). Each function
creates and consumes data which represent features, like
temperature, speed, etc. 1 . For identifying features that

978-1-5386-4446-1/18/$31.00 ©2018 IEEE
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:36:00 UTC from IEEE Xplore. Restrictions apply.

are relevant for the context while using a car function, we
initially collect all car data over a gateway. For a single car
function, reasoning about the context is challenging because
just a subset of the data is relevant. In the field of machine
learning this is known as the "curse of dimensionality" [2]
and leads to the challenge of selecting only the relevant
data subset. In order to reduce the dimensionality, we apply
a feature selection algorithm within the gateway 2 . Based
on the derived relevant features, a model of the nominal
behavior when using a car function is learned 3 . This
model is then send from the gateway to the ECU that
controls the corresponding function 4 . From now on, this
ECU will retrieve context-relevant data from the gateway
in order to compare their current value with the received
nominal model. In the case of violating the nominal model, a
notification is send to the OEM’s backend infrastructure 5 .

2.2. Design-Time View

In the design-time view, we automatically generate
design-time models that reflect the behavior of a car function
when an anomaly was detected 6 .

We generate design-time models in the form of state
machines that reflect the occurrence of an anomaly by means
of a transition between two states. In this respect, the initial
state represents the nominal behavior when using a car
function whereas the final state (anomalous state) represents
the non-nominal behavior that was detected.

Based on the generated design-time models, the de-
veloper of the corresponding function is notified and in
charge of assessing the anomaly. This assessment includes
the expertise of safety as well as security engineers. The
safety engineers have to classify if the anomalous state still
illustrates a safe state 1. The task for the security engineers
is to derive whether possible security attacks lead to the
transition into the anomalous state. Both assessments may
consequence in the selection of mitigation approaches 7 .
Based on the mitigation approach, software updates are
deployed 8 .

3. Evaluation

To evaluate our approach, we learn the nominal behavior
when using the driver’s window lever. We assume that a
subset of all features in the car is correlating to the status
of the driver’s window (based on the driver’s behavior). We
distinguish between the window states fully open, partly
open, and closed. Using feature selection, we identify the
relevant data subset and then describe the correlation of the
single features to the state of the driver’s window. On this
basis, we learn a model for the nominal behavior when
using the driver’s window lever. For example, this model
could assert that the window is only opened below a certain
speed. In the case of non-nominal behavior (e.g. opening
the window at high speed), we assume to detect the non-
nominal situation when comparing it to the nominal model.

1. In this respect, we refer to the term of a safe state which is introduced
in the ISO 26262 [3].

3.1. Evaluation Setup

For the evaluation, we collected data from a current
generation BMW 5 Series which was driven by different
drivers for eight months in order to learn a model for the
nominal behavior when using the driver’s window lever. The
drivers have not been instructed how and when to use the
window lever. The non-nominal situations were recorded
with the same car within a test drive where we provoked
anomalies multiple times by opening the window at high
speed. We collected the data that contains the anomalies and
tested the nominal models within the lab. For the detected
anomalies, we imported the anomalous situation in a model-
based tool that automatically creates design-time models in
the form of state machines for the assessment by developers.

For step 1 in our approach, we used a data logger for
collecting all data which was send as signal via the car’s
internal CAN-Buses. The dataset includes ~2000 features
and ~46000 instances with a sampling rate of ~50 seconds.
After labeling, data preprocessing, and removing static fea-
tures, ~1350 features and ~44000 instances remained. For
selecting features which correlate to the status of the driver
window, we used the supervised feature selection algorithm
fisher score [4], [5] on every second instance from our
dataset 2 .

3.2. Evaluation Results

Our evaluation focuses on the top 25 features from the
output of the feature selection algorithm (in future we want
to investigate this threshold). From these 25 features, we
discarded nine features since they are functionally dependent
on the function of the window lever and do not contain
any information about the context ("fire" features [6]). For
the 16 remaining features, we created independent nominal
models in which the correlation between the window status
and each feature is described. Within this paper, the set of all
independent nominal models is considered as the nominal
model for the context 3 .

Description of the independent nominal models: Ten
of the independent nominal models describe a correlation
to the speed of the car with the only difference that the
value is provided by different sensors. One of these models
is illustrated in Figure 2 and described later on. Besides
the correlation to the speed, one model is describing the
correlation to the current gear which is depending on the
car’s speed. Another model is describing the correlation to
the status of an engine function which is only available a few
minutes after starting the engine and one model describes
the correlation to the quality of the location tracking. These
two models are present because the test car is parked in
an underground car park where the driver has to open the
window and place his ID card on a card reader to leave
the car park. The corresponding features correlate because
in this situation the specific engine function is not yet
available and the satellite reception for tracking is bad and
due to the card reader the window has to be opened by
the driver. Another model describes the correlation to the

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:36:00 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Window status in correlation to car’s speed for
nominal situations (black dots) / non-nominal situations
(orange crosses within circle)

parking assistant which shows that the function was only
used when the window was closed. The penultimate model
describes the correlation to the road type. In brief, this model
describes that the window is rarely opened while traveling
on a highway. The last model describes the correlation
to a debug message. This circumstance derives from the
development level of the test vehicle.

