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1. Introduction  

Beginning in the 1980s the electricity sector began to change, pushed by strong endeavors of countries 

around the globe, towards liberalized power marks. The European Commission directives of 1996, 2003 

and 2009 (Directive 72/EC, 2009; Steve, 2004) were the main drivers for the liberalization in Europe. The 

idea was an interconnected and common market for all participants (Directive 72/EC, 2009) taking into 

account the overarching goal of an environmentally friendly, secure and cost-efficient energy supply. 

Many other countries pursued similar liberalization goals such as the United States, Norway or Chile.  

The doctrine was clear, the energy sector has two new cornerstones: customers and markets. Utilities had 

to overcome the regulated past, starting to concentrate on actively managed revenues, react on 

customers and to accept the competition. The focus changed from a region associated oligopolistic 

dispatch towards a profit based use of the company’s production capacity. This came along with novelties 

such as price forecasting, price based optimization and smart grids.  

The latest development shows a way towards more and more short-term trading (EPEX Spot, 2017b). In 

Germany about 103.6 GW of RES are installed by now producing a third of 2016 gross electricity demand 

(Umweltbundesamt, 2017). The major share of this production depends on the fluctuating primary energy 

sources of sun and wind. Since the sun does not always shine and the wind does not always blow when 

the demand is high the produced renewable energy need to be stored until the demand is high which can 

be done with pumped hydropower storages. Since pumped hydropower plants were former mainly used 

to store energy at night to be shifted to the peak demand times over the course of the day, this dispatch 

process changes significantly. Operators of pumped hydropower plants need to react on an increasing 

number of short-term electricity markets and prices that are strongly influenced by RES. These challenges 

tear at the very fabric of profitability so that without new optimization methods, management and 

steering the absolutely required storages for the Energiewende cannot be operated economically.  

1.1. Research Question and Contributions 

This work focuses on modeling scheduling problems for pumped hydropower storages and to determine 

bidding strategies which maximize revenues from selling and buying power on the various short-term 

electricity markets.  

With the liberalization of the electricity sector in the beginning of the 20th century the bidding problem 

started to attract much attention in industry and academia. More and more short-term markets were 

introduced lining up along the timeline. As one of the first, Klaboe and Fosso (2013) recognized in their 

review on optimal bidding on various markets that bidding on more than one market results in a link 

between the markets in terms of price, capacity, energy and after all opportunities. Klaboe and Fosso 

define two kind of bidding strategies: separate bidding and process coordinated bidding. For the first, 

both markets are considered independently of each other. The second strategy suggests that all 

subsequent markets should be considered when bidding on the first market. From a theoretical point of 



 

15 

 

view, this is because bidding on the first market reduces flexibility for the following markets and therefore 

comes with a cost. These costs can be quantified when explicitly modelled.  

Nevertheless, a general preference of one strategy over the other has not been analyzed or given in 

literature so far. Whereas two markets are compared in some papers an overall bidding concept 

considering multiple or all short-term electricity markets, such as day-ahead, intraday as well as balancing 

markets, has not been designed yet. Given this overall research question this work combines and 

contributes to several fields from market analysis, mathematical optimization and partly also political 

framework evaluations. It finally proposes an overall optimization and bidding concept.  

Germany introduced several new electricity markets and flexible trading products to enable higher shares 

of variable RES production and can be seen as a role model for other countries in transition. This 

multifaceted market structure results in a complex hydro power scheduling problem which is analyzed in 

this thesis. Until now, literature constantly lags behind and fails to keep up with market development as 

well as to provide suitable optimization methods and bidding strategies. This work provides a solution to 

this problem as well as explains when separated and when process coordinated bidding should be applied. 

This probably becomes relevant in other countries as well, when additional electricity markets need to be 

introduced to enable higher shares of variable RES.  

The key to identifying optimal bids for various markets is the knowledge about the opportunities within 

markets. As most complex problems, this work suggests dividing the multi-market bidding problem into 

smaller problems to be composed into an overall solution again. Therefore, the specific contributions are 

presented in four separate listings hereafter that are already oriented towards the structure of the 

content chapters. The respective research questions are always stated before the listing.  

By means of the new quarter-hourly day-ahead market in Germany, introduced in December 2014, a 

multi-day-ahead-market optimization is modeled to answer the research questions, if and how the new 

market can contribute to higher revenues for operators of flexibility providing power plants and how the 

respective bids should look like.  

• This work states that the consideration of the more fluctuating quarter-hourly day-ahead market 

increases the profit of flexible pumped hydropower storages significantly.  

• Furthermore, the thesis proposes to analyze every market that is considered in a multi-market 

optimization in detail. Through this, it is demonstrated that the price on the quarter-hourly day-

ahead auction is strongly influenced by the variable RES of the sun, whereas no significant 

influence of wind power could be quantified. This comes along with an observed zig-zag effect 

and limited liquidity in the quarter-hourly day-ahead auction. (Braun & Brunner, 2018)  

• This work formulates and solves the extended quadratic problem formulation considering the 

observed limited price sensitivity on the quarter-hourly day-ahead market. Two formulations are 

presented to consider either new or consistent auction participants. By means of extensive 

experiments the optionalities within the two markets are determined and optimal bids generated 

for each market (Braun, 2016b). 

In literature, the consideration of stochastic inflows or prices in hydropower storage optimization is an 

important factor. Therefore, more literature exists on modeling stochastic optimization than on all other 

hydropower storage optimization topics together. The reviews by Wallace and Fleten (2003) and Labadie 
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(2004) give a good overview whereas very limited literature can be found on the stochastic optimization 

of pumped hydropower storages. Furthermore, existing stochastic optimization models focus on long 

term scheduling rather than considering short-term electricity markets. Given this research gap, this work 

performs a study including stochastic prices and inflows in a short-term pumped hydropower storage 

optimization considering even quarter-hourly products.  

• One insight of the study is that the stochastic solution dispatches the storages more 

conservatively to react on possible high or low prices. Accordingly, this is relevant for weekly 

pumped hydropower storages that are highly influenced by the occurrence and force of periods 

with high wind feed-in and respectively low electricity prices during these times. 

• In order to consider dependent prices between two quarter-hours this work suggests a multi-cut 

stochastic dual dynamic (MCSDDP) approach which leads to an even more conservative storage 

dispatch but lower revenues. 

• Furthermore, this thesis demonstrates that the positive effect of stochastic optimization on 

revenue and reservoir filling level adherence is significantly lower for pumped hydropower 

storage systems in comparison to hydropower storages without pumps.  

• Therefore, the work states that using linear models for the short-term dispatch of pumped 

hydropower storages is a reasonable simplification of the complex decision problem. This 

facilitates the consideration of other effects that were up to now too computationally expensive 

to model when using stochastic optimization.  

The next following market along the timeline is the intraday market. This market is getting more and more 

attention and the trading volume quintupled since 2011 (EPEX Spot, 2017b). Faria and Fleten (2011) 

provided research on this field of combining day-ahead and intraday markets. Nevertheless, they 

concluded that including intraday when bidding day-ahead does not increase profit or influence bids of 

storages significantly. The highly fluctuating intraday prices in Germany point to another direction and 

open up the research question, if separate bidding would lead to better results as coordinated bidding for 

pumped hydropower storages. 

• This work presents that the reason for the findings of Faria and Fleten (2011) is the specific market 

design with a very liquid hourly day-ahead market and an intraday market that is used to balance 

deviations that occurred after the day-ahead auctions. By means of this, the day-ahead market 

bidding should not be influenced by intraday market bidding. Vice versa, the day-ahead market 

results are the basis for the independent intraday optimization.  

• An intraday optimization approach is proposed in this thesis, based on the algorithm of Lu, Chow, 

and Desrochers (2004). The algorithm is extended towards grid charges, accounting for 

unavailabilities as well as non-monotonous prices (Braun & Hoffmann, 2016).  

• The advantage of the extended algorithm is a very short runtime. Based on extensive research 

and tests, this thesis addresses the continuous intraday markets decision problem with a 

continuously operating algorithm. The constantly occurring changes are therefore immediately 

considered and converted into bids.  

Pumped hydropower storages are often equipped with highly flexible pump and turbine machines. 

Therefore, it is important to consider balancing markets in the pumped hydropower storage scheduling 

decision as well. Comparing just the price fluctuations and the possible resulting profits, it could be 
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suggested to trade all electricity in the intraday or the balancing market rather than day-ahead. This is no 

practical solution because limited liquidity, power plant restrictions and the market structure are not 

considered. Therefore, the key research question is how much and for what price to bid the respective 

hydro storage power and capacity on the balancing markets.  

• A broad overview on the European balancing markets is given to get an understanding of the 

complexity in market design, pricing and product quality (Ocker, Braun, & Will, 2016).  

• This work shows the strong relationship between balancing and energy only markets. This means, 

before the balancing auction, it needs to be estimated what profit can be generated either in the 

balancing market or in a combination of all energy only markets, namely day-ahead and intraday 

markets, together. This is because the balancing auction results cannot be reversed, and 

capacities are not available any more.  

• This work formulates an integrated non-linear optimization approach that considers the intraday 

market and the frequency restoration reserve (also called secondary reserve); representatively 

for energy only and balancing markets respectively. This opens up the possibilities to exploiting 

optionalities across the markets in a most optimal way. 

• It is stressed that the resulting problem is non-linear and not solvable for real-world problems. A 

linearization and an extensive case study are presented (Braun & Burkhardt, 2015).  

1.2. Outline 

The overall research question of this work is how to optimize and trade pumped hydropower storages on 

short-term energy markets. To provide answers to this question, this thesis is structured into part A, B 

and C (see Figure 1). Part A is the introduction into the most important fields and topics that are relevant 

for this thesis. Part B presents methods, models and results and part C provides conclusion, future 

research questions as well as an outlook into flexibility demand in the future.  

In part A, three important presets are introduced: energy markets, hydropower storages and optimization 

methods. The first preset, energy markets, discussed in chapter 2, is required to take the decision on the 

relevant electricity markets and how to generate the income stream. This could be for example the hourly 

day-ahead auction but also a mix of intraday and balancing energy markets. As highlighted in orange in 

Figure 1, this work focuses on short-term energy markets rather than the futures market or other 

revenues such as black start capacity provision. The second preset deals with everything related to the 

physical hydropower storage itself and is presented in chapter 3. The wide range of hydropower storage 

types with miscellaneous characteristics and different technical possibilities is introduced. Furthermore, 

the various input parameters such as prices and inflows are defined. Beyond, special focus is on water 

values based bidding. The third preset includes the optimization methods needed for pumped 

hydropower optimizations. Depending on the application, separate mathematical problem formulations 

and optimization techniques are required and therefore presented in chapter 4, such as linear, non-linear, 

stochastic and dynamic programming.  

This triangle of presets is the foundation for the methodologies and results provided in part B. In an 

optimal, ideal world all energy markets and all storage types are solved with a superior optimization 
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technique providing an optimal solution, with arbitrary time resolution and within no time. This is not 

possible due to computational obstacles. Nevertheless, this work tries to get one step closer to this utopia. 

This means that chapter 5, 6, 7 and 8 cover the most important short-term income streams for pumped 

hydropower storages. Each chapter solves one or a combination of several energy markets and storage 

types with a selected optimization method. Therewith, chapter 5 provides a multi-market optimization 

approach considering day-ahead auctions. That means several auction-based markets with different time 

resolutions and price sensitivity characteristics can be considered and a case study for the German market 

is presented. Chapter 6 determines the value of stochastic optimization considering even a quarter-hourly 

time resolution. Special care has been taken considering stochastic price and inflow forecasts as well as 

analyzing systems with different reservoir sizes both in combination with and without pumps. Chapter 7 

demonstrates how the optimal day-ahead market production schedule can still be adopted during 

intraday trading, exploiting the very short-term flexibility. For the continuous intraday market also a 

continuously optimizing algorithm is developed. Chapter 8 deals with the complex multi-market problem 

of bidding into balancing as well as energy only markets. Due to the allocation within the markets and the 

balancing work and power price merit order sorting a non-linear optimization is formulated. The joint 

optimization fosters the decision on how much and for what price to bid on the different markets. 

Part C provides conclusion, future research and outlook of this thesis. Therefore, chapter 9 is the pivotal 

point, bringing together the solutions given in part B and drafts a guidance to approach the hydropower 

scheduling problem considering short-term electricity markets. A final overview on the optionalities and 

future research for the pumped hydropower storage scheduling problem considering various short-term 

markets is given. Further, chapter 10 gives an outlook, defining and estimating future flexibility demand, 

a possible pricing outside the thermal merit order and deriving consequences for pumped hydropower 

storages and the presented optimization tools.  
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Figure 1 Structure of the thesis  
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A. Energy Economics and Mathematical Foundations 

A widely used source of flexibility are pumped hydropower storages. The significant quantity of energy 

that can be stored, the good conversion efficiency and the flexibility of provision reason pumped 

hydropower as one of the most attractive option for large scale electricity storage and flexibility provision. 

Worldwide, as of 2017, it is reported that hydroelectric pumped storage accounts for over 96% of all active 

tracked storage installations worldwide, resulting in a capacity of 168 GW (DOE, 2017).  

Whereas pumped storages exist since more than 100 years the operation objective is changing due to 

new challenges of the liberalization and the RES penetration. Especially the increasing share of volatile 

RES from wind and sun are affecting the characteristics of market prices. To align with the new production 

mix new short-term energy markets with higher time resolutions and trading possibilities until shortly 

before delivery were introduced. This unveils great possibilities for flexible pumped hydropower storages 

but demands a rethinking of operation, optimization, forecasting and the dispatch itself.  

To approach these challenges part A lays the foundation introducing energy markets in chapter 2, 

hydropower plants in chapter 3 and mathematical optimization methods in chapter 4.  
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2. Short-Term Energy Markets 

With the liberalization in the late nineties and the beginning of the millennium countries around the globe 

as the United States, Argentina or the European Union introduced electricity markets to foster the 

transformation from a regulated and monopoly based supply of electricity into a system of competition. 

The benefits were seen in a more cost efficient, since increased competitive, as well as more transparent 

system with price signals and diversification of supply (OECD & IEA, 2005). With this development, a whole 

new field for business opportunities was born. Utilities, banks and other players forged trading units to 

participate in upcoming opportunities. That, furthermore, generated the demand for new research fields 

including market analyses, price forecasting, risk management and optimization models.  

Chapter 2.1 provides a summary of trading possibilities, the characteristics of electricity prices and the 

policy framework in Germany. Furthermore, chapter 2.2 introduces the day-ahead, 2.3 the intraday and 

2.4 the balancing power markets. For each market the key characteristics are given, an overview on the 

existing European market designs is presented and the corresponding German market including an 

overview on historic prices is explained in detail. 

2.1. Introduction 

2.1.1. Characteristics of Electricity Prices 

Whereas commodities such as copper, oil or gold can be easily shipped and stored and therefore 

internationally traded electricity is difficult to store and predominantly transportable via power grids 

(Burger, Klar, Müller, & Schindlmayr, 2004). This results in an increased complexity for electricity markets, 

prices as well as transmission and production planning. To understand these additional complexities, it is 

crucial to choose the right methods and models on all stages of the production chain.  

Therefore, prices on power markets follow some general rules which are explained below, based on the 

work of Jameson et. al. (1999) and Johnson and Barz (1999) with some extensions to bring it up to date: 

• Electricity prices have a tendency to oscillate around a long-term average, also called the mean 

reversion. This fluctuation is caused by the price inelastic, cyclical, mean-reverting nature of 

demand, limited grids and storages, the encyclical feed-in of wind-mills and PV and the cost 

structure of generation. 

• Time depending effects can be seen over the course of hours, days, weeks and even years. Each 

cyclical fluctuation has a defining frequency and magnitude that depends on the patterns of 

weather, economic activity, the regions generation structure, market coupling and transmission 

lines.  

• The volatility of the electricity price often increases with the price level. Generation is moved to 

the margin when their price level is reached. Higher price levels bring generation on their upper 
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limits and the next generation units are switched on. Due to massive RES feed-in, similar effects 

can be seen for very low-price levels when generation units are switched off.  

• Occasional price peaks occur in unusual load conditions or when important generation or 

transmission units suffer outages. In this case, inelastic demand meets a steep supply curve and 

prices can skyrocket for a short time.  

As mentioned, the general principle of electricity markets is that storage is limited but possible in for 

example pumped hydropower or battery storages. Strong volatility enables high returns for possible 

storages and thus storage is basically a question of costs. If unlimited capacity of storages with no cost 

would exist, the price for energy would be smoothed (Johnson & Barz, 1999, p. 11). Since storage is 

economically strained, the real-time prices must reflect the limited storage capacity. Furthermore, 

location and extension of transmission lines between grid territories influences the system costs. 

Effective models to forecast energy prices are essential for all subsequent processes. These include, just 

to mention the most important, structuring, pricing, trading, financial and physical risk management, 

contract valuation, operating policies for generation and transmission, expansion plans etc. Mistakes or 

inaccuracies influence all downstream processes and have severe effects for all market participants.  

Four types of price models can be accentuated from literature that model basic diffusion processes with 

and without jumps such as sudden, short-term and discontinuous price changes.  

• Brownian Motion    𝑑𝑃𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 

• Orstein-Uhlenbeck mean reversion 𝑑𝑃𝑡 = 𝜅(𝛼𝑡 − 𝑃𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡 

• Geometric Brownian motion  𝑑𝑃𝑡 = 𝜇𝑡𝑃𝑡𝑑𝑡 + 𝜎𝑃𝑡𝑑𝐵𝑡 

• Geometric mean reversion  𝑑𝑃𝑡 = 𝜅 (𝛼𝑡 +
𝜎2

2
− 𝐼𝑛𝑃𝑡)𝑃𝑡𝑑𝑡 + 𝜎𝑃𝑡𝑑𝐵𝑡 

As mentioned above all characteristics, mean reversion, time dependencies, volatility and price peaks are 

very important to model prices. Table 1 shows that just the geometric mean reversion is able to consider 

all features. Not considering one of these key aspects leads to unrealistic results. For example, calculating 

the value of a peak load hydropower storage plant without price peaks is a substantial undervaluation. 

Additionally, the geometric mean reversion with jump process shows the best log-likelihood values in the 

short-term (1h) but is outperformed by the geometric mean reversion without jump process in the long-

term (1 day to 1 week) (Johnson & Barz, 1999). Other popular approaches for price scenario generation 

are based on econometric time series models, such as GARCH (Faria & Fleten, 2011) and ARIMA (Plazas, 

Conejo, & Prieto, 2005) or use machine learning methodologies for example neuronal networks.  
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Table 1 Comparison of models for energy price modulation (Johnson & Barz, 1999) 

models 
Brownian 

motion 
Orstein-Uhlenbeck 

mean reversion 
Geometric 

Brownian motion 
Geometric mean 

reversion 

mean reversion  x  x 

time depending 
effects 

x x x x 

volatility   x x 

occasional price 
spikes 

 x  x 

2.1.2. Trading on Electricity Markets 

Market Pools and Bilateral Contracts 

Generally, two ways of trading electricity are available: market pools and bilateral contracts, see Figure 2. 

Market pools, the predominant way of trading, are centralized marketplaces where market participants 

merchandize. The markets are managed by a private enterprise or an independent system operator (ISO) 

that clears the market, maintains reliability and controls the interconnector capacities. All market 

participants submit quantity-price pairwise bids they are willing to sell or buy for. The operator ranks and 

matches the buying and selling offers for every bidding period so that the lowest price of the selling offer 

and the buying offer with the highest price are matched (Ott, 2003). The market clearing price (MCP) is 

either based on uniform pricing or pay-as-bid. In case of a uniform pricing auction every buyer receives, 

and seller delivers the energy at the same MCP. In case of pay-as-bid, the individual bidding price is paid 

to the bidder when allocated (Li, Shi, & Qu, 2011).  

 

 

Figure 2 Market pools and bilateral contracts 
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bilateral contracts
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Whereas market pools are based on trading standardized products as efficient as possible; bilateral 

contracts are traded over-the-counter and are flexible in terms of participants, clearing mechanism and 

products. In this case, the traded contracts can be off-standard, long-term, non-liquid or peculiarly 

complex. The valuation and trading of such products is normally more time consuming and expensive. 

This work focuses on market pools referred as energy markets. If the term trading is used during this work, 

this always denotes the consideration of an underlying market. In chapter 2.2 to 2.4 the relevant energy 

markets for the short-term are introduced.  

Merit Order Effect 

Spot markets are the corner stone of liberalized energy markets. Various different forms of market 

designs, market clearing mechanisms and products exist. All spot markets have the characteristic price 

formation in common that can be explained with the merit order effect. In the merit order the available 

power plants line-up with their different variable costs, power plants with low variable costs in the 

beginning the ones with higher variable costs at the end of the merit order. Power plant operators have 

the incentive to bid their marginal costs as long as more power plant capacity is available as needed to 

meet the demand. According to several studies, the production capacity in Germany as well as Europe is 

sufficient to meet the electricity demand now and in the near future, even during the annual peak demand 

(BMWi, 2016a; ENTSO-E, 2017c). Furthermore, the grid capacity in Germany, including a cross border 

capacity of about 20 GW to the neighbor states, is sufficient, so that the produced energy can be 

transported to the consumers. This means that the MCP is highly correlated with the marginal costs of 

the last power plant that is in the money (Ockenfels, Grimm, & Zoettl, 2008, p. 70). The interception of 

the inflexible demand with the merit order defines the MCP.  

Figure 3 presents a classic merit order constellation with a major share of thermal power plants. All power 

plants with marginal costs below the MCP are needed to meet the demand. Whereas the price sensitivity 

of the demand is very inelastic the demand itself varies strongly and the respective point of intersection 

is shifted right or left. Consequently, the MCP shows a significant volatility. The difference between 

marginal costs and MCP is the producer surplus which is used to pay-off the fix costs, such as investment, 

labor and maintenance costs (Nicolosi & Fürsch, 2009; Ockenfels et al., 2008).  
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Figure 3 Exemplary merit order with limited RES 

 

In the recent years, the electricity market in Germany changed due to a now 29% RES share in gross 

electricity production in 2016 (AGEB, 2017, p.28) which is constantly increasing. RES replaces the former 

thermal production. Depending on the EEG-remuneration regime this is due to an unlimited priority feed-

in laid down in § 11 of the RES-Act, or, if the direct marketing regime holds, due to the variable costs close 

to zero (Gestz zur grundlegenden Reform des Erneuerbare-Energien-Gesetzs und zur Änderung weiterer 

Bestimmungen des Energiewirtschaftsrechts, 2014). That means the high investment and maintenance 

costs are neglected in the short-term dispatch decision and RES enqueue right at the beginning of the 

merit order. With an unaltered demand, the MCP of the new merit order is below the one without RES, 

see Figure 4. This results in significantly reduced full load hours of all conventional power plants that are 

at least partly pushed out of the money as well as a significantly lower producer surplus for the power 

plants in the money (Nicolosi & Fürsch, 2009). Hitherto and even more in the future, the RES are shaping 

the spot price structure.  
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Figure 4 Merit order with significant RES 

 

With the increasing installation of solar and wind power capacity the number of hours during the year 

increases in which the residual load is low enough that even base load, such as nuclear or run-of-river 

power plants, need to reduce their production. The residual load is defined as the load minus the weather-

dependent production of wind and solar power. Reasonably, the high start-up costs and the limited load 

change rate are determining the price structure of the respective power plant bids for the hours during 

as well as before and after such an event. Often a negative contribution margin is accepted in a few hours 

to minimize the overall costs. This could result in short-term negative price bids which are allowed on 

EPEX Spot since 2008 (EPEX Spot, 2017b). Even in these situations the merit order based pricing works 

and ensures an optimal allocation of resources (Brunner, 2014a; Götz, Henkel, Lenck, & Lenz, 2014; 

Nicolosi & Fürsch, 2009). Deep negative prices are furthermore an effect of the RES support regime in 

Germany, since the point of switch-off is not at zero but just when the absolute of the negative price is 

higher as the EEG-remuneration of the respective RES. The remuneration of RES varies strongly; 40-

200 €/MWh for wind power, 80-500 €/MWh for PV and 130-170 €/MWh for biomass (Gesetz für den 

Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz-EEG), 2000; Gesetz für den Vorrang 

Erneuerbarer Energien (Erneuerbare-Energien-Gesetz-EEG), 2017).  

Structure of Short-Term Electricity Markets 

The electricity markets introduced during the liberalization are: derivatives, day-ahead, intraday and 

balancing markets, Figure 5. On the derivatives or futures market, yearly, quarterly and monthly products 

are offered to be traded already years before delivery. Also, weeks, weekends and days can be traded on 

the derivatives market whereas not all products can be traded liquidly at all times. This market is followed 

in time by balancing and day-ahead markets. The auctioning of balancing power and energy does not 

follow a uniform market design. The day-ahead market contains hourly, rarer half- and even quarter-

hourly products that are allocated in a unified pricing auction taking place one day-ahead of delivery. A 

few years after the introduction of derivative and day-ahead markets also intraday markets were 
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established with hourly and in some countries half- and quarter-hourly trading products. One main 

difference to the day-ahead market is the widespread continuous pay-as-bid trading until a certain time 

before physical delivery. The day-ahead and the intraday market are designated as spot markets.  

 

 

Figure 5 Overview over German power markets for standard trading products 

 

Electricity markets are the link between producer, retailer and consumer. Market participants are utilities, 

sizable end-consumers, trading houses and local municipal utilities. Nearly all European countries have 

implemented spot markets consisting of a day-ahead and an intraday market by now. The task of politics 

is to improve the existing market designs permanently to enable even higher shares of generation from 

weather driven RES as cost efficient as possible and without risking security of supply.  

2.2. Day-Ahead Markets 

Day-ahead markets are the corner stone of the European market liberalization. Nearly all European 

countries have implemented day-ahead markets using an auction-based market design in which 

producers and sellers trade electricity.  

Therefore, day-ahead markets have by far the highest turnover in terms of electricity traded of all spot 

markets (EPEX Spot, 2017b). It is important to note that day-ahead markets are sometimes misleadingly 

referred as sport markets. Nevertheless, spot markets are an umbrella term for day-ahead and intraday 

markets. The latter is discussed in chapter 2.3. 

Today energy markets are expounded to the influence of variable RES. This includes especially the trading 

strategy for unbalanced day-ahead schedules of the RES solar and wind as well as ramps of inflexible 

thermal power plants. In the first part of this chapter the general auction design and key characteristics 

of day-ahead markets are presented including an overview over the existing European day-ahead market 

landscape. Thereafter, the German day-ahead markets are discussed including a historic recap of the 

prices in the last years. To sketch the specialties of and differences between short-term power markets 

the price level and the dissimilar trading volumes of the hourly and quarter-hourly day-ahead markets are 

analyzed.  
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2.2.1. Market Design 

All European day-ahead markets are based on a similar market framework in which electricity is allocated 

within multiple buyers and sellers in a uniform pricing auction (Weron, 2006a). That means, the same 

price is paid for a fixed allocated number of identical units of a homogenous commodity, here electricity. 

Uniform pricing auctions are also known as one shot auctions or clearing price auctions. Every market 

participant submits a quantity in MW and a respective price per unit, in €/MWh, the buyer is willing to 

pay. The bids are normally submitted sealed to the auctioneer and are not available for the other market 

participants. The auctioneer, for example the EPEX SPOT SE, allocates beginning at the highest bidder until 

the supply is met. The residual MCP is the same for every bid. The auction design can be seen as an 

example in which the MCP mechanism is used to establish a benchmark price index for other energy 

markets. Technical analysis of this auction type (Krishna, 2009) as well as reviews on optimal spot market 

bidding are available (Baillo, Ventosa, Rivier, & Ramos, 2004; Kristoffersen & Fleten, 2010). 

The key differences throughout Europe, including the shares of variable RES and the existing short-term 

trading possibilities, can be see for day-ahead markets in Table 2. Most exchanges offer hours and blocks 

of several hours to be traded. The EPEX Spot allows half-hourly trading for the UK. Germany and Austria 

offer the possibility to trade quarter-hours as well, whereas Germany performs two auctions and Austria 

clears both hourly and quarter-hourly markets at once. The Polish market TGE prepares also two day-

ahead auctions and additionally provides a continuous trading possibility (TGE, 2017). Nevertheless, the 

influence of the increased share of RES and thus the need for more flexible market designs and products 

comes much more to the fore in the intraday and balancing power markets rather the day-ahead market. 

This explains why their market designs vary much stronger to align with the respective regulatory 

environment.  

 

Table 2 Empirical analysis of European day-ahead spot markets. Data retrieved from the energy 
exchange operators: (EPEX Spot, 2017b), (Belpex, 2017), (Nord Pool, 2017), (Hupx, 2017), (GME, 2017), 
(APX, 2017), (TGE, 2017), (OMIE, 2017), (Opcom, 2017), (South Pool, 2017), (EXAA, 2017), (PXE, 2017) 

country 
solar 

energy 
sources 

wind 
energy 
sources 

day-ahead market 

design and 
pricing rules 

trading products main market place 

Austria 1% 6% 

MUP auction 

quarters, hours, blocks EXAA, EPEX Spot 

Belgium 0% 6% 

hours, blocks 

EPEX Spot, Belpex 

Czech Republic 4% 1% PXE 

Denmark 2% 43% 

Nord Pool Estonia 0% 9% 

Finland 0% 1% 

France 1% 4% EPEX Spot 

Germany 7% 11% quarters, hours, blocks EXAA, EPEX Spot 

Hungary 0% 2% 

hours, blocks 

HUPX 

Italy 8% 5% GME 

Latvia 0% 2% 
Nord Pool 

Lithuania 1% 7% 

The Netherlands 0% 5% EPEX Spot, APX 

Norway 0% 2% Nord Pool 

Portugal 1% 27% OMIE 

Romania 3% 14% OPCOM 
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country 
solar 

energy 
sources 

wind 
energy 
sources 

day-ahead market 

design and 
pricing rules 

trading products main market place 

Slovenia 0% 0% South Pool 

Spain 6% 22% OMIE 

Sweden 0% 9% Nord Pool 

Poland 0% 6% 
MUP auction, 

continuous PaB 
TGE 

United Kingdom 0% 9% MUP auction halves, hours, blocks Nord Pool, EPEX Spot 

Abbreviations: MUP=marginal uniform pricing 

2.2.2. German Hourly Day-Ahead Auction 

For the German market region bids for hours and blocks of variable length can be handed in at the EPEX 

Spot until 12 pm and the results are published 40 min later (EPEX Spot, 2017b). The minimum trading 

volume is 0.1 MW and -500 €/MWh to 3000 €/MWh define the allowed price range. The intersection 

between the cumulated bid and ask curve marks the MCP which is decisive for all market participants.  

Trading Volume 

The hourly day-ahead auction is the predominant short-term energy market in Germany that accounts for 

more than 85% of the short-term traded energy, see Figure 6. Each quarter-hourly market accounts for 

less than 5% of the overall short-term market trading. As the largest physical spot market in terms of 

trading volume many financial products settle on this physical electricity price (Phelix) which is the average 

of all traded hours and blocks for one hour (EPEX Spot, 2017b).  

 

Figure 6 Market volumes of the short-term energy markets in Germany. Data derived from (EPEX Spot, 

2017b) 
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Historic Market Prices 

In Figure 7 the average historic hourly day-ahead prices since the year 2000 are depicted and reveal 

significant price changes over the recent years. This is especially interesting since it unveils how market 

prices have been influenced in history by changes of the environment conditions.  

Whereas the young day-ahead market in the early stages between 2000 and 2004 (green lines) had been 

determined by a low-price level and flat curves. In the years 2005 until 2008 the day-ahead prices spiked 

especially during midday and the evening (blue lines). The high price level did not last for long. 

Investments in new production capacities, the financial crisis in 2009 and the reduced energy demand 

provoke a turnaround of the always rising energy prices. Since 2008 a reduction of the price level can be 

seen (blue, then red and later yellow lines). A drop of coal prices after mid 2008 forced the price reduction 

even further (Schernikau, 2017).  

The installation of solar power in Germany form 2006 on, including especially the boom years 2010, 2011 

and 2012, had a strong influence on the shapings (BNetzA, 2017). Until 2009 the daily price peak was 

between 11 and 12 o’clock. But with the increased solar power based production this peak diminished 

over the course of the years. It is not uncommon that on sunny days the prices over midday drop below 

the night prices. Today especially the low commodity prices (Schernikau, 2017) and the overcapacities 

due to the installation of promoted RES pressure the market prices.  

 

Figure 7 Average German hourly day-ahead market prices for the 16 historic years. Data derived from 
(EPEX Spot, 2017b) 
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The standard deviation of the last sixteen years of the hourly day-ahead auction is illustrated in Figure 8. 

Similar effects as for the absolute market price can be seen. In the beginning the standard deviation was 

relatively low but increased quickly and resulted in 2005 and 2009 in two peak years. Even clearer is the 

sudden change from 2010 on due to the installation of solar power. The highly volatile prices during 

midday diminished entirely. The time since 2010 is characterized by low standard deviations, despite the 

variable RES boom or the nuclear power plant shutdowns after the maximum credible accident in 

Fukushima.  

 

Figure 8 Average German hourly day-ahead market prices standard deviation for the 16 historic years. 
Data derived from (EPEX Spot, 2017b) 
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based on marginal uniform pricing, also called clearing price auction (EPEX Spot, 2017b). For a technical 

analysis of this auction type the interested reader is referred to (Krishna, 2009).  

However, the main advantages of the quarter-hourly day-ahead auction in comparison to the continuous 

intraday trading are the bundling of liquidity during regular office hours (Hagemann & Weber, 2013). 

Therewith, the new day-ahead auction is especially beneficial for smaller market participants since it gives 

the possibility to trade all 96 quarters of the next day without providing around the clock shifts for 

continuous trading. Furthermore, the concentration of market volume at a certain point in time enables 

higher market liquidity compared to continuous intraday trading. Sufficient liquidity is a key for economic 

welfare, goal of many market reforms (Amihud, 2002) and increases the overall market efficiency. 

Volume 

With the introduction of the quarter-hourly day-ahead auction in December 2014 the overall day-ahead 

trading volume increased considerably, whereas the trading volume of the continuous quarter-hourly 

intraday market decreased in the first following months, see Figure 9. The trend of increasing quarterly 

trading volume stopped in mid-2015. The trading volume for both quarter-hourly markets during the 

second half year of 2015 stagnated at about 0.3 to 0.4 TWh per month. This can be converted to an 

average trading turnover of about 500 MW for each quarter-hourly product which seems sparsely in 

comparison to approximately 28,000 MW for the hourly day-ahead market. 

 

 

Figure 9 Market volume of the quarter-hourly day-ahead auction and the quarter-hourly intraday 

countinuous market. Data derived from (EPEX Spot, 2017b) 
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Historic Market Prices 

Figure 10 presents the fluctuating prices of the quarter-hourly day-ahead market (grey line) in comparison 

to the hourly day-ahead market (black dotted line) for the course of the average day of the year 2015. It 

can be seen that in some times of the day the quarter-hourly price oscillates more as in others.  

 

Figure 10 Average hourly and quarter-hourly day-ahead MCP over the course of the day for Germany in 
2015. Date derived from (EPEX Spot, 2017b) 
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Despite these intense fluctuations of the quarter-hourly market prices the average price levels of all short-

term energy markets are nearly identical (EPEX Spot, 2017b) and can be assumed to be arbitrage free 
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Figure 11 Quarter-hourly day-ahead auction price analyzation: spread between the highest and the 
lowest volume weighted average quarter-hourly intraday price within one hour (VWAPS). Data derived 

from (EPEX Spot, 2017b) 

2.3. Intraday Markets 

Intraday markets are short-term electricity markets which cover the time span between day-ahead 
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cannot be balanced at all time. A plant outage right after the auction would mean to wait until the next 

auction or in case it was the last auction before delivery to stay unbalanced.  

Comparing, the continuous intraday provides an around the clock trading possibility. Bids and asks are 

listed in an order book for each product. If supply and demand orders have the same price and size the 

orders are executed. Every submitted and executed order needs to be delivered. Continuous trading has 

the great advantage that every market participant may balance unplanned deviations whenever they 

occur. All other market participants have the possibility to actively manage their power plants as real 

options in the intraday with the possibility but not the obligation to adopt planned production, if the prices 

change. 

Nearly all European countries have implemented intraday markets by now. Table 3 presents an overview 

over European intraday markets including some important market and regulatory characteristics as the 

last possible trading before delivery, the already mentioned design and pricing rule as well as the 

respective market place. Furthermore, the share of the variable RES solar and wind are prepared to show 

the link between market design and production mix. Politics is driven to improve the existing market 

designs to enable more and more weather driven RES feed-in as cost efficient as possible and without 

risking security of supply. It can be assumed that the more RES are installed the more flexible the market 

design. For example, the gate closure time and the last possible trading before delivery varies strongly 

from 180 min in Poland (TGE, 2017) with a major share of hard coal fired power plants and 5 min in the 

Netherlands and Belgium (Belpex, 2017) with higher cross-border exchanges and an increasing 

importance of wind power.  

The continuous intraday market design with a pay as bid pricing rule is predominant in Europe; whereas 

Italy, Spain and Portugal, as already mentioned, implemented marginal unified pricing auctions during the 

intraday. Most markets are organized by EPEX Spot, Nord Pool or a corporation with one of these two 

energy exchanges.  

 

Table 3 Empirical analysis of European intraday markets. Data retrieved from the energy exchange 
operators (APX, 2017; Belpex, 2017; EPEX Spot, 2017b; EXAA, 2017; GME, 2017; Hupx, 2017; Nord Pool, 

2017; OMIE, 2017; Opcom, 2017; PXE, 2017; South Pool, 2017; TGE, 2017) 

country 
solar 

energy 
sources 

wind 
energy 
sources 

intraday market 

last possible trading 
before delivery 

design and 
pricing rules 

trading products 
main market 

place 

Austria 1% 6% 30min continuous 
PaB 

quarters, halves, 
hours, blocks 

EPEX Spot, 
EXAA 

Belgium 0% 6% 5min hours, blocks Belpex 

Czech Republic 4% 1% n/a n/a n/a n/a 

Denmark 0% 43% 

60min 

continuous 
PaB 

hours, blocks 
Nord Pool Estonia 0% 9% 

Finland 0% 1% 

France 1% 4% 30min 

EPEX Spot 
Germany 7% 11% 

30min, 0min within 
own balancing group 

quarters, halves, 
hours, blocks 

Hungary 0% 2% 120min HUPX 

Italy 8% 5% 250min MUP auction hours, blocks GME 
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country 
solar 

energy 
sources 

wind 
energy 
sources 

intraday market 

last possible trading 
before delivery 

design and 
pricing rules 

trading products 
main market 

place 

Latvia 0% 2% 
60min 

continuous 
PaB 

Nord Pool 
Lithuania 1% 7% 

Norway 0% 2% 60min Nord Pool 

Poland 0% 6% 3hours TGE 

Portugal 1% 27% 195min MUP auction OMIE 

Romania 3% 14% 90min 
continuous 

PaB 

OPCOM 

Slovenia 0% 0% 60min 
quarters, hours, 

blocks 
South Pool 

Spain 0% 6% 195min MUP auction 

hours, blocks 

OMIE 

Sweden 0% 9% 60min 
continuous 

PaB 

Nord Pool 

The Netherlands 0% 5% 5min APX Power NL 

United Kingdom 0% 9% 75min; APX Power UK 

Abbreviations: MUP=marginal uniform pricing, PaB=pay as bid 

2.3.2. German Intraday Continuous 

The German intraday continuous market, enforced by the energy act of 2005, started in September 2006 

at the power exchange EPEX Spot. The continuous market is based on closed order book pay-as-bid trading 

in which the market participants offer a quantity in MW and a respective price they either want to buy or 

sell for. Such a quantity price pair is called an order. Every order entered during continuous trading does 

immediately fill the order book. Every such order remains in the order book until the order is deleted, 

executed or the trading time is exhausted. Two orders are executed when a sell and a buy order have the 

same price and quantity; the orders are filled. As underlying periods, hours, half-hours, quarter-hours and 

blocks of hours can be traded. Orders can be executed partly with the smallest allowed quantity of 0.1 MW 

within a price range of -9,999 € and +9,999 €. The duration of continuous trading is limited to a timeframe 

between opening and closing of trading. Hourly trading starts at 3pm on the day before delivery, followed 

by the quarter-hourly trading that starts at 4pm for the following day, see Figure 12. Each product can be 

traded until 30 minutes before delivery begins and until 0 minutes before delivery in the own grid control 

area. The trading takes place at 7 days a week and 24 hours a day. There are no breaks during continuous 

trading.  

Furthermore, EPEX Spot enacted some guidelines to limit high-frequency atomized trading, as for example 

with a maximum number of bids entered without being executed. Machines that trade following 

algorithmic based logics are present on the market since a few years. Nevertheless, it needs to be 

mentioned that the trading on energy markets cannot be compared with the high-frequency stock or 

currency trading.  

Instead of activating balancing energy when deviating from the planned schedule, market participants 

trade missing or surplus electricity due to load deviations, power plant outages and RES forecast changes 

into the continuous intraday market. Along with savings for the single market participants also the 

balancing demand and in consequence also the balancing prices decreased significantly with the 

introduction of intraday markets.  
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Figure 12 Illustration of the continuous intraday trading in Germany 

 

As graphically presented in Figure 12, the trading activity increases strongly towards the end of the trading 

period. The clear majority of trading takes place in the last hours before gate closure. This is reasonable 

since market participants have to close their open positions until the end of the trading period. During the 

trading period the price of one and the same product can vary strongly. In Figure 13 and Figure 14 the 

average price spread between the highest and the lowest price paid for one hour or quarter-hour over 

the whole trading period is illustrated for the year 2015. In 24 % of the hours the difference between the 

highest and the lowest price paid for one and the same hour was more than 20 €/MWh. This was the case 

for more than 75 % of the quarter-hours. In 18 % of the quarter-hours the spread was higher than 

40 €/MWh. The fluctuations increase the optional value of flexible assets during the intraday.  

 

 

Figure 13 Hourly intraday continuous price analyzation: spread between the highest and the lowest 
price traded for one and the same product over the course of the whole trading period (intraday high- 

intraday low). Data derived from (EPEX Spot, 2017b) 
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Figure 14 Quarter-hourly intraday continuous price analyzation: spread between the highest and the 
lowest price traded for one and the same product over the course of the whole trading period (intraday 

high- intraday low). Data derived from (EPEX Spot, 2017b) 

 

A continuous source for intraday trading demand are variable RES. Solar power can be forecasted 

relatively good and is therefore traded for the most part already into the quarter-hourly day-ahead 

market. Although, for example dissolving mist, which is always a challenge for meteorologists, can result 

in significant solar power intraday trading. In contrast, a schedule precise wind forecast for the next day 
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point in time when the wind blows is much more difficult to foresee. Therefore, the intraday market is 
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formed. During the intraday this is, for example, the case when a low-pressure area with strong wind is 

passing over Germany. The resulting price spread for one hour can be significant. Figure 15 demonstrates 
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hour. This means that in more than 20 % of the hours the price spread between the first and the last 
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Figure 15 Quarter-hourly intraday continuous price analyzation: spread between the highest and the 
lowest volume weighted average quarter-hourly intraday price within one hour (VWAPS). Data derived 

from (EPEX Spot, 2017b) 

2.4. Balancing Energy Markets 

A secure operation of electric devices requires a constant net frequency in alternating current (AC). If too 

much (little) energy is supplied to the energy grid, the net frequency will rise (drop). Hence, energy supply 

and demand need to be balanced permanently. Since energy can neither be saved easily nor cheaply, 

there is a necessity for an ancillary service – the so-called balancing power. If the frequency drops (rises) 

positive (negative) balancing power is needed, e.g. by increasing (decreasing) the load level of a power 

plant.  

2.4.1. Market Design  
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Due to the growing use of renewable energy sources the European electricity markets face tremendous 
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in Europe (ENTSO-E, 2017a), since the increasing volatility on the production side will require additional 

flexible products (Fraunhofer IWES, 2015). A unified European electricity market is supposed to lead to a 
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Network of Transmission System Operators for Electricity (ENTSO-E) and with the size of the synchronized 

area the costs for every single participant is supposed to decrease.  

For the harmonization, the ENTSO-E discerns three “qualities” of balancing power (“three-quality 

pattern”), namely the Frequency Containment Reserve (FCR), the Frequency Restoration Reserve (FRR) 

and the Replacement Reserve (RR) (ENTSO-E, 2013). First, FCR is used to limit deviations from the 

frequency, then automatically-activated FRR is utilized to restore the frequency. This is replaced by a 

manually-activated FRR and as a final measure RR is activated if required. All suppliers need to prequalify 

to participate in the double auction based on power bids (€/MW) for the provision itself and sometimes 

energy bids (€/MWh) if energy is activated.  

Below, an overview is given on the European balancing markets of the 24 ENTSO-E members based on 

Ocker, Braun and Will (2016). This includes a qualitative analysis of potential drivers for market designs. 

The information is qualitatively aggregated into tangible findings and illustrated through the use of 

specific market examples.  

European Balancing Power Markets Analysis 

The overview on the European balancing power markets is given in Table 4. As market designs vary 

considerably, minor simplifications of the real market structures were inevitable. Supplementary 

information is available by way of additional download material, linked to the paper Ocker, Braun and Will 

(2016).  

The European balancing power markets are analyzed along three categories: 

• energy only market characteristics 

• balancing power market characteristics and  

• auction characteristics 

First, general power market characteristics have strong implications on the ancillary services market 

designs. Historically, the key driver for the power market design is the underlying electricity mix. 

Therefore, share of gross electricity consumption served from variable RES, namely production from wind 

and photovoltaics, is reported in Table 4. The variable RES-share, given as the ratio between net electricity 

produced from wind and solar power and the electrical energy available for consumption, is used as an 

indicator for this increasing volatility, which can have a significant impact on required balancing power 

and implications for the design of these markets (Bevrani, Ghosh, & Ledwich, 2010; Stadler, 2008). As the 

necessity for a flexible adjustment of production levels is sometimes known in advance, most countries 

implemented short-term trading options such as intraday markets. Intraday markets allow load serving 

entities to avoid balancing activities by trading for delivery on the same day. The latest time before 

physical delivery on the primary power market when an intraday market trading option is still available is 

reported in Table 4, in order to investigate a possible impact on the design of balancing markets (ENTSO-

E, 2015). Cross border trading is not considered.  

Secondly, balancing market characteristics describe the implementation of each balancing power market 

quality whereas the focus is on FCR as well automatically- and manually-activated FRR. First, it is examined 

whether these three qualities are applied or if certain market qualities are non-existent. If existent, for 
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each market quality whether the provision of balancing power is a compulsory service or is procured with 

the help of an auction. In case of the latter, the bid elements (power and/or energy bid) are presented 

and whether positive and negative balancing power are distinguished. Furthermore, the auction 

frequency (yearly, monthly, weekly, daily) as well as the activation strategy (merit-order or pro-

ratio/parallel) are discussed. Lastly, the number of delivery time slices, their duration (e.g. 24x1h for a 

daily procurement) and the minimum power offer are stated, since these are fundamental to assess a 

particular market’s flexibility. 

Finally, auction characteristics in Table 4 discuss pricing and scoring rules of the respective markets. 

Pricing options are uniform pricing, pay-as-bid or a combination of these. The scoring rule describes how 

the winners of the auction are determined. Both rules have significant impact on the bidding behavior of 

suppliers (Ocker, Belica, Ehrhart, & Karl-Martin, 2016).  

 

Table 4 Empirical analysis of European balancing power markets. For supplementary information on the 
sources for this table please refer to the following document: (Ocker et al., 2016) 

 
power market 
characteristics 

balancing power market characteristics 
auction 

characteristics 

country 
variable 

RES share 
(2014) 

latest 
possible 
trading  

FCR 
(automatic) 

FRR 
(automatic) 

FRR 
(manually) 

pricing 
rule 

scoring 
rule 

Austria 7.3% 30min 
PB; s; w;  

m.-o.; 1x168h; 
1MW 

PB&EB; ; w;  
m.-o.; Mo-Fr 

8am-8pm, 
rest; 5MW 

PB&EB; ; w;  
m.-o.; 42x4h; 

5MW 

PaB 
lowest 

PBs 

Belgium 9.2% 5min 

TP; ; m;  
n/a.; base, 

peak, offpeak; 
1MW 

PB&EB; ; m;  
m.-o.; base, 

peak, offpeak; 
5MW 

PB&EB; ; y;  
n/a.; base, 

peak, offpeak; 
5MW 

PaB SP 

Czech 
Republic 

4.4% 
Day-

ahead 

PB; s; d;  
n/a; 24x1h; 

n/a 

PB; ; d;  
p; 24x1h; n/a 

PB; s; d;  
m.-o.; 24x1h; 

n/a 

UP 
lowest 

PBs 

Denmark 
(DK1/DK2) 

44.7% 60min 
PB; ; d;  

n/a; 6x4h; 
0,3MW 

PB; s; m;  
p.; 24x1h; 

0,3MW 

PB&EB; ; d;  
n/a; 24x1h; 

10MW 

UP 
(DK1), 

PaB&UP 
(DK2) 

n/a 

Estonia 8.7% 60min 
provided by  
russian TSO 

TP; n/a; n/a;  
m.-o.; 24x1h; 

5MW 

TP; ; n/a;  
n/a; 24x1h; 

5MW 

PaB n/a 

Finland 1.4% 60min 
n/a; s; n/a;  
n/a; 24x1h; 

1MW 

EB; ; n/a;  
p; 24x1h; 

10MW 

non-existent UP n/a 

France 5.6% 30min 
compulsory,  

regulated 
prices 

compulsory,  
regulated 

prices 

TP; ; y;  
m.-o.; n/a; 

10MW 

PaB n/a 

Germany 18.2% 30min 
PB; s; w;  

m.-o.; 1x168h; 
1MW 

PB&EB; ; w;  
m.-o.; Mo-Fr 

8am-8pm, 
rest; 5MW 

PB&EB; ; d;  
m.-o.; 6x4h; 

5MW 

PaB 
lowest 

PBs 
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power market 
characteristics 

balancing power market characteristics 
auction 

characteristics 

country 
variable 

RES share 
(2014) 

latest 
possible 
trading  

FCR 
(automatic) 

FRR 
(automatic) 

FRR 
(manually) 

pricing 
rule 

scoring 
rule 

Hungary 1.9% 120min 
PB; ; n/a;  
n/a; 24x1h; 

n/a 

PB&EB; ; n/a;  
m.-o.; 24x1h; 

n/a 

PB&EB; ; 
n/a;  

m.-o.; 24x1h; 
n/a 

PaB n/a 

Iceland 0.0% 
Day-

ahead 

TP; s; w;  
m.-o.; 24x1h; 

1MW 

TP; s; w;  
m.-o.; 24x1h; 

1MW 

TP; ; w;  
m.-o.; 24x1h; 

1MW 

UP lowest TPs 

Italy 13.1% 250min 
compulsory,  

regulated 
prices 

EB; s; d;  
p; 24x1h; 

1MW 

EB; s; d;  
m.-o.; 24x1h; 

1MW 

PaB n/a 

Latvia 2.1% 60min 
provided by  
russian TSO 

manual: n/a; 

; n/a;  
 m.-o.; 24x1h; 

n/a 

non-existent n/a n/a 

Lithuania 13.7% 60min 
provided by  
russian TSO 

manual: TP; 
n/a; d;  

m.-o.; 24x1h; 
5MW 

TP; n/a; d;  
m.-o.; 24x1h; 

5MW 

UP lowest TPs 

The 
Netherlands 

6.4% 5min 
PB; s; w;  

m.-o.; 1x168h; 
1MW 

PB&EB; ; d/y;  
m.-o.; n/a; 

4MW 

PB&EB; ; 
d/y;  

m.-o.; n/a; 
20MW 

PaB & 
UP 

lowest 
PBs (FCR), 

n/a 

Norway 2.0% 60min 
PB; s/; d/w;  
n/a; 24x1h; 

1MW 

PB&EB; ; w;  
p; n/a; 1MW 

non-existent UP n/a 

Poland 6.0% 180min 
EB; ; n/a;  
n/a; 24x1h; 

n/a 

EB; ; n/a;  
n/a; 24x1h; 

n/a 

EB; ; n/a;  
m.-o.; 24x1h; 

n/a 

UP SP 

Portugal 27.9% 195min 
compulsory,  

no 
compensation 

PB; ; d;  
p; 24x1h; n/a 

PB&EB; ; d;  
m.-o.; 24x1h; 

n/a 

UP 
lowest 

PBs 

Romania 18.4% 90min 
compulsory,  

no 
compensation  

TP; ; d;  
m.-o.; 24x1h; 

n/a 

TP; ; d;  
m.-o.; 24x1h; 

n/a 

UP lowest TPs 

Slovenia 2.1% 60min 
compulsory,  

no 
compensation 

PB&EB; n/a; y;  
p; 24x1h; n/a 

PB&EB; n/a; y;  
m.-o.; 24x1h; 

n/a 

PaB n/a 

Spain 28.3% 195min 
compulsory,  

no 
compensation 

PB; ; d;  
p; 24x1h; n/a 

PB&EB; ; d;  
m.-o.; 24x1h; 

n/a 

UP 
lowest 

PBs 

Sweden 9.2% 60min 
PB&EB; s; d/w;  

n/a; 24x1h; 
n/a 

PB&EB; ; w;  
p; n/a; n/a 

non-existent PaB  n/a 

Switzerland 1.6% 60min 
PB; s; w;  

m.-o.; 1x168h; 
1MW 

PB; s; w;  
p.; n/a; 5MW 

PB; ; w;  
m.-o.; 6x4h; 

1MW 

PaB 
lowest 

PBs  

Serbia 0,0% 
Day-

ahead 
non-existent 

TP; ; d;  
p; 24x1h; n/a 

TP; ; d;  
n/a; 24x1h; 

n/a 

UP lowest TPs 



 

43 

 

 
power market 
characteristics 

balancing power market characteristics 
auction 

characteristics 

country 
variable 

RES share 
(2014) 

latest 
possible 
trading  

FCR 
(automatic) 

FRR 
(automatic) 

FRR 
(manually) 

pricing 
rule 

scoring 
rule 

United 
Kingdom 

11.9% 75min 
PB&EB; ; m;  

n/a; Mo-Fr, Sa, 
Su; 10MW 

PB&EB; ; m;  
n/a; Mo-Fr, 

Sa, Su ; 10MW 

PB&EB; s; m;  
n/a; Mo-Fr, 

Sa, Su; 50MW 

PaB n/a 

Abbreviations: manual=manual activation; PB=power bid and/or EB=energy bid or TP=total price; s=symmetric 

product (no distinction between positive and negative balancing energy) or ±=distinction between positive and 

negative balancing power; procurement: d=daily, w=weekly, m=monthly or y=yearly; m.-o.=merit-order activation 

of balancing energy or p=pro-ratio/parallel activation of balancing energy; 24x1h=24 one-hour time slices per day; 

5MW=minimum power offer is 5MW; PaB=Pay-as-Bid pricing or UP=Uniform pricing (for EB and/or PB); 

SP=Stochastic Programming or lowest PBs/TPs=lowest capacity bids/total prices are considered until balancing 

demand is met; n/a=parameter not available (e.g. not published) 

 

A wide range of gross electricity consumption served from variable RES among the 24 evaluated countries 

can be found, spanning from 0 % in Serbia and Iceland to almost 45 % in Denmark. In 21 countries, there 

are intraday trading options for electricity which, however, does not imply equal levels of flexibility. More 

than half of these countries have trading options of 60 min or less before delivery, whereas especially 

southern European countries such as Portugal, Spain and Italy can trade only up to 195 min before 

delivery. 19 countries apply the three-quality pattern introduced by the ENTSO-E. While automatically-

activated FRR is part of nearly every market, FCR and manually-activated FRR are not as abundantly used. 

Especially smaller countries often compel market players to supply FCR or even rely on larger neighboring 

countries for this service, such as Russia for the Baltic states. Both manual and automatic activation of 

balancing energy occurs.  

