TECHNISCHE UNIVERSITÄT MÜNCHEN DEPARTMENT CHEMIE Arbeitskreis für Biomimetische Katalyse

Methoden zur Darstellung von *N,O*-haltigen Heterozyklen und deren Anwendung in der Synthese des Naturstoffes HB-372 peak 8

Stefanie Valentina Kohlhepp

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation.

Vorsitzender:

Prof. Dr. Hubert A. Gasteiger

1. Prof. Dr. Tanja Gulder

Prüfer der Dissertation:

2. apl. Prof. Dr. Wolfgang Eisenreich

Die Dissertation wurde am 28.11.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 01.02.2019 angenommen.

Für meine Liebsten

Die vorliegende Arbeit wurde im Zeitraum von Juni 2013 bis Mai 2014 an der RWTH Aachen und von Juni 2014 bis November 2018 unter Leitung von Frau Prof. Dr. Tanja Gulder an der Technischen Universität München angefertigt.

Teile der Ergebnisse der vorliegenden Arbeit waren bereits Gegenstand von Posterpräsentationen.

In dieser Arbeit werden Relativkonfigurationen von Racematen durch Balken (fett und gestrichelt), Absolut- und Relativkonfigurationen enantiomerenreiner oder enantiomerenangereicherter Verbindungen in Keilform (fett oder gestrichelt) dargestellt.

R R'	R'
Relativkonfiguration von Racematen	Absolut- und Relativkonfiguration von enantiomerenangereicherten Verbindungen

Danksagung

Zunächst möchte ich mich bei Frau Prof. Dr. Tanja Gulder für die Aufnahme in die Arbeitsgruppe, das entgegengebrachte Vertrauen und die Unterstützung bedanken. Die Erfahrungen die ich über die Jahre in den verschiedenen Projekten sammeln konnte, sind unbezahlbar und waren die Mühen wert.

Für die Übernahme des Zweitgutachtens möchte ich Herrn Prof. Wolfgang Eisenreich danken.

Ich möchte allen Mitgliedern des AK Gulders meinen Dank aussprechen, die sowohl in Aachen als auch in München meinen Arbeitsalltag bereichert, mir geholfen und mich unterstützt haben. Einige sind über die Zeit auch zu Freunden geworden und ich hoffe, wir werden auch in Zukunft voneinander hören.

Einigen Mitgliedern der Arbeitsgruppe Tobias Gulder möchte ich an dieser Stelle ebenfalls danken. Insbesondere Hülya Aldemir, Fritzi Schäfers und Anna Glöckle danke ich für die aufmunternden Worte, die Hilfe und die netten Gespräche.

Meinen Forschungsstudenten aus Aachen sowie aus München möchte ich natürlich auch für ihre gute Arbeit danken.

Besonders möchte ich mich bei Christoph Patzelt für die Unterstützung, die Gespräche, die ehrlichen Worte sowie für seine Freundschaft bedanken. Christoph Brunner möchte ich ebenso danken. Dafür, dass immer schon der beste Kaffee fertig war, wenn ich morgens in den Kaffeeraum kam und für die lustige Zeit. Dank euch waren auch die schwierigen Zeiten erträglich und ich vermisse unsere Kaffeerunden sowie das sporadische Feierabendbier.

Ein großer Dank gilt auch Jaroslaw Marciniszyn für die gemeinsame Zeit, das Bearbeiten von Projekten und seine Hilfe, Unterstützung und die Freundschaft.

Wan-ying Wang möchte ich ebenfalls für die schöne Zeit danken, ich hoffe wir verlieren uns nicht aus den Augen. Auch Qingqi Zhao gilt mein Dank für ihre Hilfe und ihre Unterstützung und das offene Ohr. Gabriel Kiefl möchte ich vor allem für seine Geduld und seine Gutmütigkeit danken, die mir auch den dunkelsten Tag erhellen konnte. Natürlich möchte ich mich auch bei Catharina, Julia und Andi für die gemeinsame Zeit bedanken.

Für die Korrektur meiner Arbeit sei Kenneth Scholten, Marlene Kohlhepp, Anna Kohlhepp und Cornelia Roth sehr herzlich gedankt.

Meiner Familie und insbesondere meinen Eltern Cornelia Roth und Bernd Kohlhepp danke ich für ihr Verständnis und ihre Unterstützung. Meinen Geschwistern möchte ich zudem für den uneingeschränkten Zusammenhalt und die Unterstützung die ich über die letzten Jahre erfahren habe danken. Vielen Dank, ich habe die besten Geschwister der Welt.

Für den moralischen Beistand sowie die viele Hilfe möchte ich Kenneth Scholten danken, der mich über die letzten Jahre uneingeschränkt unterstützt und mit einer bewundernswerten Geduld ertragen hat.

Inhaltsverzeichnis

 Theoretischer Teil Einleitung Motivation und Zielsetzung Selektive Halogenierung in der Naturstoffsynthese Studien zur Synthese des Naturstoffs HB-372 peak 8 (29) 			
		4.1 Retrosynthetische Analyse von HB-372 (29) und Vorarbeiten	24
		4.2 Synthesepfad A: Studien zur Halozyklisierung	27
		4.3 Konstruktion der Oxazolinstruktur durch C,H-Oxidation	34
		4.3.1 Synthese des Dihydro-Naturstoff Analogs	35
4.3.2 Versuche zur Oxidation des Dihydroanalogs durch C, H-Aktivierung	41		
4.3.3 Oxidation der Ketonverbindung	42		
4.4 Versuche zur Einführung der Doppelbindung durch eine Abgangsgruppe	44		
4.5 Versuche zur Synthese des Naturstoffs HB-372 (29) über Pfad B	49		
4.5.1 Synthese des bizyklischen Alkoholintermediats 169	50		
4.5.2 Synthese des Schlüsselintermediats 167 durch Selenzyklisierung	56		
4.6 Pfad C - Route zu Intermediat 167 durch Zykloisomerisierung	60		
5. Bromzyklisierungen von Zimtsäureimiden (31)	65		
5.1 Optimierung der Bedingungen für den Ringschluss von Imiden 31 zu Oxazinonen 32	69		
5.2 Überprüfung der Substratbreite der Iod(III)-vermittelten Oxazinonsynthese	71		
5.3 Einfluss der Substituenten auf die Regioselektivität im System 209/NBS/Ammoniumchlorid	74		
5.4 Synthese von Oxazinanen 243 ausgehend von Zimtsäureimiden 31 in einer Eintopfrea	ktion		
	76		
5.5 Versuche zur enantioselektiven Bromzyklisierung von Zimtsäureamiden 31b	77		
5.6 Versuche zur Chlor- und Fluorzyklisierung von Imid 31b	79		
6. Zusammenfassung	81		
7. Conclusions	87		
II. Experimenteller Teil	93		
1. Allgemeine Methoden	93		
1.1 Lösungsmittel	93		
1.2 Analytische Methoden und Messgeräte	94		
2. Synthese des Naturstoffs HB-372 (29)	97		
2.1 Allgemeine Versuchsvorschriften (AVV)	97		

2.2 Synthesepfad A: Studien zur Halozyklisierung	
2.3 Synthesepfad B: Synthese des Schlüsselintermediats 167	118
2.3.1 Syntheseroute zu 167 über die Halozyklisierung von Imidazolen	118
2.3.2 Darstellung von 167b über eine Selenzyklisierung	132
2.4 Synthesepfad C: Darstellung von 167 über Zykloisomerisierungsreaktionen	138
3. Bromzyklisierungen der Zimtsäurederivate 31	143
3.1 Bromzyklisierung von Zimtsäureimiden 31	143
3.2 Synthese von Oxazinanen 243 in einer Eintopfreaktion	167
3.3 Versuchsvorschrift zur asymmetrischen Bromzyklisierung	
3.4 Versuche zur Chlorzyklisierung von Zimtsäureimid 31b	
3.5. Kristallstrukturdaten der Verbindung 243f	173
Abkürzungsverzeichnis	175
Literaturverzeichnis	178

I. Theoretischer Teil

1. Einleitung

Halogenverbindungen sind in unserem modernen Leben allgegenwärtig. Sie begegnen uns in nahezu allen Bereichen des Lebens, sei es durch Beschichtungen von Funktionskleidung oder Haushaltsgeräten Polytetrafluorethylen mit fluorierten Polymeren wie (PTFE) oder Werkstoffen und Gebrauchsgegenständen aus dem chlorierten Polymer Polyvinylchlorid (PVC) oder in Flammschutzmitteln, wo ebenfalls halogenierte Verbindungen eingesetzt werden.^[1] Ebenso finden sie sich im Bereich der medizinischen Diagnostik, wo iodierte Verbindungen wie 1 als Kontrastmittel in der Computertomographie (CT),^[2] oder ¹⁸F-markierte Verbindungen wie F-DOPA (2, Abb. 1)^[3] in der Positronen-Emissions-Tomographie (PET) eingesetzt werden.^[4] Des Weiteren werden sie als Wirkstoffe genutzt, beispielsweise als Narkosemittel wie Isofluran (3),^[5] als Desinfektionsmittel wie Triclosan (4)^[6] oder als Medikamente^[7] (Abb. 1). Sie finden aber auch in der Landwirtschaft, wo ein großer Anteil der Agrochemikalien aus halogenierten Verbindungen besteht, als Pestizide Anwendung, wie das Fungizid 5.^[8] Abseits ihrer unbestritten positiven Eigenschaften sind Halogenverbindungen in der Vergangenheit jedoch auch wiederholt als Schadstoffe aufgefallen. Neben dem schädigenden Effekt von Fluorchlorkohlenwasserstoffen (FCKW), die bis in die 1990er Jahren als Kühl- und Lösungsmittel verwendet wurden, auf die schützende Ozonschicht in der Stratosphäre,^[9] haben auch die giftigen polychlorierten Furane und Dioxine, zu denen das sogenannte "Seveso-Gift" (6, Abb. 1) gehört,^[10] zu einem schlechten Ruf der Halogenverbindungen beigetragen.

Abb. 1. Halogenierte Verbindungen aus den Bereichen der Medizin, wie Iopamidol (1), FDOPA (2), Isofluran (3) und Triclosan (4), sowie das Pestizid Benzovindiflupyr (5), und der Schadstoff Dioxin 6.

