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Abstract

Symmetry-broken states arise naturally in oscillatory networks. In particular, the
ubiquitous occurrence of such symmetry-broken cluster patterns in nature still re-
mains unclear. It is known that the dynamics of many such oscillatory systems is
captured by ensembles of Stuart-Landau oscillators. Starting from small ensembles,
we investigate clustering and chimera states in globally coupled Stuart-Landau sys-
tems. For just two oscillators, we show where in parameter space symmetry-broken
states exist, and how they bifurcate. Doubling the number of oscillators, we further
discuss how such cluster states bifurcate, and eventually turn into so-called chimera
states, states of coexisting coherence and incoherence. We report that these states
with partially broken symmetry, in which two oscillators remain synchronized, have
di�erent set-wise symmetries in the incoherent oscillators. In particular, some are
and some are not invariant under a permutation symmetry on average. Using sym-
metry detectives, this allows for a classi�cation of di�erent chimera states in small
networks. Adding more oscillators to the ensemble, we elaborate how the observed
2-cluster states crowd in phase space. Using persistence, we discuss how this crowd-
ing leads to a continuous transition from balanced cluster states to the synchronized
solution via intermediate unbalanced 2-cluster states. These cascade-like transitions
emerge from what we call cluster singularities. At these codimension-2 points, the
bifurcations of all 2-cluster states collapse and the stable balanced cluster state bi-
furcates into the synchronized solution supercritically. We con�rm our results using
numerical simulations, and discuss how our conclusions apply to spatially extended
systems.
In the thermodynamic limit, we present a universal characterization scheme for
chimera states, applicable to both numerical and experimental data sets. The scheme
is based on two correlation measures, also called order parameters, that enable a
meaningful de�nition of chimera states as well as their classi�cation into three cat-
egories: stationary, turbulent and breathing. We demonstrate that this approach
is both consistent with previously recognized chimera states and enables us to not
only classify but also to detect states as chimeras which have not been categorized
as such before.
The idea of extracting order parameters can also be implemented in a data-driven
way. We discuss this by using di�usion maps, a nonlinear manifold learning tech-
nique, and elaborate how comparing time series using di�usion maps yields what we
call intrinsic variabilities. Using several examples, we show that such variabilities
may be one-to-one with the spatial coordinate on which the dynamics are simu-
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lated, or the heterogeneous parameters contained in the system. Tuning the kernel
scale of the di�usion maps, coarse descriptions of dynamical phenomena can be ob-
tained, and, in particular, we demonstrate that for chimera states one can employ
this method to extract variabilities similar to order parameters. Taking overlapping
time chunks, we outline how this approach can further be used to extract the at-
tracting manifold from the data. All these extracted variabilities may be used as
new coordinates, spanning an �emergent� or �equal� space in which the dynamics
can be embedded or visualized, with an eye towards eventually creating reduced
models in these variables.
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Zusammenfassung

Symmetrie-gebrochene Zustände sind ein häu�ges Phänomen in Netzwerken von
gekoppelten Oszillatoren. Dennoch sind viele Fragen über das Auftreten solcher
Zustände in der Natur immer noch unbeantwortet. Was man jedoch weiÿ ist,
dass sich viele solcher oszillatorischer Systeme auf Ensembles von Stuart-Landau
Oszillatoren abbilden lassen. Beginnend mit einer kleinen Anzahl Oszillatoren
untersuchen wir Symmetrie-gebrochene Systeme wie Chimärenzustände und Clus-
terzustände in Systemen von global gekoppelten Stuart-Landau Oszillatoren. An-
hand von zwei solcher Oszillatoren zeigen wir wo im Parameterraum Symmetrie-
gebrochene Zustände existieren, und wie diese bifurkieren. In Systemen von doppelt
so vielen Oszillatoren untersuchen wir anschlieÿend wie solche Clusterzustände sich
im Parameterraum verhalten. Insbesondere zeigen wir wie eine Sequenz von Bi-
furkationen zu Chimärenzuständen, Zuständen aus koexistierenden kohärenten und
inkohärenten Oszillatoren, führt. Des Weiteren führen wir vor Augen dass diese
Symmetrie-gebrochenen Zustände aus zwei synchronisierten und zwei desynchro-
nisierten Oszillatoren verschiedene Symmetrien aufweisen können: Ihre Attraktoren
können entweder invariant unter einer Vertauschung der beiden inkohärenten Oszil-
latoren sein, oder auch nicht. Deshalb ist es, mit Hilfe von so genannten Symmetrie
Detektiven, möglich solche Zustände in kleinen Netzwerken zu klassi�zieren.
Durch das Hinzufügen weiterer Oszillatoren untersuchen wir wie sich die Attrak-
toren von 2-Cluster Zuständen im Phasenraum verdichten. Mit Hilfe des Persistenz-
Theorems diskutieren wir hierbei wie dieses Verdichten zu einem kontinuierlichen
Übergang von balancierten Clusterzuständen zur synchronen Lösung via unbal-
ancierter 2-Cluster Lösungen führt. Des Weiteren zeigen wir dass diese Kaskaden-
artigen Übergänge aus einer ausgezeichneten Singularität entspringen. An diesem
Kodimension-2 Punkt, welche wir Clustersingularität nennen, kollabieren die Bi-
furkationen aller 2-Cluster Zustände in einen Punkt, und der Übergang von der
balancierten zur synchronen Lösung wird superkritisch. Ferner bestätigen wir un-
sere Ergebnisse durch numerische Simulationen, und diskutieren wie sich unsere
Schlussfolgerungen auf räumlich ausgedehnte Systeme anwenden lassen.
Für Chimärenzustände im thermodynamischen Limit schlagen wir ein universelles
Klassi�zierungsschema vor, welches sowohl auf Simulations- als auch auf Messdaten
anwendbar ist. Dieses Klassi�zierung basiert auf zwei Korrelationsmaÿe, so genan-
nten Ordnungsparametern, welche eine Einteilung solcher Zustände in drei Gruppen
erlauben: Stationäre Chimären, turbulente Chimären und periodische Chimären.
Anhand mehrerer Beispiele zeigen wir dass unser Ansatz konsistent ist mit früheren
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Klassi�zierungen. Überdies ermöglicht diese Klassi�zierung nicht nur eine Einteilung
bestehender Chimärenzustände, sonder ermöglicht auch Zustände, die bisher nicht
als Chimären erkannt wurden, als solche zu kennzeichnen.
Die Extrahierung von Ordnungsparametern kann jedoch auch in einem rein Daten-
getriebenen Ansatz vollzogen werden. Insbesondere diskutieren wir ferner wie man
Di�usion Maps, eine nichtlinear Datenreduktionsmethode, zu diesem Zweck her-
anziehen kann, und erörtern wie durch das Vergleichen von Zeitserien unter Ver-
wendung dieser Methode intrinsische Variabilitäten in den Daten extrahiert werden
können. An mehreren Beispielen legen wir dar wie solche Variabilitäten entweder mit
den räumlichen Koordinaten des Systems korrelieren, oder, für dem Fall dass solche
räumliche Koordinaten nicht existieren, mit den intrinsischen heterogenen Parame-
tern übereinstimmen. Desweiteren können durch das variieren des Skalenparameters
im Di�usion Maps Algorithmus gröbere Parametrisierungen des Systems gewonnen
werden, was eine Extraktion von Ordnungsparametern für Chimärenzustände er-
möglicht. All diese extrahierten Variabilitäten können schlieÿlich als Koordinaten
eines emergenten Raumes herangezogen werden, in dem die Dynamik eingebettet,
visualisiert oder auch modelliert werden kann.
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Chapter 1

Introduction

Recent advances in ariti�cial intelligence allow us to get an impression of how the
human brain is able to master tasks like face recognition, memorizing impressions
and decision making [1�3]. The �nal goal of creating a mathematical model of the
brain with its billions of brain cells and trillions of dendrites, however, still remains
far out of reach [4, 5]. Even a detailed simulation of a single neuron with its di�erent
ion concentrations and membrane potentials requires a signi�cant computational ef-
fort [4]. This complexity creates the need of simpli�ed approaches which are easier
to implement, simulate and interpret.
Using reduced models, however, creates the risk of missing out important features
of the full system. Modeling the brain using networks of just thousands of neurons,
one might obtain poor performance in the above mentioned tasks. Thus, one usually
is anxious for �nding a model small enough to be computationally treatable, but
large enough to capture all the features of interest.
The human brain, however, is by no means homogeneous: all neurons di�er from an-
other by their physiological properties such as the number of links to other neurons or
their intrinsic behavior when unperturbed. In particular, neurons in certain regions
of the brain may show single spikes, separated by a larger window of quiescence,
short bursts of spikes or periodic spiking. These observations led to several math-
ematical models describing such individual neurons, such as the Hodgkin-Huxley
model [6], FitzHugh-Nagumo model [7, 8] or the Hindmarsh-Rose equations [9],
which, among others, serve as building blocks for larger network architectures.
Networks of such neurons and animal brains in general may show a vast variety
of dynamical patterns. In particular, during the sleep phase of animals, the brain
tends to show less active behavior than during the awake state. However, there are
also animals, such as dolphins, crocodiles and certain birds performing migration,
which rest with only one half of the brain at a time, with the other half remain-
ing awake [10]. Such behavior, so called uni-hemispheric sleep, and the respective
patterns in brain activity, attracted much attention in recent years. Another phe-
nomenon which remains an active �eld of research is the onset of epileptic seizures.
There, a large part of the brain spontaneously synchronizes, leading to uncontrolled
muscle contraction of the patient [11]. In both cases, the uni-hemispheric sleep and
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Chapter 1 Introduction

the epileptic seizures, a part of the brain shows quiet or synchronous dynamics,
whereas the other part remains irregular.
In the �eld of nonlinear dynamics, and in particular when considering networks of
coupled oscillators, such patterns have been termed chimera states, in analogy of
the creature in creek mythology consisting of di�erent animal parts [12]. Hereby,
the focus has been on large ensembles consisting of many oscillating units. Such
high-dimensional systems, however, are hard to analyze in more detail, and much of
the mechanisms behind chimera states still remain unsolved.
The splitting up of an ensemble of oscillators into two or more groups in general
is also known as clustering [13]. Similar to chimera states, clustering appears in a
large variety of networks, and a unifying theory of these states is still missing.
The investigation of such phenomena in the brain with its heterogeneity and di�er-
ent lobes is hardly possible. Therefore, we reduce the complexity by applying three
basic assumptions: First, we assume that all neurons are oscillatory. This means, a
single neuron without any input would perform periodic spiking. Second, all neurons
are equal, that is, their spiking amplitude and frequency are identical. And third,
the neurons form a dense network in the sense that each neuron is coupled to all
other neuron symmetrically and with equal weights.
One thus eventually reduces the brain dynamics to that of a fully connected net-
work of identical oscillators. In contrast to simulating the full, biological system,
such a reduction indeed allows to model and hopefully understand the origins of
clustering and chimera dynamics. More importantly, such normal forms of globally
coupled oscillators serve as a good proxy for not only the brain, but for various phys-
ical systems showing oscillatory behavior. Examples range from coupled Josephson
junctions, the �ashing of �re�ies and the chirping of crickets to coupled electrical cir-
cuits and electro-chemical cells [14�16]. Therefore, understanding the mechanisms
behind symmetry broken states in networks of identical oscillators allows to not only
draw conclusions about processes in the brain, but to also explain clustering and
chimeras in many physical processes, e.g. electro-chemical systems. This means,
results obtained from networks of globally coupled limit-cycle oscillators are appli-
cable to any physical, chemical or biological system showing the qualitatively same
dynamical phenomena.
Studying such normal forms, this thesis tries to add to the understanding of clus-
tering and chimera dynamics using a two-fold approach. Starting from minimal
ensembles of oscillators, we investigate the emerging dynamical phenomena with
increasing system size. This facilitates a detailed analysis and understanding of
clustering and chimeras in such small networks, and allows to draw connections to
networks of even in�nitely many neurons. In order to understand and di�erentiate
chimeras in such large networks, however, we use data mining to reduce the dynam-
ics to just one or a view variables, such as order parameters, allowing a classi�cation
of these high-dimensional hybrid states. Finally, we extend our analysis to not only
chimera states but to high-dimensional dynamics in general, and pursue the task of
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�nding suitable embedding variables.
The main results of this two-fold approach, that is from low-dimensional chimeras
and clusters in minimal networks to chimeras in the thermodynamic limit, and the
reduction of high-dimensional chimera states and chaotic states in general to low-
dimensional order-parameters, have been published in [17�20], and the respective
sections in this thesis strictly follow the argumentation of these articles.
The thesis is structured as follows. First, a detailed bifurcation analysis of two
mean-coupled limit cycle oscillators is given. Doing so, we investigate under which
circumstances symmetry broken states, such as cluster states, can arise, and how
they bifurcate. We subsequently extend the analysis to systems of four oscillators.
There, we discuss the emergence of di�erent kinds of chimera states. In particular,
we �nd two chimeras, which di�er in the symmetry properties of their incoherent
oscillators, which led us to coin them symmetric and asymmetric chimera states [17].
The analysis of four oscillators also allows us to draw conclusions about so-called
amplitude clusters, not only for four oscillators but for globally coupled limit-cycle
systems in general. In the course of these investigations, we �nd certain co-dimension
two points, which we dubbed cluster singularities [18]. There, the arrangement of
cluster states becomes singular, and balanced cluster states directly bifurcate o� the
synchronized solution.
In Chapter 3, we turn our attention to chimera states in general. Due to the vast
amount of chimeras reported in the literature, a thorough classi�cation seems to
be helpful for their understanding. Therefore, we propose two order parameters,
g0, describing the fraction of spatially coherent oscillators, and h0, describing the
fraction of temporally coherent oscillators, and classify diverse chimera states from
the literature according to these variables [19].
In the last part of this thesis, we discuss how order parameters can be extracted
in a data-driven way. To do so, we use a nonlinear manifold learning technique
called di�usion maps, and discuss how the extracted variables may be suited for
embedding, dimensionality reduction and attractor reconstruction [20]. Finally, we
conclude with a detailed discussion of our results, and propose open question for
future research.

3





Chapter 2

The Dynamics of Mean-Coupled

Stuart-Landau Oscillators

We start our considerations with the investigation of ensembles of globally coupled
limit cycle oscillators. Globally hereby means that the interaction between the os-
cillating units does not depend on their spatial respective location nor the distances
between them.
This assumption of a global coupling is useful when there is, for example, a system
with non-local interactions in a small container such that non-locality e�ectively
becomes global. Another e�ective global coupling can be found in some parts of
the brain, where the neurons are oscillatory and densly connected. Other examples
include systems in which some variables di�use much more slowly than other vari-
ables. Then, the fast di�usion can be approximated adiabatically, which e�ectively
becomes a global coupling.
In addition, suppose that the oscillating units in such an example are close to the
onset of oscillation. That means each isolated oscillator performs close to sinusoidal
oscillations with a constant amplitude. Furthermore, we assume that the global
coupling is linear. Then it can be shown that any such system can be mapped onto
the globally coupled complex Ginzburg-Landau equation [21�23],

∂tW = W + (1 + ic1)∇2
xW − (1 + ic2) |W |2W

+ (α + iβ)
1

L

∫
(W (s′)−W (s)) ds′. (2.1)

with the complex amplitude W = W (x, t) and the real parameters c1, c2, α and
β. Hereby, c1 speci�es the linear dispersion through the di�usive coupling, and
c2, also referred to as shear [24], determines the e�ect of the amplitude on the
phase dynamics. α and β are the real and imaginary parts of the complex coupling
constant. The �rst term on the right sight of Eq. 2.1 can be regarded as a linear
energy input, leading to an increase of the oscillation amplitude. In contrast, the
nonlinear term, or dissipation term, acts as a damping, reducing amplitudes larger
than one. The second term describes the di�usive coupling, whereas the integral
term represents the linear global coupling.

5



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

Eq. 2.1 has been studied extensively in the literature. See for example Ref. [25] for
the globally coupled complex Ginzburg-Landau equation with one spatial dimension
and Ref. [26] for its dynamics with two spatial dimensions.
For some of the dynamical states observed in this equation, the di�usive coupling
seems to be essential. Such states include, for example, localized turbulence [26].
For other dynamical phenomena, however, the di�usive coupling can be viewed as a
perturbation, which leads to the spatial arrangement of the oscillators and possibly
a ripening of di�usion boundaries between them [27, 28], but does not alter the
essential features of the dynamical state. In other words, similar dynamics can also
be observed when neglecting the di�usive coupling. Examples include cluster states,
states in which the system breaks up into two or more clusters with each cluster
being internally synchronized [15], and chimera states, cluster states in which at
least one cluster breaks up and shows incoherent motion [29, 30].
In order to reduce the complexity, we therefore proceed this chapter with a discrete
version of the complex Ginzburg-Landau equation with linear global coupling,

∂tWk = Wk − (1 + ic2) |Wk|2Wk

+ (α + iβ)

(
1

N

∑
j

Wj −Wk

)
(2.2)

with k = 1, . . . , N . In particular, Eq. 2.2 can be obtained from Eq. 2.1 by ne-
glecting the di�usion term, which yields an ensemble of globally coupled limit cycle
oscillators. The intrinsic dynamics of each unit of this ensemble, also called a Stuart-
Landau oscillator [31], follows

∂tWk = Wk − (1 + ic2) |Wk|2Wk, (2.3)

with a real parameter c2, the shear [24], and a complex variable W = x+ iy. Trans-
forming Eq. 2.3 into polar coordinates, W = Rexp [iφ], one can derive equations for
the amplitude R and the phase φ, respectively, yielding

∂tR = R−R3

∂tφ = −c2R
2.

The stable attractor of this single nonlinear oscillator is thus a limit cycle oscillation
with amplitude R = 1 and phase velocity −c2.
Building on these intrinsic dynamics, we can investigate the e�ects of the global
coupling in Eq. 2.2 by investigating the dynamics of many of such limit cycle oscil-
lators.
This chapter is structured as follows: First, we restrict our analysis on the dynamics
of just two oscillators, and show where stable symmetric and asymmetric �xed-point
solutions exist in parameter space. Moreover, we also give a short overview of the
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2.1 The Dynamics of Two Coupled Oscillators

period orbits that appear in this system.
These considerations form the basis for our investigations of an ensemble of four
oscillators. There, we show where balanced cluster states, states with two oscil-
lators in each cluster, can be observed. In addition, we outline how those cluster
states bifurcate in such a setting. An important part in this section will be the
analysis of how chimera states originate from such balanced cluster states. We then
give a detailed explanation of how these states further bifurcate into fully incoher-
ent dynamics using Lyapunov exponents and classify the appearing chimeras using
symmetry arguments.
In the last part of this chapter, we explain how the results obtained generalize to
larger ensembles of globally coupled limit cycle oscillators. There, we also discuss
the occurrence of a new co-dimension two-point, which we call a cluster singularity.
At this point, the transition form balanced cluster states to synchronized motion
becomes, in contrast to previously observed transitions, continuous. In the course of
our considerations, we draw connections to the spatially extended system, Eq. 2.1,
whenever possible. For a reproduction of the derivation of the complex Ginzburg-
Landau equation with global coupling for general oscillatory systems close to the
onset of oscillations, see Appendix A, where we strictly follow the arguments out-
lined in Refs. [21�23].
Some aspects of this chapter, in particular the di�erentiation of symmetric and
asymmetric chimeras, and clustering as well as cluster singularities, we published in
Refs. [17, 18], and thus some parts of Chapter 2 follow closely the content of these
references.
In addition, this chapter contains parts explaining background necessary to follow
the subsequent considerations, and thus these parts do not contain new �ndings.
These parts include the derivation of the Benjamin-Feir instability, Sec. 2.1.11, the
calculation of Lyapunov exponents, Secs. 2.2.4 and 2.2.8, and the derivation of sym-
metry detectives, Sec. 2.2.6.

2.1 The Dynamics of Two Coupled Oscillators

In this section, we take two oscillators of the form as shown in Eq. (2.3), and couple
them through their respective mean. That is, we take the Stuart-Landau ensemble,
Eq. (2.3), with N = 2 [24, 32]. Doing so, we obtain the following description for the
two complex amplitudes W1 and W2,

∂tWk = Wk − (1 + ic2) |Wk|2Wk + (α + iβ) (〈W 〉 −Wk) (2.4)

with k ∈ {1, 2}, the complex coupling constant (α + iβ) and the real shear c2.
Hereby, the coupling is di�usive in the sense that it vanishes if W1 = W2 [24]. In
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Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

particular,

∂tW1 = W1 − (1 + ic2) |W1|2W1 + κ

(
1

2
(W1 +W2)−W1

)
= W1 − (1 + ic2) |W1|2W1 +

α + iβ

2
(W2 −W1)

∂tW2 = W2 − (1 + ic2) |W2|2W2 + κ

(
1

2
(W2 +W1)−W2

)
= W2 − (1 + ic2) |W2|2W2 +

α + iβ

2
(W1 −W2)

holds. However, analysis simpli�es using polar coordinates, transforming the equa-
tions into

Ṙie
iφi + iRiφ̇ie

iφi = Rie
iφi − (1 + ic2)R3

i e
iφi +

α + iβ

2

(
Rje

iφj −Rie
iφi
)

Ṙi + iRiφ̇i = Ri − (1 + ic2)R3
i +

α + iβ

2

(
Rje

i(φj−φi) −Ri

)
which can be separated into amplitude and phase equations for R1, R2, φ1, φ2, re-
spectively, yielding

∂tR1 = R1 −R3
1 +

α

2
(R2 cos (φ2 − φ1)−R1)− β

2
(R2 sin (φ2 − φ1))

∂tR2 = R2 −R3
2 +

α

2
(R1 cos (φ1 − φ2)−R2)− β

2
(R1 sin (φ1 − φ2))

∂tφ1 = −c2R
2
1 +

β

2R1

(R2 cos (φ2 − φ1)−R1) +
α

2R1

(R2 sin (φ2 − φ1))

∂tφ2 = −c2R
2
2 +

β

2R2

(R1 cos (φ1 − φ2)−R2) +
α

2R2

(R1 sin (φ1 − φ2)) .

Note that we explicitly exclude the solutions with R1 = 0 and/or R2 = 0, since at
those points the phases of the respective oscillators are not de�ned. Therefore, we
will not consider any solutions with either R1 = 0 or R2 = 0 in the course of this
work.
Due to the rotational invariance of the system, the dynamics do not depend on the
absolute values of the phases but only on the phase di�erence. Hence one can write
∆φ = φ1 − φ2, and reduce the equations to

∂tR1 = R1 −R3
1 +

α

2
(R2 cos (∆φ)−R1) +

β

2
R2 sin (∆φ) (2.5)

∂tR2 = R2 −R3
2 +

α

2
(R1 cos (∆φ)−R2)− β

2
R1 sin (∆φ) (2.6)

∂t∆φ = −c2

(
R2

1 −R2
2

)

8



2.1 The Dynamics of Two Coupled Oscillators

+
β

2
cos (∆φ)

(
R2

R1

− R1

R2

)
− α

2
sin (∆φ)

(
R2

R1

+
R1

R2

)
. (2.7)

Eqs. (2.5) to (2.7) describe the dynamics of the two mean coupled oscillators in a
co-rotating frame. That is, oscillations with �xed amplitudes and phase di�erences
in the original system, Eq. 2.4, correspond to �xed points in this three variable
system.
With an eye towards obtaining �xed point solutions of Eqs. (2.5) to (2.7), it has

proven useful to rewrite the equations by introducing the sum and the di�erence of
the square amplitudes, γ = R2

1 +R2
2 and ρ = R2

1 −R2
2, with

∂tγ = 2R1∂tR11 + 2R2∂tR12

∂tρ = 2R1∂tR11 − 2R2∂tR12.

This transforms Eqs. (2.5) - (2.7) into

∂tγ = (2− α)
(
R2

1 +R2
2

)
− 2
(
R2

1 +R2
2

)2
+ 4R2

1R
2
2 + 2αR1R2 cos (∆φ)

∂tρ = (2− α)
(
R2

1 −R2
2

)
− 2

(
R4

1 −R4
2

)
+ 2βR1R2 sin (∆φ)

∂t∆φ = −c2

(
R2

1 −R2
2

)
− β

2
cos (∆φ)

R2
1 −R2

2

R1R2

− α

2
sin (∆φ)

R2
1 +R2

2

R1R2

and using R1R2 =
√
γ2 − ρ2/2,

∂tγ = (2− α− 2γ) γ + γ2 − ρ2 + α
√
γ2 − ρ2 cos (∆φ) (2.8)

∂tρ = (2− α− 2γ) ρ+ β
√
γ2 − ρ2 sin (∆φ) (2.9)

∂t∆φ = −c2ρ− β cos (∆φ)
ρ√

γ2 − ρ2
− α sin (∆φ)

γ√
γ2 − ρ2

. (2.10)

Note that �xed points of the transformed system, Eqs. (2.8) - (2.10), are also �xed
points of the original system, Eqs. (2.5) - (2.7).

2.1.1 Symmetries

Considering the symmetries of an equation allows one to draw conclusions about the
possible invariant sets of the system. Therefore, we brie�y mention the apparent
symmetries in the equations here.
An apparent symmetry in the system is that it stays invariant under the permuta-
tion of the two oscillators, that is, under the operation of the symmetry group S2

corresponding to an exchange of symbols. The full four-dimensional system, Eq. 2.4,
is invariant under the rotations Wk → Wke

iθ,

∂tWke
iθ = Wke

iθ − (1 + ic2)
∣∣Wke

iθ
∣∣2Wke

iθ + (α + iβ)
(
〈Weiθ〉 −Wke

iθ
)

9



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

= Wke
iθ − (1 + ic2) |Wk|2Wke

iθ + (α + iβ)
(
〈W 〉eiθ −Wke

iθ
)

→ ∂tWk = Wk − (1 + ic2) |Wk|2Wk + (α + iβ) (〈W 〉 −Wk) .

However, we removed this symmetry by just regarding the phase di�erences of the
two oscillators, which yields the three-dimensional system described by Eqs. (2.8) -
(2.10).
Since the original ensemble of N oscillators is SN -equivariant, every symmetry bro-
ken state must belong to a subgroup of SN . In particular, for any two-cluster states
ucl, the isotropy subgroup Σucl

has the form SN1 × SN2 ⊆ SN . Furthermore, let
{γ ∈ SN\Σucl

} denote the set of operations not included in the isotropy subgroup of
ucl, then there exist Nucl

= ‖{γ ∈ SN\Σucl
}‖ cluster solutions related to ucl which

form the so-called group orbit of ucl [33]. For example, considering the two-cluster
solution ucl = (γ, ρ,∆φ), then ũcl = (γ,−ρ,−∆φ) is also a 2-cluster solution and
ucl, ũcl belong to the same group orbit.
Two more symmetries originate from the fact that the parameters c2 and β appear
complex in Eq. (2.2) and have an e�ect on the phase separation ∆φ rather than the
amplitude separations ρ. That is, a simultaneous change of the signs of c2 and β
corresponds to an exchange of the two oscillators. In particular, if c2 = 0, bifurca-
tions are symmetric with respect to β → −β. In the original system, Eq. 2.4, this
symmetry is expressed through

β → −β, c2 → −c2, W1 → W ∗
1 , W2 → W ∗

2 ,

which corresponds to an interchange of the two oscillators and shifting the phase by
π/2, under which the system is invariant. Or, expressed through γ and ρ,

β → −β, c2 → −c2, ρ→ −ρ, ∆φ→ −∆φ.

2.1.2 Weak Coupling Limit

If the coupling is weak, that is if ‖κ = α + iβ‖ << 1, then the amplitudes relax
to R1 = 1, R2 = 1 on a fast time scale, and the dynamics can be described, in a
good approximation, by the phase equation only [21]. Therefore, with the adiabatic
approximation ρ = 0 and γ = 2 the system, Eqs. (2.8) - (2.10), reduces to

∂t∆φ = −α sin (∆φ) ,

and thus to a sine-coupled system [15]. Notice that it has two �xed points at ∆φ = 0
and ∆φ = ±π, and therefore only the in-phase and anti-phase invariant solutions
exist for weak coupling. Important �ndings for larger ensembles of limit-cycle oscil-
lators with weak coupling, that is, for globally coupled phase oscillator systems, are
summarized in [34] and [35] and are beyond the scope of the considerations here.

10



2.1 The Dynamics of Two Coupled Oscillators

2.1.3 Symmetric Fixed-Point Solutions

Fixed point solutions of the two coupled oscillator system, Eqs. (2.8) - (2.10), can
be obtained by setting the transformed equations ∂tγ, ∂tρ and ∂t∆φ equal to zero.
Doing so, we focus in this Section on solutions with ρ = 0, that is for solutions that
have R1 = R2 and which we call symmetric �xed point solutions.
From Eq. (2.10) then follows that

α sin (∆φ) = 0 → ∆φ ∈ {0,±π} ∀α 6= 0

and thus for equal amplitudes, only in-phase solutions ∆φ = 0 and anti-phase �xed-
point solutions ∆φ = ±π exist.
In case of the symmetric in-phase solution (ρ = 0,∆φ = 0) it follows from Eq. (2.8)
that

0 = (2− α− 2γ) γ + γ2 + αγ

0 = 2− α− γ + α

→ γ = 2

and with ρ = R2
1 −R2

2 = 0 it follows that R1 = R2 = 1. It is worth mentioning that
this solution is, despite its stability, independent of the system parameters, and in
the following, we will refer to it as the synchronized solution

us =

 γs
ρs

∆φs

 =

2
0
0

 . (2.11)

For the anti-phase solution (ρ = 0,∆φ = ±π), Eq. (2.8) turns into

0 = (2− α− 2γ) γ + γ2 − αγ
0 = 2− α− γ − α

→ γ = 2− 2α

and thus, with γ = R2
1 + R2

2, R1 = R2 =
√

1− α. We abbreviate this anti-phase
solution with

ua =

 γa
ρa

∆φa

 =

2− 2α
0
±π

 . (2.12)

Due to the dependence of ua on α, and since we require that the amplitudes are
strictly positive, the solution only exists for α < 1. In contrast to the synchronized
solution us, the anti-phase solution ua does depend on the system parameters, i.e.
it is a function of α.