Regarding balancing power market design, nearly every constellation of power bid and/or energy bid is 

applied throughout the three qualities. 23 countries generally distinguish positive from negative balancing 

power, especially for automatically- and manually-activated FRR. One exemption is the FCR-cooperation 

between Austria, Germany, the Netherlands and Switzerland which procures FCR without the distinction 

of positive and negative balancing power (symmetric product). Only Italy is not at all distinguishing 

between the products. The frequency of balancing power procurement is highly diverse, ranging from a 

daily to a yearly auction. The activation strategy for balancing energy power on the other hand is almost 

consistent throughout the European markets: Merit-order activation is used mainly, merely a few 

countries activate pro-ratio/parallel. The number of time slices, their duration and the minimum size of 

the power offer vary greatly between the countries and balancing power qualities.  

With regard to the applied pricing rule, the picture is also incoherent: In ten countries uniform and in 

eleven countries pay-as-bid pricing is used. If uniform pricing is used for the procurement of balancing 

power, this price either depends on an exogenous market price or on the submitted energy bids of the 

suppliers. The scoring rule is either based on a total price for balancing power and energy, only on the 

price for balancing power or on a stochastic optimization program minimizing total costs. 

Furthermore, four key drivers for the current configurations of the balancing power markets are 

identified:  

• share of volatile RES,  
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• short-term flexibility,  

• market coupling and  

• inconsistency in auction characteristics.  

These key drivers are explained in detail below, since it can be assumed that a mayor change in these key 

factors may lead to a modification in market design as well.  

Share of Volatile Renewable Energy Sources 

Climate concerns and geopolitical circumstances lead to increased interest in power production from 

renewable sources such as wind and photovoltaics. In order to incentivize large scale investments in 

variable RES and generate economies of scale, subsidy programs were implemented in many European 

countries. These were largely successful but now raise questions on the integration of a more volatile 

production into an only recently liberalized market structure. Generally, integrating variable RES into the 

power system can have two opposing effects on the balancing market: On the one hand, more variable 

RES generally induce higher production fluctuations and more balancing power is needed. As a result, the 

price for balancing should increase. On the other hand, variable RES with low marginal costs reduce day-

ahead and intraday prices and may push the existing power plants out of the merit-order. As a 

consequence, displaced conventional production capacity pushes onto the balancing market and reduces 

prices there. However, an isolated operation on the balancing power market is not viable for conventional 

base-load power plants with high ramp-up costs. If regulators do not want to subsidize deficient 

conventional power plants, balancing power must in the long-run also be supplied by variable RES. The 

balancing market integration of variable RES can reduce balancing costs (Jansen, Speckmann, & Schwinn, 

2012) along with further omitting carbon emissions by conventional production.  

The analysis shows that countries with higher shares of variable RES predominantly have flexible 

auctioning procedures as apparent in a greater number of time slices with shorter maximum durations. 

Furthermore, auction frequencies are higher and the minimum size of power offers tends to be smaller.  

Two exemplary markets, France and Denmark, are discussed to elucidate the transition from a market 

with a high share of conventional production towards a market with a very high share of wind power 

plants. While both countries have substantially reduced their CO2-emissions in recent years (EEA, 2017) 

they achieved this with very divergent production mixes, market structures and liberalization levels. In 

France less than 6% of the electricity consumed is supplied from variable RES while about 77% of the 

electricity consumed is produced in nuclear power plants, the highest share in the world (NEI, 2017). 

Consequently, these power plants are obliged to provide FCR and FRR to the grid. The French auction-

based market for RR has changed very little since 2003 (RTE, 2016). The auction takes place once a year 

allocating blocks of positive and negative RR. Since just two big power plant operators operate on the 

market the surcharges are flexibly allocated to the power plants within each portfolio. Therefore, the 

operator is able to compensate unavailable production capacity within their portfolio.  

Denmark on the other hand, driven by a very high share of wind power integration, opened the balancing 

market for variable RES. Wind power generation in Denmark corresponded to a share of about 42% of the 

Danish electricity consumption in 2014 (cf. Table 3). The wind parks are owned by various companies. 

Balancing power procurement according to the French model would not be suitable since the small 
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suppliers are not able to guarantee balancing power for a whole year with their limited production 

capacity and volatile production. Therefore, Denmark changed their markets towards variable RES market 

integration in three steps: (1) Denmark installed a system to easily prequalify wind power plants for 

balancing provision, (2) made the auction process available for more participants by performing auctions 

daily and (3) reduced the traded time slices to a length of four (FCR) and one hour (FRR and RR) (Energinet, 

2017). The wind energy feed-in forecasts are reliable enough to estimate wind production for the 

following day and to precisely assess available gas power capacity to be placed on the balancing market. 

The Danish system was the first to integrate variable RES into the power system and now serves as an 

innovation example for future, flexible market structures. 

Short-Term Flexibility 

Except for the Czech Republic, Iceland and Serbia, all European countries introduced intraday markets 

that are either based on a regular auction (Spain, Italy and Portugal) (Weber, 2010) or on continuous 

trading (all others) during the day of delivery. The TSO receives binding production plans of every power 

plant operator within its grid area. Depending on the market structure, operators are allowed to change 

this plan until a certain time before delivery. Changes in production have to be balanced on the intraday 

market for as long as possible. Only the resulting imbalances after the market closure are balanced by the 

TSO, who in turn procured the balancing power earlier on the balancing market.  

In Germany two different short-term markets are available: The quarter-hourly day-ahead auction and 

the intraday continuous market (EPEX Spot, 2015a). The former was introduced at the end of 2014 and is 

an additional measure to balance the increasing power supply from solar power plants on the day before 

delivery (Braun, 2016b). The latter allows trading until 30min before delivery within the entire market 

area since 2011 and therefore is especially relevant for fluctuations in wind energy supply. By introducing 

two complementary short-term markets, the German electricity market became highly flexible and can 

balance volatile supply with-out an increased demand for balancing power (Ocker & Ehrhart, 2017). In 

fact, the procured balancing capacity fell by 20% between 2008 and the end of 2015 (Hirth & Ziegenhagen, 

2015).  

As the example of Germany shows, it can be argued that short-term flexibility on intraday markets could 

reduce the demand for balancing power in other European countries as well. Nevertheless, a more 

rigorous evaluation of this hypothesis is a promising topic for further research. 

Market Coupling 

Beyond the consideration of individual national market designs, a trend for international cooperation via 

coupling of national electricity markets is addressed. Market coupling describes the act of joining 

physically connected but systematically separated markets via implicit auctions on the respective trading 

platforms. In coupled markets cross-border transmission capacity is not traded in explicit auctions but 

rather part of the pricing procedure on national power exchanges. Infrastructure can therefore be used 

more efficiently, and the resulting greater market area has more participants and a higher liquidity. On 

the spot market coupling is already being applied and should result in increased competition and lower 

prices. Nevertheless, this trend is relevant for all power markets and is a stepping stone towards a single 
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European market (ENTSO-E, 2015; EPEX Spot, 2017a). In the case of balancing power, a positive balancing 

requirement in one balancing region can often be compensated with a negative one in another. By 

coupling balancing markets, this pooling effect can be harnessed through an economic mechanism and 

lead to higher supply security. The effect was e.g. observable upon the introduction of cooperation 

mechanisms between the four TSOs in Germany in the springs of 2009 and 2010: Immediately after 

introduction, dispatched balancing energy significantly dropped along with monthly volatility (BNetzA, 

2015).  

Further efforts aim to promote the international cooperation between TSOs and eventually drive joining 

of markets. Most employ the categorization into three quality levels and differentiate between positive 

and negative balancing power. With the help of the ENTSO-E further convergence in market design is 

foreseeable. Such reconciliation would lead to additional cost reductions and efficiency gains in the 

procurement of balancing power. In an initial step, the International Grid Control Cooperation (IGCC) of 

TSOs in Denmark, Germany, the Netherlands, Belgium, Switzerland, Austria, the Czech Republic and most 

recently France and Belgium, closely cooperate for the minimization of FRR-activation. Their respective 

net balancing needs are communicated and cleared, therefore compensating opposite requirements 

(Regelleistung.net, 2016b). Austria, Germany, the Netherlands and Switzerland also have a joint market 

for 793 MW of FCR. A maximum of 30% (at least 90 MW) of the national FCR-need can be exported to 

partnering countries, which has led to significant cost reductions after initiation (Regelleistung.net, 

2016a). Especially smaller markets may profit from more participants and higher liquidity through joint 

markets. In fact, Denmark and Belgium currently consider participating in the existing scheme (Energinet, 

2015). 

If balancing markets continue to converge, a further cost reduction for balancing power can lead to a 

higher market efficiency and therefore to an increase in public welfare. The ENTSO-E offers a viable 

platform for this process. 

Inconsistency in Auction Characteristics 

As seen in the previous sections, some of the characteristics of balancing power markets can be traced 

back to the respective structure of the power market as a whole. However, the greatly varying auction 

characteristics, namely the scoring and pricing rules, do not directly correspond to the power market 

characteristics, see Table 4. This discontinuity is approached by considering the relevant literature on 

auction design and present a theoretical discussion beyond the characteristics of the balancing power 

markets (e.g. auction frequency or timing).  

Auction rules have a direct impact on the bidding behavior of the suppliers and should therefore be 

designed according to the goal of the auction, e.g. lowest procurement costs possible. From a theoretical 

stance, balancing power is procured in multi-part auctions since bidders must be compensated for both 

reserving capacity and delivering balancing energy if called for. This type of auction is discussed for the 

procurement of a wide range of goods, e.g. for highways construction (Stark, 1974) or for weapon system 

tenders (Che, 1993). Procuring balancing power with multi-part auctions was first analyzed by Bushnell 

and Oren (1994). They develop conditions for scoring rules to result in efficient winner selection. Since 

then politics and research try to find remuneration schemes to incentivize suppliers to bid their true costs 

and provide a cost efficient and secure balancing. 
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The heterogeneity in auction design could be a consequence of the complexity of multi-part auctions for 

balancing power procurement. National regulators define their own design due to the lack of theoretical 

research on robust and thus applicable auction designs. 

It can be concluded from the balancing power market overview and analysis, of the 24 countries that are 

members of the ENTSO-E that no predominant market design can be found in comparison to the day-

ahead and intraday markets in Europe. Certain elements of this heterogeneity, e.g. auction frequency, 

timing and duration of time slices, seem to be influenced by the frame-work conditions of the respective 

power market. The three identified key drivers for these conditions are: the share of variable RES in the 

electricity mix, the short-term flexibility for trading and pan-European market coupling. On the other 

hand, the inconsistency in auction characteristics seems to be caused by the complexity of multi-part 

auctions for balancing power procurement. National legislation has to decide, if a further integration of 

European balancing power markets is desirable, i.e. concerning the target of national energy 

independence and adjust their market design accordingly.  

2.4.2. German Balancing Energy Markets  

In Germany, the three balancing power markets, sometimes referred as ancillary services, are organized 

as suggested by the ENTSO-E and described in chapter 2.4.1. Figure 16 illustrates the activation process 

after a disturbance in the grids frequency. In the first seconds the spinning FCR, in Germany also named 

primary reserve (Primärregelleistung) is passively activated. Shortly afterwards also FRR, the secondary 

reserve (Sekundärregelleistung), is actively activated and has to be provided by the operators within 

30 sec. In case of a long-term disturbance also the RR, in Germany stated as minute or tertiary reserve 

(Minutenreserve), is called up. Beyond that, with a gate closure time of 30 min, the German intraday 

market gives the possibility to quickly react on unplanned deviations. Short-term deviations of the 

planned schedule can be traded on the intraday market to reduce the need for balancing energy 

activation.  
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Figure 16 The chronological activation after a fault in grid frequency. Data derived from 
(Regelleistung.net, 2017a) 

 

In chapter 2.4.1 four key drivers for balancing energy are identified: the share of variable RES, short-term 

trading possibilities and market coupling. The influence of these factors can be seen in Figure 17 

presenting the demand for the various balancing energy products over the course of the last six years. 

Despite an increasing demand for balancing power is expected due to significant higher shares of variable 

RES, the overall balancing power demand is constant or slightly decreased. Better short-term trading 

possibilities, a more flexible market design and market coupling are counter-effects.  

Below, the FCR, FRR and RR market including auctioning procedure, activation process, price development 

and auction volumes are presented.  
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Figure 17 Balancing energy demand of the German TSOs or the group of TSOs in which the German TSOs 
is organized. Data derived from (Regelleistung.net, 2017a) 

German Frequency Containment Reserve  

The German FCR is the first balancing market that is activated after a fault in the grid. Since December 1st, 

2007 the four German TSO organize a joint FCR auction to buy the frequency containment demand. Every 

plant that is allowed to participate in the FCR auction went through a prequalification process organized 

by the respective connection-TSO. The so-called connection-TSO (Anschluss-ÜNB) is the TSO responsible 

for the grid region in which the bidder is connected to the grid.  

Before the weekly auction, the TSOs publish the demand for FCR in accordance with §6 (2) Strom NZV. 

The product length is one week and the auction takes place Tuesday at 3pm one week before delivery 

starts. Since 2011 the corner stones of the auctioning process are regulated by the German federal 

network agency (BNetzA) in BK6-10-097. Orders can be handed in with a bid size increment of +/- 1 MW 

(5 MW before 2011). No separate products exist for positive or negative provision. The activation is not 

compensated separately and capacity need to be always available to be activated. This means, the price 

for one unit need to include the positive and negative provision costs and the costs for activation.  

The already mentioned internationalization of the balancing power markets has strong influence on the 

Germany FCR auction. Already in 2012, Swissgrid joined the German TSO auctioning platform followed by 

the Dutch Tennet NL in 2014, the Austria APG in 2015, the Belgium TSO Elia in 2016 and the French RTE 

in 2017. A cooperation with the Danish TSO Energinet.dk is planned. The participating network operators 

state that the common procurement increases the liquidity in the market and opens up new sales markets 

for operators (Regelleistung.net, 2017b). The common demand for FCR is about 1250 MW since 2017. 

Further the FCR exports are limited to a maximum of 30 % of a country’s FCR demand or at least 90 MW. 

This means for Germany 173 MW. In case of auction failures or technical reasons the market can be 

decoupled if needed. (Regelleistung.net, 2017b)  
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The demand for FCR between June 2010 and June 2016 is depicted in Figure 18. With the progressive 

international consolidation, the demand for FCR of the whole area increased slightly but decreased 

significantly if the share for each country would be seen separately. Resulting, the costs for every single 

TSO to buy the FCR provision dropped considerably.  

 

 

Figure 18 Positive and negative FCR demand of the German TSOs or the group of TSOs in which the 
German TSOs is organized. Data derived from (Regelleistung.net, 2017a) 

 

Whereas the demand for FCR changes significantly, the price development is not that clear, see Figure 

19Figure 18. The market prices (blue line) from 2012 to 2015 were bullish. In the recent years, a bearish 

price development can be seen. Since 2013, the Christmas and sometimes also the Easter week resulted 

in extreme high prices in comparison to the long-term average (blue dotted line), so that the volatility 

seems much higher as it actually is in the rest of the year.  
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Figure 19 Prices for FCR in Germany from 2011 to 2016. Data derived from (Regelleistung.net, 2017a) 

German Frequency Restoration Reserve  

Since December 1st, 2007 the four German TSOs buy their FRR demand together in one auction. Therefore, 

just the net FRR demand of the four TSO grid regions leads to the activation of the first FRR bid. Although, 

the prequalification to participate in the FRR auction is still organized by the local TSOs that are 

responsible for the gird in which the power plant or the demand side is connected, no matter highest, 

high or low voltage level. In comparison to the extensive market coupling of FCR the FRR is limited to the 

German Austrian market region. No coupling with further countries exist, although planned as described 

in chapter 2.4.1. This is also evident in Figure 20 as the tendering quantities have not been changing 

noticeable over the recent years. Just the Christmas week is an exception in which the TSOs demand 

significantly more balancing provision.  

The product lengths are one week (until 2007 one month) and the auction takes place Wednesday one 

week before delivery starts. The key points for the market organization are defined in BK6-10-098. Since 

the year 2011 the minimum bid size is 5 MW (before 10 MW) with an increment of 1 MW. The four 

available products are separated into positive and negative as well as in peak and off-peak times. The 

peak time is defined from 8 am to 8 pm at normal work days and off-peak as the time between 8 pm and 

8 am on normal work days as well as the complete weekend and public holidays.  

After an activation, the capacity needs to be delivered completely within 5 minutes to replace the FCR. 

Upon 30 seconds, at least 1 MW need to be delivered. All market participants are connected with their 

control system to the FRR activation signal of the TSO in real-time, which operates the frequency 

controller.  
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Figure 20 FRR demand of the German TSOs or the group of TSOs in which the German TSOs is organized. 
Data derived from (Regelleistung.net, 2017a) 

 

The FRR is allocated within the bidders in a double auction of which the first, the power price auction is 

crucial for the acceptance. In this pay-as-bid pricing auction the TSO sorts all bids in a merit order and 

allocates the lowest power price bids until the tendering amount is filled. The last accepted bid sets the 

published marginal price and the volume weighted average of all accepted bids defines the average 

capacity price, see Figure 21. The average power prices, and the marginal price even more, fluctuate 

extremely for positive (orange line) as well as negative balancing (blue line). It is therefore likely that 

strategic bidding is present on the market. Nevertheless, a long-term shrinking price trend can be 

identified especially looking on the rolling yearly average prices (orange and blue dotted lines) coming 

from more than 1000 €/MW per week in 2010 to less than 200 €/MW per week marginal price in 2015. 

Today the price for the negative peak product decreased to a price of 0 €/MW for one week. This trend 

can be reasoned with the flexibilization of the market including smaller bid sizes of 5 MW and the 

increased number of market participants. A significant share of FRR has been provided by pumped 

hydropower storages. Today more and more market participants prequalify further capacities. Balancing 

with pools of RES is possible as well.  
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Figure 21 Prices for positive and negative FRR in Germany from 2010 to 2016. Data derived from 
(Regelleistung.net, 2017a) 

 

After a bid got accepted in the power price allocation, it is also included in the work price merit order. In 

the work price merit order all bids are sorted again ascending by the energy price in €/MWh. In case the 

TSO need energy, the activation starts with the lowest price bid. That means the first bid has the highest 

and the last bid the lowest activation probability. The remuneration for the operator can be estimated 

multiplying the activation probability with the offered work price. The pay-as-bid work price tendering 

ensures a cost-effective allocation of the energy demand for the TSO. In the predominant case, the 

activation does not exceed 500 to 1000 MW which means that bids at the position of 2000 MW are seldom 

activated. Bidders with these positions speculate with extremely high prices for the activation of the 

complete merit order. This happens just a few times a year since the TSO can activate RR (minute reserve) 

if this is cost efficient. Therefore, it is also not reasonable to present the average offered work price in a 

separate figure.  

Figure 22 and Figure 23 present the activation (black line) of balancing energy for the German Austrian 

balancing region for two exemplary weeks. The quantity of activation can differ strongly during days or 

weeks. For storage based bidders this needs to be considered since reservoirs or batteries are limited in 

the quantity of energy. To facilitate comparison, the sorted average activated energy per 15 min is 

visualized in the figures as well.  

Since the intraday continuous market is often used to balance deviation before delivery, a correlation with 

the activation of FRR can be perceived; for example, after a significant positive activation over 10 to 20 min 

the intraday prices increase as well, because, the source of unbalance might need to buy the missing 

quantities on the intraday markets. 
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Figure 22 Positive and negative activated balancing demand for FRR for the German Austrian combined 
grid region in black and the sorted activation in grey. Both illustrated for the week from 2017-4-10 to 

2017-4-16. Data retrieved from (Regelleistung.net, 2017a). 

 

 

Figure 23 Positive and negative activated balancing demand for FRR for the German Austrian combined 
grid region in black and the sorted activation in grey. Both illustrated for the week from 2017-4-17 to 

2017-4-23. Data retrieved from (Regelleistung.net, 2017a). 

 

Beside the remuneration for delivery of balancing energy also the deviation from this planned and 

reported schedule is penalized by the TSO with the compensation energy price (Ausgleichsenergiepreis). 

The compensation energy price is based on the marginal price of the activated energy in the five-minute 

average. The high costs for deviations, strengthen the fulfilment of the planned schedule. The other way 

around; stabilizing the grid when producing more if to less energy is feed-in and producing less if too much 

energy is in the grid is remunerated with the compensation energy price. However, doing this actively is 

a legal grey area.  
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German Replacement Reserve 

RR (Minutenreserve or Tertiärregelung) is organized in a common auction of the four TSOs in Germany 

since December 1st, 2006 and the prequalification is managed by the regional TSOs. After extensive 

consultation in 2011 the auctioning process rules were defined in BK6-10-099. In the daily auction, six 

positive and negative products are separated in time slots of four hours.  

The minimum bid quantity is 5 MW (until 2011 10 MW) and the maximum quantity is limited to 25 MW 

blocks. Bids are always activated as a whole which is advantageous for operators with for example sizeable 

gas power plants. Apart from that, the 5 MW minimum quantity can be pooled with several prequalified 

smaller units. Also, the pooling of third party units within one balancing area is allowed. With the rules for 

more flexibilization and the pooling of capacity to reach the 5 MW level new players have been able to 

enter the market such as cogeneration units and emergency power generators.  

The development of the tendering quantity over the last years can be seen in Figure 24. Due to the 

development of the intraday continuous market with quarter-hourly products and more important, the 

trading until 30 min before delivery across balancing energy zones and even until delivery within one 

balancing zone, promotes the possibility to balance demand at short notice. This has reduced the RR 

activation significantly (Regelleistung.net, 2017a). Therefore, in 2016 also the tendering quantity were 

decreased by the TSOs.  

 

 

Figure 24 RR demand of the German TSO or the group of TSOs in which the German TSO is organized. 
Data derived from (Regelleistung.net, 2017a) 

 

The activation of RR takes place with a lead time of 15 min. RR is not needed to stabilize the grids 

frequency but to balance too much or too less electricity production. Since the delivery of energy is the 

most important part of RR, it is, similar to FRR, also remunerated in a double auction.  
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In the first pay-as-bid pricing auction for the provision of power the TSOs sort all bids in a merit order and 

allocates the lowest power price bids until the tendering amount is filled. The last accepted bid sets the 

published marginal price and the volume weighted average of all accepted bids defines the average 

capacity price (orange and blue line), as presented in Figure 25. The rolling yearly average price for RR 

(orange and blue dotted line) presents the price erosion very clearly. With the flexibilization of the RR 

auction including shorter product lengths, lower minimum bids, production pooling and lower 

prequalification standards more and more bidders participated in the auction. The above described 

reduced demand but mainly the available thermal capacity that are pushed out of the energy only market 

due to the merit-order-effect reasons the price development.  

After a bid is accepted due to the power price it is also included in the work price merit order. In the work 

price merit order all bids are sorted again ascending by the price in €/MWh. In case the TSOs need energy, 

the activation starts with the lowest priced bid. That means the first bid has the highest and the last bid 

the lowest activation probability. The final remuneration for the operator is the multiplication of the 

activation probability with the offered work price. The pay-as-bid work price tendering ensures a cost-

effective allocation of the energy demand for the TSOs and has a positive effect on the grid charges for 

the end-consumer.  

 

 

Figure 25 Prices for positive and negative RR in Germany from 2008 to 2016. Data derived from 
(Regelleistung.net, 2017a) 
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3. Hydropower Planning 

After the introduction of short-term energy markets in chapter 4 this chapter provides all information 

needed on hydropower storages to solve the hydropower scheduling problem. Generally, hydropower 

storages are the most cost efficient as well as common electricity storage technology in the world that is 

sufficiently scalable in terms of power and work capacity, see Table 5. Whereas for example lithium-ion 

batteries are in the ascent due to e-mobility and its extensive use in electrical appliances, large scale 

energy storage over a long period of time is still difficult. In terms of optimization method and market 

structure, all approaches provided in this thesis to optimally utilize hydropower storages can be applied 

on other storage technologies as well. Nonetheless, hydropower plants, and surely other technologies as 

well, face characteristic technology related challenges that influence optimization and marketing. This is 

the reason why this chapter attends to the characteristics of the hydropower technology itself. 

 

Table 5 Comparison of various electricity storage technologies. Source (Evans, Strezov, & Evans, 2012) 
and (Gaudard & Romerio, 2014) 

storage technology 
efficiency 

[%] 
power 
[MW] 

capital 
[$/kW] 

capital 
[$/kWh] 

self-discharge 
time [per day] 

mechanical      

 pumped hydropower 65-85 100-5000 600 100 very small 

 compressed air 50-89 3-400 800-2000 50-100 small 

 flywheel 93-95 0.25 350 5000 100 % 

electrical/magnetical      

 supercapacitor 90-95 0.3 300 2000 20-40 % 

 superconducting magnetic 95-98 0.1-10 300 10,000 10-15 % 

thermal      

 cryogenic energy 40-50 0.1-300 300 30 0.5-1 % 

 HT-TES 30-60 0-60  60 0.05-1 % 

chemical      

 battery 60-90 0-40 300-4000 400-2500 0.1-20 % 

 

Chapter 3.1 starts with the different construction forms of hydropower plants. A special focus is on the 

distinction between reservoir systems with and without pumps. Characteristics of the plant layout, 

machine types, penstocks, water retaining system etc. are discussed as well. The relevant parameters 

such as prices, grid charges, inflows and technical restrictions are discussed in chapter 3.2. Thereafter, 

chapter 3.3 presents the most common model structure based on decomposition. Especially relevant for 

the transformation of the model results into reality are steering parameter which are subject of chapter 

3.4. 
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3.1. Introduction 

The demand for mechanic and later electric energy is prevalent since ancient times and hydropower has 

been a source to be used in many ways. The first significant commercial hydroelectric power plant was 

built at Niagara Falls in the year 1879. Rivers and lakes with natural inflows provided water to be released. 

Until today hydroelectric power is viewed as a substantial part for economic development without adding 

substantial amounts of carbon to the atmosphere (Howard, 2013). Since hydropower is manifold this 

chapter gives an overview on the most common construction types, especially pumped hydropower 

storages. 

3.1.1. Construction Types 

Every hydropower plant is based on a reservoir and a work water supply system as well as machines to 

generate electricity, see Figure 26. The water-retaining structure can be of natural origin such as lakes or 

rivers or constructed using a dam. Reservoirs are normally filled directly with natural inflows or indirectly 

via tunnels and water catchments from rivers or glacier melting water. Reservoirs connected to pump 

machines can be additionally filled with water from lower reservoirs. Storages need to be distinguished 

from run-of-river plants which normally have a very small reservoir that is mainly used to increase the 

water head. Nevertheless, many run-of-river plants can vary the filling level (Schwellbetrieb) for peak 

power production and to increase turbine efficiency; the transition to hydropower storages is then fluent.  

 

 

Figure 26 Penstock and machine house of the Walchensee power plant and the lower reservoir 
Kochelsee in southern Germany constructed in 1924 with an installed peak power of 124 MW  
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The work water supply system is a penstock connecting reservoirs and machines, as for example seen in 

Figure 27. The distance between the upper reservoir and the beginning of the slope often need to be 

bridged with a tunneled water route and is locked with a surge chamber or water lock (Wasserschloß). A 

surge chamber absorbs sudden rises of pressure due to rapid changes in water velocity. When the load 

increases, additional supply of water is provided, if the load decreases, the water moves backwards and 

gets stored. The higher the distance between the storage reservoir and the machines in the power house 

the more sizeable the surge tank. The penstock is responsible for a significant share of the efficiency losses 

in hydropower storages due to friction.  

 

 

Figure 27 Penstock under construction for the Obervermuntwerk II in alpine Austria with a planned peak 
power of 360 MW and a flow through of 160 m³/s 

 

The energy that can be retrieved in the machine from the water depends on the pressure in the penstock, 

i. e. the water column. In the turbine, the potential energy is transformed into rotational kinetic energy 

and further into electric energy in the generator. Afterwards the water flows into the lower reservoir or a 

river system. The machines are either located above the ground in a machine house or underground in a 

cavern in the mountain. Machines for pumping either need to be located below the water level of the 

lower reservoir to ensure pre-compression or the pre-compression is provided with an additional pump. 

The most common turbine systems, in this order, are Francis, Pelton (see Figure 28) and Kaplan machines. 

Francis machines are widely used in pumped hydropower storages as well as run-of-river plants and are 

suitable for medium water heads and medium flow though rates. Francis turbines are for example used 

in the famous three gorges dam and the Niagara fall plants. Pelton machines are specified for systems 

with high water heads and low flow through rates. The Kaplan turbines are determined for run-of-river 

power plants handling low water heads and sizeable flow through rates. The efficiency of the hydropower 

machine and the generator provoke the predominate share of the efficiency losses in the whole system.  
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Figure 28 Six nozzles Pelton machine with a peak power of 150 MW, a flow through of 25.3 m³ and a 
water velocity at the injectors of 450 km/h as a part of the Kops II power plant constructed in 2008 

 

Hydropower reservoirs can be classified by their reservoir size, machine type, water head and the 

difference in height between upper and lower reservoir. Furthermore, a hydropower plant is often linked 

to other power plants and is part of a bigger hydrological system. Below, storages without pumps, 

storages with pumps and various reservoir sizes will be introduced.  

Table 6 presents an overview on how the different types of systems can be used on energy only and 

balancing markets as well as for grid support. In the first row, the plants are separated into systems with 

and without pumps. The second row distinguishes between run-of-river, pump storages with small 

reservoirs and seasonal storages with sizeable reservoirs. Pump storages are the most flexible devices and 

therefore deliver mostly peak and balancing power. But in comparison to run-of-river, it need to be 

considered that not all hydropower storages necessarily deliver renewable energy. Pumped hydropower 

storages are dependent on the energy mix consumed for pumping. Since construction types of 

hydropower storages are manifold, this classification should help the reader to get an overview and is not 

exhaustive.  
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Table 6: Classification of hydropower plants 

                                                           machine: 
                                                    reservoir size: 
services: 

turbines turbines and pumps 

run-of-river 
large 

storage 
large 

storage 
small 

storage 

energy 
only 

base load 
+ 

+/- +/- - 

renewable/inflow + +/- 

flexible 

- 
 

+ 
 

balancing 
reserves 

frequency 
containment 

positive 

negative 

frequency 
restoration 

positive 

negative 

replacement 
positive 

negative 

grid 
support 

black start 

+ active losses compensation 

voltage support 

3.1.2. Pumped Hydropower Storages  

With the beginning of the 20th century, technologies such as nuclear and coal fired power plants came up 

and delivered significant shares of the growing hunger for energy during the industrialization in Europe 

and North Amerika. Nevertheless, these thermal power plants were constructed to run as base load power 

plants around the clock. Therefore, daily pumped storages were constructed storing energy at night when 

demand is low and delivering in times of high demand during the day.  

Daily pumped hydropower storages have small reservoirs and large machines in comparison to the 

reservoir size. For a daily pumped storage, the charge cycle is normally one day but on weekends this 

could also be a whole weekend if the prices do not allow a complete charge cycle in one day. A charge 

cycle can be defined as the process starting from one specific state of charge, reaching complete discharge 

and full charge and ending with the original state of charge. A second type of storage, so called seasonal 

storages, were installed as well, mainly in the mountains with large reservoirs and in some cases also with 

pumps. Theses power plants stored melting water, rain or pumped water over the course of months to 

level out fluctuating demand during the year. For example, higher demand in winter for heating in 

northern countries.  

Generally, pumped hydropower storages are used as peak load power plants and for the provision of grid 

stabilization products such as balancing power. The average overall cycle efficiency of pumped 

hydropower storages is about 70-80%; mainly resulting from losses in the machines, the penstock and the 

generator (Wagner & Mathur, 2011). The combination of reservoir, water head and machine size 

determines the hydropower plant as daily, weekly or seasonal storages.  

A sizable storage, as for example the Kops lake in Vorarlberg, see Figure 29, with a reservoir size of 

42 million m³ and a water head of about 800 m, was used as seasonal storage with natural inflows. In the 

summer the water has been stored for peak demand during the winter. Since the construction in the year 
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1969 the power plant, Kopswerk I, is equipped with one machine with a peak power capacity of 247 MW. 

After a refurbishment in the years 2004 till 2008 further 525 MW of peak power (Kopswerk II) were 

installed. With about 127.45 GWh energy content the complete discharge before the refurbishment took 

about 512 hours. After the refurbishment, this could be done in 165 hours. The power plant turned from 

a seasonal storage to a weekly storage.  

 

 

Figure 29 Kops lake in the Austrian Alps, 1809 meters above sea level with a maximum reservoir filling 
level of 42 million m³ water which equals an energy content of 127.45 GWh 

3.2. Relevant Parameters 

The relevant planning parameters embody input data that is required for the hydropower scheduling 

optimization. The results of the optimization hinges on this input. Relevant planning parameters are for 

example sales prices, grid charges and inflows. A significant share of input data is subject to discussion 

due to uncertainty, motion, market dynamics or political decisions. In this part, the different input 

parameters and the respective challenges are introduced, aiming to process the available data for an 

optimal use. Prices are discussed in chapter 3.2.1, grid charges in 3.2.2, inflows in 3.2.3, as well as technical 

restriction in 3.2.4.  

3.2.1. Electricity Prices 

The prices for electricity are one of the most important input factors of the optimization, because they 

substantially determine the income that can be generated with a power plant. The electricity price itself 

depends on numerous parameter such as demand, variable RES infeed, the power plant merit order, plant 

availabilities, temperature, gross border capacities etc. Furthermore, all prices are linked to a date of 

expiry and a product. Not all products can be traded at all time and at full liquidity. 



 

63 

 

For the European countries, the hourly day-ahead market is the lead market which is therefore most often 

used in pumped hydropower scheduling optimizations. Nevertheless, a consideration of additional 

markets can be of interest if the time structure or the remuneration system is different as for example in 

the quarter-hourly intraday market in Germany with a shorter time resolution and continuous trading. 

Whereas the average prices are similar, i.e. arbitrage free, this market provides significant higher 

optionalities in terms of fluctuating prices.  

Every market needs to be analyzed on its additional value for the power plant. Whereas base load power 

plants could completely rely on hourly products a highly flexible power plant, such as pumped hydropower 

storages, should also consider the quarter-hourly and the balancing power markets. In this thesis, a multi-

market optimization approach is suggested since an optimization model should reflect all the relevant 

markets on which the power plant is traded to realistically determine the trading decision. A further 

argument to include additional markets into the optimization, is that power plants represent real options, 

i.e. that even a power plant that is not in the money in the first market has an optional value on the next 

market due to unforeseen price changes; it has the right but not the obligation to be switched on. Vice 

versa, if it is in the money on the first market it has the right but not the obligation to be switched off on 

the second. In the long term, this is referred to hedge optimization. In the short-term it will be referred 

to as the value of optionality.  

If the relevant markets are identified a price forecast need to be generated. Either a point prognosis, a so-

called price forward curve, or a price distribution with respective probabilities is created. To make use of 

the latter either scenario based or stochastic optimization is needed which makes the optimization 

significantly more complex and the curse of dimensions gets to a problem, see chapter 6.  

Since price forecasting is not subject of this thesis the interested reader is referred to Weron (2014b) who 

gives an up-to-date overview on relevant reviews and survey publications. Several books on electricity 

price forecasting exist of which the following can be suggested: 

• Shahidehpour, Yamin, and Li (2002) presents in chapter 3, pp. 57-113 the basics of electricity 

price forecasting including the price formation, volatility and exogenous variables. He adds a 

neuronal network based price forecasting module and gives a performance evaluation.  

• Weron (2006a) discusses in chapter 4, pp.101-155 a wide range of modeling approaches and 

analyses the practical application of the four statistical methods for day-ahead forecasting: 

ARMA-type, ARMAX, GARCH-type and regime-switching. Further, he discusses quantitative 

stochastic models for derivatives pricing, such as jump-diffusion models and Markov regime-

switching.  

• Zareipour (2008) provides an overview in chapter 3-4 on the pages 52-105 over linear time series 

model such as ARIMA, ARX and ARMAX and non-linear models as for example regression splines 

and neural networks and tests these methods forecasting the hourly electricity prices for the 

Ontario power market.  
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3.2.2. Grid Charges 

For both feed-in and feed-out, grid charges have to be paid. The charge is normally paid based on a power 

and a work price for every kWh feed-in or -out. Strong variations exist between different voltage levels 

and counties.  

For pumped hydropower storages it is further the question on whether grid charges have to be paid twice, 

first for the electricity consumed from the grid to be stored and second the electricity that is feed-in again 

at a later point in time. This hinges on the classification of storages as electricity end-consumer and has a 

significant impact on the profitability of pumped hydropower storages. Normal electricity consumer are 

households or companies, paying for the energy itself, taxes, grid charges and sometimes a RES support 

fee, as exemplary presented for a German customer in Figure 34.  

A final consumer is defined by §3 Nr. 25 EnWG and §5 Nr. 24 EEG as a natural or legal person that 

consumes energy. Whereas in Austria and Germany pumped hydropower storages are classified as final 

consumers, in Switzerland they are not (Hildmann, Priker, Schaffner, Sprend, & Ulbig, 2014, p. 16). From 

a technical point of view the classification as consumers makes sense, whereas economically, the grid 

charge is a double burden for storages in general. These different legal situations can cause distortion 

especially in terms of investment incentives. Involved companies are very cautious dealing with long-term 

investments because regulatory, political and market changes have a major influence on the profitability 

of pumped hydropower storages; even shutdowns of existing facilities are under discussion due to a 

shrinking value of flexibility in the current market design (Hildmann et al., 2014, p. 18).  

 

 

Figure 30 Electricity price for an average household in Germany with 3500 kWh consumption in May 
2016. Data derived from (BDEW, 2016)  

 

In Germany, storages have to pay grid charges and concessions. RES support must not be paid by storage 

operators (§ 9 Nr. 2 StromStG i.V.m. § 12 Abs. 1 Nr. 2 StromStV). Whereas the normal grid charge would 

make energy storage unprofitable, many operators sue for reduced grid charges as a published list of 

lawsuits, concerning pumped hydropower storages operators with the object to be released from grid 

charges shows (BMWi, 2017b). Furthermore, many exceptions exist e.g. for new build pumped 
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hydropower storages (§ 118 Abs. 6 S. 1 und 3 EnWG) or extended storage plants which are used for grid 

stabilization (§ 118 Abs. 6 S. 2 und 4 EnWG). Additionally, most storage operators decide to benefit from 

reduced network charges for accepting an a-typical network gird usage (§ 19 Abs. 2 S. 1 StromNEV). That 

means that the grid operator defines some critical hours over the course of a day in which the storage 

operator is prohibited to use pumps to reduce the maximum grid load and in the long-term avoid grid 

extensions. In return, the operator receives a reduced grid charge tariff.  

With the passing of the new Electricity Market Act (Strommarktgesetz) on June 23, 2016 including the 

adjustments of the Committee on Economic and Energy Affairs (Ausschuss für Wirtschaft und Energie) 

(BT-Drs. 18/8915) the grid charge raising systematic (Netzentgeldsystematik) for storages in the German 

energy market has been changed. It relates to the special forms of grid utilization regulated in § 19 

StromNEV. Through § 19 Abs. 4 StromNEV, the network operators have to offer an individual network 

charge to final consumer who extract electricity from the grid exclusively for storage and subsequently 

feed the recovered electricity back into the grid at a later point in time. This has the effect that only the 

difference between the stored and generated energy, i. e the storage losses, are charged, since only these 

amounts are permanently consumed from the grid. The argumentation is based on the assumption that 

final end consumers pay grid charges for every MWh consumed. Therefore, the new regulations avoid a 

double taxation of stored and re-fed-in electricity quantities. 

Additionally, challenges based on operating regulations and construction permits are faced by nearly 

every company that wants to construct and operate power plants. Such permits are implemented in terms 

of environmental or safety issues. Hydropower storages face regulations such as: the amount of water 

released to rivers at a time, spillage, reservoir minimum or maximum filling levels for tourism or 

environmental aspects, minimum river levels etc. Many hydropower reservoirs are also restricted in terms 

of flood control or irrigation. Special for many hydropower storages is a charge for the natural inflows 

used in the power plant to generate energy. This so called “water penny” is normally paid to the local 

authorities. Thermal power plants that use river cooling normally pay a charge for the water as well.  

3.2.3. Water Inflows 

Hydropower reservoirs can be filled with water form natural inflows and/or by pumping up water from a 

lower reservoir. Inflows into reservoirs depend on direct or indirect precipitation. Often the water is 

transported via rivers and water catchments to the reservoir itself. The sum of inflows determines the 

quantity of energy that can be processed. The location of the reservoir is crucial for the estimation of the 

natural inflows. Mainly the climatic region and the height above sea level determine the inflow 

characteristics.  

Reservoirs in high mountain ranges as the Alps are made to catch inflows during a very short period of 

time in the summer, since precipitation is retained as snow and ice which melts if the temperature arises. 

The exemplary alpine reservoir in Figure 31 illustrates the primary inflow between May and September. 

This means that not just the short-term weather conditions such as precipitation and temperature are 

relevant to estimate inflows, but also the quantity of and the water content in the snow. Reservoirs in low 

mountain ranges of Germany can rely on relatively constant reservoir inflows as can be seen in Figure 31. 

This is mainly because the precipitation is comparatively even distributed over the year and also in winter 
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the temperatures sometimes rise above zero so that snow can melt. Negative inflows can result from 

seepage or evaporation. Furthermore, in countries such as Brazil, Switzerland or Norway, hydropower has 

a predominant share in energy production and try and wet years need to be balanced as well. Therefore, 

future inflows are estimated with long-term scenario trees and probability distributions that are solved 

with scenario or stochastic optimizations, resulting in higher complexity.  

 

 

 

Figure 31 Constructed water inflow variations of an exemplary hydropower reservoir in alpine Austria 
and in low-mountain-range Germany, the red line depicts the average. Scale and fluctuations do not 

reflect real data. Source: Braun (2015a) 
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For pumped hydropower storages, in many cases, just the consideration of average inflows is sufficient 

and the additional complexity of stochastic inflows can be economized. With no pumps installed or the 

quantity and the time when the inflows come at risk a stochastic estimation is strongly recommended.  

A precise inflow forecast of the near future is needed if the dispatch schedule is influenced by short-term 

inflows. For example, if water need to be released beforehand to catch all forecasted inflows to avoid 

spillage or secure flood protection. This is especially the case for small reservoirs or reservoirs at their 

limits. Additionally, a short-term forecast could be of interest for environmental or contractual subjects.  

3.2.4. Technical Restrictions 

Beside market prices, grid charges and inflows, the fourth important input for hydropower scheduling are 

the plants’ technical restrictions. These challenges often result from complex physical structures that need 

to be considered in mathematical models. Models are simplified replications of the real-world and many 

subtleties are modeled insufficient. The challenge is further to build a model that describes the reality 

well enough to provide sufficient real-life decision support for the optimized system and is still 

mathematical tractable. Technical restrictions may add nonlinear, mixed integer, stochastic or ulterior 

complexity to the mathematical models. Such optimization challenges are discussed for example in 

Belsnes, Gjengedal, and Fosso (2005, p. 3).  

• Turbine efficiencies, turbine outflow, gate opening times, spillage or flow delays between 

reservoirs behave nonlinear and induce nonconvexities (Diniz & Maceira, 2008). For instance, the 

turbine efficiency hinges on the rate between water flow and energy production. Full-load and 

partial-load operation can be distinguished. A Pelton machine can provide an efficiency of 80% 

with a flow through rate of just 20%; a Francis machine has less than 40% efficiency at this flow 

through rate (Wagner & Mathur, 2011). The maximum efficiency of a Pelton turbine is about 

90 %, Francis or Kaplan turbines reach about 95 % at an optimal flow through of about 75 % 

(Wagner & Mathur, 2011). Often-uttered use cases are partial-load situations, for example due 

to balancing energy provision. This means, the level of modeled details may depend on the 

considered energy markets as well.  

• Standstill and start-up costs, start-up and shut-down times, forbidden operating zones, minimal 

flow through rates of machines, retrenched optimization zones, etc. lead to mixed integer 

problems. In comparison to turbines that are highly flexible in the amount of power produced, 

pumps can normally just be switched on and off (Wagner & Mathur, 2011). To reach a specific 

negative schedule a hydraulic short circuit is used for which the pump operates at full power and 

a turbine at a flexible production level connected to the same penstock. The latest engineering 

developments introduced variable speed pumps that extend the operating zones and improved 

the efficiency by use of a motor-generator with frequency converter, as used for example in 

Hongrin Léman in Switzerland in 2011 (Voith Hydro, 2006).  

• Complex topologies such as dependencies between pumps and turbines, between upper and 

lower reservoirs, large systems of reservoirs, rivers, water catchments and power stations 

increase the size of optimization problems. Depending of the optimization method the 

optimization problem can increase exponentially with the number of reservoirs. Furthermore, 

many hydropower plants are build and operated by a consortium of companies due to high 
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investment costs and significant risks. Such constructions with more than one shareholder and 

operator are opposed to further challenges. 

Which of these parameters is considered should be revised for every single power plant optimized. On 

the one hand, some parameters might be neglected in the optimization if their influence is small and 

understood, on the other hand many parameters surely need to be modeled in detail to obtain the 

required results.  

3.3. Decision Problem Structure 

A general approach is to build up a model that is based on the physical layout of the power plant portfolio, 

estimate prices and inflows to optimize this against the energy markets. Such a model can be rather simple 

or highly sophisticated. This dependents on: the length of the optimization period, how many technical 

restrictions are considered as well as how detailed prices and inflows are regarded. The overall bidding 

problem is generally so complex that it is not solved at once. Therefore, the problem is decomposed and 

simplified. The following approaches can be catalogued:  

• separation in time: long-, mid- and short-term 

• separation by power plant: seasonal storage, daily storage, systems with pumps, hydro-thermal 

portfolios 

• separation by electricity market: futures, day-ahead, intraday, balancing 

The most common decomposition approach is to separate the optimization in time, so-called time-

depended approaches (Fosso & Belsnes, 2004). These are explained in 3.3.1 and 3.3.2. A separation by 

power plant can make sense if optimization period and electricity markets differ. For example, seasonal 

hydropower storages are optimized already years or months ahead to be bid on futures and day-ahead 

markets. Daily pumped hydropower storages are optimized just days or weeks ahead with a focus on the 

short-term markets such as day-ahead and intraday markets. A separation by market is valuable if several 

different kinds of markets are considered independently. Generally, the decomposition is often a mix of 

various approaches. 

3.3.1. Decomposition 

With the decomposition in time four generally independent problems can be created, each addressing 

one part of the hydropower optimization time line, see Figure 32.  
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Figure 32 Decomposition in time of the hydropower scheduling problem, source: (Fosso & Belsnes, 
2004) 

 

Below these four quasi separate optimization problems are introduced and discussed along the timeline 

beginning with the long-term and ending with the short-term.  

• The long-term optimization is built to incorporate the stochastic of the future. To ensure 

solvability the respective systems are aggregated with broad time steps. The goal of long-term 

models is resource scheduling, expansion planning, price forecasting or risk hedging. Generally 

long-term models provide boundary conditions to mid-term models using water values or end 

reservoir filling levels (Fosso & Belsnes, 2004, p. 1323). The predominant way of optimizing long-

term models is based on stochastic approaches whereas the level of detail is comparatively low. 

Nevertheless, stochastic models do not always show the best results as the comparison of the 

stochastic NEWAVE and the deterministic ODIN model for the long term hydropower scheduling 

of the interconnected Brazilian system shows (Zambelli, Soares Filho, Toscano, Santos, & Silva 

Filho, 2011).  

• The mid-term optimization is responsible for the transition from long- to short-term. Therefore, 

it represents a more detailed structure and a finer time resolution as in the long-term model to 

provide more precise boundaries. The mid-term model is used to generate water values or target 

reservoir filling levels for the short-term. Belsnes and Fosso (2004) state that the Norwegian mid-

term models have the same time increment resolution as the long-term model, normally weeks, 

whereas the physical topology is already modelled as detailed as in the short-term model.  

long-term planning (1-5 years) 
e. g. stochastic models and simulations 

mid-term planning (3-18 months) 
e. g. stochastic, multi-scenario and deterministic models 

short-term planning (1-4 weeks) 
e. g. mixed integer models and simulations 

dispatch planning (1-2 days) 
e. g. real-time optimizations, simulations 

reservoir filling levels, water values 

schedules, water values 
 

reservoir filling levels, water values 
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• The classic short-term model uses the water values or reservoir filling levels of the mid-term 

model to optimize the short-term hydropower scheduling problem, finding the maximum return 

for selling the energy on the respective short-term markets. If no markets are present, the income 

maximization is substituted by a cost minimization while covering the load. In liberalized systems, 

the goal is a decision support for day-ahead, balancing and intraday markets. Therefore, the 

optimal time increment should equal the time resolution of the offered products on the markets 

and the result of the optimization is an optimal unit commitment plan, water values and reservoir 

filling levels. Often a successive linear programming approach is suggested that is supposed to 

efficiently solve large systems without incorporating non-linear aspects such as machine 

efficiencies (Fosso & Belsnes, 2004). Generally, the more efficient the model the more details can 

be considered.  

• Unit commitment planning models can be used for real-time optimization of the already existing 

schedules. The objective can be either to find a cost-minimal production schedule matching the 

already sold obligations day-ahead with production capacities assuming that no energy can be 

traded anymore or a maximization of profit considering the relevant intraday price changes. Due 

to the highest level of detail and regular optimizations during the day the common approaches 

in power industry and literature are mostly based on linear and mixed integer linear optimization 

(Billinton & Fotuhi-Firuzabad, 2000).  

Generally, such an extensive decomposition is not necessary for every power plant system. How a 

problem is decomposed depends on the setting. For example, long-term optimization is just necessary, if 

input factors from three to five years ahead influence the dispatch here and now. This is the case for huge 

reservoir systems in Brazil or Norway that store inflows over years but not for pumped hydropower 

storages in Central Europe. If no intraday market exists and the load is fix, a regular intraday dispatch 

planning is also not necessary. If the problems are not extremely complex it is also common to skip the 

mid-term planning model. This work focusses on the short- and very short-term optimization since these 

sections underwent the strongest transformation process due to the Energiewende as outlined in the 

motivation.  

3.3.2. Composition 

While taking a decision to decompose something there should also be an idea of how to compose the 

problem again and how to achieve a proper coupling between models. Generally, a coupling in volume, 

e. g. reservoir filling levels and a coupling in costs, e. g. water values, can be distinguished. Both methods 

have advantages and disadvantages as listed in Table 7 and are widely used in literature and practice.  

The important point for the exchange between models along the timeline is that sufficient information is 

provided for the interfaces and that no important information get lost. Long-term models use 

aggregations in topology and time resolution to limit the size of the model. An exemplary complexity 

reduction could mean that upper reservoirs are aggregated to one reservoir and prices are not given 

hourly but monthly. Inevitable, this leads to consistency problems between models with different levels 

of detail. Especially technical and mathematical principles hamper with these details (Fosso & Belsnes, 

2004, p. 1324).  
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Table 7 Advantages and disadvantages of volume and cost coupling in hydropower planning, partly 
derived from (Fosso & Belsnes, 2004, p. 1324). 

 advantages disadvantages 

volume coupling, 
filling level for all 

reservoirs at the end of a 
period 

• flexibility in choosing 
mathematical mid- and short-
term methods 

• inconsistency in cascaded 
systems, because downstream 
reservoir levels depend on 
upstream water release 

• inflexible in terms of moving 
discharge within different 
periods 

• no price dependence 

cost coupling, 
the resource water is 

priced with a marginal 
cost function, i. e. water 

values 

• flexibility in scheduling process 

• expected value storing one 
additional unit of water in the 
reservoir 

• water release is a function of 
the market price (during the 
bidding period) 

• transferability of marginals on 
the whole reservoir  

• cost for each reservoir is just 
an approximation 

• marginal cost function 
depends on filling levels of all 
other reservoirs in the system 

 

 

A disadvantage of cost coupling is the complexity due to the dependence of the water value of one single 

reservoir on the filling levels of all other reservoirs in the system. For one reservoir, the future expected 

income can be plotted as a function of the reservoir filling level, see Figure 33. This is a concave function 

because the higher the reservoir filling level the higher the profit, whereas the marginal utility diminishes 

due to the increasing risk of spillage (Fosso & Belsnes, 2004, p. 1324). The slope of this function is the 

change of the expected profit due to a marginal change in reservoir content. For the various filling levels 

this derivative is denoted as the marginal water value. Solving this problem with a stochastic 

approximation approach (e. g. SDDP), the non-linear function is approximated and described by a set of 

linear functions. This example is one dimensional because just one reservoir is considered. With each 

additional reservoir one dimension is added. 
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Figure 33 Exemplary calculation of water value as a function of the reservoir filling level using cutting 
planes approximations of the future expected value function. The SDDP method was introduced by 

Pereira and Pinto (1985) 

3.4. Steering Parameters 

The steering logic, water management or dispatch control describes the critical point of transferring the 

results of optimization models into a real-life dispatch. From a hydropower storage operator perspective, 

the objective is to achieve an optimal use of existing resources. An optimal use of a plant can mean on the 

one hand a cost and maintenance minimizing dispatch and on the other hand a profit maximization using 

the various energy markets. Whereas the focus in this work is on the latter both ways need a suitable 

transformation of the model outputs to a real-life dispatch. Unfortunately, the steering of the actual 

dispatch is often neglected in literature. Whereas case studies are normally presented, there is a big 

difference between calculating an optimal dispatch and realizing this dispatch in real-world due to 

unforeseeable changes and a higher complexity in practice. The strong share of literature is focused on to 

enhance the maths, tweaken computer run-time or elongate time periods rather than improving the 

usability of model results in real-life. This might be explained with the distance between research and 

practice, the jump in complexity when applying models in practice or due to unpublished case studies 

including confidential information. Especially the latter can be questioned since joint work often guides 

progress for everyone. Nevertheless, this work tries to include the steering and back testing of real-world 

problems.  

Steering of hydropower storages is an important factor for the overall success. One crucial point is that 

models are abstractions of the real-world and inflows, prices, topology and technical restrictions are just 

mapped as good as possible. The dispatch need to be robust and resilient against unforeseeable changes 

in these parameters or effects such as the activation of balancing power or outages. Furthermore, most 

hydropower storages are not steered and traded completely automatically, which means that the human 

factor should not be underestimated.  
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Short-term optimization problems for steering the hydropower dispatch are solved repetitively with a 

specific time interval of for example one day or one week. For the respective interval until the next 

calculation the results are used as decision support whereas changes in the input parameters are ignored 

until the next calculation. Due to runtime infeasibilities the easiest approach, to compute the model when 

changes occur, is seldom possible. Therefore, the steering need to be robust enough for small and medium 

changes in the underlying data or includes a stochastic factor that considers the probability of such 

changes. Below an overview is given on the solutions provided for the different optimization methods.  

The significant number of available optimization methodologies provide a wide field of steering 

possibilities for pumped hydropower storages. The most common steering parameters are dispatch 

schedules, end reservoir filling levels, historic costs for pumping and water values.  

• An optimal dispatch schedule is a direct result of all deterministic calculations or can be received 

from stochastic optimizations for different price realizations. The application of schedule based 

steering is limited to fields where the calculated results equal the real-world dispatch. This could 

be the case for a predefined demand that is satisfied. In liberalized power markets with 

unexpected conditions or price changes a fixed deterministic schedule is most of the time too 

rigid.  

• Target reservoir filling levels can be set within a day, week or even a year. In a first step the 

maximum number of hours the power plant can produce or generate until the target reservoir 

filling level is reached need to be calculated. In a second step, the most lucrative hours for the 

dispatch are selected. This approach has been widely used to steer daily pumped hydropower 

storages. The main disadvantage is the inflexibility and the reliance on inflow or price forecast 

changes. About 10 years ago, in Germany, the load profile was met by nuclear and coal powered 

base load production and induced hydropower storage pumping and storing during the night as 

well as generation during the demand peaks at noon and in the evening as so called peak load 

power. The steering of these pumped hydropower storages with a reservoir filling level of 100% 

in the morning and 0% in the late evening was simple and feasible that time. Nevertheless, todays 

German Energiewende with various switches between pumping and generating mode as well as 

constantly changing price profiles due to significant shares of variable RES feed-in make the target 

reservoir filling level steering very difficult.  