Auch wenn ihnen zum Teil ein negatives Bild auferlegt wurde, sind sie ein wesentlicher Bestandteil der natürlichen Umwelt. Die Halogene Fluor, Chlor, Brom und Iod kommen hauptsächlich in der Erdkruste in Form von anorganischen Salzen vor, sind aber auch in organischen Molekülen zu finden, die von Pflanzen, Mikroorganismen und Tieren als Sekundärmetabolite produziert werden.^[11] Als solche werden Produkte aus dem Sekundärstoffwechsel bezeichnet, die, anders als Primärmetabolite, für den

Organismus nicht direkt lebensnotwendig sind. Sie übernehmen Aufgaben wie die Abwehr gegenüber konkurrierenden Lebensformen oder Fraßfeinden, oder dienen als Sexuallockstoffe der Reproduktion.^[12] Für einen Großteil der bis heute isolierten halogenierten Naturstoffe, die aus terrestrischen Lebensräumen, sowie aus mariner Umgebung stammen, wurden vielversprechende, biologische Aktivitäten gefunden, was sie zu einer interessanten Naturstoffklasse macht. Ein prominenter Vertreter der halogenierten Wirkstoffe aus terrestrischen Lebensräumen ist Vancomycin (**7**, Abb. 2), ein antibiotisch aktives, chloriertes Glycopeptid, das 1953 von Edmund Kornfeld aus dem Bodenbakterium *Amycolaptosis orientalis* isoliert wurde.^[13]

Abb. 2. Beispiele für halogenierte Naturstoffe aus dem terrestrischen Biotop: Vancomycin (7) aus Bodenbakterien, Astin C (8) und Neopierisoid B (9) aus Pflanzen, und Palmaenon A (10) aus endophytischen Pilzen sowie Epibatidin (11) aus dem Hautsekret des Pfeilgiftfrosches.

Neben Bakterien sind auch verschiedene Pflanzen Produzenten von halogenierten Sekundärmetaboliten, wie z.B. Astin C (**8**), einem Naturstoff, der aus der Wurzel der Pflanze *Aster tataricus* isoliert wurde und cytotoxische Aktivität gegen menschliche Darmkrebszellen aufweist,^[14] oder Neopierisoid B (**9**) aus der Blüte der japanischen Lavendelheide (*Pieris japonica*), das mit seiner Toxizität die Pflanze vor Fressfeinden schützt (Abb. 2).^[15] Ebenso können halogenierte Verbindungen in Pilzen gefunden werden: In *Lachnum palmae*, einem endophytischem Pilz, wurde der chlorierte Sekundärmetabolit Palmaenon A (**10**, Abb. 2) gefunden.^[16] Auch Insekten und Tiere wurden als Quelle halogenierter Substanzen ausgemacht, wie der Pfeilgiftfrosch *Epipedobates tricolor*, der zur Abwehr von Fressfeinden ein giftiges Sekret über Drüsen in seiner Haut ausscheidet. Der aktive, halogenierte Wirkstoff Epibatidin (**11**, Abb. 2) wird jedoch vermutlich nicht von der Froschart selbst produziert, sondern über die Nahrung aufgenommen und in den Drüsen des Frosches angereichert.^[17] Terrestrische Naturstoffe sind als Wirkstoffe oder Heilmittel zum Teil schon seit den Anfängen menschlicher Zivilisation bekannt,^[18] die Ozeane hingegen sind als Quelle für neue Wirkstoffe erst in den letzten Jahrzehnten in den Fokus der Wissenschaft gerückt. Durch Fortschritte in der Unterwasser- und Tauchtechnik mit der Entwicklung von SCUBA (Self-Contained Underwater Breathing Apparatus) und ROV (Remotely Operated Vehicle)

konnten neue Bereiche in den Ozeanen erschlossen werden, was in der Isolierung von tausenden neuen Verbindungen resultierte,^[19] unter denen viele halogenierte Strukturen mit interessanten biologischen Aktivitäten gefunden wurden.^[20] In diesem Zusammenhang wurden auch eine Vielzahl der untersuchten Organismen aus dem marinen Biotop als Produzenten halogenierter Naturstoffe identifiziert. Dabei wurden besonders viele Algen gefunden, die halogenierte Substanzen herstellen.^[21] Insbesondere Rotalgen wurden als Quelle zahlreicher polyhalogenierten Substanzen identifiziert,^[22] zu welchen beispielsweise die Naturstoffe Laurencin (**12**) oder Kumausallen (**13**) aus Rotalgen der Gattung *Laurencia* gehören,^[23] oder Halomon (**14**) aus der Alge *Portieria hornemannii*^[24] (Abb. 3). Neben Algen produzieren auch eine Reihe von Wirbellosen (Invertebrates) halogenierte Sekundärmetaboliten, wie z.B. den Synoxazolidinonen A und B (**15** und **16**), die aus Extrakten der Seescheide *Synoicum pulmonaria* gewonnen wurden (Abb. 3).^[25] Eine weitere, reiche Quelle für bioaktive, halogenhaltige Naturstoffe sind Schwämme und Mikroorganismen.^[26]

Abb. 3. Halogenierte Naturstoffe aus dem marinen Biotop, wie Laurencin (12), Kumausallen (13) und Halomon (14) aus Rotalgen, sowie Vertreter der Synoxazolidinone (15 und 16) aus der Seescheide *Synoicum pulmonaria*.

Viele der gefundenen halogenierten Naturstoffe weisen potente, biologische Aktivitäten auf, für die das eingebaute Halogen entscheidend ist. So kann durch den Einbau eines Halogens die Lipophilie und damit die Membrandurchlässigkeit einer Verbindung erhöht werden, was zu einer besseren Bioverfügbarkeit führt.^[27] Zudem können Halogenbindungen für die Substratbindung in den aktiven Zentren eine entscheidende Rolle spielen.^[28] Der Einfluss eines Halogensubstituenten verdeutlicht sich unter anderem am Beispiel der Neomangicole, einer Klasse halogenierter Sesquiterpene, deren halogenierte Vertreter Neomangicol A (**17**) und B (**18**) zytotoxische Aktivität auf die Krebszelllinie HCT-116 (HCT human colon cell) des menschlichen Darmkrebs aufwiesen, welche bei Neomangicol C (**19**), dem unhalogenierten Analog, nicht gefunden wurde (Abb. 4).^[29] Ebenso kann die Wirksamkeit von Naturstoffen, die ursprünglich kein Halogen enthalten, durch eine synthetische Einführung eines Halogens erhöht werden: Der Arzneistoff Clindamycin (**20**) ist ein Breitband-Antibiotikum, das durch Substitution einer Alkoholgruppe mit einem Chlorid aus dem Naturstoff Lincomycin (**21**) erhalten werden kann.^[30] Im Vergleich zu seinem unhalogenierten Vorläufer hat Clindamycin (**20**) eine signifikant höhere antibiotische Aktivität, wobei gleichzeitig die Toxizität verringert wird (Abb. 4).^[31] Die Möglichkeit, Eigenschaften von Molekülen durch den Einbau von Halogenen zu beeinflussen, wird

deshalb in der Pharmazie und Wirkstoffforschung oft ausgenutzt,^[32] wobei in synthetischen Wirkstoffen Fluor aufgrund seiner einzigartigen Eigenschaften eine besondere Stellung einnimmt.^[33]

Abb. 4. Beispiele für Wirkstoffe, bei denen das Halogenid entscheidend für die Aktivität ist.

In der Natur hingegen ist der Anteil der fluorierten Naturstoffe sehr gering. Die geringe Häufigkeit und Diversität von fluorierten Naturstoffen im Vergleich zu bromierten oder chlorierten Metaboliten lässt sich auf die Eigenschaften von Fluor als elektronegativstes Element und die Hydratationswärme der Fluoridanionen zurückführen, wodurch das Fluorid in Lösung von einer Solvathülle umgeben und die Nukleophilie stark herabgesetzt wird.^[34] Dies schränkt die Teilnahme von Fluor an biochemischen Prozessen stark ein und verhindert die Anwendung der generellen Strategien, welche die Natur entwickelt hat, um enzymatisch Halogene in organische Moleküle einzubauen. Enzyme, die diese Rolle übernehmen, werden Halogenasen genannt und machen sich drei unterschiedliche Oxidationsstufen der Halogene zu Nutzen: Das Haleniumion X^+ , das Halogenradikal X[•] und das negativ geladene Halogenid X⁻. Die meisten Enzymklassen nutzen oxidative Mechanismen zur Halogenierung von Substraten. Haloperoxidasen (HPO) etwa gehören zu den Enzymen die durch Oxidation ein X^+ in Form eines Hypohalits XO⁻erzeugen, das vor allem mit elektronenreichen, häufig aromatischen Substraten reagiert. HPOs werden nach dem elektronegativsten Halogen, das sie metabolisieren können, benannt und sind generell in der Lage, alle elektropositiveren Halogenide zu oxidieren. Dies bedeutet, dass Chlorperoxidasen auch in der Lage sind, Bromid und Iodid als Cosubstrat umzusetzen, Bromperoxidasen jedoch nicht chlorieren können. Das erste Halogenierungsenzym, das gefunden wurde, war eine Häm-Fe-abhängige Chlorperoxidase (CPO) aus dem Pilz Caldariomyces fumago, welches mit der Biosynthese des chlorierten Sekundärmetaboliten Caldariomycin (22) in Verbindung gebracht wurde (Abb. 5).^[35] Neben HPOs nutzen auch Flavin-abhängige Halogenasen (FDHs) Halogenide X⁻ zur Halogenierung. Sie katalysieren ebenso die Oxidation der Halogenide zu Hypohaliten, verwenden dabei aber Sauerstoff als Oxidationsmittel und FAD (Flavin Adenin Dinukleotid) als redoxaktiven Cofaktor. Der Mechanismus verläuft in Abhängigkeit von einer Flavinreduktase, die den oxidierten Cofaktor Flox in die reduzierte Form Flred überführt, welcher dann zum aktiven Zentrum der Halogenase diffundiert. Dort wird er mit O₂ oxidiert und reagiert mit einem Halogenid zum Hypohalit. Dieses wird dem Substrat regiospezifisch durch die Bildung einer Haloamin-Spezies mit der Amingruppe eines konservierten Lysinrestes bereitgestellt.^[36] FDHs sind hauptsächlich in der Halogenierung von aromatischen, elektronenreichen Substraten involviert, wie Rebeccamycin (nicht abgebildet)^[37] oder auch Marinopyrrol (**23**, Abb. 5).^[38] Eine weitere Art von Enzymen, die ebenfalls Halogenide oxidieren, sind Vanadium-abhängige Haloperoxidasen (V-HPOs).^[39] Diese Unterklasse von Haloperoxidasen benötigt ein Oxidationsmittel wie Wasserstoffperoxid (H₂O₂) um ein Halogenid zu dem entsprechenden Haloniumion zu oxidieren. Dieses Haloniumion liegt wie bei den Peroxidasen im wässrigen Medium als reaktives Hypohalit vor. V-HPOs werden ebenfalls nach dem elektronegativsten Halogenid, das sie oxidieren können benannt, und sind in der Lage, die weniger elektronegativen Halogene ebenfalls umzusetzen. Die erste V-HPO wurde im Jahre 1984 in einem Extrakt der marinen Braunalge *Ascophyllum nodosum* entdeckt und das Vorhandensein eines Vanadat Cofaktors vermutet,^[40] welcher 1986 durch Elektronenspinresonanz (ESR) in dem Enzym nachgewiesen wurde.^[41] V-BPOs sind in der Bromierung von verschiedenen Naturstoffen wie Snyderol (**24**, Abb. 5)^[42] oder bromierten Vertretern aus der *Laurencia* Familie involviert.^[43] V-CPOs kommen in Pilzen und Bakterien marinen Ursprungs vor, wo sie unter anderem in der Biosynthese von meroterpenoiden Naturstoffen wie Napyradiomycin (**25**, Abb. 5) beteiligt sind,^[44] einer Naturstoffklasse, die aus Polyketid- und Terpenanteilen besteht.