In Figure 2, the car’s speed and its correlation to the
window status is visualized. Each black dot represents one
instance of the recorded nominal behavior 2. As seen in
Figure 2, the maximum speed with a fully or partly opened
window is 102.7 km/h in the nominal situations. Therefore,
the nominal model asserts that opening the window occurs
between the absolute speed of 0 and 102.7 km/h. In this
case, opening the window above a speed of 102.7 km/h is
considered as anomalous behavior of the user. Using these
thresholds on the non-nominal trace 4 , we can detect an
anomaly from the test drive 5 . In Figure 2, each orange
cross within the circle represents one instance of the window
status in the non-nominal situation and the corresponding
speed that violates the nominal model. As seen in Figure 2,
the provoked situation will lead to a detected anomaly.
Based on the illustrated data, we triggered an import func-
tion that is implemented within the model-based engineering
tool PREEvision [7]. This import function read the detected
anomaly and updated the design-time models for the win-
dow lever in order to reflect the anomalous situation 6 , 7 .
These models can be used to asses whether possible threats
regarding safety or security are linked with the detected
anomaly and to initiate mitigation approaches in the form
of software updates 8 .

4. Conclusion

In this paper, we present a framework for continuously
updating an existing design-time model with newly gained
knowledge from the run-time system. The core of our frame-

2. For a better illustration of the data, each observation is randomly
distributed over the y-axis within each class and plotted with an opacity of
50%.

work is illustrated by a system architecture that is equipped
with a gateway for retrieving all data created by different
car functions. On this gateway, feature selection algorithms
are implemented in order to identify relevant correlations
between different car functions and car data. Using this
information, the system is able to learn the context in which
certain car functions are used. We considered this as nominal
behavior of the user. Vice-versa, the system is capable to
detect non-nominal behavior during run-time. In order to
react to detected non-nominal behavior, we developed a
semi-automatic feedback loop between the run-time system
and the design-time models. We evaluated our approach
on real car data and showed the capability on detecting
anomalies that are caused by non-nominal behavior of the
user.

Within our research project [8], the intended, final eval-
uation set up for our test car is not yet present. Here, the
learning of nominal models for car functions and the detec-
tion of anomalies would happen at run-time. Currently, we
collect the data in the form of traces. The feature selection
algorithm itself is running in the lab on test hardware and
selecting the data subset for the nominal models.

In future work we want to implement our approach to
operate at run-time in the car and explore more complex
functions and scenarios. Furthermore, we want to investigate
the threshold for the number of selected features considering
the tradeoff between performance and accuracy. We also
want to refine the learning algorithm for the creation of the
nominal behavior model and evaluate different approaches.

References

[1] A. K. Dey, “Providing architectural support for building context-
aware applications,” Ph.D. dissertation, College of Computing, Georgia
Institute of Technology, 2000.

[2] R. Bellman, Dynamic Programming, 1st ed., ser. Dover Books on
Computer Science. Princeton, NJ, USA: Princeton University Press
and Dover Publications, 1957.

[3] ISO, “Road vehicles–Functional safety (ISO 26262),” 2011.

[4] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection,” ACM Computing Surveys, vol. 50, no. 6,
pp. 1–45, 2018. [Online]. Available: http://arxiv.org/pdf/1601.07996v4

[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed.,
ser. A Wiley-Interscience publication. New York NY u.a.: Wiley,
2001.

[6] Z. Zhao, J. Wang, S. Sharma, N. Agarwal, H. Liu, and Y. Chang,
“An integrative approach to identifying biologically relevant genes,”
in Proceedings of the 2010 SIAM International Conference on Data
Mining, S. Parthasarathy, B. Liu, B. Goethals, J. Pei, and C. Kamath,
Eds. Philadelphia, PA: Society for Industrial and Applied Mathemat-
ics, 2010, pp. 838–849.

[7] “Preevision,” https://vector.com/vi_preevision_de.html, accessed:
2017-02-10.

[8] S. Kugele, V. Cebotari, M. Gleirscher, M. Hashemi, C. Segler,
S. Shafaei, H.-J. Vögel, F. Bauer, A. Knoll, D. Marmsoler, and H.-
U. Michel, “Research challenges for a future-proof e/e architecture - a
project statement,” in Informatik 2017, ser. GI-Edition Lecture Notes
in Informatics Proceedings, M. Eibl and M. Gaedke, Eds. Bonn:
Gesellschaft für Informatik, 2017.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:36:00 UTC from IEEE Xplore. Restrictions apply.