• A seldom approach concentrates on historic pump costs. The water in the upper reservoir 

induced costs for pumping. Therefore, the value of the water in the upper reservoir can be 

calculated as the quantity pumped to the upper reservoir times the respective historic price. To 

take the decision on when to release the water again, the dispatch prices need to be higher than 

the value of the stored water based on the pumping prices. Nevertheless, this valuation lacks to 

adopt to changes in price level. For example, after the reservoir is filled the prices decrease to a 

lower average level at infimum. The water will never be used again, although, spreads could be 

realized on the new price level. 

• The most common method to provide a robust power plant dispatch steering are water values 

which are sometimes referred as shadow prices, marginals, incremental or opportunity costs. The 

next chapter 3.4.1 addresses the calculation and characteristics of water values in detail. 
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3.4.1. Water Values 

Water values are widely used, heterogeneous steering parameters that describe the value of the water in 

a reservoir. The water value gives a dispatcher the chance to compare the present state with the future. 

If the yield in the present is higher than the water value, the water should be released and energy 

produced. Otherwise the water is better saved for the future. Such steering parameters are similar to the 

hand-over parameters between long-, mid- and short-term models. The water values calculation 

approaches differ within the used mathematical optimization methods. 

For deterministic LP and MILP the water values can be retrieved from the dual variables of the reservoir 

filing level equations. This approach is mathematically speaking a sensitivity calculation. The filling levels 

describe the resources in the reservoirs. A marginal change of the resources, the reservoir filling level 

constraints, corresponds to a change in the overall yield in the objective function. This change in profit is 

calculated for every reservoir and every time step and is described by the dual variables. Since all the 

previous resources are already allocated within the time stages in the objective function, the one unit of 

water is used at the next fortunate possibility which is either now or at a later point in time. Accordingly, 

this marginal value solves the decision between here and now or wait and see for better prices that exceed 

the dual variable. If the prices for the calculation would be exactly the same as in reality, then the water 

value-based steering should result in exactly the same power plant dispatch as planned. For the 

mathematical formulation of duality in linear programming, see chapter 4.1.1. To obtain dual variables 

from MILPs an intermediate step is required. First, the MILP is solved regularly and secondly, as an LP with 

the integer variables as constants so that the dual variables of the reservoir filling can be obtained. This is 

necessary to bypass a possible change of the integer variables in the primal basis.  

Stochastic optimization includes uncertainty. Solving for example the deterministic equivalent of a 

stochastic model yields to a set of optimal points and decisions for each path and time step. This has the 

great advantage that for every real-life situation an equivalent set were calculated in the model providing 

optimal steering. This is similar to the optimal dispatch in linear optimization, if the prices were known 

beforehand. But since solving the whole stochastic problem is too time-consuming, approximation 

techniques were introduced. The well-known stochastic optimization technique SDDP solves faster but 

does not generate optimal points for each realization of the underlying data, e. g. prices or inflows. The 

problem is just solved for several scenarios that include the information of all input data and generates 

the in average optimal strategy. Therefore, the expected value of the water in the reservoirs can be used. 

SDDP water values can be retrieved form the approximations of the sub problems using the lowest valued 

active cutting plane, see Figure 33. For further information see chapter 6.1.  

For the utilization of water values, it is important to understand origin and the mode of action. Water 

values, dual variable or cutting plane based, refer to a specific point in time and are based on an underlying 

power plant schedule. Furthermore, the interpretation of water values for seasonal storages and daily 

storages is different. For a seasonal storage, the water value is not very sensitive towards price changes, 

since normally enough water is available in the reservoir to participate in high prices; the water level 

changes little in comparison to the overall volume size during two optimizations. The interpretation of 

water values for daily pumped storages is different and difficult, since the sensitivity in respect to the 

prices is high. That means that the power plant steering is very fragile in terms of price changes during 

the operation. Hence, this method is better used for large reservoirs or, if the optimization is performed 

more often, also for daily pumped hydropower storages. In practice, such water values should not change 



 

75 

 

significantly over the time between two optimizations. If the period between two optimizations is too 

long, so that the water values fluctuate, the application of water values based steering can lead to a 

circular reference. Nevertheless, if the time between two calculations is sufficiently small, as for example 

every hour, this drawback could be bypassed even for daily pumped hydropower storages.  

3.4.2. Shadow Prices 

For marketing pumped hydropower storages a suitable transition of the water values into steering 

parameters is necessary. The transition is needed because of two reasons: Water values, as described 

above, chapter 3.4.1, are difficult to use as direct trading support since they are mostly given in [€/𝑚3], 

whereas the electricity is traded in [€/𝑀𝑊ℎ]. Furthermore, the water value is given for every reservoir 

but does not indicate when to use a specific pump or a turbine. Below, an approach is introduced that 

solves the transition problem and defines the needed bidding strategy. A second approach from literature 

is presented afterwards. At last, a few obstacles are pointed out. 

The marginal value of the water 𝜆𝑡,𝑟 for reservoir 𝑟 ∈ 𝑅 in time step 𝑡 ∈ 𝑇 is distinguished from the 

shadow price 𝒮𝑡,𝑚, which determines the price of releasing one unit of water through a respective turbine 

or pump machine 𝑚 ∈ 𝑀 in time step 𝑡 ∈ 𝑇. The marginal water values are obtained from the dual 

variables of a linear program, or retrieved form the active cutting planes of SDDP. Determining the 

difference between the upper and the lower reservoir water value, multiplied with the flow through rate 

𝑞(𝑚) of the respective turbine or pump machine 𝑚 in-between the two reservoirs and dividing with the 

power of the turbine 𝑢(𝑡) or pump 𝑝(𝑡) results in the turbine and pump shadow prices 𝒮𝑡,𝑚
𝑢  and 𝒮𝑡,𝑚

𝑝
. The 

term 𝑟𝑚 describes all reservoirs 𝑟 located above the machine 𝑚 in the cascade. Vice versa, 𝑚𝑟 defines all 

reservoirs 𝑟 that are located below the machine 𝑚. The dual variables of the reservoir filling level 

equations are given in the unit [€/𝑚3], the flow through rate in [𝑚3/ℎ] and the power of the machines 

in [𝑀𝑊]. The shadow prices are now given in [€/𝑀𝑊ℎ] and can provide decision support for real-life 

trading and dispatch. With a turbine efficiency 𝜂𝑚 and a pump efficiency 𝜌𝑚 in [
𝑚3

𝑀𝑊ℎ
],  

  𝜂𝑚 =
𝑞𝑚

𝑢𝑚𝑎𝑥
,  𝑚 = 1,… ,𝑀  (1) 

 

 
 

𝜌𝑚 =
𝑞𝑚

𝑝𝑚𝑎𝑥
,  𝑚 = 1,… ,𝑀  

𝑡 = 1,… , 𝑇  

(2) 

 

the shadow price of a turbine 𝒮𝑡,𝑚
𝑢  is defined as: 

 

 

𝒮𝑡,𝑚
𝑢 = (∑ 𝜆𝑡,𝑟𝑟𝑚 −∑ 𝜆𝑡,𝑟𝑚𝑟 )𝜂𝑚  𝑚 = 1,… ,𝑀  

𝑟 = 1,… ,𝑀  

𝑡 = 1,… , 𝑇  

(3) 

 

and for the pumps 𝒮𝑡,𝑚
𝑝

 as: 



 

76 

 

 

 

𝒮𝑡,𝑚
𝑝

= (∑ 𝜆𝑡,𝑟𝑟𝑚 −∑ 𝜆𝑡,𝑟𝑚𝑟 )𝜌𝑚  

 

𝑚 = 1,… ,𝑀  

𝑟 = 1,… ,𝑀  

𝑡 = 1,… , 𝑇. 

(4) 

 

Obviously, using the turbine efficiency and discharge rate, the reservoir filling level can also be converted 

to [𝑀𝑊ℎ] before the optimization which avoids the consideration of the unit [𝑚³] in the optimization. 

Nevertheless, this has the drawback that different efficiencies at different operating states of the turbine 

cannot be considered. Furthermore, complex systems cannot be modeled anymore, as for example an 

upper reservoir that is connected to two lower reservoirs on different elevations and via two different 

machines. 

A good way to convey the principle of water values is the price duration curve method, as illustrated in 

Figure 34. The prices of a price forward curve are sorted in a descending order. Furthermore, it is assumed 

that the reservoir performs just one load cycle during this year with an efficiency of for example 𝜂𝑚 ∙

𝜌𝑚 = 75 %. By following the price duration curve from the highest and from the lowest price side until 

the plant efficiency is reached, the first price for releasing water and first price for pumping water can be 

found. These prices set the marginal water value. The hours for water release equal the hours for pumping 

times the exemplary efficiency. This approach is just a simplified illustration with two different 

efficiencies. If the expected prices over the course of the year fluctuate a new price duration curve and 

new marginal water values need to be considered.  

 

 

Figure 34 Exemplary price duration curve over the course of one year. Efficiency, reservoir size and 
inflows determine the number of pumping and generating hours and therefore the marginal prices.  
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3.4.3. Strategy 

This part continuous with the actual trading and the application of the shadow prices on the markets. The 

quantity of energy that can be traded for the shadow price depends on the size of the reservoirs. 

Theoretically, the shadow price, as defined above, holds just for a marginal small unit of energy, e. g. 

1 MWh. Nevertheless, for seasonal pumped hydropower storages the shadow price is also applicable to 

larger quantities of energy, because a short-term dispatch or inflows do not have a significant influence 

on the reservoir level itself. The smaller a reservoir the more limited is the use of the here introduced 

shadow price.  

The calculation of shadow prices is further strongly connected to the definition of a trading strategy. The 

strategy suggested here is rather simple. If the shadow price of the turbine is below the observed market 

price the turbine is used with full power. The pump is used at full power if the shadow price for the pump 

is above the observed market price. Otherwise turbine and pump stand still.  

One obstacle of this approach are unprecise bidding curves. This is also due to the simplifications in the 

optimization models. In theory, adding up the pumps with their respective water values followed by the 

water values of the turbines lead to the bidding curve. But even for simple systems the resulting bidding 

curve is neither continuous nor linear. This is because of various reasons, such as specific operating zones 

of turbines, the integer characteristic of pumps (which can mainly just be switched on and off) but also 

due to varying start-up times.  

Another approach to support the bidding process, is to firstly calculate water values and secondly apply 

them in an operational simulation (Abgottspon, 2015b, p. 133). The Simulation can be a MILP using the 

prior calculated water values as opportunity costs to find the optimal hourly operation. For every possible 

quantity of energy produced a simulation is done to find the optimal dispatch of each pumped 

hydropower storage. The simulation takes into account the operating zones of the turbines and the 

physical layout of the power plant portfolio. The results define the marginal production cost curve of the 

overall pumped hydropower storage system. This cost curve can be used with the already defined trading 

strategy. This approach is more complicated and might be necessary for a more detailed resolution of 

water values.  

Most approaches in literature consider just the hourly day-ahead market in the optimization and for the 

determination of the bidding strategy. This needs to be enhanced since the various kinds of daily as well 

as seasonally pumped hydropower storages are dispatched on all short-term energy markets to exploit 

these price spreads as well. Therefore, one challenge for steering strategies results from the consideration 

of more than one market in the optimization and trading, which of course increases the complexity 

significantly and will be discussed in part B in detail.  
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4. Mathematical Problem Formulation 

In this chapter, the hydropower scheduling optimization problem is formulated, and the notational 

framework introduced. The formulations of the canonical models are based on the operations research 

and mathematical programming community notations. The purpose of the schedule optimizations is 

either a minimization of costs or a maximization of revenues while fulfilling all restrictions and obligations. 

The following equations are always needed for the problem formulation: 

• objective function (maximize return) 

• reservoir balancing equation 

• maximum and minimum reservoir filling levels 

• maximum and minimum turbine and pump capacity 

• reservoir filling levels at the beginning and the end 

The reservoir filling level at the end denotes the water value beyond the optimization period.  

Energy can be generated with turbines and feed into the grid when water is released from an upper into 

a lower reservoir. Reservoirs are either filled by natural inflows or water that is pumped form a lower 

reservoir into the upper while consuming energy from the grid. When to release water and use resources 

depends on the expectations on the future and therefore are a trade-off between selling now or later. 

This generates an optimization problem that is coupled in time over the whole planning horizon.  

To solve the hydropower scheduling problem, a bouquet of possibilities is available. It need to be 

distinguished between the problem formulation and the optimization technique or solution approach. 

Different solution techniques demand specific problem formulations. The most restrictive problem 

formulations are linear problems. Such problems can be generally solved by every solution technique. A 

non-linear problem formulation limits the optimization techniques to non-linear programs and heuristics. 

Stochastic optimization techniques require a stochastic problem formulation. Which optimization 

technique is applied depends on the available input parameters, the intended optimization results, the 

limits given by computer and software engineering as well as the advantages and disadvantages of the 

optimization techniques itself. The latter are concisely presented in Table 8 for linear, mixed-integer 

linear, non-linear, stochastic as well as stochastic dynamic programming. Furthermore, also heuristic 

methods are included although not applied in this thesis. Linear methods can be used to include a high 

level of details and still find an optimal solution in very limited time. With non-linear problems all kind of 

facets can be modelled but rather solved anymore. Such problems should therefore be avoided as far as 

possible. For stochastic problems several methods have been developed that facilitate to solve even large 

problems, although the course of dimensions is still the greatest challenge. Heuristics are the most flexible 

approaches, but the quality of the solutions is difficult to estimate. 

In this chapter, the mathematical problem formulations for the here mentioned optimization techniques 

are formulated. Beginning with a short historic overview and the origin of the optimization techniques the 

respective general problem formulations are presented. Afterwards the problems are applied on a two-

stage pumped hydropower scheduling problem and subsequently extended to a multistage pumped 

hydropower storage problem. In chapter 4.1 the deterministic, in chapter 4.2 the stochastic and in chapter 

4.3 the (stochastic) dynamic problem is introduced.  
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Table 8 Comparison of optimization techniques. Based on (Dorfner, 2017; Kuhn, 2013) 

 advantages disadvantages 

linear 
programming 

• finds global optimal solution 

• scales well with large systems 

• standard software available 

• very limited for modelling 
complexity e. g. stochastics, 
integers, non-linearities 

mixed-integer 
linear 

programming 

• quality of the solution can be assessed 

• scales quite well with large systems  

• standard software available 

• representation of integer values possible 

• limited for modelling 
complexity e. g. stochastics 
non-linearities 

non-linear 
programming 

• high degree of freedom 

• nearly all complexities can be modelled 

• scales unfavorable with large 
systems 

• quality of solution not defined 
(convexity issues) 

stochastic 
programming 

• quality of the solution can be assessed 

• representation of stochastic 

• curse of dimensionality 

• scales unfavorable with large 
systems 

(stochastic) 
dynamic 

programming 

• quality of the solution can be assessed 

• scales ok with large systems 

• representation of stochastic 

• scales unfavorable with large 
systems 

• complex modelling 

• no standard software available 

heuristics 

• high degree of freedom 

• nearly all complexities can be modelled 

• solves normally very quickly 

• bouquet of solution methods 

• quality of solution difficult to 
estimate 

• no standard software available 

4.1. Deterministic Problem 

Already in the year 1940 George Danzig introduced linear programming as a method to solve 

mathematical problems. Linear Optimization, until today, is wildly used to solve complex problems that 

are formulated in a particular structure of objective function and constraints. The objective function gives 

the solution to the min- or maximization formulation. Whereas profit, size or distance are common 

maximizations, time and costs pertain to the class of minimization problems. The constraints determine 

the limited and often restricted resources. The optimal solution of such problems is called a policy. 

Although small problems with just a few constraints can be solved graphically or with Danzig’s simplex 

tableaus, computer algorithms for deterministic programming can solve problems with millions of 

variables and thousands of constraints. One challenge that cannot be tackled with deterministic 

optimization is an unknown future. Unknown are for example the weather conditions of the next year 

that can be either stochastically or deterministically estimated. Deterministic means that the result of the 

calculus is unique for any input. The process to generate this output is called the algorithm. 
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4.1.1. General Formulation 

Linear Program 

A linear optimization problem solved with a linear program or optimization is the task to maximize or 

minimize a linear function satisfying linear constraints. The function to be minimized or maximized 𝑓(𝑥) 

is called objective function and the variables 𝑥 are named decision variables. In vector notation, the 

problem formulates as:  

𝑃: min
𝑥

 𝑓(𝑥) = 𝑐𝑇𝑥   (5) 

 𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏,  𝑥 ≥ 0, 

 

where 𝑐 is a vector of costs coefficients or resources, the resource limitation is 𝐴 and the limit of resource 

availability is described with 𝑏.  

This formulation is a prominent subtype of convex optimization. It is called standard or canonical form 

because every linear optimization problem can be converted into this form. Nevertheless, the assumption 

of linearity in the objective function and the constraints limits the amount of problems that can be solved 

significantly.  

Dual Program 

Optimization problems can be viewed form two sides, the primal problem and the dual problem. The 

strong duality principle states that for every primal problem with an optimal solution there is a respective 

dual problem with the identical solution. This holds true for convex problems that fulfill the Karush-Kuhn-

Tucker conditions including the constraint qualifications (Boyd & Vandenberghe, 2004). In all other cases 

the duality gap, the difference between the primal and the dual solution is strictly positive and weak 

duality holds true. In this event the solution of the dual problem provides a lower bound to the solution 

of the original primal minimization problem and vice versa an upper bound of the primal maximization 

problem. The dual problem for the linear primal problem formulates as  

𝐷: max
𝑦

 𝑔(𝑦) = 𝑏𝑇𝑦   (6) 

 𝑠. 𝑡. 𝐴𝑇𝑦 ≥ 𝑐,  𝑦 ≥ 0, 

 

with 𝑔(𝑦) as the optimal solution value and 𝑦 the dual variables, representing the marginal value of a 

resource.  

The economic interpretation of the dual problem is as important as the solution of the problem itself. In 

economic theory, every limited resource has a value. The primal problem allocates a value to the limited 

resource. The dual problem calculates the marginal value of the resource. The marginal value is the change 

of the optimal solution of the objective function, if a limiting resource (here 𝑏) in the primal problem 

changes by one unit. This change is used to quantify the value of the resource for the optimization 

problem.  
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Non-linear Program 

A non-linear problem is a generalization of a linear problem. Therefore, non-linear programming or 

optimization is the task to maximize or minimize a function satisfying constraints with at least one of them 

being non-linear. Non-linear problems are much more complicated to solve due to convexity issues. The 

standard form of the no-linear optimization problem formulates as: 

 

𝑃: min
𝑥∈𝒳

 𝑓(𝑥) = 𝑐𝑇𝑥   (7) 

 𝑠. 𝑡. 𝑔(𝑥) ≤ 0,  

ℎ(𝑥) = 0, 

𝑥 ∈ ℝ𝑛  

𝑥 ∈ ℝ𝑛, 

 

with 𝑥 ∈ ℝ𝑛 as the space of possible solutions. The solution space of the objective function to be 

minimized is 𝑓: ∈ ℝ𝑛 →ℝ𝑚. Nevertheless, due to the standard form every minimization problem can be 

converted in a maximization problem and vice versa by negating the objective function. Furthermore, 

𝑔: ℝ𝑛 →ℝ𝑚 represents 𝑚 inequality constraints and ℎ: ℝ𝑛 →ℝ𝑝 images 𝑝 equality constraints. 

Consequently, ℱ as the constraint set of feasible solutions is a subset of the solution domain 𝒳 which 

satisfies all constraints.  

 ℱ = {𝑥 ∈ 𝒳|𝑔(𝑥) ≤ 0 ∧ ℎ(𝑥) = 0}   (8) 

 

The above formulated standard form can be formulated equivalently using the constrained set definition 

and without any explicit constraint:  

 min
𝑥∈ℱ

 𝑓(𝑥).  (9) 

 

Nonetheless, for solving optimization problems the explicit formulation is essential.  

Quadratic Program 

The simplest form of non-linear problem formulations are quadratic problems, whereas it can be 

differentiated between quadratic formulations in the objective function, the constraints or both. The 

problem can be formulated similarly to the initial linear problem with the 𝑛-dimensional vector 𝑐 and the 

𝑛 × 𝑛-dimensional matrix 𝑄. The matrix 𝐴 is 𝑚 × 𝑛-dimensional and the vector 𝑏 is 𝑚-dimensional. That 

means the problem has 𝑛 variables and 𝑚 constraints. The objective of the optimization is to find the 

optimal value for the 𝑛-dimensional vector 𝑥, with 𝑥𝑇 as the transpose. Below an example with a quadratic 

term integrated into the objective function is presented. 

𝑃: min
𝑥

 𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥   (10) 

 𝑠. 𝑡. 𝐴𝑥 = 𝑏,  𝑥 ≥ 0  
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If 𝑄 = 0, the problem is linear. If the matrix 𝑄 and in case of quadratic constraints the respective matrixes 

are positive semidefinite, the problem is part of the class of convex optimization problems which is a 

strong advantage for solving. In a particular case, the quadratic problem can be reformulated as a second 

order cone problem (SOCP) which is also part of convex optimization.  

Mixed Integer Program 

A special form of linear and non-linear programs are mixed integer (non-) linear programs. The allowance 

of integers, often binaries with {0,1} results in a non-continuous optimization. Such problems are stated 

as discrete optimizations. There is no structural difference to the linear optimization problem formulation 

with at least one integer variable. If all components of 𝑥 are integer values the problem is assigned to the 

group of integer programming. For at least one 𝑥𝑗 of 𝑥 as integer the problem is referred as mixed integer 

programming. With the domain 𝑥 ∈ 𝑆 the problem can be generally formulated with 𝑆 = ℝ𝑟  × ℤ𝑛−𝑟 as: 

𝑃: min
𝑥∈𝑆

 𝑓(𝑥) = 𝑐𝑇𝑥   (11) 

 𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏,  𝑥 ≥ 0. 

 

Parts of the 𝑥 vector are therefore real numbers and other integers.  

Convexity 

With the first and second derivative of a function the optimality conditions for local minima and maxima 

can be given. The derivative is a local information of a function and therefore also spatially limited. 

Nevertheless, with convexity, as a global characteristic, every local optimum is also a global optimum. This 

follows from the following definition and corollary.  

Definition: A set 𝑀 ⊆ ℝ𝑛 is convex, if ∀𝑥, 𝑦 ∈ 𝑀, 𝜆 ∈ (0,1): (1 − 𝜆)𝑥 + 𝜆𝑦 ∈ 𝑀 is true, which means the 

connection of any two points in 𝑀 is part of 𝑀. For a convex amount 𝑀 ⊆ ℝ𝑛 the function 𝑓:𝑀 → ℝ is 

convex (on 𝑀), if ∀𝑥, 𝑦 ∈ 𝑀, 𝜆 ∈ (0,1): 𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦). That means the graph 

of the function 𝑓 runs below every of its secants.  

The convexity of continuous differentiable functions can be shown using the first order Taylor expansion. 

The C1-characterzation of convexity states the following: On a convex amount 𝑀 ⊆ ℝ𝑛 is a function 𝑓 ∈

𝐶1(𝑀,ℝ) convex, if and only if ∀𝑥, 𝑦 ∈ 𝑀, 𝑓(𝑦) ≥ 〈∇𝑓(𝑥), 𝑦 − 𝑥〉 holds true. The central theorem for 

continuous differentiable convex optimization problems is a far-reaching intensification of the Fermat’s 

theory. For the corollary 𝑓 ∈ 𝐶1(𝑀,ℝ) be convex, then, the critical points of 𝑓 are exactly the global 

minima of 𝑓. Hesse matrices are important to prove convexity of twice continuously differentiable 

functions. The theorem of the C2-characterzation of convexity states: A function 𝑓 ∈ 𝐶2(ℝ𝑛, ℝ) is convex, 

if and only if ∀𝑥 ∈ ℝ𝑛: 𝐷2𝑓(𝑥) ≽ 0 holds true.  

The convexity property is very useful for every kind of iterative search algorithm. In case the solution 

algorithm yields a minimum, the search can be stopped since every local minimum is also a global 

minimum and the remaining solution space no longer needs to be searched. For the above formulated 
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optimization problems, the domain 𝒳 must be convex, the equality constraints ℎ must be affine and the 

inequality constraints 𝑔 must be a vector of convex functions.  

4.1.2. Application to Hydropower Optimization 

The classic deterministic linear optimization is suitable and practically used in nearly every short- and mid-

term optimization and sometimes also in long-term optimization of hydropower scheduling problems. For 

deterministic method contemplation, prices, inflows and other stochastic variables are taken as known 

beforehand. Although deterministic optimization is often criticized and entitled to be inferior it is still 

widely used in practice. Developments, such as multi scenario or successive linear programming increased 

the field of application. The usability of linear optimization in terms of computation time is very high 

(Belsnes et al., 2005). In this part the general hydropower scheduling problem is formulated maximizing 

the profit and using the following constraints, parameters and variables.  

 

State variable:  

• reservoir filling level [1000m³]:  𝑣𝑡,𝑟 

Decision variables: 

• turbine capacity [MW]:  𝑢𝑡,𝑚, 

• pump capacity [MW]:  𝑝𝑡,𝑚,  

• spillage [1000m³]:  𝑠𝑡,𝑟,  

Sets: 

• time stages [flexible, e. g. hourly]:  𝑡 = 1,… , 𝑇 

• reservoirs:  𝑟 = 1,2 

• machines:  𝑚 = 1 

• machine below reservoir:  m∈ 𝑟𝑚 

• machine above reservoir:  𝑚 ∈ 𝑚𝑟 

Parameters: 

• prices [€/MWh]:   𝑐𝑡 , 

• inflows [1000m³]:   𝑣𝑡,𝑟
𝑖𝑛 ,  

• specific discharge turbine [1000m³/MWh]: 𝜂𝑚, 

• specific charge pump [1000m³/MWh]:  𝜌𝑚, 

• limits for spillage [1000m³]:  𝑠𝑡,𝑟
𝑚𝑖𝑛, 𝑠𝑡,𝑟

𝑚𝑎𝑥,  

• limits for filling level [1000m³]:  𝑣𝑡,𝑟
𝑚𝑖𝑛, 𝑣𝑡,𝑟

𝑚𝑎𝑥, 

• start filling level [1000m³]:  𝑣𝑡,𝑟
𝑠𝑡𝑎𝑟𝑡, 

• end filling level [1000m³]:  𝑣𝑡,𝑟
𝑒𝑛𝑑, 

• limits for turbine capacity [MW]:  𝑢𝑡,𝑚
𝑚𝑖𝑛, 𝑢𝑡,𝑚

𝑚𝑎𝑥, 

• limits for pump capacity [MW]:  𝑝𝑡,𝑚
𝑚𝑖𝑛, 𝑝𝑡,𝑚

𝑚𝑎𝑥, 

• limits for filling level [1000m³]:  𝑣𝑡,𝑟
𝑚𝑖𝑛, 𝑣𝑡,𝑟

𝑚𝑎𝑥, 
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• limits for turbine capacity [MW]:  𝑢𝑡,𝑚
𝑚𝑖𝑛, 𝑢𝑡,𝑚

𝑚𝑎𝑥, 

 

The general problem is firstly formulated for a simple two reservoir system connected with a 

hydropower machine consisting of a pump and a turbine to transfer the water within the reservoirs. This 

is illustrated in Figure 35. Further important parameters are the reservoir filling levels which also depend 

on inflows and spillages. The very first problem is just formulated for two time stages. Secondly, the 

problem is extended considering multiple time stages and, furthermore, an optional pumped 

hydropower storage layout to describe even complex systems.  

 

 

Figure 35 Diagram of a pumped hydropower storage with two reservoirs  

Two Stage Problem 

The two-stage problem formulates as: 

𝑚𝑎𝑥
𝑢,𝑝,𝑠,𝑣

 𝑐1(𝑢1 − 𝑝1) + 𝑐2(𝑢2 − 𝑝2)   (12) 

𝑠. 𝑡. 𝑣1,1 + 𝑠1,1 − 𝜌𝑝1 + 𝜂𝑢1 = 𝑣1
𝑎𝑛𝑓

+ 𝑣1,1
𝑖𝑛   

𝑣1,2 + 𝑠1,2 + 𝜌𝑝1 − 𝜂𝑢1 = 𝑣2
𝑎𝑛𝑓

+ 𝑣1,2
𝑖𝑛   

𝑣2,1 − 𝑣1,1 + 𝑠2,1 − 𝜌𝑝2 + 𝜂𝑢2 = 𝑣2,1
𝑖𝑛   

𝑣2,2 − 𝑣1,2 + 𝑠2,2 + 𝜌𝑝2 − 𝜂𝑢2 = 𝑣2,2
𝑖𝑛   

 

 

 𝑣𝑟
𝑚𝑖𝑛 ≤ 𝑣𝑡,𝑟 ≤ 𝑣𝑟

𝑚𝑎𝑥  𝑡, 𝑟 = 1,2, 𝑡 = 1,2   

 0 ≤ 𝑝𝑡 ≤ 𝑝
𝑚𝑎𝑥  𝑡 = 1,2   

 0 ≤ 𝑢𝑡 ≤ 𝑢
𝑚𝑎𝑥   𝑡 = 1,2   

 0 ≤ 𝑠𝑡,𝑟  𝑡, 𝑟 = 1,2   

 

with the objective function at the first place and, in this order, the constraints reservoir filling level for 

𝑟 = 1, 𝑡 = 1, reservoir filling level for 𝑟 = 2, 𝑡 = 1, reservoir filling level for 𝑟 = 1, 𝑡 = 2, reservoir filling 
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level for 𝑟 = 2, 𝑡 = 2, reservoir limits, pump machine limits, turbine machine limits and spilling. The 

parameter 𝑣𝑟
𝑚𝑖𝑛 and 𝑣𝑟

𝑚𝑎𝑥 define the minimum and maximum filling levels of the reservoirs, 𝑣𝑟
𝑎𝑛𝑓

 are the 

start filling levels in 1000m³ of the reservoir 𝑟 = 1,2 and the pump and turbine capacity limits are 

described by 𝑝𝑡 and 𝑢𝑡 for the two time stages 𝑡 = 1,2. 

The problem can be formulated in matrix notation by aggregating the restrictions. For simplification, 

below, 𝑥𝑡 denotes for the term (𝑢𝑡 − 𝑝𝑡). Furthermore, the reservoir balancing equations have been 

formulated to bring all parameters on the right-hand side and to provide straight forward mathematical 

formulation. To better understand the hydropower storage system the notation can be rearranged so that 

the reservoir filling level equations have just the reservoir filling of the time stage before on the left-hand 

side. Furthermore, inequality constraints of the given example can be reformulated to equality constraints 

using slack variables as it is done in the following canonical form (Pereira & Pinto, 1991). 

𝑃: max
𝑥1,𝑥2

 𝑐1
𝑇𝑥1 + 𝑐2

𝑇𝑥2   (13) 

 𝑠. 𝑡.  𝐴1𝑥1 = 𝑏1 

𝐵2𝑥1 + 𝐴2𝑥2 = 𝑏2  
𝑥1, 𝑥2 ≥ 0  

 

With the vectors 𝑏2 ∈ ℝ
𝑚1  and 𝑏2 ∈ ℝ

𝑚2 as well as 𝑐1 ∈ ℝ
𝑛1 and 𝑐2 ∈ ℝ

𝑛2 the 𝐴1 ∈ ℝ
𝑚1 × 𝑛1 and 𝐴2 ∈

ℝ𝑚2 × 𝑛2 are described as regression matrices and 𝐵2 ∈ ℝ
𝑚2 × 𝑛1 as technology matrix. 

Here, the construction and the filling of the vectors and matrices is explained whereas in the following 

work this is shortened by using matrix notation. The vectors 𝑥1 ∈ ℝ
𝑛1 and 𝑥2 ∈ ℝ

𝑛2 include the decision, 

state and slack variables.  

𝑥1 =

(

 
 
 
 
 
 
 
 
 

𝑣1,1
𝑠1,1
𝑝1
𝑢1
𝑣1,2
𝑠1,2
𝜖1,1
𝜖1,2
𝜖1,3
𝜖1,4
𝜖1,5
𝜖1,6)

 
 
 
 
 
 
 
 
 

     𝑥1 =

(

 
 
 
 
 
 
 
 
 

𝑣2,1
𝑠2,1
𝑝2
𝑢2
𝑣2,2
𝑠2,2
𝜖2,1
𝜖2,2
𝜖2,3
𝜖2,4
𝜖2,5
𝜖2,6)

 
 
 
 
 
 
 
 
 

 

The entries of 𝜖𝑟, with 𝑟 = 1,… ,6 characterize the slack variables that are used to generate equality 

constraints. The coefficient vectors in the objective function are filled up with nulls.  
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𝑐1 =

(

 
 
 
 
 
 
 
 

0
0
𝑐1
−𝑐1
0
0
0
0
0
0
0
0 )

 
 
 
 
 
 
 
 

    𝑐2 =

(

 
 
 
 
 
 
 
 

0
0
𝑐2
−𝑐2
0
0
0
0
0
0
0
0 )

 
 
 
 
 
 
 
 

 

 

The regression and technology matrices are defined as below:  

 

𝐴1 = 𝐴2 =

(

 
 
 
 
 

1 1 −𝜌
0 0 𝜌
1 0   0 
0 0   0
1 0   0
0 0   0

 

0 0   1 
0 0   0 

𝜂 0 0
−𝜂 1 1
0 0 0
 0  1 0
 0  0 0
 0  1 0
 0  0 0
 1  0 0

0  0   0
0  0   0
1  0   0
 0  1  0
 0  0 −1
 0  0  0
0  0   0
0  0   0

  0  0 0
  0  0 0
  0  0 0
 0 0 0
 0 0 0
−1 0 0
  0  1 0
  0  0 1)

 
 
 
 
 

 

 

𝐵2 =

(

 
 
 
 
 

−1 0 0
   0 0 0
   0 0 0
   0 0 0
   0 0 0
   0 0 0
   0 0 0
   0 0 0

0    0 0
0 −1 0
0    0 0
0    0 0
0    0 0
0    0 0
0    0 0
0    0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0)

 
 
 
 
 

 

 

𝑏1 =

(

 
 
 
 
 
 
 

𝑣1
𝑎𝑛𝑓

+ 𝑣1,1
𝑖𝑛

𝑣2
𝑎𝑛𝑓

+ 𝑣1,2
𝑖𝑛

𝑣1
𝑚𝑎𝑥

𝑣2
𝑚𝑎𝑥

𝑣1
𝑚𝑖𝑛

𝑣2
𝑚𝑖𝑛

𝑝𝑚𝑎𝑥

𝑢𝑚𝑎𝑥 )

 
 
 
 
 
 
 

     𝑏2 =

(

 
 
 
 
 
 
 

𝑣1
𝑎𝑛𝑓

+ 𝑣2,1
𝑖𝑛

𝑣2
𝑎𝑛𝑓

+ 𝑣2,2
𝑖𝑛

𝑣1
𝑚𝑎𝑥

𝑣2
𝑚𝑎𝑥

𝑣1
𝑚𝑖𝑛

𝑣2
𝑚𝑖𝑛

𝑝𝑚𝑎𝑥

𝑢𝑚𝑎𝑥 )

 
 
 
 
 
 
 

. 

Multistage Problem 

The just described two stage problems can also be formulated as a multistage program with infinity time 

stages. The return of each time step is summarized in the objective function. The reservoir balancing 

equations are defined for every time step to secure consistent filling levels. The remaining restrictions are 
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valid for the whole-time period. The crucial point that links the time steps together is the question on 

when to release the water. The extended problem formulates as follows: 

𝑃: max
𝑥1,…,𝑥𝑇

 ∑ 𝑐𝑡
𝑇𝑥𝑡 + 𝑐𝑡

𝑇𝑥𝑡
𝑇
𝑡=1    (14) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1  

𝐵𝑡𝑥𝑡−1 + 𝐴𝑡𝑥𝑡 = 𝑏𝑡  

𝑥1, 𝑥2 ≥ 0,  

 

𝑡 = 1, . . , 𝑇  

𝑡 = 1,… , 𝑇  

 

If more than two reservoirs need to be considered the problem can be easily extended. But it is important 

to define how the storages are connected.  

The above introduced two-reservoir hydropower scheduling problem can be formulated as a multistage 

multi-reservoir problem: 

𝑚𝑎𝑥
𝑢,𝑝,𝑠,𝑣

 ∑ 𝑐𝑡(𝑢𝑡 − 𝑝𝑡)
𝑇
𝑡=1    (15) 

𝑠. 𝑡. 𝑣𝑡,𝑟 = 𝑣𝑡,𝑟
𝑎𝑛𝑓

− 𝑠𝑡,𝑟 + 𝑣𝑡,𝑟
𝑖𝑛 + 𝜌𝑝𝑡,𝑚 − 𝜂𝑢𝑡,𝑚  

𝑣𝑟
𝑚𝑖𝑛 ≤ 𝑣𝑡,𝑟 ≤ 𝑣𝑟

𝑚𝑎𝑥  

0 ≤ 𝑝𝑡,𝑚 ≤ 𝑝𝑚𝑎𝑥  

0 ≤ 𝑢𝑡,𝑚 ≤ 𝑢𝑚𝑎𝑥   

0 ≤ 𝑠𝑡,𝑟  

∀𝑡, 𝑟,𝑚  

∀𝑡, 𝑟  

∀𝑡,𝑚  

∀𝑡,𝑚  

∀𝑡, 𝑟 . 

 

With 𝑟 as the number of reservoirs, 𝑚 the number of turbine and pump machines as well as 𝑡 the time 

stages of the optimization.  

4.2. Stochastic Problem 

Stochastic programming generalizes deterministic programming towards using random parameters, 

whereas the probability distribution for these parameters is assumed to be known or is estimated. The 

goal of stochastic optimization models is therefore to find a policy that is feasible for all or most 

expressions of the input parameters.  

Dealing with uncertainties in optimization problems began in the early 50’s and late 60’s. One of the first 

stochastic programming applications was hydropower scheduling. The need for stochastic programming 

originated in the challenge to estimate and consider future inflows. If not one precise forecast could be 

given at least an inflow probability distribution were guessed. A then generated stochastic optimization 

based policy was feasible for various realizations of the actual inflows. Massé, as was Little, were pioneers 

which applied stochastic programming as one of the first to a simple hydropower storage optimization 

problem more than 60 year ago. (Little, 1955; Masse, 1946). And to be noted, no computers existed that 

time to solve such complicated problems. Whereas the basic problem still exists it has been extended as 
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numerous books on stochastic programming show (Birge & Louveaux, 2011; Kall & Mayer, 2011; King & 

Wallace, 2012). 

4.2.1. General Formulation 

The classical two-stage linear stochastic problem is formulated similar to deterministic problems adding 

an expectation on the future, with at least one random vector. It is formulated as: 

 min
𝑥∈ℝ𝑛

 𝑐𝑇𝑥 + 𝐸𝜉[𝑄(𝑥, 𝜉)]   (16) 

 𝑠. 𝑡. 𝐴𝑥 = 𝑏  𝑥 ≥ 0 , 

 

with 𝑄(𝑥, 𝜉) as the optimal value of the second-stage problem which is formulated as: 

 min
𝑦∈ℝ𝑚

 𝑞(𝜉)𝑇𝑦   (17) 

 𝑠. 𝑡. 𝑇(𝜉)𝑥 +𝑊(𝜉)𝑦 = ℎ(𝜉)  𝑦 ≥ 0 . 

 

The first stage decision variable is 𝑥 ∈ ℝ𝑛 and the second stage decision variable is 𝑦 ∈ ℝ𝑚. The data for 

the second stage problem is contained in the random vector 𝜉(𝑞, 𝑇,𝑊, ℎ), also referred as probability 

vector. On the first stage, a “here-and-now” decision 𝑥 must be made before the realization of the 

uncertain data in the random vector 𝜉 is revealed. At the second stage, after a realization of 𝜉 becomes 

available, the respective problem is solved.  

At the first stage, the problem plus the expected value of the second stage is solved. The second stage 

problem is either seen as the optimal behavior when the uncertain data is known or is considered as a 

recourse action with the compensation 𝑊𝑦 for a possible inconsistency of the system 𝑇𝑥 ≤ ℎ. The value 

of the recourse action is defined by 𝑞𝑇𝑦.  

Crucial point is the unknown parameter that is modeled as a random vector 𝜉 with a known probability 

distribution that is part of the second stage data. The distribution assumption is an important part of the 

problem formulation. A common approach is the discretization of the random vector 𝜉 into scenarios.  

For the multistage optimization of pumped hydropower storages either scenario trees (Jacobs et al., 1995) 
or Benders cuts (Shapiro, 2012) can be used, whereas the latter solves a specialized problem using a 

stochastic dual decomposition procedure, also referred as stochastic dual dynamic programming (SDDP) 

(Pereira & Pinto, 1991), see chapter 4.3.  

4.2.2. Application to Hydropower Optimization 

In this part, energy prices and inflows are considered as not given beforehand. A stochastic pumped 

hydropower storage model is introduced to deal with this uncertainty. No influence on the price, i.e. 

unlimited market depth, is assumed. The uncertainty is defined by random vectors. The triple (Ω,𝒜,𝒫) 

defines the probability space with the set of events Ω, the 𝜎-Algebra 𝒜 over Ω and the probability 

measure 𝒫:𝒜 → [0,1]. Let 𝜉 be the random vector on (Ω,𝒜,𝒫). The distribution function 𝐹𝜉(𝑥) =
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𝒫({𝜔: 𝜉(𝜔) ≤ 𝑥}) of 𝜉 is known. Let 𝜉𝑡 be the random vector of the set of elements Ω𝑡  for each time step 

𝑡 = 1,… , 𝑇 and 𝜉 = (𝜉2, … , 𝜉𝑇). With 𝜔 ∈ Ω is a possible set of events. The conditional set of events is 

given by (Ω𝑡|𝜔𝑡−1), if 𝜔𝑡−1 ∈ Ω𝑡−1 is realized.  

Multistage Model 

A multistage formulation is superior to a single-stage optimization because decisions at an early stage 

affect decisions at later stages. The myopic view in the rolling horizon manner solving every single-stage 

problem separately does not take that into account. The problem is defined as non-anticipative. That 

means that every decision on each time step needs to be taken without the information of the realization 

of the stochastic process on the following time steps, see Figure 36.  

 max
𝑥1

 𝑐1
𝑇𝑥1 + 𝔼𝜉 [ max

𝑥2(𝜔2)
𝑐2(𝜔2)

𝑇𝑥2(𝜔2) +𝔼𝜉[…  

+𝔼𝜉 [ max
𝑥𝑇(𝜔𝑇)

𝑐𝑇(𝜔𝑇)
𝑇𝑥𝑇(𝜔𝑇)]… ]

𝐼

𝐼
] 

 (18) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1   

  𝐵2𝑥1+𝐴2𝑥2(𝜔2) = 𝑏2(𝜔2),    

 

∀𝜔2 ∈ Ω𝑡−1, 
 

  𝐵𝑡𝑥𝑡−1(𝜔𝑡−1)+𝐴𝑡𝑥𝑡(𝜔𝑡) = 𝑏𝑡(𝜔𝑡),    𝑡 = 3,… , 𝑇, ∀𝜔𝑡−1 ∈
Ω𝑡−1, 𝜔𝑡 ∈ (Ω𝑡|𝜔𝑡−1)  

 

  𝑥1, 𝑥𝑡(𝜔𝑡) ≥ 0,    𝑡 = 2,… , 𝑇   

 

The random vector 𝜉𝑡(𝜔𝑡) = (𝑐𝑡(𝜔𝑡), 𝑏𝑡(𝜔𝑡)) on stage 𝑡 includes an energy price 𝑐 and reservoir 

inflows 𝑏.  

 

 

Figure 36 Decision process of a multistage model 

Scenario Tree Formulation 

In an optimal case, all points of a continuous distribution are possible. But this would require to 

numerically solve multidimensional integrals which is normally not possible (Rebennack, 2016). Therefore, 

the discretization of the distribution of 𝜉 is a possible solution. Hence, the constructed scenario tree 

consists of scenarios 𝑠 = 1,… , 𝑆 with probabilities 𝑝𝑠 > 0 and ∑ 𝑝𝑠
𝑆
𝑠=1 = 1, see Figure 37. By means of 

that scenario tree the whole stochastic program can be approximated and solved as a single linear 

program. This problem is the so called extensive form. If the random vector has a discrete distribution the 

respective linear program denotes as deterministic equivalent of the stochastic problem in scenario tree 

observation
𝜉1

decision     
𝑥1

observation
𝜉1

...
observation

𝜉𝑇

decision   
𝑥𝑇



 

90 

 

formulation. The interested reader is referred to Pflug and Pichler (2014, p. 23) for further information on 

scenario tree formulations. 

 

Figure 37 Scenario tree price development with 𝑡 = 3 and 𝑆 = 6 

Deterministic Equivalent of the Multistage Model 

The above introduced multistage model can be reformulated as a deterministic equivalent. 

 max
𝑥1,𝑥𝑡,𝑠

 𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠

𝑆
𝑠=1 ∑ 𝑐𝑡,𝑠

𝑇 𝑥𝑡,𝑠
𝑇
𝑡=2    (19) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1 

𝐵𝑡𝑥𝑡−1,𝑠+𝐴2𝑥𝑡,𝑠 = 𝑏𝑡,𝑠                                        𝑠 = 1,… , 𝑆,    

 

𝑡 = 2, . . , 𝑇  

  𝑥𝑡,𝑠 = 𝑥𝑡,𝑠̌                                            ∀𝑠 = 1,… , 𝑆 ∧ 𝑠̃ ∈ 𝕊𝑡,𝑠,  𝑡 = 2,… , 𝑇  (20) 

  𝑥𝑡,𝑠 ≥ 0,                                                                   𝑠 = 1,… , 𝑆,    𝑡 = 2,… , 𝑇  

 

The variables 𝑥𝑡,𝑠 denote the decision at time stage 𝑡 in the scenario 𝑠. The set 𝕊𝑡,𝑠 includes all scenarios 

𝑠̃, which correspond at time stage 𝑡 with scenario 𝑠, this applies to all 𝑠 with 𝑠̃ = 1,… , 𝑆 and 𝑡 = 2,… , 𝑇. 

Equation (20) is needed for the non-anticipative modelling and secures that just the previous steps are 

known but not the future, see Figure 38. Comparing with Figure 37, Figure 38 ought to emphasize the 

importance of equation (20). 
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Figure 38 Scenario tree of decision variables with 𝑡 = 3 and 𝑆 = 6 and the respective non-anticipative 
conditions 

 

To approximate stochastic processes a representative and sufficient size of discretization is crucial. This 

results in sizeable scenario trees with a high number of variables. Most of the time these scenario trees 

exceed a critical size so that the linear problem gets practically unsolvable. This effect is called the curse 

of dimensions (Bellman, 1954; Bellman & Dreyfus, 2010)(Bellman, 1954). 

4.3. Stochastic Dynamic Problem 

Dynamic programming is the separation of a problem into a sequence of sub problems which are all 

together easier to solve than the original problem. The principle divide-and-conquer has been developed 

after the second world war by three different research groups in parallel. The mathematical community 

named it multistage stochastic dynamic programming, computer scientists called it reinforcement 

learning and in the field of operations research it is stated as Markow decision process. The breakthrough 

came in the year 1954 when Richard Bellman introduced the term dynamic programming (Bellman, 1954) 

which sets the fundament for the whole research field of dynamic programming (Bellman & Dreyfus, 

2010). Therefore, equation (21) is also called Bellman’s equation, 

 𝑉𝑡(𝑆𝑡) = min
𝑎∈𝐴

(𝐶(𝑆𝑡, 𝑎) + 𝛾 ∑ 𝑝(𝑠′ ∣𝑠′∈𝑆 𝑆𝑡, 𝑎)𝑉𝑡+1(𝑠
′))   (21) 

 

where 𝑆𝑡 is the state at time 𝑡, 𝑎 the typically discete action in set 𝐴, 𝐶(𝑆𝑡, 𝑎) the cost of being in state 𝑆𝑡 

and taking action 𝑎, 𝛾 fixed discount factor, 𝑝( 𝑠′ ∣ 𝑠, 𝑎 ) the probability of transition to state 𝑆𝑡+1 = 𝑠′ if 

one is in state 𝑆𝑡 = 𝑠 and take 𝑎 as well as 𝑉𝑡(𝑠) the value of being in state 𝑆𝑡 = 𝑠 at time 𝑡 and following 

the optimal policy from 𝑡 onward.  
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Today the basic concepts have been extended in all three fields of research. Good overviews from the 

perspective of reinforcement learning (Bertsekas, 2005; Sutton & Barto, 2010; Szepesvári, 2010) and 

operations research (Puterman, 2009) are given. An review of different notational systems is given as well 

(Powell & Meisel, 2016a, 2016b). 

As stochastic hydropower scheduling problems, also stochastic dynamic hydropower scheduling problems 

were of interest for dynamic programming forerunners from the beginning. Nevertheless, it took 10 years 

from Bellman’s publication until the first single reservoir problem was solved by Young (1967) due to 

computational problems. Between the years 1970 and 1990, solving hydropower problems was subject 

of active research. The main results of that time were general stochastic dynamic programming 

algorithms, improved inflow models, considering multi reservoirs, reliability of constraints as well as hydro 

thermal optimizations (Abgottspon, 2015b). The work of Yakowitz (1982) and Stedinger, Sule, and Loucks 

(1984) will give an overview, as it is not possible to reference all work done here.  

4.3.1. General Formulation 

The multistage stochastic problem can be separated into sub problems. The objective function calculates 

the profit from the current time step plus a function that sums up the future expected profit 

independently of the current time step. This corresponds to the dynamic programming approach of 

Bellman (1954).  

Below, the dynamic formulation of the deterministic two stage program is derived and described. The 

feasible set is defined as followed: 

 𝑀 ≔ {(𝑥1, 𝑥2) ∈ ℝ
𝑛1 × ℝ𝑛2|𝐴1𝑥1 = 𝑏1, 𝐵2𝑥1 + 𝐴2𝑥2 = 𝑏2, 𝑥1, 𝑥2 ≥ 0},   (22) 

 

with 𝑥1 as the complicating variable. Below, the feasible set 𝑀 is now separated into the 𝑥1 and the 𝑥2 

component.  

 𝑋1 ≔ {𝑥1 ∈ ℝ
𝑛1|𝐴1𝑥1 = 𝑏1, 𝑥1 ≥ 0}   (23) 

 
𝑋2(𝑥1) ≔ {

{𝑥2 ∈ ℝ
𝑛2|𝐵2𝑥1 + 𝐴2𝑥2 = 𝑏2, 𝑥2 ≥ 0}, 𝑖𝑓 𝑥1 ∈ 𝑋1

                          ∅,                                       𝑒𝑙𝑠𝑒
}  

  

 

The domain of the function 𝑋2 is described as: 

 𝑑𝑒𝑓𝑋2 = {𝑥1 ∈ ℝ
𝑛1|𝑋2(𝑥1) ≠ ∅},   (24) 

 

so that 𝑀 can be declared as  

 𝑀 = ⋃ (𝑋2(𝑥1) × {𝑥1})𝑥1∈𝑑𝑒𝑓𝑋2
.   (25) 

 

The decomposition theorem 2.5.1 (Stein, 2016) allows the following decomposition, if all sub problems 

are solvable, which is normally the case (Vesper, 2017).  
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 max
(𝑥1,𝑥2)∈𝑀

𝑐1
𝑇𝑥1 + 𝑐2

𝑇𝑥2  = max
𝑥1∈𝑑𝑒𝑓𝑋2

max
𝑥2∈𝑋2(𝑥1)

𝑐1
𝑇𝑥1 + 𝑐2

𝑇 𝑥2  

= max
𝑥1∈𝑑𝑒𝑓𝑋2

𝑐1
𝑇𝑥1 max

𝑥2∈𝑋2(𝑥1)
𝑐2
𝑇 𝑥2  

(26) 

 

The inner maximization problem is defined by 𝒬 and is described as below  

𝒬(𝑥1) ∶= max
𝑥2∈𝑋2(𝑥1)

  𝑐2
𝑇𝑥2   (27) 

 =    max
𝑥2

    𝑐2
𝑇𝑥2  

 𝑠. 𝑡.   𝐴1𝑥2 = 𝐵2𝑥1, 𝑥2 ≥ 0. 

 

The second part of this equation is valid, because 𝑥1 ∈ 𝑋1 ⊇ 𝑑𝑒𝑓𝑋2 is by definition 𝑋2(𝑥1) =

{𝑥2 ∈ ℝ
𝑛2|𝐵2𝑥1 + 𝐴2𝑥2 = 𝑏2, 𝑥2 ≥ 0}. If 𝑥1 ∈ 𝑋1\𝑑𝑒𝑓𝑋2 then 𝑋2(𝑥1) = ∅ and therefore 𝒬(𝑥1) = −∞, 

and the problem is inconsistent. If one 𝑥1 ∈ 𝑑𝑒𝑓𝑋2 exists and one 𝑥̃1 ∈ 𝑋1\𝑑𝑒𝑓𝑋2, then 𝒬(𝑥1) > 𝒬(𝑥̃1) =

−∞ holds true. In this case, the optimality value does not even change if the originally feasible set of 

𝑑𝑒𝑓𝑋2 would be extended by 𝑋1\𝑑𝑒𝑓𝑋2. If none 𝑥1 ∈ 𝑑𝑒𝑓𝑋2 exists, the problem is unsolvable, which has 

been excluded before. Concluding, the adjoining of 𝑋1\𝑑𝑒𝑓𝑋2 to the outer optimization problem does 

not change the solution. Because either the sub problem is solvable, resulting in 𝑥1 ∈ 𝑑𝑒𝑓𝑋2 or the sub 

problem is unsolvable. The following decomposition is obtained.  

𝑃:   max
𝑥1

 𝑐1
𝑇𝑥1 + 𝒬(𝑥1)    (28) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1  

𝑥1 ≥ 0  

 

 

𝒬(𝑥1) = max
𝑥2

 𝑐2
𝑇𝑥2  (29) 

 𝑠. 𝑡. 𝐴2𝑥2 = 𝑏2 − 𝐵2𝑥1  

𝑥1 ≥ 0  

 

These two problems define the dynamic formulation of the deterministic program from equation (14). 

With two time stages 𝑇 = 2 also the stochastic optimization problem from equation (18) can be 

formulated as a dynamic program.  

4.3.2. Application to Hydropower Optimization 

Stochastic dynamic programming is also an important field for hydropower optimization. One of the most 

widely known hydropower optimization methods is SDDP introduced by Pereira and Pinto (1985), (1991). 

Especially in practice, dynamic programming has several advantages. In comparison to standard 

multistage stochastic optimizations the implementation is more efficient, and it is easier to model real-

life problems and decisions (Abgottspon, 2015a). Furthermore, the complexity just rises linearly with the 

number of time stages. Following the principle of divide and conquer in dynamic programming the original 
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problem is split into independent sub problems that than can be easily solved in parallel. A good capability 

of parallelization sets the basis for high performance computing using several CPUs. If a problem can be 

separated into parallel tasks with little effort it is called an embarrassingly parallel or in computer science 

a good workload problem (Foster, 1995; Herlihy & Shavit, 2012). The opposite are inherently serial 

problems that cannot be parallelized at all, which are problems that are depend and need communication 

between the tasks.  

Two Stage Dynamic Program 

The deterministic as well as the stochastic two stage program can be dynamically formulated. For the 

dynamic formulation, 𝒬(𝑥1) is stated the profit-to-go function form the second stage. The function 

𝒞(𝑥1, 𝜔) describes the return of the realization 𝜔 after the decision 𝑥1. The problem formulates as: 

𝒞(𝑥1, 𝜔) = max
𝑥2

 𝑐2(𝜔)
𝑇𝑥2(𝜔)  (30) 

 𝑠. 𝑡. 𝐵2𝑥1 + 𝐴2𝑥2(𝜔) = 𝑏2(𝜔) 

𝑥2(𝜔) ≥ 0. 