Abb. 5. Vertreter von Naturstoffen, welche über ein Hypohalit von verschiedenen Halogenasen halogeniert werden.

Die Halogenierung von unaktivierten, aliphatischen Substraten gelingt Organismen durch eine andere Strategie. Die Nicht-Häm-Eisen-abhängige Halogenasen (NHFe-Halogenasen) nutzen, ähnlich wie die entsprechenden NHFe-Oxidasen, Sauerstoff als Oxidationsmittel und 2-Oxoglutarat als Cosubstrat und erzeugen so ein Substratradikal, das mit einem Halogen in der Koordinationssphäre des Eisens reagiert.^[45] NHFe-Halogenasen werden in der Biosynthese von Sekundärmetaboliten hauptsächlich mit Chlorierungen in Verbindung gebracht. Für wenige Enzyme wurde zwar auch die Fähigkeit Bromid einzubauen nachgewiesen, dafür war jedoch eine hohe Konzentration an Bromid im Nährmedium notwendig.^[46] NHFe-Halogenasen sind auch in der Biosynthese von Naturstoffen beteiligt, die nicht halogeniert sind, deren Struktur aber durch einen Halogenierungsschritt und folgender Eliminierung des Halogens aufgebaut wurde.^[47] Diese kryptische Halogenierung ist z.B. an der Bildung des Cyclopropylrings in Curacin A beteiligt.^[48] Die meisten Halogenasen nutzen also Strategien, die auf der Oxidation eines Halogenids zu einer reaktiven Spezies beruhen, welche dann mit einem Substrat reagieren kann. Diese Vorgehensweise lässt sich jedoch nicht auf das Halogen Fluor übertragen, das aufgrund seines Oxidationspotenzials (-2.87 eV) nicht von den oben genannten Halogenasen oxidiert

werden kann. Die wenigen fluorierten Naturstoffe, die bisher entdeckt wurden, werden von Enzymen synthetisiert, die nukleophile Substitution als Strategie zur Halogenierung einsetzen. *S*-Adenosyl-L-Methionin-abhängige Halogenasen wie die 5'-Halo-5'-deoxyadenosin Synthasen und Halogenid-Methyltransferasen nutzen *S*-Adenosyl-L-Methionin (SAM) und Halogenanionen als Cosubstrate. Zu den SAM-abhängigen Halogenasen gehört die Fluorinase 5'-Fluoro-5'-deoxyadenosin Synthase (FlA), die 2004 in dem Bodenbakterium *Streptomyces cattleya* entdeckt wurde und die Biosynthese von Fluorthreonin (**26**) und Fluoracetat (**27**) katalysiert (Abb. 6).^[49] Diese Strategie wird auch zur Chlorierung genutzt. Die SAM-abhängige Chlorinase SalL ist ein Enzym, das an der Biosynthese von Salinosporamid A (**28**, Abb. 6) beteiligt ist.^[50]

Abb. 6. Beispiele von Naturstoffen die durch SAM-abhängige Halogenasen hergestellt werden: Fluorthreonin (26) und Fluoracetat (27), sowie Salinosporamid A (28).

Die Natur hat es perfektioniert, die Eigenschaften von Halogenen für ihre Zwecke zu nutzen und dabei sogar einen Weg gefunden Fluoride einzubauen und damit eine Fülle von Strukturen erschaffen, die in ihrem biologischen Kontext wichtige Funktionen erfüllen. Überdies haben Naturstoffe auch außerhalb ihrer natürlichen Umgebung als Arzneimittel oder Wirkstoffe einen wichtigen Platz inne. Diese Naturstoffe werden von ihren Produzenten zwar enzymatisch hochselektiv hergestellt, jedoch nur in geringen Mengen erzeugt, wodurch ein synthetischer Zugang zu diesen Strukturen große Bedeutung hat. Gerade für klinische Studien vor der Zulassung von neuen Wirkstoffen werden große Mengen des jeweiligen Naturstoffs benötigt, was in vielen Fällen nicht durch die Isolierung der Substanz aus seiner natürlichen Umgebung gedeckt werden kann. So wurde in den frühen 1990er Jahren das polyhalogenierte Monoterpenoid Halomon (14, Abb. 3) als wirksamer Antitumorwirkstoff identifiziert.^[24, 51] Trotz vielversprechenden biologischen Aktivitäten^[52] wurde diese Verbindung jedoch aus Mangel an den benötigten Mengen Substanz nicht in klinischen Studien getestet. Tatsächlich gelang die enantioselektive synthetische Herstellung von 14 der Arbeitsgruppe Burns erst Jahrzehnte später im Zuge der Methodenentwicklung zur selektiven Halogenierung.^[53] Dies verdeutlicht den Nutzen der Naturstoffsynthese in Zusammenspiel mit der Entwicklung neuer synthetischer Methoden und die wichtige Rolle, die die Naturstoffsynthese auf der Suche nach neuen Wirkstoffen innehat. Darüber hinaus sind selektive Halogenierungsreaktionen nicht nur zur Synthese von halogenierten Naturstoffen wichtig, halogenierte Verbindungen sind zudem äußert nützliche Intermediate in der organischen Chemie, die eine Fülle von Transformationen zur Derivatisierung der Grundstrukturen erlauben. Insbesondere im Zusammenhang mit dem Aufbau von ungewöhnlichen heterozyklischen Gerüsten besteht nach wie vor ein großer Bedarf an milden und selektiven Methoden zur Erzeugung dieser vielseitigen Funktionalitäten. In der Arbeitsgruppe Gulder wird an Möglichkeiten geforscht,

7

halogenierte Strukturen in Verbindung mit der Konstruktion ungewöhnlicher heterozyklischer Strukturmotive zu synthetisieren,^[54] und so einen Zugang zu vielversprechenden neuartigen Verbindungsklassen zu gestalten. In der vorliegenden Arbeit wurde deshalb an der Entwicklung von halogenvermittelten Zyklisierungsreaktionen zu *N*,*O*-haltigen Verbindungen sowie die Anwendung der entwickelten Methoden in der Totalsynthese eines bisher noch unveröffentlichten Naturstoffes angestrebt.

2. Motivation und Zielsetzung

Während die Enzyme hochselektive Strategien zur Halogenierung von unterschiedlichen Substraten hervorgebracht haben, sind Methoden der synthetischen Chemie zur selektiven Halogenierung insbesondere in der Naturstoffsynthese noch rar. Durch die selektive Installation von Halogensubstituenten können nicht nur die physikalischen und pharmakokinetischen Eigenschaften eines Moleküls beeinflusst werden, halogenierte Verbindungen stellen auch wichtige Intermediate in der synthetischen Chemie dar, die einen vielseitigen Ausgangspunkt für Folgereaktionen stellen. Zudem ermöglicht die elektrophile Halogenierung von Alkenen durch Halogenzyklisierungsreaktionen die Konstruktion von heterozyklischen Strukturen aus linearen, einfach zugänglichen Vorläufern.

Vor diesem Hintergrund sollten in der vorliegenden Arbeit Methoden zur Anwendung von Halogenierungsreaktionen in Verbindung mit der Synthese von Naturstoffen erarbeitet werden, wobei der Schwerpunkt auf halogenvermittelte Ringschlüsse zum Aufbau von ungewöhnlichen Heterozyklen gelegt wurde. Eine solche Struktur wurde für den marinen Naturstoff HB-372-peak 8 vorgeschlagen (**29**, Abb. 7), einem Sekundärmetabolit aus dem Streptomyceten Stamm *Streptomyces HB*, welcher vergesellschaftet mit einem Schwamm der Gattung *Halichondria panicea* in 8 m Tiefe der Ostsee durch die Arbeitsgruppe von Prof. Imhoff vom Kieler Wirkstoffzentrum (KiWiZ) gefunden wurde.

Abb. 7. Strukturvorschlag des neuartigen Naturstoffs HB-372-peak 8 (29).

Die Strukturaufklärung mittels NMR-spektroskopischer Methoden lieferte Verbindung **29**, die eine neuartige bizyklische Kernstruktur besitzt, welche aus zwei fusionierten heterozyklischen Einheiten besteht. Eine zweifelsfreie Zuordnung war jedoch aufgrund des hohen Heteroatomanteils in der bizyklischen Struktur nicht möglich (Abb. 7). Zur Belegung der vorgeschlagenen Struktur sollte das bizyklische Grundgerüst deshalb in einer Totalsynthese durch den schrittweisen Aufbau nachvollzogen werden.