11



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

In order to investigate the stability of the two symmetric solutions, it is useful to
investigate the eigenvalues of the Jacobian,

J11 = (2− α− 2γ) + α
γ√

γ2 − ρ2
cos (∆φ)

J12 = −2ρ− α ρ√
γ2 − ρ2

cos (∆φ)

J13 = −α
√
γ2 − ρ2 sin (∆φ)

J21 = −2ρ+ β
γ√

γ2 − ρ2
sin (∆φ)

J22 = (2− α− 2γ)− β ρ√
γ2 − ρ2

sin (∆φ) (2.13)

J23 = β
√
γ2 − ρ2 cos (∆φ)

J31 = β cos (∆φ)
γρ

(γ2 − ρ2)3/2
+ α sin (∆φ)

(
γ2

(γ2 − ρ2)3/2
− 1√

γ2 − ρ2

)

J32 = −c2 − β cos (∆φ)

(
ρ2

(γ2 − ρ2)3/2
+

1√
γ2 − ρ2

)
+ α sin (∆φ)

γρ

(γ2 − ρ2)3/2

J33 = β sin (∆φ)
ρ√

γ2 − ρ2
− α cos (∆φ)

γ√
γ2 − ρ2

evaluated at these �xed points. In particular, the eigenvalues reveal the stability
depending on the parameters α, β and c2.
At the synchronized solution us, the Jacobian simpli�es to

J|us =

−2 0 0
0 −2− α 2β
0 −c2 − β/2 −α


with the eigenvalues

λs,1 = −2

λs,2 = −1− α−
√

1− β2 − 2βc2

λs,3 = −1− α +
√

1− β2 − 2βc2.

and eigenvectors

v1 =

1
0
0

 , v2 =

 0
1+
√

1−β2−2βc2
c2+β/2

1

 , v3 =

 0
1−
√

1−β2−2βc2
c2+β/2

1

 .
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2.1 The Dynamics of Two Coupled Oscillators

Note that the eigenvector corresponding to λ1 = −2 is vs,1 = (1, 0, 0)T, and thus
points in the direction of γ and hence of the sum R2

1 +R2
2. Nevertheless, λ1 is always

negative, ensuring that this direction is always stable near the synchronous solution.
The largest eigenvalue is λ3, which is always positive for α < −1. Thus, for this
range of α, the synchronized solution is always unstable. For α > −1, the stability
of the synchronized solution depends on the parameters β and c2 in the following
way. For β = 0, us is unstable for α < 0 and stable for α > 0. If c2 = 0, us is stable
for all α > 0 and for the range −1 < α < 0 with the condition

λs,3 = −1− α +
√

1− β2 < 0

α > −1 +
√

1− β2 ∀β2 < 1,

as indicated through the solid blue line in Fig. 2.1. In addition, one additional
direction becomes unstable at

λs,2 = −1− α−
√

1− β2 = 0

α = −1−
√

1− β2 ∀β2 < 1,

indicated through a blue shaded line in Fig. 2.1.
For c2 6= 0, and values of β and c2 with opposite signs, the square root in λs,3 is not
necessarily smaller 1, decreasing the parameter space for which the synchronized
state is stable. Nevertheless, increasing α has always a stabilizing e�ect.
Furthermore, it is worth mentioning that there is a special curve at α = −1 and
β2 + 2βc2 > 1. Then, the real parts of λs,2 and λs,3 are zero and their values are
mutually complex conjugate, indicating a Hopf-bifurcation. Note that the parameter
range for which the synchronized solution is stable is independent on the number
of oscillators [36, 37]. This is due to the circulant structure of the Jacobi matrix
evaluated at this solution, and is explained in more detail in Section 2.1.11.
Evaluated at the anti-phase solution ua, the Jacobian reads

J|ua =

2α− 2 0 0
0 −2 + 3α −β (2− 2α)
0 −c2 + β/ (2− 2α) α


with the eigenvalues

λa,1 = 2α− 2

λa,2 = 2α− 1−
√

(1− α)2 − β2 + 2 (1− α) βc2

λa,3 = 2α− 1 +

√
(1− α)2 − β2 + 2 (1− α) βc2.

Note that ua only exists for α < 1, as indicate through the red dashed line in
Fig. 2.1. Therefore, as for the synchronous solution, λa,1 is always negative and
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−4 −3 −2 −1 0 1 2 3 4
β

−2

−1

0

1

2

α

~usstable

~us unstable

~ua unstable

~ua stable

~us stable
~ua stable

~us stable
~ua stable

~us
~ua

Figure 2.1: Stability of the symmetric solutions us and ua for c2 = 0. From positive
to negative α, the stable synchronized solution us loses stability at the solid blue
line. At the horizontal blue line, the real parts of a pair of complex conjugate
eigenvalues cross the imaginary axis, indicating a Hopf bifurcation. On the other
hand, at the curved solid blue line, it loses one stable direction, and another at
the shaded blue curve. From negative to positive α, the stable anti-phase solution
ua looses two stable directions at the horizontal solid red line, whereas it looses
one stable direction at the solid red curve and another at the shaded red curve. It
disappears at α = 1, indicated through the dashed red line, where the amplitudes
vanish.

hence the direction vs,1 = (1, 0, 0)T is always stable. Again, the third eigenvalue is
the largest eigenvalue, dictating the range of stability. In particular for c2 = 0, ua
is stable for α < 1/2 if the square root is complex, and changes stability at

λa,3 = 2α− 1 +

√
(1− α)2 − β2 = 0

2α− 1 = −
√

(1− α)2 − β2

(2α− 1)2 = (1− α)2 − β2

α1,2 =
1

3
± 1

3

√
1− 3β2

∣∣∣∣ β < 1√
3
, α <

1

2

if the square root is real. The boundaries of the stable regions for c2 = 0 are depicted
as a solid red line in Fig. 2.1. At the red shaded line, an additional direction of the
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2.1 The Dynamics of Two Coupled Oscillators

anti-phase solution changes stability. The asynchronous solution can be seen as a so-
called splay state [38] or ponies on a merry-go-round [39]. This state has the property
that all oscillators have the same amplitude and neighboring oscillators have a phase
di�erence of 2π/N . As for the synchronized solution, it can be shown that the
boundaries of stability of this state is independent of the number of oscillatorsN [36].
As already mentioned, the amplitudes of the splay state depend on the coupling
constant α. More negative α values lead to a more repulsive coupling, which in turn
results in an increase of the respective amplitudes.
From Fig. 2.1 it becomes clear that for β = 0, the synchronized solution is unstable
for negative values of α and becomes stable at α = 0, whereas the anti-phase solution
is stable for negative α and becomes unstable at α = 0. For β 6= 0, however, the
two states do not change anymore their stability at the same value of α, giving rise
to the existence of patches in parameter space with a bistability of us and ua. In
addition, it is worth mentioning that at the horizontal lines in Fig. 2.1 the real parts
of two eigenvalues of the Jacobian are complex with zero real part, indicating a Hopf
bifurcation. Furthermore, notice the symmetry β → −β in the parameter plane, as
predicted by the symmetries explained in Section 2.1.1.

2.1.4 Asymmetric Fixed-Points in the Case of no Shear

To simplify the analysis of asymmetric solutions, that is solutions with ρ 6= 0, we
�rst restrict our analysis to the case of no shear (c2 = 0). This simpli�es the equation
for the angular velocity, Eq. (2.10), and at a �xed point ∂t∆φ = 0 with α 6= 0 it
becomes

tan (∆φ) = −βρ
αγ

.

It is interesting to observe that if the absolute value of the real part of the coupling
constant, α, is relatively large compared to the imaginary part, β, then the system
tends to the symmetric solutions ua,us. If, however, the magnitude β increases,
the tangents of phase di�erence becomes non-zero and the phase di�erence thus
accepts values di�erent from 0 and ±π. As shown in Section 2.1.5, solving Eqs. (2.8)
and (2.9) yields as stationary solutions

γ1,2 =
6− 3α±

√
(2− α)2 − 8β2

4
(2.14)

ρ2
1,2 =

(
1 +

α2

β2

)
(2− α− 2γ1,2) γ1,2 + γ2

1,2. (2.15)

Note that, by taking the square root of Eq. (2.15), one obtains two solutions, ±ρ,
for γ1 and γ2, respectively, and thus in total four solutions. However, through the
de�nition of ρ = R2

1 − R2
2, a sign change in ρ corresponds to an interchange of

the two oscillators, and thus the solutions ±ρ1,2 belong to the same group orbit
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−4 −3 −2 −1 0 1 2 3 4
β

−2

−1

0

1

2

α

C1

C2

C3

Figure 2.2: Parameter range in which the asymmetric solutions, Eqs. (2.14)
and (2.15), exist for c2 = 0. Hereby, solution γ1 exists for parameter values between
condition C1, indicated through the dotted green lines, and between the dotted or-
ange curves, condition C2. The boundaries of two solutions γ2 are again the dotted
green lines, and condition C3, indicated through the dotted black curves. Further
bifurcation curves of the synchronized solutions us and ua are shown as shaded blue
and red curves. Notice the correspondence of C2 and C3 with the curved bifurcation
lines of us and ua. The gray lines indicate the one-parameter continuation cuts
shown in Fig. 2.3.

(c.f. Sec. 2.1.1). Therefore, we treat the solutions of Eqs. (2.14) and (2.15) as two
independent solutions, and keep in mind that each solutions exist of two symmetric
branches.

2.1.5 General Solution with Zero Shear

At a �xed point solution, Eqs. (2.8) to (2.10) read

0 = (2− α− 2γ) γ + γ2 − ρ2 + α
√
γ2 − ρ2 cos (∆φ)

0 = (2− α− 2γ) ρ+ β
√
γ2 − ρ2 sin (∆φ)

cos (∆φ) = −αγ
βρ

sin (∆φ) .
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2.1 The Dynamics of Two Coupled Oscillators

Assuming the non-trivial case α 6= 0, the angular equation yields

tan (∆φ) = −βρ
αγ

.

Using the trigonometric identities

cos arctan(x) = 1/
√

1 + x2

sin arctan(x) = x/
√

1 + x2

one obtains

0 = (2− α− 2γ) γ + γ2 − ρ2 + α

√
γ2 − ρ2√

1 +
(
βρ
αγ

)2

0 = (2− α− 2γ) ρ− β βρ
αγ

√
γ2 − ρ2√

1 +
(
βρ
αγ

)2

which can be simpli�ed into

0 = (2− α− 2γ) γ + γ2 − ρ2 + αγ
√
α2

√
γ2 − ρ2√

α2γ2 + β2ρ2

0 = (2− α− 2γ)− β2

α

√
α2

√
γ2 − ρ2√

α2γ2 + β2ρ2
.

Substituting √
α2γ2 − α2ρ2√
α2γ2 + β2ρ2

= − 1

αγ

[
(2− α− 2γ) γ + γ2 − ρ2

]
yields

0 = (2− α− 2γ) γ +
β2

α2

[
(2− α− 2γ) γ + γ2 − ρ2

]
ρ2 =

(
1 +

α2

β2

)
(2− α− 2γ) γ + γ2.

This solution plugged into one of the equations above yields, using Mathematica,

γ1,2 =
6− 3α±

√
(2− α)2 − 8β2

4

ρ2 =

(
1 +

α2

β2

)
(2− α− 2γ1,2) γ1,2 + γ2

1,2,

which are exactly Eqs. (2.14)-(2.15) from above.

17



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

2.1.6 Boundaries of the Existence of the Asymmetric
Solutions

Since the solutions must be real, Eq. (2.14) requires

(2− α)2 − 8β2 > 0

α2 − 4α + 4− 8β2 > 0

α1,2 < 2±
√

8β2.

We dub this condition C1. The border α1,2 = 2 ±
√

8β2 is indicated through the
dotted green line in Fig. 2.2. However, this is only one of the necessary conditions.
The second condition requires that ρ2 > 0, i.e. that ρ is real. Therefore, from
Eq. (2.15), (

1 +
α2

β2

)
(2− α− 2γ) γ + γ2 > 0

⇒
(

1 +
α2

β2

)
(2− α− 2γ) + γ > 0.

This inequality must remain true for both solutions, γ1 and γ2, respectively, and
thus gives us two sets of conditions. Solving this expression using software such as
Mathematica we obtain a �rst set of conditions, namely

α > −1−
√

1− β2

α <
1 +

√
1− 3β2

3

for the range of α values for which γ1 exists. This condition we call C2, and the

borders α = −1−
√

1− β2 and α =
1+
√

1−3β2

3
are indicated as dotted orange curves

in Fig. 2.2. The second set, conditions C3 for γ2, read

α > −1 +
√

1− β2

α <
1−

√
1− 3β2

3
,

which are indicated as a dotted black curve in Fig. 2.2.
These conditions indicate that the asymmetric solutions only exist for relatively
small values of the coupling strength ‖α + iβ‖. This has also been observed in
networks of many relaxational oscillators, where asymmetric solutions (i. e. cluster
solutions) can only be observed for small to medium coupling strengths. [40].
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2.1.7 Bifurcations of the Asymmetric Fixed Point Solutions

From the considerations above, we conclude that for parameter values between
condition C1, indicated through the dotted green lines, and between the dotted
orange curves, condition C2, the asymmetric solution u1 = (γ1,±ρ1,∆φ1) exists. In
addition, the boundaries of solution u2 = (γ2,±ρ2,∆φ2) are the dotted green lines,
and condition C3, indicated through the dotted black curves. In total, this means
that one asymmetric solution only exists in the ranges between the dotted black
lines and the dotted green lines, whereas the other asymmetric solution exists in the
range between the dotted orange curves and the dotted green lines. Note that the
dotted black and orange curves coincide with bifurcation curves of the symmetric
solutions us and ua, see Fig. 2.1. This leads to the following conclusions: Since
both of the asymmetric solutions, u1 and u2, consist of two branches each, ±ρ1,2,
the dotted orange curves and the dotted black curves can be identi�ed as pitchfork
bifurcations.
Starting from negative α values, the two branches of the u1 solution emerge at
the dotted orange curve from synchronized solution. In addition, the two branches
of the u2 solution are born through a pitchfork at the lower dotted black curve,
which subsequently get destroyed at the upper dotted black curve at the anti-phase
solution. There, the anti-phase solution looses one stable direction. Solutions u1

�nally merge through a pitchfork at the upper dotted orange curve, adding another
unstable direction to the anti-phase solution. However, changing the parameter β,
the (in fact) four solutions u1 and u2 are either born or destroyed through two
simultaneous saddle node bifurcations at each of the dotted orange curves.
The continuation of the di�erent solutions along one-parameter cuts (as indicated
by the gray lines in Fig. 2.2) is shown in Fig. 2.3, where each solution is repre-
sented by its ∆φ variable. This means that the synchronized solution is located at
∆φ = 0 and the anti-phase solution at ±π. In Fig. 2.3(a), β = 0.4 is held �xed
and the synchronous solution is continued with increasing α. There, one observes a
subcritical pitchfork at which the solution branches of u1 are created and us gains
an additional stable direction. After another pitchfork the synchronized solution
becomes stable and the two branches of u2 are born. Those two branches then
reach the anti-phase solution ua where they get destroyed in a pitchfork bifurcation,
rendering ua unstable. Finally, the branches of u1 merge with ua in another
pitchfork, adding the second unstable direction to ua.
Fixing α at α = −0.1 and starting from negative β values (Fig. 2.3(b)), we observe
two saddle-node bifurcations, each involving one branch of u1 and u2, respectively.
The branches of u2 are annihilated through a subcritical pitchfork at the synchro-
nized solution. Due to the invariance upon a change in the sign of β → −β, this
scenario holds also for positive β values. Note that there is no bifurcation at β = 0.
The crossing of the two branches of u1 is no real crossing but is a consequence of
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Figure 2.3: Continuation of the �xed point solutions in the reduced model of four
mean-coupled oscillators with AUTO, (a) along the vertical cut shown in Fig. 2.2
with β = 0.4, (b) along the horizontal cut in Fig. 2.2 with α = −0.1. Stable solutions
are shown as solid curves, whereas unstable branches are indicated by dashed curves.
Note that the branches at ±π symbolize the same solution ua.

the projection of the solutions onto the ∆φ variable.

Degenerate Pitchfork Points

When the di�erent bifurcation curves meet, a set of co-dimension two points can be
identi�ed. First, one observes in Fig. 2.2 that there are in total four points at which
the two saddle node curves (dotted green lines) hit the pitchfork curves (dotted
black and dotted orange curves). One can obtain their parameter values by setting
the conditions C1 = C3, that is

2±
√

8β2 =
1 +

√
1− 3β2

3

⇒ 5± 6
√

2β =
√

1− 3β2

⇒ 24± 60
√

2β + 75β2 = 0

⇒ β1,2 = ∓2
√

2

5
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and thus yielding

α =
1 +

√
1− 3β2

1,2

3
=

2

5

and the second pair

2±
√

8β2 = −1 +
√

1− β2

⇒ 9± 6
√

8β + 8β2 = 1− β2

⇒ β1,2 = ∓2
√

2

3

with

α = −1 +
√

1− β2
1,2 = −2

3
.

So in total, where the SN curves meet the P curves, there are two times two special
points Λ = (α, β),

1ΛPSN =

(
2

5
,±2
√

2

5

)
2ΛPSN =

(
−2

3
,±2
√

2

3

)
.

At these points, the two saddle node curves hit the pitchfork curves, thereby forming
the degenerate pitchfork bifurcation points 1ΛPSN and 2ΛPSN , with the latter shown
in Fig. 2.4 and the former being depicted in Fig. 2.5.

Takens-Bogdanov Points

At the parameter points 1ΛT B = (1/2,−1/2) and 2ΛT B = (−1,−1) Hopf bifurcations
end and hit pitchfork curves P . In particular, the variables R1, R2,∆φ are

1uT B =

√1/2√
1/2
π


2uT B =

1
1
0


with the eigenvalues at the asynchronous solution,

λa,1 = 2α− 2

λa,2 = 2α− 1−
√

(1− α)2 − β2 + 2 (1− α) βc2

λa,3 = 2α− 1 +

√
(1− α)2 − β2 + 2 (1− α) βc2.

yielding at 1ΛT B, 1uT B

1λT B =

−1
0
0

 .

21



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

−1.05 −1.00 −0.95 −0.90 −0.85
β

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

α

2ΛPSN

2ΛT B

2ΛSNT B

SN
P1

P2

Hs
2Hcl

Figure 2.4: Bifurcation diagram with the saddle node curve SN (dotted green),
where two simultaneous saddle node bifurcations between the γ1 and γ2 solutions
occur. The two pitchfork curves P1 and P2 are indicated through dotted or-
ange and black curves, whereas the Hopf bifurcation from the synchronous solu-
tion, Hs, is drawn as a solid blue line. In addition, the Takens-Bogdanov point,
2ΛT B = (−1,−1), and the degenerate Pitchfork point, 2ΛPSN =

(
−2
√

2/3,−2/3
)
,

are indicated. The Hopf curve Hcl from the asymmetric solutions was obtained nu-
merically using PyDSTool [41, 42], and the numerical results are indicated as cyan
dots.

For 2ΛT B, 2uT B, one obtains with the eigenvalues at the synchronized solution,

λs,1 = −2

λs,2 = −1− α−
√

1− β2 − 2βc2

λs,3 = −1− α +
√

1− β2 − 2βc2.

the eigenvalues

2λT B =

−2
0
0


with two eigenvalues being zero, indicative of Takens-Bogdanov points1. The for-
mer is shown in Fig. 2.5, and latter Takens-Bogdanov point, 2ΛT B = (−1,−1), is

1Close to a Takens-Bogdanov point, there must also be a saddle loop bifurcation curve, which we
will discuss in Sections 2.1.8 and 2.1.9
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Figure 2.5: Bifurcation diagram with the saddle node curve SN (dotted green),
where two simultaneous saddle node bifurcations between the γ1 and γ2 solutions
occur. The two pitchfork curves P1 and P2 are indicated through dotted orange and
black curves, whereas the Hopf bifurcation from the anti-phase solution,Ha, is drawn
as a solid red line. In addition, the Takens-Bogdanov point, 1ΛT B = (−0.5, 0.5), and
the degenerate Pitchfork point, 1ΛPSN =

(
−2
√

2/5, 2/5
)
, are indicated. The Hopf

curve 1Hcl from the asymmetric solutions was obtained numerically using PyD-
STool [41, 42], and the numerical results are indicated as cyan dots.

depicted in Fig. 2.4.
Between the co-dimension two bifurcation points shown in Fig. 2.4, 2ΛT B = (−1,−1)
and 2ΛPSN =

(
−2/3,−2

√
2/3
)
, there is a range of parameters for which a supercriti-

cal pitchfork bifurcation occurs from the stable synchronized solution us. Therefore,
the asymmetric solutions, which emerge through this pitchfork, must be stable, too.
By evaluating the eigenvalues of the Jacobian for these parameter values, this can in-
deed be veri�ed numerically. Note that to the right of the stable region, see Figs. 2.4
and 2.5, γ1 has two unstable directions, indicating that the stable region looses its
stability through a Hopf bifurcation2. Furthermore, the shape of the stable region
suggests that this Hopf curve hits the saddle node line at larger values of α. In order
to estimate the exact parameter set of this co-dimension two point, one can evaluate
the eigenvalues of the Jacobian along the SN curve,

J|u1=u2

2A supercritical Hopf, as veri�ed through simulations.
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and investigate when two of these eigenvalues become zero. Numerically, we �nd
that this is the case for

1ΛSNT B = (0.3294,±0.5906) 2ΛSNT B = (−0.4928,±0.8814) .

The former is shown in Fig. 2.5, and the latter, 2ΛSNT B , is depicted in Fig. 2.4.
Using this information we can conclude that the parameter regimes for which the
asymmetric solution is stable, either close to the anti-phase solution (Fig. 2.5) or to
the synchronized solution (Fig. 2.4), are bounded on the one side by a supercritical
Hopf bifurcation curve (indicated through a cyan curve in both �gures). On the
other side, it is con�ned by a supercritical pitchfork and a saddle node bifurcation
curve. There are two Takens-Bogdanov points at both ends of the Hopf bifurcation
curve, and a degenerate pitchfork point where the saddle node hits the pitchfork
bifurcation curve. These stable regimes are rather thin in parameter space, c.f.
Figs. 2.4 and 2.5, but grow when increasing the shear c2, as will be discussed later.

2.1.8 Periodic Orbits Near the Synchronized Solution

For β < 0, there are four di�erent Hopf bifurcations. In particular, one Hopf bifurca-
tion from the synchronized solution, Hs, one from the anti-phase solution, Ha, and
two from the asymmetric solutions, 1Hcl (c.f. Fig. 2.4) and 2Hcl (c.f. Fig. 2.5), both
of which have a multiplicity of two. The periodic invariant sets originating from
these bifurcations can be continued using numerical continuation software such as
AUTO. Close to the synchronized solution, the resulting bifurcation curves are sum-
marized in Fig. 2.6, with a schematic including phase portraits shown in Fig. 2.7.
For small α and β values, the synchronized solution us is the only �xed point

solution besides the anti-phase solution ua, which we omit here in this section. In
particular, the synchronized solution is unstable for these parameter values, see
bottom-left corner in Figs. 2.6 and 2.7. The Hopf bifurcation at the synchronized
solution, Hs, can be identi�ed as a subcritical Hopf bifurcation for the parameter
values considered here. Coming from the negative α values, unstable limit cycles
with two unstable directions are born at α = −1 for β < −1, c.f. the blue curve in
Figs. 2.6 and 2.7, rendering us stable (top-left region in Figs. 2.6 and 2.7). These
limit cycles then grow in amplitude with increasing α. For α→ 0−, the limit cycles
become relaxational, with the property that they approach the two points γ = ρ
and γ = −ρ. Note that we explicitly excluded these two points, which correspond to
solutions with one of the two amplitudes, R1 or R2, being zero. It is worth mention-
ing that the period of the orbits does not diverge when α→ 0−, but the numerical
continuation fails when converging to these nonphysical solutions.
The stable synchronized solution undergoes a supercritical pitchfork bifurcation

when increasing β (P1, dashed black curve in Figs. 2.6 and 2.7), creating the two
symmetric branches of the stable asymmetric solution u1 (the two �lled dots in the
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Figure 2.6: Bifurcation diagram with the saddle node curve SN (dotted green),
where two simultaneous saddle node bifurcations between the γ1 and γ2 solutions
occur. The two pitchfork curves P1 and P2 are indicated through dotted orange
and black curves, whereas the Hopf bifurcation from the synchronous solution, Hs,
is drawn as a solid blue line. The Hopf curve 1Hcl from the asymmetric solutions
(cyan), the double saddle loop bifurcation curve DSL (either normal or forked, ma-
genta) and the saddle node of periodic orbits curve SNP were obtained numerically
using PyDSTool and AUTO. See Fig. 2.7 for a sketch of the bifurcation curves and
detailed phase portraits.

middle top part in Fig. 2.7), and turning us into a saddle with one unstable direc-
tion. This supercritical pitchfork, however, becomes subcritical at the degenerate
pitchfork point 2ΛPSN . From the resulting subcritical pitchfork curve, the two un-
stable branches of the asymmetric solution u2 emerge, thus adding two more �xed
point solutions to the system, yielding in total the �ve �xed point solutions us (sta-
ble), u1 (stable) and u2 (unstable). All asymmetric solutions get destroyed through
two simultaneous saddle node bifurcations (dotted green line in Figs. 2.6 and 2.7),
each involving one branch of u1 and u2, respectively.
On the other hand, the stable u1 solutions undergo two simultaneous supercritical
Hopf bifurcations 2Hcl for smaller values of α (cyan curve in Figs. 2.6 and 2.7),
creating two stable limit cycles. These two limit cycles subsequently either form an
8-shaped �gure and undergo a double saddle loop bifurcation (DSL, lower part of
the magenta curve in Figs. 2.6 and 2.7), or form two simultaneous saddle loops with
the two solutions of u2 and undergo a forked double saddle loop (fDSL, upper part
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Figure 2.8: Stable limit cycles from the supercritical Hopf 2Hcl in the ∆φ-ρ plane,
with the color encoding the respective β values for β between the 2Hcl (dark blue)
and the DSL (either normal or forked, dark red). The respective α values are (a)
α = −0.59, (b) α = −0.584, (c) α = −0.58 and (d) α = −0.57.
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of the magenta curve in Figs. 2.6 and 2.7). After any of these two cases, the two
smaller limit cycles transformed into a single stable limit, revolving around the three
(or �ve) �xed point solutions. See Ref. [43] for a discussion of this bifurcation3.
In Ref. [43], the double saddle loop is a codimension-2 bifurcation. In the sys-
tem considered here, the two oscillators are interchangeable, leading to symmetric
bifurcations (e.g. the two simultaneous saddle node and Hopf bifurcations of the
asymmetric solutions). This symmetry translates the codimension-2 bifurcation con-
sidered in Ref. [43] into a codimension-1 bifurcation here.
At the codimension-2 point 2ΛPDSL, when the double saddle loop bifurcation crosses
the subcritical pitchfork curve P1, the double saddle loop curve turns into what we
call a forked double saddle loop bifurcation (for an illustration, see Fig. 2.8). The
two remaining limit cycles, the stable one from the double saddle loop, and the un-
stable one from the subcritical Hopf at the synchronized solution, disappear through
a saddle node of periodic orbits (SNP, solid orange curve in Figs. 2.6 and 2.7). For
larger values of β, the unstable limit cycle stemming from 2Hs gets destroyed through
a saddle node of in�nite period bifurcation (Sniper, red line with green dashes in
Figs. 2.6 and 2.7), at which two saddle node bifurcations simultaneously occur on
the unstable periodic orbit. The saddle node of periodic orbits curve and the su-
percritical Hopf both end in the Takens-Bogdanov points 2ΛT B and 2ΛSNT B . These
Takens-Bogdanov points with symmetry are reminiscent to those reported in a sys-
tem of two nonlinearily-coupled Stuart-Landau oscillators [44].
The stable limit cycles between the supercritical Hopf curve 2Hcl and the double
saddle loop curve in the ∆φ-ρ plane are depicted in Fig. 2.8. For α = −0.59
(Fig. 2.8(a)), the limit cycles grow with increasing β (encoded through the coloring,
from dark blue to dark red), and eventually form an 8-shaped �gure at the double
saddle loop bifurcation. However, for larger values of α (Figs. 2.8(b-d)), the limit
cycles bifurcate in what we call a forked double saddle loop, at which the two respec-
tive limit cycles form homoclinic orbits with two di�erent saddles (the two solutions
of u2).
Note that the double saddle loop is also called gluing bifurcation in systems with
symmetries [45, 46]. In particular, a gluing bifurcation in a system of two coupled
oscillators is also described in more detail in Ref. [47].

2.1.9 Periodic Orbits Near the Anti-Phase Solution

For values of positive α, the bifurcations of the periodic orbits are qualitatively
similar to the ones described in the previous section, and are depicted in Fig. 2.9.
Starting from the subcritical Hopf at the anti-phase solution, Ha (red in Fig. 2.9),
unstable periodic orbits grow with decreasing α and hit at α = 0 nonphysical solu-
tions with vanishing amplitudes. Increasing β, the periodic solutions get destroyed

3There seem to be errors in the unfolding of the double saddle loop in this article.
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either through a saddle node of in�nite period or a saddle node of periodic orbits
(the latter not shown in Fig. 2.9). At the supercritical Hopf 1Hcl (cyan) stable
periodic orbits are born which bifurcate in a double saddle loop (magenta curve in
Fig. 2.9), with the resulting periodic orbits disappearing in a saddle node of periodic
orbits. Note that, due to the symmetry in the system, the same bifurcations happen
for positive β.
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Figure 2.9: Bifurcation diagram with the saddle node curve SN (dotted green),
where two simultaneous saddle node bifurcations between the γ1 and γ2 solutions
occur. The two pitchfork curves P1 and P2 are indicated through dotted orange
and black curves, whereas the Hopf bifurcation from the anti-phase solution, Ha,
is drawn as a solid red line. The Hopf curve 1Hcl from the asymmetric solutions
(cyan) and the double saddle loop bifurcation curves DSL (either normal or forked,
magenta) were obtained numerically using PyDSTool and AUTO.