 

The expected value of 𝒞(𝑥1, 𝜔) is the profit-to-go function: 

𝒬(𝑥1) = 𝔼𝜉[𝒞(𝑥1, 𝜔)].    (31) 

 

The probability vector 𝜉(𝜔) = (𝑐2(𝜔), 𝑏2(𝜔)) includes the uncertainness of prices and inflows. The first 

stage problem is also called deterministic equivalent: 

𝑃: max
𝑥1

 𝑐1
𝑇𝑥1 + 𝒬(𝑥1)    (32) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1  

𝑥1 ≥ 0  

 

 

The problems (30), (31) and (32) form together the dynamic formulation of the stochastic maximization 

problem in (18) with 𝑇 = 2. 

Multistage Dynamic Programming 

As for the linear and the stochastic also the dynamic two-stage program can be extended to a multistage 

formulation. The dynamic program formulation is applied on the stochastic multistage model in equation 

(18). 𝒞 is stated as the value function for any but fixed event 𝜔 and 𝒬 as the expected value or profit-to-

go function of 𝒞. The value function 𝒞 receives on the last stage the optimal point of the penultimate 

stage 𝑥𝑇−1 as well as the event 𝜔𝑇 for the random vector 𝜉 as parameters. The formula is stated as 

follows: 

𝒞𝑇(𝑥𝑇−1, 𝜔𝑇) ∶= max
𝑥𝑇

 𝑐𝑇(𝜔𝑇)
𝑇𝑥𝑇   (33) 
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 𝑠. 𝑡. 𝐵𝑇𝑥𝑇−1 + 𝐴𝑇𝑥𝑇 = 𝑏𝑇(𝜔𝑇)  

  𝑥𝑇(𝜔𝑇) ≥ 0. 

 

The expected value function or profit-to-go function is defined on time stage (𝑡 + 1) as 

𝒬𝑡+1(𝑥𝑡) = 𝔼𝜉[𝒞𝑡+1(𝑥𝑡,𝜔𝑡+1)]   𝑡 = 1,… , 𝑇 − 1. (34) 

 

Generally, the value function at time stage t (𝑡 = 2,… , 𝑇 − 1) receives the optimal point from time stage 

𝑡 − 1 as a parameter as well as the event 𝜔𝑇 for the probability vector 𝜉𝑇. This can be formulated as 

follows: 

𝒞𝑡(𝑥𝑡−1,𝜔𝑡) ∶=max
𝑥𝑇

 𝑐𝑡(𝜔𝑡)
𝑇𝑥𝑡(𝜔𝑡) + 𝒬𝑡+1(𝑥𝑡)   (35) 

 𝑠. 𝑡. 𝐵𝑡𝑥𝑡−1 + 𝐴𝑡𝑥𝑡(𝜔𝑡) = 𝑏𝑡(𝜔𝑡)  

  𝑥𝑡(𝜔𝑡) ≥ 0. 

 

The problem of the first stage is stated as deterministic equivalent. The objective function includes the 

expected value function of the second stage and therefore implicitly the future incomes or revenue.  

𝑃: max
𝑥1

 𝑐1
𝑇𝑥1 + 𝒬2(𝑥1)    (36) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1  

𝑥1 ≥ 0  

 

 

The expected value function 𝒬𝑡 , 𝑡 = 2,… , 𝑇 is also named profit-to-go function since it determines the 

future revenues depending on the current decision.  

Mathematical Solvability 

For the solution of the hydropower scheduling problem the deterministic and the stochastic problem need 

to be distinguished. The solvability of both problems can be validated with the theorem of Weierstrass.  

First, assuming the requirements for the deterministic two stage model that the inflows and the target 

reservoir filling levels are not negative and the start reservoir filling levels are not lower as the end filling 

level.  

• As a linear function, the objective function is constant. 

• A linear problem has a feasible set and therefore also a closed set. 

• The feasible set is limited by the following constraints 

𝑣𝑟
𝑚𝑖𝑛 ≤ 𝑣𝑡,𝑟 ≤ 𝑣𝑟

𝑚𝑎𝑥 (37) 

  0 ≤ 𝑢𝑡,𝑚 ≤ 𝑢𝑚𝑎𝑥 (38) 

  0 ≤ 𝑝𝑡,𝑚 ≤ 𝑝𝑚𝑎𝑥 (39) 
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  0 ≤ 𝑠𝑡,𝑟 ≤ max(𝑣𝑟
𝑎𝑛𝑓

, 𝑣𝑡,𝑟) + 𝑣𝑡,𝑟
𝑖𝑛 − 𝑣𝑡,𝑟 + 𝜌𝑝𝑡,𝑚 + 𝜂𝑢𝑡,𝑚  

 ≤ max(𝑣𝑟
𝑎𝑛𝑓

, 𝑣𝑟
𝑚𝑎𝑥) + 𝑣𝑡,𝑟

𝑖𝑛 − 𝑣𝑟
𝑚𝑖𝑛 + 𝜌𝑝𝑚𝑎𝑥 + 𝜂𝑢𝑚𝑎𝑥  

(40) 

which are valid for 𝑟,𝑚 = 1,2. 

• The feasible set is non-empty, since the decision of not using turbines or pumps is always 

included. In this case, the inflows are spilled. 

Therefore, the conditions for the theorem of Weierstrass are fulfilled and the problem is solvable. For 

multistage problems, an analogue rationale is possible. The objective function is still linear and therefore 

constant. The constraints are limited and therefore a feasible set. Possible reasons for insolvabilities can 

be empty sets or a lack of bounds. If the feasible set is empty, there is always an error since the hitherto 

described solution is always feasible. A lack of bounds is often reasoned by missing constraints or bounds 

for variables that need to be added.  

Second, the stochastic optimization problem with a two-reservoir system and two time stages is 

scrutinized. Assuming the requirements that no negative inflows and target reservoir filling levels lower 

or equal to the start filling levels are required.  

• The objective function is, as integral of a constant function, constant. 

• Due to the linear problem description, the set is feasible and closed. 

• The feasible set is limited by the following constraints, whereas the first three equations (37), 

(38) and (39) as well as the spillage constraints (40) are analogue to the deterministic case. 

0 ≤ 𝑠𝑡,𝑟 ≤ 𝑣𝑟
𝑎𝑛𝑓

+ 𝑣𝑟
𝑖𝑛 − 𝑣𝑡,𝑟𝑖 + 𝜌𝑝𝑡 + 𝜂𝑢𝑡 

≤ 𝑣𝑟
𝑎𝑛𝑓

+ 𝑣𝑟
𝑖𝑛 − 𝑣𝑟

𝑚𝑖𝑛 + 𝜌𝑝𝑚𝑎𝑥 + 𝜂𝑢𝑚𝑎𝑥  
(41) 

• The equation (41) applies for all 𝜔 ∈ Ω and 𝑟,𝑚 = 1,2. The feasible set has a probability of 1. 

• The trivial solution is feasible. Therefore, the feasible set is non-empty. 

Again, the solvability follows with the theorem of Weiserstrass. This approach is also feasible for sizeable 

models with multiple periods. The challenge is again to avoid empty or unbounded sets that are most of 

the time a result of mistakes in modeling.  

Model Extensions 

The here described two-reservoir model consists of one pump and one turbine connecting two reservoirs. 

Nevertheless, it can be easily extended towards multi-reservoirs. For every reservoir and time step one 

reservoir equation need to be added, which is the same for the deterministic, stochastic and dynamic 

problem formulation. The interconnections between the reservoirs need to be considered as further 

constraints. Equivalently, further pumps and turbines need to be specified and the connection to the 

reservoirs defined. Extensions are also possible in terms of gird charges, risk aversion or non-linear 

relations such as the interdependence between reservoir filling levels and turbine power due to the water 

head effect. A great extension represents the consideration of balancing power markets. Beside the 

provision especially the activation of balancing power adds further non-linearities to possible models.  



 

97 

 

B. Multi-Market Optimization and Trading  

Already 70 years ago, Massé (1946) formulated the principal optimal rule: produce when the marginal 

utility of production is higher than the marginal utility of the expected production; else wait. To find an 

optimal strategy is sometimes also called dispatch control, hydropower scheduling or simple profit 

optimization problem, see chapter 4. This thesis pursues the target to improve analysis, optimization and 

trading over the whole short-term marketing process based on the new framework conditions. The whole 

short-term marketing process includes all relevant short-term electricity markets. The new framework 

conditions are characterized by the German Energiewende and the strong increase of variable RES feed-

in which demand a rethinking of the usage of existing pumped hydropower storages. 

To combine, all markets, all uncertainties and all technical restrictions in one optimization, is, with known 

methodologies, computational intractable. Therefore, it is suggested to decompose the overall hydro 

power scheduling problem along the timeline as suggested in literature, see chapter 3.3.1, but additionally 

consider the structure of the various electricity markets, see chapter 2, and the given mathematical 

problems, see chapter 4. Figure 39 presents an overview over solution methods and classifies by 

solvability and powerfulness. Whereas the linear problem solves very fast, the number of problems that 

can be solved with this system is the smallest. With a non-linear system many problems can be solved on 

the costs of computational run-time. Also, the difficulty to determine the quality and optimality of the 

solutions is considered. This means a significant challenge is to choose the appropriate optimization 

method for each problem considering an adequate level of detail and the computation time needed.  

Using the given methods and models, chapter 5 describes how to find an optimal solution for the multi-

market hourly and quarter-hourly day-ahead auction scheduling problem. A high level of details and 

challenges such as the limited liquidity on the quarter-hourly market are tackled with a quadratic 

optimization. The implications of not considering prices and inflows as uncertain are tackled and 

determined in chapter 6 using SDDP approaches applied on the quarter-hourly day-ahead auction. The 

next markets in the time line are the hourly and quarter-hourly intraday continuous markets which are 

considered in chapter 7. These markets appeared to be so volatile that also a continuous optimization is 

applied taking the results of the foregoing day-ahead auctions into account. To keep the optimization time 

within a range of seconds, the level of detail is low and no stochastic inputs could be considered. To 

balance deviations of production or demand after the intraday market gate closure, balancing products 

are activated. The auctioning for these products highly dependents on the profit of the other energy only 

markets. Therefore, a non-linear problem as well as a linearized simplification are introduced in chapter 

8 considering both balancing and energy only markets. How the introduced optimization methods and 

tools intertwine and should be used by a storage operator is always laid out in each chapter and 

underpinned with respective case studies. To give an outlook, in part C chapter 9 the overall bidding 

approach and the optimization strategies are summarized.  
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Figure 39 Overview over applied solution methods in hydropower scheduling 
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5. Quadratic Optimization of Quarter-Hourly and Hourly Day-Ahead Market 

The short-term trading within the liberalized energy markets in Europe has gained more and more 

significance over recent years. The continuously increasing trading demand also led to the introduction of 

new spot products (EPEX Spot, 2015a, p.20). One example therefore is the launch of the quarter-hourly 

day-ahead auction for the German market area in December 2014. According to the power exchange EPEX 

Spot, this was a reaction to an increased day-ahead demand for shorter order types to reduce the 

magnitude of unbalanced quarter-hourly schedules already day-ahead (EPEX Spot 2015b, p.2).  

In this chapter, an electricity storage optimization approach is presented that incorporates short-term 

energy markets with various temporal resolutions. This means that two or more markets can be 

considered in the objective of the optimization leaving it up for the solution algorithm to bid for the most 

lucrative products on each market. Therefore, chapter 5.1 gives an overview over the newly introduced 

German quarter-hourly day-ahead auction, which reasons the motivation for this multi-market 

optimization. This is followed by a literature review. In chapter 5.2, particular attention is paid to the 

limited price sensitivity on the new market which is quantified and compared to the results derived from 

the hourly day-ahead auction analysis. This market analysis is based on a paper written by Braun and 

Brunner (2018). In chapter 5.3, a multi-market quadratic optimization approach is presented including a 

negative price response based on the calculated price sensitivity. First, a two-stage optimization, based 

on Braun (2016b), and second, an extended multistage method is introduced. Finally, chapter 5.4 presents 

the numerical results of two case studies, including optimal schedules, profit, and steering parameters 

showing the practical applicability. Subsequently, a discussion and a conclusion are provided.  

5.1. Introduction 

This chapter expounds the influence of variable RES on the newly introduced Germany day-ahead market. 

This includes especially the trading strategy for unbalanced quarter-hourly day-ahead schedules of the 

RES solar and wind as well as ramps of inflexible thermal power plants. A distinct zigzag price pattern can 

be observed on the quarter-hourly market that might be caused by the interaction with the hourly day-

ahead auction due to volume and liquidity differences. A higher price sensitivity on the quarter-hourly 

market than on the hourly market can be expected. For market participants, a deep understanding of the 

new market is crucial to grasp the interdependencies with other short-term markets and especially, to 

know how sensitive market prices are if additional amounts of energy are bid into the market.  

The characteristics and the influence of different production types, such as solar and wind, on the quarter-

hourly market will be described in 5.1.1. The resulting price changes open up new optimization and profit 

possibilities for pumped hydropower storages. Furthermore, chapter 5.1.2 presents the dimensions of 

market liquidity to derive a price sensitivity that can be applied on the German day-ahead markets. 

Chapter 5.1.3 provides a literature overview on valuable multi-market hydropower optimization 

approaches focusing on spot market bidding including any kind of price maker consideration. In the 

afterwards following chapters this market and price sensitivity analysis is used in the optimization.  
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5.1.1. Quarter-Hourly Day-ahead Auction 

As a consequence of the need for shorter day-ahead order types especially because of the increasing solar 

power production, politics, BNetzA and EPEX Spot have worked on improving the market conditions and 

therefore introduced the quarter-hourly day-ahead auction in December 2014. In addition to the already 

existing hourly day-ahead auction and the quarter-hourly and hourly intraday continuous markets, this 

new market is the fourth short-term energy-only EPEX Spot market for the German market area. The 

bidding for this new auction takes place at 3 pm day-ahead, three hours after the hourly day-ahead 

auction. The EPEX Spot named the new market 15-min. Intraday Auction as it marks the opening of the 

continuous intraday trading for the following day that starts afterwards. Nevertheless, since this auction 

takes place day-ahead, the appellation quarter-hourly day-ahead auction is used throughout this paper 

to avoid confusion with the continuous intraday trading.  

The chapter is subdivided into three parts to specifically analyze this new auction in terms of RES impact, 

price structure and the influence on the pumped hydropower storage dispatch. This helps to understand 

the special nature of this market and sets the foundation for the price sensitivity comparison of this new 

market with the existing hourly day-ahead market in the next chapter. For a general descriptive 

introduction of the market in terms of price level and trading volume see the basics chapter 2.2.3. 

Impact of Renewable Energy Sources 

One of the reasons for the introduction of the quarter-hourly day-ahead auction in Germany is the better 

integration of RES (EPEX Spot, 2015b, p.2). Therefore, below the correlation between different types of 

varying RES and the new quarter-hourly day-ahead auction are analyzed. Figure 40 a) depicts the 1,800 

quarter-hours of the year 2015 with the highest gradient in solar power production in comparison to the 

trading volume for the respective quarter hour. The solar power production corresponds to all units that 

are sold on the market by the TSO under the RES act regime. For this solar power production, a strong 

Person product-moment correlation with a coefficient of 𝑝 =  0.82 can be determined. All other quarters 

are less interesting since the quarter-hourly load gradients and therewith the difference between hourly 

and quarter-hourly RES trading is negligible. For PV, the latter is especially the case during night hours. 

The strong correlation hints that gradients of solar power production are significant for the quarter-hourly 

day-ahead auction. This is comprehensible as the solar power production forecast for the next day is 

already very accurate and follows minute-precise the course of the sun (ENTSO-E, 2017b).  

In addition, Figure 40 b) illustrates also the 1,800 quarter-hours with the highest change in wind power 

production for one quarter of an hour and the corresponding trading volume of this quarter hour. The 

calculation is also based on the production data of wind units supported by the RES act which accounted 

for the predominate share of wind parks in Germany. The Person product-moment correlation coefficient 

for these 1,800 quarter-hours of the year 2015 amounts to 𝑝 =  0.35. Hence, compared to PV the amount 

of wind power traded, and therefore the influence, on the quarterly day-ahead auction seems rather 

limited. This conclusion appears reasonable since already the day-ahead wind forecasts in quarter-hourly 

resolution are quite unprecise and likely to change again until delivery (ENTSO-E, 2017b). 
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Figure 40 Correlation coefficient 𝑝 for the 1800 quarter- hours with the highest gradients in solar power 

production (above) and wind power production (below) within one quarter of an hour and the quarter-

hourly day-ahead auction trading volume. Data derived from (ENTSO-E, 2017b; EPEX Spot, 2017b) 

Price Structure 

In this subchapter, the characteristic price structure of the quarter-hourly day-ahead auction in 

comparison to the hourly day-ahead auction is explained. The price level over the course of the day 

generally depends on the underlying merit order and the residual load, i.e. the load subtracted by the 

variable solar and wind generation. This can be seen in Figure 41 comparing the daily pattern of the 

average historic hourly prices of 2015 (dashed black line) with the average vertical grid load of 2015 in 

quarter-hourly time resolution (solid black line). The vertical grid load specifies the load fed-in from the 

higher transmission grid level into the subordinate distribution grid which adumbrates the residual load 

comparatively good, as most RES units feed into the grid at medium and low voltage level while 

conventional thermal power stations that produce the remaining residual load are usually connected to 

the grid at high voltage level. In addition, the average quarter-hourly prices (solid grey line) of 2015 in 

Figure 41 show a strong zigzag effect around the hourly prices. To be more specific, the amplitude of the 

zigzag follows the gradient of the residual load. The firmer the increase or decrease of the residual load 

the higher is the demand for quarter-hourly trading. The slope of the residual load is a result of the usual 

demand ramps in the morning and the late evening as well as the solar ramps around midday, as to be 

seen in Figure 42. These are exactly the quarter-hours with the most distintive zigzag price pattern on an 

annual average.  
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Figure 41 Average hourly and quarter-horly day-ahead MCP over the course of the day compared to the 

average quarter-hourly vertical grid load for Germany in 2015. Data derived from (ENTSO-E, 2017b; 

EPEX Spot, 2017b) 

 

The origination of the zigzag effect is exemplarily explained for solar power below but works similar for 

the zigzags induced by load gradients and ramps of thermal power plants. The strong influence of solar 

generation is visible in the change of the quarter-hourly trading volume over the course of the year, see 

again Figure 9. The general way of trading solar power into the hourly and the quarter-hourly day-ahead 

auctions is illustrated in Figure 42. The solid black line depicts the average solar energy production in 

Germany. This curve can be approximated by the light grey hourly stepwise bars symbolizing the expected 

bidding on the hourly day-ahead auction at 12 pm. The difference between the minute-precise forecast 

and the hourly stepwise function is the remaining amount (solid black bars) that is traded in the quarter-

hourly day-ahead auction at 3 pm. During the morning hours when the sun rises, solar power producers 

have a short position and therefore act as buyers in the first quarter hour and vice versa in the last quarter 

hour. In the afternoon, this zigzag pattern is the other way around, they hold a long position in the first 

quarter hour and short positions in the last quarter. Due to the significant difference of trading volume, 

see again Figure 6 with an average trading turnover of 500 MW for each quarter-hourly product and the 

difference in price sensitivity that will be analyzed in chapter 5.2.1, it seems plausible to hedge 40,000 MW 

installed PV capacity (BMWi, 2017a) as well as inflexible ramps of thermal power plants and load at the 

hourly day-ahead auction and use the quarter-hourly auction only to balance the remaining differences.  
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Figure 42 Exemplary solar power trading on hourly and quarter-horly day-ahead auctions in Germany. 

Data derived from (ENTSO-E, 2017b; EPEX Spot, 2017b) 

Influence on the Pumped Hydropower Storage Dispatch 

On the one hand, significant flexibility is needed due to variable production profiles of wind and solar 

power as well as gradual load change rates of thermal power plants. On the other hand, flexibility is 

provided especially by flexible production and storage capacities but possibly also from demand side 

management. One of the most important sources for flexibility in Europe are seasonal and daily pumped 

hydropower storages. As many power plants, pumped hydropower storages are under pressure in terms 

of profitability due to a lower price level on the spot markets but most notably due the flattened price 

spreads between peak and off-peak in the recent years (EPEX Spot, 2017b). The introduction of a quarter-

hourly auction at 3pm day-ahead (EPEX Spot, 2015a) opens new possibilities for flexible storages.  

Figure 43 and Figure 44 illustrate the exemplary dispatch of a pumped hydropower storage. Assuming a 

shadow price for water release of 42 €/MWh and pumping of 30 €/MWh, the figures show that electricity 

is generated when the price is above the shadow price und energy is consumed as long as the price is 

below the pump shadow price. Figure 43 presents the dispatch for a historic hourly day-ahead auction 

price and Figure 44 demonstrates the dispatch based on the quarter-hourly day-ahead auction price. For 

the same time period, the price spreads as wells as the total generation and pumping time are significantly 

higher in the quarter-hourly market for the same time period.  

In order to profit from these changes, forecasts, control systems and real-time data transfer is needed to 

be improved as well as the corresponding data processing and optimization methods. Furthermore, in this 

example the machine is switched 17 times from pump to generation mode during the 7 days when 

dispatched according to the hourly day-ahead market. When traded on the quarter-hourly auction the 

machine is switched 129 times from pumping to generating mode. This means that the integration of the 
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quarter-hourly market does not only has an effect on the profitability but also on the resilience of the 

machines and the cycle efficiency.  

 

 

Figure 43 Exemplary dispatch of a pumped hydropower storage on the hourly day-ahead auction, data 
derived from (EPEX Spot, 2017b). 

 

 

Figure 44 Exemplary dispatch of a pumped hydropower storage on the quarter-hourly day-ahead 
auction, data derived from (EPEX Spot, 2017b). 
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5.1.2. Dimensions of Market Liquidity 

Market liquidity is a performance indicator for the efficiency of a market. Therefore, liquidity itself can be 

defined from a trader’s perspective as the ability to buy or sell at any size and time without influencing 

the price with one’s orders (Amihud, 2002; Amihud & Mendelson, 1986; Arnott & Wagner, 1990). 

Literature distinguishes between six dimensions to measure liquidity in a market:  

• Bid-ask spread (Amihud & Mendelson, 1986; Hagemann & Weber, 2013; Paukste & Raudys, 2013) 
and with focus on trading costs (Liu, 2006), spreads (Mayston, Kempf, & Yadav, 2008) and 
tightness (Kyle, 1985) 

• Resiliency (Foucault, Kadan, & Kandel, 2005; Kyle, 1985) that has been used by (Hagemann 
& Weber, 2013) 

• Market depth (Kyle, 1985) and with focus on price impact (Amihud, 2002; Liu, 2006; Weber, 2010) 

• Trading activity (Hagemann & Weber, 2013) 

• Delay and search costs (Amihud & Mendelson, 1986; Liu, 2006) 

• Short-run volatility (Ahn, Bae, & Chan, 2001; Engle, Fleming, Ghysels, & Nguyen, 2012; Handa & 
Schwartz, 1996) 

 

However, for diverse market designs and considering availability of information different dimensions can 

be appropriate to measure market liquidity. For example, the European Commission (2007) states the 

trading volume as an important financial meter for trading activity and liquidity in electricity markets while 

others stress the market depth, i.e. the ability of market participants to find counterparts, as a significant 

factor to address market liquidity. 

A further attempt is the calculation of price sensitivity as a combination of bid-ask spread, market depth 

and trading activity (Goyenko, Holden, & Trzcinka, 2008; Kempf, 1999). The advantage of this price 

sensitivity calculation is that all three approaches can be measured using the characteristics of demand 

and supply functions. The domain restrictions of demand and supply determine the market depth, the 

intersection gives indication on the trading activity and the gradient of both functions at their intersection 

provides the bid-ask spread. Therefore, price sensitivity seems most adequate to analyze the liquidity of 

auction based energy markets by combining three dimensions. 

5.1.3. Literature Review 

Generally, literature on hydropower optimization and basic spot markets bidding is numerous. Reviews 

on short-term power generation and bidding (Kristoffersen & Fleten, 2010), different optimization 

techniques (Labadie, 2004) and stochastic programming in hydropower scheduling (Klaboe & Fosso, 2013; 

Labadie, 2004; Wagner & Mathur, 2011; Wallace & Fleten, 2003) are given. Further literature exists on 

intraday market bidding, see chapter 7, as well as considering balancing power markets, see chapter 8. 

Nevertheless, this chapter focuses on unified pricing auction based bidding and almost no literature exists 

on the just introduced quarter-hourly auction based bidding.  

Although, high short-term volatility promises significant revenues (Nogales, Contreras, Conejo, & 

Espinola, 2002), it need to be considered that the quarter-hourly day-ahead but also intraday and 
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balancing markets are smaller in terms of trading volume as the hourly day-ahead market. Therefore, 

traders are not able to commit any desired quantity to these markets. This implicates for the bidding 

process that price-taker as well as price-setter need to be considered in the optimization process.  

Literature on multi-market bidding lists two approaches to tackle the challenges of price-setter bidding. 

The first approach considers the reduced liquidity in the short-term by limiting the absolute quantity to 

be traded on these markets (Deng, Shen, & Sun, 2006; Faria & Fleten, 2011), which is a rather simple 

strategy. The second approach assumes a negative price response in for example day-ahead (Baillo, 

Cerisola, Fernandez-Lopez, & Bellido, 2006; Boomsma, Juul, & Fleten, 2014; Ugedo & Lobato, 2010), 

intraday (Löhndorf, Wozabal, & Minner, 2013) and balancing markets (Boomsma et al., 2014; Plazas et al., 

2005). Table 9 provides a short overview on additional literature that can be found dealing with limited 

liquidity in day-ahead markets. Most authors combine the consideration of market power with stochastic 

optimization techniques on the costs of reducing the optimization horizon to one day. Below it will be 

outlined how a precise consideration of price sensitivity can be combined with a detailed power plant 

layout and a long optimization horizon.  

 

Table 9 Literature on day-ahead market bidding considering price maker behavior in at least one market 
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(Baillo et 
al., 2006) 

  x   x  x x x  
multistage SP/ Spain/ no 

comparison of separate and 
coordinated bidding 

(Baillo et 
al., 2004) 

 x     x  x x x 

MILP and Benders 
decomposition/ 1 day/ risk 

neutral spot bidding with multiple 
scenarios in hydro-thermal 

system 

(Boomsma 
et al., 2014) 

x x     x x x   

multistage SP/ generic example/ 
coordinated bidding increased 
profit with 2% if assuming no 

market power and 1% if assuming 
market power in the balancing 

market 

(Ugedo et 
al., 2006) 

  x   x  x x x x 
MILP/ 1 day/ risk neutral, no 
comparison of separate and 

coordinated bidding 

(Ugedo 
& Lobato, 

2010) 

 x      x x x x 
MILP/ 1 day/ risk neutral 

optimization with multiple 
scenarios 
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5.2. Price Sensitivity of Hourly and Quarter-Hourly Day-Ahead Markets in Germany 

Reason for the new quarter-hourly day-ahead market was the need to trade shorter periods than just 

hours day-ahead to minimize open positions in the more volatile continuous intraday trading. This 

includes especially the increased production capacity and the resulting trading strategy for unbalanced 

quarter-hourly day-ahead schedules of solar generation, the ramps of inflexible thermal power plants and 

the changing load.  

Within the current design of short-term electricity markets the key characteristics of the new quarter-

hourly day-ahead auction are explained in the first part of this chapter. The dissimilar trading volumes of 

the hourly and quarter-hourly day-ahead markets and the price zigzag effect of the latter are analyzed 

and explained. To sketch the specialties of and differences between short-term power markets a method 

is derived to analyze the price sensitivity of day-ahead markets. Thereafter, the findings of the hourly and 

quarter-hourly day-ahead auction price sensitivity calculations in Germany for the year 2015 and 2016 are 

presented. Afterwards, a critical discussion addresses whether the current market design is sufficient or 

should be further improved and concludes the major findings. 

5.2.1. Calculating Price Sensitivity 

In this chapter, the price sensitivity of the German quarter-hourly day-ahead auction is determined. The 

calculation is based on the bid and ask curves derived from (EPEX Spot, 2017b). 

Market Clearing Price 

Every auction participant hands in one or a set of orders each including the following information: delivery 

period, product, order direction (buy/sell), quantity 𝑞 and price 𝑐. The energy exchange sorts all buy offers 

in descending order to receive the ask side merit order 𝑎(𝑞) and all sell offers in ascending order to obtain 

the bid side merit order b(𝑞). The intersection of both stepwise demand and supply functions defines the 

MCP 𝑐𝑀𝐶
∗  and quantity 𝑞𝑀𝐶

∗ . For strictly monotonous increasing functions this point is explicitly defined. 

For the more general monotonous increasing stepwise functions three different types of intersections can 

be observed, see Figure 5. In a) and c) it is illustrated that at the intersection, either 𝑐𝑀𝐶
∗  or 𝑞𝑀𝐶

∗  is not 

explicitly defined. Normally, the respective exchanges do not publish how 𝑐𝑀𝐶
∗  or 𝑞𝑀𝐶

∗  are calculated in 

these cases. Therefore, it is suggested to determine the intermediate of the intersection between 

𝑐𝑀𝐶
∗ + and 𝑐𝑀𝐶

∗ − or 𝑞𝑀𝐶
∗ + and 𝑞𝑀𝐶

∗ − and to compare this with the published MCP. If both do not correspond 

either block orders or other intersection techniques need to be considered as well. 
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Figure 45 Intersection between ask and bid side merit order and the resulting MCP for three different 
intersection possibilities. Due to the stepwise character, the intersection is not always explicit.  

 

The price sensitivity 𝑙 determines the change of the MCP 𝑐𝑀𝐶
∗  if an additional quantity Δ is added to the 

market. It can be distinguished between additional quantity on the bid side 𝑏(𝑞 + Δ) and additional 

quantity on the ask side 𝑎(𝑞 + Δ). To determine the price sensitivity, first the bid or ask side merit order 

is shifted, second the new MCP calculated and third, the price sensitivity computed as the difference of 

the new MCP minus the original MCP.  

The price effect is always equal for a seller reducing (increasing) offers or a buyer lowering (increasing) 

demand since the two curves intersect at the same price sections just mirrored. This holds true for the 

intersection of a monotonously increasing (bid) and a monotonously decreasing (ask) function. However, 

the trading volume changes according to the particular slope of bid and ask curves.  

This can be proofed graphically, see Figure 46, defining that 𝑓 be a strictly monotonically increasing 

function and 𝑔 be a strictly monotonically decreasing function. It follows that (𝑓, 𝑔), (𝑓∗, 𝑔), (𝑓, 𝑔∗) have 

exactly one intersection given that 𝑓∗(𝑥) = 𝑓(𝑥 − 𝑎) ∧ 𝑔∗(𝑥) = 𝑔(𝑥 + 𝑎)   ∀𝑥. Be (𝑡, 𝑢) the intersection 

of 𝑓∗ and 𝑔 and (𝑣, 𝑟) the intersection of 𝑔∗ and 𝑓 then it need to be demonstrated that 𝑓∗(𝑡) = 𝑔∗(𝑣), 

𝑢 = 𝑓∗(𝑡) = 𝑔(𝑡) = 𝑔∗(𝑡 − 𝑎) and 𝑢 = 𝑓∗(𝑡) = 𝑓(𝑡 − 𝑎) are true. It can be followed that 𝑔∗(𝑡 − 𝑎) =

𝑓(𝑡 − 𝑎) = 𝑢 and 𝑔∗ and 𝑓 have an intersection at (𝑡 − 𝑎, 𝑢). Since 𝑔∗ and 𝑓 have just one intersection 

which is (𝑣, 𝑟), 𝑡 − 𝑎 = 𝑣 holds true and from 𝑔∗(𝑡 − 𝑎) = 𝑔∗(𝑣) ⇒ 𝑓∗(𝑡) = 𝑔∗(𝑣). This is illustrated on 

the left of Figure 46 for strict monotonous increasing (decreasing) functions and on the right extended for 

monotonous increasing (decreasing) functions. 
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Figure 46 Graphical proof for shifting demand and supply in opposite directions by the same quantity 
leads to the same MCP. On the left the strict monotonous increasing (decreasing) functions and on the 

right monotonous increasing (decreasing) functions.  

Exemplary Shift of Bid and Ask Curves 

Figure 47 depicts an EPEX Spot quarter-hourly day-ahead auction example from October 10th, 2015 for 

the delivery period from 7:15 pm to 7:30 pm. All offers of designated sellers are cumulated in the bid and 

all offers of identified buyers are collected in the ask curve. The intersection of the two curves sets the 

MCP. For the exemplary time period that was 69.81 €/MWh with a trading volume of 350 MW. 

Based on this starting point, the price sensitivity can be calculated for new market participants e.g. a 

pumped hydropower storage operator with a capacity of 200 MW. Therefore, in a first step, the bid curve 

is shifted by 200 MW to identify the potential price increase due to a market participant willing to buy 

200 MW in this auction. In a second step, the ask curve is shifted by 200 MW as well, to derive the possible 

price decrease a market participant must be willing to accept selling these additionally quantities of 

energy in the auction. The example for a shift of +200 MW on the buy side is plotted in the center of Figure 

47, showing that the potential MCP would shift up to 73.06 €/MWh with an increase of market volume to 

392 MW. Vice versa, the expected MCP would drop to 68.37 €/MWh while the trading volume expands 

even further to 503 MW, if the sell curve is shifted by +200 MW, see to the right of Figure 47. 
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Figure 47 Exemplary bid (solid line) and ask curve (dash-dot line) of the quarter-hourly day-ahead 

auction for October 10th, 2015 7:15 pm to 7:30 pm showing the MCP and the trading volume (left), with 

additional 200 MW on the ask side (center) and the bid side leading to a new ask curve (dashed line), 

MCP and trading volume (right) in each respective case. Data derived from (EPEX Spot, 2017b) 

 

The resulting spread between the original and the shifted MCP can be interpreted as price sensitivity. In 

this example, the price sensitivity amounts to 3.25 €/MWh per 200 MW for demand and -1.44 €/MWh 

per 200 MW for supply. That means, a buyer willing to purchase 200 MW for that period should expect to 

pay 3.25 €/MWh additionally to the observed MCP in the quarter-hourly day-ahead auction. Vice versa, a 

seller willing to trade 200 MW more might has to accept a markdown of -1.44 €/MWh.  

As in the example the price sensitivity calculation can be determined for any time step, product and 

quantity bid into the market. Computing a detailed course of sensitivity of a specific product is done by 

running through all incremental quantities bid into the market. This can be done for any uniform market 

designs based on bid and ask curves, whereas the specifics of the respective electricity market need to 

be considered. For example, the price on the German quarter-hourly day-ahead auction is limited to 

−500 and 3000 €/𝑀𝑊ℎ with increments not smaller than 0.1 €/𝑀𝑊ℎ.  

Results for the German Hourly and Quarter-Hourly Day-Ahead Auctions 

As emphasized, the trading volume in the hourly day-ahead market is about 70 times higher than in the 

quarter-hourly day-ahead market, see Figure 6. Therefore, it is expected that the quarter-hourly market 

has a higher price sensitivity than the hourly market. That this expectation holds true is shown below by 

comparing the results for the price sensitivity calculations of the quarter-hourly and the hourly day-ahead 

auction in Germany for the year 2015 and 2016. The year 2015 is the first complete year after the 

introduction of the German quarter-hourly day-ahead market in December 2014. The hourly and 

respectively the quarter-hourly results have been aggregated, clustered and depicted in box plots that 
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present the median in the middle as well as the 25% and 75% quantiles at the bars ends. While the 

whiskers mark the 5% and 95% quantiles, the dots beyond the whiskers indicate outliers. The results for 

the two day-ahead auctions are analyzed separately, firstly, the long-established hourly and secondly, the 

quarter-hourly auction.  

Figure 48 displays the price sensitivity boxplots of the coupled German and Austrian hourly day-ahead 

EPEX Spot auction of all 8760 hours of 2015 and 8784 hours of 2016. The capacity shifts of 50 MW to 

6400 MW are set by doubling the additional bid and ask quantity in each step. Between 200 and 3200 MW 

additional ask quantity, and between 200 and 6400 MW additional bid quantity, the price sensitivity 

increases almost linear by 0.25 €/MWh per 100 MW bid or ask shift. For shifts up to 1600 MW most of 

the calculated price deviations for the hourly day-ahead auction are within the box of the boxplot, i.e. 

they are within the 25% and 75% quantile which indicates a low standard deviation. Generally, from 

1600 MW on, a significant number of outliers are visible with noticeable prices over 100 €/MWh. Some 

of these outliers are likely to originate from exceptional circumstances such as the solar eclipse on March 

20th, 2015. Considering the logarithmic scale of the abscises in Figure 48, the median continues to increase 

nearly linear with additional volume of bid and ask shifts. Furthermore, it can be noticed that for the 

leading hourly market bid side shifts show lower fluctuations than ask side shifts. This can be explained 

by a currently strong supply side of production capacity on the German electricity market.  
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Figure 48 Price sensitivity on the German hourly day-ahead auctions in 2015 and 2016. The numbers 

show the median of the price sensitivity for each quantity. The bars and points on the positive side of 

the diagram present the additional simulated shift of ask quantity and the negative the simulated shift 

of bid quantity. Data derived from (EPEX Spot, 2017b) 

 

The price sensitivity boxplots of the German quarter-hourly EPEX Spot day-ahead auction are shown in 

Figure 49, summarizing the sensitivity results for all 35040 quarter-hours of the year 2015 and 35126 

quarter-hours of the year 2016 for capacity shifts of 50 MW to 1600 MW. Again, the additional bid and 

ask quantity in each step are doubled. The different limitations of the maximal quantity shift for the 

quarter-hourly market is based on the observation that the cumulated bid and ask curves rarely exceed 

2000 MW and that the average quantity of actual executed orders per quarter-hour is less than 500 MW. 

The results show that up to 800 MW additional bid and ask quantity the price increase of the median is 

again almost linear. However, with about 1.5 €/MWh per 100 MW it is six times higher than for the hourly 

day-ahead auction. And again, for higher changes of bid and ask quantities the price sensitivity increases 
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also disproportionately. But in contrast to the hourly day-ahead auction, the results indicate that the 

disparity of the price sensitivity on ask and on bid side is less distinct. This rather similar pricing of flexibility 

in both directions might be a hint that the quarter-hourly auction just levels out the deviations between 

the hourly products and the continuous course of the residual load.  

 

 

Figure 49 Price sensitivity on the German quarter-hourly day-ahead auctions in 2015 and 2016. The 

numbers show the median of the price sensitivity for each quantity. The bars and points on the positive 

side of the diagram present the additional simulated shift of ask quantity and the negative the simulated 

shift of bid quantity. Data derived from (EPEX Spot, 2017b) 

 

Furthermore, just available and highly flexible technologies bid into the quarter-hourly merit order. This 

means the quarter-hourly “flexibility merit order” is always steeper and shorter as the hourly merit order. 

Also, the spread between the lower and upper end of the boxplot opens much faster than for the quarter-

hourly market, indicating not just a higher sensitivity but also a larger variance of prices. 
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5.2.2. Critical Discussion 

In this part, the quantitative price sensitivity calculation from the previous chapter is broadened and a 

qualitative discussion is added. In the first part, motivation and key drivers for the quarter-hourly day-

ahead auction are revised. It is continued with the implication of divergent price sensitivities on the hourly 

and quarter-hourly day-ahead auctions for market participants and the challenge of providing an efficient 

market regime that supports RES as well as flexibility. Finally, the results are discussed in the context of 

further developments of the short-term power market design.  

Impetus for the new quarter-hourly day-ahead market was the need to trade shorter time periods than 

just hours in order to minimize risky open positions in the quarter-hourly continuous intraday trading 

already day ahead. As pointed out in chapter 5.1.1, one main driver that boosted this requirement for 

new short-term power products was the increased production capacity of solar power (see Table 2 and 

on the left of Figure 40). Since the day-ahead forecasts for solar feed-in is more precise in comparison to 

onshore and offshore wind, the quarter-hourly day-ahead market is solar dominated. This can be 

substantiated by comparing forecast and actual generation data for Germany published for example by 

ENTSO-E Transparency Platform (ENTSO-E, 2017b). Hence, as the day-ahead forecast of wind is less 

reliable it can be assumed that the trading of wind power forecast deviations is rather limited to the 

intraday continuous market. However, to verify the latter argumentation further research is needed.  

In the quarter-hourly day ahead market a distinctive zigzag price formation is apparent, see Figure 41. 

Three influencing factors can be enumerated: the trading of solar power ramps around midday as well as 

the gradients of consumption and thermal power plant ramps throughout the course of the day. Due to 

the characteristic two stage market design with highest liquidity on the hourly and lower liquidity on the 

quarter-hourly auction, hedging solar generation, inflexible thermal power plants and demand at the 

hourly day-ahead auction and using the quarter-hourly auction only to balance the remaining differences 

appears reasonable from an economic perspective. Generally, both day-ahead markets are nearly 

arbitrage free comparing the EPEX Spot day-ahead auction results, i. e. over a certain period of time the 

average price of the respective four quarter-hours equals the hourly price.  

Regardless of flexibility support and zigzag price curve explanations, from a fundamental perspective, it 

seems questionable that the last quarter of the previous and the first quarter of the next hour deviate 

disproportionately compared to changes of residual load as it is for instance the case in the morning and 

in the afternoon or evening (see Figure 41). Ceteris paribus, if there are just changes of solar production 

and variations of the overall demand that is covered by thermal production, the prices should 

continuously follow the height and the gradient of the solar residual, i.e. overall electricity demand 

subtracted by solar generation. On the left-hand side of Figure 50 the solar power trading regime with the 

actual hourly and quarter-hourly market prices is presented and on the right a possible resulting single 

quarter-hourly price curve as dotted black line if both markets would be cleared together is sketched. It 

could be that a joint hourly and quarter-hourly day-ahead auction would ensure a more efficient market 

clearing due to the bundling of market liquidity. Furthermore, from a fundamental perspective, the zigzag 

prices would smoothen since there is no reason for an extreme price difference between the last and the 

first quarter of two neighboring hours. However, the example of the Energy Exchange Austria (EXAA), that 

clears both quarter-hourly and hourly day-ahead auction together since 2014, is still characterized by a 

zigzag course (EXAA, 2014, p.4, 2017). If that is due to the case that market participants with need for 

quarter-hourly day-ahead products stick to their hedge oriented bidding strategies on the more liquid 
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subsequent EPEX auction for the same market areas where both day-ahead auctions with their 

significantly different trading volumes are timely separated or if there are other reasons that prevent a 

smoother quarter-hourly price structure should be subject to further research. Generally, it can be 

assumed that in parts with a strong change of the residual load the quarter-hourly prices result from a 

specific flexibility merit order which corresponds to a merit order without inflexible power plants. A 

flexibility merit order is therefore significantly steeper resulting in pronounced price changes. 

The present two stage market design with its respective price sensitivities has consequences for most 

market participants. A solar producer, for instance, that would bid the whole generation only in the more 

price sensitive quarter-hourly day-ahead market is likely to cause higher self-induced price changes than 

in the less price sensitive hourly day-ahead market. With the shift towards auction-based support tariffs 

(BMWi, 2015, p.81), more solar power plants will be traded by the owners or a third-party under the so-

called direct marketing regime. Hence, without the guarantee of fixed feed-in tariffs, price sensitivity and 

price differences of the various short-term markets already need to be included during the investment 

decision of new solar power plants. The same accounts for operators with flexible capacity. To maximize 

revenues, they have to take into account the price sensitivities at all short-term markets. The business 

case of e. g. storage units is to deliver energy in high price periods and store energy during times with low 

prices. The growth in solar power generation is likely to increase these temporal price spreads especially 

in the quarter-hourly day-ahead market. The idea of the further development of the German electricity 

market is that such price signals will incentivize investment in additional flexibility, especially if scarcity 

prices are permitted (BMWi, 2015, p.48). However, in the long-term these higher spreads might also lead 

to cyclical fluctuations of available capacities for storage and other flexibilities similar to the economic 

effect known as pork cycle. This means, that on the one hand, an increased price volatility induced by 

more solar power will enhance the profitability of e.g. storage units and therewith attract more 

investment in such flexible capacities. But on the other hand, the more flexibility is provided to the market 

the smaller are the spreads between the quarter-hours. Hence, the required mix of different measures to 

meet the future level of system flexibility will only be reached at lowest cost if an appropriate market 

design is in place that enables a technology neutral competition between all flexibility alternatives 

(Brunner, 2014b, p.8). This perception is also shared by the Federal Ministry of Economic Affairs and 

Energy, which published the white paper “An electricity market for Germany’s energy transition” in 2015 

showing first approaches to develop a market design that fosters additional flexibilities in a competitive 

environment (BMWi, 2015).  

It can be expected that if the future energy system becomes more flexible it is also likely to affect the 

trading volumes and therewith the price structure and sensitivities of today’s spot markets for power. 

Hence, the introduction of a quarter-hourly day-ahead auction is a first step towards an adequate market 

design for power systems with a high share of variable RES. And it may serve as a possible role model for 

other countries with liberalized energy markets, particularly when seeking to increase their share of solar 

power generation. But there are also other market mechanisms, such as additional intraday clearing 

auctions that are already in place in Spain, Portugal or Italy, see Table 2 or Table 3. Again, further research 

is needed to evaluate which set of market instruments and new spot products in future electricity markets 

are needed to integrate higher shares of variable RES most sufficient and thus improves the economic 

welfare. 
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Figure 50 Exemplary solar power trading on hourly and quarter-hourly day-ahead auctions; on the left 

based on the existing two-stage market design and on the right the estimated price and quantity for an 

integrated market, Data derived from (EPEX Spot, 2017b) 

5.3. Quadratic Multi-Market Optimization 

Especially for flexible pumped hydropower storages the new German quarter-hourly day-ahead auction 

has been a possibility to realize higher spreads than in the proven hourly day-ahead auction. With 

electricity prices as the most important value driver, it seems logical to integrate also quarter-hourly prices 

into the pumped hydropower optimization (Braun, 2015a).  

As a result of the previous market analysis, the limited price sensitivity on the quarter-hourly market need 

to be considered to receive realistic model results. Hence chapter 5.3.1 generally explains how price 

sensitivity should be considered in hydropower scheduling optimizations. Afterwards, the model set up 

for the two following multi-market optimizations is defined in chapter 5.3.2. In chapter 5.3.3, a two-stage 

solution approach based on Braun (2016b) is presented. Here, first an hourly day-ahead market 

optimization is performed followed by a quarter-hourly post-optimization based on the already calculated 

schedules. This approach is further developed and presented as an integrated model in chapter 5.3.4.  

5.3.1. General Remarks Considering Price Sensitivity  

Two different possibilities of including the price sensitivity ℓ in the profit calculation can be distinguished 

and need to be considered. The main question is, whether the bidder has been active on the market 

before, meaning the bidders historic offers are already included in the bidding curves that were used to 

determine the price sensitivity, or not. The difference between both possibilities is leveraged with the 
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quantity the new bidder is offering additionally to the market so that the overall trading volume increases. 

Both effects are consecutively discussed. Generally, the maximization of the profit 𝐺(𝑞) formulates as 

price 𝑐(𝑞) times quantity 𝑞 minus costs ℰ(𝑞): 

  𝐺(𝑞) = 𝑐(𝑞) ∙ 𝑞 − ℰ(𝑞). (42) 

 

The price sensitivity ℓ is the induced price change for additional energy in the market. For ℓ = 0 the price 

is not influenced by the quantity supplied or demanded and therefore complete inelastic. The greater ℓ 

the stronger is the influence of quantity changes on the price. To determine the effect of the price 

sensitivity on the price the following approach can be used.  

  𝑐(𝑞) = 𝑐0 − ℓ𝑞  

ℓ = −𝑐′(𝑞)  
(43) 

 

This corresponds to a new bidder in the market that wants to find out what profit one can expect entering 

the market. The respective profit can be determined using 

  𝐺(𝑞) = 𝑐0𝑞 − 𝑙𝑞
2 − ℰ(𝑞). (44) 

 

In case a market participant has already a share in the market and wants to include price sensitivity into 

the optimization, this is more difficult to estimate. There are two possible ways to consider price 

sensitivity in this event. Firstly, the price sensitivity calculation itself is adjusted by the market participant’s 

historic trading volume or secondly, the optimization distinguishes between the energy that has been 

typically traded 𝑞0 for the typical price 𝑐0 on the market and quantities that are traded in the market 

additionally. The result is the overall quantity 𝑞 that is planned to be traded into the market. Then, just 

the additionally traded quantity (𝑞 − 𝑞0) is strained with the price sensitivity ℓ:  

  𝑐(𝑞) = 𝑐0 − ℓ(𝑞 − 𝑞0). (45) 

  𝐺(𝑞) = (𝑐0 + ℓ𝑞0)𝑞 −  ℓ𝑞
2 − ℰ(𝑞). (46) 

 

If the quantity supplied 𝑞 is equal to the typical quantity 𝑞0, the market price is, ceteris paribus, the same.  

A crucial point is to determine the typical quantity supplied 𝑞0. This can be done using the optimality 

condition of the objective function and insert 𝑞 for 𝑞0. I. e. when the profit is maximized then 𝑞 is the 

profit optimizing quantity of the bidder. For the latter, the derivative of the profit function is needed. 

  𝐺′(𝑞) = 𝑐0 + ℓ𝑞0 − 2ℓ𝑞 − ℰ′(𝑞)  (47) 

 

Further, set 𝑞0 = 𝑞 to receive 
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  𝐺̃′(𝑞) = 𝑐0 − ℓ𝑞 − ℰ
′(𝑞), (48) 

 

and respectively 

  𝐺̃(𝑞) = 𝑐0𝑞 −
1

2
ℓ𝑞2 − ℰ(𝑞). (49) 

 

Concluding, a new bidder should use equation (44) and a bidder that bids regularly the quantity 𝑞0 into 

the market should rely on (47). In the following problem formulation as well as in the case study an already 

active bidder is considered since most pumped hydropower storages are existing installations. This 

approach is also applicable for the flexible demand side, e.g. for the investment decision in a new PV plant 

the operator should consider equation (44) to determine the future power plant’s income.  

5.3.2. Model Set Up 

In this part, the model set up, for the pumped hydropower storage optimization approach, is presented 

in the next two chapters 5.3.3 and 5.3.4, incorporating short-term energy markets with various temporal 

resolutions. This means that two or more markets can be considered in the objective function of the 

optimization leaving it up to the solution algorithm to bid on the most lucrative markets.  

The multi-market model considers grid charges, efficiencies, multiple time steps and prices (e. g. quarter-

hourly and hourly), inflows, hydraulic short circuit ability, spillage as well as the possibility to optimize all 

different kind of pumped hydropower storages (e. g. daily, weekly and seasonally). The equations of the 

optimization problem are defined based on the hydropower scheduling problem defined in chapter 4.1.2. 

The following symbols are used: 

State variable:  

• filling level [1000m³]: 𝑣𝑡,𝑟, 𝑣𝓉(𝑡),𝑟 

Decision variables: 

• turbine power [MW]: 𝑢𝑡,𝑚, 𝑢𝓉(𝑡),𝑚 

• pump power [MW]: 𝑝𝑡,𝑚,  𝑝𝓉(𝑡),𝑚 

• spillage [1000m³]: 𝑠𝑡,𝑟,  𝑠𝓉(𝑡),𝑟 

Additional decision variables for the two-stage optimization: 

• turbine power quarter-hourly [MW]: 𝑢𝓉(𝑡),𝑚
𝑞ℎ

, 

• pump power quarter-hourly [MW]: 𝑝𝓉(𝑡),𝑚
𝑞ℎ

, 

• turbine power hourly [MW]: 𝑢𝑡,𝑚
ℎ , 

• pump power hourly [MW]: 𝑝𝑡,𝑚
ℎ , 

Indices: 
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• time stages [hourly]: 𝑡 = 1,… , 𝑇 

• time stages [quarter-hourly]: 𝓉(𝑡) = 1,… , 𝒯 

• reservoirs: 𝑟 ∈ 𝑅 

• machines: 𝑚 ∈ 𝑀 

• machine below reservoir: m∈ 𝑟𝑚 

• machine above reservoir: 𝑚 ∈ 𝑚𝑟 

Parameters: 

• hourly prices [€/MWh]:  𝑐𝑡
ℎ, 

• quarter-hourly prices [€/MWh]:  𝑐𝓉(𝑡)
𝑞ℎ

 

• inflows [1000m³]:  𝑣𝑡,𝑟
𝑖𝑛 ,  𝑣𝑡,𝑟

𝑖𝑛  

• specific discharge turbine [1000m³/MWh]: 𝜂𝑚, 

• specific charge pump [1000m³/MWh]: 𝜌𝑚, 

• grid charges [€/MWh]: 𝑛𝑡,𝑚, 𝑛𝓉(𝑡),𝑚 

• limits for spillage [1000m³]: 𝑠𝑟
𝑚𝑖𝑛, 𝑠𝑟

𝑚𝑎𝑥 

• limits for filling level [1000m³]: 𝑣𝑟
𝑚𝑖𝑛, 𝑣𝑟

𝑚𝑎𝑥 

• start filling level [1000m³]: 𝑣𝑡,𝑟
𝑠𝑡𝑎𝑟𝑡, 𝑣𝓉(𝑡),𝑟

𝑠𝑡𝑎𝑟𝑡 

• end filling level [1000m³]: 𝑣𝑇,𝑟
𝑒𝑛𝑑 , 𝑣𝒯,𝑟

𝑒𝑛𝑑 

• limits for turbine capacity [MW]: 𝑢𝑚
𝑚𝑖𝑛, 𝑢𝑚

𝑚𝑎𝑥,  

• limits for pump capacity [MW]: 𝑝𝑚
𝑚𝑖𝑛, 𝑝𝑚

𝑚𝑎𝑥 

• limits for filling level [1000m³]: 𝑣𝑟
𝑚𝑖𝑛, 𝑣𝑟

𝑚𝑎𝑥, 

• limits for turbine capacity [MW]: 𝑢𝑚
𝑚𝑖𝑛, 𝑢𝑚

𝑚𝑎𝑥, 

• price sensitivity factors [€/100MW] ℓ𝓉(𝑡)
𝑞ℎ,𝑠𝑒𝑙𝑙

, ℓ𝓉(𝑡)
𝑞ℎ,𝑏𝑢𝑦

 

5.3.3. Two-Stage Optimization 

This part introduces the multistage mid- to short-term model based on Braun (2016b). On the first stage, 

the general optimization is introduced, aiming to find the optimal production schedule and water values 

for the hourly day-ahead market. On the second stage, the model is extended and performs a post-

optimization using the quarter-hourly day-ahead auction prices and the hourly schedules of the foregoing 

optimization.  

First Stage Optimization 

The first stage optimization has an hourly time resolution 𝑡 = 1, . . , 𝑇. For the profit maximization 

problem, the price spread and the absolute height of the price 𝑐𝑡 are important. The profit is summed up 

over the time 𝑡 and machines 𝑚 consisting of pumps and turbines with a respective capacity of 𝑝𝑡,𝑚
𝑚𝑎𝑥 and 

𝑢𝑡,𝑚
𝑚𝑎𝑥. Further, r denotes the reservoirs. The location of machines in the reservoir cascade is modeled 

using 𝑟𝑚 which indicates machines located below a reservoir and 𝑚𝑟 which marks machines located 

above a reservoir. The efficiencies describe the proportion of the water flow rate in 1000𝑚³ per produced 

or captured energy in 𝑀𝑊ℎ. The objective function determines the profit restricted by the constraints: 
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𝑃: max
𝑢,𝑝,𝑠

= ∑ 𝑐𝑡
ℎ𝑢𝑡,𝑚

ℎ − (𝑐𝑡
ℎ + 𝑛𝑡,𝑚)𝑝𝑡,𝑚

ℎ
𝑡,𝑚    (50) 

 𝑠. 𝑡. 𝑣𝑡,𝑟 = 𝑣𝑡−1,𝑟 + 𝑣𝑡,𝑟
𝑖𝑛 − 𝑠𝑠,𝑡 −∑ (𝑢𝑡,𝑚

ℎ 𝜂𝑚𝑚∈𝑟𝑚 ) +  

            ∑ (𝑝𝑡,𝑚
ℎ 𝜌𝑚)𝑚∈𝑚𝑟   

𝑚 ∈ 𝑀,   
𝑡 = 2,… , 𝑇    

  𝑣𝑡,𝑟 = 𝑣𝑟
𝑠𝑡𝑎𝑟𝑡   𝑟 ∈ 𝑅, 𝑡 = 1  

 
 𝑣𝑟

𝑚𝑖𝑛 ≤ 𝑣𝑡,𝑟 ≤ 𝑣𝑟
𝑚𝑎𝑥  𝑟 ∈ 𝑅,   

𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇  
  𝑣𝑡,𝑟 = 𝑣𝑟

𝑒𝑛𝑑  𝑟 ∈ 𝑅, 𝑡 = 𝑇  

  0 ≤ 𝑠𝑡,𝑟 ≤ 𝑠𝑟
𝑚𝑎𝑥  𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇  

  0 ≤ 𝑝𝑡,𝑚
ℎ ≤ 𝑝𝑚

𝑚𝑎𝑥  𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇  

  0 ≤ 𝑢𝑡,𝑚
ℎ ≤ 𝑢𝑚

𝑚𝑎𝑥   𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇. 