Für den ersten Teil der Arbeit wurden somit folgende Ziele formuliert:

- Entwicklung von Zyklisierungsreaktionen zum Aufbau der bizyklischen Struktur in Naturstoff HB-372 peak 8 (29).
- Synthese der putativen Naturstoffstruktur 29 und damit verbunden die Evaluierung des Strukturvorschlags.

Die Totalsynthese von Naturstoffen dient nicht nur der Strukturaufklärung von neuen Verbindungen oder bietet Ansatzpunkte zur synthetischen Herstellung von größeren Mengen an Wirkstoffen, sie fasziniert seit jeher synthetische Chemiker und motiviert zur Austestung bekannter Synthesestrategien, inspiriert zur Weiterentwicklung vorhandener Methoden und animiert die Erforschung neuer Reaktivitäten für die Synthese der vielfältigen, komplexen und ausgeklügelten Strukturen, die von der Natur präzise für ihre Funktionen entwickelt wurden. Die Entwicklung von Methoden liefert dabei einen wichtigen Beitrag durch die Bereitstellung von neuen Werkzeugen zur Transformation von Molekülen. Neben der Totalsynthese von Naturstoffen zur Aufklärung der Struktur stellt somit die Entwicklung von neuen, synthetischen Methoden einen wichtigen Bereich in der synthetischen Chemie dar.

Der zweite Teil der Arbeit befasst sich mit der Methodenentwicklung zur Synthese von heterozyklischen Verbindungen über Halogenzyklisierungsreaktionen. Oxazolone **30** und Oxazinone **32** (Schema 1) sind außergewöhnliche Strukturen in Naturstoffen sowie privilegierte Motive in Wirkstoffen. Da wenige Synthesen solcher Strukturen berichtet wurden,^[55] besteht eine große Nachfrage an milden, generalisierten Synthesen aus einfachen Ausgangssubstanzen. Die Verwendung von hypervalenten Iodverbindungen als umweltfreundliche, einfach zu handhabende und milde Reagenzien zum Aufbau von heterozyklischen Strukturen wurde im Arbeitskreis Gulder bereits mehrfach demonstriert^[54a-d, 54f] und sollte in der vorliegenden Arbeit als Grundlage zum selektiven Aufbau der heterozyklischen Fünfund Sechsringe dienen. Als Ausgangsstoffe wurden dabei Derivate der Zimtsäure **31** genutzt, die durch Stabilität, Zugänglichkeit und die Möglichkeit zur einfachen Variation der Substituenten bestechen (Schema 1).

Schema 1. Zyklisierung von Zimtsäureimiden 31 zur Synthese von Oxazinonen 32 oder Oxazolon-Gerüsten 30.

Ein besonderes Augenmerk wurde auf die Entwicklung von Bedingungen zur Kontrolle der Regioselektivität gelegt. Zimtsäurederivate können aufgrund ihrer styrolähnlichen Struktur Carbokationen in benzylischer Position stabilisieren und damit zu Oxazinonen **32** führen, während die Iod(III)-vermittelte Zyklisierungsreaktion über einen *exo-tet-*Zyklisierungsmodus die Bildung eines Fünfringes **30** begünstigt. Es galt somit Bedingungen zu finden, unter welchen nur eines der möglichen Regioisomere gebildet wird, und die selektive Synthese dieser Verbindungen zu ermöglichen.

Damit ergaben sich für den zweiten Teil der vorliegenden Arbeit folgende Ziele:

- Entwicklung einer Methode zur regioselektiven Synthese von Oxazinonen 32 ausgehend von Zimtsäureimiden 31.
- > Evaluierung der Substratbreite der Methode anhand von verschiedenen Variationen an **31**.
- > Überprüfung der Möglichkeiten zur Steuerung der Regioselektivität.

3. Selektive Halogenierung in der Naturstoffsynthese

Obwohl in der Natur viele halogenierte Verbindungen mit komplexer Stereochemie enantiomerenrein vorkommen,^[25, 56] existieren in der synthetischen Chemie bislang nur wenige selektive Halogenierungsmethoden zur stereo- oder enantioselektiven Synthese dieser Naturstoffe. Während Organismen mit Hilfe von Enzymen in der Lage sind, komplexe Stereozentren hochselektiv in Halogenierungsreaktionen aufzubauen, werden diese Stereozentren in der Naturstoffsynthese nur in seltenen Fällen durch eine Halogenierung erzeugt. Generell haben die Forschungen zu asymmetrischen Halogenierungsmethoden an Alkenen im Vergleich zu den entwickelten Systemen zur enantioselektiven Oxygenierung, Aminierung oder Alkylierung erst in dem letzten Jahrzehnt an Fahrt aufgenommen.^[57] Dieser Umstand lässt sich teilweise auf die Eigenschaften der Halogenverbindungen sowie der zur Verfügung stehenden Halogenierungsreagenzien zurückführen. Halogene können radikalisch, durch homolytische Spaltung eines Halogenreagenzes mit einem geeigneten Radikalstarter, nukleophil durch den Einsatz von Halogeniden (X) an einem Nukleophug, sowie elektrophil an elektronenreichen Systemen eingeführt werden. Obwohl bereits Methoden zur asymmetrischen nukleophilen Halogenierung an einfachen meso-Epoxiden^[58] und elektrophilen Halogenierung in α-Position von Carbonylverbindungen^[59] entwickelt wurden, spielten sie in der Naturstoffsynthese bisher noch keine größere Rolle. Aus diesem Grund soll in dem folgenden Kapitel vermehrt auf die elektrophile, enantioselektive Halogenierung und Halogenfunktionalisierung von Alkenen in der Synthese von Naturstoffen eingegangen werden.

Die Ansprüche an ein System zur enantioselektiven Halogenierung wurden von Scott E. Denmark in Bezug auf die Alkenhalogenierung formuliert:^[60] Reaktionen mit den vier elementaren Halogenen Fluor, Chlor, Brom und Iod sind zwar schon lange etabliert, aufgrund ihrer hohen Reaktivität gehen sie aber oft mit geringer Selektivität einher. Für katalytische, enantioselektive Reaktionen müssen also Halogenierungsreagenzien verwendet werden, die eher unreaktiv sind und erst durch einen asymmetrischen Katalysator aktiviert werden, um Hintergrundreaktionen zu minimieren. Dies könnte durch den Einsatz von Brønsted-Säuren, Lewis-Säuren oder Lewis-Basen Katalyse geschehen, wobei entweder das Halogen von dem Halogenierungsreagenz auf den Katalysator übertragen werden kann (Brønsted-Säuren oder Lewis-Basen), oder eine Koordinierung und Aktivierung des Halogenierungsreagenzes durch den Katalysator, einer Lewis-Säure, vorliegt.^[60b] Bei der asymmetrischen Halogenierung von Alkenen müssen zudem folgende Hürden genommen werden: Durch die Reaktion mit einem elektrophilen Halogenierungsreagenz wird im ersten Schritt ein positiv geladenes Haleniumion X⁺ übertragen, wodurch ein reaktives Haliraniumion 33 als Intermediat entsteht, welches in einem Folgeschritt in einem Rückseitenangriff von einem Nukleophil (oft X⁻) geöffnet wird. Dieser Mechanismus der Alkenhalogenierung mit Bildung der positiv geladenen Zwischenstufe wurde bereits Anfang des 19. Jahrhunderts von I. Roberts und G. E. Kimball postuliert^[61] und konnte von Olah *et al.* in Tieftemperatur-NMR-Studien nachgewiesen werden^[62] und ist heutzutage von der breiten Fachöffentlichkeit akzeptiert. In einer asymmetrischen Halogenierung kann an diesem Haliranium-Intermediat jedoch eine Racemisierung durch einen Alken-zu-Alken-Transfer eintreten, bei der das positiv geladene Haliraniumion **33** mit einem weiteren Substratmolekül **34** reagiert und dabei das Haleniumion ohne Enantiokontrolle überträgt (Schema 2).^[60b, 63]

Schema 2. Racemisierung durch Alken-zu-Alken Übertragung von Haleniumionen.

Zusätzlich ergibt sich das Problem der Regioselektivität, wenn das Haliraniumion **33** im weiteren Reaktionsverlauf in einem konsekutiven Schritt von einem Nukleophil (z.B. X⁻) geöffnet wird. In einer unselektiven Reaktion würde dies zu vier (bzw. zwei, wenn Nu = X) verschiedenen Produkten führen (Schema 3).

Schema 3. Mögliche Stereoisomere bei der Halogenierung von Alkenen.

Dies führt zu weiteren Ansprüchen an einen Katalysator oder einen chiralen Induktor. Neben der chiralen Information bei der Übertragung des Haleniumions auf die Doppelbindung muss die regioselektive Öffnung des entstandenen Haliraniumions **33** durch ein Nukleophil gesteuert werden. Was in der Methodenentwicklung durch die Verwendung von stereochemisch günstigen Substraten gelöst werden kann, lässt sich in der Naturstoffsynthese nicht einfach umgehen, da die Substituenten einer Doppelbindung hier natürlich von der Struktur des Naturstoffs abhängen und nicht beliebig verändert werden können. Zur Überwindung dieser Herausforderungen wurden von mehreren Arbeitsgruppen verschiedene Konzepte erarbeitet, von denen sich einige bereits in der Naturstoffsynthese bewährt haben.^[64]

In der enantioselektiven Synthese des Meroterpenoids Napyradiomycin A1 (**25**) nach Snyder wurde die Chiralität durch eine asymmetrische Dichlorierung von **36** induziert (Schema 4a).^[65] Angelehnt an ein System, das zur asymmetrischen Diels-Alder Reaktion von Hydroxychinonen entwickelt wurde und welches die asymmetrische Induktion durch Abschirmung mit einem sterisch anspruchsvollen

Binaphtol-System über die Verknüpfung mit dem Substrat über ein Boratom erreichte,^[66] sollte in diesem Fall das Prinzip der sterischen Hinderung eine selektive Chlorierung mit elementarem Chlor ermöglichen. Dies gelang durch den Einsatz von 4.0 Äquivalenten Biphenantrendiol **37** in Verbindung mit Boran-Tetrahydrofuran, die mit Substrat **36** zu einem Komplex **39** reagierten, indem die freie Hydroxygruppe und Carbonylgruppen über zwei Boratome koordiniert wurden. Die Autoren postulieren eine Orientierung der Liganden durch π -Stacking der aromatischen Systeme (nicht gezeigt), die in der sterischen Abschirmung der Doppelbindung und dem Angriff an das Chlor von der ungehinderten Seite resultiert (Schema 4b).