2.1.10 Bifurcation Diagram with Non-Zero Shear

The analysis can also be extended to the case of non-zero shear c2. From the analytic
expression of the eigenvalues at the synchronized solution

λs,1 = −2

λs,2 = −1− α−
√

1− β2 − 2βc2

λs,3 = −1− α +
√

1− β2 − 2βc2.
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and anti-phase solutions,

λa,1 = 2α− 2

λa,2 = 2α− 1−
√

(1− α)2 − β2 + 2 (1− α) βc2

λa,3 = 2α− 1 +

√
(1− α)2 − β2 + 2 (1− α) βc2.

we can determine bifurcations for all values of α, β and c2. For us, the real parts of
the eigenvalues changes sign when

α = −1±
√

1− β2 − 2βc2,

or, in an implicit form,

α + 1 = ±
√

1− β2 − 2βc2

α2 + 2α + 1 = 1− β2 − 2βc2

α2 + β2 + 2α + 2βc2 = 0.

and with κ = α + iβ,
‖κ‖2 + 2 (Reκ+ Imκc2) = 0. (2.16)

In literature, one usually writes the coupling constant κ as κ = K (1 + ic1) (recall
that we use κ = α + iβ here). Expressing the condition above through K and c1

yields (
1 + c2

1

)
K + 2 (1 + c1c2) = 0

which coincides with Eqs. (2) to (5) of Ref. [48] and is also referred to as Benjamin-
Feir instability [36, 49]. Boundaries of stability of the synchronized solution for
di�erent c2 values are shown in Fig. 2.10. The asynchronous solution ua undergoes
stability changes when the real part of λa,3 becomes zero. This happens when α
satis�es the following condition

α = −1

3

(
2βc2 − 1±

√
(2βc2 − 1)2 − β2 + βc2

)
.

As for the case with zero shear, these parameter ranges are independent of the
number of oscillators [36, 37]. In particular, the condition for λa,3 = 0,

2α− 1 +

√
(1− α)2 − β2 + 2 (1− α) βc2 = 0

can be rewritten as
α2 + β2 − 2 (1− α) (α + βc2) = 0

and with κ = α + iβ,

‖κ‖2 − 2 (1− Reκ) (Reκ+ Imκc2) = 0. (2.17)

This stability boundary of the asynchronous solution again coincides with earlier
results, see for example Ref. [48]: The stability boundaries of ua for di�erent values
of c2 are depicted in Fig. 2.11.
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Figure 2.10: Stability boundaries of the synchronized solution us for di�erent values
of the shear c2. The shaded lines indicate where a second direction of us becomes
unstable.

Asymmetric Solutions for Non-Zero Shear

Even for the case of non-zero shear, it is possible to obtain an analytic expression
for the two asymmetric solutions γ1,2, ρ1,2. In particular, using the transformed
equations, Eqs. (2.8) to (2.10), evaluated at a �xed point solution, gives

0 = (2− α− 2γ) γ + γ2 − ρ2 + α
√
γ2 − ρ2 cos (∆φ)

0 = (2− α− 2γ) ρ+ β
√
γ2 − ρ2 sin (∆φ)

0 = −c2ρ− β cos (∆φ)
ρ√

γ2 − ρ2
− α sin (∆φ)

γ√
γ2 − ρ2

.

Solving the �rst two equations for cos (∆φ) and sin (∆φ) yields√
γ2 − ρ2 cos (∆φ) = − (2− α− 2γ)

γ

α
− γ2 − ρ2

α√
γ2 − ρ2 sin (∆φ) = − (2− α− 2γ)

ρ

β

and inserted into the last equation,

0 = −c2ρ+
β

α

ρ

γ2 − ρ2

[
(2− α− 2γ) γ + γ2 − ρ2

]
+
α

β

γ

γ2 − ρ2
(2− α− 2γ) ρ
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Figure 2.11: Stability boundaries of the anti-phase solution ua for di�erent values
of c2. The shaded lines indicate where a second direction of ua becomes unstable.

0 = −c2

(
γ2 − ρ2

)
+
β

α

[
(2− α− 2γ) γ + γ2 − ρ2

]
+
α

β
(2− α− 2γ) γ

0 = −c2αβ
(
γ2 − ρ2

)
+ β2 (2− α− 2γ) γ + β2

(
γ2 − ρ2

)
+ α2 (2− α− 2γ) γ

0 =
(
β2 − c2αβ

) (
γ2 − ρ2

)
+
(
α2 + β2

)
(2− α− 2γ) γ

and solving for ρ2

ρ2 =
α2 + β2

β2 − c2αβ
(2− α− 2γ) γ + γ2. (2.18)

Using 1 = sin2 + cos2, we can write

γ2 − ρ2 = (2− α− 2γ)2 ρ
2

β2
+

(
− (2− α− 2γ)

γ

α
− γ2 − ρ2

α

)2

γ2 − ρ2 = (2− α− 2γ)2 ρ
2

β2
+

1

α2

(
γ2 − ρ2 + (2− α− 2γ) γ

)2
.

Together with Eq. (2.18) this can be solved using Mathematica, yielding

ρ2 =
α2 + β2

β2 − c2αβ
(2− α− 2γ) γ + γ2, (2.19)

γ1,2 =
(2− α) (3β − 4αc2 − βc2

2)

4β − 8αc2 − 4βc2
2
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Figure 2.12: Stability of the asymmetric solution in an ensemble of two mean-coupled
Stuart-Landau oscillators for c2 = 0, 0.5, 1, 1.5, 2 (from top left to bottom). The color
encodes the number of unstable eigendirections, and gray indicates that the asym-
metric solution does not exist for this set of parameters. Note the correspondence
of the upper left image with Fig. 2.2.
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±
β
√

(2− α)2(1 + c2
2)

2 − 8β2 (1− c2
2) + 8αc2 (3β − 2αc2 − βc2

2)

4β − 8αc2 − 4βc2
2

. (2.20)

Note that these equations reduce to the solutions (2.14) and (2.15) for c2 = 0, which
are

γ1,2 =
6− 3α±

√
(2− α)2 − 8β2

4
,

ρ2
1,2 =

(
1 +

α2

β2

)
(2− α− 2γ1,2) γ1,2 + γ2

1,2.
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Figure 2.13: Stability of the asymmetric solution in an ensemble of two mean-coupled
Stuart-Landau oscillators for c2 = 2. The parameter range corresponds to the or-
ange window indicated in Fig. 2.12 (bottom). As in Fig. 2.12, the color encodes the
number unstable eigendirections, and gray indicates that the asymmetric solution
does not exist for this set of parameters. The bifurcation curves plotted were ob-
tained using AUTO and symbolize a supercritical Hopf bifurcation curve (magenta),
the pitchfork bifurcation curve (black) and a saddle node bifurcation curve (red).

Stability of the Asymmetric Solutions for Non-Zero Shear

The stability of these asymmetric solutions can again be investigated through the
eigenvalues of the Jacobian. There, we �nd that the solution u2 = (γ2,±ρ2,∆φ2)
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2.1 The Dynamics of Two Coupled Oscillators

is always unstable in the regarded parameter regimes, but u1 = (γ1,±ρ1,∆φ1)
is stable for certain ranges of α, β and c2. In particular, the number of unstable
eigendirections of u1 in the α−β parameter plane are shown in Fig. 2.12 for di�erent
values of c2. Note that the stable windows of the asymmetric solution for c2 = 0 are
barely visible, but grow with increasing shear c2. Furthermore, recall that the shear
relates the dynamics of the amplitudes of the individual oscillators to their respective
phase dynamics. This, in turn, means that oscillators with larger amplitudes seek
to have larger phase velocities. On the other hand, the coupling prevents that the
oscillators drift apart. This counterplay of the non-zero shear and the coupling may
thus explain why one observes larger regions in parameter space at which asymmetric
solutions are stable.
A parameter window in the α− β plane for c2 = 2, as indicated through the orange
box in Fig. 2.12, is shown enlarged in Fig. 2.13. There, the Hopf bifurcation curve
(magenta), the saddle node bifurcation curve between the two asymmetric solutions
(red) and the pitchfork with the synchronized solution (black) are shown. This
window serves as a starting point for future considerations, as in Section. 2.2.

2.1.11 Stability of the Synchronized Solution

As already outlined, the region for which the synchronized solution is stable is
independent of the number of oscillators in the system [48]. The same is true for the
anti-phase solution (splay state), although the proof is more cumbersome. Therefore,
we redraw the proof for the synchronized solution, and refer the reader to Ref. [36]
for the case of the splay state.
Following Ref. [36], we linearize around the synchronous solution of an ensemble of
N oscillators by writing Wk = (1 + εk) exp (−ic2t). Then Eq. 2.2 turns into

∂tWk = e−ic2t∂tεk − ic2 (1 + εk) e
−ic2t

= (1 + εk) e
−ic2t − (1 + ic2) ‖1 + εk‖2 (1 + εk) e

−ic2t

+ κ
(
〈1 + ε〉e−ic2t − (1 + εk) e

−ic2t
)

with 〈·〉 denoting the ensemble mean. This can be rewritten as

∂tεk − ic2 (1 + εk) = (1 + εk)− (1 + ic2) ‖1 + εk‖2 (1 + εk)

+ κ (〈1 + ε〉 − (1 + εk))

→ ∂tεk = (1 + ic2) (1 + εk)

− (1 + ic2)
(
1 + εk + ε∗k + ‖εk‖2

)
(1 + εk) + κ (〈ε〉 − εk)

→ ∂tεk ≈ (1 + ic2) (1 + εk)

− (1 + ic2) (1 + εk + ε∗k) (1 + εk) + κ (〈ε〉 − εk)
→ ∂tεk ≈ (1 + ic2) (1 + εk)

− (1 + ic2) (1 + 2εk + ε∗k) + κ (〈ε〉 − εk)
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→ ∂tεk ≈ − (1 + ic2) (εk + ε∗k) + κ (〈ε〉 − εk)

with ε∗k being the complex conjugate of εk. Writing εk = xk + iyk, then

∂txk + i∂tyk = − (1 + ic2) (2xk)− (α + iβ) (xk + iyk) +
α + iβ

N

∑
j

(xj + iyj) ,

and when separating real and imaginary parts

∂txk = −2xk − αxk + βyk +
1

N

∑
j

(αxj − βyj)

∂tyk = −2c2xk − βxk − αyk +
1

N

∑
j

(βxj + αyj)

holds. This linear system has the Jacobian of the form

J =


E +K K . . . K
K E +K K . . .
. . . . . . . . . K
K . . . K E +K


with

E =

(
−2− α β
−β − 2c2 −α

)
and

K =

(
α
N
− β
N

β
N

α
N

)
This is a circulant matrix, and its eigenvalues are given by

λ0 = Eig [E +N ∗K]

λ1,...,N = Eig [E]

Note that

Eig [E +N ∗K] = Eig

(
−2 0
−2c2 0

)
→ (−2− λ0) (−λ0) = 0

→ λ0 = {0,−2}

whereas

λ1,...,N = Eig [E]
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2.2 The Dynamics of Four Coupled Oscillators

= Eig

(
−2− α β
−β − 2c2 −α

)
= −1− α±

√
1− β2 − 2βc2

This ansatz is analogous the envelope equation employed by Benjamin and Fair [49].
Notice that λ0 = {0,−2} and λ1,...,N = −1− α±

√
1− β2 − 2βc2 coincide with the

eigenvalues obtained from the transformed system, see Sec. 2.1.10, except λ0 = 0,
the neutral direction, which we excluded by introducing the phase di�erence ∆φ.

2.2 The Dynamics of Four Coupled Oscillators

In the previous section, we investigated the dynamics of just two coupled Stuart-
Landau oscillators. There, we also discussed that the bifurcation boundaries
obtained for the synchronized and anti-phase solutions are independent of the
number of oscillators in the ensemble. But this does not hold for the respective
stability boundaries of the two symmetry broken solutions, u1 = (γ1, ρ1,∆φ1) and
u2 = (γ2, ρ2,∆φ2). This becomes obvious when considering the di�erent ways in
which two-cluster solutions can become unstable for larger ensembles of oscillators:
either on or transverse to the cluster manifold. That is, either the two cluster clumps
remain clumped but their relative locations change, or one of the two clusters splits
up into an arbitrary number of subclusters. The stability properties of the former
is fully captured by the reduced equations, but since the latter cannot happen in
an ensemble of just two oscillators, we can draw no conclusions about stability
transverse to the cluster manifold.
This motivates this section, where we investigate the dynamics of four coupled
oscillators. We start our considerations with examinations of where in parameter
space balanced two-cluster solutions are stable in this ensemble. Using symmetry
arguments, we then show that these regions in parameter space remain unchanged
for larger ensembles of oscillators.
We then investigate how balanced cluster states in the four oscillator ensemble,
so-called 2-2 clusters, bifurcate. In doing so, we discuss where 3-1 cluster states
exist and where they are stable.
Furthermore, we �nd that one way in which stable 2-2 cluster states can get
destroyed is through a supercritical Hopf bifurcation. Using AUTO, we show
how the limit cycles born in this Hopf bifurcation further bifurcate, and discuss
the transitions into chaotic motion via the Feigenbaum scenario [50�52] or the
Ruelle-Takens-Newhouse route [52, 53]. In this parameter regime, however, two
oscillators are still synchronized, and thus the chaotic attractor can be identi�ed as
a chimera attractor, similar to the ones observed in Refs. [29, 30], also called type-I
chimeras [54].
The chaotic behavior of such chimera states can indeed be veri�ed using Lyapunov

37



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

exponents. In particular, we additionally investigate Lyapunov exponents trans-
verse to the manifold on which the chimeras live, that is, directions orthogonal to
the manifold of the two synchronized oscillators. Doing so, we show where chimera
states are stable in parameter space, and discuss how they further bifurcate.
Focusing on the detailed transition to chaotic motion in the Feigenbaum scenario
mentioned above, we �nd that there exist qualitatively di�erent chaotic attractors,
some are symmetric under the exchange of the incoherent oscillators, and some
are not. Using symmetry detectives, we analyze these chimera attractors in more
detail, and classify them as symmetric and asymmetric chimera states, which we
published in Ref. [17].
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Figure 2.14: Stability of the balanced 2-2 cluster solution in an ensemble of four
mean-coupled Stuart-Landau oscillators for c2 = 2. The parameter range corre-
sponds to the orange window indicated in Fig. 2.12 and shown in Fig. 2.13 for two
oscillators. As in Fig. 2.12, the color encodes the number unstable eigendirections,
and gray indicates that the balanced cluster solution does not exist for this set of
parameters. The bifurcation curves were obtained using AUTO and symbolize a
supercritical Hopf bifurcation curve (magenta), a pitchfork bifurcation curve (red)
and a saddle node bifurcation curve (green).
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2.2 The Dynamics of Four Coupled Oscillators

2.2.1 Clustering in an Ensemble of Four Oscillators

As already outlined in the previous paragraph, the stability properties of the asym-
metric solutions in the two oscillator ensemble (c.f. Figs. 2.12 and 2.13), o�er only
limited information about their stability in larger ensembles of mean-coupled Stuart-
Landau oscillators. This is due to the fact that the individual clusters cannot break
up in such a minimal ensemble.
In order to rephrase this more accurately, we follow Ref. [37] and describe the sta-
bility of 2-cluster states by two kinds of Lyapunov exponents, the cluster integrity
exponents λσCI , and the cluster system orbit stability exponents λSO. The latter
describe the stability along the 2-cluster manifold and are composed of 3 real num-
bers. The former, the cluster integrity exponents λσCI , describe the internal stability
of each cluster σ. Due to the symmetries of the oscillator ensemble, the λσCI are
degenerate in the sense that they consist of 2Nσ−2 equal real values, with Nσ being
the number of oscillators in cluster σ.
Extending our considerations by regarding four oscillators instead of two, and by

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0
β

0.8

0.9

1.0

1.1

R1

2-2
3-1
2-1-1
2-1-1
synch

Figure 2.15: Continuation of the cluster solutions in ensemble of four coupled Stuart-
Landau oscillators for α = 1.12 and c2 = 2, as indicated through the dashed orange
line in Figs. 2.14 and 2.16, using AUTO. Dotted curves indicate saddles, whereas
solid lines represent attracting solutions.

introducing polar coordinates, we obtain the dynamics of the four amplitudes Rk,
k = 1, . . . , 4, and three phase di�erences ∆φk1 = φk − φ1, k = 1, . . . , 3 (see Ap-
pendix B for the equations). One thus has dynamics in a seven-dimensional phase
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Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

space R4
+ ×T3. Note that the asymmetric solutions u1,2 now correspond to cluster

solutions with two oscillators in each cluster.
Through the new dimensions in phase space, however, the stability of those 2-2
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Figure 2.16: Stability of the balanced 2-2 cluster solution in an ensemble of four
mean-coupled Stuart-Landau oscillators for c2 = 2, as in Fig. 2.14. In addition, the
regions in which the 3-1 cluster solution is stable are shown as transparent-white
patches.

cluster solutions might di�er from the stability of the u1,2 solutions in the two-
oscillator ensemble. This can be visualized by evaluating the Jacobian of the four
oscillator system at the 2-2 cluster solutions and investigating the number of positive
eigenvalues. For the parameter window shown in Fig. 2.13 (corresponding to the
orange window in Fig. 2.12 for c2 = 2), the stability of the 2-2 cluster solution in
the four oscillator system is shown in Fig. 2.14.
There, one can observe that the parameter range for which the balanced cluster
solution is stable is smaller than the one for the two oscillator system. In addition,
the balanced 2-2 cluster state gets destroyed either through a pitchfork (red curve
in Fig. 2.14), a saddle node (green curve in Fig. 2.14) or a Hopf bifurcation (pink
curve in Fig. 2.14). Furthermore, the stable 2-2 cluster solution no longer bifurcates
o� the synchronized solution except at one point (α ≈ 0.62 and β ≈ −1.85). This
point, which we dub a cluster singularity, is discussed in more detail in Sec. 2.3.1.
To the right of this point, that is for large values of β, the pitchfork breaks up the
cluster with the smaller amplitude, and to the left of this point, that is for smaller
β values, the pitchfork breaks up the cluster with the larger amplitude.
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2.2 The Dynamics of Four Coupled Oscillators

The bifurcation scenario along a one-dimensional cut in parameter space, as indi-
cated through the dashed orange line in Fig. 2.14, is shown in Fig. 2.15. There,
the balanced 2-2 cluster solution and the resulting branches are continuated using
AUTO, and the resulting amplitude of one of the oscillators is plotted as a function
of β. The balanced 2-2 cluster solution is shown as a blue curve, with the stable
regions solid and the unstable regions dashed. Note that the two stable regions be-
long to the same group orbit. Emanating from these stable patches, unstable 2-1-1
solutions can be observed (green and orange curves in Fig. 2.15), indicating that
the balanced cluster solutions become unstable through subcritical pitchforks. It
is worth mentioning that the green curve are in fact two branches lying over each
other. Furthermore, the 3-1 cluster solution is depicted as a red curve in Fig. 2.15.
Two stable regions of this solutions exist, which, in contrast to the 2-2 cluster solu-
tion, do not belong to the same group orbit. For the stable 3-1 cluster state at small
values of β, the cluster with three oscillator has the smaller amplitude, whereas
for the stable cluster state at larger values of β, the cluster with three oscillators
has an amplitude larger than one. Note that the 2-2 cluster solution bifurcates o�
the synchronized solution via an equivariant pitchfork bifurcation, whereas the 3-1
cluster bifurcates with the synchronized solution in a transcritical, as predicted in
Ref. [55]. In addition, the stable patches of the 2-2 and 3-1 cluster states overlap in
parameter space, and also the stable regions of the 3-1 cluster and the synchronized
solution (black line in Fig. 2.15).
This bifurcation scenario thus con�rms that the transition between balanced cluster
states and the synchronized solution is hysteretic [37]. Starting from the balanced
cluster and increasing β, the cluster with the smaller amplitude breaks up and the
2-2 cluster state becomes unstable. Lying in the basin of attraction of the 3-1 clus-
ter state, one of the two former synchronized oscillators joins the cluster with the
larger amplitude. This 3-1 cluster then �nally becomes unstable through a saddle
node and the system settles on the synchronized solution, being the only remaining
stable solution for this set of parameters. When then decreasing β again, the system
remains on the synchronized motion, until it becomes unstable and the dynamics
settle on the 3-1 cluster state. Further decreasing β destroys the 3-1 cluster state
and the system converges again to the balanced cluster state.
On the other hand, when decreasing β from the balanced cluster solution, the clus-
ter state with the larger amplitude breaks up. After the bifurcation, the dynamics
again converge to the 3-1 cluster state, where one of the two former synchronized
oscillators joins the cluster with the smaller amplitude. For reasons of clarity and
comprehensibility, the amplitude of only one of the oscillators is depicted in Fig. 2.15.
As for the 2-2 cluster state, the regions in which the 3-1 cluster state is stable can
be obtained by evaluating the Jacobian and investigating its eigenvalues. The pa-
rameter regimes for which the 3-1 cluster is stable is shown as white-shaded patches
in Fig. 2.16, together with the stability diagram of the 2-2 cluster states. Again, the
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Figure 2.17: Bifurcations from the 2-2 clustered solution to a chimera state in an
ensemble of four mean-coupled Stuart-Landau oscillators for c2 = 2. Exemplary
time series for the parameter sets indicated through the gray crosses are shown in
Fig. 2.18.

orange line indicates part of where the parameter continuation of the cluster states,
as shown in Fig. 2.15, is performed.

2.2.2 Symmetry-Broken Periodic Orbits and Chaos

The Hopf bifurcation at the 2-2 cluster solution (pink curve in Fig. 2.14) can be
identi�ed as supercritical in this parameter regime, and thus stable periodic orbits
emanate from it. These orbits have the property that two and two oscillators are
still synchronized, respectively, but with the amplitudes of and the phase di�erence
between the two clusters oscillating. See Fig. 2.18(a) for exemplary time series of
the 2-2 cluster �xed point and Fig. 2.18(b) for time series of the periodic orbits after
the Hopf bifurcation.
Using AUTO, it is possible to continue these limit cycles in the α − β parameter
plane. Doing so we �nd that those states get destroyed either through pitchfork bi-
furcations or homoclinic bifurcations, see Fig. 2.17. One of the pitchforks (dark blue
curve in Fig. 2.17) breaks up the cluster with the larger mean-amplitude, whereas
the other (orange curve in Fig. 2.17) breaks up the cluster with the smaller mean-
amplitude, leading to periodic orbits with time series as shown in Fig. 2.18(c).
Further continuing these 2-1-1 periodic orbits leads to another pitchfork (light green
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Figure 2.18: Amplitudes of the four oscillators from exemplary time series of (a) a
two-cluster �xed point at α = 0.89, β = −0.81, (b) a periodic 2-2 cluster state at
α ≈ 0.875, β ≈ −0.764, (c) a periodic 2-1-1 cluster state at α ≈ 0.853, β ≈ −0.696,
(d) a period-doubled 2-1-1 cluster state at α ≈ 0.845, β ≈ −0.673, and (e) a chimera
state with chaotic time series and two oscillators still synchronized. The individual
parameter sets are indicated as gray crosses in Fig. 2.17. The dashed gray line in
(d) shall provide better visibility of the period-two motion.

curve in Fig. 2.17), at which the remaining cluster breaks up, creating a periodic
orbit where each of the oscillators follows its own orbit. In addition, the 2-1-1
orbits may also undergo a torus bifurcation (light blue curve in Fig. 2.17) or a
period-doubling bifurcation (brown curve in Fig. 2.17). See Fig. 2.18(d) for exem-
plary time series of the period-doubled orbit. Using numerical simulations, we �nd
that shortly after the torus bifurcation, the dynamics become chaotic, indicating a
Ruelle-Takens-Newhouse route to chaos [52, 53]. Furthermore, we detect a cascade
of period-doubling bifurcations (the second and third are indicated in Fig. 2.17),
typical of a Feigenbaum route to chaos [50�52].

2.2.3 Bifurcations to Chimera States

Periodic solutions are best visualized using a Poincaré section, recording the dy-
namical states at discrete points in time [56]. In particular, we can analyze the
period-doubling cascade to chaos in more detail by using so-called orbit diagrams.
There, we plot the maximal values of the amplitudes of each oscillator as a func-
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Figure 2.19: Poincaré map recording the maxima of the amplitudes of the individual
oscillators for 0.84 ≥ α ≥ 0.836 and β = −0.7. Region (a) marks the parameter
range in which periodic orbits are observed, starting with a period-doubled state,
(b) indicates the existence of asymmetric chimera states, (c) denotes the region in
which periodic orbits with discrete rotating wave symmetry exist, and for α values
in region (d) symmetric chimera states are observed. The corresponding time series
of the amplitudes are shown in Fig. 2.20. Note that the blue dots in fact correspond
to the amplitudes of two oscillators.

tion of the bifurcation parameter. For the period-doubling cascade observed in this
system, the orbit diagram for β = −0.7 is shown in Fig. 2.19. In particular, as can
be seen in this �gure, the period-2 orbit bifurcates into a period-4 orbit when α is
reduced4. This subsequently bifurcates into a period-8 orbit and so forth. In other
words, one observes a cascade of in�nitely many period-doubling bifurcations [50],
leading to a chaotic state (region b in Fig. 2.19). The time series of the amplitudes
of such a chaotic attractor are depicted in Fig. 2.20(b). It is important to notice that
the phase and the amplitude di�erence of two of the oscillators is zero, indicating
that, although the total dynamics are chaotic, they are synchronized. Furthermore,
this chimera state is not invariant under a permutation of the third and fourth os-
cillator. In other words, the two incoherent oscillators are not symmetric. Such an
asymmetry can be veri�ed using symmetry detectives, as explained in more detail
in Sec. 2.2.6.

4Note that α in Fig. 2.19 decreases when going to the right.
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Figure 2.20: Time series of the amplitudes of the four oscillators of (a) a periodic
orbit for α = 0.85, (b) an asymmetric chimera state at α = 0.83764, (c) a periodic
orbit with phase shift symmetry at α = 0.8376 and (d) a symmetric chimera state
at α = 0.8365. The other parameters are β = −0.7 and c2 = 2.0. Note that
two oscillators (here green and blue) are always synchronized for these parameter
values and thus form only one curve. The vertical lines in (c) indicate the period
of the desynchronized oscillators (dashed) and synchronized oscillators (dotted),
respectively.

2.2.4 Lyapunov Exponents

As already mentioned when discussing the stability of two-cluster states, Sec. 2.2.1,
the stability of a solution of a dynamical system can be described by so-called Lya-
punov exponents [57]. Consider the trajectory x(t) of such a solution. Then its
stability can be obtained by evaluating the temporal behavior of an in�nitesimal
perturbation δx added to this trajectory at a given time t0. If the distance between
the trajectory (x+ δx) (t) and the original trajectory x(t) grows in time, then the
manifold on which x(t) lives is either unstable or may be chaotic, and if the two tra-
jectories converge, then the manifold is stable and non-chaotic. Linearizing around
the solution x(t), such a distance can be expressed through

‖δx(t)‖ ≈ eλt‖δx(t0)‖
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and the maximal Lyapunov exponent λ can thus be de�ned as

λ = lim
t→∞

1

t
log
‖δx(t)‖
‖δx(t0)‖ . (2.21)

If λ is positive, then the initial disturbance grows in time, if λ is negative, then
the manifold is attracting, and λ equal to zero indicates that the invariant manifold
has a direction which is neither attracting nor repelling. Furthermore, a positive
Lyapunov exponent serves as an indicator of a strange attractor, that is, chaotic
dynamics.
Note that the actual number of Lyapunov exponents is equal to the number of di-
mensions of the system. The largest exponent, as de�ned in Eq. (2.21), describes
just the divergence of the fastest growing direction, or the slowest decaying direc-
tion if it is negative. One can, however, estimate the second largest exponent by
investigating the subspace orthogonal to the direction of maximum divergence (for
a positive exponent) or minimal contraction (if the largest exponent is negative).
The growth/decay rate in this subspace then yields the second exponent. Repeating
this process, all exponents can be obtained iteratively [58].
In more detail, one uses an orthogonal basis δX(t0) centered on the unperturbed
trajectory x0, and subsequently evolves this vector frame using, for example, the
Jacobian J centered at this trajectory,

δX(t1) = Jx0δX(t0),

δX(tk) = JxkJxk−1
· · ·Jx0δX(t0).

The initial �sphere� of perturbations then gets deformed, with the most prominent
axis pointing into the direction of the largest Lyapunov exponent. One thus looks
at the dilation/contraction of the principal axis of this deformed sphere. This can
be obtained using QR decomposition [59] or Gram-Schmidt orthogonalization [60�
62]. Let v1 be the principal axis corresponding to the largest exponent. Then the
principal direction corresponding to the second largest exponent, v2, can be obtained
via

v2 = v2 − 〈v2,v1
′〉v1

′

...

vk = vk − 〈vk,vk−1
′〉vk−1

′ − · · · − 〈vk,v1
′〉v1

′,

with vi ′ = vi/‖vi‖ and 〈·, ·〉 indicating the inner product. Although it is su�cient
to reorthogonalize the initial vector frame once every orbital period, one has to
visit every region of the attractor to ful�ll the requirement of ergodicity [58]. The
Lyapunov spectrum λk can then be obtained by

λk =
1

T

n∑
i=1

log‖vk‖,
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with T being the period over which the attractor is sampled and n being the number
of reorthogonalizations performed.
It is worth mentioning that there are ways to estimate the largest Lyapunov expo-
nent and also the full spectrum from time series only, that is, without knowing the
underlying dynamical equations. See, for example, Ref. [63] for the approximation
of the largest exponent, and Ref. [64] for the estimation of the Lyapunov spectrum.
Here, we stick with the approach discussed above.