 

The most important constraints of the optimization are the reservoir filling level equations for every 

reservoir in the cascade. The reservoir filling level 𝑣𝑡,𝑟 in time 𝑡 and reservoir 𝑟 is a summation of the filling 

level 𝑣𝑡−1,𝑟 in the time stage 𝑡 − 1, plus the water that is released from an above located reservoir 𝑢𝑡,𝑚𝜂𝑚 

in time stage 𝑡, plus the water that is pumped from a below located reservoir 𝑝𝑡,𝑚𝜌𝑚 in time stage 𝑡, 

subtracting the water that is pumped into the upper reservoir 𝑝𝑡,𝑚𝜌𝑚 in time stage 𝑡 and subtracting the 

water that is released into the below located reservoir 𝑢𝑡,𝑚𝜂𝑚 in time stage 𝑡. If inflows 𝑣𝑡,𝑟
𝑖𝑛  are 

considered they are added as well.  

The reservoir filling levels 𝑣𝑡,𝑟 have to be within the minimum and maximum reservoir filling levels 

𝑣𝑟
𝑚𝑖𝑛, 𝑣𝑟

𝑚𝑎𝑥. The restrictions of reservoir and machines are defined independently in time, assuming to 

hold over the whole optimization period. Nevertheless, they can also be modeled for every time stage if 

necessary. The end or target reservoir filling level 𝑣𝑇,𝑟
𝑒𝑛𝑑 should be an experienced value or the 

intermediate result determined in a preoptimization with a longer optimization period. The spillage 𝑠𝑡,𝑟 is 

an option to release water in case the reservoir is filled, and the inflows exceed the flow through rates of 

the turbines. This variable is important to avoid insolvabilities, whereas it should be taken care of that the 

model does not shift water within reservoirs without being considered in the objective function. Whether 

grid charges 𝑛𝑡,𝑚 are considered depends on the location of the system and the respective regulatory 

framework. At least in some countries grid charges are an authoritative parameter.  

Second Stage Quarter-Hourly Optimization 

The quarter-hourly day-ahead market can additionally be exploited using a post-optimization based on 

the results of the hourly day-ahead market optimization.  

On the second-stage post-optimization a quarter-hourly time resolution is used, e. g. over the course of 

one year, 𝓉(𝑡) = 1,… , 𝒯. As introduced in chapter 5.2.1, the hourly day-ahead market can be assumed 

as a sufficient liquid market. However, considering other energy only markets, either quarter-hourly day-

ahead or intraday market, it is crucial to take price sensitivity into account. This means, it is not possible 

to trade any desired quantity at the given price. A price sensitivity factor ℓ𝓉(𝑡)
𝑞ℎ

 for the German quarter-

hourly day-ahead auction is described and determined in chapter 5.2.1. The suggested price sensitivity 

depends on the shape of bid and ask curves and determines the quantity related price effect. Therefore, 

the optimization problem transforms into a quadratic problem: 
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 max
𝑢,𝑝,𝑠

= ∑ [(𝑐𝓉(𝑡)
𝑞ℎ

− 𝑢𝓉(𝑡),𝑚
𝑞ℎ

∙
1

2
ℓ𝓉(𝑡)
𝑞ℎ,𝑠𝑒𝑙𝑙

) ∙ 𝑢𝓉(𝑡),𝑚
𝑞ℎ

− (𝑐𝓉(𝑡)
𝑞ℎ

+ 𝑛𝓉(𝑡),𝑚 +𝓉(𝑡),𝑚

𝑝𝓉(𝑡),𝑚
𝑏𝑢𝑦

∙ ℓ𝓉(𝑡)
𝑞ℎ,𝑏𝑢𝑦

) ∙ 𝑝𝓉(𝑡),𝑚
𝑞ℎ

]   

 (51) 

 

The optimal production schedule of the first stage optimization (𝑢𝑡,𝑚
ℎ ∗

𝑝𝑡,𝑚
ℎ ∗

, ) for 𝑡 = 1,… , 𝑇 and  𝑚 =

1,… ,𝑀 is used as input parameter for the second stage model. With 𝑢𝑡,𝑚
ℎ ∗

 considered as an already done 

sell-trade and 𝑝𝑡,𝑚
ℎ ∗

 as an already done buy-trade on the hourly day-ahead auction. In the trading equation 

(52) this information is used. Therefore, the final production (𝑢𝓉(𝑡),𝑚 − 𝑝𝓉(𝑡),𝑚) depends on the already 

traded and the quarter-hourly day-ahead auction quantity.  

 

  𝑢𝓉(𝑡),𝑚 − 𝑝𝓉(𝑡),𝑚 = 𝑢𝑡,𝑚
ℎ − 𝑝𝑡,𝑚

ℎ + 𝑢𝓉(𝑡),𝑚
𝑞ℎ

− 𝑝𝓉(𝑡),𝑚
𝑞ℎ

   (52) 

 

All further constraints correspond to the hourly optimization but with a quarter-hourly adjusted time 

resolution.  

This two-stage model provides important information for the multi-market bidding, such as optimal 

power plant schedules with respective shadow prices for hourly and quarter-hourly day-ahead market 

and considering the observed price sensitivity. The two-stage model is a straight forward approach since 

it resembles the temporal chronology of the auctions. But this approach has one significant disadvantage. 

Shadow prices are generated for both markets separately, which also means that for the same time stage 

two different shadow prices are theoretically possible. This can be explained by the way how the shadow 

prices are calculated, see 3.4. Although the models solve for optimal solutions, in times without dispatch 

or when the marginal price is far away from the market price, the water values are not defined uniquely. 

Such effects can lead to incomprehensible results and are difficult to communicate in practice.  

Therefore, in the next chapter 5.3.4 both problems are solved in one integrated optimization. This means 

just one reservoir filling level equation and one shadow price applying for both markets, which makes the 

trading more traceable. Nevertheless, both optimizations find optimal solutions and lead to the same 

profit and production schedules.  

5.3.4. Combined Optimization 

For the integrated model, beside 𝑡 = 1, . . , 𝑇 a further time set for the higher resolution time stages is 

introduced as well, with 𝓉(𝑡) = 1,… , 𝒯. The ratio of 𝒯/𝑇 determines the number of intermediate steps 

of the finer time resolution. For a quarter-hourly time resolution this is 4, if 5 min products are considered 

this is 12. This means the formulation is flexible in terms of possible further markets and time resolutions 

that may be introduced in the future. Nevertheless, for readability, the different parameters and variables 

are assigned with the super script letters ℎ and 𝑞ℎ for the hourly and quarte-hourly day-ahead markets. 

The new problem writes as below: 
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𝑃: max
𝑢,𝑝,𝑠

= ∑ [𝑝𝑡,𝑚
ℎ + 𝑐𝑡

ℎ𝑢𝑡,𝑚
ℎ − (𝑐𝑡

ℎ + 𝑛𝑡,𝑚)𝑝𝑡,𝑚
ℎ ]𝑡,𝑚 + ∑ [(𝑐𝓉(𝑡)

𝑞ℎ
− 𝑢𝓉(𝑡),𝑚

𝑞ℎ
∙𝓉(𝑡)

1

2
ℓ𝓉(𝑡)
𝑞ℎ,𝑠𝑒𝑙𝑙

) ∙ 𝑢𝓉(𝑡),𝑚
𝑞ℎ

− (𝑐𝓉(𝑡)
𝑞ℎ

+ 𝑛𝓉(𝑡),𝑚 + 𝑝𝓉(𝑡),𝑚
𝑏𝑢𝑦

∙ ℓ𝓉(𝑡)
𝑞ℎ,𝑏𝑢𝑦

)]  

 (53) 

 𝑠. 𝑡. 𝑣𝓉(𝑡),𝑟 = 𝑣𝓉(𝑡)−1,𝑟 + 𝑣𝓉(𝑡),𝑟
𝑖𝑛 − 𝑠𝓉(𝑡),𝑠  

−∑ (𝑢𝑡,𝑚
ℎ 𝜂𝑚𝑚∈𝑟𝑚 ) + ∑ (𝑝𝑡,𝑚

ℎ 𝜌𝑚)𝑚∈𝑚𝑟   

+∑ (−∑ (𝑢𝓉(𝑡),𝑚
𝑞ℎ

𝜂𝑚𝑚∈𝑟𝑚 ) + ∑ (𝑝𝓉(𝑡),𝑚
𝑞ℎ

𝜌𝑚)𝑚∈𝑚𝑟 )𝓉(𝑡)   

𝑚 ∈ 𝑀,  
𝑟 ∈ R, 
 𝑡 ∈ 𝑇,  
 𝓉(𝑡) = 2,… , 𝒯  

(54) 

 
 

𝑣𝓉(𝑡),𝑟 = 𝑣𝓉(𝑡),𝑟
𝑠𝑡𝑎𝑟𝑡   𝑟 ∈ 𝑅, 𝑡 = 1,   

𝓉(𝑡) = 1  
 

 
 𝑣𝓉(𝑡),𝑟

𝑚𝑖𝑛 ≤ 𝑣𝓉(𝑡),𝑟 ≤ 𝑣𝓉(𝑡),𝑟
𝑚𝑎𝑥   𝑟 ∈ 𝑅,𝑚 ∈ 𝑀,  

𝑡 ∈ 𝑇, 𝓉(𝑡) ∈ 𝒯  
 

 
 𝑣𝓉(𝑡),𝑟 = 𝑣𝓉(𝑡),𝑟

𝑒𝑛𝑑   𝑟 ∈ 𝑅, 𝑡 = 𝑇,  
𝓉(𝑡) = 𝒯  

 

 
 

0 ≤ 𝑠𝓉(𝑡),𝑟 ≤ 𝑠𝑟
𝑚𝑎𝑥  𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇,  

 𝓉(𝑡) ∈ 𝒯. 
 

  0 ≤ 𝑝𝑡,𝑚
ℎ ≤ 𝑝𝑚

𝑚𝑎𝑥  𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇   

  0 ≤ 𝑢𝑡,𝑚
ℎ ≤ 𝑢𝑚

𝑚𝑎𝑥   𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇   

 
 0 ≤ 𝑝𝓉(𝑡),𝑚

𝑞ℎ
≤ 𝑝𝑚

𝑚𝑎𝑥  𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,  
𝓉(𝑡) ∈ 𝒯  

 

 
 0 ≤ 𝑢𝓉(𝑡),𝑚

𝑞ℎ
≤ 𝑢𝑚

𝑚𝑎𝑥   𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,  
𝓉(𝑡) ∈ 𝒯  

 

 
 0 ≤ 𝑝𝑡,𝑚

ℎ + 𝑝𝓉(𝑡),𝑚
𝑞ℎ

≤ 𝑝𝑚
𝑚𝑎𝑥  𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,  

𝓉(𝑡) ∈ 𝒯  
 

 
 0 ≤ 𝑢𝑡,𝑚

ℎ + 𝑢𝓉(𝑡),𝑚
𝑞ℎ

≤ 𝑢𝑚
𝑚𝑎𝑥   𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,  

𝓉(𝑡) ∈ 𝒯  
 

 

In the objective function (53), the remuneration possibilities of both markets are considered. To secure 

the important arbitrage free characteristic within markets, it is suggested to calculate 𝑐𝑡
ℎ as the average 

of the four quarters 𝑐𝓉(𝑡)
𝑞ℎ

. This is not necessary when the operator has a dedicate price prognosis for each 

market. Then the model will automatically exploit the arbitrage within the markets as good as possible 

considering the given price sensitivity. In the reservoir filling level equation (49) the usage of the machines 

in both time steps is regarded. Therefore, all reservoir related variables and parameters are now defined 

based on the finer temporal time resolution 𝓉(𝑡). To comply with the machine capacity limits neither 𝑝𝑡,𝑚
ℎ , 

𝑝𝓉(𝑡),𝑚
𝑞ℎ

 nor a combination of both is allowed to exceed 𝑝𝑚
𝑚𝑎𝑥. And the same applies for 𝑢𝑚

𝑚𝑎𝑥 with 𝑢𝑡,𝑚
ℎ , 

𝑢𝓉(𝑡),𝑚
𝑞ℎ

 or a combination of both.  

As a result, optimal power plant schedules for each market and one shadow price for both markets are 

determined. This simplifies the shadow price based power plant steering.  

5.4. Numerical Results 

In this chapter, the introduced quadratic optimization approaches are applied on hydropower scheduling 

problems and solved using the commercial solver CPLEX (IBM ILOG CPLEX Optimization Studio is a Simplex 

based system to solve optimization problems) and programmed in General Algebraic Modeling System 

(GAMS). Below two different kinds of case studies are performed.  
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The first case study presents the results of the already published multistage approach  in chapter 5.4.1 

including a real-world large-scale pumped hydropower storage portfolio case study with more than 

20 reservoirs in the Alps and the Black Forrest, based on Braun (2016b). As electricity markets, the German 

hourly and quarter-hourly day-ahead markets are considered. For the latter, a price sensitivity of 

0.1 €/MWh/100MW is considered.  

The second case study is based on the enhanced multi-market optimization approach described in 5.3. A 

combination of exemplary pumped hydropower storages is defined, modeled and optimized to illustrate 

relevant effects of the multi-market optimization. The pumped hydropower storages are optimized inter 

alia considering hourly and quarter-hourly day-ahead markets to determine the optionalities within these 

markets.  

5.4.1. Two-Stage Multi-Market Optimization 

The aim of this EnBW pumped hydropower storage portfolio based case study is to show the huge impact 

of quarter-hourly markets on the optimization schedule as well as the applicability of the model to large 

scale systems. 

Model Setup 

For this example, the problem has been implemented as a multistage quadratic optimization in the 

optimization software GAMS. To illustrate the results of the presented optimization a calculation from 

January 1st, 2015 until April 30th, 2015 has been performed using the historic hourly and quarter-hourly 

day-ahead auction prices. An exemplary price profile for a week and a day in January can be seen in Figure 

51. The price fluctuations and therefore the higher spreads for pumped hydropower storages motivates 

the consideration of quarter-hourly prices in the optimization  
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Figure 51 Exemplary hourly and quarter-hourly day-ahead auction prices over the course of one week 

on the left and for January 21st, 2015 on the right. Data derived from (EPEX Spot, 2017b) 

 

The optimization has been applied on a real-world large-scale pumped hydropower storage portfolio with 

about 2 GW pumps and 3 GW turbine power. Every machine is defined by an efficiency rate, gird charges, 

flow through rates, hydraulic short circuit ability, as well as minimum and maximum capacity. 

Furthermore, the portfolio is a mix of daily, weekly and seasonally pumped hydropower storages including 

inflows. To find out more about the impact of quarter-hourly prices on profitability and shadow prices in 

different storage systems; reservoir with daily, weekly and seasonally pumping cycles are calculated and 

analyzed separately in chapter 5.4.2. 

Model Results 

Following the steps of the introduced two-stage optimization in chapter 5.3.3, the first stage of the 

optimization generates an optimal production schedule which should be bid into the hourly day-ahead 

market. This production schedule is presented in Figure 52, denoted by grey area. It is subsequently input 

for the second stage optimization and considered as an already taken sell or a buy position that has to be 

yielded. The second stage optimization is a post-optimization that adjusts the already calculated, and 

traded, hourly production schedule utilizing the quarter-hourly day-market prices. The difference 

between both schedules is traded into the quarter-hourly market as buy and sell within the physical limits 

of the power plants. This includes for example that at no time the total capacity of pumps or turbines are 

exceeded. The blue line in Figure 52 presents the resulting production schedule combining the sell and 

buy positions of both markets.  

The extensive changes of the production plan after the second stage optimization are a consequence of 

the high price fluctuations on the quarter-hourly day-ahead auction as can be seen in Figure 51 for the 

same period. In some quarter-hours, the complete sell position of the hourly schedule is repurchased on 

the quarter-hourly market. Beyond, more energy is bought on the quarter-hourly market increasing the 
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utilization factor, as for example in hour 7am. Vice versa for example 3 GW are sold on the quarter-hourly 

market in hour 11pm based on a previous buy position in the hourly market.  

This optimization just makes sense for pumped hydropower storage machines that are highly flexible and 

can be switched off and on for single quarter-hours, otherwise the induced balancing power not 

complying the planned schedule could be higher as the additional profits.  

 

 

Figure 52 Comparing the production schedule of the first stage optimization for the hourly day-ahead 
auction (yellow bars) with the production schedule of the post-optimization for the quarter-hourly day-

ahead auction (blue line) and considering price sensitive (red dotted line) 

 

As presented in Figure 6, the average quantities traded on the different energy markets vary. Whereas 

more than 25 GW are medially traded on the hourly day-ahead market just about 0.5 GW are traded on 

the quarter-hourly day-ahead auction (EPEX Spot, 2017b). Therefore, the limited liquidity is considered, 

using a price sensitivity discount of 1 €/MWh per 100 MWh traded. The result can be seen in Figure 52 as 

well. The final production plan considering both markets and price sensitivity is outlined as black dotted 

line. In some quarter-hours, the quantities traded are significantly reduced in comparison to the 

calculation without price sensitivity. In other cases when the prices are high enough to compensate the 

price sensitivity discount all machines are still in the money. Comparing the hourly and the quarter-hourly 

schedule, a difference in maximum production is apparent. This is due to machines with a low efficiency 

and therefore high shadow prices which are not used on the hourly market at all.  

After presenting the effects of the optimization spanning two markets on the optimal production 

schedule, the impacts on the water values and the resulting shadow prices need to be discussed. Assuming 

a perfect market including no-arbitrage and full liquidity as well as unlimited upper and lower reservoirs, 

the water values for both markets and all-time steps should be the same. None of these assumptions hold 

true in real-world applications. Nevertheless, the water values from the dual variables of the reservoir 

balancing equations can be calculated and deliver reasonable results for each of the two markets. The 
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water values for the hourly and the quarter-hourly market deviate about 2 to 5 €/MWh from each other. 

This might be reasoned with the fluctuating quarter-hourly prices (higher spreads) and limited lower 

basins, but it reveals also that calculating water values for each market is not practical applicable. Buying 

in the first market for the hourly shadow price and maybe selling in the second, three hours later due to 

a lower shadow price, is not acceptable, although the results for each market are reasonable. This problem 

is solved with the enhanced one-stage optimization algorithm described in chapter 5.3.1. The second case 

study presents the desired improvements in terms of overarching shadow price based steering 

parameters in chapter 5.4.2.  

Beyond, the consideration of limited liquidity decreases the water values about 0.2 to 1 €/MWh in 

comparison to the case without liquidity. The latter is reasonable since on the one hand the amount 

traded is reduced, see Figure 52, and on the other hand the realized price is lower because of the price 

sensitivity. Although the optimization includes a quadratic term, the calculation of the whole power plant 

portfolio took just a few minutes using Intel Core i7 CPU and 8 GB memory size and is therefore suitable 

for real-world operation.  

5.4.2. One-Stage Multi-Market Optimization 

In comparison to the first case study with one large power plant system with multiple reservoirs and 

machines demonstrating the feasibility of quadratic quarter-hourly optimization, the intention of the 

second case study is to understand the effect of storage size or machine power on return and steering 

parameters as well as the influence of price sensitivity on the hydropower handling.  

Model Setup 

Three different pumped hydropower storages have been modelled in GAMS, see Table 10. First, the size 

of the reservoirs corresponds to half-daily, daily and weekly pumped hydropower storages to see the 

profit gain of additional storage size. And second, the machine capacity varies to regard different market 

share levels. The scheduling problems are solved with the introduced multistage quadratic optimization 

approach from chapter 5.3.4. If the price sensitivity is assumed to be null the problem is solved as a linear 

optimization, in all other cases as a quadratic solution approach applies. 

 

Table 10 Definition of the case study pumped hydropower storages 

characteristic unit case 1 case 2 case 3 

turbine capacity [MW] 100 600 1,200 

turbine flow through [1000m³/MWh] 1 1 1 

pump capacity [MW] 100 600 1,200 

pump flow through [1000m³/MWh] 0.7 0.7 0.7 

full-load hours [h] 4 8 60 
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Model Results 

The results of the multi-market optimization are presented below focusing on the profit and the shadow 

price based power plant dispatch. The production schedules generally resemble the already presented in 

case study one. In Figure 53 an overview on the obtained profits from the different optimizations can be 

seen. On the left the three different reservoir sizes can be compared using the hourly and the quarter-

hourly day-ahead auction. The profit from the latter is significantly higher. Furthermore, the surplus of a 

sizable reservoir is more important in the hourly market as in the quarter-hourly market, showing also 

that the difference in profit between both markets decreases with increasing reservoir capacity. This is 

reasonable since for the quarter-hourly optimization the spreads within hours and days are important, 

whereas weekly pumped reservoirs balance also longer time periods.  

On the right of Figure 53 the influence of price sensitivity on the profit is analyzed. Therefore, different 

machine sizes are compared since not the full load hours are important but the maximum capacity that is 

bid into the market. The more capacity is additionally bid into the market the higher the discounts of the 

profits. The discount on the profit for the 1200 MW machine is about 3 %.  

 

 

Figure 53 Comparing the profit from the hourly and the quarter-hourly day-ahead market optimization 
on the left and the influence of price sensitivity on the right.  

 

Furthermore, the revenues are neither evenly distributed over the different markets nor the different 

months of the year. Figure 54 illustrates that the revenues vary with a factor of two to three between the 

months. Since this cannot be reasoned with the higher prices in winter, the distribution accentuates that 

not just the absolute price but especially the spreads are important. The spreads between peak and off-

peak as well as within hours are smaller during the summer as in winter. Moreover, the high profits in 

January, February, May and December result from a few significant price spikes which strongly influence 

the overall revenue.  
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Figure 54 Exemplification of the monthly return form a pumped hydropower storage with 8 full-load 
hours and 600 MW capacity over the course of the year 2016 taking the quarter-hourly day-ahead 

auction into account.  

 

A further target of this case study is the analysis of the steering parameters. The steering parameters are 

important to transfer the calculated results into a real-world dispatch. Many optimization models hamper 

to provide a sufficient transformation. The week between Monday 18th and Sunday 25th in January 2016 

is chosen to present how the reservoirs are planned to be dispatched. Shadow prices are calculated based 

on the water values of the upper and lower reservoirs, which are results of the reservoir balancing 

equations dual variables. The derivation of the shadow prices in general is discussed in chapter 3.4.  

For the smallest pumped hydropower storage within the case study, with 4 full-load hours of maximum 

water release and a machine size of 100 MW, the shadow prices are depicted for the respective January 

week in Figure 55. The black dashed line presents the shadow price just for the hourly market and the 

grey line for a combination of both markets. Whereas both shadow prices look relatively similar, the 

difference is still significant, see dotted grey line for the deltas between both shadow prices. It can be 

seen that the power plant is not used for daily, but for half daily storage cycles. That means one load cycle 

takes place on a lower price level between the night and the morning peak and the second on a higher 

price level between the dip at noon and the evening peak. For a 100 MW machine, the consideration of 

price sensitivity is not presented here.  
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Figure 55 Course of the shadow prices for different short-term energy markets and a reservoir with 4 
full-load hours in a January week in 2016. 

 

In Figure 56 the shadow price for the hourly day-ahead market and for a combination of hourly and 

quarter-hourly day-ahead market with and without sensitivity is presented. Whereas in some parts of the 

year the difference is significant, large sections reveal nearly no difference. The deltas between 

considering just the hourly and both markets are illustrated as blue and grey dotted lines. The 

consideration of price sensitivity, denoted as blue dashed line, seems rather unimportant for the shadow 

price calculation. This can be reasoned with the symmetric applying price sensitivity. That means the 

power plant face higher prices for pumping and lower prices for generation. Both leads to a reduced 

dispatch but not a change in the shadow price. Some examples with an uneven distributed price sensitivity 

can be found over the course of the year resulting in a difference between the shadow price with and 

without price sensitive. 
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Figure 56 Difference between the hourly day-ahead market based shadow price and the multi-market 
based shadow price with and without price sensitivity. 

5.4.3. Conclusion 

The multi-market analysis and optimization of quarter-hourly and hourly day-ahead markets is a novelty 

and improves profit and reservoir management.  

An important part is the price sensitivity calculation on the newly introduced quarter-hourly day-ahead 

auction in comparison to the already existing hourly day-ahead auction in Germany. The results show that 

between 100 and 800 MW additional bid and ask quantity the average price sensitivity of the quarter-

hourly German day-ahead auction in 2016 (2015) was about 1.3 €/MWh (1.5 €/MWh) per 100 MW shift 

of supply or demand in comparison to about 0.2 €/MWh (0.25 €/MWh) per 100 MW for the similar shifts 

on the hourly German-Austrian day-ahead auction. The solar power production as well as gradients of 

demand and the ramps of thermal power plants have been identified as the main drivers in terms of 

trading volume and price formation in the quarter-hourly market. Furthermore, the introduction of the 

second day-ahead market increased the overall short-term trading volume and enables risk mitigation via 

more adequate products, especially for solar power traders. However, the information on the price 

sensitivity is also relevant for operators of flexible units on supply and demand side likewise. In addition, 

the discussion about the zigzag price formation on the quarter-hourly market points out that the two-

stage market design is rationale. But, although it might be possible that clearing both markets together 

could reduce quarter-hourly price fluctuations, the thereby induced reduction of quarter-hourly price 
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spreads is going to lessen investment incentives for new flexibilities that are required to enable even 

higher shares of RES in the future. 

For both, new installations, as well as existing storages, quarter-hourly prices and price sensitivity should 

be considered in determining the pumped hydropower bidding strategies. An analysis shows that the 

usage of just hourly day-ahead price based water values in quarter-hourly trading leads to an imprecise 

steering. This is due to higher fluctuations and sensitive prices on the quarter-hourly day-ahead market. 

Therefore, multi-market optimization approaches are presented providing optimal power plant 

production schedules, profits and steering parameters. The results are outlined for different pumped 

hydropower storages. The case studies present that the consideration of the quarter-hourly market 

increases the profit for the half-daily pumped hydropower storage by 86 % and for the weekly pumped 

hydropower storage by 36 %. The influence of price sensitivity consideration in the quarter-hourly market 

leads to a profit reduction of about 3 % for a 1200 MW machine. Furthermore, it could be shown that the 

profit highly depends on the infrequent occurring price spikes over the year. The difference in shadow 

price considering just the hourly market and a combination of both hourly and quarter-hourly market is 

heterogeneous and in the given example mostly between 1.5 €/MWh and -1.5 €/MWh. The influence of 

the price sensitivity consideration on the shadow price is negligible. Furthermore, a two-stage approach 

that determines shadow prices for each market is theoretical correct but practical not feasible. Therefore, 

it can be advised, integrating all markets in one objective function and to use the overall reservoir filling 

level equation to retrieve one shadow price for all markets.  

Concluding, the consideration of several markets when optimizing the pumped hydropower storage 

dispatch is crucial for short-term position management. Mainly to determine the day-ahead market profit 

to be compared with other income possibilities such as balancing power (see chapter 8), but also to 

provide high-quality shadow prices for pumped hydropower storage steering.  
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6. Stochastic Optimization of Quarter-hourly Day-ahead Market  

The view on today’s energy markets has been focused on the short-term. In Germany about 97 GW of RES 

are installed by now producing a third of 2015 gross electricity demand (187.3 TWh out of 592 TWh) 

(BMWi, 2016b). The major share of this production depends on the fluctuating primary energy sources 

sun and wind and is therefore independent to demand and price level. For the latter, variable RES strongly 

influence the price in the short-term. Weather forecasts do normally not venture outlooks further than 

one week ahead and a precise production forecast is often just possible a few hours before delivery.  

Since demand and production always need to be balanced, the variable RES demand significant amounts 

of flexibility and storage capacity. Beside the daily PV production and deviations due to the course of the 

sun, especially the wind production challenges the forecasts. Whereas it can be predicted that a low-

pressure area will bring significant amounts of wind power, the exact time when the wind starts to blow 

can vary within hours and the length of the storm can also be a day less or more. These deviations are 

often traded in the hourly and quarter-hourly intraday markets, which play an important role for wind 

power balancing, see chapter 2.2.3. One of the most obvious possibilities to balance wind power 

production are pumped hydropower storages with good conversion efficiencies, large quantities of 

potentially stored energy and flexible production units. Especially so called weekly storages with full-load 

hours in a range of about 48 to 168 hours are highly suitable.  

To consider the just described use case in weekly pumped hydropower scheduling and optimization a 

precise quarter-hourly price forecast including probabilities and the possibility to react on shifts of the 

planned wind feed-in is needed. Furthermore, as described in chapter 3.3, short-term models with an 

optimization period of about two weeks are normally modelled with a high level of detail so that the 

results can be used to generate steering parameters for an optimal risk neutral dispatch. This challenge, 

stochastic programming with a high level of detail, is approached in this chapter. To consider stochastic 

prices as well as stochastic inflows the optimization period is limited to a few weeks. The optimization of 

a hydropower system with cascaded reservoirs is possible as well.  

This chapter is based on common work with Judith Vesper. She was a master student I supervised at EnBW 

in 2016. In the first part, chapter 6.1, SDDP is introduced as a well-known but still state-of-the-art 

approach to deal with the course of dimensionality. Chapter 6.2 introduces an extension to consider a 

case with not independent prices. Furthermore, chapter 6.3 presents the numerical results revealing the 

value of stochastic optimization and steering parameters.  

6.1. Stochastic Dual Dynamic Programming 

In chapter 4.3.2, a solution to the stage wise independent stochastic optimization problem is given. The 

intention is to maximize the expected value of the objective function including the nested expected 

values. The direct solution would require the solution of multiple integrals. Therefore, a dynamic approach 

for an appropriate approximation of the stochastic processes is applied to avoid solving complex integrals. 

Although the stochastic problem can be formulated in “scenario tree form” with various linear problems 



 

133 

 

that can be solved with commercial solvers as CPLEX, the marvelousness number of problems is just 

theoretically solvable. With an increasing scenario tree, the number of variables grows extremely fast and 

the problem is quickly non-manageable. With a time period of 7 days with quarter-hourly time resolution 

and three branching’s on each stage one receives 3(7∗96−1) scenarios. For a classification, even with a 

two-day time period the number exceeds by far the number of protons in the universe which is assumed 

to be around 1089 (Heile, 2012). A possible solution is Benders decomposition, a dynamic approach to 

cope with the “scenario tree form”. But the number of sub problems is still numerous and calculation 

times are high. Therefore, in this chapter the SDDP method is used. This likewise dynamic approach allows 

to reduce the number of sub problems even further via sampling, also referred as scenario selection.  

In the first part of this chapter 6.1.1, the challenges of stochastic input parameter especially the prices are 

described. After a literature review in 6.1.2 the already mentioned SDDP algorithm is introduced and 

explained. A theoretical review in 6.1.4 including a convergence analysis complements this chapter.  

6.1.1. Challenges of Independent Prices 

In this section, the SDDP method to solve stochastic problems, as defined in chapter 4.3, is applied on a 

hydropower scheduling problem. Therefore, stochastic inflows as well as stochastic prices are considered; 

both are assumed to be stage wise independent. A method to deal with stage wise dependent prices is 

introduced in chapter 6.2. Independency means, (Ω𝑡|𝜔𝑡−1) = Ω𝑡 and every combination of realizations 

is assumed to be possible. Furthermore, the probability vector 𝜉𝑡(𝜔𝑡) = (𝑐𝑡(𝜔𝑡), 𝑏𝑡(𝜔𝑡)) is discretized. 

The stochastic process 𝜉2, … , 𝜉𝑇 is replaced by samples 𝜉𝑡
𝑗
= (𝑐̃𝑡𝑗, 𝑏̃𝑡𝑗), 𝑗 = 1,… ,𝑁𝑡 , 𝑡 = 1,… , 𝑇 and the 

distribution 𝒫 = 𝒫2 × …× 𝒫𝑇 by the empirical distribution 𝒫̃ = 𝒫𝑁2 ×…× 𝒫𝑁𝑇 . The stochastic process 

can then be depicted as a so called recombining tree. Figure 57 presents a possible tree structure.  

 

 

Figure 57 Exemplary recombining scenario tree with 𝑡 = 5 

6.1.2. Literature Review 

Hydropower scheduling problems are within the most challenging problems in energy planning due to 

their complexity. It has always been important for practice as well as academia to find solutions to 
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problems including stochastic. The state-of-the-art approach to solve such problems is SDDP and some 

similar approaches that are widely used mainly for long-term planning between one to five years. A very 

small but for this chapter most important work on SDDP are compiled below. 

• Pereira and Pinto (1991) introduced the SDDP method at first and applied a cost minimization on 

the Brazil hydropower storage system. The greatest advantage of this new approach is to curb 

the so called curse of dimensionality (term introduced by Bellman, 1954 when considering 

problems in dynamic optimization). Hitherto the explosion of the state space when solving with 

stochastic dynamic programming (SDP) narrowed the number of problems that could be solved. 

Pereira and Pinto showed that the cost-to-go function is linear in the target variable and therefore 

can be approximated by a linear function. They further pointed out possibilities for a useful 

parallelization. 

• Shapiro (2011) analyzed SDDP in terms of convergence. He was able to prove convergence for 

linear multistage problems using sample-average-approximation as discretization of the 

stochastic process and describes stage wise independent conditions. A further convergence result 

for SDDP, risk aversion and stopping criterions has been shown and defined by Shapiro.  

• Rebennack (2016) looked into advantages and disadvantages of scenario and sampling based 

SDDP methods. He describes the applications of uncertainties in various models and introduces 

extensions to classical SDDP including a combination of scenario and sampling based 

representation of stochastic processes.  

• Löhndorf, Wozabal and Minner (2013) apply an approximate dual dynamic programming 

approach to hydropower systems. It incorporates short-term intraday decisions with a Markov 

decision process and integrates SDDP with ADP. Prices as well as inflows enter the stochastic 

input data.  

• Agottspon and Andersson (2014) use SDDP for a medium term planning horizon. Therefore, they 

introduce intra- and inter stages to deal with short-term flexibilities while keeping the decision 

tree as small as possible. They further describe approaches to integrate balancing power 

provision. Furthermore, Abgottspon (2015b) characterizes various application possibilities for 

SDDP in hydropower scheduling and introduces extensions to SDDP to deal with a wider scope of 

problems. For example, he introduces the method of locally valid cutting planes as an extension 

to SDDP for to deal with concave value functions and describes multi-horizon planning to solve a 

combination of stage wise independent and dependent stochastic processes.  

6.1.3. Algorithm 

This part focuses on the classical SDDP approach introduced by Pereira and Pinto (1991). Input for the 

algorithm is a discretized stochastic process. Outputs are the expected returns as well as water values for 

the reservoirs. The water value is given by the change of the objective function due to a marginal 

relaxation of the restricting reservoir balancing equations; a marginal increase of the right-hand side. In 

the beginning, with each iteration, 𝐾 paths of the stochastic process are chosen randomly. Afterwards a 

forward and a backward step are performed and the first iteration of the algorithm is concluded. During 

the algorithm, upper and lower bounds for the expected return are calculated and tested for the stopping 

criterion. Figure 58 presents the operation sequence of the SDDP algorithm schematically.  
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Figure 58 Flow chart stochastic dual dynamic programming 

 

For the forward step test solutions, so called trails, of each path and for every time stage are computed. 

In the backward step, the corresponding cutting planes of the profit-to-go function are determined. 

Thereby, with every iteration the profit-to-go function is approximated more accurately. Figure 59 

presents a recombining scenario tree with a forward pass on the left-hand side and the backward pass on 

the right-hand side. 

 

 

Figure 59 Run through the scenario tree in forward and backward passes 
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For the forward pass, all time stages beginning with the first and ending with the last time step. The 

optimal point is handed over to each sub problem at a time. The backward pass starts on the last time 

step. The result of the penultimate step of the forward pass is fixed and for all possible scenarios of the 

last stage the returns are calculated. For the backward pass, this procedure is performed for all further 

time steps going backwards in time until the first time step is reached.  

Below, the algorithm is described step by step beginning with the forward pass followed by the backward 

pass and finally formulated as overall algorithm.  

Forward Pass 

For the forward pass, all 𝐾 scenarios of all sub problems, from the first until the last time step, are solved. 

Henceforth, these problems are stated as master problems. Figure 60 shows the course of the forward 

step.  
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Figure 60 Flow diagram of SDDP algorithm based forward step 

 

In Iteration 𝑅 of the overall algorithm the master problem of the forward pass for 𝑘 = 1,… , 𝐾 formulates 

as below: 

Master problem 1:  

𝒞1 = max
𝑥1,𝛼2

 𝑐1
𝑇𝑥1 + 𝛼2   (55) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1   
 

 𝛼2 ≤ 𝛼2,𝑘
𝑟 − (𝑥1 − 𝑥1,𝑘

𝑟 )
𝑇
𝐵2
𝑇𝜆2,𝑘

𝑟     𝑟 = 1,… , 𝑅 − 1  
𝑘 = 1,… , 𝐾  

  𝑥1 ≥ 0.  
 

Master problem t:  

𝒞𝑡(𝑥𝑡−1, 𝜉𝑡
𝑠) = max

𝑥1,𝛼𝑡+1
 (𝑐𝑡

𝑠)𝑇𝑥𝑡 + 𝛼𝑡+1   (56) 

 𝑠. 𝑡. 𝐴𝑡𝑥𝑡 = 𝑏𝑡
𝑠 −𝐵𝑡𝑥𝑡−1    

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘

𝑟 − (𝑥𝑡 − 𝑥𝑡,𝑘
𝑟 )

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘

𝑟     𝑟 = 1,… , 𝑅 − 1  
𝑘 = 1,… , 𝐾  

 

trial 𝑥1,𝑘 

trial 𝑥2,𝑘 

lower bound 

start: 𝑘 = 1 

set: scenario 𝑘 

master 1 

master 2 

stop 

NO 

YES 

…
 

master T 
trial 𝑥𝑇,𝑘 

𝑘
=
𝑘
+
1

 

𝑥2,𝑘 

𝑥1,𝑘 

𝑥𝑇−1,𝑘 

𝑘 = 𝐾 ? 
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𝑥𝑡 ≥ 0  
for 𝑡 = 2,… , 𝑇 − 1 

 
 

 

Master problem T:  

𝒞𝑇(𝑥𝑇 , 𝜉𝑇
𝑠) = max

𝑥𝑇
 (𝑐𝑇

𝑠)𝑇𝑥𝑇   (57) 

 𝑠. 𝑡. 𝐴𝑇𝑥𝑇 = 𝑏𝑇
𝑠 − 𝐵𝑇𝑥𝑇−1    

  𝑥𝑇 ≥ 0    

 

The optimal point on time stage 𝑡 − 1 is handed over to the problem at time stage 𝑡 as a parameter. 

Results of the forward pass are optimal points  

  𝑥1
𝑅 = argmax

𝑥1

𝒞1, 𝑥𝑡,𝑘
𝑅 = argmax

𝑥𝑡

𝒞𝑡(𝑥𝑡−1,𝑘
𝑅 , 𝜉𝑘), (58) 

 

and lower bounds for the return and the solution of the overall algorithm that are defined as: 

  𝑧 = 𝑐1
𝑇𝑥1

𝑅 +
1

𝐾
∑ ∑ (𝑐𝑡

𝑠)𝑇𝑇
𝑡=2 𝑥𝑡,𝑠

𝑅𝐾
𝑠=1 . (59) 

 

The cutting planes are derived from the backward passes of the iterations 1 to 𝑅 − 1. For each backward 

pass and each time step 𝐾 new cutting planes are added. In the first iteration, no cutting planes are 

available, 𝛼𝑡 = 0, 𝑡 = 1,… , 𝑇 − 1 are fixed. Alternatively, a start solution can be provided to immediately 

start with the backward pass.  

Backward Pass 

In the backward pass all master problems, beginning with the last time step for all realizations of the 

stochastic process are solved. For that the respective penultimate solution of the forward step is fixed. In 

doing so, the return is estimated based on the generated reservoir filling levels of the penultimate step 

considering the different scenarios of the current time step. The sub problems are equal to the ones of 

the forward step and are solved for all 𝑠 = 1,… , 𝐾 and 𝑗 = 1,… , 𝐽. As a major difference in comparison 

to the forward step, the dual variables 𝜆𝑡+1,𝑘
𝑅  of the reservoir filling level equations are determined during 

the backward passes. That is crucial to find the added future revenue that could be generated with one 

additional unit of water in a specific reservoir. To capture the change of the approximate future revenues 

as a function of the reservoir filling levels, the dual variables of the cutting planes are multiplied with the 

change of the reservoir filling levels (𝑥𝑡 − 𝑥𝑡,𝑘
𝑅 )

𝑇
. Further, the expected revenue 𝛼𝑡+1,𝑘

𝑅  at the reservoir 

filling level 𝑥𝑡,𝑘
𝑅  is added for which the dual variable has been determined.  

Master problem T:  

𝒞𝑇(𝑥𝑇−1,𝑠
𝑅 , 𝜉𝑇

𝑠) = max
𝑥𝑇

 (𝑐𝑇
𝑗
)𝑇𝑥𝑇   (60) 
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 𝑠. 𝑡. 𝐴𝑇𝑥𝑇 = 𝑏𝑇
𝑗
− 𝐵𝑇𝑥𝑇−1,𝑠

𝑅     [𝜆𝑇,𝑘
𝑗
]   

  𝑥𝑇 ≥ 0   
 

Master problem t:  

𝒞𝑡(𝑥𝑡−1,𝑠
𝑅 , 𝜉𝑡

𝑗
) = max

𝑥𝑡
 (𝑐𝑡

𝑗
)𝑇𝑥𝑡 + 𝛼𝑡+1   (61) 

 𝑠. 𝑡. 𝐴𝑡𝑥𝑡 = 𝑏𝑡
𝑗
− 𝐵𝑡𝑥𝑡−1,𝑠

𝑅         [𝜆𝑡,𝑘
𝑗
]   

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘

𝑟 − (𝑥𝑡 − 𝑥𝑡,𝑘
𝑟 )

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘

𝑟     𝑟 = 1,… , 𝑅  
𝑘 = 1,… , 𝐾  

 
 

𝑥𝑡 ≥ 0  
for 𝑡 = 𝑇 − 1,… ,2 

 

 

The master problems of the first stage for the forward and the backward pass are equal. The expected 

revenue for scenario 𝑘 of time step 𝑡 to 𝑇 in iteration 𝑅 is 

  𝛼𝑡,𝑘
𝑅 =

1

𝑁𝑡
∑ 𝒞𝑡(𝑥𝑡−1,𝑘

𝑅 , 𝜉𝑡
𝑗
)

𝑁𝑡
𝑗=1 , (62) 

 

for 𝑘 = 1,… , 𝐾 and 𝑡 = 2,… , 𝑇. The corresponding dual variables for the cutting planes are computed as 

  𝜆𝑡,𝑘
𝑅 =

1

𝑁𝑡
∑ 𝜆𝑡,𝑘

𝑗𝑁𝑡
𝑗=1 , (63) 

 

with 𝑘 = 1,… , 𝐾 and 𝑡 = 2,… , 𝑇. Below, it is shown that the cutting planes are an outer approximation 

of the profit-to-go function and are therefore the upper bound for the future expected revenues. 

Therewith, the result of the first stage is the upper bound for the expected revenue which is defined as 

  𝑧 = 𝒞𝑡 = 𝑐1
𝑇𝑥1 + 𝛼2, (64) 

 

whereby (𝑥1, 𝛼2) is the optimal point of the backward pass in iteration R. The backward pass process is 

illustrated in Figure 61. 
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Figure 61 Flow diagram of SDDP based backward pass 

Stopping Criterion 

Literature on SDDP provides various suggestions for respective stopping criteria. The work of Pinto and 

Pereira (1991), in which the algorithm has been introduced, recommend to stop the iterating if upper and 

lower bound are within the confidence interval of 95%. The interval is defined as: 

  [𝑧 − 1.96 𝜎𝑧
𝑜 , 𝑧 + 1.96 𝜎𝑧

0], (65) 

 

with 𝜎𝑧
0 ∶= √

1

𝐾2
∑ (𝑧 − 𝑧𝑘)

2𝐾
𝑘=1  and 𝑧𝑘 ∶= 𝑐1

𝑇𝑥1 + ∑ (𝑐𝑡
𝑘)
𝑇
𝑥𝑡,𝑘

𝑇
𝑡=2 . Shapiro (2011) took that up and added 

a modification to the stopping criterion. He states that the difference of the lower confidence bound 𝑧 −

1.96 𝜎𝑧
𝑜 1

√𝐾
 and the upper confidence bound 𝑧 shall be located within a specific tolerance limit that can be 

defined as: 

  𝑧 − (𝑧 − 1.96𝜎𝑧
1 1

√𝐾
) < 𝜖, (66) 

 

trial 𝑥𝑇−2,𝑘 
cutting planes 

cutting planes 

start 

master 𝑇,  𝑗 = 1,… ,𝑁𝑇 ,  𝑘 = 1,… , 𝐾  

master 𝑇 − 1,  𝑗 = 1,… ,𝑁𝑇−1,  𝑘 = 1,… ,𝐾  

master 𝑇 − 2,  𝑗 = 1,… ,𝑁𝑇−2,  𝑘 = 1,… ,𝐾  

stop 

…
 

master 2,  𝑗 = 1,… ,𝑁2,  𝑘 = 1,… , 𝐾  

master 1 

cutting planes 

cutting planes 

cutting planes 

cutting planes 

trial 𝑥𝑇−3,𝑘 
cutting planes 

upper bound 

trial 𝑥𝑇−1,𝑘 
cutting planes 

trial 𝑥𝑇−1,𝑘 
cutting planes 
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with 𝜎𝑧
1 ∶= √

1

𝐾−1
∑ (𝑧𝑘 − 𝑧)

2𝐾
𝑘=1 . Further, Abgottspon (2015b) states that in practice the algorithm should 

be also stopped after a fixed number of iterations or when the lower bound stops improving, which is not 

considered.  

When the stopping criterion is fulfilled the lower bound based on the trail solutions is the best 

approximation for the expected revenue. The optimal points of the forward pass outline the optimal 

strategy for the discrete problem. A further result are the water values of the reservoirs that are retrieved 

form the active cutting planes. 

Overall Algorithm 

Algorithm 1 provides a clear and stringent overview of the comprehensive SDDP approach in pseudocode. 

This may help to implement SDDP in various programming languages.  

 

Algorithm 1 Stochastic Dual Dynamic Programming  

Input Discretized stochastic process Ξ = {𝜉1, … , 𝜉𝑇} with 𝜉𝑇 = {𝜉𝑡
1, … , 𝜉𝑡

𝑁𝑡}, 𝑡 = 1,… , 𝑇 and where 

𝑁1 = 1. Parameter 𝐾 > 1 the number of paths, 𝜖 > 0 stopping criterion tolerance. 

1: Iterations index 𝑅 = 1, 𝑥0 = 1, 𝐵1 = 0, 𝑎𝑇+1 = 0. 

2: while 𝑧 − 𝑧 +
1.96𝜎

√𝐾
≥ 𝜖 do 

scenario selection: 

3: Choose of 𝐾 scenarios 𝜉1, … , 𝜉𝐾 with 𝜉𝑠 = 𝜉1
𝑠, … , 𝜉𝑇

𝑠 , 𝑠 = 1,… , 𝐾. 

 Forward pass 

4: for 𝑠 = 1 ∶  𝐾 do 

5: for 𝑡 = 1 ∶  𝑇 do 

6: if 𝑅 = 1 then 𝛼𝑡+1 = 0 fixed 

7: end if 

8: 

𝑥𝑡,𝑠
𝑅 =

{
  
 

  
 

argmax
𝑥𝑡

𝑐𝑡,𝑠
𝑇 𝑥𝑡 + 𝛼𝑡+1

𝑠. 𝑡.

{
 
 

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘

𝑟 − (𝑥𝑡 − 𝑥𝑡,𝑘
𝑟 )

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘

𝑟

𝑟 = 1,… , 𝑅 − 1 𝑘 = 1,… , 𝐾

𝐴𝑡𝑥𝑡 = 𝑏𝑡,𝑠 −𝐵𝑡𝑥𝑡−1,𝑠
𝑅

𝑥𝑡 ≥ 0

  

9: end for 

10: 𝑧𝑠 = ∑ 𝑐𝑡,𝑠
𝑇 𝑥𝑡,𝑠

𝑅𝑇
𝑡=1   
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Algorithm 1 Stochastic Dual Dynamic Programming  

11: end for  

12: 
𝑧 =

1

𝐾
∑ 𝑧𝑠𝐾
𝑠=1  und 𝜎 = √

1

𝐾−1
∑ (𝑧𝑠 − 𝑧)

2𝐾
𝑠=1  

 Backward pass: 

13: for 𝑡 = 𝑇 ∶ 1 do 

14: for 𝑠 = 1 ∶ 𝐾 do 

15: for 𝑗 = 1 ∶  𝑁𝑡 do 

16: 

𝑄𝑡,𝑠
𝑗
=

{
 
 

 
 

max
𝑥𝑡

𝑐𝑡,𝑗
𝑇 𝑥𝑡 + 𝛼𝑡+1

𝑠. 𝑡.

{
 
 

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘

𝑟 − (𝑥𝑡 − 𝑥𝑡,𝑘
𝑟 )

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘

𝑟

𝑟 = 1,… , 𝑅 𝑘 = 1,… , 𝐾

𝐴𝑡𝑥𝑡 = 𝑏𝑡,𝑗 − 𝐵𝑡𝑥𝑡−1,𝑠
𝑅

𝑥𝑡 ≥ 𝑜

  

17: end for 

18: 𝛼𝑡,𝑠
𝑅 =

1

𝑁𝑡
∑ 𝑄𝑡,𝑠

𝑗𝑁𝑡
𝑗=1  und 𝜆𝑡,𝑠

𝑅 =
1

𝑁𝑡
∑ 𝜆𝑡,𝑠

𝑗𝑁𝑡
𝑗=1  

19: end for 

20: end for 

22: 𝑧 =
1

𝐾
∑ 𝑄1,𝑠

1𝐾
𝑠=1   

22: end while 

Derivation of the Two-Stage Model 

In this part, the stochastic two-stage model to be solved with the SDDP algorithm is derived from the two-

stage model based on the stochastic dynamic formulations (30), (31), (32) introduced in chapter 4.3.  

The master problem of the first stage formulates as: 

𝑃: max
𝑥1

 𝑐1
𝑇𝑥1 + 𝒬(𝑥1)   (67) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1    

  𝑥1 ≥ 0.   

 

The expected value or profit-to-go function is 

𝒬(𝑥1) = 𝔼𝜉[𝒞(𝑥1, 𝜔)].    (68) 
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Further the sub problem of the second stage is  

𝒞(𝑥1, 𝜔) = max
𝑥2

 𝑐2(𝜔)
𝑇𝑥2(𝜔)  (69) 

 𝑠. 𝑡. 𝐵2𝑥1 + 𝐴2𝑥2(𝜔) = 𝑏2(𝜔)  
  𝑥2(𝜔) ≥ 0. 

 

with 𝑥1, 𝑥2 ∈ ℝ
𝑛, 𝐴1 ∈ ℝ

𝑚1×𝑛, 𝑏1 ∈ ℝ
𝑚1 , 𝐴2, 𝐵2 ∈ ℝ

𝑚2×𝑛, 𝑏2 ∈ ℝ
𝑚2 and 𝑐1, 𝑐2(𝜔) ∈ ℝ

𝑛. Below the 

solvability of all sub problems is assumed to be given.  

Discretization of the Probability Distribution  

In the first step, the random vector 𝜉 is approximated by the sample 𝜉(𝜔𝑗), 𝑗 = 1,… ,𝑁 with the 

respective empirical distribution 𝑃𝑛. Be that 

𝒬̃(𝑥1) ∶= 𝔼𝑃𝑁[𝒞(𝑥1, 𝜔)] =
1

𝑁
∑ 𝒞(𝑥1, 𝜔

𝑗)𝑁
𝑗=1   (70) 

 

whereas 𝒞(𝑥1, 𝜔
𝑗) is stated as the maximization problem of stage two, see equation (32), of scenario 𝑗. 

The approximation of the first-stage problem is therefore:  

𝑃̌: max
x1

 𝑐1
𝑇𝑥1 + 𝒬̃(𝑥1)  (71) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1  

𝑥1 ≥ 0. 

 

It can be seen, the expected value or profit-to-go function 𝒬̃ is included in the objective function. In the 

next steps, the summation of the sub problems is reformulated and simplified. 

Dualization of the Value Function 𝓒 

The theorem of strong duality states that if the primal problem has an optimal solution, then the dual 

problem has an optimal solution as well. Since 𝒞 is required to be solvable it follows from the strong 

duality theorem that 𝐷𝒞 is solvable too and the optimal points concur. The dual problem for 𝒞(𝑥1, 𝜔
𝑗) is: 

𝐷𝒞(𝑥1, 𝜔
𝑗) = min

𝜆∈ℝ𝑚2
 (𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆   (72) 

 𝑠. 𝑡. 𝐴2
𝑇 ≥ 𝑐2(𝜔

𝑗).  

 

The feasible set is defined as: 

Λ𝑗 ∶= {𝜆 ∈ ℝ𝑚2|𝐴2
𝑇𝜆 ≥ 𝑐2(𝜔

𝑗)}. (73) 
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As defined, this quantity is a polyhedron (Stein, 2016, Definition 2.1.5). One assumes 𝑅𝑎𝑛𝑘(𝐴2
𝑇) = 𝑚2. 

If this is not the case redundant equations can be deleted with the Gauß elimination (row reduction) 

method, so that Λ𝑗 is a sharp polyhedron and contains corners (Stein, 2016, Definition 3.1.5). Moreover, 

it follows from the solvability that the objective function 𝐷𝒞(𝑥1, 𝜔
𝑗) is bounded to the feasible set. The 

corner theorem of linear optimization states that an optimal point is assumed to be in a corner (Stein, 

2016, Definition 3.5.3). Therefore, the feasible set to the corners 𝑣𝑒𝑟𝑡(Λ𝑗) can be reduced. Since 𝑣𝑒𝑟𝑡(Λ𝑗) 

includes a finite number of elements, the non-empty and finite index set 𝐾𝑗 is numbered and defined as: 

𝑣𝑒𝑟𝑡(Λ𝑗)  = {𝜆𝑘, 𝑘 ∈ 𝐾𝑗}. (74) 

 

The vectors 𝜆𝑘 ∈ ℝ𝑚2 , 𝑘 ∈ 𝐾 denote the corners of Λ. The dual problem 𝐷𝒞 can be displayed as the 

minimum of a finite number of linear functions: 

𝐷𝒞(𝑥1, 𝜔
𝑗)   = min

𝜆∈𝑣𝑒𝑟𝑡(Λ𝑗)
(𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆 = min

𝑘∈𝐾𝑗
(𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆𝑘  (75) 

 

Since 𝐷𝒞(𝑥1, 𝜔
𝑗) = 𝒞(𝑥1, 𝜔

𝑗) holds, it can be formulated 

𝒞(𝑥1, 𝜔
𝑗) = min

𝑘∈𝐾𝑗
 (𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆𝑘  (76) 

 = max
𝛼𝑗

𝛼𝑗 𝑠. 𝑡. 𝛼𝑗 ≤ min
𝑘∈𝐾𝑗

(𝑏2(𝜔
𝑗) − 𝐵2𝑥1)

𝑇
𝜆𝑘  

 = max
𝛼𝑗

𝛼𝑗 𝑠. 𝑡. 𝛼𝑗 ≤ (𝑏2(𝜔
𝑗) − 𝐵2𝑥1)

𝑇
𝜆𝑘     ∀𝑘 ∈ 𝐾𝑗. 