Schema 4. a) Asymmetrische Chlorierung in der Synthese von (–)-Napyradiomycin A1(25);^[65] b) Stereoinduktion durch Abschirmung mit 37.

Mit diesem Protokoll konnte in der Dichlorierung von **36** ein Enantiomerenüberschuss von 95% nach Umkristallisation erreicht werden. Im weiteren Syntheseverlauf wurde die Seitenkette in einer säurekatalysierten Claisen-Umlagerung stereoselektiv installiert und das zweite Chlorid durch eine stereoselektive α -Funktionalisierung eingeführt. Auf diese Weise wurde das unnatürliche Enantiomer (–)-Napyradiomycin A1 (**25**) in 15 linearen Schritten hergestellt.^[65]

Neben der Stereoinduktion durch Abschirmung wurden in den letzten Jahren noch weitere Systeme entwickelt und in der asymmetrischen Synthese halogenierter Naturstoffe angewendet. Die Arbeitsgruppe Burns entwickelte eine Methode, mit der Allylalkohole stereoselektiv dihalogeniert werden können.^[67] Das Prinzip beruht, ähnlich der enantioselektiven Epoxidierung nach Sharpless,^[68] auf der Bildung eines chiralen Übergangsmetallkomplexes mit einem oxophilen Metall, in diesem Fall Titan, an einer allylischen Hydroxygruppe.

Schema 5. a) Enantioselektive Synthese von Halomon (14) nach Burns;^[53] b) Postulierte aktive Spezies mit angedeuteter Stereoinduktion.^[64b]

Nachdem die Methode zunächst mit einem TADDOL-Liganden entwickelt wurde,^[69] zeigte sich die Verwendung der tridentaten Schiff´schen Base **45** als Ligand in Verbindung mit einer Titan(IV)-Verbindung als optimale Bedingung und wurde neben Dibromierungen^[69] und Dichlorierungen^[70] auch erfolgreich in Chlorbromierungen^[67] eingesetzt. In der Totalsynthese von Halomon (**14**), einem hochpotenten polyhalogenierten Wirkstoff aus der Rotalge *Portieria Hornemannii*, der außergewöhnliche selektive Zytotoxizitäten aufweist,^[24, 71] wurden die zwei Chiralitätszentren an *C3* und *C6* durch eine Bromchlorierung und eine Dichlorierung unter Verwendung von CITi(O*i*-Pr)₃ in Verbindung mit NBS oder *t*-BuOCl und dem passenden Enantiomeren des chiralen Liganden **45** selektiv aufgebaut (Schema 5a).^[53] Dieser Naturstoff wurde trotz vielversprechender selektiver biologischer Aktivitäten gegen Krebszelllinien, die schon vor mehr als zwei Jahrzenten erkannt wurden, nicht in klinischen Studien getestet, hauptsächlich aufgrund des Mangels an Material.^[24]

In Hinblick auf den Mechanismus schlagen die Autoren einen oktaedrisch koordinierten Titankomplex 46 vor, an dem das Substrat in räumlicher Nähe zum aktivierten Halogenierungsreagenz NBS über die allylische Hydroxyverbindung gebunden ist (Schema 5b). Nach der enantioselektiven Übertragung des Haleniums könnte Zwitterion 47 entstehen und die Regiokontrolle durch die Haliraniumöffnung mit dem zuvor am Titan gebundenen X⁻ über einen möglichen Übergangszustand 48 erklärt werden.^[64b] Da die Titan-Spezies neben der Stereoinduktion auch die Funktion hat, das zweite Halogenmolekül zu übertragen, muss sie jedoch als Reagenz mindestens stöchiometrisch eingesetzt werden – nur der Ligand kann in katalytischen Mengen verwendet werden. Eine weitere, entscheidende Limitierung dieser Methode ist die Beschränkung auf Allylalkohole und somit das Vorhandensein einer dirigierenden Gruppe. Trotzdem konnten nach diesem Prinzip mehrere polyhalogenierte Naturstoffe enantioselektiv hergestellt werden, darunter auch Vertreter der Chlorosulfolipiden. Die Herangehensweise durch enantioselektive Chlorierung von Burns und Mitarbeitern stellt den vorerstigen Abschluss einer langen Reihe von Strategien zur selektiven Synthese dieser Verbindungen dar, die in den 1960ern zum ersten Mal aus Extrakten der Süßwasseralge Ochromonas danica isoliert wurden.^[72] Im Folgenden soll kurz auf die Geschichte der selektiven Chlorosulfolipid-Synthesen eingegangen werden: Die Naturstoffklasse der Chlorosulfolipide umfasst eine Reihe von linearen Lipidstrukturen, die einzigartige, hoch komplexe Chlorierungsmuster aufweisen, und hat in der Gemeinschaft der Synthesechemiker schon viel Aufmerksamkeit genossen. Mehrere Arbeitsgruppen, darunter Vanderwal und Carreira, versuchten sich an der Synthese dieser linearen Sekundärmetaboliten und entwickelten in diesem Zuge unterschiedliche Strategien zum Aufbau der chlorierten Stereozentren. Eine besondere Herausforderung stellte dabei die selektive syn-Chlorierung von Alkenen dar. Die erste Totalsynthese eines Chlorosulfolipids wurde 2009 von Carreira veröffentlicht.^[73] In der racemischen Synthese von (±)-Hexachlorosulfolipid (48) wurde eine Dichlorierungs- und Dihydroxylierungssequenz ausgehend von Ethylsorbat (49) unter Verwendung von Mioskowski's Reagenz Et₄NCl₃ zum Aufbau der relativen Stereozentren in 48 eingesetzt (Schema 6a).

Schema 6. Synthese von (\pm) -Hexachlorosulfolipid (48) mit unerwarteter Stereochemie durch Nachbargruppenbeteiligung nach Carreira *et al.*^[73]

Überraschenderweise führte die Öffnung des Epoxids **52** mit TMSCl nicht wie erwartet zu einem *syn*-Chlorhydrin **56**, sondern durch den anchimeren Effekt unter Beteiligung eines benachbarten Chlorids über einen viergliedrigen Ring **55** mit Retention der Stereochemie zu dem unerwünschten *anti*-Chlorhydrin **53** (Schema 6a). Durch Änderung der relativen Konfiguration des Epoxids in **57** wurde dieser Nachbargruppeneffekt genutzt, um das Stereohexad von (\pm) -Hexachlorosulfolipid (**48**) stereoselektiv aufzubauen und die Synthese in wenigen weiteren Schritten zu vervollständigen (Schema 6b). Kurz darauf publizierten Vanderwal und Mitarbeiter ebenfalls Totalsynthesen einiger Vertreter dieser Naturstoffklasse. Neben einer racemischen Synthese von (\pm) -Danicalipin A (**69**) und (\pm) -Malhamensilipin A (**60**) vervollständigten sie 2010 die erste enantioselektive Synthese des Chlorosulfolipids **60**. Die Chiralität wurde durch die asymmetrische Dihydroxylierung nach Sharpless an Ester **61** eingeführt, gefolgt von einer Hydrierung mit P-2 Ni/Ethylendiamin zur selektiven Erzeugung des *Z*-Alkens **62** (Schema 7a).

Schema 7. Strategien von Vanderwal und Yoshimitsu zur enantioselektiven Synthese der Chlorosulfolipide a) Malhamensilipin (60) und b) (+)-Danicalipin (69); c) Asymmetrische Dichlorierung in die Synthese von (-)-Danicalipin (69) nach Burns.

Dies ermöglichte den Aufbau des syn-Dichlormusters mit Et₄NCl₃, die übrigen Stereozentren des Stereohexads 60 wurden auf ähnliche Weise aufgebaut (Schema 7a). Yoshimitsu und Mitarbeiter kombinierten enantioselektive Epoxidierungen nach Sharpless oder Shi mit einer stereospezifischen Deoxydichlorierung unter Verwendung eines Appel-artigen Systems aus NCS und Triphenylphosphin für den Aufbau des vicinal dichlorierten Abschnitts, wobei die syn- oder anti-Konfiguration der Chloride durch die Verwendung von E- oder Z-Alkenen eingestellt wurde. Nach diesem Prinzip vervollständigten sie so die asymmetrische Synthesen von 69 und 48.^[74] In den folgenden Jahren wurden weitere enantioselektive Totalsynthesen veröffentlicht, die sich jedoch hauptsächlich auf asymmetrische C-O-Bindungsknüpfungen mit darauffolgenden stereoselektiven Chlorierungsschritten verließen.^[75] Die asymmetrischen Synthesen von Burns hingegen verkürzten die Synthesen deutlich, indem die vicinalen Dichlormuster elegant direkt mit dem System ClTi(Oi-Pr)3, 45 und t-BuOCl enantioselektiv an den Edukten eingeführt werden konnten. In der Synthese des unnatürlichen Enantiomers (-)-Danicalipin (69) demonstrierten Burns und Mitarbeiter die Nützlichkeit ihrer zuvor entwickelten Methode, indem sie 69 in acht linearen Schritten als einzelnes Isomer herstellten (Schema 7c). Anhand dieser Beispiele wird nochmals deutlich, wie die Entwicklung von neuen Konzepten zur asymmetrischen Halogenierung nicht nur den Zugang zu neuen enantioselektiven Synthesen von bis dato synthetisch nicht zugänglichen Naturstoffen wie Halomon (14) ermöglichte, sondern auch die Routen zu bereits synthetisierten Naturstoffen stark vereinfachten und stufenökonomischer gestaltete.