2.2.5 Feigenbaum Route to Chimera States

In order to verify that the chimera states discussed in Sec. 2.2.7 are indeed chaotic,
we estimate the largest exponent along the period doubling cascade. The orbit
diagram along the period doubling route for the two synchronized oscillators, and
the corresponding maximal Lyapunov exponent are shown in Fig. 2.21. Note that
there is a range of α values for which the maximal Lyapunov exponent is zero,
indicating non-chaotic dynamics. Since in this region one observes period-n orbits,
one of the Lyapunov exponents has to be zero. For the regions were no periodic
orbits are observed, the largest Lyapunov exponent becomes positive. Recall that
a positive maximal Lyapunov exponent of an attracting manifold indicates chaotic
dynamics. Comparing Fig. 2.21 and Fig. 2.19, one can see from the Lyapunov
exponents that the symmetric and also the asymmetric chimera states are indeed
chaotic

2.2.6 Symmetry Detectives

In this section, di�erent states along the period-doubling cascade, Fig. 2.19, are
distinguished using the set-wise symmetries of the attracting manifold, which can
be determined with symmetry detectives [17, 65, 66]. We apply this method to such
states observed in the ensemble of four mean-coupled Stuart-Landau oscillators,
and relate those states to di�erent chimera states reported in recent literature. At
the end of this section, we also show and discuss how our results extend to larger
networks and spatially extended systems.
Given a dynamical system

ẋ = f (x) , (2.22)

then this system is invariant under the operation γ if

f (γx) = γf (x) . (2.23)

The group {γ} ful�lling Eq. (2.23) is called the symmetry group Γ and system (2.22)
is said be be Γ-equivariant [33]. However, as mentioned above, solutions of Eq. (2.22)
are not necessarily invariant under the same symmetry group Γ, i.e. the symmetry
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Figure 2.21: (a) Orbit diagram of the amplitude of synchronized cluster and (b)
largest Lyapunov exponents along the period doubling route to chaos as a function
of α. See also Fig. 2.19 for the full orbit diagram. Other parameter values are c2 = 2
and β = −0.7. Note that due to the numerical e�ort, the Lyapunov exponent were
calculated for a smaller α window only.

of solutions can be broken. Let x be a solution of system (2.22), then the group of
transformations that leave x invariant,

Σx = {γ ∈ Γ : γx = x} ,

is called the isotropy subgroup of x. Note that Σx ⊆ Γ. Even turbulent or spatio-
temporally chaotic states may exhibit some symmetries in their time-averaged dy-
namics [67�69]. Examples range from so-called soft turbulence in the Taylor-Couette
experiment [70�74] to Faraday wave instabilities [68] and Rayleigh-Bernard convec-
tion [69]. Such symmetries are related to the set-wise symmetry of the attractor,
that is, the group of symmetry operations that leave the whole attractor invariant.
If the dimension of the phase space is three or less, such symmetries can be observed
visually, see for example Ref. [75]. For higher-dimensional systems, Barany et al.
proposed so-called symmetry detectives [65]. The idea is to transform the task of
�nding the symmetry group of a set A in space V to �nding the symmetries of a sin-
gle point KA in some auxiliary space Ṽ [33, 65]. This can be achieved by projecting
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the set A through a Γ-equivariant map φ : V → Ṽ . Then, KA can be expressed as

KA = lim
T→∞

1

T

T∫
0

φ (x (t)) dt

for continuous dynamical systems [66]. φ : V → Ṽ is called a detective with

Σφ(A) = ΣA,

if φ is Γ-equivariant and Ṽ large enough, as explained in Ref. [33]. Once we mapped
a trajectory of the dynamical system into the vector space Ṽ using a detective
function φ as described above, we can estimate the symmetry ΣA of an attracting
set by examining the isotropy subgroup Σ(ω) of ω = KA ∈ Ṽ [76]. This can be
achieved by taking ωγ = KγA and computing the distances

tγ = ‖ωγ − ω‖

for each symmetry operation γ ∈ Γ. The isotropy group Σ(ω) is thus the set of
all γ for which tγ ≈ 0. This is in contrast to the instantaneous symmetry of a
solution, which is the intersection of the isotropy groups Σ(x) at every position of
the attractor,

Σinstant = ∩
x∈A

Σ(x).

Using these two estimates, one can calculate the instantaneous and set-wise sym-
metries of an attracting manifold.
As an example taken from Ref. [67], consider the odd logistic map

xn+1 = λxn − x3
n, (2.24)

which is invariant under the identity transformation e : x→ x and the re�ection κ,

x→ −x⇒ f(−x) = −rx+ x3 = −f(x),

that is, Eq. (2.24) is Γ-equivariant with Γ = {e, κ}. For λ < 1, the �xed point x = 0
is stable (c.f. Fig. 2.22). At λ = 1, this �xed point looses stability and a conjugate
pair of �xed point emerges. Each of these �xed points subsequently undergoes a
period doubling cascade to chaos. Finally, the individual chaotic attractors (only
one of the two is shown in Fig. 2.22) merge in a symmetry increasing bifurcation
at λ = 3

√
3/2 ≈ 2.6, creating a strange attracting set invariant under re�ections at

x = 0.
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Figure 2.22: The variable x of the odd logistic equation plotted over 150 iterations
for each value of the parameter λ.

2.2.7 Symmetric and Asymmetric Chimera States

Turning back for coupled Stuart-Landau oscillators, notice that the full model,
Eq. (2.2), for N = 4, is invariant under a permutation of the indices, S4, and a
phase shift W → W exp (iθ). As already discussed, the latter can be eliminated
using the transformed variables Rk = |Wk|, k = 1, . . . , 4, and ∆θk+1,k = θk+1− θk =
∠Wk+1 − ∠Wk, k = 1, . . . , 3, describing the dynamics in a seven-dimensional phase
space (R4

+ × T3, with T = R/2πZ). Thus, a limit cycle in the original variables,
Eq. (2.2), corresponds to a �xed point in the new amplitude and phase-di�erence
variables.
As shown in Ref. [77] for systems with the symbol permutation symmetry SN , one
can use the ring group RΓ as auxiliary space Ṽ with the polynomial detective

φk(x) = p
(
γ−1
k x

)
, p = x1x

2
2 . . . x

N−1
N−1,

with k = 1, . . . , |SN | and γ−1
k being the inverse of γk ∈ SN . That is, for four globally

coupled oscillators with S4 symmetry of order |S4| = 24, a possible choice for a
symmetry detective is

φk(x) = p
(
γ−1
k x

)
, p = x1x

2
2x

3
3 → φ (x) =


x1x

2
2x

3
3

x2x
2
1x

3
3

...
x4x

2
3x

3
2

 ,
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which we adopt in this section, although other choices of φ are also possible [76].
Here, we take the real parts of our complex time series Wk as input xk.
Turning back to the chaotic states observed in Fig. 2.19, region b, with time series
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Figure 2.23: The distances tγ for the symmetry operations γ ∈ S4. tγ ≈ 0 indicates
the instantaneous and average symmetries of (a) the asymmetric chimera states at
α = 0.83764 and (b) the symmetric chimera state at α = 0.8365, suggesting that the
asymmetric chimera is invariant under the actions of Si2, and the symmetric chimera
under the actions of Si2 × Sa2.

of the amplitudes depicted in Fig. 2.20 (b), where we argued that the corresponding
chaotic attractor is not invariant under a permutation of the two incoherent, third
and fourth, oscillators. This can be veri�ed using symmetry detectives, as shown in
Fig. 2.23 (a). There, one can see that the distances tγ are non-zero when γ involves
a permutation of the two incoherent oscillators. In other words, the underlying
chaotic attractor has an Si2 symmetry in the two synchronized oscillators only, with
the superscript i indicating that the symmetry is instantaneous.
Further reducing α destroys the chimera state, yielding again a periodic state (re-
gion c in Fig. 2.19), with the time series shown in Fig. 2.20 (c). From the amplitude
time series one can observe that the two desynchronized oscillators perform the same
oscillations but with a constant phase shift. Such symmetry is called a phase-shift
symmetry or discrete rotating wave [33, 78], reminiscent of the rotating waves ob-
served in Ref. [30]. Denoting the phase-shift symmetry of the two nonsynchronized
oscillators with Ξ2, this state has an isotropy subgroup Si2 × Ξ2. Furthermore, it
is worth mentioning that, due to the rotating-wave symmetry, the frequency of the
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State α-range Symmetry Index
2-2 FP > 0.8760 Si2 × Si2
2-2 PO 0.8760 to 0.8562 Si2 × Si2
2-1-1 PO 0.8562 to 0.8381 Si2 a
2-1-1 Chaos 0.8381 to 0.8376 Si2 b
2-1-1 P6O 0.8376 to 0.8374 Si2 ×Ξ2 c
2-1-1 Chaos < 0.8372 Si2 × Sa2 d

Table 2.1: Di�erent states observed in the system of four mean-coupled Stuart-
Landau oscillators for β = −0.7 and c2 = 2. FP denotes �xed point solution in
the amplitude and phase di�erence variables, PO periodic orbits, Chaos indicates
chaotic dynamics (chimeras) and P6O a period-6 orbit. The numbers indicate the
number of synchronized oscillators, and the indices a-d correspond to the regions in
Fig. 2.19 and the time series in Fig. 2.20.

oscillation in the amplitudes of the synchronized oscillators is twice the frequency
of the desynchronized oscillators. This is reminiscent of the weak chimera states
reported in Ref. [79], which are periodic but have di�erent mean frequencies in the
individual oscillators.
Further decreasing α �rst leads to a pitchfork bifurcation in which orbits with re-
duced symmetries are born, similar to the symmetry-decreasing bifurcations re-
ported in Ref. [80]. After another cascade of period-doubling bifurcations, one again
obtains chaotic dynamics, see the time series in Fig. 2.20 (d). Surprisingly, and op-
posed to the chimera state described above, this attractor is symmetric under a
permutation of the two desynchronized oscillators. That the attracting manifold is
indeed invariant under such a symmetry operation can be veri�ed using the symme-
try detectives mentioned above, with the distances tγ shown in Fig. 2.23 (b). Note
that a distance close to zero indicates an invariance under the respective group ac-
tion, whereas tγ 6= 0 indicates the absence of such a symmetry. Thus the symmetric
chimera state has an Si2 × Sa2 symmetry, di�erent from asymmetric chimera states
with sole Si2 symmetry. For a summary of the states discussed so far, see table 2.1.
Calculating the symmetry detectives of the four coupled opto-electronic oscillators
reported in Ref. [81], we �nd that also those states have an Si2 × Sa2 symmetry, and
can thus be identi�ed as symmetric chimera states. In order to see if the states
discussed above persist for larger ensembles of oscillators and under the in�uence
of di�usion, we take the globally coupled version of the complex Ginzburg-Landau
equation, Eq. (2.1), with one spatial dimension x and linear global coupling, indi-
cated through the spatial integral [25, 31]. Numerically solving this system on a
domain of length L = 400 and periodic boundary conditions, one obtains chaotic
states resembling the asymmetric chimera (see Fig. 2.24 (a)), and the symmetric
chimera (see Fig. 2.24(b)) for di�erent parameter values.
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Figure 2.24: Space-time plot of the (a) asymmetric chimera in the spatially extended
system with L = 400, α = 0.8304, β = −0.7 and c2 = 2. The asymmetry arises
through the two clusters with small but di�erent amplitudes (blue-ish and yellow-
ish color in plot (a)). (b) Symmetric chimera in the spatially extended system with
L = 400, α = 0.828, β = −0.7 and c2 = 2. The color encodes the absolute value of
W .

Interestingly, in the spatially extended system the asymmetric chimera state of
the four-oscillator network conserves its low-dimensional dynamics, manifesting it-
self in a three-cluster state with temporally chaotic behavior. A comparison of
time-series recorded at a position within each of the three clusters and those shown
in Fig. 2.20(b) is given in Fig. 2.25 and substantiates the correspondence of these
states. In contrast, the symmetric chimera state transforms into a spatio-temporal
chimera state with a synchronized, temporally chaotic cluster and a spatially inco-
herent, temporally chaotic region, as can be seen in Fig. 2.24(b). Corresponding
time series of this apparently extensive chimera state are again displayed together
with its low-dimensional counterparts in Fig. 2.26. Note that the α values at which
those states arise are slightly shifted compared to the corresponding states observed
in the four-oscillator system. This is an e�ect of the di�usion and the di�erent sizes
of the clusters.
That means we �nd di�erent kinds of symmetry-broken states in a system of four
globally coupled oscillators. In particular, there are chaotic states with Si2 symmetry,
which we dub asymmetric chimera states, states with Si2 × Sa2 symmetry, which we
call symmetric chimera states, and deterministic periodic orbits with Si2 ×Ξ2 sym-
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Figure 2.25: (a) Time series of the absolute value of W of the asymmetric chimera
state in the four oscillator network, as shown in Fig. 2.20(b). (b) Exemplary time
series of the absolute value of W of the asymmetric chimera state in the spatially
extended system, at x = 0 (magenta), x = 200 (blue) and x = 125 (cyan), obtained
from the data as shown in Fig. 2.24.

metry. The latter resemble weak chimeras as de�ned for phase oscillators, whereas
the symmetric chimera states seems to exist also in other systems, such as the one
reported in Ref. [81]. The discrimination based on the symmetries of the incoherent
oscillators may facilitate our understanding of intricate dynamics such as chimera
states, and may help to further classify them. In addition, such minimal chimera
states in small networks may further reveal insights into dynamics of larger, and
even spatially extended, systems of oscillators, which, as we have seen, maintain
certain properties of their minimal relatives. Note that these chimeras are minimal
in the sense that they consist of two coherent and two incoherent oscillators, ful�lling
the condition of coexistence of coherence and incoherence, as required for chimera
states [82]. There are, however, authors that claim chimeras can exist in ensembles
of just three oscillators, see, for example, Ref. [83].

2.2.8 Stability of Chimera States

So far, we have investigated how chimera states are born when changing parame-
ters, i.e. the coupling strength, in the system of four mean-coupled Stuart-Landau
oscillators. In addition, we observed that the chimera states, the symmetric and
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Figure 2.26: (a) Time series of the absolute value of W of the symmetric chimera
state in the four oscillator network, as shown in Fig. 2.20(d). (b) Exemplary time
series of the absolute value of W of the symmetric chimera state in the spatially
extended system, at x = 0 (magenta), x = 200 (blue) and x = 75 (cyan), obtained
from the data as shown in Fig. 2.24.

asymmetric ones, are indeed chaotic. The asymmetric chimera, however, seems to
exist only in a small band in parameter space, c.f. Fig. 2.19. In contrast, the sym-
metric chimera seems to be stable in a larger parameter regime. The question then
arises how such chimera states bifurcate in more detail.

Transversal Lyapunov Exponents

In order to estimate the stability of the chimera state, we follow Ref. [37] and calcu-
late the variational equations of the mean coupled system, Eq. (2.2). In particular,
we perturb Wi(t0) → Wi(t0) + δWi, and investigate the temporal evolution of the
δWi. If δWi grows with time, the system is unstable, and if it decays, then the
system state is stable. If δWi is small, then we can, as in Ref. [37], rewrite Eq. (2.2)
as

∂tWi + ∂tδWi = (1− κ) (Wi + δWi)

− (1 + ic2) |Wi + δWi|2 (Wi + δWi) + κ〈Wi + δWi〉.
Using

|Wi + δWi|2 = (Wi + δWi) (W ∗
i + δW ∗

i )
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= |Wi|2 + |δWi|2 +WiδW
∗
i +W ∗

i δWi

≈ |Wi|2 +WiδW
∗
i +W ∗

i δWi,

we get

|Wi + δWi|2 (Wi + δWi) ≈
(
|Wi|2 +WiδW

∗
i +W ∗

i δWi

)
(Wi + δWi)

≈ |Wi|2Wi +W 2
i δW

∗
i + 2 |Wi|2 δWi.

We can separate the equation for the temporal evolution of our perturbation, yielding

∂tδWi = [1− 2 (1 + ic2) |Wi(t0)| − (α + β)] δWi

= − (1 + ic2)Wi(t0)2δW ∗
i + (α + β) 〈δWi〉. (2.25)

To obtain the stability of chimera states, it is su�cient to investigate when the
synchronized cluster breaks up, that is, when it becomes unstable with respect to
perturbations transverse to the synchronization manifold. Without loss of gener-
ality, assume that oscillator W1 and W2 constitute the synchronized cluster, Ws.
Then, following Refs. [81, 84], one can investigate the stability of this cluster by
transforming the system of equations, Eqs. (2.25), as

δW⊥ = v T⊥δW

=
(

1/
√

2,−1/
√

2, 0, 0
)
δW .

Using the fact that W1(t) = W2(t) = Ws(t), the considerations above lead to

∂tδW⊥ =
[
1− κ− 2 (1 + ic2) |Ws(t0)|2

]
δW⊥ − (1 + ic2)Ws(t0)2δW ∗

⊥. (2.26)

Together with

∂tδW
∗
⊥ = − (1− ic2)

(
Ws(t0)2)∗δW⊥ +

[
1− κ∗ − 2 (1− ic2) |Ws(t0)|2

]
δW ∗
⊥

Eq. (2.26) forms a linear dynamical system, de�ning the stability of Ws.
This approach can easily be tested at the synchronized solution Γs. Assume κ =
α + iβ, with β = 0 and c2 = 0. Then the variational equations read(

∂tδW⊥
∂tδW

∗
⊥

)
=

(
1− α− 2 |Ws(t0)|2 −Ws(t0)2

−
(
Ws(t0)2)∗ 1− α− 2 |Ws(t0)|2

)(
δW⊥
δW ∗
⊥

)
,

with the characteristic equation of the Jacobian,(
1− α− 2 |Ws(t0)|2 − λi

)2 −Ws(t0)2(Ws(t0)2)∗ = 0(
1− α− 2R(t0)2 − λi

)2 −R(t0)4 = 0
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(−1− α− λi)2 − 1 = 0

λ1 = −α , λ2 = −2− α.

Hereby, we use that for the amplitude of the synchronous oscillations, R = 1∀t.
Note that the resulting eigenvalues correspond to the eigenvalues in Sec. 2.1.3. This
makes sense, since the synchronized oscillator pairs become unstable at α = 0, and
the system turns into a splay state. It is worth mentioning that in the general
case for non-vanishing β and c2, the eigenvalues of the variational equations do not
necessarily correspond to the eigenvalues of the Jacobian as shown in Sec. 2.1.3. The
reason is that the synchronized solution may become unstable and bifurcate into a
state with two oscillators remaining synchronized, which would result in negative
real parts of the eigenvalues obtained here, but not in the original system. In
general, the Lyapunov spectrum for any state with two synchronized oscillators
can be obtained using Eq. (2.26) and the procedures for the Lyapunov exponent
estimations described in Sec. 2.2.4.

Lyapunov Exponents and Bifurcations of the Chimera State in the Four

Oscillator System

Next, we use this concept to investigate how symmetric chimera states further bi-
furcate. In particular, we take parameters κ = α + iβ, with β = −1.0 and c2 = 2.0
�xed, and use α as our bifurcation parameter. For the �rst run, we take a chimera
state as starting point, with α = 0.8, and subsequently reduce α to lower values.
The two Lyapunov exponents obtained for the synchronized cluster, calculated using
Eq. (2.26), are shown in Fig. 2.27. There, one can notice that the larger exponent
increases while decreasing α, and eventually vanishes slightly below α ≈ 0.752.
This indicates that the synchronized cluster, and thus the chimera state, becomes
unstable at this point. These results can be con�rmed using the Lyapunov spec-
trum of the full system, that is the eight-dimensional system with four complex
oscillators. The results are depicted in Fig. 2.28. Note that, due to the rotational
symmetry of the equations, and the rotational symmetry along the attractor, two
Lyapunov exponents have to be zero. This can indeed be veri�ed, up to numerical
accuracy, in Fig. 2.28 (bottom). In addition, one exponent, indicated in blue, is al-
ways positive, indicating that the chimera state is indeed chaotic. Furthermore, the
fourth-largest exponent, colored in red, increases with decreasing α, and becomes
zero slightly below α ≈ 0.752, which coincides with the calculations of the reduced
system, c.f. Fig. 2.27. Exemplary time series for the values of α = 0.752, α = 0.7488
and α = 0.74 are plotted in Fig. 2.29. Note that above the bifurcation point indi-
cated in Fig. 2.28, that is for α > 0.75, the dynamics are chimera-like, whereas for
α = 0.7488, one can observe fully incoherent dynamics with intermittent behavior,
c.f. the seemingly chimera-like windows with two oscillators almost synchronized in
Fig. 2.29 (middle). There, one also can observe the week instability of the former
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Figure 2.27: Lyapunov exponents of the synchronized cluster of a chimera state
with 0.74 ≤ α ≤ 0.8, β = −1.0 and c2 = 2.0, obtained using the reduced system,
Eq. (2.26). Note that at α ≈ 0.75, the larger exponent approaches zero, indicating
that the synchronized cluster of the chimera state becomes unstable.

synchronized cluster.
Note that, as indicated through just one positive Lyapunov exponent in Fig. 2.28,
the chimera state and the fully incoherent state do not show hyperchaotic behavior.
In particular, for the fully incoherent state, that is for α < 0.75, the fourth-largest
Lyapunov exponent is again negative. This indicates that the system does not get a
second unstable direction. but rather that the unstable direction changed and now
also points in the (1,−1, 0.0) direction.
This can be veri�ed by investigating the eigendirections corresponding to the indi-
vidual Lyapunov exponents. Therefore, we investigate the Lyapunov spectrum for
a chimera state at α = 0.752 and for the fully incoherent state at α = 0.748, with
the β and c2 values from above. For the chimera state, the direction to the largest
Lyapunov exponent at a particular point in time is

v1 =


−0.17027620 + 0.49383942i
−0.17027620 + 0.49383942i
−0.04649049 + 0.34967166i
0.32689376 + 0.47219289i

 .

Note that the �rst two entries, corresponding to the two synchronized oscillators,
are identical. That means, the unstable direction involves a perturbation of the two
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Figure 2.28: Top: Full Lyapunov spectrum of the chimera state/chaotic state, for
the parameter values 0.74 ≤ α ≤ 0.76, β = −1.0 and c2 = 2.0. Bottom: The same
Lyapunov exponents in Top, but with di�erent y-scale. There, one can observe that
one exponent (indicated in red) vanishes at α ≈ 0.752 (indicated by the vertical
dashed black line).

oscillators simultaneously. This can be viewed as a perturbation along the synchro-
nized manifold of the two oscillators. The eigendirection of the fourth Lyapunov
exponent (indicated as red in Fig. 2.28) is

v4 =


−4.34747723 · 10−01 + 5.57668735 · 10−01i
4.34747723 · 10−01 − 5.57668735 · 10−01i
−4.06237544 · 10−14 + 2.11886064 · 10−13i
−2.28608799 · 10−13 + 2.03226325 · 10−13i

 ,

which is approximately zero in the third and fourth entry and has opposite sign in the
�rst two entries, indicating a direction which is perpendicular to the synchronized
manifold of the �rst two oscillators. For the chimera state, however, this direction
is stable, represented through the negative Lyapunov exponent, and becomes less
stable while decreasing α. However, note that all the directions are time dependent,
although their qualitative structure seems to remain.
For the fully incoherent state the direction corresponding to the positive exponents
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Figure 2.29: Exemplary time series of the amplitudes for α = 0.752 (top), α = 0.7488
(middle) and α = 0.74 (bottom). The black arrow indicates the intermittent region
with seemingly chimera-like behavior.

at a particular instance in time reads for example

v1 =


−0.05777069 + 0.50732968i
−0.15750599 + 0.28431224i
−0.38217442 + 0.33854349i
−0.53907092 + 0.28700369i

 .

All entries are very di�erent, and the unstable direction does not seem to have any
obvious structure. If one, on the other hand, investigates the unstable direction
during an intermittent window (c.f. Fig. 2.29 (middle)), then the direction reads

v1 =


−0.10624796 + 0.39264279i
−0.11866924 + 0.38571033i
−0.31020171 + 0.36260937i
−0.15492438 + 0.64805551i

 ,

which shifts the �rst two oscillators similarly, and is reminiscent of the unstable
direction observed for the chimera state. Also, the direction corresponding to the
fourth largest exponent for the fully incoherent state during the intermittent dy-
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namics,

v4 =


−0.48968901 + 0.50281624i
0.52680995− 0.47934244i
−0.00499017 + 0.00283934i
0.00274998− 0.00648657i

 ,

does posses a similar structure as in the case for the chimera state, but again only
in the temporal regions where the �rst two oscillators become very close.

2.2.9 Blowout Bifurcation

The scenario described in the previous section can be identi�ed as a so-called blowout
bifurcation [85]. Blowout bifurcations occur when a Lyapunov exponent perpendic-
ular to the invariant manifold on which a chaotic attractor lives, approaches zero.
Two types of blowout bifurcations have been reported, a subcritical blowout, where
the phase space close to the invariant manifold is riddled and the transition is hys-
teretic, and a supercritical blowout, characterized by on-o� intermittency beyond
the bifurcation point. Such bursts can also be observed at the onset of the fully
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Figure 2.30: Time series of the absolute value of the di�erence between the second
and �rst oscillator, obtained from numerical simulations of a four oscillator ensemble
with the parameters α = 0.7504, β = −1.0 and c2 = 2.0.

incoherent dynamics in the system of four coupled Stuart-Landau oscillators, see
Fig. 2.30. There, the modulus of the di�erence between the values of the second
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Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

and �rst oscillator (which where synchronized in the chimera state) is shown, with
large irregular bursts and coherent plateaus interchanging in an irregular manner.
Interestingly, the qualitatively same behavior of this on-o� intermittency can be
observed in the di�erences of all pairs of oscillators. This can be interpreted as a
symmetry breaking from the fully incoherent state to one of the possible six chimera
states (belonging to the same group orbit), where one pair of the four oscillators
becomes synchronized. In the fully incoherent state, these six chimera states remain
as unstable 'saddles', nearby which the chaotic states remains some period of time,
as in Fig. 2.30. As explained in Ref. [85], the duration of the time period of these
intermittent windows diverges at the bifurcation point, and the Lyapunov exponent
transversal to this synchronized manifold subsequently decreases linearly with the
bifurcation parameter. This is in accordance with our observations, see Fig. 2.27.
The numerical approximations of the maximal transversal Lyapunov exponents in
the β-α plane are shown in Fig 2.31. Starting from the chimera state and for
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Figure 2.31: The maximal transversal Lyapunov exponent in the β-α plane for c2 =
2.0. The numerical approximations are obtained by starting close to the torus
bifurcation curve (blue) and the period doubling curve (magenta), using the method
as explained in Sec. 2.2.8.

β < −0.92, one can observe that the maximal transversal Lyapunov exponent λ1

grows continously until it becomes zero, indicating a blowout bifurcation. After the
blowout, the dynamics is fully incoherent, without any pair of oscillators remaining
synchronized. For β values slightly above β = −0.92, the transition from the chimera
state to the fully incoherent state is non-continuous in the maximal transversal Lya-
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2.2 The Dynamics of Four Coupled Oscillators

punov exponent, indicating a bifurcation di�erent from the blowout bifurcation. On
the other hand, for β > −0.74, the chimera attractor gets destroyed and the system
settles onto a stable 3-1 amplitude cluster state. This latter transition is hysteretic,
indicating that this bifurcation possibly is a saddle node of unstable periodic orbits
or a homoclinic bifurcation, destroying the chaotic attractor.

2.2.10 Non-Blowout Destruction of the Chimera State

Besides the continuous transition to fully incoherent dynamics by a linear conver-
gence of transversal Lyapunov exponent to zero, there are also bifurcations of the
chimera state which are characterized by a discontinuous transition, see Fig. 2.31.
First, the chimera state can become unstable and converge to a stable 3-1 cluster
state. This bifurcation occurs for parameter values −0.74 ≤ β ≤ −0.6. Further-
more, there is a discontinuous bifurcation curve between −0.92 ≤ β ≤ −0.74. An
exemplary time series for parameter values below but close to the bifurcation curve,
that is for α = 0.744 and β = −0.8 are depicted in Fig. 2.32. Note that during
the temporal evolution of the four oscillators in this example, a non-synchronized
oscillator obtains a larger amplitude then the synchronized cluster. Following this
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Figure 2.32: Exemplary time series of the amplitudes of the four complex variable
W , obtained from a simulation below the non-blowout bifurcation to full incoherence
at α = 0.744, β = −0.8 and c2 = 2.

event, the dynamics become seemingly periodic for a short period of time, which
eventually ends in a break up of the synchronized cluster and the synchronization

63



Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

of the two oscillators with the largest amplitudes. That means that the symme-
try breaking inherited from the original 2-2 amplitude cluster state got lost, and all
pairs of oscillators eventually become temporally synchronized. Surprising, however,
is the fact that the transversal Lyapunov exponent is non-zero close to the bifurca-
tion. This may be due to the fact that one has to choose one oscillator at which to
evaluate the Jacobian, and the choice in this particular example is no longer unique.
One can, in principle, evaluate the Jacobian always at the oscillator with the largest
amplitude, which then yields negative transversal exponent above and below the
bifurcation curve, or one can evaluate the linearized system at the �rst oscillator
(blue in Fig. 2.32), which then yields the discontinuity shown in Fig. 2.31.
Furthermore note that the dynamics as shown in Fig. 2.32 are reminiscent of a non-
stationary chimera state, that is, the cluster assignment of the individual oscillators
changes in time. However, the mean time periods during which the synchronized
oscillators remain synchronized seemingly reduce when departing from the bifurca-
tion curve, with the dynamics becoming rather fully incoherent and non-chimera
like. This is in contrast to the blowout bifurcation, after which one of the two for-
mer synchronized oscillators remains distinct with the largest amplitude, while the
other oscillator joins the oscillators in the non-synchronized cluster, c.f. Fig. 2.29.
However, in both scenarios, temporarily periodic or quasi-period windows are ap-
parent. The set of all bifurcations from and to the chimera state is depicted in
Fig. 2.33. Hereby, the blowout and non-blowout bifurcation curves are obtained
through quadratic �ts, and the hysteretic bifurcation through an exponential �t, to
the data of the largest transversal Lyapunov exponent when it becomes zero or dis-
continous in the parameter plane, cf. Fig. 2.31. In addition, only one of the period
doubling bifurcation curves are shown.