 

Figure 62 presents the visualized result of the equation (76). As can be seen, the value function is pricewise 

linear and concave.  
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Figure 62 Mapping of the return function with linear functions 

 

The second equality sign in equation (76) holds, since, according to the premises, the minimum is obtained 

and therefore the lower bound is equal to the minimum. The result is inserted into the value function 𝒞: 

𝒬̃(𝑥1)   = 1

𝑁
∑ 𝒞(𝑥1, 𝜔

𝑗)𝑁
𝑗=1   (77) 

   = 1

𝑁
∑ max

𝛼𝑗
𝛼𝑗𝑁

𝑗=1   𝑠. 𝑡. 𝛼𝑗 ≤ min
𝑘∈𝐾𝑗

(𝑏2(𝜔
𝑗) − 𝐵2𝑥1)

𝑇
𝜆𝑘  

   = max
𝛼1,…,𝛼𝑁

1

𝑁
∑ 𝛼𝑗𝑁
𝑗=1   𝑠. 𝑡. 𝛼𝑗 ≤ min

𝑘∈𝐾𝑗
(𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆𝑘  

   = max
𝛼,𝛼1,…,𝛼𝑁

𝛼   𝑠. 𝑡. 𝛼 ≤
1

𝑁
∑ 𝛼𝑗𝑁
𝑗=1 , 𝛼𝑗 ≤ min

𝑘∈𝐾𝑗
(𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆𝑘  

   = max
𝛼
𝛼   𝑠. 𝑡. 𝛼 ≤

1

𝑁
∑ min

𝑘∈𝐾𝑗
(𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆𝑘𝑁

𝑗=1 .  

 

The first equality sign includes the definition of the value function, the second equality sign is a result of 

inserting equation (76). The third equality sign holds true since the target variables 𝛼𝑗, 𝑗 = 1,… ,𝑁 are 

independent of one another. The forth equality sign results from the epigraph reformulation (Stein, 2016, 

Exercise 1.3.7). In the last equation, the restrictions are summarized in which case the target variables 

𝛼1, … , 𝛼𝑁 vanish.  

𝒞2(𝑥1, 𝜔
𝑗) 

𝑥1 

𝛼𝑗 ≤ (𝑏2 − 𝐵2𝑥1)𝜆
5 

𝛼𝑗 ≤ (𝑏2 − 𝐵2𝑥1)𝜆
3 

𝛼𝑗 ≤ (𝑏2 − 𝐵2𝑥1)𝜆
2 

𝛼𝑗 ≤ (𝑏2 − 𝐵2𝑥1)𝜆
1 

𝛼𝑗 ≤ (𝑏2 − 𝐵2𝑥1)𝜆
4 
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Stepwise Calculation of Cutting Planes for the Approximation of the Profit-To-Go Function 

For the approximation of 𝒞 the corners of the polygons need to be calculated which is a rather difficult 

problem. Therefore, not all corners are determined at ones but stepwise. Be 𝑥1the solution of the first 

stage problem, then 𝜆̂𝑗 is defined as follows: 

𝜆̂𝑗   = argmin
𝜆𝑗∈Λ

𝑗
𝐷𝒬(𝑥̂1, 𝜔

𝑗) = argmin
𝜆𝑗∈Λ

𝑗
{(𝑏2(𝜔

𝑗) − 𝐵2𝑥̂1)
𝑇
𝜆𝑘}, (78) 

 

for all 𝑗 = 1,… ,𝑁. For 𝑥1 it follows: 

𝒬̃(𝑥1)   = 
1

𝑁
∑ 𝒞(𝑥1, 𝜔

𝑗)𝑁
𝑗=1   (79) 

   = 1

𝑁
∑ (𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆̂𝑗

𝑁
𝑗=1   

   = max
𝛼
𝛼   𝑠. 𝑡. 𝛼 ≤

1

𝑁
∑ min

𝑘∈𝐾𝑗
(𝑏2(𝜔

𝑗) − 𝐵2𝑥̂1)
𝑇
𝜆̂𝑗

𝑁
𝑗=1 . 

 

The solutions of 𝐷𝒬(𝑥1
𝑟, 𝜔𝑗) are 𝜆𝑗

𝑟 for 𝑗 = 1,… ,𝑁, 𝑟 = 1,… , 𝑅, with 𝑥1
𝑟 as the optimal point of the first 

stage in iteration 𝑟. With that the profit-to-go function is approximated by: 

𝒬̃𝑅+1(𝑥1) = max
𝛼
𝛼   𝑠. 𝑡. 𝛼 ≤

1

𝑁
∑ (𝑏2(𝜔

𝑗) − 𝐵2𝑥1)
𝑇
𝜆𝑗
𝑟𝑁

𝑗=1       𝑟 = 1,… , 𝑅  (80) 

 = max
𝛼
𝛼 𝑠. 𝑡. 𝛼 ≤

1

𝑁
∑ 𝒞(𝑥1

𝑟, 𝜔𝑗) − (𝑥1 − 𝑥1
𝑟)𝑇𝐵2

𝑇𝜆𝑗
𝑟𝑁

𝑗=1   𝑟 = 1,… , 𝑅.  

 

The second equality in the equation (80) holds true for 

𝒞(𝑥1
𝑟, 𝜔𝑗)   = (𝑏2(𝜔

𝑗) − 𝐵2𝑥1
𝑟)
𝑇
𝜆𝑗
𝑟 and (81) 

𝑏2(𝜔
𝑗)
𝑇
𝜆𝑗
𝑟   = 𝒞(𝑥1

𝑟, 𝜔𝑗) + (𝐵2𝑥1
𝑟)𝑇𝜆𝑗

𝑟  (82) 

 

with 𝑗 = 1,… ,𝑁 and 𝑟 = 1,… , 𝑅, if the last equation (82) is applied to the first equation (80).  

The (𝑅 + 1)th iteration of the master problem (71) of the first stage applying the approximation 𝒬̃𝑅+1 of 

(79) formulates as: 

𝑃̃𝑅+1: max
𝑥1,𝛼

 𝑐1
𝑇𝑥1 + 𝛼   

(83)  𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1   
  𝛼 ≤

1

𝑁
∑ 𝒞(𝑥1

𝑟, 𝜔𝑗)𝑁
𝑗=1 − (𝑥1 − 𝑥1

𝑟)𝑇𝐵2
𝑇𝜆𝑗

𝑟  ∀𝑟 = 1,… , 𝑅  

 

This problem (83) corresponds to the first stage master problem of the SDDP algorithm.  
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6.1.4. Theoretical Review and Convergence 

In this part, the characteristics of the algorithm are examined. Proposition 1 states that the value function 

𝒞𝑡(∙,∙) is piecewise linear as well as concave in the first argument and convex in the second argument. It 

further clarifies that the expected value function 𝒬𝑡(∙) is also piecewise linear and concave. These 

characteristics are crucial for the functioning of the algorithm.  

Proposition 1: The value function 𝒞𝑡(∙,∙) is 

a) Piecewise linear and concave in 𝑥𝑡 

b) Piecewise linear and convex in 𝑐𝑡+1. 

If 𝜉𝑡+1 follows a discrete distribution, then the expected value function 𝒬𝑡+1(∙) is piecewise linear and 

concave.  

Proof: see: Birge and Louveaux (2011, Chapter 3, Theorem 2). 
 

Statement a) in proposition 1 can also be reasoned with equation (76) and Figure 62. Hence, it can be 

followed that also the expected value function 𝒬𝑡+1(∙) is piecewise linear and concave, because 𝒬(∙) is a 

positive combination of piecewise linear and concave functions. Equation (77) substantiates that and 

Figure 63 presents an exemplary value function 𝒞𝑡(𝑥𝑡−1, 𝑐𝑡) for which the pricewise linearity can be seen 

graphically.  

 

Figure 63 Profit-to-go function 𝒬𝑡(𝑥𝑡−1, 𝑐𝑡) mapped onto the reservoir filling level and the market price 

 

Furthermore, Figure 64 illustrates the profit-to-go function 𝒬𝑡(∙) of the value function 𝒞𝑡(𝑥𝑡−1, 𝑐𝑡) on a 

two-dimensional level. On the left, the concavity, with regard to the upper reservoir filling level, shows 

that the higher the reservoir filling the higher the profits. Nevertheless, the bend at the end makes clear, 
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a reservoir filled to the limit has a lower expected value since no space is available for pumping in times 

of negative prices. On the right, the convexity in relationship with the market price presents an increasing 

profit for higher prices. Low prices can be used for pumping reasoning the slope in the beginning.  

 

 

Figure 64 Value function 𝒞𝑡+1(𝑥𝑡). as a function of the reservoir filling level on the left and as a function 
of the price on the right 

 

The proposition 2 below is needed to justify the stopping criterion.  

Proposition 2: The cutting planes of the SDDP algorithm, equation (62) and (63) are valid and form an 

upper bound for the value function on stage 𝑡 + 1. 

Proof: see Birge and Louveaux (2011, Chapter 6, Theorem 1). 
 

Theorem 1 formulates the condition for convergence of the approach.  

Theorem 1: The following conditions be true, if 

a) the sample size of 𝛯 is finite, 

b) the data process is pricewise independent (i. e. 𝜉𝑡+1 is independent of 𝜉1, … , 𝜉𝑡) and 

c) the sub problems have finite optimal values for all scenarios. 

Then the forward step of the SDDP algorithm generates an optimal strategy after a sufficient number of 

forward and backward steps.  

Proof: see Shapiro (2011, Proposition 3.1)  

6.2. Multi-Cut Stochastic Dual Dynamic Programming 

The original SDDP algorithm is defined to solve stage-wise independent stochastic problems. As for the 

most optimization problems, a good input is crucial for reliable output and prices and inflows are usually 
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modelled with autoregressive models (AR), autoregressive moving average models (ARMA) or extensions 

of these which generate linear time discrete time series to describe stochastic processes. In this class of 

models, at least one input parameter depends on the current and the preceding value and is therefore 

stated as stage wise dependent.  

In this chapter, it is described that the classic SDDP method is not applicable to dependent stochastic input 

parameters. This includes for example the consideration of dependent prices as presented in 6.2.1. After 

a literature review in 6.2.2, a further development of SDDP, MCSDDP is presented in part 6.2.3 which 

considers stochastic dependent input parameters. A similar algorithm were first introduced by the 

Norwegian researchers Gjelsvik, Belsnes and Haugstad (1999). Furthermore, the model is theoretically 

reviewed in terms of convergence in 6.2.4.  

6.2.1. Challenges of Dependent Prices 

The cutting planes of the introduced SDDP algorithm in 6.1.3 are shared over all time steps and for all 

discretized points 𝜉𝑡
𝑗
, 𝑗 = 1,… ,𝑁𝑡 of the random vector 𝜉𝑡. This is just possible because the process is 

assumed to be stage-wise independent und the probability of every future scenario is the same. 

Geometrically, this can be substantiated with the concavity of the expected returns 𝒬𝑡(∙) in terms of the 

state variable 𝑥𝑡−1 and the reservoir filling levels. Analog to the cutting lines in Figure 62, the cutting 

planes provide an upper bound for the expected return. This is theoretically stated in the propositions 1 

and 8.2 in chapter 6.2.4. Proposition 1 remarks that the return is convex in terms of the market price.  

If the realization of the random vector 𝜉𝑡+1 depends on the result of the preliminary step 𝜉𝑡, also the 

expected return can vary for different realization of 𝜉𝑡+1. This is especially the case when the price 

scenarios have different price levels. To avoid that the price may jump from the lowest to the highest 

price scenario the realized outcome of the preliminary step need to be transferred to the problem on the 

next step. Therefore, the expected return function depends on the decision 𝑥𝑡 as well as the event 𝜔𝑡 and 

is defined as: 

 𝒬𝑡+1(𝑥𝑡, 𝜔𝑡) ∶= 𝔼(𝜉𝑡+1|𝜔𝑡)
[𝒞𝑡+1(𝑥𝑡, 𝜔𝑡+1)].   (84) 

 

Rebennack (2016, Theorem 4) shows that in this case 𝒬𝑡+1(∙,∙) is still concave in 𝑥𝑡 but in some special 

conditions convex in 𝜔𝑡. Therefore, 𝒬𝑡+1(∙,∙) cannot be assumed to be concave in 𝑐𝑡 and, because of this, 

cannot be approximated by overarching cutting planes. In special cases, the expected return 𝒬𝑡+1(∙,∙) can 

be analogously presented as in Figure 63 so that the return function 𝒞𝑡+1(𝑥𝑡, 𝑐𝑡+1) which is concave in 𝑥𝑡 

and convex in 𝑐𝑡+1 can be seen. Cutting planes of the SDDP algorithm cannot provide proper upper bounds 

for such functions.  

6.2.2. Literature Review 

Various approaches exist to solve dependent energy scheduling problems. Below, the focus is on 

extensions to the SDDP algorithm or similar.  
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• Shapiro (2011) suggest to introduce a further state variable 𝑏𝑡 to consider a possible stage-wise 

dependent “right hand side”; in his case, he considered dependent reservoir inflows. The 

expected return 𝒬 is dependent on (𝑥𝑡 , 𝑏𝑡). For the new “right hand side” one receives 𝑏𝑡+1 −

𝜙𝑏𝑡 = 𝜖𝑡+1, with 𝜖2, … , 𝜖𝑇 a stage-wise independent punishing term. The random vector is 𝜉𝑡 =

(𝑥𝑡 , 𝜖𝑡). This reformulation is possible if 𝑏𝑡 is an autoregressive process of the first order. The 

SDDP algorithm can be applied on the reformulated problem as long as all other stochastic 

processes are still stage-wise independent.  

This work urges to find a solution for the short-term hydropower scheduling problem, focusing on prices 

rather than inflows since they are expected to have a higher influence on the revenue (Braun, 2015a). 

Whereas in many hydropower dominated countries the focus is on inflows, in Germany, price dependent 

pumped hydropower storages are predominant. Furthermore, in such systems, the price can be modelled 

independently of the inflows and the inflows can be estimated quite good based on historic evaluations. 

Therefore, below, further literature is reviewed on how dependent stochastic price processes might be 

included.  

• Gjelsvik, Belsnes and Haugstad (1999) map the prices with a discrete Markov model. The 

generated price paths are ranked into clusters with respective transition probabilities. This 

problem is solved with a mix of SDDP and SDP. The price uncertainty is covered by the SDP 

algorithm. Advantage of the model is that the hydropower storages can be still modelled 

relatively detailed. Drawback is the extended run-time of the model. The combination of SDP and 

SDDP is also named MCSDDP.  

• Furthermore, Gjelsvik, Belsnes and Haugstad (2010) introduced a work on the difference between 

a price taker and a price maker in local and global situations. The price is assumed to be an 

exogenous variable. They apply their own SDP-SDDP algorithm (Gjelsvik et al., 1999). They further 

extended the algorithm to consider water head effects as well as risk management.  

6.2.3. Algorithm 

In this work the MCSDDP approach of Gjelsvik, Belsnes and Haugstad (2010) is applied, since it fits best 

for the requirement to solve problems with stage-wise dependent prices in combination with stage-wise 

independent inflows. The algorithm is explained below.  

The MCSDDP algorithm is an extension of the already introduced SDDP algorithm in chapter 6.1. The 

procedure is also characterized by a forward and a backward step. The price paths are given as discrete 

scenarios and are sorted in every time step into 𝑀 discrete clusters. Every cluster has a representative 

𝜁𝑡,1, … , 𝜁𝑡,𝑀. With 𝑐𝑡 as the random variable that describes the price at stage 𝑡 and  

 ℙ(𝑐𝑡 = 𝜁𝑡,𝑗|𝑐𝑡−1 = 𝜁𝑡−1,𝑖) = 𝜙𝑖,𝑗(𝑡), ∀𝑖, 𝑗  (85) 

 

as the transition probability of cluster 𝑖 to cluster 𝑗 in time stage 𝑡. The transition probability 𝜙𝑖,𝑗(𝑡) is 

approximated by the share of scenarios in cluster 𝑖 at time stage 𝑡 − 1 which corresponds to cluster 𝑗 in 

time stage 𝑡. The inflows are modelled stage-wise independent and are approximated by a discrete 
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distribution. The parameters 𝛿𝑡,1, … , 𝛿𝑡,𝐿 describe the discrete inflows and 𝑏𝑡 the random variable of the 

inflows. Be 𝜓𝑡,𝑙 the probability for the inflow 𝛿𝑡,𝐿 , 𝑙 = 1,… , 𝐿, 𝑡 = 1,… , 𝑇. One can write: 

 ℙ(𝑏𝑡 = 𝛿𝑡,𝑙) = 𝜓𝑙  𝑙 = 1,… , 𝐿. (86) 

 

Inflows can be generated from historical data as described in chapter 3.2.3. The expected return function 

is dependent on the decision variable of the preliminary stage as well as the realization of the prices, as 

already introduced in chapter 6.2.1. Therefore, overarching cutting planes are not possible anymore. For 

the MCSDDP approach a set of cutting planes is calculated for every price condition. 

In the backward step, it is not needed to solve the sub problem for all 𝑀² price combinations (𝑐𝑡−1
𝑖 , 𝑐𝑡

𝑗
 

with 𝑖, 𝑗 = 1,… ,𝑀). It is sufficient to solve 𝑀 problems per stage for the prices 𝑐𝑡
𝑗
, 𝑗 = 1,… ,𝑀 since the 

influence of the preliminary step 𝑐𝑡−1
𝑖  is already considered due to the transition probabilities.  

The MCSDDP algorithm resembles the SDDP algorithm and is based on a forward and a backward pass for 

each iteration as well. In the forward pass trial solutions are computed that are used as lower bounds. In 

the backward pass, the expected return of every time step is approximated and cutting planes are added. 

The last result for the first stage determines the upper bound for the expected revenue. The main 

difference between MCSDDP and SDDP is the calculation and utilization of the cutting planes. This is 

explained in detail below. The discrete stochastic processes are defined as follows:  

 Ξ𝑝𝑟𝑖𝑐𝑒 ∶= {𝜁1, … , 𝜁𝑇} with 𝜁𝑡 = {𝜁1
1, … , 𝜁𝑡

𝑀}  𝑡 = 1,… . , 𝑇  (87) 

 Ξ𝑖𝑛𝑓𝑙𝑜𝑤 ∶= {𝛿1, … , 𝛿𝑇} with 𝛿𝑡 = {𝛿1
1, … , 𝛿𝑡

𝐿}  𝑡 = 1,… . , 𝑇. (88) 

 

Thereby, 𝜁1
1 = 𝜁𝑡

𝑀 and 𝛿1
1 = 𝛿𝑡

𝐿 must apply, because price and inflow can be observed in the first time-

step. 

Forward Pass 

Before the beginning of the forward pass 𝐾 paths out of the discretized stochastic process are randomly 

chosen, as for the SDDP approach. These paths are expressed by (𝑐𝑘 , 𝑏𝑘) ∈ Ξ𝑝𝑟𝑖𝑐𝑒𝑠 × Ξ𝑖𝑛𝑓𝑙𝑜𝑤𝑠 with 𝑐𝑘 =

(𝑐1
𝑘 , … , 𝑐𝑇

𝑘) and 𝑏𝑘 = (𝑏1
𝑘 , … , 𝑏𝑇

𝑘), 𝑘 = 1,… , 𝐾. In the forward step, for all paths every sub problem is 

solved and the optimal point (trials) stored. The SDDP flow chart in Figure 60 is also valid for the MCSDDP 

algorithm. In iteration 𝑅 of the overall algorithm the master problems of the forward pass for the paths 

𝑠 = 1,… , 𝐾 are: 

master problem 1: 

𝒞1 
= max

𝑥1,𝛼2
 
(𝑐1)

𝑇𝑥1 + 𝛼2  
 (89) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1   

 
 

𝛼2 ≤ 𝛼2,𝑘,𝑟 − (𝑥1 − 𝑥1,𝑘,𝑟)
𝑇
𝐵2
𝑇𝜆2,𝑘,𝑟  

𝑟 = 1,… , 𝑅 − 1 
𝑘 = 1,… , 𝐾  
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  𝑥1 ≥ 0   

 

master problem t: 

𝒞𝑡(𝑥𝑡−1,𝑠,𝑅 , 𝜉𝑡
𝑠) = max

𝑥𝑡,𝛼𝑡+1
 (𝑐𝑡

𝑠)𝑇𝑥𝑡 + 𝛼𝑡+1   (90) 

 𝑠. 𝑡. 𝐴𝑡𝑥𝑡 = 𝑏𝑡
𝑠 −𝐵𝑡𝑥𝑡−1,𝑠,𝑅   

  𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘,𝑟
𝑖 − (𝑥𝑡 − 𝑥𝑡,𝑘,𝑟)

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘,𝑟

𝑖   
𝑟 = 1,… , 𝑅 − 1 
𝑘 = 1,… , 𝐾  

  
𝑥𝑡 ≥ 0 

with 𝑖 = {𝑖 ∈ {1,… ,𝑀}|𝑐𝑡
𝑠 = 𝜉𝑡

𝑖} 

 

 

master problem T: 

𝒞𝑇(𝑥𝑇−1,𝑠,𝑅 , 𝜉𝑇
𝑠) = max

𝑥𝑇
 (𝑐𝑇

𝑠)𝑇𝑥𝑇   (91) 

 𝑠. 𝑡.   𝐴𝑇𝑥𝑇 = 𝑏𝑇
𝑠 − 𝐵𝑇𝑥𝑇−1,𝑠,𝑅    

  𝑥𝑇 ≥ 0.   

 

The optimal point of stage 𝑡 − 1 is handed over to the problem of stage 𝑡. The results of the forward pass 

are the optimal points 𝑥1,𝑅 = 𝑎𝑟𝑔max
𝑥1

𝒞1, 𝑥𝑡,𝑘,𝑅 = 𝑎𝑟𝑔max
𝑥𝑡

𝒞𝑡(𝑥𝑡−1,𝑘,𝑅 , 𝑐𝑡
𝑘 , 𝑏𝑡

𝑘) and a lower bound for the 

expected revenue. The lower bound is defined as: 

𝑧 = 𝑐1
𝑇𝑥1,𝑅 +

1

𝐾
∑∑(𝑐𝑡

𝑠)𝑇𝑥𝑡,𝑠,𝑅

𝑇

𝑡=2

𝐾

𝑠=1

 (92) 

 

The cutting planes are results of the backward pass for the iterations 1 to 𝑅 − 1. For every backward 

pass, in every time-step, 𝐾 new cutting planes are added. In the first iteration cutting planes are not yet 

available. Therefore, one sets 𝛼𝑡 = 0, 𝑡 = 1,… , 𝑇 − 1. Alternatively, as described for the SDDP 

approach, just for the first iteration a LP over all time steps can be solved for all sub problems and every 

path. This has the advantage that realistic reservoir filling levels are handed over to the backward pass 

which might increase the run-time. The first master problem, of every iteration, need to be solved just 

once since price and inflows of the first time-step are assumed to be known. For the same reason, in the 

first time-step, no start-cluster need to be separated; all 𝑖 = 1,… ,𝑀 have the same transition 

probabilities which is why they can be neglected.  

Backward Step 

The backward step stands for the solution of the master problems, starting in the last time step, for all 

realizations of the stochastic process. Therefore, in each case, the trial solution of the forward step of the 
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previous time step is hold fix. It is intended to determine the return in consideration of the different 

scenarios and the reservoir filling levels. The sub problems are solved for all 𝑠 = 1,… , 𝐾, 𝑗 = 1,… , 𝐽 and 

𝑙 = 1,… , 𝐿. The dual variables 𝜆𝑡+1,𝑠
𝑗,𝑙

 of the reservoir filling level equation are issued for every inflow price 

combination. The dual variables denote the additional return of one further unit in the reservoir. Since 

the MCSDDP deals with dependent stochastic processes the dual variables are weighted by the probability 

of occurrence and transition. Further, they are multiplied with the change of the reservoir filling level 

(𝑥𝑡 − 𝑥𝑡,𝑠,𝑅)
𝑇

 so that alternations of the future revenue can be approximated depending on the reservoir 

filling levels. This is done by adding the expected return 𝛼𝑡+1,𝑠,𝑅
𝑖  for the reservoir filling level 𝑥𝑡,𝑠,𝑅. The 

profit is weighted with the probability of occurrence and transition. This is done by analogy with the dual 

variables. 

master problem T: 

𝒞𝑇(𝑥𝑇−1,𝑠,𝑅 , 𝜁𝑇
𝑗
, 𝛿𝑇
𝑙 ) = max

𝑥𝑇
 (𝑐𝑇

𝑗
)
𝑇
𝑥𝑇   (93) 

 𝑠. 𝑡. 𝐴𝑇𝑥𝑇 = 𝑏𝑇
𝑙 − 𝐵𝑇𝑥𝑇−1   

  𝑥𝑇 ≥ 0   

 

master problem t: 

 

𝒞𝑡(𝑥𝑡−1,𝑠,𝑅 , 𝜁𝑇
𝑗
, 𝛿𝑇
𝑙 ) = max

𝑥𝑡,𝛼𝑡+1
 (𝑐𝑡

𝑗
)
𝑇
𝑥𝑡 + 𝛼𝑡+1   (94) 

 𝑠. 𝑡. 𝐴𝑡𝑥𝑡 = 𝑏𝑡
𝑙 −𝐵𝑡𝑥𝑡−1,𝑠,𝑅   

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘,𝑟

𝑗
  

     −(𝑥𝑡 − 𝑥𝑡,𝑘,𝑟)
𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘,𝑟

𝑗
 

𝑟 = 1,… , 𝑅  
𝑘 = 1,… , 𝐾  

 
 

𝑥𝑡 ≥ 0    

with 𝑡 = 𝑇 − 1,… ,2  

 

 

master problem 1: 

 

𝒞1 = max
𝑥1,𝛼2

 (𝑐1)
𝑇𝑥1 + 𝛼2  

 
(95) 

 𝑠. 𝑡. 𝐴1𝑥1 = 𝑏1   

  
𝛼2 ≤ 𝛼2,𝑘,𝑟 − (𝑥1 − 𝑥1,𝑘,𝑟)

𝑇
𝐵2
𝑇𝜆2,𝑘,𝑟  

𝑟 = 1,… , 𝑅  
𝑘 = 1,… , 𝐾  

  𝑥1 ≥ 0.    
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The master problem of the first stage is solved just once for every backward pass. The expected return for 

scenario 𝑘 of time step 𝑡 till 𝑇 in iteration 𝑅 is composed as follows 

 𝛼𝑡,𝑘,𝑅
𝑖 = ∑ ∑ 𝜙𝑖,𝑗𝜓𝑙𝒞𝑡(𝑥𝑡−1,𝑘,𝑅 , 𝜁𝑡

𝑗
, 𝛿𝑡
𝑙)𝑀

𝑗=1
𝐿
𝑙=1   (96) 

 

for 𝑘 = 1,… , 𝐾, 𝑡 = 2,… , 𝑇 and 𝑖 = 1,… ,𝑀. The belonging dual variables for the cutting planes are 

determined as 

 𝜆𝑡,𝑘,𝑅
𝑖 = ∑ ∑ 𝜙𝑖,𝑗𝜓𝑙𝜆𝑡,𝑘

𝑗,𝑙𝑀
𝑗=1

𝐿
𝑙=1   (97) 

 

for 𝑘 = 1,… , 𝐾, 𝑡 = 2,… , 𝑇 and 𝑖 = 1,… ,𝑀. On the second time-step there is only one preceding price 

so that cutting planes are just calculated for 𝑖 = 1; hence the first master problem description leaves the 

index 𝑖 aside. As for the SDDP approach the cutting planes build the outer approximation of the profit-to-

go function. The result of the first stage corresponds to the upper bound of the expected return 

 𝑧 = 𝒞1 = 𝑐1
𝑇𝑥1 + 𝛼2  (98) 

 

with (𝑥1, 𝛼2) as the optimal point for the backward iteration 𝑅. 

Stopping Criterion 

The stopping criterion of the originally SDDP can be used for the MCSDDP as well, see chapter 6.1.3. 

Overall Algorithm 

The overall MCSDDP approach is formulated in algorithm 2 as pseudocode to provide a programming 

language-independent form of the algorithm.  

 

Algorithm 2 Multi-Cut Stochastic Dual Dynamic Programming  

Input Discretized stochastic process Ξ𝑝𝑟𝑖𝑐𝑒, Ξ𝑖𝑛𝑓𝑙𝑜𝑤 Parameter 𝐾 > 1 the number of paths, 𝜖 > 0 

stopping criterion tolerance. 

1: Iterations index 𝑅 = 1, 𝑥0 = 1, 𝐵1 = 0, 𝑎𝑇+1 = 0. 

2: while 𝑧 − 𝑧 +
1.96𝜎

√𝐾
≥ 𝜖 do 

scenario selection: 
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Algorithm 2 Multi-Cut Stochastic Dual Dynamic Programming  

3: Choose of 𝐾 scenarios (𝑐𝑠, 𝑏𝑠) ∈ Ξ𝑝𝑟𝑖𝑐𝑒 × Ξ𝑖𝑛𝑓𝑙𝑜𝑤 with 𝑐𝑠 = (𝑐1
𝑠, … , 𝑐𝑇

𝑠) und 𝑏𝑠 = (𝑏1
𝑠, … , 𝑏𝑇

𝑠) 

and 𝑠 = 1,… , 𝐾. 

 Forward pass 

4: for 𝑠 = 1 ∶  𝐾 do 

5: for 𝑡 = 1 ∶  𝑇 do 

6: if 𝑅 = 1 then 𝛼𝑡+1 = 0 fixed 

7: end if 

8: be 𝑐𝑡 = 𝑐𝑡
𝑠, 𝑏𝑡 = 𝑏𝑡

𝑠 und 𝑖 = {𝑖 ∈ {1,… ,𝑀|𝑐𝑡
𝑠 = 𝜁𝑡

𝑗
}} 

9: 

𝑥𝑡,𝑠
𝑅 =

{
  
 

  
 

argmax
𝑥𝑡,𝛼𝑡+1

𝑐𝑡
𝑇𝑥𝑡 + 𝛼𝑡+1

𝑠. 𝑡.

{
 
 

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘,𝑟

𝑖 − (𝑥𝑡 − 𝑥𝑡,𝑘,𝑟
𝑟 )

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘,𝑟

𝑟

𝑟 = 1,… , 𝑅 − 1 𝑘 = 1,… , 𝐾

𝐴𝑡𝑥𝑡 = 𝑏𝑡 − 𝐵𝑡𝑥𝑡−1,𝑠,𝑅
𝑥𝑡 ≥ 0

  

10: end for 

12: end for  

13: 
𝑧𝑠 = ∑ (𝑐𝑡

𝑠)𝑇𝑥𝑡,𝑠,𝑅
𝑇
𝑡=1 , 𝑧 =

1

𝐾
∑ 𝑧𝑠𝐾
𝑠=1  und 𝜎 = √

1

𝐾−1
∑ (𝑧𝑠 − 𝑧)

2𝐾
𝑠=1  

 Backward pass: 

13: for 𝑡 = 𝑇 ∶ 1 do 

14: for 𝑠 = 1 ∶ 𝐾 do 

15: for 𝑗 = 1 ∶  𝑀 do 

16: for 𝑙 = 1: 𝐿 do 

17: be 𝑐𝑡 = 𝜁𝑡
𝑗
, 𝑏𝑡 = 𝛿𝑡

𝑙 

18: 

𝑄𝑡,𝑠
𝑗
=

{
  
 

  
 

max
𝑥𝑡,𝛼𝑡+1

𝑐𝑡
𝑇𝑥𝑡 + 𝛼𝑡+1

𝑠. 𝑡.

{
 
 

 
 𝛼𝑡+1 ≤ 𝛼𝑡+1,𝑘,𝑟

𝑟 − (𝑥𝑡 − 𝑥𝑡,𝑘,𝑟
𝑟 )

𝑇
𝐵𝑡+1
𝑇 𝜆𝑡+1,𝑘,𝑟

𝑟

𝑟 = 1,… , 𝑅 𝑘 = 1,… , 𝐾

𝐴𝑡𝑥𝑡 = 𝑏𝑡 − 𝐵𝑡𝑥𝑡−1,𝑠,𝑅
𝑥𝑡 ≥ 𝑜

   [𝜆𝑡,𝑠
𝑗,𝑙
] 

19: end for  

20: end for 
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Algorithm 2 Multi-Cut Stochastic Dual Dynamic Programming  

21: 𝛼𝑡,𝑘,𝑅
𝑖 = ∑ ∑ 𝜙𝑖,𝑗𝜓𝑙𝑄𝑡,𝑘

𝑗,𝑙𝑀
𝑗=1

𝐿
𝑙=1    ∀𝑘 = 1,… , 𝐾 ∀𝑖 = 1,… ,𝑀  

22: 𝜆𝑡,𝑘,𝑅
𝑖 = ∑ ∑ 𝜙𝑖,𝑗𝜓𝑙𝑄𝑡,𝑘

𝑗,𝑙𝑀
𝑗=1

𝐿
𝑙=1    ∀𝑘 = 1,… , 𝐾 ∀𝑖 = 1,… ,𝑀  

23: end for 

24: end for 

25: 𝑧 =
1

𝐾
∑ 𝑄1,𝑠

1,1𝐾
𝑠=1   

26: end while 

6.2.4. Theoretical Review and Convergence 

In theorem 2 the functioning of the algorithm is substantiated by the ascertain concavity and the peace-

wise linearity. Therefore, the expected return can be described by cutting planes.  

Theorem 2 

The conditional return function 

𝒬𝑡(𝑥𝑡−1|𝑐𝑡−1
𝑖 ) ∶=∑∑𝜙𝑖,𝑗𝜓𝑙𝒞𝑡(𝑥𝑡−1, 𝜁𝑡

𝑗
, 𝛿𝑡
𝑙)

𝑀

𝑗=1

𝐿

𝑙=1

 (99) 

is peace-wise liner, concave and can be represented by hyperplanes. The calculated cutting planes of 

algorithm 2 construct upper bounds for the expected return function 𝒬𝑡(𝑥𝑡−1|𝑐𝑡−1
𝑖 ).  

Proof: see Gjelsvik et al. (1999, Section 4.2) 

Because the calculated cutting planes are real upper bounds for the return function, the usage of 𝑧 from 

equation (98) as an upper bound is reasoned.  

6.3. Numerical Results 

In this part of the chapter, the methods MCSDDP and SDDP are compared with the deterministic approach 

based on CPLEX (LP) applied on linear planning problems. Further, the deterministic approach is applied 

on several linear programs to generate the solution under perfect information. The expected returns, 

water values, shadow prices and dispatch schedules are used as benchmark for the stochastic solutions. 

The results are compared and discussed. As motivated in the beginning of this chapter, the methods are 

applied on a time horizon of two weeks with a quarter-hourly discretization. The two simulated April 

weeks were characterized by low reservoir inflows and relatively low reservoir filling levels so that the 

sensitivity on price changes could be sharpened.  
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6.3.1. Modelling the Stochastic  

The modelling of the stochastic is crucial for the result of the program. The quality of the resulting strategy 

depends on the goodness of the input. The possibilities to model stochastic price paths or inflows is 

manifold and significant differences exist within the alternatives. Beside a significant and steadily 

increasing number of models and approaches in literature every company that participates in the energy 

market has either an own price forward curve or purchases from one of the numerous data providers. 

Therefore, sophisticated modelling of prices and inflows is out of the scope of this work and is done 

relatively pragmatically. 

Inflows 

The modelling of inflows is based on the historic inflows into the respective reservoirs during the last ten 

years. For an increased comparability, a few exemplary reservoirs are modeled that incur inflows of similar 

actual reservoirs. EnBW AG provided exemplary but distorted data for the calculation with a daily 

resolution, see Figure 31. The inflows over the course of one day are assumed to be constant which is 

non-restricting since the fluctuations within one day are rather limited. Furthermore, the effect of changes 

in the inflows has been estimated, as relatively low (Braun, 2015a), which is why the historic inflows are 

not compiled in a recombining tree but further aggregated. Just the historic ten years average, maximum 

and minimum are considered to cover extreme scenarios. The node with average inflow is weighted by 

three fifths and the maximum and minimum inflows with one fifth. These are case specific assumption 

and do not need to apply to every reservoir there is. Especially for countries with large reservoirs as Brazil, 

Canada or Norway inflows play a more significant role. For this work storages with and without pumps 

are considered; this aspect may have an impact on the relevance of inflows on the optimization results.  

Prices 

The price scenarios are generated based on historic price curves. Afterwards, the price curves are shifted 

to the actual market price level and are further adopted. The price time series of the quarter-hourly EPEX 

Spot auction form 1st until 14th April 2016 is used (EPEX Spot, 2017b). With this time series 100 price paths 

are generated by adding random historic price spreads. The price paths are arbitrage free and the average 

of all prices on every time stage equal the received prices without spreads. These 100 scenarios are the 

basis for all following calculations. Figure 65 presents the employed reference price paths. The focus is on 

the exploitation of the quarter-hourly price changes. The quarter-hourly energy markets contain the 

highest volatility and the largest price spreads. This is because fluctuations of renewable energies, but 

also thermal power plants are traded into this market (Braun & Brunner, 2018). 



 

158 

 

 

Figure 65 Price scenarios for the calculations, in orange the German quarter-hourly day-ahead Auction 
results from 1st to 14th April 2016 as reference prices (EPEX Spot, 2017b) 

SDDP 

The SDDP model requires stage wise independent processes which means that between two time stages 

the random vector can jump within the whole range of price and inflow scenarios. Based on historic price 

spreads the span between lowest and highest price path on each time stage differs; for example, at night 

the price changes are lower as in the morning hours when thermal power plants ramp-up and solar power 

feed-in increases. Especially during these hours, the price jumps can be significantly. Therefore, the stage 

wise independent process has drawbacks but due to the limitations to a belt that adapts its width and 

probability distribution this disadvantage is somehow compensated and the results are auspicious as 

trends and price levels can be simulated, see Figure 65. Furthermore, it can be assumed that the 

characteristic zig-zag pattern on the quarter-hourly market is not better mapped with a dependent price 

process. 

The calculation is done for ten representative price samples out of the 100 scenarios. For each time step 

the prices are sorted according to size and condensed to ten groups. Afterwards, the representative for 

each group and time step is obtained from the average price of each group.  

MCSDDP 

MCSDDP considers stage wise independent processes that are based on transition probabilities. According 

to the SDDP approach, for every time stage, ten price classes are constructed. The transition probability 

of group 𝑖 in time step 𝑡 to group 𝑗 in time step 𝑡 + 1 corresponds to the number of paths that direct from 

group 𝑖 in time step 𝑡 to group 𝑗 in time step 𝑡 + 1.  
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LP and Perfect Foresight  

The LP is based on the average price on each time step over all prices that is identical to the original 

received price series from the energy exchange. The prefect information model solves the linear 

deterministic optimization problem for each of the 100 price paths.  

6.3.2. Model Setup 

The model setup for the introduced algorithms and optimization methods intends to test mainly two 

things: firstly, the effect of different reservoir sizes on the outputs and secondly the applicability of the 

algorithm on more complex systems such as cascaded hydropower systems. Four setups of power plant 

layouts are defined. Three of them are two-reservoir systems connected via a turbine and a pump but 

with different storage sizes, see Figure 35. Case 1 simulates a classic daily pumped hydropower storage 

with 8 full load hours, case 2 a weekly pumped storage with 60 full load hours and case three a seasonal 

reservoir with 1500 full load hours. The last case simulates another weekly pumped storage with 114 and 

33 full load hours respectively since it is a three-reservoir system connected with turbines and pumps, see 

Figure 66. Furthermore, the following assumptions are made: 

• start reservoir filling level is half of the maximum filling level  

• start and end (target) reservoir filling levels are the same  

• minimum filling level is zero 

• for consuming energy from the grid (pumping) a grid charge has to be paid amounting to 

0.5
€

𝑀𝑊ℎ
. 

• overflow in the upper reservoir is penalized with 100
€

1000𝑚3 

• overflow in the lowest reservoir in the cascade is not penalized 

• not reaching the target reservoir filling level is penalized with 10,000
€

1000𝑚3. 

 

 

Figure 66 Reservoir cascade with three reservoirs connected with turbines and pumps 
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The three latter assumption are important measures to ensure target reservoir filling level achievement 

and to avoid implausible production schedules without risking insolvability. The specific parameters for 

the different setups are listed in Table 11. When using a quarter-hourly discretization the factors given in 

hours are divided by four respectively.  

 

Table 11 Parameter definitions for the model calculations 

 characteristic case 1 case 2 case 3 case 4 unit 

reservoir 1 

filling level 
1200 9000 225000 

40000 

[1000m³] reservoir 2 5000 

reservoir 3 - 1500 

machine 1 

turbine capacity 150 350 
[MW] 

pump capacity 100 300 

turbine flow through 1 1.5 [1000m³/
MWh] pump flow through 0.7 1 

machine 2 

turbine capacity 

- 

150 
[MW] 

pump capacity 100 

turbine flow through 1 [1000m³/
MWh] pump flow through 0.7 

 

The optimizations are modeled in GAMS which is an algebraic modeling language for mathematical 

optimization problems. The linear sub problems solved with the CPLEX solver. It is noted that many more 

calculations have been performed than discussed here for different storages sizes, time periods and 

cascades. It is obvious that with increasing complexity of the power plant layout as well as longer 

optimization periods the convergence of SDDP and MCSDDP method is more computation intensive. Due 

to a significant number of iterations with new cutting planes the amount of data is high. One strategy 

could be to delete redundant cutting planes that are not used anymore. To decrease the runtime of the 

model parallelizing of the algorithms is possible and suggested as well. These runtime improvements were 

not exploited since it is not focus of this work. The calculation has been performed for the LP, SDDP and 

MCSDDP. The following data evaluation approach is used: 

• assessment, screening and definition of the calculation results 

• definition of an optimal strategy 

• back testing of the applied strategy by means of the 100 price paths, independently of the model 

calculations 

• evaluation and comparison of the results of the back testing. 

6.3.3. Steering Parameters 

Although, due to various reasons, models are abstractions of the real-world, at the end, the model results 

need to be transferred into a real-life dispatch. To transfer the model results into dispatch decisions some 
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assumptions and transformations are needed. For a general introduction into steering parameter see 

chapter 3.4. 

Generally, optimization problems are solved regularly with a rolling horizon, e. g. every day for a period 

of a week. The latest calculations provide the decision support for the respective next interval. If changes 

in the input data occur between two calculations these changes are not considered in the dispatch until 

the next calculation. This has an impact on the dispatch. One question is how important is the influence 

of changes of the input data on the model output and respectively the dispatch and could the optimization 

start as soon as changes occur to avoid such gaps. Whereas the latter is a possible solution it is limited by 

the computational challenges. The former depends on the optimization method.  

LP 

For the short-term hydropower dispatch, the dual variables of the optimization are suggested, see chapter 

3.4.1. The dual variables describe the additional value in the objective function if one additional unit of 

water is available in the reservoir filling level equation in a specific time step. This additional unit of water 

can then be used in the time step with the highest possible return that has not been utilized already. Note 

that water can be stored and shifted within time steps and that the time steps are linked together. The 

dual variable denotes the marginal cost or the value of the water in the respective reservoir.  

For the LP the dual variables can be directly received as the marginals of the reservoir balancing equations 

as part of the optimization results. Every set of dual variables is linked to the price input of the model due 

to perfect foresight. If several price paths are solved separately each price path results in an own set of 

dual variables. A possible overall water value could be calculated taking the mean water value over all 

price paths for every step or by using shadow price of the input data that fits best to the observed market 

price.  

SDDP 

Stochastic optimizations have the advantage to be more insensitive towards changes in the input data 

since a probability distribution is already considered as input. Due to this advantage, the stochastic 

optimization model does not provide one unequivocal result but many optimal points for different price 

and filling levels. Solving the deterministic equivalent of the stochastic model yields to a set of optimal 

points and decisions for each path and time step. But solving the whole stochastic problem is so time 

consuming that approximate stochastic optimization approaches are applied such as SDDP or MCSDDP.  

To find the optimal dispatch decision for approximate stochastic optimization methods is more 

challenging since one does not receive optimal points and decisions for each path and time step. The sub 

problems are just solved for 𝐾 random scenarios. Nevertheless, the strategy for the 𝐾 scenarios includes 

the information about the price expectation of all prices, and therefore, the results are the on average 

optimal strategy.  

The first and simplest possibility to transfer this set of results into a decision support is not to use the 

optimal points but the optimal values. They represent the expected value of the water in the reservoirs 

for the observed time periods based on the input parameters. A few possibilities exist to generate shadow 
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prices with SDDP. Abgottspon (2015b) suggests to determine the actual reservoir filling level from the 

active cutting plane and to use its 𝜆. The active cutting plane is denoted as the one with the lowest value. 

This approach is relatively strenuous in its application. To calculate the shadow prices beforehand to use 

them in spot market trading all active cutting planes for all possible combinations of reservoir filling levels 

need to be computed.  

Another approach determines the 𝜆𝑡,𝑘 of the active cutting planes as the results of the last forward pass 

and calculates the average of 𝜆𝑡,𝑘over the 𝐾 scenarios. This concept avoids the computation of water 

values for most of the implausible reservoir filling level combinations. It is assumed that the SDDP 

approach approximates the plausible expected reservoir filling levels. Thus, the expected water values are 

expected to be a good choice.  

MCSDDP 

The main difference between MCSDDP and SDDP is that for every price state, instead of overarching 

cutting planes in SDDP, a particular cutting plane is calculated to take into account that the input prices 

are dependent. Therefore, it is not possible to use, analogous to SDDP, the active cutting planes. A 

suggestion is to use the multiplicators 𝜆𝑡,𝑘,𝑅
𝑗

 of the added cutting planes in the last iterations (Gjelsvik et 

al., 2010). Hence, the 𝑀 different price cluster are used and the average over 𝐾 scenarios calculated. For 

every time step and price cluster water value is received. For the dispatch, just the water value of the 

price cluster is used in which the observed market price is located.  

Definition of a Strategy 

After receiving the water values for the reservoir these are transferred into shadow prices as described in 

chapter 3.4.2. In this chapter several dispatch strategies are defined. The first and predominant strategy 

is, if the shadow price of the turbine is above or equal to the observed market price the turbine is used 

with full power. The pump is used at full power if the shadow price for the pump is above or equal to the 

observed market price. Otherwise turbine and pump stand still.  

A further subtype strategy is introduced, which is relevant for the back-testing in chapter 6.3.5, to deal 

with infringements of the reservoir balancing equation. It is analogue to the one above but with the 

restriction that turbine and pump cannot be used when the maximum and minimum reservoir filling levels 

are violated. In real-life, this always holds true but for back-testing it is relevant. Grid charges, if needed, 

can be considered.  

6.3.4. Model Results 

The two algorithms described in chapter 6.1 and 6.2 are applied on the case studies described in 6.3.2. 

The algorithms provide, as introduced in chapter 6.3.1, the expected return, optimal schedules, reservoir 

filling levels and, after the described post-processing in chapter 6.3.3, shadow prices. These results are 

presented in this chapter and compared with a back-testing approach in the next chapter 6.3.5. 
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The optimal objective values of the different models: LP, SDDP and MCSDDP applied on small, medium 

and huge reservoirs can be seen in Figure 67. The optimal values denote the expected return of the 

respected models. It becomes apparent that the larger the reservoirs the higher the return. This is because 

the larger storages can realize more and longer load cycles. In this example, the large reservoir cannot 

take the advantage over the medium reservoir, because the weekly pumped storage can already realize 

nearly all possible charge cycle options.  

Normally the objective value of the perfect foresight model determines the upper bound. As we can see, 

the return of the SDDP model is slightly higher as the return of the perfect foresight model. This can be 

explained: The perfect foresight model has calculated the optimal solution for the original 100 price paths. 

In a back-test against these 100 price paths this model provides necessarily the optimal solution. 

Nevertheless, the SDDP is performed for all possible combinations of the ten price cluster on each stage. 

All these possibilities result in 101343 price paths (14 days with 96 quarter-hours) which are further 

multiplied with the number of inflow combinations that are covered by the overall scenario tree of the 

SDDP. For a real upper bound, LPs for all combinations would need to be solved which is not possible.  

 

 

Figure 67 Expected return from the optimal values of the various calculated models and scenarios 

 

The formation of the shadow prices is illustrated in Figure 68 for the LP case. The market prices in €/MWh 

are featured on the left vertical axis and the reservoir filling levels in 1000m³ on the right vertical axis 

spreading over a period of two exemplary days. The orange solid line depicts the price curve, the grey 

solid line the shadow price of the turbine and the grey dotted line the shadow price of the pump. The 

reservoir filling develops according to the dispatch of the pumped hydropower storages based on the 

shadow prices. A market price above the turbine price means producing and a price below the pump price 

means pumping water into the upper reservoir. The algorithms optimize the plants within the limits of 

the reservoirs. If a reservoir limit takes effect, as seen in the middle of the figure, a new shadow price is 
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given. The next charge cycle is carried out on a new price level. This result can be seen with other 

optimization methods as well (Braun & Hoffmann, 2016). 

 

 

Figure 68 Quarter-hourly day-ahead reference prices (orange) and the results of the LP optimization: 
shadow prices for pump and turbine (grey) as well as the reservoir filling level (blue) 

 

The LP, SDDP and MCSDDP approaches are applied on different reservoirs to identify the impact of the 

reservoir size on the behavior of the shadow prices. Figure 69 presents the shadow prices of the turbine 

for the different reservoir versions over the course of one week. It can be seen that the smaller a reservoir 

the more the shadow prices of the turbine fluctuate, independent of the chosen method. The medium 

and the large storages have nearly the same and constant shadow prices since for both storages the 

reservoir filling level constraints are not violated during this one week. For the LP and SDDP approach one 

shadow price for each time step is calculated. As a result, of the MCSDDP optimization shadow prices for 

each of the 10 price clusters are determined since also the dispatch depends on the realized price in each 

time step. Since the test case with the smallest reservoir shows the reasonably highest fluctuations 

between the models the focus below will be on this case.  
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Figure 69 Shadow price for the turbine over the 7-day calculation period for different optimization 
methods 

 

Figure 70 presents the typical upper and lower bound approximations for the SDDP and the MCSDDP 

algorithms over the iterations of the algorithms. It can be seen, that the upper bound, calculated in the 

backward pass, represents a real upper bound. Which means that the upper bound is decreasing with 

every time step. The upper bound is the sum of the first time-step model result plus the approximation of 

the future expected value. The approximation improves in every time step while converging to the optimal 

solution. The lower bound originates form the forward pass and depends on the characteristics of the 

(randomly) chosen price path. For price paths with higher prices higher profits can be generated as with 

lower prices. Though, with the continuous improvement of the strategy due to a higher state of 

information in the profit-to-go function, a trend of the lower bound can be seen clearly.  
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Figure 70 Approximation and convergence of upper and lower bound to the expected return during the 
iterations of the model 

6.3.5. Back-Test Results 

In this part, the quality of the model results is analyzed in back-testing simulations using the respective 

steering parameters of the model to determine the dispatch in the simulation. The general objective is 

that the steering parameters, here the shadow prices, lead to a similar dispatch in the back-test 

modulation as intended by the model. This includes a good assessment of prices and inflows as well as 

steering parameters that can transfer the results of the model into reality. If this is not the case, the whole 

optimization could be worthless. Below, back-testing strategies are defined, and the results analyzed. 

Back-testing strategy no.1 is to use the steering parameters of the model calculations against the 100 

original price scenarios. The pumped hydropower storage is switched on into turbine mode if the 

observed price is above the shadow price of the turbine and switched into pumping mode when the 

shadow price for the pump is underpriced, see chapter 3.4. With strategy no.1 the reservoir filling level 

limitations are regularly violated. In practice, a full reservoir cannot be filled and an empty reservoir 

cannot be emptied anymore. Therefore back-testing strategy no.2 considers that if the maximum upper 

reservoir filling level is reached the pumps, and if the minimum upper reservoir filling level is reached the 

turbines, are set as unavailable.  

Figure 71 presents the distribution of reservoir end filling levels of the back-tests. The shadow prices of 

the models were applied in the back-test on 100 price paths. On the left of the graph are the results for 

strategy no.1 and on the right the results for strategy no.2. The back-testing is presented for the smallest 

reservoir of the cast study, since the deviations were most significant. Furthermore, the filling refers to 

the upper reservoir similar to the load level of a normal battery.  

The shadow price steering parameters are supposed to lead to a dispatch in the back-testing that adheres 

the target filling level given to the optimization program beforehand. First, strategy no.1. is analyzed 

illustrated on the left side of Figure 71. The observation is that all methods are not able to adhere the 

maximum and minimum filling levels at all time. Although big differences between the LP, SDDP and 
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MCSDDP can be seen. Comparing the three methods the LP steers more aggressively resulting in a 61% 

share in which the upper storage is empty or theoretically more than empty. In 32% of the cases the upper 

reservoir filling level was at more than 100%. This is reasonable since the LP had no knowledge on further 

price deviations but already reveals the great disadvantage of LP. Nevertheless, the SDDP and MCSDDP 

algorithms do not perform significantly better, acting to restrained resulting in a theoretical overflow in 

the upper reservoir in more than half of the cases. Nevertheless, the SDDP method is the most balanced.  

For strategy no.2. LP and SDDP perform similar with the LP more aggressive and the SDDP more 

conservative. The MCSDDP is far too cautious exceeding the target reservoir filling level in 100% of the 

cases.  

 

 

Figure 71 Distribution of the end reservoir filling levels after the back-testing simulation for 100 price 
paths. On the left the results with strategy no.1 and on the right strategy no.2. 

 

The stochastic algorithms SDDP and MCSDDP present a more conservative approach when it comes to the 

dispatch of the stored energy. This is an explicitly wished effect since the stochastic models act more 

restrained to be able to exploit extreme situations. Probability and level of extreme situations is mapped 

in the stochastic input prices but not in the average price path for the LP.  

Nevertheless, in the back-testing, the SDDP and the MCSDDP do not release to less water but pump to 

much water into the upper reservoir. Exceeding the upper reservoir filling level bounds in the case of the 

SDDP and the MCSDDP is therefore also a result of the unprecise calculation of the pump shadow price.  
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Until here, the pump shadow price is calculated as the turbine price minus the cycle efficiency and charges 

for grid usage. In Figure 72 an approach is presented to find the optimal pumped shadow price also for 

SDDP and MCSDDP in a back-testing simulation. Therefore, the pump shadow price is proportional shifted 

downwards. For the SDDP the maximum return can be achieved with a shadow price reduction of about 

15%. Then, also the distribution of the reservoir filling levels is more evenly spread between target level 

exceeded and target level not reached. That means that shadow prices for pumps need to be founded in 

a back-testing simulation as described above. This is reasonable since SDDP and MCSDDP are more 

restrained towards water release and therefore have slightly higher shadow prices as the LP model. 

Calculating the pump price in the same way as for the LP leads to a higher pumped shadow price as well 

which induces extraordinary quantities of pumped water. Therefore, it is better to decrease the pump 

shadow price until a balance is reached between water release and pumping.  

 

 

Figure 72 Expected return and the adhering of exceeded target reservoir filling levels as a function of the 
proportional reduction of the model pump shadow price for the back-testing 

 

It becomes apparent that the consideration of pumps has a great influence on the choice of the 

optimization model. As presented above, SDDP is generally applicable to short-term optimizations as well 

as systems with pumps. Drawbacks of the application of stochastic optimization are the more complex 

generation of pump shadow prices and the limited benefits of stochastic optimization.  