Neben vicinal dihalogenierten Verbindungen sind zyklische Strukturen ein weit verbreitetes Strukturmotiv in der Klasse der halogenierten Naturstoffe.^[76] Eine Vielzahl an halogenierten Vertretern aus der Familie der Terpene, wie Verbindungen 74-76 (Schema 8), besitzt ein bromiertes, carbozyklisches Gerüst, welches in der Natur enzymatisch durch Übertragung einer elektrophilen Bromspezies in einer Kation- π -Zyklisierung enantioselektiv aus linearen Terpenen aufgebaut wird. Was der Natur so mühelos gelingt, ist in der synthetischen Chemie noch immer Objekt stetiger Forschung. Die Halozyklisierung von Polyenen ist nicht nur in Hinblick auf asymmetrische Methoden eine Herausforderung, allein schon für die racemischen Varianten müssen einige Hürden überwunden werden, wie niedrige Ausbeuten und unselektive Reaktionen durch Eliminierungen oder Additionsreaktionen.^[77] Das Problem der Chemoselektivität wurde auch in der Arbeitsgruppe Gulder adressiert, wenngleich bisher noch racemisch, und von Arnold und Gulder Bedingungen zur Brom-Chlor- und Iodzyklisierung in exzellenten Ausbeuten entwickelt.^[54e] Ishihara veröffentlichte die erste enantioselektive Polyen-Zyklisierung unter Verwendung stöchiometrischer Mengen eines Phosphoramidits 78. Während in Iodzyklisierungen mit NIS bis zu 99% ee erreicht wurden, konnte mit NBS bei der Umsetzung von 77 nicht annähernd so gute Ergebnisse (36% ee) erzielt werden (Schema 8b).^[78]

Schema 8. a) Halogenhaltige zyklische Terpenoide; b) Enantioselektive Bromzyklisierungen nach Ishihara^[78] und Yamamoto^[79].

Mit Yamamotos Terpenzyklisierung,^[79] die katalytisch das BINOL-Thiophosphoramid **79** in Verbindung mit Dibromdimethylhydantoin (DBDMH) durch kombinierte Brønsted-Säure- und Lewis-Basenaktivierung einsetzt, wurde die erste katalytische, enantioselektive Methode zur Terpenzyklisierung veröffentlicht. Substrat 77 konnte mit dem katalytischen System mit guter zyklisiert werden. Eine Reihe Selektivität (78%) ee) an weiteren Geranylund Homogeranylverbindungen wurde unter diesen Bedingungen mit hoher Enantioselektivität von bis zu 98% ee umgesetzt. Wie an diesen Beispielen veranschaulicht wurde, eröffnen selektive Halozyklisierungen Zugang zu einer Großzahl an nützlichen Strukturen, die nicht nur Naturstoffe darstellen sondern auch vielseitige Intermediate in der organischen Chemie sind und in vielen Transformationen zur weiteren Funktionalisierung genutzt werden können.

Schema 9. a) Enantioselektive Bromlaktonisierung in der Synthese von Sesquiterpenoide (–)-Gossoronol (**85**) und (–)-Boivinianin B (**86**); b) Postulierter Mechanismus mit Stereoinduktion in der enantioselektiven Halolaktonisierung mit Harnstoffkatalysatoren nach Jacobsen.^[80]

Es liegt deshalb nahe, dass selektive Halogenierungsreaktionen auch zur Erzeugung von Stereozentren in Intermediaten von Naturstoffsynthesen eingesetzt wurden, bei denen das Zielmolekül kein Halogen enthält. Ähnlich zu einer Methode zur asymmetrischen Halolaktonisierung nach Jacobsen^[80] wurde von Aursnes *et al.* eine asymmetrische Bromlaktonisierung zum Aufbau des Stereozentrums im zyklischen Lakton-intermediat **84** in der asymmetrischen Totalsynthese der Sesquiterpenoide (–)-Gossoronol (**85**) und (–)-Boivinianin B (**86**) eingesetzt (Schema 9a).^[81] Durch den Einsatz von Quadratsäureamid **83** wurde das quarternäre Stereozentrum mit einem Enantiomerenüberschuss von 81% aufgebaut. Der Mechanismus wurde von den Autoren zwar nicht diskutiert, Jacobsen und Mitarbeiter postulieren jedoch in einem ähnlichen System mit einem Harnstoff einen Mechanismus, bei dem das Halogenierungsreagenz (in diesem Fall *N*-Iodphtalimid) durch Wasserstoffbrückenbindung aktiviert, und das Halogen auf das tertiäre Amin übertragen wird. Dies ist nun die aktive Spezies **87**, die auf ein koordiniertes Substratmolekül enantiokontrolliert das Haleniumion überträgt, welches durch Angriff der Carbonsäure abgefangen wird (Schema 9b).

Schema 10. Enantioselektive Iodlaktonisierung zum Aufbau der Stereozentren im Epoxid von (+)-Disparlure (94) nach Klokowski *et al.*^[82]

In der Synthese von (+)-Disparlure (**94**) von Klokowski und Martin^[82] wurde eine enantioselektive Iodlaktonisierung zum Aufbau der Stereozentren im Naturstoff **94** angewendet.^[46] (+)-Disparlure (**94**) ist ein Pheromon des Nachtfalters *Lymantria dispar* und wird zur Eindämmung der Populationen des Fraß-Schädlings eingesetzt. Es ist aus einer langen, linearen Alkankette aufgebaut mit einem Epoxid als einzige funktionelle Gruppe. Die enantioselektive Synthese des Epoxids stellte somit aufgrund fehlender dirigierender Gruppen eine anspruchsvolle Aufgabe dar. Nach einer Methode zur asymmetrischen Halolaktonisierung, die bereits wenige Jahre vorher von der Arbeitsgruppe Martin entwickelt wurde,^[83] nutzen Klokowski und Martin die enantioselekive Iodlaktonisierung zur Erzeugung des Stereozentrums durch die Umsetzung von *Z*-Alken **89** mit NIS und I₂ in Gegenwart von 10 mol% des Katalysators **90**. Das Lakton **91** wurde durch eine Eintopf-Reaktion durch Reduktion gefolgt von einer Wittig Olefinierung in Epoxid **93** überführt, und nach Hydrierung der Doppelbindung das Zielmolekül **94** dargestellt (Schema 10).^[82, 84] Auch in diesem Fall konnte mit Hilfe der asymmetrischen Halofunktionalisierung der entscheidende synthetische Schritt vollzogen werden. Trotzdem in den letzten Jahren große Fortschritte gemacht wurden, ist die Halogenchemie immer noch ein spannendes, innovatives Forschungsfeld. In Hinblick auf die Fülle an halogenierten Naturstoffen mit hochkomplexen Strukturen besteht aber nach wie vor Bedarf an Strategien zur selektiven Halogenierung sowie an neuen Reaktionen, Reagenzien und Methoden. Die Forschung in der Methodenentwicklung, kombiniert mit der Naturstoffsynthese, führt zu dem Austesten von Grenzen, der Entwicklung neuer Ideen und bringt somit letztendlich eine Fülle an neuen Methoden, Strategien und Konzepten.

4. Studien zur Synthese des Naturstoffs HB-372 peak 8 (29)

Moderne Analytik mit hochauflösender Massenspektrometrie und spektroskopischen Methoden wie NMR (nuclear magnetic resonance) haben die Strukturaufklärung von neuen Naturstoffen erheblich erleichtert. Nichtsdestotrotz ist die Totalsynthese von Naturstoffen zur Ermittlung insbesondere der Konfigurationen von Stereozentren immer noch ein wichtiges Werkzeug zur zweifelsfreien Bestimmung von neuartigen Strukturen.^[85] Ein solcher Fall ist der Naturstoff HB-372 peak 8 (29) – ein mariner Sekundärmetabolit eines neuen Streptomycetenstamms, der in einem Schwamm der Gattung Halichondria panicea in etwa 6 m Tiefe in der Ostsee gefunden wurde. Der bisher noch unbenannte Naturstoff 29, mit der Bezeichnung HB-372 peak 8 (Abb. 8a), wurde mit Zellkulturen auf Bioaktivität getestet, wobei eine Aktivität gegen das gram-positive Bakterium B. subtilis festgestellt wurde. Die Kultivierung des Bakterienstamms, Isolierung und vorläufige Strukturbelegung erfolgte durch die Arbeitsgruppe Imhoff,ⁱ die mit den verfügbaren analytischen Methoden (2D-NMR, Massenspektrometrie) einen bizyklischen Kern mit einer Hydantoin-Einheit, die mit einem Oxazolin-Ring fusioniert ist, postulierten. Ferner wurde eine Hexylseitenkette identifiziert, die über einen Ether mit dem Grundgerüst verbunden ist. Aufgrund seines hohen Heteroatom- und geringen Wasserstoffanteils konnte der isolierten Substanz jedoch nicht zweifelsfrei einer Struktur zugewiesen werden.

Abb. 8. a) Probe des Brotkrumenschwamms *Halichondria panicea* (Foto: Dr. Tim Staufenberger, GEOMAR), Bakterienkulturen, die mit *Halichondria panicea* vergesellschaftet sind und putative Struktur des isolierten Naturstoffs HB-372 peak 8 (**29**); b) Vertreter der Pyrrol-2-aminoimidazol Alkaloide.

Diese putative Struktur, insbesondere die Verknüpfung der beiden Heterozyklen über den Stickstoff, ist in dieser Form bislang noch gänzlich unbekannt. So existieren zwar Naturstoffe mit entfernt ähnlichen Strukturelementen, zum Beispiel Vertreter der Pyrrol-2-aminoimidazol-Alkaloide wie die bioaktiven Naturstoffe Slagenine A und B (**96** und **97**) und Agelastatin (**98**), die aus Schwämmen der Gattung

¹ Prof. J. Imhoff und Julia Wiese vom Kieler Wirkstoffzentrum (KiWiZ) und GEOMAR

Agelas isoliert wurden, sowie Dibromphakellstatin (**99**), das aus *Phakellia mauritiana* isoliert wurde,^[86] oder Hydantoicidin (**100**), ein spirozyklischer Naturstoff mit herbiciden Eigenschaften, der von Streptomyceten produziert wird.^[87] Die Doppelbindung im Oxazolinfragment sowie die ungewöhnliche Fusion der zwei 5-gliedrigen Heterozyklen unterscheiden das Grundgerüst der Verbindung HB-372 (**29**) jedoch deutlich von den bekannten hydantoin-haltigen Naturstoffen, weshalb der Strukturvorschlag auch nicht durch den Vergleich mit diesen ähnlichen Systemen belegt werden konnte. Zusätzlich ließ sich aus den zur Verfügung stehenden Methoden keine Aussage über relative und absolute Konfiguration der zwei Stereozentren (in Abb. 8 durch Sternchen markiert) treffen. Aus diesem Grund sollte die Struktur in einer Totalsynthese durch den schrittweisen, nachvollziehbaren Aufbau des vorgeschlagenen Molekülgerüsts evaluiert und damit die relative sowie absolute Konformation bestimmt werden.