2.3 The Dynamics of Larger Ensembles

The analysis of the clustering behavior in the ensemble of four oscillators, c.f.
Sec. 2.2.1, can easily be extended to larger ensembles of oscillators. In particu-
lar, we now consider 16 oscillators and investigate the clustering behavior along the
parameter cut indicated by the dashed orange line in Fig. 2.16. That is, we �x
c2 = 2 and α = 1.12 and vary β. We do this by simulating the full model, Eq. 2.2,
starting from the balanced 8-8 cluster solution, and increasing β step-wise. Over
the course of this increase, the system goes from a stable 8-8 solution to a stable
9-7 solution, 10-6 solution and so forth until it settles on the synchronized solu-
tion. In this way we obtain solutions for every cluster distribution, which we then
use for continuation with AUTO. The continuation curves we obtain this way are
depicted in Fig. 2.34(a), where again the amplitude of the cluster with the larger
number of oscillators, RC1 , is shown as a function of the continuation parameter β.
The amplitudes of the smaller cluster for the same parameter window are shown in
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Figure 2.33: Bifurcations from and to the chimera state at c2 = 2. The term hys-
teretic shall indicate that the transition from chimeras to 3-1 cluster states and vice
versa is hysteretic, without being speci�c in what the actual bifurcation is.

Fig. 2.34(b). Note the correspondence of the 8-8 cluster solution, shown in blue,
with the 2-2 cluster solution in Fig. 2.15.
There are two β values, β1 and β2, between which the synchronized solution is unsta-
ble, see Fig. 2.34. At the bifurcation points, there are also transcritical bifurcations
of all unbalanced cluster states and pitchfork bifurcations of the balanced state. The
two solution branches of each transcritical and of the pitchfork bifurcations, respec-
tively, connect the two bifurcation points at β1 and β2. Each of the unbalanced
clusters is born respectively destroyed in a saddle-node bifurcation, the most outer
one corresponding to the (N − 1)-1 cluster state being the only one that posses a
stable branch. The other cluster states, as well as the balanced one, are stabilized
through further (equivariant) pitchfork bifurcations (not shown), compare Fig. 2.15.
In this way, two staircases of overlapping stable cluster states are generated, whereby
the cluster distribution of the cluster states in subsequent steps di�er by just one
oscillator. This leads to two cascades of transitions between the two synchronized
regions.
If we start from the stable synchronized solution for β < β1 and slowly increase β,
the system goes from the synchronized solution to a 15-1 cluster state, and then
two a 14-2 state and so forth, traversing a cascade up to the balanced 8-8 cluster
and back, until it settles again on the synchronized solution, see the blue curve in
Fig. 2.35. Thereby, the originally larger cluster with amplitude RC1 (cf. Fig. 2.34(a))
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Chapter 2 The Dynamics of Mean-Coupled Stuart-Landau Oscillators

becomes the smaller one with amplitude RC2 (cf. Fig. 2.34(b)) beyond the balanced
cluster state. The second staircase, and with it the hysteretic behavior, can be seen
when we subsequently reduce β again, cf. the orange curve in Fig. 2.35.
As mentioned above, all unbalanced cluster solutions, that is all cluster solutions
except the 8-8 cluster, bifurcate with the synchronized solution in a transcritical
bifurcation. In particular, the unbalanced cluster states exist on both sides of both
bifurcation points where the synchronized solution changes stability. However, all
cluster solutions lose stability through equivariant pitchfork bifurcations (the re-
sulting branches are not shown in Fig. 2.34(a)), in which either the cluster with the
larger or smaller amplitude breaks up. This is true except for the most unbalanced,
the 15-1, cluster, for which the smallest cluster cannot break up. There we �nd that
this stable state is destroyed in a saddle-node bifurcation instead. In addition, each
kind of unbalanced cluster solution is stable in two di�erent regions in parameter
space. Each of these stable regions lies close but slightly shifted to the stable regions
of neighboring cluster states.

2.3.1 Cluster Singularities

The observed phenomena of slightly shifted bifurcations can be explained with the
concept of persistence. Loosely speaking, if two attractors are hyperbolic and close
in phase space, then bifurcations of those attractors are also close in parameter
space [55]. In addition, one can infer that between the cluster states shown in
Fig. 2.34, which must also exist for larger ensembles, there lie many more cluster
states in larger networks, and using persistence, their stability must be similar to
that of the ones seen in Fig. 2.34.
This explains the cascade-like transition from balanced cluster states to the homoge-
neous solution in large ensembles, where, when changing a parameter, one oscillator
after another joins the other cluster until the synchronized solution is reached. We
conjecture that for in�nitely large ensembles, the cluster attractors are in�nitesimal
close, and thus this process becomes continuous. This is similar to the Eckhaus in-
stability, where the distances between subsequent bifurcations shrink with increasing
system size [86].
Turning back to Fig. 2.16, we observe that there is a codimension-2 point (pink point
in Fig. 2.16) where the stable 2-2 cluster bifurcates into the synchronized solution in
a pitchfork bifurcation. This is in contrast to the phenomena observed in the liter-
ature, where the transition to the synchronized solution occurs via the unbalanced
cluster solutions [37]. For the Stuart-Landau ensemble, Eq. (2.2), this point can be
found analytically as

αCS = −1±
√

3c2

2
, (2.27)
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Figure 2.34: Cluster solutions in an ensemble of 16 coupled Stuart-Landau oscillators
obtained using AUTO. Shown is (a) the amplitude of the larger cluster, RC1 , as a
function of the bifurcation parameter β, as indicated by the dashed orange line
in Figs. 2.14 and 2.16, and (b) the amplitude of the smaller cluster, RC2 . Other
parameter values are c2 = 2 and α = 1.12. β1 and β2 indicate when the synchronized
solution bifurcates.
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Figure 2.35: The amplitude of one of 16 oscillators as a function of the parameter
β starting from the stable synchronized solution and increasing β (blue curve) and
when subsequently reducing β (orange curve). Due to the addition of �nite noise in
the numerical simulations when increasing β, not all of the densely located cluster
states close to β2 are resolved.

βCS =
−c2 ±

√
3

2
, (2.28)

with the derivation shown in Sec. 2.3.2.
The characteristics of such a point is that, when starting from a balanced 2-cluster
solution and changing the parameters over this bifurcation point, the two clusters
approach each other and �nally merge and form the synchronized solution. This is
what we call a cluster singularity. However, when varying the parameters such
that one turns around the codimension-2 point either clock- or anticlockwise (that is,
changing α and β along a path which circumvents the singularity on the left or on the
right), either of the clusters shrinks and single oscillators join the other cluster until
all oscillators �nally form the synchronized solution. This scenario can be veri�ed
using numerical simulations and is shown in Fig. 2.36. There, simulations of N = 20
Stuart-Landau oscillators are shown when avoiding the cluster singularity clockwise
(Fig. 2.36(a)), when directly crossing over the cluster singularity (Fig. 2.36(b)) and
when avoiding the cluster singularity in an anticlockwise manner (Fig. 2.36(c)).
The cluster singularity serves as an organizing center for nearby unbalanced cluster
solutions. Recall that all unbalanced 2-cluster solutions get destroyed in saddle-
node bifurcations, cf. Fig. 2.34. In the cluster singularity, all these saddle-node
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bifurcations as well as the pitchfork bifurcations that alter the stability properties
of the cluster states collapse to a single point in phase space, suggesting the name
cluster singularity. Note that when crossing the singularity, the stable balanced
cluster solution directly bifurcates into the synchronized solution. However, the
complete unfolding of this co-dimension 2 point still remains subject for future
research.
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Figure 2.36: Simulations of the globally coupled Stuart-Landau ensemble close to
the cluster singularity for N = 20 oscillators and c2 = 2, (a) β = βCS + 0.3 > βCS,
(b) β = βCS and (c) β = βCS − 0.05 < βCS. The direction in which α is changed is
from small to large values.

2.3.2 Derivation of the Cluster Singularities

The idea is that at the cluster singularity, the saddle-node bifurcations of all un-
balanced 2-cluster solutions hit the pitchfork at which the synchronous solution
becomes unstable. This must be true for any ε = N1/N . Therefore, for simplicity,
we take the limit ε→ 0 in system Eqs. (2.5) to (2.7), yielding

0 = R1 −R3
1

0 = R2 −R3
2 + α (R1 cos (∆φ)−R2)− βR1 sin (∆φ)

0 = −c2

(
R2

1 −R2
2

)
+ β − β cos (∆φ)

(
R1

R2

)
− α sin (∆φ)

(
R1

R2

)
.
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This means R1 = 1 and thus leaves

0 = R2 −R3
2 − αR2 + α cos (∆φ)− β sin (∆φ)

0 = −c2

(
R2 −R3

2

)
+ βR2 − β cos (∆φ)− α sin (∆φ) ,

and solving for R2
2,

R2
2 = −2α + 2βc2 − 1− c2

2

2 (1 + c2
2)

±

√
(2α + 2βc2 − 1− c2

2)
2 − 4 (α2 + β2) (1 + c2

2)

2 (1 + c2
2)

.

Setting R2
2 = 1 means we are at the point where the cluster solution meets the

synchronous solution (∆φ = 0 follows from R2 = R1 = 1), and from this the
previous expression turns into

1 = −2α + 2βc2 − 1− c2
2

2 (1 + c2
2)

±

√
(2α + 2βc2 − 1− c2

2)
2 − 4 (α2 + β2) (1 + c2

2)

2 (1 + c2
2)

→ 2
(
1 + c2

2

)
= −

(
2α + 2βc2 − 1− c2

2

)
±
√

(2α + 2βc2 − 1− c2
2)

2 − 4 (α2 + β2) (1 + c2
2)

→
(
2α + 2βc2 + 1 + c2

2

)
= ±

√
(2α + 2βc2 − 1− c2

2)
2 − 4 (α2 + β2) (1 + c2

2)

→
(
2α + 2βc2 + 1 + c2

2

)2
=
(
2α + 2βc2 − 1− c2

2

)2 − 4
(
α2 + β2

) (
1 + c2

2

)
→ (2α + 2βc2)2 +

(
1 + c2

2

)2
+ 2 (2α + 2βc2)

(
1 + c2

2

)
= (2α + 2βc2)2

+
(
1 + c2

2

)2 − 2 (2α + 2βc2)
(
1 + c2

2

)
− 4

(
α2 + β2

) (
1 + c2

2

)
→ 4 (2α + 2βc2)

(
1 + c2

2

)
= −4

(
α2 + β2

) (
1 + c2

2

)
→ α2 + β2 + 2 (α + βc2) = 0 (2.29)

which coincides with the curve at which the homogeneous solution becomes unstable.
For the saddle-node curve of the cluster solutions, the two solutions of R2

2 must equal,
and thus the discriminant must equal zero

0 =
(
2α + 2βc2 − 1− c2

2

)2 − 4
(
α2 + β2

) (
1 + c2

2

)
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4
(
α2 + β2

) (
1 + c2

2

)
=
(
2α + 2βc2 − 1− c2

2

)2

4
(
α2 + β2

) (
1 + c2

2

)
= (2α + 2βc2)2 +

(
1 + c2

2

)2 − 2 (2α + 2βc2)
(
1 + c2

2

)
4
(
α2 + β2

) (
1 + c2

2

)
= 4 (α + βc2)2 +

(
1 + c2

2

)2 − 4 (α + βc2)
(
1 + c2

2

)
.

Now use that −2 (α + βc2) = α2 + β2 from Eq. (2.29) above,

4
(
α2 + β2

) (
1 + c2

2

)
= 4 (α + βc2)2 +

(
1 + c2

2

)2 − 4 (α + βc2)
(
1 + c2

2

)
4
(
α2 + β2

) (
1 + c2

2

)
=
(
α2 + β2

)2
+
(
1 + c2

2

)2
+ 2

(
α2 + β2

) (
1 + c2

2

)
0 =

(
α2 + β2

)2
+
(
1 + c2

2

)2 − 2
(
α2 + β2

) (
1 + c2

2

)
0 =

(
α2 + β2 − 1− c2

2

)2

0 = α2 + β2 − 1− c2
2. (2.30)

Eq. (2.30) gives the saddle-node curve of the cluster with ε = 0. So for the cluster
singularity, this saddle-node bifurcation coincides with the point at which the ho-
mogeneous solution becomes unstable, as given by Eq. (2.29), which yields in total
the two conditions

0 = α2 + β2 + 2 (α + βc2)

0 = α2 + β2 − 1− c2
2.

Subtraction of these two equations yields

0 = 2 (α + βc2) + 1 + c2
2

α = −βc2 −
1

2

(
1 + c2

2

)
(2.31)

and thus

0 =

(
βc2 +

1 + c2
2

2

)2

+ β2 −
(
1 + c2

2

)
0 =

(
2βc2 + 1 + c2

2

)2
+ 4β2 − 4

(
1 + c2

2

)
0 = 4β2c2

2 +
(
1 + c2

2

)2
+ 4βc2

(
1 + c2

2

)
+ 4β2 − 4

(
1 + c2

2

)
0 = 4β2

(
1 + c2

2

)
+
(
1 + c2

2

)2
+ 4βc2

(
1 + c2

2

)
− 4

(
1 + c2

2

)
0 = 4β2 +

(
1 + c2

2

)
+ 4βc2 − 4

0 = β2 + βc2 +
−3 + c2

2

4

β =
−c2 ±

√
3

2
.
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This solution plugged into Eq. (2.31) yields

α = −−c2 ±
√

3

2
c2 −

1

2

(
1 + c2

2

)
=
c2 ∓

√
3

2
c2 −

1

2

(
1 + c2

2

)
= −1±

√
3c2

2
.

So, in total, we have at the cluster singularity

α = −1±
√

3c2

2
(2.32)

β =
−c2 ±

√
3

2
. (2.33)

This indicates two possible solutions for the cluster singularity. Furthermore, it is
worth mentioning that it seems to exist for all c2 values.

2.3.3 Clustering in Spatially Extended Systems

Adding a di�usive coupling in addition to the global coupling, one obtains a globally
coupled version of the complex Ginzburg-Landau equation [25], see Eq. 2.1. In a
sense, such a system can be viewed as an ensemble of in�nitely many oscillators,
coupled locally and globally. If the local coupling is weak or the spatial domain
is very large, then we expect the solutions of the Stuart-Landau ensemble to exist
also in the spatially extended system. For in�nitely many oscillators, however, the
2-cluster solutions become in�nitesimally close in phase space (cf. Fig. 2.34 for
16 oscillators) and thus in�nitesimally small perturbations are su�cient to drive
the solution from one cluster state to another. This is also what we observe in
numerical simulations: the di�usive coupling leads to the selection of a particular
cluster distribution, and the multi-stability of di�erent cluster solutions, as apparent
in Fig. 2.34 for Stuart-Landau oscillators, seems no longer to exist. What is special
about the then globally stable 2-cluster solution, however, still remains unknown.

2.4 Conclusions

To summarize the results of this chapter, we investigated the dynamics of two and
four coupled Stuart-Landau oscillators. There, we observed symmetry broken states
which can be viewed as so-called cluster states. Starting from such cluster states,
we discussed how chimera states are born in systems of four coupled oscillators. We
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investigated how such chimera states further bifurcate using transversal Lyapunov
exponent, and found di�erent bifurcation scenarios, including the destruction via
blowout bifurcations. After these bifurcations, fully incoherent dynamics can be
observed, in which there are no pairs oscillators that remain synchronized.
Using symmetry detectives, we could distinguish two qualitatively di�erent types
of chimera states, which we dubbed symmetric and asymmetric chimeras. Hereby,
the attractor of symmetric chimera states is invariant under the exchange the two
incoherent oscillators, whereas the attracting manifold of asymmetric chimera states
is not invariant under such a transformation. In addition, we have shown ways how
clustering can occur in globally coupled ensembles of Stuart-Landau oscillators. In
particular, starting from small ensembles, we described how 2-cluster branches bi-
furcate, and extended this analysis to larger ensembles of oscillators. Doing so, we
found a codimension-2 point which we dubbed a cluster singularity: at this point,
the stable balanced cluster solution bifurcates directly into the synchronized solu-
tion. In addition, all saddle-node bifurcations generating unbalanced cluster solu-
tions collapse in this point. Using numerical simulations, we showed how ensembles
of Stuart-Landau oscillators behave close to this cluster singularity. Since any os-
cillatory system close to the onset of oscillations can be mapped onto the dynamics
of the Stuart-Landau oscillator, we believe that cluster singularities are common in
oscillatory systems with global coupling, and that an experimental observation of
these should be possible. Finally, we discussed how our results extend to spatially
extended systems, where the di�usive coupling seems to destroy the multi-stability.
We believe that our considerations may serve as a further step towards a better
understanding of clustering behavior in coupled oscillators. In particular, the com-
plete unfolding of the cluster singularity point is still topic of ongoing research. In
addition, 2-cluster solutions in the regarded parameter windows may also become
unstable through supercritical Hopf bifurcations for smaller α values, and even bi-
furcate into chimera states [17, 48]. How this transition occurs for di�erent cluster
distributions is still an open question. Furthermore, how the results obtained in this
chapter extend to systems of coupled relaxational oscillators or weakly inhomoge-
neous systems still remains unanswered.
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Chapter 3

Classi�cation of Chimera States

In the previous chapter, we investigated chimera states in minimal networks of just
four oscillators. There, we brie�y discussed how such minimal chimeras manifest
themselves in larger ensembles. In particular, symmetric chimeras seem to show
spatiotemporal incoherent motion, whereas asymmetric chimera states seem to form
spatially coherent clusters. The increasing number of reported chimeras, however,
reveals that this classi�cation into symmetric and asymmetric chimeras in larger
ensembles of oscillators is by no means complete, and other measures are desirable.
In this chapter, we present a universal characterization scheme for chimera states
applicable to both numerical and experimental data sets which we published in
Ref. [19]. The scheme is based on two correlation measures that enable a meaning-
ful de�nition of chimera states as well as their classi�cation into three categories:
stationary, turbulent and breathing. In addition, these categories can be further sub-
divided according to the time-stationarity of these two measures. We demonstrate
that this approach both is consistent with previously recognized chimera states and
enables us to classify states as chimeras which have not been categorized as such be-
fore. Furthermore, the scheme allows for a qualitative and quantitative comparison
of experimental chimeras with chimeras obtained through numerical simulations.
Before developing the classi�cation theme, it is useful to recapitulate the emergence
of so-called chimera states. In particular, the paper �Coexistence of Coherence and
Incoherence in Nonlocally Coupled Phase Oscillators� by Kuramoto and Battogtokh
published in 2002 [82] marks the commencement of intense research activities on a
counter-intuitive phenomenon that has come to be known as a chimera state [12],
i.e., the coexistence of coherent and incoherent dynamics in a network of symmet-
rically coupled identical oscillators. For a long time, the coexistence of coherence
and incoherence had been believed to be bound to heterogeneous networks of os-
cillators, in which oscillators with a similar frequency might mutually synchronize,
while those with larger deviations of their frequencies from the mean frequency keep
on drifting incoherently. The discovery that an array of identical oscillators, all cou-
pled in an identical way to their neighbors, can also be split into synchronized and
drifting groups was likewise surprising as fundamental. The chimera state, being a
novel type of dynamic state, can broaden our understanding of transitions from syn-
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chrony to �turbulence� and vice versa, and has possible realizations and applications
in nature, e.g. in neuroscience [87, 88] or hydrodynamics [89, 90]. Since the pioneer-
ing works in the early years of this millennium, chimera states have been observed
in many di�erent systems, ranging from systems with non-local coupling [91�96],
via two-group approximations [97, 98] to global all-to-all coupling [54, 99]. Due to
their robustness to noise, chimera states have also been observed experimentally,
e.g. in networks of coupled chemical oscillators [98], arrays of coupled spatial light
modulators [93], networks of mechanical oscillators [100] and electrochemical sys-
tems [54]. However, the various systems di�er strongly in the visual attributes of
their dynamic behavior, asking for a systematic categorization. In this chapter, we
propose a classi�cation scheme based on linear methods, which we believe ful�lls
the requirements of being universal and simple in its application.
Most early studies on chimera states dealt with non-locally coupled phase oscillators,
where coherence refers to phase- and frequency-locked oscillators and incoherence
to drifting oscillators, respectively [82]. Lately, more and more chimera patterns
were discovered, wherein coherence and incoherence is of a di�erent nature. One
example is the so-called amplitude chimera, where the incoherent group is charac-
terized by disorder in the amplitude of the oscillators while all the oscillators in the
entire ensemble oscillate with the same frequency [96]. Other coherence/incoherence
coexistence patterns di�er from the classical chimera state by the variability of co-
herent and incoherent regions, which might both change their sizes and move in
space [26, 30]. Furthermore, the stability properties of these diverse chimera states
vary greatly. Many chimeras, among them the original one in systems of nonlocally
coupled phase oscillators, are transient for a �nite number of oscillators, but have
a diverging transient time in the continuum limit N → ∞ [101]. Others are stable
already from small ensemble sizes on [79, 102], and still others have �nite transient
times even in the continuum limit [96].
These examples illustrate that the original de�nition of a chimera state as �a spatio-
temporal pattern in which a system of identical oscillators is split into coexisting
regions of coherent and incoherent oscillators� [103] does not cope with recent devel-
opments but calls for a more distinct characterization and re�nement. There already
exist two approaches towards characterization schemes in minimal networks [79] and
for chimeras with non-local coupling [104], but they are both restricted to a small
class of systems.
In this chapter we propose two measures for characterizing chimera states. Although
based on linear methods, these quantities provide what we believe to be a clear and
simple de�nition of chimera states, and, furthermore, they allow for an easy distinc-
tion between chimera states with di�erent coherence properties and thus provide a
useful classi�cation scheme. In addition, our approach is independent of the cou-
pling scheme and the spatial dimension of the system, and not restricted to phase
oscillators, such as the (local) Kuramoto order parameter [82].
The chapter is structured as follows: In Sec. 3.1 we introduce a spatial and a tempo-
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ral correlation measure applicable to arbitrary data sets and de�ne chimera states
with the help of these measures. In Sec. 3.2, these criteria are applied to exper-
imental and simulated data of di�erent chimera states, and in Sec. 3.3 a detailed
characterization scheme on the basis of the measures is discussed.

3.1 Correlation Measures for Spatial and Temporal

Coherence

3.1.1 A Measure for Correlation in Space

For systems with a spatial extent, that is, systems with a local or non-local coupling
topology, we employ the local curvature as a measure for the spatial coherence.
Hereby the local curvature of the observable is quanti�ed by the second derivative
with respect to space for spatially one-dimensional systems, or, more generally, by
the Laplacian for any number of spatial dimensions. Therefore, we calculate the local
curvature at each point in space by re-scaling and applying the discrete Laplacian
D on each snapshot containing the spatial data f . For one snapshot at time t with
one spatial dimension, this operation reads

D̂f = ∆x2Df

= f (x+ ∆x, t)− 2f (x, t) + f (x−∆x, t) ,
(3.1)

where each data point in f can be either real, complex or of any higher dimension.
In order to clarify this concept, consider the chimera state observed by Kuramoto
and Battogtokh in a ring of non-locally coupled phase oscillators [82]. The evolution
of the phases in the Kuramoto model is described by

∂tθ (x, t) = ω −
∫
G (x− x′) sin (θ (x, t)− θ (x′, t) + α) dx′ (3.2)

with the coupling kernel
G (x− x′) =

κ

2
e−κ|x−x

′|.

We numerically integrate the Kuramoto model, Eq. (3.2), using the fourth-order
Runge-Kutta method with �xed time step dt = 0.025 and N = 3000 oscillators. As
initial conditions, random numbers σ with a Gaussian envelope

θ (x, t = 0) = 6.0e−30.0(x−L/2)2 · σ (x) (3.3)

are taken. Further parameters are α = 1.457, κ = 4.0, L = 1. As boundary condi-
tions periodic conditions are chosen.
One realization of the chimera state is depicted in Fig. 3.1(a). Through the applica-
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Figure 3.1: (a) Snapshot of the Kuramoto model[82], after the initial conditions
decayed. (b) Absolute value of the local curvature obtained by applying the discrete
Laplace operator on the data set shown in (a).

tion of the discrete Laplace operator, this snapshot is mapped onto a new function as
shown in Fig. 3.1(b), with Dm indicating the maximal value of |D̂f |. Note that for
phase oscillator systems, we apply this operator on the data in the complex plane,
that is the phase oscillators are located on a ring with constant amplitude A. Then,
Dm corresponds to the curvature at an oscillator whose two neighbors are shifted
180◦ in phase, i.e., whose neighboring oscillators are located on opposite positions
on the circle. With the re-scaling obtained by multiplying the Laplacian with ∆x2

in Eq. (3.1), Dm converges to 4A in the continuum limit. In the synchronous regime
limN→∞ |D̂f | = 0. This means that the synchronous regime is projected onto the
x-axis through this transformation, while in the incoherent regime |D̂| is �nite and
exhibits pronounced �uctuations. Consequently, when we consider the normalized
probability density function g of |D̂f |, g(|D̂f | = 0) measures the relative size of spa-
tially coherent regions in each temporal realization. For a fully synchronized system
g(|D̂f | = 0) = 1, while a totally incoherent system gives a value g(|D̂f | = 0) = 0.
A value between 0 and 1 of g(|D̂f | = 0) indicates coexistence of synchrony and
incoherence.
Given this discussion, two important aspects have to be considered. First, the de�-
nition of spatial coherence and incoherence is not absolute, but has to be compared
to the maximal curvature in each system. Thus, we argue that the characteriza-
tion of coherence and incoherence is relative and depends on the individual system.
Second, even in the coherent region, there might be some minor change in state
(cf. Fig. 3.1(a) above) leading to a non-zero curvature. Hence, we are convinced
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that in order to characterize something as coherent or incoherent, a threshold value
is inevitable, although, as will be shown later, the exact position of the threshold
does not change the qualitative outcome.
Considering the two arguments above, we propose that for spatially extended sys-
tems, a point for which the absolute local curvature is less than one percent of the
maximum curvature present in the system should be characterized as coherent, and
as incoherent otherwise.
With the threshold δ = 0.01Dm our �rst correlation measure

g0(t) :=
∫ δ

0
g(t, |D̂|)d|D̂|

can be used to describe the spatial extent occupied by coherent oscillators, even for
systems beyond coupled phase oscillators. An example of g for the Kuramoto model
is shown in Fig. 3.2(a). Note that, in general, g is time dependent. Fig. 3.2(b) shows
g0(t) as a function of time. The value of g0(t) of about 0.3 con�rms the interpre-
tation of the state as a chimera state, while its time-independence reveals that the
degree of coherence is stationary.
For systems without a spatial dimension, i.e., systems with solely global coupling,
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Figure 3.2: (a) Probability distribution function g of the discrete Laplace operator
applied on the snapshot of Fig. 3.1(a). (b) Temporal evolution of g0(t) for a longer
time series of the Kuramoto model.

curvature is not de�ned. Nevertheless, we argue that the pairwise Euclidean dis-
tances between the values of all oscillators, fi,

D̃f = {D̃ij} = ‖fi − fj‖ , i 6= j,
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are a good measure for synchrony/asynchrony. Again, from the normalized proba-
bility density function g of D̃f , a variable

g̃0(t) :=

√∫ δ
0
g(t, |D̃f |)d|D̃f |,

can be obtained that is a measure for the relative amount of correlated oscillators.
Here, the square root arises due to the fact that by taking all pairwise distances,
the probability of oscillators i and j both being in the synchronous cluster equals
(N0/N)2, with N0 being the number of the synchronous oscillators. Since both
measures, g0(t) and g̃0(t), describe the same property, that is, the degree of spatial
synchronization of the system, we only use g0(t) as notation in the following.
As an illustration, consider the two groups of globally coupled phase oscillators
investigated by Abrams et al [97]. The dynamics in the two-group approximation
follow

dθσi
dt

= ω +
2∑

σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin
(
θσ
′

j − θσi − α
)

with the two groups σ ∈ {1, 2} and the number of oscillators in each group Nσ,
which are set to N1 = N2 = 512. The coupling-strengths Kσσ′ are taken as
K11 = K22 = 0.675 and K12 = K21 = 0.325. The phase lag α = π/2 − 0.1 and
the frequencies ω = 0 are identical for all oscillators. Initial conditions are ran-
dom phases with small variance (< 0.1) for group one and large variance (= 2.0)
in group two. The system is integrated using a fourth-order Runge-Kutta method
with a �xed time step of dt = 0.01.
An exemplary snapshot is depicted in Fig. 3.3(a), where oscillators 1, . . . , N/2 be-
long to group 1 and oscillators N/2+1, . . . , N constitute group 2. Clearly, group 1 is
synchronous while the oscillators in group 2 behave incoherently. In the parameter
region considered, a breathing of the chimera as expressed through an oscillation of
the variance of the incoherent cluster was reported [97]. The temporal evolution of
g0(t) is shown in Fig. 3.3(b). It can be observed that g0(t), i.e., the relative amount
of partially synchronized oscillators, evolves periodically and �breathes� over time.
Therefore, the temporal evolution of g0(t) allows for the discrimination between
chimeras with constant and oscillating partial synchronization. We term these sta-
tionary and breathing chimeras, respectively. The latter term has been adapted from
the literature, since the Kuramoto order parameter r exhibits the qualitatively same
temporal behavior as g0 [97]. Note that the two approaches above are independent
of the spatial dimension and the number of variables of the di�erent systems. This
makes g0(t) a versatile tool for the classi�cation of multifaceted data sets such as
those obtained from chimera states.
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Figure 3.3: (a) Snapshot of a realization of the chimera state observed in the two-
group model [97]. (b) Temporal evolution of g0(t).