This opens up the question why many other papers come to different assessments of SDDP in terms of 

revenue and adhered reservoir filling levels in comparison to LP. But most of these works have in common 

to analyze systems in Brazil or Norway with no pumps installed. Other publications do not consider short-

term energy markets. Both results in the same effect. The models do not have the option to refill the 

reservoirs when needed. The reservoir filling solely depends on the unknown hydro inflows. An empty 

reservoir means no dispatch until the next natural inflow. This makes the dispatch decision more critical. 

Releasing the water to early can be very expensive in the long run. A pumped hydropower storage and a 
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prevailing liquid energy market do always provide the possibility to adjust the filling level or even correct 

mistakes.  

To show this observation the same pumped hydropower storage system as presented above were 

calculated, just without pumps. It gets very apparent that in this case the SDDP algorithm outperforms 

the LP in target filling level compliance as well as revenue, see Figure 73. The upper graphs illustrate the 

reservoir filling levels over the time in the back-testing with several different price realizations. 

Furthermore, the SDDP profit is about 10 % higher as for the LP, whereas it undercuts the perfect foresight 

optimum by about 20 %.  

This also means on the one hand side that short-term energy markets in combination with pumped 

storages do not necessarily need the careful handling of the stochastic optimization rather to be pushed 

to the limits with a perfect foresight LP. On the other hand side, optimization, steering parameter 

calculation and back testing of SDDP in combination with systems with pumps reveal further research 

potential.  

 

 

Figure 73 Back-testing of a system without pumps: reservoir filing levels over the course of two weeks 
for LP and SDDP, the expected return in comparison to perfect foresight and the distribution of the 

reservoir filling levels 

6.3.6. Conclusion 

In this part, the stochastic approaches SDDP and MCSDDP are applied on the hydropower scheduling 

problem. Beside the wide application of the SDDP method in hydropower dominated countries in the 

long-term, here the application on a short-term pumped hydropower storage system is presented. This 
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includes fore example a weekly pumped hydropower storage that could be used to exploit price changes 

due to fluctuating wind power generation that is mapped in the stochastic price input data.  

In the numeric analysis, the two algorithms are compared with a linear and a perfect information model. 

With the model results, shadow prices are generated that are used to steer the dispatch in a back-testing 

against 100 different price paths. Whereas the direct model results of SDDP, MCSDDP and perfect 

foresight show higher profits as the LP, this cannot be confirmed in the back-testing. Two effects can be 

seen: First, the SDDP and even more MCSDDP are conservative in terms of water dispatch and therefore 

exceed the target reservoir filling levels in 57% (SDDP) and 100% (MCSDDP) of the price paths. The LP 

model is relatively aggressive and undercuts the target reservoir filling level in 57% of the back-tested 

price paths. Secondly, comparing the revenue of the three models, the stochastic models achieve the 

planned revenue also in the back test. In comparison, the model calculations for the LP presented an 

optimal revenue of about half the profit that is calculated with SDDP or MCSDDP. Nevertheless, in the 

back-test the LP shadow price steering exceeds the revenue of SDDP or MCSDDP.  

Concluding, the stochastic models are more cautious and have a better target reservoir filling level 

compliance, but the LP outperforms the stochastic models in terms of profit. It should be noted that not 

achieving the target levels is penalized just with the costs of pumping the additional water into the 

reservoir. With a more rigid penalizing the stochastic models may outperform the LP. Which model to be 

taken depends therefore on the objective of the power plant operator. The difference between the 

models decreases for larger reservoirs. Furthermore, these results just apply on systems with pumps. It 

could be shown that the similar systems without pumps the SDDP significantly outperforms LP. It is 

therefore recommended to solve short-term pumped hydropower storage systems with pumps and 

available liquid energy markets with LP and systems without pumps or limited possibilities to flexible trade 

short-term energy to be solved with stochastic approaches.  
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7. Continuous Optimization of Quarter-Hourly Intraday Market 

In this chapter, an approach to optimize and trade daily pumped hydropower storages during the intraday 

is presented taking market regulation issues and short-term trading possibilities into account. The 

fundamentals of this part are based on common work with my college and supervisor Dr. Rainer Hoffmann 

at EnBW Energie Baden-Württemberg AG that we published in 2016 (Braun & Hoffmann, 2016). 

With the so called Energiewende the conditions on the German energy market have changed 

fundamentally. A lower price level but most notably the flattened regular price spread between peak and 

off-peak have influenced the profitability of daily pumped hydropower storages. A lot of optimization 

methods for daily pumped hydropower storages struggle to address the challenges on the energy markets 

in Germany. Furthermore, new regulatory requirements of the German federal network agency (BNetzA) 

were introduced (BMWi, 2015). Since 2014 energy producers are committed to frequently report 

information on planned production and even on provision of balancing energy of each single generator to 

the transmission system operators. As soon as a deviation in the schedule occurs, the information has to 

be updated and reported again. These requirements lead to the point where optimization of pumped 

hydropower storages can no longer be done manually.  

In order to fulfil these requirements, an optimization model was developed and a system-based day ahead 

and intraday asset optimization process has been established that is currently in use at EnBW Energie 

Baden-Württemberg AG. The optimization problem is formulated as a mixed integer problem which 

determines the minimum operating cost subject to all technical constraints of a hydrothermal portfolio 

and covering load (Burger et al., 2004). As a post-optimization of this new intraday optimization system 

we set up an effective multistage looping optimization algorithm for daily pumped hydropower storages 

considering e. g. reservoir limits, quarter-hourly prices, grid charges and availabilities.  

In the first part 7.1, the reader will find the motivation for the continuous optimization of pumped 

hydropower storages during the intraday including a short overview on literature, the relevant energy 

market challenges and the new regulatory requirements. Furthermore, in part 7.2 the implemented 

intraday optimization model to fulfill the regulatory requirements is introduced. Using the MILP model 

outputs such as accurate power plant schedules an adopted version of the algorithm introduced by Lu et 

al. (2004) is outlined in chapter 7.3. A real-world case study is presented and discussed in part 7.4. 

7.1. Introduction 

7.1.1. Market and Regulatory Environment  

The characteristics of the German electricity market have changed significantly over the past decade. The 

renewable energy act fostered the exploitation of significant amounts of RES that have entered the 

market in the last years and replaced power generation by fossil fueled power plants. As a consequence, 

the price at the EPEX Spot Auction decreased between 2012 and 2016 by 10 % per year on average (EPEX 
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Spot, 2017b). This does not only influence the utilization of fossil fueled power plants but also pumped 

hydropower storages. 

The renewable generation is not equally distributed in time and space. Further, due to limited storage and 

a lack of sufficient transmission, generation capacity is just gradually leaving the system. Less price 

fluctuation can be seen than expected with such amounts of RES in the market. In particular, this effect 

has reduced the average price spread and thereby the profitability of daily pumped hydropower storages 

that were mainly constructed to balance production and demand.  

This market development and the effect on pumped hydropower storages is depicted in Figure 74. The 

exemplary calculation is made for a daily pumped hydropower storage with 500 MW turbine/pump 

power, an efficiency of 80 % and grid charges of 4 €/MWh for the consumption of energy. The historic 

Monday till Friday average hourly day-ahead price and the water values for pumping and water release 

are plotted. On average, a pumped hydropower storage in 2005 could be operated 9 hours a day in 

pumping and 7 hours in generating mode with an average spread of 32.21 €.  

In the year 2015 the plant could be operated 6 hours in pumping and 5 hours in generating mode taking 

advantage of an average spread of 21.34 €. Ceteris paribus, the daily contribution margin has been halved 

and can be seen in Figure 74 as well. Market conditions are changing but since pumped hydropower 

storages have the advantage of high flexibility, they can be traded on other markets without drawbacks, 

e. g. in the quarter-hourly intraday. Expecting a market with full liquidity and no arbitrage between the 

markets, the operating time in pump and generation mode can be increased to 9 and 7 hours, respectively. 

The average daily contribution margin increases significantly. Nevertheless, in order to exploit these 

opportunities, optimization and dispatch of pumped hydropower storages need to be adjusted to the new 

conditions illustrated in Figure 74.  
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Figure 74 Comparison of the average hourly day-head auction price from Monday to Friday in 2005 with 

2015 and the average quarter-hourly intraday price from Monday to Friday in 2015 and the resulting 
average daily contribution margins, data derived from (EPEX Spot, 2017b) 

 

Beside the changing market conditions, new regulatory requirements have influenced the hydro-thermal 

dispatch optimization in Germany. The German federal network agency (BNetzA) introduced a resolution 

in 2014 which commits power plant operators to report extensive information on planned production for 

the current and the following day (Bundesnetzagentur, 2014). One major requirement is that the data 

needs to be updated during the day as soon as the planned production changes only slightly. This means 

that quarter-hourly production schedules, dispatch potential and reserve provision of every single 

machine has to be sent to the transmission system operator when the planned production changes. This 

is basically every 15 minutes the case since prices are changing and therefore the planned production. In 

order to meet this requirement, a model-based intraday optimization of all power plants is necessary. This 

process is not manually achievable; it is highly challenging to optimize a whole power plant portfolio on 

the required level of detail several or even 96 times a day.  
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7.1.2. Literature Review  

The literature on solving pumped hydropower storage scheduling problems can be separated into two 

general categories. On the one hand, literature follows a system economic approach: e.g. Oliveira, McKee, 

and Coles (1993) solve a mixed integer linear program in a system context and integrate cost-efficient 

storage capacity. On the other hand, several papers focus on the individual plants and on how to operate 

a singular or a portfolio of pumped hydropower storages. These approaches are mainly based on using 

wholesale electricity prices and calculating an optimal control strategy.  

The latter approach usually separates the optimization between daily pumped hydropower storages with 

small reservoirs and seasonal hydropower storages with large reservoirs and relatively small machines in 

comparison to their reservoir size. Literature that deals, among other things, with the daily pumped 

hydropower storage scheduling problem are e. g. Thompson, Davison, and Rasmussen (2004). They 

present a real option approach for pumped hydropower storage operation inspired by financial 

mathematics. Horsley and Wrobel (2002) use a deterministic continuous price curve and derive valuation 

methods using duality methods. Lu et al. (2004) suggest an algorithm to determine a bidding strategy for 

pumped hydropower storages considering reservoir limits. Kanakasabapathy and Swarup (2010) and Zhao 

and Davidson (2009a) (2009b) expand this idea considering additional aspects such as spinning and non-

spinning reserve, storage level-dependent efficiency and random inflows.  

Additionally, in Table 12 a short literature overview is given on pumped hydropower storage optimizations 

considering explicitly continuous traded intraday markets, as highlighted in grey. Nevertheless, just one 

paper considers quarter-hourly schedules (Braun, 2016b; Braun & Hoffmann, 2016).  

 

Table 12 Literature review on intraday markets considering hydropower optimizations 
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(Baillo et al., 
2006) 

 x  x  x x   

multistage SP/ 1 day/ Spain/ 
dominant strategies available, no 
comparison 

(Braun 
& Burkhardt, 
2015) 

x  x   x x x x 
LP/ 1 year/ Germany/ balancing 
energy market more profitable as 
intraday or day-ahead market 

(Braun 
& Hoffmann, 
2016) 

  x x   x x x 

LP/ MILP/ 2 days/ Germany/ 
continuous optimization necessary 
since intraday market prices changes 
constantly 
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(Faria & Fleten, 
2011) 

x  x    x  x 

SP/ LP/ 1 day/ Norway/ including 
intraday when bidding spot does not 
increase profit or influence the bids 
significantly 

(Löhndorf et al., 
2013) 

x   x   x x x 

ADDP/ 1 year/ Austria/ focus on long-
term effects of bidding in day-ahead 
and intraday, intraday market not 
very relevant 

(Triki, Beraldi, & 
Gross, 2005) 

x  x  x  x   
multistage MISP/ 4 hours/ Italy/ no 
comparison, one-point bids, no price 
dependent supply curve 

(Ugedo et al., 
2006) 

 x  x  x x   
MILP/ 1 day/ Spain/ strategic 
behavior of competitors, no 
comparison  

7.2. Intraday Optimization of Power Plant Deployment 

In consequence of the new regulatory requirements, EnBW has developed its own optimization model 

and has set up all necessary processes; thereby it established a decision support for an intraday 

deployment of power plants. The optimization model replaced the manual experience-based process with 

an automatic model-based system. The major challenges of an intraday optimization are both the 

development of a mathematical model and the design of new processes. 

7.2.1. Portfolio Dispatch Optimization Model 

The decision problem is formulated as a mixed integer linear program. The objective function minimizes 

the costs of the hydro-thermal production. Optionally, the model can use the intraday market to buy or 

sell energy to meet load requirements. The problem’s major constraint is that the load has to be covered. 

It is further constrained by the technical characteristics of the power plants such as maximum capacity, 

minimum capacity, load change rates, start-up costs, and availabilities. Furthermore, the model takes into 

account the prices for fuel and CO2, grid charges, as well as quarter-hourly electricity prices. The sold 

primary (FCR), secondary (FRR) and tertiary (RR) reserves are distributed among the power plants in a cost 

optimal way.  

The time horizon spans up to two days with quarter-hourly time resolution. The whole problem is solved 

with a small optimality gap in less than 30 seconds in 95 % of all cases. To improve the runtime and to 
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utilize the system for a short-term intraday optimization the thermal power plants’ schedule may be set 

fixed in periods with prices that do not allow an adjustment of thermal production. Furthermore, the 

above-mentioned information (quarter-hourly production schedules, unused power plant capacity, 

dispatch potential, and reserve provision of every single machine) is send frequently to the transmission 

system operator. The intraday optimization also provides decision support for power plant dispatching 

and real-time trading. The utilization of the data has therefore great potential for traders and dispatchers 

that obtain significant support for evaluating orders and assessing power plants deployment strategies. 

The power plant portfolio dispatch is optimized and adjusted constantly by processing and displaying 

relevant power plant and price data.  

7.2.2. Modeling Pumped Hydropower Storages 

The pumped hydropower storage portfolio deployment is part of the mixed integer optimization. The 

pumped hydropower storages are modelled on a very high level of detail considering reservoir 

restrictions, hydraulic short circuit of pumped hydropower storages, water spillage, inflows etc. Most 

input parameters have a quarter-hourly resolution. It can be distinguished between hard reservoir 

restrictions such as maximum/minimum filling levels, flow rates, efficiencies, outflow, inflow and 

restrictions that can be adjusted by the dispatcher, a person that is responsible for the dispatch during 

the intraday. These include the target reservoir filling levels (set intraday or at the end of the planning 

horizon), which can be adjusted depending on the trader’s or dispatcher’s market assessment and 

experiences on reserve energy activation. Maximum and minimum filling levels can also be adjusted 

considering security buffers for uncertainties in inflows, prices or high probabilities of outages of thermal 

power plants. In the first release state, the optimization was performed just for the current day; the 

planning horizon has afterwards been extended to at least two days. Optimization across several days has 

the great advantage that start time and length of the storage cycle are more flexible and the potential of 

the pumped hydropower storages can be better exploited. Target filling levels can always be set by the 

dispatcher, even within a planning period. Since EnBW’s pumped hydropower storages can only operate 

at full power for a couple of hours until reservoir limits are reached, our experience shows that optimizing 

across more than two days does not offer any advantage.  

7.3. Algorithm for Intraday Trading 

The optimization approach is a multistage looping algorithm that runs as a post-optimization after the 

frequently operated intraday optimization and delivers accurate time dependent water values as well as 

the planned production which can guide a bidding strategy for the intraday market. The optimization is 

based on the algorithm presented in Lu et al. (2004) who first presented the approach of variable length 

storage cycles due to limited reservoir capacity. This fits to the new market conditions where e.g. 

photovoltaics feed-in during the day causes double hump price curves with a second pumping period at 

midday, or wind feed-in pushing peak hour prices below the average night prices, resulting in long storage 

cycles over two or three days. 
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Following the original idea by Lu et al. (2004) some additional challenges, such as grid charges, power 

plant availabilities and flat price profiles are additionally accounted for. Furthermore, some shortcomings 

hindering the practical application of the algorithm are corrected.  

The equations and algorithms are defined using the following symbols: 

• 𝒢: grid charges  

• 𝜌: efficiency of power (pump) machine 

• 𝑡𝑢, 𝑡𝑝: number of quarter hours where the unit is in generating/pumping mode 

• 𝑡𝑝
𝑚𝑎𝑥: maximum number of quarter hours where unit can be in pumping mode 

• 𝜆𝑢, 𝜆𝑝: marginal cost of generating/pumping per  

• 𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑: energy level in upper reservoir at beginning/end of planning horizon 

• 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡: energy in- and outflow 

• 𝑡: time  

• τt=0, τ
′: limits of the new interval 

• 𝑇: planning horizon 

• 𝑢𝑚𝑎𝑥, 𝑝𝑚𝑖𝑛 ∶ maximum power of turbine/pump 

• 𝐶: price forward curve 

• 𝑐𝑡: price in time stage 𝑡 

• Θ, Θ′: prices sorted in ascending/descending order 
 

The reservoir filling level equation depends on the energy level 𝑣𝑠𝑡𝑎𝑟𝑡 at the beginning and 𝑣𝑒𝑛𝑑 at the 

end of the planning horizon 𝑇. The assumption by Lu et al. (2004), that initial storage level equals terminal 

storage level does not hold for intraday operations and is thus not needed anymore. 

 𝑣𝑒𝑛𝑑 = 𝑣𝑠𝑡𝑎𝑟𝑡 + 𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡   (100) 
 

The set 𝑡 with 𝑡 = 1,… , 𝑇 is sorted in ascending order of the corresponding price forward curve 𝐶 that 

consists of the prices in each period 𝑐𝑡 so that the period with the lowest price is the first and the period 

with the highest price is the last element of the set. Denote this set as Θ. The set where periods are sorted 

in descending order of the corresponding price (the period with the highest price is the first and the period 

with the lowest price is the last element of the set) is denoted as Θ′. The inflow energy can be calculated 

based on 𝑡𝑝 using the following equation: 

 𝑣𝑖𝑛(𝑡𝑝) = ∑ 𝑝𝑡
𝑚𝑎𝑥

𝑡∈Θ
𝑡≤𝑡𝑝

𝜌   (101) 

 

The outflow energy is 

 𝑣𝑜𝑢𝑡(𝑡𝑢) = ∑ 𝑢𝑡
𝑚𝑎𝑥

𝑡∈Θ′
𝑡≤𝑡𝑔

   (102) 

 

𝑡𝑢 is defined by: 

 
𝑡𝑢 =

𝑣𝑠𝑡𝑎𝑟𝑡−𝑝𝑚𝑎𝑥∙𝑡𝑝−𝑣
𝑒𝑛𝑑

𝑢𝑚𝑎𝑥
  

 (103) 
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and 𝑡𝑝
𝑚𝑎𝑥 is set as follows: 

 𝑡𝑝
𝑚𝑎𝑥 =

𝑇

1+
𝑝𝑚𝑎𝑥∙𝜌

𝑢𝑚𝑎𝑥

   
(104) 

7.3.1. Unconstrained Algorithm 

In comparison to the original algorithm by Lu et al. (2004) grid charges are included here because they 

have a significant impact on the profitability of operating pumped hydropower storages in Germany. 

Furthermore, if the price curve is very flat and when the terminal energy level deviates from the initial 

energy level, a spread-based operation of the power plant is not possible. This situation has been explicitly 

accounted for in algorithm 3. 

 

Algorithm 3 Unconstrainted optimization  

1: Obtain a price forward curve 𝐶 and sort it in an ascending order to receive Θ. 

2: Start with 𝑡𝑝 = 1. 

3: Obtain 𝑡𝑢 using (103) and find the corresponding 𝜆𝑝 and 𝜆𝑢 from 𝐶; if 𝑡𝑢 = 0, set 𝜆𝑔 = ∞. 

4: Check the optimality condition. Is 𝜆𝑢 ≤ (𝜆𝑝 + 𝒢)/𝜌? 

 If the inequality does not hold, set 𝑡𝑝 = 𝑡𝑝 + 1 and go to Step 5.  

 If the inequality holds, set 𝑡𝑝 = 𝑡𝑝 − 1, obtain 𝑡𝑢 and go to Step 6.  

5: If 𝑡𝑝 is less than 𝑡𝑝
𝑚𝑎𝑥, go back to Step 3. If 𝑡𝑝 > 𝑡𝑝

𝑚𝑎𝑥, then stop. 

6: If 𝑡𝑝 = 0, 𝑡𝑢 = 0, and 𝑣𝑒𝑛𝑑 > 𝑣𝑠𝑡𝑎𝑟𝑡, set 𝑡𝑝 = (𝑣
𝑒𝑛𝑑 − 𝑣𝑠𝑡𝑎𝑟𝑡)/𝑝𝑚𝑎𝑥/𝜌 and determine 𝜆𝑝. Else 

find 𝜆𝑝 as well as 𝜆𝑢 from 𝐶; if 𝑡𝑝 = 0, set 𝜆𝑝 = −∞; if 𝑡𝑢 = 0, set 𝜆𝑢 = ∞. Then stop. 

 

Unlike described in the original algorithm by Lu et al. (2004), the price forward curve is not necessarily 

monotonous. Thus, slight adaptions of the algorithm were necessary. When the price equals the marginal 

cost of pumping for the first time, 𝑝𝑚𝑎𝑥 is consumed. If the price 𝑐𝑡 meets marginal cost again at a later 

time, no water will be pumped. When price equals marginal cost for generating power for the first time, 

(𝑡𝑢 − ⌊𝑡𝑢⌋) ∗ 𝑢
𝑚𝑎𝑥 is generated. This may be less than 𝑢𝑚𝑎𝑥 if the energy comes close to reservoir limits. 

At any later point when price equals marginal cost for generating, no water will be released. Note that 

this reasoning works for prices that appear at most twice. If C contains the same price more than two 

times, water needs to be pumped or released at full power in more than one period where marginal cost 

equals the price.  
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7.3.2. Unconstrained Algorithm Accounting for Availabilities 

One drawback of the original algorithm is that power plant availabilities are not considered. An example 

is the atypical grid usage tariffs in Germany. This means that the operator either does not use pumps 

during predefined hours during the day or has to pay nearly 8 times higher gird charges all the time. The 

(partial) availability of power plants during the day, grid charges and flat price profiles are addressed in 

algorithm 4. 

 

Algorithm 4 Unconstrained optimization accounting for availabilities  

1: Obtain a price forward curve 𝐶 and sort it in an ascending order to receive Θ. 

2: Start with 𝑡𝑝 = 1. 

3: Obtain 𝑣𝑖𝑛 by using (101) and determine the necessary 𝑣𝑜𝑢𝑡 by means of (100). Set 𝑡𝑢 = 1. 

4: Calculate 𝑣𝑜𝑢𝑡(𝑡𝑢) using (102). 

5: If 𝑣𝑜𝑢𝑡(𝑡𝑢) ≥ 𝑣
𝑜𝑢𝑡, set 𝑡𝑢 = 𝑡𝑢 −

𝑣𝑜𝑢𝑡(𝑡𝑢)−𝑣
𝑜𝑢𝑡

𝑝𝑡=𝑡𝑢
𝑚𝑎𝑥 , and go to Step 6. If 𝑣𝑜𝑢𝑡(𝑡𝑢) < 𝑣

𝑜𝑢𝑡, set 𝑡𝑢 =

𝑡𝑢 + 1 and go back to Step 4. 

6: Determine 𝜆𝑝 and 𝜆𝑢 from 𝐶; if 𝑡𝑢 = 0, set 𝜆𝑢 = ∞. 

7: Check the optimality condition. Is 𝜆𝑢 ≤ (𝜆𝑝 + 𝒢)/𝜌? 

 If the inequality does not hold, set 𝑡𝑝 = 𝑡𝑝 + 1 and go to Step 8. 

 If the inequality holds, set 𝑡𝑝 = 𝑡𝑝 − 1, obtain 𝑡𝑢 (Steps 3 – 5, skipping Steps 6 and 7) 

and go to Step 9. 

8: If 𝑡𝑝 is less than 𝑡𝑝
𝑚𝑎𝑥 go back to Step 3. If 𝑡𝑝 > 𝑡𝑝

𝑚𝑎𝑥, stop. 

9: 
If 𝑡𝑝 = 0, 𝑡𝑢 = 0, and 𝑣𝑒𝑛𝑑 > 𝑣𝑠𝑡𝑎𝑟𝑡, obtain 𝑡𝑝 from ∑ 𝑝𝑡

𝑚𝑎𝑥 =
 𝑣𝑒𝑛𝑑− 𝑣𝑠𝑡𝑎𝑟𝑡

𝜌
𝑡∈Θ
𝑡≤𝑡𝑝

. Then 

determine 𝜆𝑝. Else find 𝜆𝑝 as well as 𝜆𝑢 from 𝐶; if 𝑡𝑝 = 0, set 𝜆𝑝 = −∞; if 𝑡𝑔 = 0, set 𝜆𝑢 = ∞. 

Then stop. 

7.3.3. Algorithm Accounting for Reservoir Limits 

Since the above algorithms may violate reservoir constraints, a further optimization needs to be 

conducted which is presented in algorithm 5.  
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Algorithm 5 Constrained optimization accounting for reservoir limits  

1: Solve the problem with the unconstrained algorithm 4 with the time interval [𝜏𝑡=0, 𝑇] 

2: Check the solution. If the energy level is always within the reservoir limits, stop. If there are 

violations of the reservoir constraints, go to Step 3. 

3: Subdivide the time interval into [𝜏𝑡=0, 𝜏′], where 𝜏′ is the quarter-hour where the unconstrained 

optimization finds the highest or lowest reservoir level (depending on the violated limit). Let 

𝑣𝑒𝑛𝑑 in 𝜏′ be the value that has been violated (upper or lower limit). Then perform the 

unconstrained algorithm 4. 

4: Check the solution. If there are more violations, go back to Step 3. If not, set τt=0 = τ′, let 𝑣𝑠𝑡𝑎𝑟𝑡 

be the violated limit and go back to Step 1.  

7.4. Numerical Results 

In this part, the introduced algorithms are applied on an example from practice. Therefore, 7.4.1 defines 

the model setup and the steering logic is explained in part 7.4.2. Afterwards the model results are 

introduced in 7.4.3 and 7.4.4 concludes with a critical discussion. 

7.4.1. Model Setup 

The most important challenge is to generate a forecast for, or receive the prices form, the intraday market 

and to consider the characteristics of the continuous trading. This includes mainly two points: the limited 

depth of the order books, i.e. limited liquidity, see Figure 75 and the continuous changing price over the 

time, see Figure 76. The first point is addressed with the provided algorithm that can be operated in real-

time or at least performed in short time intervals. For the second point, a good market access is important. 

For the presented case study, the volume weighted average price, based on all executed bids of the last 

hour, is used. If no or to little trades are available the quarter-hourly day-ahead market auction results 

were used as best guess for the intraday market.  

The innately nimble intraday continuous market is an alternative concept to the unified pricing auctions 

day-ahead. Especially for automated trading, final orders need to be calculated taking the real-time 

intraday orderbooks into account. For each quarter-hour, the orderbook can be analyzed in terms of 

market depth and volume related price, since trading small or huge quantities differs. As an example, the 

50 MWh volume weighted average price for product 13-14 would be 51.38 €/MWh analyzing the 

retrieved orderbook form the exchange in Figure 75. Nevertheless, it can be also seen that the bid-ask-

spread is relatively wide with 2 € and inserting an own bid might be more cumbersome but smarter than 

accepting the already listed offers.  
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Figure 75 Screenshot of an exemplary intraday orderbook from September 16th, 2013 at 11am including 

some explanations 

 

 

Figure 76 Screenshot of the price development for one product on the continuous intraday market from 
September 16th, 2013 at 7am including some explanations 
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7.4.2. Steering Parameters 

The result of the algorithm is an optimal dispatch, reservoir filling levels over the time as well as shadow 

prices for turbines and pumps. The trading of the power plant can be done manually or automated. For 

the first a table for the dispatcher is provided containing the interval and the shadow prices for pump  𝜆𝑝 

and turbine  𝜆𝑢. In intraday markets, normally just an existing position based on day-ahead market trading 

is adopted. Therefore, the intraday trading strategy of pumped hydropower storages depends on the 

intraday price c𝑡 as well as on the already sold/bought energy. In Table 13 the eight possible trading 

strategies are listed.  

Table 13 Different trading strategies for pumped hydropower storages 

strategy existing position shadow price  (𝜆𝑢,  𝜆𝑝) action to be taken 

1 
turbine sold 

 c𝑡 > 𝜆𝑢 - 

2  c𝑡 < 𝜆𝑢 buy back turbine position 

3 
turbine not sold 

 c𝑡 > 𝜆𝑢 sell turbine position 

4  c𝑡 < 𝜆𝑢 - 

5 
pump sold 

 c𝑡 > 𝜆𝑝 sell back pump position 

6  c𝑡 < 𝜆𝑝 
- 

7 
pump not sold 

c𝑡 > 𝜆𝑝 

8  c𝑡 < 𝜆𝑝 buy pump position 

 

These shadow prices can be displayed together with the storage level of the upper and lower reservoir. 

This shows at a glance, at which time and at what price the model proposes a corresponding trade 

direction. In addition, it is clear whether trades lead to a critical area close to the basin limits.  

Comparing the planned schedule of the power plant with the orderbook of each quarter-hour leads to the 

information of the volume weighted price and which quarter-hours are the most profitable. It is therefore 

suggested to first trade the most profitable quarter-hours and to always trade a buy and a sell order 

together. That means to buy for example 100 MWh at noon because the price decreased due to additional 

PV production and to sell 70 MWh in the next hour because the prices increased due a power plant 

outage. If pump and turbine position are always traded pairwise the risk of not achieving the reservoir 

target filling levels is zero. The quantity to be traded depends also on the efficiency of the machines. In 

the just given example 𝜌  equals 70%. 

7.4.3. Model Results 

The algorithm has been implemented as an extension to the MILP that determines the optimal hydro-

thermal power plant deployment for regulatory purposes. This example shows a calculation from August 

10th, 2015 4:45pm. For the calculation, a price assumption 𝐶 is needed for the next day(s). This can be a 

price forward curve or the actual traded market prices, see Figure 77 top left. The efficiency of the plant 

is set to 0.75 and grid charges are 1.5 € per MWh consumed. The upper limit of the energy storage level 

is set to 2800 MWh and the lower bound to 300 MWh. In both directions, a safety buffer has been set. 

Start level was 1332 MWh and end level was 1300 MWh. Following the introduced algorithm, the prices 
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of the planning horizon are sorted in ascending order, see Figure 77 top left. From both sides, 𝑡𝑝 and 𝑡𝑢 

are calculated stepwise until the optimality criterion  𝜆𝑢 ≤ (𝜆𝑝 + 𝒢)/𝜌 is reached. The results of this part 

of the algorithm can be seen in Figure 77 bottom left. The grey dashed line shows how an unconstrainted 

large reservoir is filled up to nearly 4000 MWh and returned to the end level. In this unconstrained case, 

all hours are used that exceed the spread of efficiency rate plus grid charges. This operation should be 

equal to the dispatch of seasonal pumped hydropower storages. A constrained daily pumped hydropower 

storage, i. e. with a limited reservoir, results in the orange line. In this case the second part of the 

algorithm applies. The planning period is divided into sub-periods at all points where the reservoir limits 

are reached. This is for example the case in the first iteration in quarter-hour 42. The new sub-periods are 

optimized again using the first part of the algorithm to optimally exploit the two sub-periods. In the second 

sub-period, the reservoir limits are often reached again, as it is the case in this example, in every step until 

the prices are low enough for water to be released. Therefore, the price for pumping is set to negative 

infinity, or, so that no water is pumped up into the empty storage in the following periods, see Figure 77 

bottom right. The price for generation can be calculated using the efficiently spread but it is also 

reasonable to set the generation price equal to the one in the next period with a regular price, since the 

calculation is done so frequently.  

 

 

Figure 77 Exemplary quarter-hourly intraday continuous price curve from August 10th, 2015 4:45pm until 
August 11th, 2015 11:45pm on the top left side and the sorted price curve in ascending order on the top 

right side are depicted. On the down left side is the filling level of the reservoir plotted against the 
planning horizon. The grey dashed line displays an unconstrained energy reservoir, the orange line a 

constrained energy reservoir. The down right side shows the table with the respective water values for 
each period. 
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7.4.4. Conclusion  

In this part, the optimal bidding strategies for daily pumped hydropower storage power plants in a 

competitive electricity market, considering the perspective of a storage operator and the difficult current 

market conditions in Germany, are outlined. Starting form a new regulatory requirement that forces 

power plant operators to submit precise planning data, an intraday optimization model has been set up. 

Based on this model output an intraday multistage looping algorithm for an intraday pumped hydropower 

storage optimization has been introduced. Reservoir limits, efficiencies, grid charges and machine 

availabilities are included in the algorithm. The algorithm is implemented at EnBW and runs as real-world 

application at a high frequency during the day (in practice at least every 15 minutes). Exemplary results 

are presented showing the high practicability of the model. The results of the algorithm are further 

structured to be used for atomized trading. Future work should analyze to include supplemental 

complexities such as stochastic prices, price sensitivity, balancing power activation and bidding strategies 

for the continuous intraday market. 

This algorithm fits very well in an over all bidding strategy of firstly optimizing the pumped hydro power 

plants on day-ahead markets as suggested in chapter 5 and 6 and to perform this real-time looping 

algorithm as post optimization to constantly adopt the existing position to the changing prices during the 

intraday continuous trading phase. Basically, the pumped hydro power storages are used as a real option 

from the start of the trading until gate closure 30min before delivery (EPEX Spot, 2017b). This algorithm 

is therefore also valuable to determine the optionality value of holding flexibility options.  
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8. Non-Linear Optimization of Energy Only and Balancing Markets 

This chapter provides a method to consider both balancing and energy only markets in the hydropower 

scheduling problem. Although both kind of markets are fundamentally different they are, however, 

essential for a profit optimal scheduling of pumped hydropower storages. The term energy only markets 

typifies all kind of spot markets such as day-ahead and intraday in which just a remuneration takes place 

for the delivered work rather a provision or the like.  

Pumped hydropower storages are a major player on the balancing energy markets (Abgottspon & 

Andersson, 2012). This is due to the ability of many plants to quickly switch between pumping and 

generating mode as well as to exactly follow a given schedule. This flexibility can be either used for trading 

on short-term energy only or balancing markets. Therefore, operators of flexible power plants, such as 

pumped hydropower storages or lithium-ion batteries, face the decision problem on where and how much 

to bid in the different markets.  

This question is difficult to answer in four ways. First, already the energy only multi-market optimization 

is challenging and subject of chapter 5, 6 and 7 concerning the different day-ahead and intraday markets. 

Second, the balancing markets auction design is complex and steadily varying as presented in chapter 2.4. 

The latest market developments show a strong tendency towards more flexible auction designs, especially 

in terms of shorter product lengths, prequalification requirements as well as more frequently auctions, 

see the analysis in chapter 2.4.1. Third, the balancing markets are mostly based on a double auction 

remuneration scheme with pay-as-bid pricing in which the placement of bids in the merit order results in 

a complex non-linear sorting problem. This is because the received price depends on the own offered 

quantity as well as the expected balancing energy activation. The fourth challenge results from the 

combination of energy only and balancing markets and the allocation of the available capacity and energy 

to these markets. These challenges are further difficult to reconcile keeping the problem computational 

tractable and applicable to real-world problems.  

The interaction between both markets is discussed in chapter 8.1.1, a review on existing literature on 

balancing power market bidding is given in chapter 8.1.2. Further, in chapter 8.2 the non-linear 

optimization approach is presented consisting of the energy only 8.2.1 and the balancing problem 

formulation 8.2.2. The numerical results in chapter 8.3 define the test set and present a generic and a 

sizable case study. The last part concludes and innervates a critical discussion. 

8.1. Introduction 

Generally, energy only markets are used to bring supply and demand together to enable physical market 

clearing and balancing markets have been introduced to secure grid stability (Bhattacharyya, 2011).  

Every energy market participant buying, selling and transferring energy is owner of a balancing account 

that needs to be balanced at all time. The accounts are managed by the balancing account managers. 

Every account holder books a schedule before feed-in or consumption (Regelleistung.net, 2017c). The 

sum of all accounts is always balanced. Nevertheless, deviations between the actual feed-in and 
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consumption to the booked schedule can occur in case of power plant outages, forecast errors of variable 

RES, unprecise consumption prognosis as well scheduling or dispatch mistakes. To balance theses 

deviations balancing is needed. The activation of balancing energy is penalized with the final balancing 

energy price (reBAP) (Regelleistung.net, 2017c) that is normally higher than the intraday market price. 

Therefore, it is generally of interest to keep the balancing account balanced (Regelleistung.net, 2017c). 

Every power plant that is able to adjust its production or consumption fast enough can provide the 

demanded flexibility and is able to level out deviations, as long as it is prequalified. Such power plants 

normally bid into the balancing power markets.  

The balancing power markets in Germany (see chapter 2.4.2) and most European countries (see chapter 

2.4.1), are based on a three-quality pattern introduced by the European Network of Transmission System 

Operators for Electricity (ENTSO-E), namely the Frequency Containment Reserve (FCR), the Frequency 

Restoration Reserve (FRR) and the Replacement Reserve (RR) (ENTSO-E, 2013). The second market, FRR, 

in Germany also widely known as secondary control reserve, is exemplarily used to illustrate the 

complexities of the balancing market structure since it includes the already mentioned power as well as 

work price auction. Therefore, the exemplary modulation of the FRR market typifies all other reserves and 

is no simplification. Below the terms balancing power market and balancing power price are used to 

describe the remuneration for the provision of balancing. The auction for the activation of balancing is 

described as balancing energy market with balancing energy prices.  

8.1.1. Interaction of Energy Only and Balancing Markets 

Energy only and balancing markets can be separated in terms of auction design, market place, 

remuneration or market organizer. Nevertheless, an interaction within these markets cannot be denied. 

One simple coherence is for example that a high energy only market price results in pressure on the 

negative balancing power prices, because more running capacity is available. A low energy only market 

price level normally makes the negative balancing power products more expansive and the positive less 

expansive.  

Furthermore, a significant correlation between the quarter-hourly intraday and the final balancing energy 

price can be seen, e. g. in 2016 with 𝑟 = 0.36. Whereas the average intraday and final balancing energy 

prices in 2016 with 29.00 €/MWh and 29.21 €/MWh were nearly arbitrage free the standard deviation 

was 15.41 €/MWh to 47.06 €/MWh. The example from June 28th until 30th, 2017 in Figure 78 illustrates 

the strong fluctuation of the final balancing energy price and thus on the one hand the high risk for market 

participants with unbalanced balancing groups and on the other hand the high remuneration for flexibility 

providers.  
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Figure 78 Comparison of quarter-hourly energy only and final balancing energy prices for three 
exemplary summer days in 2017 

 

The German FRR tendering is a two-stage closed order book pay-as-bid auction. Just an acceptance on the 

power price auction allows a participation in the work price auction. Whereas the power price auction 

remunerates the power provision, meaning one fix price for the whole tendering period in €/MW, the 

work price auction determines the merit order for a possible activation during the tendering period in 

€/MWh. For the power price auction, the bidder always tries to get the last bids of the merit order to 

receive the highest possible payment. Depending on the risk aversion of the strategic bidder, one either 

takes the risk to not get accepted with all bids in return for a better price, or one sorts the bids a little bit 

lower in the merit order to decrease the risk of not getting accepted on the costs of a lower price. In 

practice, the auction participants additionally form smaller bids that are spread over the merit order to 

reduce the risk of not getting accepted.  

The second part of the two-stage market is the work price auction. The work price merit order is 

increasingly sorted by price. In case of activation the participants deliver the requested energy for the pay 

as bid price. Due to the merit order structure, the lowest bid has the highest probability to be activated 

and remunerated whereas the last and most expansive bid has the lowest. Prices at the end of the merit 

order are often speculative and can be very high since a full activation of the whole merit order is 

extremely rare.  

To find the most profitable place in the merit order as a bidder depends on the work price itself as well as 

the expectation on the activation of the energy and the costs for the provision. On the one hand, if no 

energy is activated by the TSO, the remuneration is zero. On the other hand, if extreme amounts of energy 

are activated, the operator need to be able to provide the offered work over a long period of time. The 

latter, is especially relevant for storages since their energy content is limited. Calculating the respective 

costs for pumped hydro power storages is therefore very difficult since it might depend on the activated 
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quantity itself. Whereas the variable costs of fossil fueled power plants just depend on coal, gas, oil and 

CO2 prices, pumped hydro power storages do not have such variable costs that can be considered constant 

in the short run. The steering is rather based on a shadow price based dispatch, see chapter 3.4.  

Below an example for the complexities of the work price auctioning is given. The historic activation and 

work price merit orders are presented in Figure 79 and were retrieved for the April week from 17th to 23rd 

2017 (Regelleistung.net, 2017a) for the following four products:  

• POS HT, Mon.-Fri. 8am-8pm, providing energy 

• NEG NT, Mon.-Fri. 8am-8pm, consuming energy 

• POS NT, Mon.-Fri. 8pm-8am, Sat., Son. and holidays all day, providing energy 

• NEG NT, Mon.-Fri. 8pm-8am, Sat., Son. and holidays all day, consuming energy 

For each of the four products the TSOs purchase about 2 GW of FRR for the German market area as can 

be seen in the example in Figure 79. The blue loops symbolize the respective balancing energy price merit 

order. For clearness the merit orders are cut at prices of +500 and -500 €/MWh, whereas also high five-

digit numbers are regularly bid into the market to wait for extreme activation scenarios. The presented 

Easter week from 17th to 23rd of April 2017 has 432 NT and 240 HT quarter-hours. In normal weeks, the 

balancing energy activation (orange loops) barely reaches the 1000 MW bid in each product. 

Nevertheless, this Easter week shows an extreme situation for the NEG NT product; due to significant 

deviations, shortly, the whole NEG NT balancing energy merit order was activated.  
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Figure 79 Balancing energy price and balancing energy activation for the different products of the 
exemplary week from 2017-4-17 to 2017-4-23, Data retrieved from (Regelleistung.net, 2017a). 

 

Assuming perfect foresight and marginal small bids the ex post profit margins are calculated in Figure 80 

for three different variable costs levels. In terms of pumped hydro power plants these variable costs levels 

can be described by shadow prices. The profit margin 𝐺 for each bid along the merit order is given in 

€/MWh. The profit margin is the result of the pay-as-bid bid price 𝐴𝑃(𝑖) minus the costs of provision 𝒮 

and multiplied with the activation probability 𝐴𝐴(𝑖) at the respective position in the merit order 𝑖 =

1𝑀𝑊,… ,2000𝑀𝑊, see Figure 79. This is calculated over the course of the product length, which is one 

week for FRR in Germany. Depending on the revenue per bid 𝐺(𝑖), see equation (105), the bids from 

different production technologies should be placed at different places in the merit order.  

  𝐺(𝑖) = (𝐴𝑃(𝑖) − 𝒮(𝑖)) ∙ 𝐴𝐴(𝑖)   (105) 
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Whereas the two positive products stand for providing energy the negative products characterize energy 

consumption. Producing and consuming result in different variable costs for the operator. Starting with 

the positive products the red pluses present the profits for a bidder with no costs, 𝒮 = 0, the blue dashes 

costs of 𝒮 = 35 €/𝑀𝑊ℎ and the green rhombs costs of 𝒮 = 45 €/𝑀𝑊ℎ. This means that a bidder aims 

to bid for the bids with the highest positive profit margin. For example, for the POS HT product, bidder 

with costs of 35 €/MWh should offer bids between the first MW and 700 MW, whereas the most lucrative 

ones are located in the beginning of the merit order. The profit margin of the POS NT product is 

characterized by a high activation in the beginning which slows down relatively fast as well as lower work 

prices as for the POS HT product. The result is a higher remuneration in the first part of the merit order 

for the bidder with no costs.  

For the negative products, the TSO sells surplus energy to the bidders. Generally, the magnitude of 

activation is lower as for the positive products. This is because, firstly, power plant outages, as a source 

of balancing power activation do not play a role in negative products and secondly, in peak times thermal 

power plant production can be easily reduced avoiding balancing activation of pooled production. The 

latter is one reason why the provision power price for NEG HT was at 0 €/MWh over the course of the 

exemplary week (not depicted here).  

Furthermore, the higher the production costs of a power plant the higher the profit margins when 

reducing production. This holds true for gas power plants whereas coal fired plants do normally not realize 

fuel saving since hot steam is just piped around the turbine to reduce production. In other words, a coal 

power plant has production costs of about 0 €/MWh and a gas power plant can realize 25 €/MWh for fuel 

saving. To provide balancing power, a thermal power plant must run over the complete product length 

and the higher the production costs the higher the risk that the power plant is partly out of the money on 

the energy only market. This makes the provision with thermal power plants more expansive; especially 

at night or during weekends with low market prices. The delivery of negative balancing power with 

pumped hydropower storages is different to fossil fueled power plants since the consumed energy can be 

stored. The decision on when energy should be stored can be taken based on the shadow price for energy 

consumption, see chapter 3.4.1. A pumped hydropower storage with a low efficiency and a resulting 

shadow price of 15 €/MWh and a highly efficient plant with 25 €/MWh is simulated.  

The first thing that stands out for the product NEG HT in Figure 80 is the limited amount of activated 

balancing energy. This underlines how volatile the activation is. The work price merit order is normally 

structured so that the first bids (here 250 MW) offer a low positive price for consuming energy when 

activated and the further bids even receive a payment for consuming. For efficient pumped hydropower 

storage with a pump shadow price of 25 €/MWh the bids between 50 MW and 500 MW are profitable. 

The less efficient pumped power plant, with a shadow price of 15 €/MWh should offer at least the bids 

around 50 MW in this particular example.  

Due to significant deviations, nearly the whole NEG NT balancing energy merit order was activated. 

Therefore, all products were in the money in most parts of the merit order. Such activation patterns are 

seldom in normal weeks but not uncommon in holiday weeks with a low residual load and a high variable 

RES production. Market participants should forecast the residual load and the renewable energy 

production to estimate the activation probability and respectively adjust their position in the merit order.  
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Figure 80 Profit margin for the four different products of the exemplary week from 2017-4-17 to 2017-4-
23, Data retrieved from (Regelleistung.net, 2017a). 

 

This example shows that the remuneration from the balancing power markets is heavily varying mainly 

because of the different activation patters and variable costs. Furthermore, the respective production 

costs of the operators are crucial for the position in the merit order. For pumped hydropower storages, 

the dispatch costs, here referred as shadow prices, depend on the energy only markets dispatch, but also 

on the quantity of offered balancing energy. Offered capacity in machines is reserved and cannot be used 

in energy only markets. Furthermore, activated energy changes the reservoir filling levels. This means 

there is a strong relation between balancing and energy only markets. All this motivates a combined 

approach considering both energy only and balancing power markets to find an optimal allocation of the 

available capacity.  
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8.1.2. Literature Review 

Bidding on balancing power markets is a very complex task mostly due to the non-linear structure of the 

resulting optimization problems. Within the approaches in literature one group can be identified trying to 

present solutions that are applicable to real-world problems and another group converge the problem 

more theoretically, analyzing the market itself or presenting new optimization methods.  

The first practical oriented group mainly suggests using iterative concepts. For example, a two-stage 

approach that firstly solves a spot market based hydropower scheduling optimization to provide optimal 

schedules, reservoir filling levels and water values to take the decision on using the water now or later in 

time and secondly generates optimal bids for the balancing market using the output of the ex-post energy 

only market optimization as cost structure. In this case, the size and number of bids are set fixed 

beforehand. Therefore, all problems are normally linear, and no non-linear tie-ins apply. Nevertheless, 

mixed integer and stochastic formulations can make problems relatively complex. With respective loops, 

the parameters of the systems can be adjusted towards a local optimum. The main drawback of the 

iterative approach is the neglection of the back coupling of the balancing power market bids on the energy 

only markets bids, the global optimum is not found. Furthermore, most approaches do not consider the 

characteristic two stage market design as suggested by the ENTSO-E (2013) and just regard the balancing 

power provision problem, rather the balancing work price auctions; possibly due to a complex modulation 

of activations.  

Extended optimizations including case studies that show their applicability to real-world problems with 

strategic bidding on energy only and ancillary services are given by Ugedo and Lobato (2010) with an one-

day example for the Spanish electricity market. They note the importance of stochastic optimization that 

is still solvable as well as strategic bidding due to the oligopolistic nature of the bidders. Other real-world 

stochastic linear optimizations are given for Canada (Ladurantaye, Gendreau, & Potvin, 2007), New 

England (Zhang, Wang, & Luh, 2000) and Norway (Fleten & Pettersen, 2005). A more recent approach 

including an extensive case study is presentment by Braun and Burkhardt (2015), which is a two stage 

linear approach considering opportunity costs from the energy only market to generate optimal bids for 

the reserve market, including strategic bidding and the pay as bid price structure. Nevertheless, none of 

these real-world examples addresses the non-linear characteristic of the balancing power market directly, 

rather assuming some factors as given or as results of an ex-ante optimization.  

The second identified group in literature addresses many of these challenges on the costs of aggravated 

practical applicability. One of the first papers considering both energy only and ancillary market was 

published in the year 2000. Deb (2000) used a heuristic algorithm to compare the income from the energy 

only and the ancillary services market using water values. Non-linearities were also approached by Swider 

(2007b) who addressed the non-linear problem structure resulting from the German and European 

market designs based on a pay-as-bid structure with a limited merit order. He performs a stochastic non-

linear optimization for an exemplary power plant portfolio using spot and reserve market whereas he 

considered strategic bidding behavior of the bidders on the latter. Further approaches exist, as for 

example Abgottspon (2015a, pp. 127–130), who proposes an agent based model that is solved with a Q-

learning framework for short-term ancillary services bidding. He just includes the power provision, not 

the energy delivery. Furthermore, the highest acceptable price is assumed as known beforehand which 

results in a perfect foresight problem.  
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Vardanyan and Hesamzadeh (2014) introduce a multistage stochastic optimization for day-ahead and 

balancing markets. They use a rolling planning approach that allows re-forecasting and re-dispatching. 

The stochastic day-ahead price forecasting is modelled with a mean reverting jump diffusion processes 

and the discrete behavior of the balancing markets with a Markov model. Nevertheless, just three 

different bidding prices are allowed. Olsen describes a stochastic hydropower planning model that 

accounts for uncertainty in both day-ahead and balancing market as well focusing on wind power 

integration (Olsson, 2003; Olsson & Soder, 2003).  

A good overview on market design, key drivers and the development of the European balancing markets 

is given by Ocker, Braun and Will (2016). Further literature on multi-market bidding including balancing 

markets is listed in Table 14. The focus is on literature that considers either price maker bidding in the 

balancing market or take the activation of balancing energy into account. No paper regarded both. The 

overview Table 14 becomes clear about if the authors considered multi-market bidding using additional 

day-ahead or intraday markets. Furthermore, the column generation technology describes if hydropower 

storages were taken into account and if essential aspects such as inflows or pumps were considered. 

 

Table 14 Literature review on multi-market bidding considering balancing markets 

author 
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technology, 
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technique/ main findings 
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(Abgottspon 
& Andersson, 2012) 

x    x  x x x x 

SDDP+MILP/ 1year/ fixed 
percentage/ risk neutral, day-ahead 

with single scenario, reserve with 
multiple scenarios 

(Black & Strbac, 
2007) 

    x  x x  x 

priority ranking method+LP/ 1 day/ 
imbalances between actual and 

forecast wind power is simulated as 
random walk for balancing 

activation 

(Boomsma et al., 
2014) 

x x   x x  x   

multistage SP/ generic example/ - / 
coordinated bidding increases profit 

by 2% no market power and 1% 
assuming market power in the 

balancing market 

(Braun & Burkhardt, 
2015) 

  x   x  x x x 
LP/ 1 year/ - /balancing energy 

more profitable as day-ahead or 
intraday  

(Chazarra, Perez-
Diaz, & Garcia-

Gonzalez, 2014) 
x    x  x x  x 

MILP/ 1 day/ fixed percentage/ 
variable speed operation 

(Deb, 2000) x    x  x x  x 
ad hoc heuristic/ 1 day/ fixed 

percentage/ single scenario, risk 
neutral, hedge scenario based 
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author 

markets/objective generation 
technology, 

consideration of 
method/ horizon/ activation 

technique/ main findings 
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(Kazempour, 
Hosseinpour, & 

Moghaddam, 2009) 
x    x  x x  x 

MINLP/ 1 day/ fixed percentage/ 
single scenario for spinning 

(Kazempour, 
Moghaddam, 
Haghifam, & 

Yousefi, 2009) 

x    x  x x  x 
MILP/ 1 week and 1 day/ fixed 

percentage/ variance of forecast 
errors is used to hedge risk 

(Pinto, Sousa, & 
Neves, 2011) 

x    x  x x  x 
MILP/ 1 day/ fixed percentage/ 

wind integration, single scenario 

(Swider, 2007a) x     x  x   
NLP/ 1 day/ - /multiple scenarios for 

price assumptions 

(Varkani, 
Daraeepour, & 
Monsef, 2011) 

x    x  x x  x 
MILP/ 1 day/ fixed percentage/ 

wind hydropower system, single 
scenario 

8.2. Non-Linear Programming 

The great advantage of the here introduced integrated model is compared to iterative approaches the 

optimal exploitation of the optionalities between energy only and balancing power market. Nevertheless, 

in a first step, energy only 8.2.1, balancing power and balancing work auction are modeled separately as 

standalone optimizations 8.2.2. In a second step, all three problems are composed to the overall 

integrated optimization model in part 8.2.3.  

8.2.1. Energy Only Market Optimization 

One part of the overall integrated energy only market optimization is the classical hydropower scheduling 

problem. This problem takes the here-and-now or wait-and-see decision for the in the reservoir stored 

water. Optimizing using the expected future energy prices 𝑐(𝑡) in time  𝑡 = 1,… , 𝑇 and taking into 

consideration all technical restrictions of the power plants such as the maximum turbine 𝑢𝑚𝑎𝑥 and pump 

𝑝𝑚𝑎𝑥 capacities, the reservoir limitations specified by the minimum 𝑣𝑚𝑖𝑛(𝑟) and maximum 𝑣𝑚𝑎𝑥(𝑟) 

reservoir filling levels and the inflows 𝑣(𝑡, 𝑟) depending on the reservoir 𝑟 = 1,… , 𝑅 in the time 𝑡. Further 

important parameters are the efficiencies of turbines 𝜂(𝑚) and pumps 𝜌(𝑚) with 𝑚 = 1,… ,𝑀. The 

decision variables are 𝑢(𝑡) as the turbine schedule, 𝑝(𝑡) as the pump schedule and 𝑠(𝑡, 𝑟) as the spillage. 

The state variable 𝑣(𝑡, 𝑟) describes the reservoir filling levels of reservoir 𝑟 in time 𝑡. This is the general 

problem formulation similar to the ones given in chapter 4.1.2 and chapter 5.3.1. The energy only market 

model formulates as: 
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𝑃: 𝐺𝐸𝑂 = 𝑚𝑎𝑥
𝑢,𝑝,𝑠

∑ ∑ 𝑐(𝑡)(𝑢(𝑡,𝑚) − 𝑝(𝑡,𝑚))𝑀
𝑚=1

𝑇
𝑡=1    (106) 

 𝑠. 𝑡. 𝑣(𝑡,m, 𝑟) = 𝑣
𝑎𝑛𝑓(𝑡, r) − 𝑠(𝑡, r) + 𝑣𝑖𝑛(𝑡, r) + 𝜌(𝑚)𝑝(𝑡, m) −

𝜂(𝑚)𝑢(𝑡,m)  

∀𝑡,𝑚, 𝑟  

  𝑣𝑚𝑖𝑛(𝑟) ≤ 𝑣(𝑡, r) ≤ 𝑣𝑚𝑎𝑥(𝑟)  ∀𝑡, 𝑟  

  0 ≤ 𝑝(𝑡,𝑚) ≤ 𝑝𝑚𝑎𝑥  ∀𝑡,𝑚  

  0 ≤ 𝑢(𝑡,𝑚) ≤ 𝑢𝑚𝑎𝑥  ∀𝑡,𝑚  

  0 ≤ 𝑠(𝑡, 𝑟)  ∀𝑡, 𝑟.  