4.1 Retrosynthetische Analyse von HB-372 (29) und Vorarbeiten

Bei Betrachtung des bizyklischen Gerüsts von **29**, das aus einer Hydantoin- und einer Oxazolin-Einheit besteht, welche über einen Stickstoff und eine *C*,*O*-Bindung miteinander verknüpft sind, ergeben sich drei generelle Herangehensweisen zur retrosynthetischen Zerlegung der Struktur: Zum einen kann der erste Schnitt an der Verbindung von Oxazolinring und Hydantoin, am Aminal, angesetzt werden (Schema 11, Pfad A und B). Dies könnte einerseits ausgehend von einem Substrat **102** mit bereits installierter, intakter Seitenkette geschehen und die Doppelbindung des Oxazolinrings über die Bildung eines Enolats **103** aufgebaut werden (Pfad A). Dieser eleganten Variante steht andererseits die Möglichkeit gegenüber, zunächst den bizyklischen Kern durch eine Halozyklisierung des Alkohols **104** aufzubauen, und die Seitenkette im letzten Schritt einzufügen (Pfad B).

Schema 11. Retrosynthetische Ansätze zur Synthese der bizyklischen Grundstruktur des putativen Naturstoffs HB-372 peak 8 (29).

Eine weitere Möglichkeit (Pfad C) besteht darin, die Schnittstelle am zyklischen Allylether anzusetzen, folglich von einem Hydroxy-Hydantoin **108** auszugehen, und den Bizyklus beispielsweise durch die Zykloisomerisierung einer Alkinverbindung zu konstruieren. Zudem kann der Schnitt an der Imidfunktion des Hydantoinrings erfolgen (Pfad D) und somit der Bizyklus über die Konstruktion eines Oxazolinrings aufgebaut werden. Dies wurde im Arbeitskreis Gulder bereits versucht und führte zu keinem Erfolg.^[88] Ausgehend von dieser Überlegung sollten drei verschiedene Herangehensweisen zum Aufbau des Grundgerüsts von **29** durchgeführt werden:

- Pfad A verfolgt eine weitestgehend lineare Syntheseroute, bei der die Hexylseitenkette bereits am Anfang an 102 installiert wird. Der Schlüsselschritt zum Aufbau des bizyklischen Grundgerüsts stellt ein halonium-induzierter Ringschluss mit vorhergehender Enolbildung dar (Schema 1, Pfad A), der durch eine anschließende Oxidation zum Zielmolekül 29 führen sollte.
- Ein zweiter Ansatz zur Synthese ist der Aufbau der bizyklischen Grundstruktur mit anschließender Funktionalisierung zum Aufbau der Seitenkette (Pfad B). Auch hier soll der Oxazolin-Heterozyklus durch einen halonium-induzierten Ringschluss aufgebaut werden, die Doppelbindung im Oxazolinfragment jedoch in einem zweiten Schlüsselschritt, einer Isomerisierung, eingeführt werden.
- Pfad C verfolgt eine Strategie, in deren Folge der retrosynthetische Schnitt zum Aufbau der bizyklischen Struktur an der Enoletherbindung ansetzt – ausgehend von einem Hydroxyhydantoin 108, das intramolekular an einer aktivierten, elektrophilen Mehrfachbindung angreifen soll.

Im Vorfeld zu der hier vorgestellten Arbeit wurden im Arbeitskreis Gulder bereits einige Versuche unternommen, den Naturstoff 29 zu synthetisieren.^[88] Die vorhergehende Arbeiten konzentrierten sich dabei hauptsächlich auf den Aufbau des Oxazolinrings (Pfad D), wie beispielhaft an einer Syntheseroute ausgehend von Serin gezeigt werden soll: Bei dieser Route sollte zunächst die Zyklokondensation von einem Aminoalkohol 112 und Oxalsäurederivat 113 zu einem Oxazolidinring 114 führen, der anschließend mit Benzylisocyanat zur Einführung des Urea-Motivs umgesetzt werden sollte (Schema 12). Da die Aminoalkohole aus chiralen Vorstufen hergestellt wurden, war hier von vorneherein die Möglichkeit einer enantioselektiven Synthese und damit die Ermittlung der absoluten Konfiguration der Stereozentren in 29 gegeben. Während der Arbeiten wurde jedoch klar, dass die Oxazolidin-Intermediate schwer zu isolieren und zu handhaben waren. Insbesondere die schlechte Reproduzierbarkeit stellte einen wesentlichen Schwachpunkt der Synthesestrategie dar. Ein weiterer Rückschlag wurde bei der Zyklisierung des Hydantoinrings im gezeigten Beispiel erlitten: Nachdem 115 erfolgreich synthetisiert werden konnte, zyklisierte die Struktur im nächsten Schritt durch den nukleophilen Angriff des Amids am tert-Butylester zum falschen Bizyklus 117 anstatt zu 116 (Schema 12). Aufgrund dieser Reaktivität sowie der eingeschränkten Reproduzierbarkeit der Umsetzungen zu den Oxazolidinen 114 wurde diese Route nicht weiter verfolgt.

Schema 12. Beispiel eines Syntheseansatzes über die Darstellung des Oxazolinrings (Syntheseroute D).^[88c]

Auch für Pfad A wurden im Vorfeld bereits Versuche durchgeführt. Zur Ermittlung geeigneter Bedingungen für den halonium-induzierten Ringschluss wurde Modellsubstrat **26** verwendet, welches zügig aus leicht verfügbaren Edukten Epichlorhydrin (**105**) und *N*-Benzylhydantoin (**118**) hergestellt werden konnte (Schema 13). Im nächsten Schritt wurde das Diol **119** verschiedenen Zyklisierungsbedingungen ausgesetzt. In diesen Arbeiten wurde für die Bromzyklisierung an Imidazolon **119** eine starke Lösungsmittelabhängigkeit festgestellt. Die Verwendung von Lewisbasischen, aprotischen Lösungsmitteln wie DMF aber auch NMP war für einen erfolgreichen Ringschluss essentiell.^[89]

Schema 13. a) Arbeiten zur Bromzyklisierung des Imidazolonsubstrats 119; b) Versuche zur Synthese des authentischen Ringschlusssubstrats 125.

Allerdings wurde nicht die Zyklisierung zum erwünschten 5,5-bizyklischen System **121** bevorzugt beobachtet, sondern hauptsächlich Produkt **120** als Hauptkomponente isoliert (Schema 13a). Ebenso wurde die Synthese des authentischen Ringschlusssubstrats begonnen und mit der Darstellung des Epoxids **123** ein Ansatzpunkt für weitere Arbeiten gesetzt (Schema 13b). Vorläufige Versuche, das Chlorhydrin **123** mit Hydantoin **118** zu kuppeln waren zwar nicht erfolgreich, insgesamt dienten die erhaltenen Ergebnisse zur Zyklisierung der vorliegenden Arbeit jedoch als Ausgangspunkt zu weiteren Studien in der Totalsynthese des Naturstoffs HB-372 peak 8 (**29**).
4.2 Synthesepfad A: Studien zur Halozyklisierung

Aufbauend auf gezeigten Vorarbeiten zur Totalsynthese des Naturstoffs HB-372 (29) ist in der Synthese nach Pfad A der Aufbau des Bizyklusses über einen halonium-induzierten Ringschluss aus einem Imidazolonderivat 127 vorgesehen, bei der die Doppelbindung des Imidazolons mit einem elektrophilen Halogenierungsreagenz für einen nukleophilen Angriff aktiviert wird. Der Angriff des Carbonylsauerstoffs sollte über die Enolform 128 erfolgen und so die bizyklische Oxazolin-Hydantoinstruktur 129 konstruiert werden. Schlüsselintermediat 127 enthält bereits die intakte Hexylseitenkette, wodurch ein konkurrierender Angriff der Hydroxy-Funktion und damit die 6-Rings (vgl. Schema 13a) vermieden wird (Schema 14).

Schema 14. Geplante Syntheseroute zum putativen Naturstoff 29 über eine Bromzyklisierung der Enolatform von Schlüsselintermediat 127.

Zur Synthese des Schlüsselintermediats **125** wurde, entsprechend einer Vorschrift aus vorherigen Arbeiten, Buten-2-ol (**122**, Schema 13) zunächst zu **130** verethert und anschließend die Doppelbindung mit *m*CPBA in einer Priletschajew-Reaktion zu Epoxid **123** oxidiert, letzteres wurde mit 54% Ausbeute in einem Diastereomerenverhältnis von 50:50 erhalten (Schema 15, oben). Die Darstellung des Imidazolonfragment **126** erfolgte nach einer Vorschrift von Cortes *et al.*^[90] ausgehend von *N*-Benzylhydantoin (**118**) in bis zu 85% Ausbeuten (Schema 15, unten).

Schema 15. Synthese des Epoxids 123 und Imidazolon 126 als Vorstufen für das Ringschlusssubstrat.