3.1.2 A Measure for Correlation in Time

In addition to the measure for the spatial correlation discussed in the previous
section, the temporal correlation of the individual oscillators provides valuable in-
formation for a distinction between di�erent chimera dynamics as well. Suppose
Xi and Xj are the real or complex time series of two individual oscillators with
µi, µj and σi, σj their respective means and standard deviations. Then, consider the
pairwise correlation coe�cients

ρij =
〈(Xi − µi)∗ (Xj − µj)〉

σiσj

with 〈·〉 indicating the temporal mean and ∗ complex conjugation. Note that ρij = 1
for linearly correlated time series, ρij = −1 for linearly anti-correlated time series
and |ρij| = 1,∠ρij = α for complex time series with a constant phase shift of α.
That means, the normalized distribution function h of

R̂ = {|ρij|} , i 6= j

is a measure for the correlation in time. For static chimera states, where the coherent
cluster is localized at the same position over time, h(|ρij| ≈ 1) is non-zero. In
practice, we consider two oscillators as correlated if |ρij| > 0.99 = γ. As an example,
consider the Kuramoto model mentioned above. Again, we map the system onto
the complex plane with arbitrary constant amplitude A for all oscillators. Then,
for the chimera state depicted in Fig. 3.4(a), we calculate the correlation matrix
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R̂ and its probability distribution function h. The �rst row of R̂, {ρ0x}, is shown
in Fig. 3.4(b). Note that this approach maps the temporally coherent part onto 1,
cf. Fig. 3.4(b). The distribution function h is depicted in Fig. 3.5(a). It exhibits
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Figure 3.4: (a) Temporal evolution of the phase θ in the Kuramoto model [82].
(b) Pairwise correlation coe�cients ρ0x between the oscillator at x = 0 and the
remaining oscillators.

a distinct peak at |ρ| = 1, indicating that the chimera state is static, i.e., that
the majority of oscillators does not change its �group a�liation�. We suggest to
term this kind of chimera state a static chimera. The peak at |ρ| ≈ 0.5 arises due
to the partial linear correlation between oscillators at x ≈ 0.5 and synchronous
oscillators, cf. Fig. 3.4(b). The percentage of the time-correlated oscillators can now
be quanti�ed with

h0 :=
√∫ 1

γ
h(|ρ|)d|ρ|,

e.g. h0 ≈
√

0.08 ≈ 0.28 for the Kuramoto model, see Fig. 3.5(b).
Note that h0 does not always re�ect the size of the synchronized cluster. This is
especially the case when coherent and incoherent regimes are non-static and perform
spatial movements over time. Then, h0 is much smaller than g0(t) and may vanish
for large enough time windows. h0 coincides with g0, cf. Fig. 3.5(b), if and only if
the chimera is static and no spatial coherence is present in the incoherent cluster.
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Figure 3.5: (a) Distribution function h. (b) Temporal evolution of g0(t) and the
value of h0, obtained from the same time interval. Note that h0 is not a function of
time and is shown here only for comparison with g0(t).

3.2 Examples of Chimera States and their

Characterization

As shown in the previous section, g0(t) of the Kuramoto model remains constant
in time and, in addition, coincides with h0. This indicates the constant phase
relation between the coherent and incoherent part and their spatial stationarity in
time. The same qualitative behavior can be observed in many di�erent non-locally
coupled dynamical systems, such as in non-locally coupled Stuart-Landau oscillators
investigated by Bordyugov et al. [91] and in chimera states observed by Sethia and
Sen in a non-locally coupled version of the complex Ginzburg-Landau equation [95].
Sethia and Sen observed chimera states in the one-dimensional, nonlocal complex
Ginzburg-Landau equation,

∂W

∂t
= W − (1 + ic2) |W |2W +K (1 + ic1)

(
W̄ −W

)
,

with c1 = 0.5, c2 = 2.0, K = 0.4, N = 2001 and the spatial extension −1 ≤ x ≤ 1.
The coupling W̄ is chosen as

W̄ (x, t) =

1∫
−1

G(x− x′)W (x− x′, t)dx′

with
G(x) =

κ

2 (1− e−κ)e
−κ|x|
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and κ = 2. As boundary conditions periodic boundaries are taken, and the initial
conditions were taken similar to Eq. (3.3) with amplitude A = 1. As integrator,
fourth-order Runge-Kutta with a �zed time-step of dt = 0.01 is used. A snapshot
and the observables g0(t) and h0 of the latter are depicted in Fig. 3.6(a) and (b),
respectively. If h0 is larger than 0, independent of the size of the regarded time
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Figure 3.6: (a) Snapshot of the amplitude of the amplitude-mediated chimera [95].
(b) g0(t) and h0 of the amplitude-mediated chimera state.

frame, then one can conclude that the chimera state is stationary in the sense that
the incoherent and synchronous patches do not move. According to our de�nition
above, this chimera state is a static chimera. Moreover, the �nite values of g0(t)
and h0 indicate that the desynchronized dynamics are both spatially and temporally
incoherent.
An example of a static chimera state not exhibiting temporal incoherence was exam-
ined by Omelchenko et al. in a system of non-locally coupled maps with a period-2
orbit [92], and subsequently experimentally realized in Ref. [93]. In particular, they
used a lattice of local maps

φn+1 = 2πaI(φn)

with I(φ) = (1 − cos(φ))/2. The maps are coupled nonlocally, resulting in the
underlying equation for φ on site i,

φn+1
i = 2πa

{
I(φn1 ) +

ε

2R

R∑
j=−R

[
I(φni+j)− I(φni )

]}
.

Parameters are chosen as N = 1024, a = 0.85, ε = 0.4 and R = 420.
As depicted in Fig. 3.7(a), the individual realizations are located on two stable
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Figure 3.7: (a) Snapshot of the chimera state observed by Omelchenko et al. [92]. In
the right part a magni�cation of the dynamics in the indicated rectangle is shown.
(b) g0(t) and h0 of the chimera state in (a). Note that h0 does not depend on time.

branches. As evident from Fig. 3.7(b), for these chimeras g0(t) is constant and
smaller than 1, while h0 equals 1. The value of g0(t) between 0 and 1 a�rms that
we are dealing with a chimera state, while the fact that h0 = 1 attests to the absence
of any temporal incoherence.
As already mentioned in the previous section, the temporal evolution of g0(t) can
be used to identify di�erent dynamic behaviors of chimera states. Apart from being
constant, g0(t) can oscillate in time for a breathing chimera state, as already shown
in Fig. 3.3(b) for the two-groups approximation.
Another example is the so-called type II chimera, which was reported in the complex
Ginzburg-Landau equation with nonlinear global coupling [54]. In particular, the
equations read

∂tW = −iνW + (1 + ic1)∇2W − (1 + iν) (〈W 〉 −W )

+ (1 + ic2)
(
〈|W |2W 〉 − |W |2W

)
(3.4)

and this system has the property that for the uniform mode,

∂t〈W 〉 = −iν〈W 〉 → 〈W 〉 = ηe−iνt

holds. Thus, the mean 〈W 〉 is con�ned on a circle with frequency ν and amplitude
η [54]. This system shows type II chimeras for c1 = 0.2, c2 = −0.63, ν = 0.1 and
η = 0.65, with random initial conditions. As system size L = 1000 and N = 4096
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grid points are taken. For integration a pseudo-spectral method with exponential
time-stepping [105] and �xed time step of dt = 0.01 was used.
The temporal evolution of the absolute value of the complex amplitude and the
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Figure 3.8: (a) Temporal evolution of the modulus of a one-dimensional simulation
of the type II chimera state observed in the modi�ed complex Ginzburg-Landau
equation [54], with L = 1000. (b) g0(t) and h0 calculated from the data shown in
(a).

observables g0(t), together with the time independent value of h0, are depicted in
Fig. 3.8(a) and (b), respectively. In Fig. 3.8(b), the oscillatory behavior of g0(t) is
evident, indicating partial synchronization also in the incoherent regime. Note that
within the incoherent cluster, there are always homogeneous patches, leading to the
o�set between g0(t) and h0.
Besides oscillating in time, the observable g0(t) can also vary irregularly. Such a
behavior can be observed in the so-called type I chimera in the complex Ginzburg-
Landau equation with linear global coupling [30], see Eq. (2.1). This system is
integrated on a spatial domain of length L = 200 and N = 2048 grid points with
periodic boundaries and parameters c1 = 1.2, c2 = 1.7, α = 0.67 and β = −0.8375
using a pseudo-spectral integration method with exponential time-stepping [105]
with dt = 0.01. A representative evolution of the modulus of the complex amplitude
W and the corresponding measures g0(t) and h0 are depicted in Fig. 3.9(a) and (b),
respectively. Note that h0 is signi�cantly larger than 0, indicating that the chimera
state is static. The irregularity in g0(t) arises from spatio-temporal intermittency,
which appears spontaneously in the turbulent regime, leading to the emergence of
patches of oscillators that are synchronous with the coherent region and shrink and
disappear with time. Non-stationary chimera states with irregular phase bound-
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Figure 3.9: (a) Temporal evolution of the modulus of the complex amplitude of the
type I chimera state observed in the CGLE with linear global coupling [30], with
L = 200. (b) g0(t) and h0 calculated from the data shown in (a).

aries were also reported by Bordyugov et al. [91], who named this state a turbulent
chimera. We adapt this expression for general chimera states with irregular varia-
tion of the partial synchronization, g0(t).
Dynamics resembling the type I chimera in some aspects is the spatio-temporal in-
termittency as observed in the complex Ginzburg-Landau equation [106]. A realiza-
tion of the spatio-temporal intermittency in the one-dimensional complex Ginzburg-
Landau equation, Eq. (2.1), with c1 = 0, c2 = −3 and K = 0 is shown in Fig. 3.10(a)
with �xed time step dt = 0.01, system size L = 1000 and N = 2048. In Fig. 3.10(b),
the irregular evolution of g0(t) is apparent. However, in contrast to the type I
chimera discussed above, g0(t) drops to zero at di�erent points in time. This means
that the coherent part, and with it the coexistence between synchrony and inco-
herence, vanishes completely from time to time. Therefore, spatio-temporal inter-
mittency should not be considered to represent a chimera state. h0 is also small
(< 0.05), and results from the correlation of neighboring points due to di�usion.
Dynamics with reversed roles, that is turbulent patches appearing in an otherwise
homogeneous regime, are found in the complex Ginzburg-Landau equation with lin-
ear [26], Eq. (2.1), and non-linear global coupling [30], Eq. 3.4, and is called localized
turbulence. This dynamical state appears for c1 = 2, c2 = −1.2, α = 0.3 and β = 0
in Eq. (2.1). An example is shown in Fig. 3.11, with a snapshot of the modulus of a
two-dimensional simulation in (a) and the temporal evolution of a one-dimensional
cut in (b). The corresponding correlation measures g0(t) and h0, calculated from
the two-dimensional spatio-temporal data with system size L = 200 are depicted in
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Figure 3.10: (a) Temporal evolution of the modulus of the complex amplitude of
the one-dimensional complex Ginzburg-Landau equation showing spatio-temporal
intermittency [106]. (b) g0(t) and h0 calculated from the data shown in (a).

Fig. 3.12(a). The �uctuating value of g0(t) suggests that the degree of coherence
changes with time. A strong increase of the synchronous part occurs at t ≈ 1350,
indicating a strong non-stationarity. However, calculations with larger system sizes
suggest that the variations vanish in the thermodynamic limit N → ∞. An illus-
tration is depicted in Fig. 3.12(b), where g0(t) was calculated from two-dimensional
simulations of systems with L = 2000.
A characteristic feature of localized turbulence, as compared to all chimera states
discussed above, is that the turbulent islands are composed of several incoherent
�bubble-like� structures, which move erratically in the spatial domain. Bubbles dis-
appear or pop up through division of existing bubbles. Due to this steady motion
of the turbulent islands, the fraction of the coherent time series, as measured by h0

is small, and vanishes if the time window is chosen large enough. The same holds
for the alternating chimeras observed by Haugland et al. [107], where the turbulent
part alternates with the homogeneous regime in time (not shown).
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Figure 3.11: (a) Snapshot of the amplitude of the localized turbulence [26] at t =
1500 with L = 200. (b) Temporal evolution of a one-dimensional cut at the x-value
indicated by the dashed line in (a).

3.2.1 Transient Chimeras

So far, we did not consider the long-term stability of the chimera states yet. However,
especially in the context of chimera states, de�ning a stability concept is an impor-
tant issue. While various chimera states, as the type I and type II chimeras men-
tioned above, are the only attractors for a speci�c parameter region, and as such are
stable, many other chimera states including those of the Kuramoto model, are long-
term transients with in�nite transient time in the continuum limit N → ∞ [101].
Then, there exist states encompassing coexistence of coherence and incoherence that
collapse to the homogeneous state after a �nite time even for N →∞. An example
thereof is the so-called amplitude chimera [96]. The amplitude chimera states are
found in a system of nonlocally coupled Stuart-Landau oscillators,

żj =
(
λ+ iω − |z|2

)
z +

σ

2P

j+P∑
k=j−P

(Rezk − Rezj) ,

with j = 1, 2, . . . , N , z ∈ C, λ = 1, ω = 2, σ = 40, P = 60 and N = 3000. Special
care has to be taken when choosing the initial conditions, which is explained in more
detail by Loos et al. [108]. For integration, an implicit Adams method with a �xed
time step of dt = 0.002 is used. The space-time realization of such a state is depicted
in Fig. 3.13(a), Fig. 3.13(b) showing the evolution of g0(t). Amplitude chimeras
resemble the chimeras found in coupled period-2 maps (cf. Fig. 3.7) insofar as they
are composed of two coherent domains with anti-phase behavior that are separated
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Figure 3.12: (a) g0(t) and h0 of the localized turbulence with L = 200. (b) g0(t) and
h0 of the localized turbulence with domain length L = 2000.

by a spatially incoherent interfacial region. In the latter region, the absolute values
of the amplitudes vary erratically in space but each oscillator is strictly periodic
with a frequency equal to the frequency of the synchronous regions. The spatial
incoherence renders g0(t) smaller than 1. However, as investigated in detail by Loos
et al. [108] and also evident from Fig. 3.13, the chimera-like dynamics are not stable.
A transition to full synchronization can be observed, i.e. g0(t) = 1 after a �nite time
interval. In this case, the lifetime of the chimera state strongly depends on the
choice of the initial conditions and asymptotically approaches a constant value in
the continuum limit [108].
We consider it meaningful to discriminate between transient chimeras and chimera
states which are attractive in the continuum limit. Therefore we suggest to introduce
a separate class transient chimeras for states with 0 < g0(t) < 1∀t < t0 and g0(t) =
1 ∨ g0(t) = 0 at some transient time t0.
Another remarkable case that created controversy as to its characterization as

a chimera was reported by Falcke and Engel in a globally coupled version of the
CO-oxidation model [109�111]. There, turbulent patches appeared in an otherwise
homogeneously oscillating background, similar to the localized turbulence discussed
above. But, in contrast to the behavior in the localized turbulence, no turbulent
bubbles ever disappear. Details on the exact model are presented in Appendix C.
A one-dimensional simulation is depicted in Fig. 3.14(a), with the corresponding
measure g0(t) plotted in Fig. 3.14(b). There, the incoherent region expands into the
synchronously oscillating domains with an approximately constant velocity that is
strongly dependent on the di�usion coe�cient D. This non-stationarity manifests
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Figure 3.13: (a) Temporal evolution of the imaginary part, y, of the so-called am-
plitude chimera observed by Zakharova et al. [96]. (b) g0(t) of the chimera shown
in (a).

itself in the overall systematically declining behavior of g0(t). In such a case a longer
simulation time is necessary in order to verify that g0(t) vanishes after a �nite time
interval, which was con�rmed for the present case. Since it mediates a transition
from an unstable to a stable state, it ful�lls the above de�ned criteria for a transient
chimera state. We thus classify it accordingly.

3.2.2 Experimental Observation of Chimeras

Chimeras have also been observed in experimental setups [54, 93, 98]. In this section,
we apply our approach to experimental data as described by Schönleber et al [112].
In this system, the thickness of a SiO2 layer on a Si-electrode oscillates due to si-
multaneous electrochemical oxidation and etching. Changes of the SiO2 thickness
are measured via ellipsometric imaging. A snapshot of a measurement is depicted
in Fig. 3.15(a), with the color indicating the thickness of the oxide layer. The ex-
perimental data was processed using a moving average over the last 10 time frames.
The temporal evolution of a one-dimensional cut is shown in Fig. 3.15(b), where
the homogeneous oscillation of a small region in an otherwise inhomogeneously os-
cillating background can be observed. Fig. 3.16(a) shows the pairwise correlation
coe�cients of the cross-section with a point inside the coherent cluster (here y = 80):
a strong linear correlation within this cluster and the diminishing correlation with
the remaining oscillators is evident. In Fig. 3.16(b), the behavior of g0(t) with time
and the value of h0 are shown. They are remarkably similar to the type II dynam-
ics as depicted in Fig. 3.8. Hence we can conclude that the observed experimental
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Figure 3.14: (a) Temporal evolution of the CO-coverage c. (b) g0(t) of the dynamics
shown in (a).

chimera is of the breathing type. The smallness of h0 originates from the fact that
the coherent cluster is relatively small.

3.3 Classi�cation Scheme

Above, we introduced two correlation measures, g0(t) and h0, which allow a quanti�-
cation of coherence and incoherence in dynamical systems. For phase oscillators, the
local Kuramoto order parameter already quanti�es the degree of incoherence as a
function of space and time. In contrast, our global measure g0(t) yields information
about the total relative sizes of the coherent and incoherent parts of the system, but
does not contain information about local properties within the incoherent group.
Nevertheless, it exhibits distinct qualitative types of temporal behavior for chimera
states with visibly di�erent dynamic features, and thus, like the local order param-
eter, can be used to discriminate between chimeras, transient chimeras and other
types of dynamics. Its main advantage is its unrestricted applicability, not only to
ensembles of phase oscillators, but to any type of dynamical system. Thus, g0(t)
allows for a simple and straightforward classi�cation of general chimera states.
For g0(t) equal to 0 or 1, one of the two phases, the coherent (g0(t) = 0) or

incoherent one (g0(t) = 1), does not exist. This contradicts the requirement of
�coexistence�, and we argue that dynamical states where this occurs should be dif-
ferentiated from chimera states. This includes spatio-temporal intermittency, the
turbulent patterns in the CO model and the amplitude-chimera states. Yet, for the
latter two, 0 < g0(t) < 1 is valid for a long time interval. Therefore, we suggest
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Figure 3.15: (a) Snapshot of the SiO2 thickness on a Si-electrode in pseudo-colors.
(b) Temporal evolution of a one-dimensional cut as shown in (a).

that these states are categorized as transient chimeras. In the case of intermittency,
g0(t) �uctuates constantly, thereby attaining a value of 0 after arbitrary periods of
time. It is therefore di�erentiated from chimera states.
Chimera states, i.e. states with 0 < g0(t) < 1, can then be classi�ed into three
groups:

1. Stationary chimeras: Chimera states with constant coherent cluster size
g0(t),

2. Turbulent chimeras: Chimera states where the temporal evolution of g0(t)
is irregular,

3. Breathing chimeras: States in which the behavior of g0(t) is periodic.

Note that there might be some ambiguity in the assignment to these sub-categories,
since the boundaries between stationary/turbulent and turbulent/oscillatory are
rather �uent.
Based on the temporal correlation measure h0, these groups can be further divided
into three subclasses:

1. Static chimeras, in which the coherent cluster is con�ned to the same position
in space over time. That means, h0 is non-zero and independent of the time
window evaluated.

2. Moving chimeras, where h0 vanishes if the regarded time window is taken
su�ciently large.
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Figure 3.16: (a) Correlation coe�cients for y = 80 for the one-dimensional cut shown
in Fig. 3.15(b). (b) g0(t) and h0 for the whole data set.

3. Time-coherent chimeras, that is chimera states with no temporal incoherence
and thus h0 = 1.

These criteria are summarized in a chimera classi�cation scheme shown in Fig. 3.17.
The examples discussed in the last two sections are assigned accordingly in the
classi�cation tree.
In conclusion, we have introduced two observables in this chapter, g0(t) and h0,
that are a measure for the degree of spatial and temporal coherence, respectively,
and allow for a discrimination between di�erent types of chimeras from simulated or
experimental spatio-temporal data sets. All examples from literature considered here
could be assigned to one of the classes. We veri�ed the generality of the approach
with additional examples, such as the FitzHugh-Nagumo model reported in Ref. [94]
and the Rössler model discussed in Ref. [113]. Note, however, that the scheme does
not distinguish between single- and multi-headed chimeras. Furthermore, it is likely
that future studies will reveal additional phenomena which the method does not
account for at the current stage. However, even in this case, the classi�cation scheme
should present a useful base skeleton that can be expanded as new discoveries will
dictate.
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Figure 3.17: Characterization of chimera states by means of g0(t) and h0. The
di�erent examples of chimera states discussed in this chapter are given in italics. In
order to distinguish between no chimera and transient chimera, the transient time
t0 has to be much larger than the characteristic time of the uncoupled dynamics.
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Chapter 4

Di�usion Maps Embedding of

Complex Dynamics

In the previous chapter, we have seen how we can extract meaningful order param-
eters in order to classify chimera states. The de�nition of such order parameters
were motivated by the goal to �nd a suitable classi�cation of coexistence phenomena
with coherent and incoherent dynamics. The discrete Laplace operator yielding the
curvature at each point in space has proven to be a suitable tool.
In this chapter we discuss how one can obtain a suitable embedding of general com-
plex dynamics using nonlinear manifold learning techniques. The goal is that one
no longer has to come up with an educated guess of coarse grained variables which
may be useful to embed the dynamics, but to use mathematical tools instead to �nd
such variables, c.f. Fig. 4.1.
In recent years, many nonlinear manifold learning techniques have been proposed
to embed nonlinear phenomena in a low-dimensional space. Examples include
isomap [114], locally linear embedding [115] and Laplacian eigenmaps [116].
In this chapter, we use di�usion maps as the method of choice, and use it to compare
and subsequently embed sets of time series obtained from a variety of qualitatively
di�erent dynamical systems. Thus, we begin this chapter with a brief introduction
of di�usion maps, and illustrate the potential of this method on some intuitive exam-
ples. We then turn to complex dynamics, i.e. chaotic solutions of partial-di�erential
equations, and discuss why the spatial coordinates form a set of suitable variables
in which to embed the dynamics. Using di�usion maps, we show that the spatial
coordinate in a sense emerges from the data. This directly links to the example of
coupled heterogeneous neuronal oscillators, where there is no apparent space. There,
we discuss how the heterogeneous parameters in the system can be used as a coarse
parametrization of the dynamics. In especially, we discuss how emerging coordi-
nates can be used to embed the dynamics in what we call an �emergent space�. This
emergent space, however, is not unique. Therefore, we turn to the role of the kernel
scale in the di�usion maps approach, and discuss in more detail how a variation
of the scale e�ects the embedding. Using overlapping time chunks in contrast to
whole time series, we then discuss how one can use the di�usion maps embedding to
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reconstruct the attracting manifold. At the end of this chapter, we conclude with a
discussion of our results, and in particular, of the idea of the emergent space. For a
published version of the core ideas of this chapter, see Ref. [20].

x
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Σ

x’

y’

Σ’

Figure 4.1: Dynamical systems may be irrgular and di�cult to interprete in their
original representation Σ, but may become more insightful when using suitable em-
beddings, for example when viewed in some space Σ′.

4.1 Di�usion Maps

In this chapter, we exploit the di�usion maps algorithm to �nd intrinsic variabilities
contained in a data set. Suppose you have a collection of N time series {ai}, i =
1, . . . , N . Each time series ai is a T -dimensional vector, containing the value of one
or more recorded variables at T discrete points in time, with T depending on the
sampling rate and regarded time window. Thus, each (time series) vector can be
regarded as a point in a T -dimensional space, with all time series together forming
a T -dimensional point cloud in this space. By calculating all pairwise Euclidean
distances di,i′ between the points, the di�usion maps algorithm is able to reveal
structures in the cloud [117�119]. For further analysis, it is useful to write these
pairwise distances as a symmetric N ×N distance matrix.
An important feature of di�usion maps is that it weights the distances between
points that are close in T -dimensional space, i.e., time series which are similar,
stronger than pairs of points at larger distances. This is similar to a di�usion
process or random walk on the data, where the probability of jumping from point
ai to ai′ is large if their distance is small, and vice versa. We achieve this property
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by using a unimodal Gaussian kernel

k (ai, ai′) = e−
‖ai−ai′ ‖

2

2ε .

The scale parameter ε is used to tune the weighting of the distances. For values of ε
large compared to the order of the Euclidean distances, the Gaussian kernel decays
very slowly. Thus, both small and large distances between points are given similar
weights ≈ 1. For very small ε, the kernel decays very fast, and only the distances
between close or similar points are signi�cantly weighted.
Accordingly, the tuning of ε allows for very di�erent representations of the same data,
as described in more detail in Sec. 4.4. For convenience, we write ε = const ·Dmax,
with Dmax being the maximal distance in the data.
By evaluating all distances with the Gaussian kernel, we obtain from the distance
matrix a N × N kernel matrix K. Row normalizing this kernel matrix yields a
Markov or di�usion matrix D containing the probabilities for a random walk on the
data, as described above. Decomposing the di�usion matrix, one obtains eigenvec-
tors, so-called di�usion modes, which parameterize the data. Note that due to the
properties of Markov matrices, the largest eigenvalue of the di�usion matrix equals
one and corresponds to a constant eigenvector [120]. The eigenvectors correspond-
ing to the other eigenvalues with absolute values closest to one can be viewed as
representations of the most important structures, or variabilities, in the data.
Although we restrict our analysis using a simple Euclidean distance kernel, many
extensions exist, such as vector di�usion maps [121] or di�usion maps using more
re�ned distance metrics, e.g. the Mahalanobis distance [122]. Recent research in
this direction involves a broad range of topics and applications, including intrinsic
modeling [123], reduction in dynamical systems [124], multimodal data analysis [125,
126], and data organization [127], just to name a few.
As an illustrative example, we record the sunrise and sunset times at seven ran-

domly chosen cities in Germany. We then structure our measurements as minutely
time series, where each entry is either 1 if at the given minute the sun is above
the horizon, while it is 0 if the sun has not yet risen or already set. In short, we
have a 60 · 24× 7 data matrix, as shown in Fig. 4.2(a), which can be seen as a very
crude exemplary measurement. The geographic locations of these arbitrary cities
are shown on the map of Germany, Fig. 4.2(b). Due to their di�erent geographic
locations, it is obvious that the sunrise and sunset times are di�erent for the individ-
ual cities. The sun rises earlier in the most eastern cities, e.g. in Berlin, and later in
the western cities, as in Düsseldorf and Cologne. Also in winter the days are shorter
in the northern cities, as in Hamburg and Bremen, and longer in Stuttgart in the
South. Due to these facts, the geographic locations are implicitly contained in the
data. However, a human might still not be able geographically locate the cities just
by visually examining the time series in Fig. 4.2(a).
Di�usion maps, in contrast, are able to obtain their relative arrangement by cal-

99



Chapter 4 Di�usion Maps Embedding of Complex Dynamics

Berli
n

Brem
en

Colo
gne

Dusse
ldorf

Fran
kfu

rt

Ham
burg

Stuttg
art

0h
2h
4h
6h
8h

10h
12h
14h
16h
18h
20h
22h

(a)

Berlin

Stuttgart

Cologne

Hamburg
Bremen

Dusseldorf

Frankfurt

(b)

Figure 4.2: (a) Minutes of daytime, marked as 1 (yellow), and nighttime, marked
as 0 (black), of seven arbitrary cities in Germany for the 27th of October 2016 in
GMT [128]. (b) Map of Germany with the location of the chosen cities [129].

culating the distances between the Boolean vectors. Cities which are close to each
other on the map have similar sunrise and sunset times compared to cities far away.
Hence, by calculating and decomposing the di�usion matrix, as described above, one
obtains eigenvectors that parameterize their relative arrangement. This is visually
veri�ed in Fig. 4.3, where the space spanned by the two modes φ1 and φ2 shows a
one-to-one correspondence with the geographic positions of the cities, that is, their
respective longitudinal and latitudinal degrees. Note that the modes following φ2

are just harmonics of φ1 and φ2. That means di�usion maps also �nd that the cities
are arranged on a two-dimensional manifold.
We conclude that the physical west-east and north-south locations can be viewed
as variabilities inherent in the data. These variabilities lead to di�erent time series
of the individual points. Due to these di�erences, di�usion maps are able to �nd
the number and directions of these variabilities. However, it is worth mentioning
that the algorithm is able to �nd the right relative arrangement, but not the actual
positions of the cities.
The idea of �nding variabilities in the data can be generalized to systems such as
partial di�erential equations and networks, where information on the location in
physical space or the location in parameter space is implicitly contained in some
temporal observation of these systems.
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Figure 4.3: The �rst two independent di�usion modes, φ1 and φ2 for ε = e10 ≈ 3.0 ·
103Dmax of the data shown in Fig. 4.2(a), colored with their longitudinal geographic
position. By comparing with the actual locations in Fig. 4.2(b), it becomes obvious
that φ1 and φ2 span a space in which the mutual arrangements of the cities re�ect
their actual positions. Additionally, due to the correspondence between the coloring
and φ1, one can visually verify that φ1 parameterizes the west-east direction.