 

Results of the energy only market problem are the energy only market optimal objective value 𝐺𝐸𝑂, power 

plant schedules, reservoir filling levels as well as the marginal water values from the dual variables of the 

reservoir filling level equation. The latter can be used as decision support for trading.  

8.2.2. Balancing Market Optimization 

The balancing problem formulation is the second important part of the multi-market optimization and it 

splits up into the balancing power auction and the balancing work auction. First, the balancing power 

optimization is formulated and second, the balancing work optimization is expressed, both based on the 

formulation of non-linear programs in chapter 4.1. Third, these two problems are formulated as an 

integrated balancing optimization.  

Balancing Power Auction Optimization 

For this mixed integer, non-linear optimization the set of bids in the auction is mapped by 𝑙, 𝑚, 𝑛 = 1,… , 𝐼, 

whereas 𝑚 and 𝑛 are needed for the sorting process. The binary variable 𝑧 (𝑙) describes the (accepted) 

own bids. If just one bid is offered the respective price paid for this bid is 𝐿𝑃(𝑙). If more than one own bid 

is offered the price depends not just on the position of the own bid in the set 𝑙 but also on the number of 

already accepted own bids ∑ 𝑧(𝑙)𝑙 . This connection makes the program non-linear and is addressed in the 

sort function 𝛼(𝑙,𝑚) that depends on 𝑧(𝑛) for all 𝑛 < 𝑙. In the optimization, it is expected that every bid 

has a bid size of 𝑉 or can be divided into bids of that size. The power price optimization can be formulated 

as:  

𝐿: 𝐺𝐿𝑃 = max
𝑧
∑ (𝑧(𝑙) ∙ 𝑉 ∙ ∑ (𝛼(𝑙,𝑚) ∙ 𝐿𝑃(𝑚))𝑚 )𝑙    (107) 

 𝑠. 𝑡. 0 = 𝛼(𝑙,𝑚) ∙ (𝑙 − 𝑚 − ∑ 𝑧(𝑛)𝑛<𝑙 )  𝑙,𝑚, 𝑛 = 1,… , 𝐼, 

 

with the crucial assumption that 𝛼(𝑙,𝑚) = 1 if 𝑚 = 𝑙 − ∑ 𝑧(𝑛)𝑛<𝑙 . The results of this optimization are a 

matrix with the profitable own bids and how they align in the existing set of bids. The sum of all accepted 
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bids multiplied with the respected bid size gives the overall optimal volume to be bid into the market. 

Here, no cost term is modelled since in the integrated optimization the opportunity costs result from the 

interaction with the energy only market optimization. Furthermore, this formulation is related to the 

respective product length. In order to optimize over a longer period of time an additional time reference 

must be given. 

Balancing Work Auction Optimization 

The work price program is formulated similarly to the power price program. With 𝑧(𝑖) as the binary 

decision variable that selects the own bids form all bids 𝑖, 𝑗, 𝑘 = 1,… , 𝐼. A similar non-linearity applies 

because the work price 𝐴𝑃(𝑗) depends on the work price at position 𝑖 as well as the number of already 

allocated own bids. This connection is taken into account using the sort function 𝛽(𝑖, 𝑗) that depends on 

𝑧(𝑘) with 𝑘 < 𝑖. Furthermore, the remuneration for the work price just applies if the own bids are 

accepted and if the offered energy is also activated. Therefore, every bid can be assigned with a specific 

activation probability. Due to pay as bid, the remuneration of every work bid can be estimated by 

multiplication with the respective expected activation probability of a bid 𝐴𝐴(𝑖).  

𝐴: 𝐺𝐴𝑃 = max
𝑧
∑ (𝑧(𝑖) ∙ 𝑉 ∙ 𝐴𝐴(𝑖) ∙ ∑ (𝛽(𝑖, 𝑗) ∙ 𝐴𝑃(𝑗))𝑗 )𝑖    (108) 

 𝑠. 𝑡. 0 = 𝛽(𝑖, 𝑗) ∙ (𝑖 − 𝑗 − ∑ 𝑧(𝑘)𝑘<𝑖 )  𝑖, 𝑗, 𝑘 = 1,… , 𝐼. 

Convexity 

Generally, both power and work price problems are assigned to the class of non-linear programs. Most of 

the problems in this class are np-hard, whereas just a few are part of the class of convex problems. A 

problem is convex when all production and coefficient matrixes are positive semidefinite meaning not 

one eigenvalue is negative. This can be either tested with the Gaussian elimination (row reduction) or the 

Cholesky decomposition. The here mentioned optimization problems are for most input parameter non-

convex, which complicates the solution process.  

Combined Balancing Power and Work Auction Optimization 

The balancing market is designed as a two-stage double auction. On the first stage, the power auction 

with the participation decision as well as the remuneration for the provision of capacity is taken and on 

the second stage the payment for the actual delivery of energy is defined. Therefore, every market 

participant has to hand in bids for both auctions at the same time. Bids consist of volume, power price 

and work price (𝑉, 𝐿𝑃, 𝐴𝑃). There is no chance to adopt bids after the first auction part and auction 

participants must be always able to provide the offered bids. Furthermore, from a bidder’s perspective 

the bids should be designed to result in the wished results within some limits and should consider risk 

mitigation and profit maximization. To generate bids both balancing power and energy auction problems 

should be composed and solved at ones. A bit that is accepted in the power market will have a place in 

the work price merit order, whereas a bit that is not allocated in the balancing power market does not 
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participate in the balancing work auction. A not uncommon optimization result is a very low power price 

bid below provision costs, to ensure participation, combined with a profitable work price with an overall 

expected positive return. This would just be possible with a combined optimization as can be seen below; 

all parameters and variables are defined as for the single problems above.  

𝐿 + 𝐴: 𝐺𝐿𝑃+𝐴𝑃 = 𝑚𝑎𝑥
𝑧
∑ ∑ (𝑧(𝑖) ∙ 𝑧(𝑙) ∙ 𝑉 ∙ (∑ (𝛼(𝑙,𝑚) ∙ 𝐿𝑃(𝑚))𝑚 +𝑙𝑖

                                   𝐴𝐴(𝑖) ∙ ∑ (𝛽(𝑖, 𝑗) ∙ 𝐴𝑃(𝑗))𝑗 ))  

 (109) 

 𝑠. 𝑡. 0 = 𝛼(𝑙,𝑚) ∙ (𝑙 − 𝑚 − ∑ 𝑧(𝑛)𝑛<𝑙 )  

0 = 𝛽(𝑖, 𝑗) ∙ (𝑖 − 𝑗 − ∑ 𝑧(𝑘)𝑘<𝑖 )  

𝑙,𝑚, 𝑛 = 1,… , 𝐼  

𝑖, 𝑗, 𝑘 = 1,… , 𝐼  

 

8.2.3. Combined Optimization  

In the beginning of this chapter it is worked out that both energy only and balancing markets are linked 

together in terms of correlating market prices and balancing activation. Furthermore, these markets can 

be used as well to exploit arbitrage possibilities within both markets. The combination of the above-

mentioned balancing power and work as well as the energy only problem leads to the originally aimed 

problem formulation.  

𝑃: 𝐺𝐸𝑂+𝐿𝑃+𝐴𝑃 = 𝑚𝑎𝑥
𝑢,𝑝,𝑠

∑ ∑ 𝑐(𝑡)(𝑢(𝑡,𝑚) − 𝑝(𝑡,𝑚))𝑀
𝑚=1

𝑇
𝑡=1   

         +∑ ∑ (𝑧(𝑖) ∙ 𝑧(𝑙) ∙ 𝑉 ∙ (∑ (𝛼(𝑖, 𝑙) ∙ 𝐿𝑃(𝑙))𝑙 +𝑙𝑖

                                        𝐴𝐴(𝑖) ∙ ∑ (𝛽(𝑖, 𝑗) ∙ 𝐴𝑃(𝑗))𝑗 ))  

 (110) 

 𝑠. 𝑡. 𝑣(𝑡, 𝑟) = 𝑣
𝑎𝑛𝑓(𝑡, 𝑟) − 𝑠(𝑡, 𝑟) + 𝑣𝑖𝑛(𝑡, 𝑟) +

𝜌(𝑚)𝑝(𝑡,𝑚) − 𝜂(𝑚)𝑢(𝑡,m)  

∀𝑡,𝑚, 𝑟  

  𝑣𝑚𝑖𝑛(𝑟) ≤ 𝑣(𝑡, 𝑟) ≤ 𝑣𝑚𝑎𝑥(𝑟)  ∀𝑡, 𝑟  

  0 ≤ 𝑝(𝑡,𝑚) ≤ 𝑝𝑚𝑎𝑥  ∀𝑡,𝑚  

  0 ≤ 𝑢(𝑡,𝑚) ≤ 𝑢𝑚𝑎𝑥  ∀𝑡,𝑚  

  0 ≤ 𝑠(𝑡, 𝑟)  ∀𝑡, 𝑟  

  0 = 𝛼(𝑙,𝑚) ∙ (𝑙 − 𝑚 − ∑ 𝑧(𝑛)𝑛<𝑙 )  𝑙,𝑚, 𝑛 = 1,… , 𝐼  

  0 = 𝛽(𝑖, 𝑗) ∙ (𝑖 − 𝑗 − ∑ 𝑧(𝑘)𝑘<𝑖 )  𝑖, 𝑗, 𝑘 = 1,… , 𝐼. 

 

This multi-market energy only and balancing market optimization is non-linear and for most input 

parameter combinations also non-convex. A generic example is given in chapter 8.3. This problem is non-

convex because the variables quantity and price are not independent of each other. This means solving 
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this problem is np-hardness. NP-hardness stands for non-deterministic polynomial-time hardness. This 

means, the problem cannot be solved or if it can be solved not in finite time.  

8.3. Exemplary Results 

This chapter focuses on the applicability of the model on real-world case studies. The introduced 

integrated model has the great advantage to be able to exploit arbitrage within energy only and balancing 

markets. A typical arbitrage possibility to be exploited with such a model could be to fill a reservoir with 

negative balancing activation and to release the water in times of price spikes on the energy only market. 

Unfortunately, the non-linearities in the formulations limit the size of the problems to be solved with 

today’s solvers to a minimum. Therefore, a generic example is provided in chapter 8.3.2 that solves the 

integrated and complex non-linear optimization as given in chapter 8.2.3. This example demonstrates the 

general functioning and the added value of the model.  

Until this integrated model can be solved in large scale, for example with heuristic methods, a practically 

applicable approach is presented in chapter 8.3.3 as well. The approach leaves the non-linear tie-ins aside 

and is based on a paper written by Braun and Burkhardt (2015). This gives the possibility to basically solve 

even large pumped hydropower storage portfolios in a limited amount of time.  

8.3.1. Model Setup 

Market selection 

The here introduced approaches are described regarding pumped hydropower storages. Nevertheless, 

this is not excluding since the optimizations can be easily adopted to all kind of other storages. 

Prerequisite is that the storages are suitable for FRR provision.  

Until now, balancing and energy only markets are compared in general. For the following analysis the 

intraday continuous market is used representatively for all existing energy only markets because it is the 

most fluctuating short-term energy only market. On the one hand, this overestimates the possible profit 

of a flexible pumped hydropower storage on the energy only markets because of the price sensitivity 

which is normally addressed with a hedge based strategy using hourly and quarter-hourly day-ahead as 

well as intraday markets. On the other hand, it underestimates the income by not considering the 

optionality value over the time. Both aspects can be considered as presented in chapter 5.2 and 5.4.3. 

As representative balancing market the FRR is used since it includes both balancing energy and balancing 

power remuneration and it is the most lucrative market for bidders (Abgottspon & Andersson, 2012). The 

integration of further energy only markets into the optimization is theoretically just as possible as the 

integration of further balancing markets. Nevertheless, due to computational problems this seems 

extremely challenging, since the objective should also be to optimize over time horizon of several weeks 

or even months.  
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Input parameters 

The input parameters for the energy only market optimization are quarter-hourly intraday prices and 

inflow expectations as well as the physical layout and technical restrictions of the pumped hydropower 

storages. Additionally, as input for the balancing market optimization an expectation on power and work 

price as well as an activation probability is needed. In contrast to day-ahead markets with one MCP for all 

customers and all bids for a specific product and time, the pricing on the balancing market in Germany is 

based on a pay as bid market regime. Therefore, the position of the other bidders is important as well to 

align own orders most profitable into the merit order. Hence, an assumption for all bids, consisting of 

power price 𝐿𝑃, work price 𝐴𝑃 and volume 𝑉, (𝐿𝑃, 𝐴𝑃, 𝑉), in the market is needed. A precise forecast of 

the bid structure in the market is extremely difficult since the market is highly volatile, likely shaped by 

strategic bidding and influenced by power plant availabilities and the prices on the energy only markets.  

Output parameters 

The aspired outputs are steering parameters for optimal market biddings on both markets. The outputs 

for the energy only market trading are optimal schedules with the respective capacity and work limits due 

to balancing power provision as well as water values. For the balancing market bidding the optimal bids 

(𝐿𝑃, 𝐴𝑃, 𝑉) itself are needed and calculated. The bids indicate the wished position in the merit order and 

take the fixed demand and the specific pricing structure of capacity and energy auction into account.  

Machine and Reservoir restrictions 

In addition to the general pumped hydropower storage optimization, see chapter 4.1.2 and 5.3, further 

restrictions need to be entailed when considering balancing markets. This is mainly due to the tightening 

limitations of reservoirs and machines which are illustrated in Figure 81. If no balancing power is provided, 

the complete reservoir filling can be used. If positive balancing power is provided (orange arrows) some 

water needs to be kept as a reserve in the upper reservoir and the lower reservoir cannot be filled until 

top to provide the space needed if in the extreme scenario the residual water from the upper reservoir is 

released due to a positive balancing power activation. Vice versa, negative balancing power provision 

(blue arrows) result in a higher minimum water level in the lower and a reduced maximum filling in the 

upper reservoir to be always able to consume unused electricity from the grid and to pump water from 

the lower reservoir into the upper one. The buffers that need to be kept in the reservoirs depend on the 

quantity of balancing offered, the probability and the estimated time of maximum provision. Consensus 

in industry and literature (Bartelt & Heltmann, 2013) are 4 hours provision, whereas 30 minutes are 

theoretically enough due to possible intraday trading. For example, with 4 hours provision and 100 MW 

offered, 400 MWh always need to be kept in the reservoir in case of a long-term activation.  

Beside the restrictions of the reservoir filling levels also the machine capacity that is available for the 

energy only market is limited by the quantities sold on the balancing markets, see Figure 81. Turbine or 

pump capacity for balancing needs to be reserved at all times and cannot be used for the energy only 

market, even with no balancing energy activation.  
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Figure 81 Minimum and maximum reservoir filling levels considering long-term balancing work 
activation and, on the right, the blocked capacity of turbine and pump for balancing power provision.  

 

As the dotted blue arrows present in Figure 81, the capacity reserved in the machines can vary dependent 

on how the balancing power is provisioned with pumped hydropower storages. The following four 

operating modes need to be distinguished.  

• Positive activation leads to an increase of turbine production. With positive balancing power 

provision, the available turbine capacity for energy only is constrained by the maximum turbine 

capacity minus the quantity offered.  

• Negative activation leads to a decrease in turbine production. In this case the turbine produces 

at least the capacity offered. In case of activation the turbine production can be reduced in the 

height of the activation signal. 

• Positive activation leads to a decrease in pump consumption. This case is very rare. The pump 

consumes at least the offered capacity and can be reduced by the amount of positive activation. 

This is just possible with variable speed pumps.  

• Negative activation by increasing the pump consumption. There are two ways to realize this 

strategy. First, if variable speed pumps are present, the pumps consume as much energy as 

activated and are limited in consumption by the quantity of capacity offered. Secondly, if no 

variable spread pumps are available as it is the case for most pumps installed, balancing energy 

can be provided by operating the pump with full load and use a flexible turbine to reduce the 

consumed energy by the activated amount. This operating mode is called hydraulic short circuit, 

see chapter 3.1. Both pump and turbine need to block the respective balancing capacity.  
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8.3.2. Generic Model Results 

As mentioned the multi-market optimization problem is non-convex and therefore np-hardness. 

Nevertheless, generic examples can be constructed which are non-linear but convex. It is important to 

present such simple and generic examples to check the given optimization approach and to demonstrate 

a general solvability. In the next chapter the problem is linearized to provide a work around solution for 

real-world problems as long as the integrated model cannot be solved efficiently.  

The following example spans two time-steps, two unrestricted reservoirs, one turbine and one pump, 

each with a restriction of 10 production units, see Table 15. The energy only market provides a price of 

0.1 in the first period and 0.5 in the second. The machines are modeled with no efficiency losses. 

Furthermore, the complete balancing market contains five offers, each consuming a capacity of one unit. 

The five positive and negative balancing bids contain work price, power price and the assumed activation. 

Start and end reservoir filling level are the same.  

 

Table 15 Generic input data for the multi-market energy only and balancing market optimization 

positive balancing  negative balancing 

bids work price power price activation  bids work price power price activation 

1 2 1 0.8  1 2 1 0.8 

2 5 2 0.4  2 5 2 0.4 

3 6 3 0.2  3 6 3 0.2 

4 6 4 0.1  4 6 4 0.1 

5 8 4 0.1  5 8 4 0.1 

         

energy only  machine characteristics 

time price  
maximum turbine 10 

1 0.1  maximum pump 10 

2 0.5  efficiency 100% 

 

Running the above described algorithm results in an optimal value of 25.72, see Figure 82 adding up the 

return of stage one and two. It can be seen that the first time step is used for pumping water into the 

upper reservoir resulting in a negative energy only market revenue contribution (orange bar). The black 

and green bars symbolize the return from the balancing power market and the blue and grey bars the 

return from the balancing energy activation. Generally, the energy only market is used by the optimization 

model to level out the activated balancing energy which is why more energy need to be pumped than 

generated despite a 100% efficiency. This is the classic arbitrage effect which has been mentioned before.  

In Figure 82, the right four tables indicate which bids are allocated by the solver. Every bid is described by 

two indices 𝑖 and 𝑗. Whereas 𝑖 numerates all available bids 𝑗 describes the position of the own allocated 

bids. All positions in the tables marked with a 1 are bids that are provided by the own power plant. The 

results of the power price auction are rather optimistic since the algorithm provides all the bids at the end 

of the merit order, see Figure 82.  
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Using this given information, the profit can be calculated manually for each product. The work price profit 

is a result of the multiplication of activation and bid price. For the positive case, this is calculated as 𝐺𝐴𝑃 =

5 ∙ 0.4 + 5 ∙ 0.2 + 5 ∙ 0.1 + 5 ∙ 0.1 = 4.  

On the left of Figure 82 the limits of the hydropower machine are presented. The solid orange line marks 

the maximum turbine and the solid blue line the pump capacities. Furthermore, the optimization assigns 

this available capacity to the balancing and the energy only markets separated by the orange and blue 

dashed black lines. This is the crucial point to exploit arbitrage between both markets. Furthermore, the 

grey bars present the energy only market dispatch schedule which does not exceed the available capacity 

for the energy only market.  

 

 

Figure 82 Distribution of the available machine capacity to energy only and balancing market on the left, 

the resulting profit form the different markets for the two stages of the optimization in the middle and 

the selected balancing bids on the right.  

 

For larger problems, the optimization is non-convex and very difficult to solve. As long as computer 

systems cannot solve such problems in acceptable time no extensive case study can be provided using 

this approach. Therefore, an adopted linearized optimization approach is presented below which is 

applicable to large scale problems. Nevertheless, with the progressing flexibilization of the energy only 

and especially the balancing markets with shorter product lengths and more regular auctions, the solution 

of the integrated model will be more and more valuable in comparison to the two-stage approach. 
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8.3.3. Practical Model Results 

To solve large scale problems, as it need to be done in real-live dispatch, the above described approach 

need to be adopted. The introduced optimization problem can be linearized by specifying the quantity to 

be traded into the balancing market beforehand. This is because one of the two variables quantity and 

price that are multiplied in the non-linear optimization transforms into an input parameter. Without this 

tie-in the problem can be split up again into an energy only problem that determines the costs of balancing 

for provision and a model that determines the incomes from the double auction based balancing market.  

To obtain the costs of balancing power provision the opportunity costs of the replaced bids on the energy 

only market can be calculated by means of blocking certain quantities of power capacities in a hydro 

power scheduling optimization model. The logic behind this approach is that a hydro power machine can 

be either used on the energy only markets by realizing a spread or to use the machines for balancing 

receiving a work and power price.  

Model Setup 

The cost side is simulated with a linear optimization model, using the 2014 hourly intraday continuous 

market prices. For the revenue side the historically bids of 2014 as well as the activated balancing energy 

are used to identify the optimal bidding strategy. The optimization is based on the water values of the 

hydro scheduling optimization and the publicly available data of the transmission system operators in 

Germany.  

The following characteristics and restrictions are considered in the optimization:  

• start reservoir filling level is half of the maximum filling level the  

• start and end (target) reservoir filling levels are the same  

• minimum filling level is zero 

• for consuming energy from the grid (pumping) a grid charge has to be paid amounting to 5
€

𝑀𝑊ℎ
 

• turbine and pump capacity are 100 𝑀𝑊 

• reservoir capacity is 4000 𝑀𝑊ℎ each 

• efficiency of the machine is 70% 

• the machines can operate in hydraulic short circle 

The inflow input data is set null, because pumped hydro power storages usually do not have significant 

inflows. Whereas, the crowding out effect is considered in the optimization, it is assumed that an 

operator, who bids less than 5% of the overall FRR market volume into the market, has no direct market 

power. This means that since the tendered quantity is fixed, additional quantities of capacity will push 

other more expensive bidders out of the market and lowers the marginal price. The calculation has been 

done ex-ante for the year 2014. 
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Model Results 

The results presented in this part, especially in Figure 83, are based on the publication from Braun and 

Burkhardt (2015). The 100 𝑀𝑊 pumped hydropower storage is optimized so that it is partly traded on 

the hourly intraday continuous as well as the FRR balancing market. Figure 83 shows that the more power 

is reserved for the balancing market the lower the return from the intraday market. Nevertheless, the 

income reduction from the intraday market is more than compensated with the incomes from the 

balancing markets for all products.  

Generally, the positive FRR products are completely provided with the turbine, the negative FRR products 

with a mix of turbine and pumps. This is possible due the hydraulic short circle ability of the machines. It 

is assumed that in 75% the pump can be used and in 25% the turbine production need to be reduced. This 

means for the negative products that the turbine needs to produce in base load. Therefore, especially 

NEG NT is relatively costly. This is also because pumps are normally occupied during low-price periods 

when used to pump water up and fill the storage with low-priced energy. POS HT can be explained vice 

versa in terms of blocking turbines during high-price periods. The most lucrative product is POS NT. 

Generally, it can be said that providing all FRR products at the same time is more efficient than providing 

one or two single products.  

The calculation illustrates that the more FRR is offered to the market the higher the overall profits of the 

pumped hydropower storages. Although the income from the intraday continuous market would be 

negative offering 80 MW FRR for all products, it is the most profitable case in this example. Selling more 

than 80 MW with a 100 MW machine is not possible since at least 20 % of the machine capacity is used 

to refill or empty the reservoir in times of uneven balancing power activation.  
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Figure 83 Return from trading a pumped hydropower storage with 100 MW capacity on intraday and 
balancing markets for the year 2014, (Braun & Burkhardt, 2015) 

Critical Discussion 

Water values and the cost of FRR provision are assessed using an ex-post intraday price time series in 

hourly time resolution. To compute the income from FRR market also ex-post historic auction results and 

historic data for activation are included. This leads to an ex-post optimal analysis which overestimates the 

income and underestimates the costs.  

Furthermore, the optimal position in the activation merit order does not consider all power plants physical 

limitations. In practice the hydro power plant storages only have a limited quantity of energy. Therefore, 

a high activation of provided FRR over several hours could be difficult to fulfil. Depending on the risk 

aversion of the operator this can be an under- or an overestimation of the activation income. 
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8.3.4. Conclusion 

The here introduced approach is an integrated optimization of balancing power and energy only markets. 

The advantages of the integrated model are clearly the exploitation of arbitrage possibilities between 

energy only and balancing markets. Nevertheless, the disadvantages are numerous. The resulting 

dependencies between both markets as well as the non-linear sorting process in the balancing work and 

power merit orders make the problem highly complex. The resulting MINLP is NP-hardness and therefore 

nearly unsolvable. Even if these problems could be solved the perfect foresight effect would still be 

significant. This is because not just the energy only market prices and inflows are taken as given, but also 

the balancing auction bids of all market participants and the activation pattern. 

Although the substantial hindrances the presented generic example is a rebuttal that it is not impossible 

to solve this complex problem. It could be shown that the optimization is functional, and the problem 

formulation correct. Future research should focus on solving the formulated problem with evolutionary 

algorithms for example genetic programming. Latest developments in this field show promising results. 

The disadvantage of such heuristics is the difficulty to estimate the quality of the solutions.  

Instead of solving the overall non-linear and non-convex optimization the problem can be simplified. This 

is done by separating the energy only market decision from the balancing market bid placement in the 

merit order and to hold one variable fix to optimize the other. For example, the quantity offered to the 

balancing power market can be set fixed. With this the problem is not non-convex anymore and can be 

solved with standard linear solvers. To achieve similar results as with the integrated model an iterative 

solution approach is suggested (Braun & Burkhardt, 2015). Solving various combinations, with quantities 

offered to the different markets, helps to approximate a good ratio. Doing this revealed that the balancing 

markets are more profitable than the hourly intraday market in the given example. Nevertheless, to 

unlock the described arbitrage within both markets is not possible with this approach.  

Beside the application of the optimization model on integrated balancing and energy only market 

problems the utilization is even broader. In Europe and especially Germany the share of wind power 

generation increases constantly. As explained in the introduction 8.1, also wind power operators hold a 

balancing account that need to be balanced to avoid the penalties in the amount of the final balancing 

price (reBAP). The more wind installed, the higher the discrepancies between planned and actual feed-in.  

Wind power operators can use flexible pumped hydropower storages to balance deviations. Since wind 

farms and pumped hydropower storages are often owned by separate companies, products such as virtual 

power plants, can be originated to meet this special balancing demand to avoid risk and balancing fees. 

Such a contract would just come off if it is profitable for both sides, meaning higher incomes for 

hydropower operator as in the intraday or the balancing markets and lower costs for the wind miller as 

induced by the fees when being unbalanced. For hydropower operators, this could be calculated using 

the MINLP. Instead of solving the whole balancing problem, just the balancing work problem need to be 

computed using the estimated wind power deviations instead of the balancing work activation.  

Whether it is reasonable to balance subsystems depends on the influence of the wind power operator on 

the balancing activation signal. Weber (2010) shows that a wind power producer is exposed to the more 

risk the more wind energy is in the system. He illustrates that for a higher wind feed-in the correlation 

increases and the operators pay more, independently of market design and pricing mechanism for their 
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forecast errors. It is assumed that the geographical dispersion of wind power plants reduces the wind 

forecast error in the beginning of the expansion phase and decreases again with increasing installation in 

each region, as seen in Germany, Spain and Denmark (Weber, 2010).  

Concluding, the optimization problem presented in this chapter is appropriate for a wide field of 

applications from intraday and balancing markets to virtual power plant based wind forecast balancing. 

Due to the obstacles of the non-linear approach it is currently not applicable to real-world problems and 

further research is needed. Regardless, the alternatively provided solution approach has been tested and 

provides good results as well. Just the arbitrage within both markets cannot be done whereas not even 

the possible advantage from this can be estimated.  
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C. Conclusions and Outlook 

In this thesis, the optimization and trading of pumped hydropower storages in liberalized electricity 

markets is analyzed and discussed in detail. Appropriate modelling approaches for various pumped 

hydropower storage types and the different short-term energy markets are given. It is further analyzed 

how the results can be used as steering parameters for the dispatch decision. Finally, the models are 

evaluated and tested using case studies to show real-life applicability.  

The main conclusions derived from the analysis is the advantageousness of considering all short-term 

electricity markets in the marketing process of pumped hydropower storages. The results show that it is 

not possible to integrate all markets in one optimization due to solvability problems. But a combined 

optimization of hourly and quarter-hourly markets followed by a rolling intraday optimization provided 

best possible results as well as significant flexibility.  

This part is structured into two parts. Chapter 9 combines and structures the results presented throughout 

this thesis and suggests future research. This starts with the theoretical overall model. Derived from this 

and including the results of chapter 5 to 8 a final approach is suggested on how to approach the multi-

market hydropower scheduling and bidding problem. The models and results are critically reflected 

presenting improvements and future research areas. In chapter 10 an outlook is given on the flexibility 

demand in future electricity systems with more RES, how the pricing mechanisms might work outside the 

thermal merit order and finally the applicability of the presented methods under such conditions and on 

a wider range of electricity storage technologies.  
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9. Findings and Future Research 

The core competence of pumped hydropower storages is the provision of flexibility. The higher the 

demand for flexibility the higher the price. On the existing energy markets, different qualities of flexibility 

are needed. The quantity of flexibility demand can be generally described by the volatility of the market 

prices. Looking at the existing electricity markets the volatility increases strongly until delivery. In the long-

term this effect is referred to the Samuelson effect (Samuelson, 1965). Samuelson proved the existence 

of this increasing motion over the time, which is also apparent comparing the volatility of derivatives and 

spot markets in Germany. Comparing the quarter-hourly day-ahead, intraday and final balancing price 

(reBAP) in Table 16, the average prices are very similar and the markets are therefore assumed to be 

arbitrage free. Nevertheless, the volatility represented by the standard deviation increases with the time 

to delivery. Comparing even the continuously traded quarter-hourly intraday product reveals that the 

standard deviation over the whole trading period increases. The ID average is lower as the standard 

deviation of the trades in the last hour before delivery, the so called ID1. This is reasonable since more 

than 50 % of all quarter-hourly intraday market trades are concluded in the last hour before gate closure 

(EPEX Spot, 2017b).  

 

Table 16 Volume weighted average market prices and standard deviations of just the quarter-hourly 
short-term electricity as well as balancing markets for Germany in 2016, data retrieved from (EPEX Spot, 

2017b) 

 
day-ahead 
[€/MWh] 

ID average 
[€/MWh] 

ID3 [€/MWh] ID1 [€/MWh] 
reBAP 

[€/MWh] 

average 28.87 28.65 28.75 28.84 28.37 

standard 
deviation 

13.84 16.00 16.45 17.47 49.01 

9.1. Theoretical and Suggested Approach 

Following the observations in Table 16, the market with the shortest time to delivery is the electricity 

market with the highest volatility, consequently, with the highest flexibility demand and hence with the 

best remuneration chances for pumped hydropower storages. Therefore, operators of such must be 

willing to sell all capacity to this last market. However, due to various reasons such as risk mitigation and 

hedging most of the electricity is already sold or bought on the foregoing markets (Figure 6 and chapter 

2). For example, the liquidity on the hourly day-ahead auction is significantly higher as during intraday 

trading. As a consequence, flexibility provider bid capacity to the markets with less volatility and higher 

liquidity.  

Beside others, Klæboe and Fosso state that to generate an optimal bidding strategy for one specific 

market all subsequent markets need to be taken into account when generating bids for the first market 
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(Klaboe & Fosso, 2013). The results of this thesis generally support this statement. For the short-term 

markets, this results in a revenue 𝐺 maximizing the following objective function  

 𝐺𝑎𝑙𝑙 = 𝐺𝑑𝑎𝑦−𝑎ℎ𝑒𝑎𝑑 + 𝐺𝑖𝑛𝑡𝑟𝑎𝑑𝑎𝑦 + 𝐺𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔. (111) 
 

This includes the hourly and quarter-hourly energy only markets as well as the provision and activation of 

the three balancing markets. Nevertheless, the implementation and optimization of such an overall 

optimization problem is very difficult. This could be shown in chapter 8 combining energy only and 

balancing markets in one optimization. The resulting problem is non-linear, non-convex and therefore np-

hardness. Future research should focus on solving suchlike complex problems with for example 

evolutionary algorithms, see chapter 8.  

Since the overall and holistic pumped hydropower scheduling problem is basically unsolvable with today’s 

known methods, it is shown that a stage-wise approach is more practical. To find a good solution without 

solving the overall problem can be done by splitting the problem into smart sub-problems and fitting the 

results together thereafter. A splitting, exploiting the specific market structure, proved to provide best 

possible results for the pumped hydropower storage dispatch problem. The general approach is presented 

in Figure 84.  

 

 

Figure 84 Suggested pumped hydropower storage optimization and scheduling approach 

 

Beginning in the time line with the auctioning of balancing power and energy, independently whether this 

takes place month-, week- or day-ahead of delivery. For this part, the original statement of considering 
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all subsequent markets for generating bids for the first market holds true, since the power sold to the 

balancing market is settled after the balancing auction and cannot be reversed. This implicates that the 

flexibilities cannot be used on the subsequent markets anymore. The quantity traded into the balancing 

market is therefore dependent on the potential revenue of the subsequent markets.  

The question on how much to bid in the balancing market can be solved considering the subsequent 

markets either iteratively or integrated, see chapter 8. Both approaches are described whereas the 

integrated approach cannot be solved for sizeable problems. Solving iteratively means that the day-ahead 

market optimization is performed various times considering that increasing quantities are traded into the 

balancing market. Additionally, the balancing market problem need to be solved for the different but fixed 

quantities. This avoids the multiplication of the two variables describing price and quantity so that the 

balancing problem transforms from a MINLP into a MILP which is smoothly solvable. Comparing the 

additional incomes of the balancing market with the reduced income of the day-ahead market 

optimization reveals the break even and the quantity that should be bid into the balancing market. Direct 

solutions of the balancing market optimization are a set of bids each including quantity, energy price and 

power price. These bids can be offered to the market.  

The question may arise whether the day-ahead market optimization reflects the complete income of all 

further short-term markets. This is rather not the case but can be alleviated by an integrated hourly and 

quarter-hourly day-ahead market optimization as introduced in chapter 5. With the consideration of the 

finer time resolution the volatility of the subsequent electricity markets can be mapped. Furthermore, the 

trading volume and the liquidity of some short-term energy markets are strongly reduced in some 

markets. How to consider these effects in the optimizations is described in chapter 5.2.  

For a significant number of operators, the consideration of stochastic in inflows or prices are very 

important. In chapter 6 it is illustrated that a stochastic optimization with SDDP or MCSSP is very valuable 

for hydropower storages without pumps whereas the advantage is rather limited for pumped hydropower 

storages. This is because it is always possible to pump released water up again in order to compensate 

possible dispatch mistakes. No matter if the stochastic (chapter 6) or the deterministic (chapter 5) 

approach is chosen, the consideration of the finest time resolution to map the volatility of the subsequent 

markets is crucial to calculate realistic optionalities.  

After the balancing auctions took place the day-ahead model is performed again to calculate the expected 

profit of the day-ahead markets with the remaining capacity. This optimization solution suggests an 

optimal dispatch for the turbine and pump machines as well as the reservoir filling levels. Based on the 

dual variables of the deterministic or the cutting planes of the stochastic model water values and shadow 

prices should be calculated. Due to the integrated multi-market approach, the shadow price for each time 

stage and machine is applicable to the hourly as well as the quarter-hourly day-ahead auction. This 

ensures a consistent pumped hydropower steering.  

In this approach, the intraday market is explicitly not considered in the day-ahead auction optimization 

and bidding. The consideration of all subsequent markets when bidding on the day-ahead market is not 

expedient because of the increasing price sensitivity towards delivery. As already mentioned, with no 

price sensitivity a flexibility providing pumped hydropower storage would bid all energy into the market 

with the highest price spreads which is normally the quarter-hourly intraday market. But this would 

exactly be the same in terms of profit, as firstly bidding to the hourly market and trading the residual 
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quantities in the quarter-hourly market. In the end, the only important part is to bid the residuals on the 

most volatile market. On the one hand, not bidding into the most volatile market would just mean losing 

money, but on the other hand, bidding into the foregoing markets does not mean losing opportunities 

since the energy-only market prices are assumed to be martingale and arbitrage free, see Table 16.  

Since every market participant is exposed to price sensitivity, to at least some extant, a hedging approach 

is reasonable and needs to be applied. This means, market participants bid all quantities into the foregoing 

markets, if the respective price sensitivity is lower as in the following markets. Afterwards, the planned 

schedule is adopted by bidding into the next market. If several quarter-hourly markets are available and 

if the volatilities and the liquidity are similar, then the consideration of one market is sufficient; otherwise 

all markets should be included.  

After the results of the day-ahead market auction are published the intraday continuous market starts. 

The intraday market prices are highly fluctuating (see Figure 76) over the course of the time influenced by 

a constant stream of new information about weather and power plant outages. Therefore, also a 

continuous optimization approach is suggested in chapter 7 calculating a new optimal pumped 

hydropower storage dispatch as soon as new information is available. This could be for example every five 

minutes. This approach provides shadow prices as well as the related quantities in MWh to be traded for 

the respective price. The basic idea is to trade mostly pairwise pump and turbine positions to avoid being 

exposed to the risk of open positions. A further advantage of the continuous optimization is the 

consideration of balancing power activation in the trading decision using always up-to-date reservoir 

filling levels. Such very short-term trading is more and more automated replacing manual trading with 

algorithmic machine-based trading. Analyzing the structure of the order books and based on quotes from 

commercial software providers such as Visotech, FIS or Procom, about half of the intraday trades are 

already based on algorithmic trading by now. 

9.2. Exemplary Trading Results  

To extant the answer to the research question, of a profit-optimal bidding on short-term electricity 

markets with pumped hydro power storages, the suggested multistage and multi-market approach that 

has been introduced in the foregoing part is underpinned with an example below. The results substantiate 

that the volatility within the different short-term markets varies strongly. This can be seen comparing the 

quantitative results of a pumped hydropower storage being dispatched to the miscellaneous short-term 

energy only markets.  

In Figure 85 the generated profit of a pumped hydropower storage with a reservoir filling level of about 

72,000 MWh and a machine power of 1,200 MW is presented. This equals 60 full-load hours. The 

optimization is performed for the year 2016. Hourly and quarter-hourly short-term energy markets are 

considered including intraday average (ID average), the last hour of intraday trading (ID1) and the day-

ahead auctions. It becomes apparent that the hourly markets deliver significantly less return in 

comparison to the quarter-hourly markets. Furthermore, the intraday markets provide generally higher 

optionalities as the day-ahead markets. The effect of an increasing volatility towards delivery is significant 

comparing the revenue from the quarter-hourly intraday average and the last hour of intraday trading. 
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On a yearly average, the last hour of intraday trading provides 12 % higher revenues for flexible pumped 

hydropower storages in comparison to the intraday average. Firstly, this makes clear how important it is 

to constantly optimize flexible power plants even until delivery, and secondly, it underpins the need for a 

hedge-based trading approach due to the limited liquidity.  

 

 

Figure 85 Monthly return of an exemplary pumped hydropower storage with 60 full load hours and 
1200 MW capacity over the course of the year 2016 for different German short-term energy markets. 

 

The best way to evaluate the value of different reservoir sizes is to compare the revenue per MW and 

year for different reservoir sizes and energy markets. The results can be seen in Figure 86. The more 

inflexible or stable the prices of a market, the more valuable it is to have a larger reservoir. This can be 

seen for the hourly day-ahead market; the additional revenue with an 8 or a 60 full-load hours reservoir 

in comparison to 4 full-load hours are 32 % and respectively 102 %. For the very flexible quarter-hourly 

last hour of intraday trading the advantage of a larger reservoir decreases proportional to 11 % and 25 % 

additional revenue for 8 or 60 full-load hours reservoirs in comparison to 4 full-load hours.  

The difference in income trading the 4 full-load hours reservoir on the hourly day-ahead and the last hour 

of quarter-hourly intraday trading is about 197%. This difference is large showing again the significance 

of considering short-term energy markets. Nevertheless, with increasing reservoir size the absolute 

advantage is constant and decreases relatively. For example, the revenue difference in MW per year in 

absolute degree between a small 4 and a large 60 full-load hours reservoir for the quarter-hourly intraday 

trading during the last hour is 10,500 € and for the hourly day-ahead market 14,500 €. Relatively, this 

means the larger storage adds a value of 25 % in the last hour of intraday trading and even 102 % in the 

day-ahead. The results suggest that even a very small energy storage is able to exploit significant 

optionality in the very flexible intraday market but not on the hourly day-ahead market. 
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Figure 86 Yearly return form a pumped hydropower storage in the year 2016 for different German short-
term electricity markets  

 

The findings clearly present the very short-term electricity markets as important value drivers for pumped 

hydropower storages. Figure 86 illustrates the revenue losses which are to be expected if the trading on 

specific markets is left out. An example are pump and turbine machines that are not flexible enough to 

be switched on and off for quarter-hours. Automatically, the possible revenue decreases to the height of 

the hourly intraday incomes (ID average 1h). The gap towards the quarter-hourly revenues is a transparent 

incentive for flexibilization; accepting for example higher deterioration costs in the machines.  

Nevertheless, to exploit the whole intrinsic value of e. g. the continuous intraday trading (ID1 15min) as 

given in the overview Figure 86, the power plant need to be dispatched into the preceding markets as 

well. This approach is outlined in chapter 9.1. It includes the respective steering parameters and the links 

to the content chapters for more detailed explanations.  

9.3. Future Research 

As most of the time, and not just in science, answering one question raises a significant number of new 

questions. And such questions are the drive of society. The key future research questions that took shape 

during this work for the different chapters are quoted hereafter followed by some overarching and 

general questions that have not been reasonably answered so far.  

Four main fields for future research in storage scheduling can be seen based on this work:  

• transformation of optimization results into a real-world dispatch and trading 

• forecasting of the various input factors such as intraday and balancing prices  
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• improvement of solution algorithms for stochastic and non-linear optimizations  

• modification of the existing optimization tools, if the underlying political framework conditions 

and market terms change 

The first three points will be taken up in the next four paragraphs presenting examples of the four content 

chapters. The last point will be picked up in the last part since it includes more general transformations 

that could influence every market and therefore applies to basically every chapter.  

For the day-ahead auction bidding, explained in chapter 5, the shadow price multi-market storage steering 

need further research. This includes the problem which storages are suited for the dual variable based 

water value calculation and which systems are to small and therefore to sensitive for this method. To 

widen this, it might not just be a question of machine and reservoir size but also dependent on the 

respective situation. For example, whereas the steering works well in most of the time, some critical 

situations with high inflows or very low reservoir filling levels are likely to demand special treatment. 

Furthermore, future research should try to solve this multi-market scheduling problem with stochastic 

optimization techniques. The challenge will be to keep the course of dimensions under control. 

As revealed in chapter 6, most stochastic hydro storage optimizations do not consider systems with 

pumps. Therefore, the dispatch and steering of pumps, based on stochastic optimization, is not solved. 

The suggested approach in chapter 6 need to be further developed to find adequate steering parameters 

for pumps. The challenge is to transfer the model results into an optimal real-life dispatch. Generally, the 

field of applications for stochastic dynamic programming in short-term optimization is not exhausted, 

especially in intraday and balancing markets, and should be further analyzed. The additional profit always 

need to weight up the costs induced by the extra complexity which is not easy to estimate.  

In chapter 7 a continuous operating algorithm is presented for intraday trading. Nevertheless, to fully 

exploit the results of this algorithm the results need to be traded automatized into the market, preferable 

without a manual interim step. This connection should be subject of future research as well as the 

integration of more complex reservoir systems into the given algorithm. Special attention should be 

dedicated to forecast the continuous intraday market prices including not just the volume weighted 

intraday average but also the intraday price of the last hour or minutes, a sensitivity analysis, a probability 

range and a tendency of the price development.  

Chapter 8, as the last part of section B, revealed significant future research demand in several fields. The 

solution of the non-linear problem would be a significant step forward but is hardly to be expected soon. 

Furthermore, to circumvent the perfect foresight problem, balancing power and work price merit orders 

as well as balancing work activation patterns need to be assumed as random numbers and processed in a 

stochastic optimization. Since the balancing markets are rather limited in size and auction participants the 

price maker behavior, as it is already considered in this work, need to be further analyzed. Beside the 

solution of the optimization problem itself, forecasting all relevant parameters is a significant and 

unsolved problem especially since efforts are high and the market size is small.  

Beside these future research questions which are strongly related to the hydro power scheduling problem, 

the whole energy sector is still in a transition process which will be a constant source for research 

questions. This is the point where this work comes full circle. Already the motivation in chapter 1 was 

based on the energy transition, the introduction of new power markets and a market influencing share of 
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RES. But, also the outlook and future research are strongly influenced by these fundamental changes. 

Relevant research questions will be for example: How will future energy systems be organized? What 

price mechanisms will be used? What is the flexibility demand? Which technologies will be used? 

Therefore, the next chapter 10 gives an outlook on these questions, especially the future flexibility 

demand and how the here introduced methods can be applied in future systems.  
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10. Outlook on Future Flexibility Demand 

Over the course of this work the various possibilities to exploit short-term energy markets with flexible 

pumped hydropower storages are described. This chapter tries to evaluate the further development of 

flexibility demand in the future and therefore the profitability of pumped hydropower storages as well as 

other flexibility providing technologies. Historically, as well as in today’s electricity markets, pumped 

hydropower storages are an important source of flexibility. Nevertheless, the electricity sector is changing. 

How much flexibility is needed in future power systems and what technology might provide this flexibility 

is uncertain. In this context, news on the shut-down of pumped hydropower storages by Vattenfall in 

middle Germany (Vattenfall, 2017) stand in contrast to the increasing number of battery electric storages 

in households and the investments in flexible batteries (IWR, 2015-11-5).  

Generally, politics, science and industry agree that with the increasing installation of variable RES the 

flexibility demand increases as well. Furthermore, to meet the increasing flexibility demand a bouquet of 

possibilities is available and most likely just a combination will provide an efficient solution, including 

batteries, demand side management, production flexibilization or sector coupling. Nevertheless, there is 

no consensus on the overall flexibility demand (Sterner & Stadler, 2014), the costs or the remuneration 

scheme. Assuming a similar market system as today for the future, the revenues for flexibility options will 

come from short-term energy only and balancing markets.  

First a definition of flexibility demand is given in chapter 10.1 followed by explanatory market models 

based forecasts concerning future flexibility demand. Chapter 10.2 describes the price formation, in a 

system with a significant share of RES, outside the thermal part of the merit order and discusses the 

impact of flexibility on demand and supply side. The last chapter 10.3 concludes with the applicability of 

the presented optimization tools on a wide range of technologies providing flexibility.  

10.1. Definition and Estimation of Flexibility Demand  

The International Energy Agency (IEA) defines system flexibility as the general ability to react on deviations 

of production and consumption (IEA, 2011, p. 35). Such production and consumption changes influence 

the residual load and finally the electricity prices. Brunner describes the flexibility demand by the overall 

number of hours with a negative residual load as well as the length of a single and the absolute quantity 

of maximum and minimum residual load situation (Brunner, 2014a). References for limited flexibility in a 

market are also high negative and high positive electricity prices (Götz et al., 2014; Nicolosi & Fürsch, 

2009) although, both are important elements of the merit order pricing mechanism (Brunner, 2014a). The 

higher the flexibility demand the higher the incentives to enhance system flexibility. 

With the increasing installation of wind and solar based production capacity, regular negative residual 

load situations will be a natural consequence. Furthermore, the residual load gradients increase. This is 

the case over the course of a single day considering the PV generation with differences between day and 

night as well as the heterogeneous distribution of high and low wind times. Nevertheless, the number and 

level of negative prices over the recent years slightly decreased whereas RES scale up progressed (Götz et 
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al., 2014). This is a clear sign that the market provides more flexibility as a few years ago (BMWi, 2015). 

Aspects that contributed to more system flexibility are the direct marketing regime (EPEX Spot, 2015b), 

the reduced RES support in times of negative prices for new installations (EPEX Spot, 2015b) and the 

modernization of conventional power plants. In a future system with a predominant share of RES 

additional flexibility on the demand as well as the production side is seen as a key for a successful energy 

transition. Influencing factors for a sufficient flexible system are the absolute height of electricity demand, 

a mix of different RES, feed-in priority regulations, conventional power plant designs, inter-sector coupling 

between heating, transportation and electricity, grid performance, cross border trading and the security 

of supply level (Brunner, 2014a).  

Whereas the flexibility demand is not explicitly mentioned in the RES-Act, it is influenced by the 80% RES-

share target in 2050 (BMWi, 2015). More RES in the grid are assumed to increase the flexibility demand 

which is why the grid development plan (Netzausbauplan) describes a bandwidth for the exploitation of 

renewable resources and the respective grid extension demand. Studies that focus on the influence of 

flexibility options in systems with an increasing share of RES are mostly given by research institutions and 

universities (DLR, Frauenhofer, & IfnE, 2012; Öko-Institut, 2014) or issued on behalf of governmental 

organizations (consentec & R2B, 2010; ewi, gws, & prognos, 2010). The aim is always to find a general 

economic maximum and to reveal special effects and problems of respective systems (Brunner & Müller, 

2015; Connolly, Lund, Mathiesen, & Leahy, 2010). All models generally show that the introduction of 

additional flexibility, such as pumped hydropower storages, results in a flattening of the residual load. 

During times with low residual load energy is stored and in times with a high residual load the stored 

energy is feed-into the grid again. This results in an increased thermal production for example by lignite 

power plants and reduces the peak production of more environmentally friendly gas power plants. In 

other words, the introduction of storage capacity to these systems with a high share of RES probably 

increases the environmental burden. These results need to be scrutinized, especially since the interaction 

of spot prices with supply and demand is so sparsely considered. Particularly, in times with a negative 

residual load, the thermal merit order based pricing, as presented in these models, is not expedient 

(Brunner, 2014a). 

Most of the time, the merit order effect on spot markets is just seen from the supply side. But a separation 

between flexibility on demand or supply side is nearly impossible. Storages, as major contributors to 

flexibility provision combine both supply and demand side by definition. Further, even producers of 

thermal power plants add bids on supply and demand side to the flexibility merit order. This is because 

the bids do not depend on the absolute production or demand level but just on the deviation between 

the dispatch schedules. That means, the probability that the prices will fall and the energy of an already 

marketed power plant need to be bought back or that the prices will rise and a power plant that was 

hitherto not in the money is now sold into the spot market, is the same. 

Ideally, the market finds the optimal equilibrium between flexibility demand and supply itself. In case of 

an increasing flexibility demand the spot market price elasticity will decrease, the spot price itself varies 

stronger, the chances for market clearance decrease. Vice versa, with the installation of additional 

flexibility the spot market price elasticity will increase, the spot price itself will be flattened, the chances 

for market clearance increase. Each effect generates incentives to invest or disinvest in flexibility so that, 

following the neoclassic theory of markets (Stoft, 2002), future flexibility demand should be always 
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covered. Nevertheless, whether this mechanism is working efficiently depends on distortions such as 

installation times, taxes, oligopoly structures or political interventions.  

10.2. Price Mechanism Outside the Thermal Merit Order 

Because of the low variable costs, RES are sorted in the merit order on the first ranks. This has a strong 

influence on the price formation in the market. For the Öko institute model this results in many hours 

with a price of 0 €/MWh (Öko-Institut, 2014). Negative prices are not forecasted, since variable RES are 

assumed to be switched off. With RES shares of 30% in 2015 and 79% in 2050, in this study, the number 

of hours with a price close to zero increases significantly to more than 1000 hours per year (Öko-Institut, 

2014). Further implications are the shutdowns of thermal base load power plants with low variable but 

high overall costs. As a result, the spot price increases since more peak load power plants such as gas and 

oil power plants with higher variable but lower overall costs for the fewer full-load hours are used during 

these hours with a high residual load (Öko-Institut, 2014).  

Generally, it can be scrutinized that for several different fundamental situations the same market price of 

0 €/MWh applies. At a market price of 0 €/MWh it might not be reasonable for all market participants to 

reduce their production, for example due to ramp-up and –down times of large thermal power plants. 

Furthermore, long periods with prices of about 0 €/MWh might change the behavior of the demand side 

(Brunner, 2014a; Brunner & Müller, 2015). This could especially be the case for industry customers. 

Whereas, it needs to be noted that a market price of zero does not necessarily mean that end-customer 

receive electricity for free. As long as taxes and levies are responsible for the mayor share of the electricity 

price households cannot be expected to change their behaviors. But substitution of energy carriers in 

other sectors with for example power-to-gas or power-to-heat are thinkable (BMWi, 2015). Since different 

end users have different costs providing flexibility, they might also offer different bids to the market. 

Following the classic micro economic theory of equilibrium prices should therefore adopt the different 

residual load situations (Kirschen & Strbac, 2004; Stoft, 2002). Situations with prices of exactly 0 €/MWh 

should be rarer and should reflect similar fundamental situations with similar residual load.  

A focus of future research should therefore be on the price formation outside the proven thermal merit 

order including a significant share of variable RES feed-in. Furthermore, a consideration of flexibility in the 

demand side merit order might help to provide a more reasonable price formation. On the one hand, in 

situations with a residual load around zero the flexible demand might be strong enough to provide a MCP 

above 0 €/MWh. On the other hand, the demand might be reduced during times with strong residual load 

and reduces extreme high prices (Brunner, Michaelis, & Möst, 2015).  

The already introduced merit order with RES, Figure 4 (chapter 0), can be extended including a flexible 

demand side that considers pumped hydropower storage, e-mobility, power-to-gas and power-to-heat, 

demand side management, further storage technologies and sector coupling. In Figure 87 a situation with 

significant generation of variable RES and a low demand is presented. This merit order may represent a 

sunny hour on a public May holiday. In Figure 88 a situation with very limited variable RES production and 

significant demand is illustrated, picturing a cold winter hour.  
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Figure 87 Merit order with flexible demand and supply curves for a day with significant RES production 
under a fee-in tariff regime and low demand  

 

In Figure 87, instead of a negative price with wind as the marginal technology of the merit order the 

flexible part of the demand pushes the overall demand into the nuclear production. The market clearing 

in Figure 88 is determined by the generation technology at the respective level. In this price range, the 

demand is inflexible and pumped hydropower storages are the marginal technology. A power plant 

outage would immediately result in a higher MCP.  
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Figure 88 Merit Order with flexible demand and supply curves for a day with low RES production and 
significant demand 

 

It is not unrealistic that also in the future the pricing will be based on the fundamental merit order 

mechanism. Nevertheless, a few influencing factors are highly unknown as for example new technologies 

or the political framework. From today’s myopic perspective especially the extension of the grid, end-

customer taxation, grid charges for storages and the development of battery technologies seems most 

relevant.  

Whereas the flat electricity price curves with manifested low variance indicate a limited flexibility demand 

today, many fundamental factors suggest that this effect might reverse due to the nuclear phase out in 

Germany, reduced production of coal power plants and more weather dependent variable RES production 

as well as higher demand due to e-mobility and power-to-heat.  

10.3. Applicability of the Presented Optimization Tools in the Future 

The foregoing qualitative analysis of the future price formation shows that the algorithms and 

optimization methods developed in this work are no panacea for the future but a significant step forward 

to match flexible supply and demand. The consideration of short-term energy markets in the 

optimizations is a crucial and necessary consequence of the increasing demand to level out short-term 

RES production deviations. Taking into account several markets for the marketing and trading process is 

significant for an optimal dispatch.  

The introduced approaches are not limited to pumped hydropower storages, but can be applied on 

battery electric vehicles, smart home wall boxes, compressed air storages and so on. This means that the 

introduced optimizations are generally technology independent and can be applied on all kind of storages 
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and applications. Adding or deleting storage individual constraints is easily possible. The optimization of 

storages is furthermore not just advantageous for the operator itself but also for a cost-efficient provision 

of flexibility to the market.  

In the recent years, especially the multi-market optimization approaches gained more and more 

attention. Multi-faceted, open approach thinking in terms of optimization systems is necessary to 

understand the limitations and possibilities of mathematical methods and real-life complexities. This work 

brought existing work together and suggests an overall optimization and trading approach for pumped 

hydropower storages that can be easily applied on any other flexibility providing technology as well. 

Furthermore, most of the introduced methods have been tested and implemented in practice proving to 

deliver successful results. 
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