4.2 Recovering Space from Spatiotemporal

Data

As discussed above, the idea of �nding the variabilities in the data can be generalized
to systems such as partial di�erential equations and networks. In this section, we
start by investigating a spatiotemporal chaotic phenomenon in a system with one
spatial dimension. In particular, we consider spatiotemporal intermittency, see also
Fig. 3.10, in the complex Ginzburg-Landau equation, a general reaction-di�usion
equation for oscillatory systems with a spatial extension [31, 106, 130], c.f. Eq. 2.1
with α = β = 0. Characteristic for these chaotic dynamics is the repeated ap-
pearance of synchronous patches at seemingly random places in space and time.
Following their emergence, these patches shrink with a constant rate due to dif-
fusion, giving rise to triangular patterns, see Fig. 4.4(a) for simulation data with
zero-�ux boundaries. Note that due to the incoherent nature of the dynamics, the
individual time series of a discretized version of this dynamical system are mutually
di�erent. Nevertheless, due to the di�usion in the system, trajectories located close
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Figure 4.4: Left: Data of spatiotemporal intermittency. Right: First di�usion mode
or the spatiotemporal data shown on the left. For details, see text.
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to each other in space tend to be similar. This fact can be exploited in the di�usion
maps approach, where the Euclidean distance between neighboring time series is
expected to be small compared to the distances between time series separated by a
larger distance in physical space.
By calculating the di�usion matrix, it can be shown that the �rst di�usion mode φ1

correlates with the spatial dimension x: each entry of φ1 corresponds to a particular
time series, and if any one entry is large, the corresponding time series is located at
large x, while for small entries, the trajectories are located towards the left end of
the spatial axis, see Fig. 4.4(b).
Note that here, the kernel scale ε ≈ 0.024Dmax is chosen very small, such that only a
few nearest neighbors are considered in the di�usion maps approach. Moreover, by
investigating not only the �rst but also the following di�usion modes, one �nds that
φ1 is the only independent direction, indicating that there exists only one spatial
dimension in the system. This enables us to actually �nd the spatial order of the
data set, as can be shown by shu�ing the individual time series, c.f. Fig 4.4(c), be-
fore calculating the di�usion modes of the system. The �rst and only independent
direction is then found to be nonmonotonic, as shown in Fig. 4.4(d). However, by
sorting the entries of the di�usion mode in increasing order and then applying this
arrangement to the corresponding time series, the spatial arrangement is recovered,
see Fig. 4.4(e-f). Thus, we argue that the physical space is an intrinsic variability
in this system. Nevertheless, the di�usion maps outcome is not unique. Due to the
symmetry of the approach, the di�usion mode can either correspond to x or to −x.
That is, it either parametrizes the left-to-right direction or vice versa. This can be
observed in Fig. 4.4(f), where the sorted eigenvector φ1 correlates with −x, and thus
sorts the data in a mirrored way. Comparing the pictures 4.4(a) and (e), we observe
that they correspond except of a left-right �ip along the x-axis.
The approach above is not restricted to data with only one spatial axis. It is also
applicable to data with periodic boundaries, that is, to systems located on a ring,
and to systems with two spatial dimensions. For spatiotemporal intermittency in the
complex Ginzburg-Landau equation with one spatial dimension and periodic bound-
ary conditions, one �nds that the �rst two di�usion modes span a circle. Shu�ing,
applying di�usion maps, and sorting the shu�ed data along that circle, one obtains
data that is, except for a rotation and/or re�ection, equivalent to the original data.
Note that the dynamics are not only incoherent in space, but also in time. Hence,
the individual snapshots are, as the time series, mutually di�erent. By comparing
the snapshots instead of the time series, one can show that the time is also a het-
erogeneity in the system (not shown here). Furthermore, it is not surprising that by
taking spatiotemporal patches, one can arrange them on a two dimensional plane,
spanned by the variabilities space and time.
For a system with two spatial axes x and y, the data of spatiotemporal intermit-
tency obtained with zero-�ux boundaries is depicted in Fig. 4.5(a). By calculating
the distances between the time trajectories and using the di�usion maps approach,
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Figure 4.5: (a) Spatiotemporal data obtained from numerical simulations of the com-
plex Ginzburg-Landau equation with two spatial dimensions. The data is colored
with the real part of the complex amplitude W . (b) The �rst two independent
di�usion modes φ1 and φ2, colored as in (a).

one �nds two independent modes φ1 and φ2. When coloring these modes with W ,
one �nds that the two modes indeed span a space that is one-to-one with the original
physical space, as visually veri�ed in Fig 4.5(b). Note that the φis contain Nx ·Ny en-
tries, that is, time series, with Nx and Ny being the respective number of grid points
in the x- and y-direction, respectively. Therefore, when calculating the distances
between the time series, we lose the spatial information inherent in the system.
Nevertheless, due to the similarity of nearby time series, di�usion maps �nd that
these are parametrized by two dimensions, and recover their actual two-dimensional
order.

4.3 Recovering parameter space

In contrast to the complex Ginzburg-Landau equation and other reaction-di�usion
systems, there are systems of oscillators that do not posses a spatial arrangement.
Examples are globally coupled systems or networks with random connections. In this
section we investigate a neural network, where each node of the network is modeled
as a neuron from the pre-Bötzinger complex [131�133]. Each node of this network
can be modeled using two variables, the potential V and the channel variable h,

C
dVi
dt

= −gNam (Vi)hi (Vi − VNa)− gl (Vi − Vl) + I isyn + I iapp

dhi
dt

=
h∞ (Vi)− hi

τ (Vi)
.
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with the coupling

I isyn =
gsyn (Vsyn − Vi)

N

N∑
j=1

Aijs (Vj) .

Here

m (V ) = (1 + exp (− (V + 37) /6))−1 ,

h∞ (V ) = (1 + exp ((V + 44) /6))−1 ,

τ (V ) = (ε cosh ((V + 40) /5))−1 ,

s (V ) = (1 + exp (− (V + 40) /5))−1

are nonlinear functions, whereas C = 0.21, gNa = 2.8, gl = 2.4, gsyn = 0.3, Vsyn = 0,
VNa = 50, Vl = −65 and ε = 0.1 are constants. As in previous studies [133], we take
the intrinsic kinetic parameter I iapp to vary across the ensemble (I iapp = 22 + 2ωi,
where ωi is drawn from a uniform distribution on [−1, 1]), making the network
kinetically heterogeneous.
We connect the neurons in the form of a Chung-Lu type network [134], where the
network topology is given by a symmetric adjacency matrix A. The entries Aij are
1 if there is a coupling between oscillators i and j, and 0 otherwise. The algorithm
for the creation of the Aij uses a sequence of weights wi for each oscillator i, de�ned
as

wi = pN(i/N)r , i = 1, 2, ..., N (4.1)

with parameters p = 0.80 and r = 0.40. From these weights, the entries Pij of a
matrix P of connection probabilities are de�ned as

Pij = Pji = min

(
wiwj∑
k wk

, 1

)
. (4.2)

The matrix is then mirrored along the diagonal, and all diagonal entries are set to
zero to avoid self-loops. As initial conditions, V = −60.0 and h = 0.0 are taken for
all oscillators. We simulated our realization of a Chung-Lu network of N = 1024
oscillators, using lsode [135, 136]. The time series observations from each neuron
were taken between t0 = 20 and t1 = 40 in the form of T = 2001 time steps. In
particular, these Hodgkin-Huxley-type neurons oscillate periodically. The number
of connections to a neuron i is the degree κi, which varies strongly between the
neurons. That is, κi is another, structural heterogeneous parameter. The temporal
evolution of a network of 1024 neurons is depicted in Fig. 4.6. There, one observes
that the neurons oscillate clustered in the (V, h) plane, but with somewhat di�erent
phases and amplitudes. Due to the variabilities, their instantaneous values di�er.
Nevertheless, it has been shown that the dynamics of all neurons can be described
as a smooth function of two the heterogeneous parameters I iapp and κi [133]. This
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Figure 4.6: Temporal evolution of the two variables h and V of the individual oscil-
lators in the Chung-Lu type network of pre-Bötzinger neurons.

is indicated by the color-code in Figs. 4.7(a) and (b). Note that there is a strong
dependence of the dynamics on the intrinsic parameter I iapp, whereas the dependence
on the degree κi is rather week.
The parameter dependence in the network can also be recovered using di�usion

maps. Calculating the pairwise distances between the time series and extracting
the di�usion modes, yields that the �rst two di�usion modes parametrize a two-
dimensional manifold. Hereby, ε = e10 ≈ 93Dmax was chosen large compared to
the maximal distance in the data. By coloring the two di�usion modes with the
heterogeneous parameter I iapp, one observes a one-to-one correspondence between
this parameter and the �rst mode, as depicted in Fig. 4.8(a). The second direc-
tion, perpendicular to the �rst mode, correlates with the degree κi, see Fig. 4.8(b).
Note that the �rst few modes following φ2 are harmonics, indicating that there are
only two major directions that parametrize the dynamics. Comparing these results
with the outcome from Sec. 4.2, an analogy between the two parameters in the
heterogeneous neural network and the spatial axes in the reaction-di�usion system
becomes apparent. It is worth mentioning that the di�usion maps approach enables
us, even without knowing the spatial dimensions or the heterogeneous parameters
in our system, to extract the dominant variabilities on which the dynamics depend.
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Figure 4.7: (a) Each oscillator as a function of the two heterogeneous parameters κi
and I iapp, colored with the voltages V at t0 = 20. (b) Each oscillator as in (a), but
colored with the variable h of the snapshot depicted in (a).

4.4 Tuning the scale parameter ε

In the example of the spatiotemporal chaos and the heterogeneous neural network,
we used a speci�c choice of the kernel scale ε. In order to recover the spatial arrange-
ment, we had to choose it very small, thereby considering only the nearest neighbors,
that is, only very similar time series. In the case of the network, however, a larger
ε revealed the dominant variabilities.
In this section, we vary ε in order to extract di�erent features of our data. For a more
thorough discussion of suitable choices for the kernel scale, see Ref. [137]. There,
besides existing methods to chose appropriate scales [138�140], a new method based
on the maximal edge weight in a reduced graph structure is discussed.
As a model example, we investigate a chimera state, that is, a dynamical hybrid
state of coexisting coherence and incoherence [12, 19, 82, 103], see also Chapter 3.
An example of such a state can be observed in the globally coupled version of the
complex Ginzburg-Landau equation, Eq. 3.4. A simulation with one spatial dimen-
sion and c1 = 0.2, c2 = −0.63, ν = 0.1 and η = 0.65 is depicted in Fig. 4.9(a). Note
that here we take periodic boundaries, so that the spatial axis is in fact a ring. This
chimera state, also called type II chimera, has an underlying two-cluster state, in
which one of the two clusters develops incoherent dynamics while the other cluster
remains synchronized [102]. By choosing the kernel scale ε = e−2.5 ≈ 1.7 · 10−3Dmax

very small compared to the maximal distance contained in the data, that is, again
considering only very similar time series, we are able to reconstruct the spatial ar-
rangement, as depicted in Fig. 4.9(b). Note that due to the periodicity of the spatial
axis x, two di�usion modes are needed to embed the data. Furthermore, it is worth
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Figure 4.8: (a) The two independent di�usion modes φ1 and φ2, colored by applied
heterogeneous current I iapp. (b) The two di�usion modes φ1 and φ2 as in (a), colored
by degree κi. Hereby, ε is taken as ε = e10 ≈ 93Dmax

mentioning that the approach maps the coherent oscillations, which are, due to their
synchrony, very similar, onto a very concentrated cluster in di�usion space. Never-
theless, by zooming in on this cluster, we �nd that the two di�usion modes are still
able to di�erentiate between the synchronous series, see inset of Fig 4.9(b). This is
possible since the di�usion in the system still preserves a slight drift in the coherent
cluster and therefore allows for a discrimination of the coherent time series.
Tuning the scale parameter in the di�usion kernel alters the decay rate of the Gaus-
sian function, practically allowing for the speci�cation of how many 'similar' time
series shall be considered by the di�usion maps algorithm. When using a very large
ε, one therefore obtains a rather coarse description of the data.
For the network of preBötzinger neurons, a rather large ε revealed the heteroge-

neous parameters I iapp and κi in the system. This can be explained by the fact that
the heterogeneous parameters in�uence the overall coarse dynamics, but, in con-
trast to the spatiotemporal intermittency, points with similar variabilities are not
necessarily similar in the sense that their mutual Euclidean distances are small, but
rather their distances to all other points are similar. They have, so to say, similar
coarse behavior. Thus, we in general expect to obtain the coarse variabilities in our
data in the �rst di�usion modes for larger values of ε. In particular, we expect the
most prominent coarse heterogeneity to be contained in the �rst independent di�u-
sion mode. For the chimera state depicted in Fig. 4.9(a), the �rst eigenvectors for
ε = e−2.5 ≈ 1.7 ·10−3Dmax and ε = e7 ≈ 22.5Dmax are shown in Fig 4.9(d). Note that
for large ε, φ1 possesses approximately the same value in the whole coherent region
and in the whole incoherent region, respectively, with a continuous connection link-
ing the two plateaus due the di�usion boundary between them. Due to the choice
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Figure 4.9: (a) Temporal evolution of the type II chimera state in a globally coupled
version of the complex Ginzburg-Landau equation with one spatial dimension x and
periodic boundary conditions. The pseudo-color corresponds to the modulus of the
complex amplitude W . (b) The �rst two independent di�usion modes φ1 and φ2 for
ε = e−2.5 ≈ 1.7 · 10−3Dmax, colored with the position i along the spatial coordinate
x. (c) The �rst two independent di�usion modes φ1 and φ2 for ε = e7 ≈ 22.5Dmax,
colored with the position i along the spatial coordinate x. (d) First independent
di�usion mode φ1 for ε = e−2.5 ≈ 1.7 · 10−3Dmax and ε = e7 ≈ 22.5Dmax.
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of ε, it contains the dominant heterogeneity of the data at a very coarse degree,
yielding a one-dimensional coarse-grained description of the time series. In short,
φ1 seems to be clustered in the coherent and the incoherent region, respectively.
This is in accordance with earlier studies, which have shown that the dynamics of
the type-II chimera state are based on a modulated amplitude two-cluster state [30,
102]. Note that, like in the example of the preBötzinger neurons, the Euclidean
distances between points with similar φ1 are not necessarily small. In general, we
argue that points being neighbors in φ1 means that they share the same behavior. In
this case, they correspond to the same underlying cluster. Furthermore, it is worth
mentioning that for large ε di�usion maps no longer consider the physical space to
be the dominant heterogeneity in the system. This becomes evident in Fig. 4.9(c),
where the �rst two di�usion modes for ε = e7 ≈ 22.5Dmax are plotted. These modes
no longer form a circle, but have multiple loops and thus no longer parametrize
physical space.

4.5 Embedding of chimera states

In order to gain a better understanding of the results obtained in the previous
section, we investigate one of the �rst examples of a chimera state, reported by
Kuramoto and Battogtokh in a system of nonlocally coupled phase oscillators [82].
There, the phase oscillators, located on a ring with unit length, split into a region of
coherent and a regime of incoherent dynamics, c.f. Figs. 4.10(a,c). They were able
to reduce the dynamics to a so-called order parameter, whose absolute value can be
seen as a measure of coherence/incoherence. This space-dependent value, R(x), is
depicted in Fig. 4.10(b). Large values of R indicate synchronous dynamics, whereas
the oscillators are desynchronized and incoherent where R is small. In general, the
construction of order parameters for systems of phase oscillators can be achieved by
following an ansatz proposed by Ott and Antonsen [141, 142]. However, for oscil-
lators that show signi�cant dynamics in additional variables, such as nonnegligible
amplitude dynamics (e.g. the type II chimera in Sec. 4.4), this approach is no longer
applicable. Hence, a di�erent method for de�ning order parameters for these kinds
of systems is desirable.
In this section, we propose a way to employ di�usion maps to de�ne order parame-
ters for chimera states. As already mentioned in the previous sections, by choosing
the scale ε very small, the Gaussian kernel decays very fast with the Euclidean
distance between time series, and thus one considers only pairs of time series with
vanishing distances in the di�usion maps approach. For ε = e4 ≈ 0.32Dmax, the �rst
nontrivial eigenvector φ1 is depicted in Fig. 4.10(d). It is worth mentioning that,
except for a change in its sign, φ1 contains the same information as R. That is, φ1

extracts the variability in the data that is also capture by R. Note that there is a
major di�erence between φ1 for the Kuramoto chimera state and φ1 obtained from
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the type II chimera discussed in Sec. 4.4. For the type II chimera, the order param-
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Figure 4.10: (a) Temporal evolution of the phases in a chimera state of nonlocally
coupled phase oscillators. The color corresponds to the individual phases. (b) The
absolute value of the order parameter, R. (c) Snapshot of the phases at t = 6200.
(d) Eigenvector φ1 for ε = e4 ≈ 0.32Dmax, corresponding the eigenvalue λ1 ≈ 0.18.

eter φ1 is approximately constant in the individual clusters. This is, as discussed
above, due to the underlying two-cluster state. But for the chimera state in the
system of nonlocally coupled oscillators, the order parameter φ1 varies continuously.
We argue that this is due to the nonlocal coupling, which induces a continuous
distribution of the frequency in the incoherent cluster. Due to this continuous fre-
quency distribution, that is, due to di�erent intrinsic properties of the oscillators,
the incoherent oscillators are distinguishable, and thus the order parameter varies
in the incoherent cluster. This variation is analogous to the �rst di�usion mode for
the type II chimera with small ε, see Fig. 4.9(d). While for the Kuramoto chimera,
the oscillators can be distinguished due to their di�erent intrinsic frequencies, the
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oscillators in the type II chimera can also be distinguished due to their position in
space. This investigation of how di�usion maps are suited for the extraction of order
parameters a �rst approach to the topic. It has been further elaborated in a master
thesis [137], where a more thorough discussion of extracting order parameters for
chimera states with di�usion maps can be found.

4.6 Reconstructing an attractor

In the previous examples, we compared time series to �nd variabilities which are
intrinsic to the system, and used them as coordinates in which we regarded the
data. But since we took entire time series as data points in the examples discussed
above, the variabilities we could uncover were always perpendicular to the time
direction and thus no variabilities along the time direction could be obtained.
In this section, we extend our analysis by cutting each time series into time chunks
shorter than the available time interval in our data, and using these as data points. In
addition, we let these pieces overlap, which ensures that their distances to neighbors
in space and time are comparable. This approach enables us to �nd variabilities
along directions in 'space-time', and will be illustrated in more detail on simulation
data of the Kuramoto-Sivashinsky equation (KSE).
The KSE is a fourth-order partial di�erential equation

∂tu+ α (u∂xu+ ∂xxu) + 4∂xxxxu = 0 (4.3)

with the real variable u = u (x, t) and the parameter α. For α = 53.3 and L = 2π,
with periodic boundaries, Eq. (4.3) shows modulated traveling waves [143], as shown
in Fig. 4.11(a) for a 1d system with periodic boundary conditions. In this case, the
dynamics are de�ned by two oscillations: that of the underlying traveling wave itself
and that of the modulation. While the former is dominant when looking at the full
dynamics, the nature of the latter becomes clear when moving to the co-rotating
frame of the traveling wave, as depicted in Fig. 4.11(b). Here, each snapshot ex-
hibits some periodic spatial pro�le. The amplitude of this pro�le oscillates in time
such that every point in space oscillates with some constant modulation frequency.
Altogether, the dynamics of each point in space and time are de�ned by its phase
with respect to each of these two oscillations. In other words, the dynamics of the
system lives on a 2-torus.
As a particular example, the dynamics shown in Fig. 4.11(a-b) are sampled in the
form of N = 100 time series of length T = 500. Our �rst N time chunks are taken to
consist of the �rst lChunk = 200 time steps at each point in space, respectively. The
next N time chunks are similarly created by shifting the starting point to the nth
time step of each time series and including the next lChunk = 200 steps from there.
This process is repeated until the last N time chunks range from discrete time unit
T − lChunk = 300 to T = 500. Therefore, each time chunk overlaps with the previous
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one by lChunk − n time steps.
For example, when obtaining time chunks of length lChunk = 200 from time series
of length T = 500, a shift of n = 8 leads to the creation of 38 ·N overlapping time
chunks. When performing di�usion maps on these time chunks the result, as in
the previous sections, again depends on the value of the kernel scale ε. For ε = e4,
a one-parameter dependence of the dynamics is detected, the di�usion coordinates
of the time chunks forming a closed ring spanned by φ1 and φ2 (see Fig. 4.12(a);
φ3 hereby does not contain any additional information), and none of the at least 8
next di�usion modes being independent directions. As indicated by the smoothness
of the coloring, the ring is parametrized by the spatial coordinates associated with
the time chunks of the last snapshot, and thus by the phase of the traveling wave.
(Most noticeable are those of the 100 time chunks sampled last in time, as these
where plotted last.) Thus, the di�usion maps approach seems to have uncovered the
underlying unmodulated traveling wave, the pro�le of which is also parametrized by
space.
Decreasing the scale parameter, the ring in di�usion space partially unfolds into sev-
eral rings, meaning that a third independent direction of the dynamics is gradually
being detected. For ε = e3.5, this is shown in Fig. 4.12(b). Notably, each of the rings
is still parametrized by space. A further decrease of ε leads to a further unfolding of
the rings, see Figs. 4.12(c). At ε = e2.5 we get a full separation of the rings, as shown
in Fig. 4.12(d). Together, these rings span a torus in di�usion space, one direction
of which, the one along each of the rings, corresponds to the underlying traveling
wave. The other direction, from one ring to the next, we argue to correspond to the
modulating oscillation: When considering the period of one modulating oscillation
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Figure 4.11: (a) Temporal evolution of u in the 1d Kuramoto-Sivashinsky equation
with periodic boundaries, showing modulated traveling waves. (b) The dynamics in
(a) in a co-rotating frame. The color corresponds to u.
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in Fig. 4.11(b), its length is found to be 56 time steps in the T = 500 discretization
described above. For an increment in the creation of time chunks of n = 8, the time
chunks starting at t7 = 7n = 7 · 8 = 56 will thus have the same phase with respect
to the modulating oscillation as the time chunks starting at t0 = 0. Moreover, the
pro�le of the underlying unmodulated traveling wave stays the same for all times,
and is only shifted in space. Together, this assures that each of the time chunks
starting at t0 = 0 is identical to one of the time chunks, at another point in space,
starting at t7 = 0 (barring numerical sampling inaccuracy). As the same argument
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Figure 4.12: (a) First three independent di�usion modes obtained from overlapping
time chunks created with a time shift of n = 8 and for ε = e4, colored by spatial
position. (b-d) Equivalents to (a) for ε = e3.5, ε = e3, and ε = e2.5, respectively.

applies to any collection of time chunks starting at a given ti, all these collections
will thus occupy only seven distinct regions in di�usion space, and as each of them is
represented by a ring, the result will be seven rings, arranged in a circle, exactly as
in Fig. 4.12(d). Analogously, choosing a di�erent increment of n = 14 when creating
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the time chunks, leads to the di�usion modes (not shown here), where the torus is
spanned by only four rings, just as predicted by our explanation. Moreover, the
argumentation also holds for the choice of increments n = 28 and n = 4, leading to
2 and 14 rings spanning the torus in di�usion space, respectively (not shown here).
Note that the toroidal direction corresponds to the phase of the modulation, whereas
the poloidal direction corresponds to the phase of the traveling wave. Thus, those
two directions are the dominant variabilities in this dynamical system, compare
Fig. 4.12(d). In contrast to the spatial intermittency in the Ginzburg-Landau equa-
tion, the variabilities obtained by the modi�ed approach described in this section
are neither space nor time but the phases of the modulation and of the traveling
wave, respectively.

4.7 Invariance to the Measrement Function
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Figure 4.13: (a) Sunrise times in GMT of di�erent German cities [128]. (b) The �rst
two independent di�usion modes, φ1 and −φ2 for ε = e15 of the data shown in (a),
colored with their longitudinal geographic position. Note that by comparing with
the actually locations in Fig. 4.2(b), it becomes obvious that φ1 and φ2 span a space
in which the mutual arrangements of the cities re�ect their actual positions. Addi-
tionally, due to the correspondence between the coloring and φ1, one can visually
verify that φ1 parameterizes the west-east direction.

Embeddings of di�erent sets of observations of the same system will, in general, be
di�erent, even if comparably informative. Consider the observation of sunrise/sunset
in German cities not through the Boolean vectors of the daylight times of a particular
day of the year, but rather through vectors containing the sunrise and sunset times
of an entire year, as shown in Fig. 4.13(a). Here again, di�usion maps yield a
similar (one could argue, homeomorphic) arrangement of the cities, as depicted in
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Fig. 4.13(b). This is reminiscent of Koopman operator theory, with the Koopman
operator being invariant to the measurement function [144�146].

4.8 Discussion

The individual examples discussed above highlight the utility of di�usion maps for
the extraction of useful coordinates intrinsic to the data. Such coordinates may
either be one-to-one with the spatial coordinate, the heterogeneous parameters or
the underlying attracting manifold of the system. Hereby, the kernel scale plays
an important role, since it e�ectively speci�es the degree of coarsening we apply
in our approach. For very small kernel scales, the data points e�ectively become
disconnected, indicating that there are as many dimensions in the data as there are
data points. Increasing the scale, data points become connected to their nearest
neighbours. In this range of scales, we have seen that the emerging coordinates are
one-to-one with the spatial arrangement of time series stemming from simulations
of partial di�erential equations. For systems without a spatial coordinate, as in
the case of the pre-Bötzinger neurons, one obtains an e�ective spatial representa-
tion which corresponds to the intrinsic heterogeneous parameters of the neurons. In
both cases, that is for systems with and without a spatial dimension, the emerging
coordinates may be used as coordinates to model the dynamics, using, for example,
partial di�erential equations. For even larger values of ε, the di�usion modes be-
come 'clumped' in the case of chimera states. This 'clumpedness' indicates that one
might use a few ordinary di�erential equations to e�ectively describe the dynamics,
opposed to partial di�erential equations on a smaller scale. For a more detailed
discussion on the in�uence of the kernel scale on the embedding, see the master
thesis, Ref. [137].
Finally, we brie�y discussed that it is possible to extract coordinates which are
independent of the measurement function. This then allows to fuse di�erent obser-
vations of the 'same' dynamical phenomenon in a data driven way, or to map from
one dynamical state to another. So far, such mappings have usually been obtained
analytically, as, for example, the Cole-Hopf transformation between the the di�usion
equation and the viscous Burgers equation [147]. There is, however, the condition
that the measurement function yields 'enough' information of each data point. This
directly links to the theorems of Whitney [148], Nash [149], and Takens [150], stating
that an N -dimensional system can be embedded using 2N + 1 coordinates. In the
case of the Kuramoto-Sivashinsky equation, we have seen that taking time windows
of lenght l = 100 contained su�cient delays to embed the dynamics on the torus.
Summarizing, we believe that such extracted variabilities may facilitate our un-
derstanding of complex dynamics. In particular for chimera states, the obtained
one-dimensional representation of the dynamics may serve as an order parameter,
allowing a distinction of di�erent types of chimeras. The hope is that, not only for
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chimera states, but for complex systems in general, the obtained coordinates may
serve as a starting point for future modeling approaches, creating reduced equations
in the new �emergent� or �equal� space.
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Chapter 5

Summary and Conclusion

The main objective of this thesis is to shed light on dynamical phenomena occuring
in networks of strongly coupled oscillators. In particular, we aimed at making a
contribution to a better understanding of the mechanisms behind clustering and the
formation of chimera states, states of coexisting coherence and incoherence.
We thus started from small ensembles of limit cycle oscillators, and showed how
asymmetric (cluster) solutions can emerge in such small ensembles. Where such
clusters exist thereby depends on the parameters of the system. Furthermore, sta-
ble cluster states may become unstable through Hopf bifurcations, creating cluster
states that oscillate in their amplitudes and phase di�erences. We have seen that
such oscillating clusters in ensembles of four oscillators may lead to chimera states
through a sequence of symmetry breaking/period doubling bifurcations. Interest-
ingly, two di�erent types of chimera states appear along this sequence, which di�er
in the symmetry properties of the incoherent oscillators. This can be veri�ed using
symmetry detectives, which indeed suggest that asymmetric chimeras are invariant
under the permutation of the two coherent oscillators, Si2, only, whereas symmetric
chimeras remain unchanged under operations of the symmetry group Si2×Sa2. Such a
classi�cation of minimal chimeras is applicable to not only the Stuart-Landau ensem-
ble, but to general chimeras in su�ciently small networks. For too large networks,
the amount of symmetry operations to test against, that is the cardinality of the
equivariant symmetry group, usually becomes too excessive. However, we showed
that one can draw conclusions from these minimal chimeras to their thermodynamic
counterparts: asymmetric chimeras seem to form spatially coherent cluster, whereas
symmetric chimeras manifest themselves as spatiotemporal incoherent dynamics in
the incoherent cluster. In addition, asymmetric and symmetric chimera states are
close in parameter space, with the asymmetric chimera forming a link between clus-
ter states and symmetric chimeras. If such an arrangement also appears in other
settings still remains unknown. Nevertheless, we are convinced that a classi�cation
according to the symmetry properties reveals deeper insights into chimera states in
general.
The classi�cation based on the symmetry of the incoherent oscillators is also appli-
cable to systems larger than four oscillators, as long as the symmetry group of the
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whole system does not become too large. For the case when there are more than
two incoherent oscillators, under which symmetry operations are they invariant on
average? As also pointed out by Dr. García-Morales, could there be symmetries on
average di�erent than SaNi , with Ni the number of incoherent oscillators? We believe
that this is an important question which remains to be answered by future research.
The answer to this question, however, may lead to an even more general classi�ca-
tion of chimera states in small ensembles, and thus enhance our understanding of
incoherent dynamics in systems of coupled agents in general.
Besides bifurcation into chimera states, balanced cluster states may also bifurcate
from and to the synchronized solution in ensembles of mean-coupled Stuart-Landau
oscillators. In particular, such transitions occurs via a hysteretic sequence of inter-
mediate unbalanced clusters. This becomes especially clear when considering larger
ensembles of globally coupled limit cycle oscillators. There, the cluster states be-
come increasingly dense in phase space. In more detail, neighboring cluster states
in phase space di�er by the ratio of oscillators in each cluster: The closer the cluster
curves are, the more similar in size are the individual clusters. Such properties can
be exploited using the theory of persistence, allowing to extrapolate these results
to any cluster distribution. In the course of our considerations, we found that the
arrangement of such cluster states becomes singular at individual points in param-
eter space. There, the transition from balanced cluster states to the synchronous
oscillations becomes continuous. We dubbed these co-dimension two points cluster
singularities, and derived their position in parameter and phase space analytically.
In our analytic derivation, however, we �nd two such points, of which we only inves-
tigate one in more detail. A detailed analysis of the second cluster singularity still
remains to be done.
The generality of our model and our approach suggests that such singularities may
also appear in di�erent ensembles of globally coupled oscillators, and that an exper-
imental validation should be possible. In particular, the existence of such points in
normal forms may have far reaching implications for symmetry breaking in networks
of coupled oscillators in general. Since small parameter variations close to this point
can lead to a vast amount of di�erent stable 2-cluster states, it might be favorable
for biological as well as physical systems to operate close to such singular points.
In especially for biological systems, this then allows for an e�cient adaption and
di�erentiation as a response to small changes in the environment.
Similar to their emergence in a small ensemble, chimera states may be born through
symmetry increasing bifurcations from cluster states in larger networks. This is not
only the case for globally coupled oscillators, but for a large variety of coupling
topologies. Not surprisingly, the variety of qualitatively di�erent chimera states ob-
served in the literature is extensive, asking for a comprehensive classi�cation. This
led us to the development of two quantitative order parameters, one to characterize
the spatial coherence in the chimera state, another to quantify the temporal corre-
lations. In particular, we propose the order parameter g0 describing the fraction of
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spatially coherent oscillators. As shown in Chapter 3, it can be obtained by either
applying the discrete Laplacian on simulation or experimental data with a spatial
dimension, or by calculating the pairwise distances between the agents for systems
without any spatial extension. This variable g0 can then be used to distinguish
three di�erent types of chimeras: stationary chimeras, when g0 is constant in time,
breathing chimeras when g0 is periodic and turbulent chimeras when g0 behaves
irregularly in time. Such a classi�cation can be further re�ned using the second or-
der parameter h0, describing the fraction of temporally coherent oscillators. It can
be calculated via pairwise correlation coe�cients, and can be used to distinguish
between moving chimera states, states where the coherent and incoherent clusters
moves in space, and static chimeras, where the individual cluster remain stationary
in space. A value of h0 < g0 indicates that more agents are spatially coherent than
temporally coherent, and the chimera is moving, whereas h0 ≈ g0 suggests that the
chimera state is static. Finally, values of g0 = 1 or g0 = 0 indicate that the present
state is either not a chimera state at all, or it is transient. In order to verify the
usefulness of our approach, we tested and illustrated this classi�cation on various
examples from both experiments and simulations.
In addition to the classi�cation of chimera states in small networks using symmetry
detectives, the classi�cation based on g0 and h0 allows the classi�cation of chimeras
also in large networks. The distinction between di�erent kinds of these hybrid states
is an important step towards comparing and eventually mapping chimera states in
di�erent systems. Furthermore, we published the functions calculating the above
mentioned classi�cation measures on GitHub under Python1, which have been used
in di�erent �elds dealing with chimeras [151�154], hopefully facilitating research
along these directions.
It is worth mentioning that the two correlation measures are �hand-engineered� in
the sense that they are speci�cally designed for this classi�cation based on expe-
rience and thinking. Recent advances in machine and manifold learning, however,
suggest that it should be possible to extract order parameters from data in an au-
tomated fashion. Here, we used a nonlinear manifold learning technique, di�usion
maps, to extract intrinsic features of the data, which we call intrinsic variabilities.
By comparing time series, we showed that such variabilities can either be spatial
coordinates or heterogeneous parameters in the system, and argue that the repre-
sentation through these coordinates may render the data in a more intelligible form.
In particular, the extracted coordinates are implicitly contained in, or emerge from,
the data, spanning what we call an 'emergent space'.
An important parameter of di�usion maps is the kernel scale, specifying the kernel
width and thus the scale on which we want to approach the data. We therefore
brie�y discuss the in�uence of this parameter on the embedding of di�erent chimera
states. In the course of this, we argue that the �rst di�usion mode may, for a suit-

1The classify_chimera package is available under github.com/fkemeth/classify_chimeras.
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able choice of the scale, allow conclusions about the underlying coarse dynamics
and thus may serve as a suitable order parameter. Taking overlapping time chunks
instead of whole time series, we explain how one can use di�usion maps to �nd
the underlying attractor of a dynamical system. That is, the intrinsic variabilities
extracted from the data parametrize the attracting manifold. We discuss how these
various extracted coordinates may further help to understand complex dynamics,
and may serve as suitable variables for the future development of reduced models.
The development of such reduced models, in particular �nding equations in these
extracted coordinates, is still an ongoing �eld of research. The vast number of pub-
lications dealing with chimera states suggests that this is also true for the dynamics
of such states. In particular, the question if there is a universal mechanism through
which chimera states, or hybrid states in general, are born, is still unsolved. Fur-
thermore, the upcoming shift from phase oscillator systems, for which approaches
proposed by Ott and Antonsen [141, 142] or Watanabe and Strogatz [155, 156] exist,
to networks composed of amplitude oscillators where such approaches are no longer
possible, requires the development of new methods. We believe that our considera-
tions may serve as a starting point for the future development of such methods.
The question still remains of how the results presented here help us understand ac-
tual physical or biological problems, such as, for example, dynamical patterns in the
brain. What can we indeed say about mechanism leading to uni-hemispheric sleep
in certain animals?
Although a de�nite solution to these questions cannot be given at this point, we
believe that the bifurcation scenarios and the chimera states explained in this thesis
are of importance to the understanding of these problems. In particular, the ability
to account for various chimera states observed in, for example, electro-chemical ex-
periments using ensembles of coupled Stuart-Landau oscillators reassures that the
study of normal forms indeed allows conclusions about actual physical processes.
Although the study of large networks of oscillators is not feasible, we showed that
one can nevertheless learn a lot about large networks when starting from small
ensembles. Finding regularities in systems of di�erent sizes, that is, bifurcations
occurring in large as well as in small ensembles, further indicates that the observed
phenomena are generic. But understanding these phenomena even in normal forms
is still a challenging task. This becomes especially obvious when considering how
large the parameter space is even for networks of identical oscillators, and how vast
the number of transitions is that occur even in very small parameter windows. Al-
though we found regularities even in these small parameter windows, such as cluster
transitions and singularities, a further exploration of parameter space may enhance
our understanding of coupled oscillators.
Another evidence of the generality of our approach can be achieved when reduc-
ing normal form simulations as well as experimental data onto order parameters.
Such order parameters, e.g. g0 and h0, or emergent coordinates obtained using
di�usion maps, may indicate what kind of qualitative pattern, for example in the
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brain, is observed, and if our simulations account for its qualitative behavior. These
data-driven approaches then may further validate, or correct, our assumption that
globally coupled ensembles of Stuart-Landau oscillators are a powerful model for
describing distributed oscillatory behavior in nature.
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Appendix A

Derivation of the Mean-Coupled

Stuart-Landau Ensemble

Following Ref. [21], one can derive the complex Ginzburg-Landau equation in a
rather generall way. Suppose you have a dynamical system with N variables

∂txi = Fi (x1, . . . , xN ,p) , i = 1, . . . , N,

with some parameters p, which can be written in vectorized form as

∂tx = F (x,p) . (A.1)

Suppose Eq. (A.1) has a stationary point x0 such that

F (x0,p) = 0,

with x0 = x0 (p) possibly dependent on the parameters p. We can Taylor-expand
around this �xed point by introducing the deviation u = x− x0 such that

∂tui =
∂Fi
∂xj

∣∣∣∣
x0

uj +
1

2

∂2Fi
∂xj∂xk

∣∣∣∣
x0

ujuk +
1

6

∂3Fi
∂xj∂xk∂xl

∣∣∣∣
x0

ujukul + . . .

= Liju
j +

1

2
Hijku

juk +
1

6
Dijklu

jukul + . . .

where we use the Einstein summation convention [157] and where L denotes the
Jacobian matrix, H the Hessian matrix and D contains the third partial derivatives,
whereas all are evaluated at the �xed point solution x0. Keeping in mind the correct
summations described above, we can rewrite them in a more compact form as

∂tu = Lu+ Mu 2 + Nu 3 + . . . . (A.2)

Suppose now that x0 is a stable steady state solution, that means the real parts of all
eigenvalues of the Jacobian J are negative at this solution. Furthermore assume that
by changing one parameter µ two complex conjugate eigenvalues cross the imaginary
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axis transversally, such that x0 undergoes a supercritical Hopf bifurcation. Next, it
is worth expanding the Jacobian at this bifurcation point such that

L = L0 + µL1 + µ2L2 + . . .

and its eigenvalues
λ = λ0 + µλ1 + µ2λ2 + . . . .

Let v ∗ and v be the left and right eigenvectors of L0, with

L0v = λ0v v ∗L0 = λ0v
∗

L1v = λ1v v ∗L1 = λ1v
∗

and v ∗v = 1. Since we are interested in a Hopf bifurcation of the stationary state,

v ∗L0v = λ0 = iω0

v ∗Liv = λ1 = σ1 + iω1.

Furthermore, it is helpful to introduce a parameter ε > 0 with µ = ε2χ and
χ = signµ. Using the fact that the amplitudes of the oscillations close to a Hopf
bifurcation scale with

√
µ, one can write

u = εu1 + ε2u2 + . . .

and

L = L0 + ε2χL1 + . . .

M = M0 + ε2χM1 + . . .

N = N0 + ε2χN1 + . . . .

Note that the real part of λ is of order ε2 and thus slow compared to the rotations
induced by λ0 = iω. Therefore one may introduce a new time τ = ε2t and write

dt→ ∂t+ ε2∂τ.

This transformes Eq. (A.2) into(
∂t + ε2∂τ

) (
εu1 + ε2u2 + . . .

)
=
(
L0 + ε2χL1 + . . .

) (
εu1 + ε2u2 + . . .

)
+
(
M0 + ε2χM1 + . . .

) (
εu1 + ε2u2 + . . .

)2

+
(
N0 + ε2χN1 + . . .

) (
εu1 + ε2u2 + . . .

)3

which can be rewritten as(
∂t + ε2∂τ − L0 − ε2χL1 + . . .

) (
εu1 + ε2u2 + . . .

)
= ε2M0u

2
1
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+ ε3
(
2M0u1u2 + N0u

3
1

)
+O

(
ε4
)
.

Sorting this equation corresponding to the powers of ε yields

(∂t − L0)u1 = 0

(∂t − L0)u2 = M0u
2
1

(∂t − L0)u3 = − (∂τ − χL1)u1 + 2M0u1u2 + N0u
3
1

...

(∂t − L0)ui = Bi

This is a system of inhomogeneous di�erential equations. One can solve the homo-
geneous equation

∂tu1 = L0u1

→ u1 = uhom = W (τ)veiω0t + W̄ (τ) v̄e−iω0t.

The inhomogeneous equation has a solution only if the Fredholm solvability condi-
tion is ful�lled, that is if

〈Bi,uhom〉 = 0

→ 〈v ∗ ·Bi,v
∗ · uhom〉 = 0

→
+∞∫
−∞

v ∗ ·BiW (τ) eiω0tdt = 0

→
2π/ω0∫
0

v ∗ ·Bie
iω0tdt = 0

where one can use the fact that v ∗ · v̄ = 0, W (τ) is approximately constant and
non-zero on the time scale of ωt and that the homogeneous solution is 2π periodic
in ω0t. In particular, one can thus infer that the Bi must also be 2π periodic in ω0t
and hence one can write

Bi =
∑
l

B
(l)
i (τ) e−ilω0t.

The solvability condition then turns into

v ∗ ·B(1)
i = 0.

The solution for u2 can be obtained by solving

(∂t − L0)u2 = M0u
2
1 ,
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which has a solution of the form

u2 =− (L0 − 2iω0)−1 M0v vW
2e2iω0t

− (L0 + 2iω0)−1 M0v̄ v̄ W̄
2e−2iω0t

− 2L−1
0 M0vv̄ |W |2 + cu1

This leads to a B(1)
3 of

B
(1)
3 = − (∂τ − χL1)Wv

+
(
4M0v L−1

0 M0vv̄ + 2M0v̄ (L0 − 2iω0)−1M0v v + 3N0v v v̄
)
|W |2W

and with the solvability condition

∂τW = v ∗χL1Wv

+
(

4v ∗M0v L−1
0 M0vv̄

+ 2v ∗M0v̄ (L0 − 2iω0)−1 M0v v + 3v ∗N0v v v̄
)
|W |2W

= χλ1W − g |W |2W

with g = g1 + ig2. This is the general form of a Stuart-Landau oscillator. Suppose
now that the variables x are �elds over some spatial domain of length L coupled via
di�usion, then the general dynamics can be described by

∂tx = F (x,p) + D∇2x

with a di�usion matrix D. Furthermore, assume that some varibles have long range
interactions such that they are in�uenced by the common mean. If we assume that
this interaction is linear, then we get the following form for the dynamics

∂tx = F (x,p) + D∇2x+ K
1

L

∫
L

(x (r′)− x (r)) dr′.

Follwoing Refs. [21�23], Eq. (A.2) turns into

∂tu =
(
L + D∇2

)
u+ K

1

L

∫
L

(u (r′)− u (r)) dr′ + Mu 2 + Nu 3 + . . . . (A.3)

Rescaling space such that s = εr and writing K→ ε2K1, we get

B3 =−
(
∂τ − χL1 −D∇2

s

)
u1

1We must assume the coupling to be weak, otherwise the center manifold theorem no longer
applies, see Ref. [22]
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+ K
1

L

∫
L

(u1 (s′)− u1 (s)) ds′

+ 2M0u1 u2 + N0u
3
1

such that

B
(1)
3 =−

(
∂τ − χL1 −D∇2

s

)
Wv

+ Kv
1

L

∫
L

(W (s′)−W (s)) ds′

+
(

4M0v L−1
0 M0vv̄ + 2M0v̄ (L0 − 2iω0)−1 M0v v

+ 3N0v v v̄
)
|W |2W

or

∂τW = χλ1W + d∇2
sW − g |W |2W + k

1

L

∫
(W (s′)−W (s)) ds′

with d = d1 + id2 = v ∗Dv and k = k1 + ik2 = v ∗Kv. Introducting the rescaled
time τ = at, rescaled space s = bx and W = cW , we have

c

a
∂tW = cχλ1W +

cd

b2
∇2
xW − gc3 |W |2W + ck

1

L

∫
(W (s′)−W (s)) ds′

⇒ ∂tW = aχλ1W +
ad

b2
∇2
xW − gac2 |W |2W + ak

1

L

∫
(W (s′)−W (s)) ds′

= aχ (σ1 + iω1)W +
a

b2
(d1 + id2)∇2

xW

− (g1 + ig2) ac2 |W |2W + a (k1 + ik2)
1

L

∫
(W (s′)−W (s)) ds′

In the supercritical case, χ = 1, and by taking a = 1/(σ1), b =
√
d1/σ1 and

c =
√
σ1/|g1| we get

∂tW =

(
1 + i

ω1

σ1

)
W +

(
1 + i

d2

d1

)
∇2
xW

−
(

1 + i
g2

g1

)
|W |2W +

(
k1

σ1

+ i
k2

σ1

)
1

L

∫
(W (s′)−W (s)) ds′

= (1 + ic0)W + (1 + ic1)∇2
xW

− (1 + ic2) |W |2W + (α + iβ)
1

L

∫
(W (s′)−W (s)) ds′

with c0 = ω1/σ1, c1 = d2/d1, c2 = g2/g1, α = k1/σ1 and β = k2/σ1. Following
Refs. [25, 31] and by moving to a co-moving frame W → W exp ic0t, we get that

∂tWeic0t = eic0t∂tW + ic0Weic0t,
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and thus one can further eliminate c0 and obtain the rescaled version of the globally-
coupled complex Ginzburg-Landau equation

∂tW = W + (1 + ic1)∇2
xW − (1 + ic2) |W |2W

+ (α + iβ)
1

L

∫
(W (s′)−W (s)) ds′,

which is in fact Eq. (2.1) mentioned above.
Neglecting the di�usion term (1 + ic1)∇2

xW , we can rewrite the integral as an en-
semble average 〈W 〉 = 1/N

∑
kWk, obtaining an ensemble of globally coupled oscil-

lators,

∂tWk = Wk − (1 + ic2) |Wk|2Wk

+ (α + iβ)

(
1

N

∑
j

Wj −Wk

)
,

with k = 1, . . . , N , as already described in Eq. 2.2.
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Appendix B

Equations in Polar Coordinates

The temporal evolution of four mean-coupled oscillators can be obtained using the
full system Eq. (2.2)

∂tWi = Wi − (1 + ic2) |Wi|2Wi + κ (〈W 〉 −Wi) , i ∈ {1, 2, 3, 4} ,

with κ = α+iβ. Replacing κ we get

∂tW1 = W1 − (1 + ic2) |W1|2W1 + κ

(
1

4
(W1 +W2 +W3 +W4)−W1

)
= W1 − (1 + ic2) |W1|2W1 + κ

(
1

4
W2 +

1

4
W3 +

1

4
W4 −

3

4
W1

)
=

(
1− 3

4
κ

)
W1 − (1 + ic2) |W1|2W1 +

κ

4
(W2 +W3 +W4)

= (1− 3 (α + iβ))W1 − (1 + ic2) |W1|2W1 + (α + iβ) (W2 +W3 +W4)

and in polar coordinates

Ṙie
iφi + iRiφ̇ie

iφi = (1− 3 (α + iβ))Rie
iφi − (1 + ic2)R3

i e
iφi

+ (α + iβ)
(
Rje

iφj +Rke
iφk +Rle

iφl
)

Ṙi + iRiφ̇i = (1− 3 (α + iβ))Ri − (1 + ic2)R3
i

+ (α + iβ)
(
Rje

i(φj−φi) +Rke
i(φk−φi) +Rle

i(φl−φi)
)

The dynamics are given through the four amplitude equations

∂tR1 = (1− 3α)R1 −R3
1

+ α [R2 cos (φ2 − φ1) +R3 cos (φ3 − φ1) +R4 cos (φ4 − φ1)]

− β [R2 sin (φ2 − φ1) +R3 sin (φ3 − φ1) +R4 sin (φ4 − φ1)]

∂tR2 = (1− 3α)R2 −R3
2

+ α [R1 cos (φ1 − φ2) +R3 cos (φ3 − φ2) +R4 cos (φ4 − φ2)]

− β [R1 sin (φ1 − φ2) +R3 sin (φ3 − φ2) +R4 sin (φ4 − φ2)]
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∂tR3 = (1− 3α)R3 −R3
3

+ α [R1 cos (φ1 − φ3) +R2 cos (φ2 − φ3) +R4 cos (φ4 − φ3)]

− β [R1 sin (φ1 − φ3) +R2 sin (φ2 − φ3) +R4 sin (φ4 − φ3)]

∂tR4 = (1− 3α)R4 −R3
4

+ α [R1 cos (φ1 − φ4) +R2 cos (φ2 − φ4) +R3 cos (φ3 − φ4)]

− β [R1 sin (φ1 − φ4) +R2 sin (φ2 − φ4) +R3 sin (φ3 − φ4)]

and the four phase equations

∂tφ1 = −3β − c2R
2
1

+
β

R1

[R2 cos (φ2 − φ1) +R3 cos (φ3 − φ1) +R4 cos (φ4 − φ1)]

+
α

R1

[R2 sin (φ2 − φ1) +R3 sin (φ3 − φ1) +R4 sin (φ4 − φ1)]

∂tφ2 = −3β − c2R
2
2

+
β

R2

[R1 cos (φ1 − φ2) +R3 cos (φ3 − φ2) +R4 cos (φ4 − φ2)]

+
α

R2

[R1 sin (φ1 − φ2) +R3 sin (φ3 − φ2) +R4 sin (φ4 − φ2)]

∂tφ3 = −3β − c2R
2
3

+
β

R3

[R1 cos (φ1 − φ3) +R2 cos (φ2 − φ3) +R4 cos (φ4 − φ3)]

+
α

R3

[R1 sin (φ1 − φ3) +R2 sin (φ2 − φ3) +R4 sin (φ4 − φ3)]

∂tφ4 = −3β − c2R
2
4

+
β

R4

[R1 cos (φ1 − φ4) +R2 cos (φ2 − φ4) +R3 cos (φ3 − φ4)]

+
α

R4

[R1 sin (φ1 − φ4) +R2 sin (φ2 − φ4) +R3 sin (φ3 − φ4)]

which can be reduced using the di�erences ∆φ43 = φ4 − φ3, ∆φ32 = φ3 − φ2 and
∆φ21 = φ2 − φ1

∂tφ1 = −3β − c2R
2
1

+
β

R1

[R2 cos (∆φ21) +R3 cos (∆φ32 + ∆φ21) +R4 cos (∆φ43 + ∆φ32 + ∆φ21)]

+
α

R1

[R2 sin (∆φ21) +R3 sin (∆φ32 + ∆φ21) +R4 sin (∆φ43 + ∆φ32 + ∆φ21)]

∂tφ2 = −3β − c2R
2
2
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+
β

R2

[R1 cos (∆φ21) +R3 cos (∆φ32) +R4 cos (∆φ43 + ∆φ32)]

+
α

R2

[R1 sin (−∆φ21) +R3 sin (∆φ21) +R4 sin (∆φ43 + ∆φ32)]

∂tφ3 = −3β − c2R
2
3

+
β

R3

[R1 cos (∆φ32 + ∆φ21) +R2 cos (∆φ32) +R4 cos (∆φ43)]

+
α

R3

[R1 sin (−∆φ21 −∆φ32) +R2 sin (−∆φ32) +R4 sin (∆φ43)]

∂tφ4 = −3β − c2R
2
4

+
β

R4

[R1 cos (∆φ43 + ∆φ32 + ∆φ21) +R2 cos (∆φ43 + ∆φ32) +R3 cos (∆φ43)]

+
α

R4

[R1 sin (−∆φ43 −∆φ32 −∆φ21) +R2 sin (−∆φ43 −∆φ32) +R3 sin (−∆φ43)]

Reducing them to three yields

∂t∆φ21 = −c2

(
R2

2 −R2
1

)
+

β

R2

[R1 cos (∆φ21) +R3 cos (∆φ32) +R4 cos (∆φ43 + ∆φ32)]

− β

R1

[R2 cos (∆φ21) +R3 cos (∆φ32 + ∆φ21) +R4 cos (∆φ43 + ∆φ32 + ∆φ21)]

+
α

R2

[R1 sin (−∆φ21) +R3 sin (∆φ32) +R4 sin (∆φ43 + ∆φ32)]

− α

R1

[R2 sin (∆φ21) +R3 sin (∆φ32 + ∆φ21) +R4 sin (∆φ43 + ∆φ32 + ∆φ21)]

∂t∆φ32 = −c2

(
R2

3 −R2
3

)
+

β

R3

[R1 cos (∆φ32 + ∆φ21) +R2 cos (∆φ32) +R4 cos (∆φ43)]

− β

R2

[R1 cos (∆φ21) +R3 cos (∆φ32) +R4 cos (∆φ43 + ∆φ32)]

+
α

R3

[R1 sin (−∆φ21 −∆φ32) +R2 sin (−∆φ32) +R4 sin (∆φ43)]

− α

R2

[R1 sin (−∆φ21) +R3 sin (∆φ32) +R4 sin (∆φ43 + ∆φ32)]

∂t∆φ43 = −c2

(
R2

4 −R2
3

)
+

β

R4

[R1 cos (∆φ43 + ∆φ32 + ∆φ21) +R2 cos (∆φ43 + ∆φ32) +R3 cos (∆φ43)]

− β

R3

[R1 cos (∆φ32 + ∆φ21) +R2 cos (∆φ32) +R4 cos (∆φ43)]
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Appendix B Equations in Polar Coordinates

+
α

R4

[R1 sin (−∆φ43 −∆φ32 −∆φ21) +R2 sin (−∆φ43 −∆φ32) +R3 sin (−∆φ43)]

− α

R3

[R1 sin (−∆φ21 −∆φ32) +R2 sin (−∆φ32) +R4 sin (∆φ43)]

together with the amplitude equations

∂tR1 = (1− 3α)R1 −R3
1

+ α [R2 cos (∆φ21) +R3 cos (∆φ32 + ∆φ21) +R4 cos (∆φ43 + ∆φ32 + ∆φ21)]

− β [R2 sin (∆φ21) +R3 sin (∆φ32 + ∆φ21) +R4 sin (∆φ43 + ∆φ32 + ∆φ21)]

∂tR2 = (1− 3α)R2 −R3
2

+ α [R1 cos (∆φ21) +R3 cos (∆φ32) +R4 cos (∆φ43 + ∆φ32)]

− β [R1 sin (−∆φ21) +R3 sin (∆φ32) +R4 sin (∆φ43 + ∆φ32)]

∂tR3 = (1− 3α)R3 −R3
3

+ α [R1 cos (∆φ32 + ∆φ21) +R2 cos (∆φ32) +R4 cos (∆φ43)]

− β [R1 sin (−∆φ32 −∆φ21) +R2 sin (−∆φ32) +R4 sin (∆φ43)]

∂tR4 = (1− 3α)R4 −R3
4

+ α [R1 cos (∆φ43 + ∆φ32 + ∆φ21) +R2 cos (∆φ43 + ∆φ32) +R3 cos (∆φ43)]

− β [R1 sin (−∆φ43 −∆φ32 −∆φ21) +R2 sin (−∆φ43 −∆φ32) +R3 sin (−∆φ43)]
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Appendix C

CO-Oxidation Model with Global

Coupling

For the CO-oxidation model, the dynamics of the coverage of carbon monoxide, c,
is modeled by

∂tc = D∇2c+ k1pcosc

(
1−

(
c

cs

)3
)
− k2c− k3co (C.1)

with the di�usion coe�cient for CO, D, the rate of CO hitting the surface, k1, the
partial pressure of CO, pco, the sticking coe�cient of CO, sc, the saturation coverage
cs, the CO-desorption rate k2, the reaction rate k3 and the oxygen coverage o. Unlike
earlier studies [109], we assume that the di�usion process is isotropic and take the
di�usion coe�cient D as constant. The oxygen coverage o follows

∂to = k4po2 ((so1 − so2)w + so2)

(
1− c

cs
− o

os

)2

− k3co,

where k4 is the rate of the oxygen molecules hitting the surface, po2 the partial
pressure of these molecules in the gas phase, so1 and so2 are the sticking coe�cients
of oxygen on the 1×1 and 1×2 surface structure, respectively, and os is the saturation
coverage of o. Notice that the adsorption of oxygen depends on the surface structure,
w. This variable can be described by

∂tw = k5

(
g

(
c

cs

)
− w

)
with the function g(x),

g (x) =


0 if 0 ≤ x < 0.2

−x3−1.05x2+0.3x−0.026
0.0135

if 0.2 ≤ x ≤ 0.5

1 if 0.5 < x ≤ 1.0.

Falcke and Engel introduced a global coupling through the gas phase through the
partial pressure pco [109]. The equation for changes of pco, Eq. (C.2), results from
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Appendix C CO-Oxidation Model with Global Coupling

a constant in�ow with pcoe, out�ow with pco and changes through adsorption and
desorption. This can be summarized as shown in Eq. (C.2),

∂tpco =
J

V

(
pcoe − pco

(
1 +

VML

JL

∫ [
k1pco

(
1−

(
c

cs

)3
)
− k2

c

cs

]
dr

))
(C.2)

with J denoting the gas �ow into the reactor, A the surface area, V the reactor
volume and VML the volume of a mono-layer [109]. The parameters for this model
are summarized in Table C.1 [109, 158]. Hereby the reaction rates ki for i = 2, 3, 5
follow the Arrhenius equation

ki = Aie
−Ei/(RT ).

Integration parameters are N = 3600 and L = 1800µm. A fourth-order Runge-
Kutta method with �xed time step dt = 10−4 s is used for integration.

Rate of CO hitting the surface k1 4.18 · 105 s−1Torr−1

CO sticking coe�cient sc 1
CO saturation coverage cs 1
Rate of O2 hitting the surface k4 4.18 · 105 s−1Torr−1

O2 sticking coe�cient on 1× 1 so1 0.6
O2 sticking coe�cient on 1× 2 so2 0.4
O2 saturation coverage os 0.8
Reaction rate k3 A3 = 3 · 106 s−1 , E3 = 10 kcal/mol
CO desorption rate k2 A2 = 2 · 1016 s−1 , E2 = 38 kcal/mol
Surface structure transition rate k5 A5 = 102 s−1 , E5 = 7 kcal/mol
Di�usion coe�cient D 10 · 10−12 m2/s
Temperature T 545 K
Partial pressure of CO in the gas in�ow pcoe 3.992 · 10−5 Torr
Reactor volume V 50 l
Gas �ow into the reactor J 360 l/s
Partial pressure of O2 po2 1.17 · 10−4 Torr
Volume of a mono-layer VML 0.3 l/ML
Length of the electrode L L = 1800µm

Table C.1: Parameters for the CO-oxidation model (C.1) to (C.2)
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