Die Verknüpfung des Seitenkettenfragments 123 mit dem Imidazolonfragment 126 stellte jedoch eine erste Herausforderung dar. Beispiele von nukleophilen Reaktionen mit Imidazolon 126 in der Literatur legten die Verwendung von NaH als starke, nicht nukleophile Base nahe,^[91] die Umsetzung bei Raumtemperatur mit NaH (1.5 Äq.) in THF zeigte jedoch keine Produktbildung (Tabelle 1, Eintrag 1). Die Reaktionstemperatur wurde deshalb auf 40 °C erhöht, und Imidazolon 126 leicht überstöchiometrisch eingesetzt (1.5 Äq.), wodurch die Bildung von Produkt 125, wenn auch nur in Spuren, beobachtet werden konnte (Tabelle 1, Eintrag 2). Entsprechend dem angedeuteten Trend wurden nun Reaktionstemperatur (Tabelle 1, Eintrag 3) und Äquivalente an 126 sowie Base erhöht (Tabelle 1, Eintrag 4), wodurch die Ausbeute an **125** weiter auf 17% bzw. 61% gesteigert werden konnte. Durch eine Änderung in der Reaktionsführung, und zwar der Zugabe des Epoxids 123 bei 60 °C, nachdem das Imidazolon 126 für eine Stunde mit NaH bei dieser Temperatur deprotoniert wurde, konnte die Ausbeute auf 72% verbessert werden (Tabelle 1, Eintrag 5). Insgesamt wurden in THF die besten Ergebnisse erzielt, während in Toluol, sogar bei höheren Temperaturen von 100 °C, niedrigere Ausbeuten von nur 29-59% erhalten wurden (Tabelle 1, Eintrag 6 und 7). Das polare aprotische Lösungsmittel DMF hingegen zeigte sich als ungeeignet mit nur geringen bis moderaten Ausbeuten (Tabelle 1, Eintrag 8 und 9).

Tabelle 1. Auszug aus den getesteten Reaktionsbedingungen zur Epoxidöffnung mit Imidazolon 126.

Eintrag	126 [Äq.]	NaH [Äq.]	Solvens (M)	T [°C]	t [h]	Ausbeute [%]
1	1.0	1.5	THF (1.0)	RT	24	-
2	1.5	2.0	THF (0.5)	40	96	Spuren
3	1.5	2.0	THF (1.0)	60	48	17
4	2.5	2.5	THF (1.0)	60	48	61
5 ^a	2.5	2.6	THF (0.5)	60	24	72
6	2.5	2.6	Toluol (0.5)	60	24	59
7	1.5	1.75	Toluol (0.3)	100	48	29
8	1.5	1.75	DMF (0.3)	40	48	-
9	2.5	2.6	DMF (0.5)	60	25	41

Me O	+	HN N-Bn	NaH, Solvens, T ►	Me N-Bn	
123		126		125	

a) 126 wurde bei 60 °C in THF mit NaH versetzt und 1 h gerührt, dann erfolgte die Zugabe von Epoxid 123.

Das nun zugängliche Imidazolon 125 wurde im nächsten Schritt einer Oxidation des sekundären Alkohols zu Keton 127 unterzogen (Schema 16). Bei der Wahl des Oxidationsmittels musste darauf geachtet werden, dass die Doppelbindung des Imidazolonrings unter den Oxidationsbedingungen

unberührt bleibt. Ein geeignetes System für solche Umsetzungen ist Oxalylchlorid mit DMSO und Triethylamin bei tiefen Temperaturen, bekannt als Swern-Oxidation^[92] – eine milde Methode, sekundäre Alkohole zum entsprechenden Keton zu oxidieren. Der Umsatz mit diesem Oxidationsprotokoll im vorliegenden System war jedoch auch bei verlängerter Reaktionszeit stets unvollständig (Schema 16, oben).

Schema 16. Oxidation des Alkohols 125 zu Keton 127 durch Swern-Oxidation und mit Dess-Martin Periodinan.

Die Verwendung von Dess-Martin Periodinan^[93] hingegen führte bereits nach drei Stunden Reaktionszeit in hoher Ausbeute (86%) zu dem gewünschten Intermediat 127 (Schema 16, unten). Nachdem das Ringschlussubstrat 127 hergestellt werden konnte, sollte nun der Schlüsselschritt, die Halozyklisierung zu 129, durchgeführt werden. Studien zur Zyklisierung von Imidazolon-Systemen aus vorhergehenden Arbeiten hatten gezeigt, dass ein Lewis-basisches, aprotisches Lösungsmittel für die Zyklisierung notwendig ist (vgl. Abschnitt 4.1), weshalb Keton 127 zunächst unter diesen Standardbedingungen mit NBS in DMF umgesetzt wurde (Tabelle 2, Eintrag 1). Eine Reaktionskontrolle mit Dünnschicht-Chromatographie (DC) zeigte bereits nach einer Stunde kompletten Umsatz, die isolierten Produkte wurden jedoch als offenkettige Oxidationsprodukte 130 und 131 identifiziert. Die Verwendung von Selectfluor zur Erzeugung einer reaktiven Spezies führte nur zu Zersetzung (Tabelle 2, Eintrag 2). Die Zugabe von NEt₃ zur Reaktion von **127** mit NBS führte ebenfalls nur zu den Oxidationsprodukten 130 und 131 (Tabelle 2, Eintrag 3). Auch die Verwendung von elementarem Brom führte zu keiner Zyklisierung, stattdessen fand ebenfalls eine Oxidation der Imidazolonstruktur statt (Tabelle 2, Eintrag 4). Die Erzeugung eines Enolats aus dem Keton 127 ist essentiell für einen erfolgreichen Ringschluss, da sich gezeigt hatte, dass der Carbonylsauerstoff nicht Nukleophil genug für einen Angriff an dem aktivierten Imidazolonfragment ist. Obwohl Ketone im Gleichgewicht mit ihrer Enolform vorliegen können (Keto-Enol-Tautomerie), zeigten die Resultate der Umsetzungen mit NBS und Brom in DMF, dass das Gleichgewicht hauptsächlich auf der Seite des Ketons liegen muss und deshalb nur Produkte aus der Reaktion der Doppelbindung mit einem externen Nukleophil erhalten wurden (Tabelle 2, Eintrag 1, 3 und 4).

n-Hex Me	$N \xrightarrow{N-Bn} \xrightarrow{X^{\oplus}}$)))) Bn 1	n 0 N N-Bn 30	-Hex_O Me	N-Bn Me N-Bn 0 131 132
Eintrag	X ⁺ -Quelle	Base	Solvens	T [°C]	t [h]	Ergebnis
1	NBS	-	DMF	RT	1	130, 131, Zersetzung
2	Selectfluor	-	DMF	RT	3	Zersetzung
3	NBS	NEt ₃	DMF	RT	3	130 , 131 (50:50)
4	Br_2	NEt ₃	DMF	$-78 \rightarrow 0$	2	130 , 131 , 132 (46:36:18)
5	NBS	NaH	DMF	RT	48	unselektive Reaktion
6	NBS	KHMDS	DMF	RT	24	Zersetzung
7	NBS	KHMDS	DMF	60	16	Zersetzung
8	NBS	LDA	DMF	0	16	unselektive Reaktion
9	NBS	DIPEA	Dioxan	RT	2	Zersetzung

Tabelle 2. Versuche zum Ringschluss von 127 über eine halonium-induzierte Zyklisierung.

Das acide Proton in α -Position zu der Carbonylgruppe kann durch Verwendung einer geeigneten Base deprotoniert und so ein Enolat erzeugt werden. Je nach verwendeten Bedingungen ist die Enolatbildung, sowie die darauffolgende Reaktion, regio- und stereoselektiven Tendenzen unterworfen. Die Herausforderung bei der geplanten Umsetzung bestand nun in der selektiven Erzeugung eines Z-Enolats **133**, damit der nukleophile Sauerstoff des Alkoxids in räumlicher Nähe zu der Doppelbindung des Imidazolonringes steht. Darüber hinaus wurden Bedingungen benötigt, die eine *O*-Alkylierung vor einer *C*-Alkylierung bevorzugen (Schema 17).

Die benötigten Bedingungen wurden qualitativ nach dem HSAB-Prinzip^[94] formuliert: Während Basen mit kleinen, an Sauerstoff koordinierenden Metallionen wie Lithium bevorzugt *E*-Enolate bilden, und bei einer Reaktion mit Elektrophilen eher das *C*-Alkylierungsprodukt gebildet wird, sollten Basen mit großen, nicht-koordinierenden Metallionen die erwünschte *Z*-Enolatbildung und *O*-Alkylierung begünstigen. Um die Bildung des *Z*-Enolats zu bevorzugen wurde **127** also zunächst mit NaH oder KHMDS umgesetzt, was jedoch nur zu Zersetzung und damit zu unidentifizierbaren Gemischen führte (Tabelle 2, Eintrag 5-7). Dies änderte sich auch nicht durch Verwendung der sterisch anspruchsvollen

Base Lithiumdiisopropylamin (LDA, Tabelle 2, Eintrag 8). Die Ergebnisse lassen darauf schließen, dass nach der Reaktion der Doppelbindung kein intramolekularer Angriff des Carbonylsauerstoffs erfolgte, sondern die Oxidationsprodukte in einer Konkurrenzreaktion entstanden waren. Mögliche Reaktionswege zu den erhaltenen Oxidationsprodukten **130** und **131** führen über die Bildung einer Iminiumspezies **136a** oder **136b**, durch Öffnung des Bromiraniumions **134** ausgehend von den benachbarten Stickstoffen (Schema 18, Pfad B und C) als Konkurrenzreaktion zum nukleophilen Angriff des Sauerstoffs (Schema 18, Pfad A).

Schema 18. Mechanistische Überlegungen zu möglichen konkurrierenden Reaktionspfaden der Umsetzung von 127 mit NBS.

Um mehr Klarheit über die Möglichkeit zur Bildung des Enolats zu gewinnen, sollte versucht werden, das Enolat **133** über die Bildung eines Silylethers **137** abzufangen (Tabelle 3). Da Silylenolether, insbesondere TMS-Ether, empfindliche Verbindungen sind, wurde zur Reaktionskontrolle neben DC auch ¹H-NMR-Spektroskopie aus einem Aliquot des Reaktionsgemisches durchgeführt. Die Selektivität der *E*- oder *Z*-Enolatbildung unterliegt einer Lösungsmittelabhängigkeit, wobei polare, aprotische Lösungsmittel wie DMF die Bildung eines *Z*-Enolats begünstigen können.^[95] Aus diesem Grund wurde **127** zunächst mit NaH mit unterschiedlichen Silylierungsreagenzien in DMF getestet (Tabelle 3, Eintrag 1-4). Unter diesen Bedingungen wurde jedoch keine Reaktion von **127** beobachtet, weshalb das Lösungsmittel zu Dichlormethan gewechselt wurde. Auch hier wurde keine Produktbildung beobachtet, weder unter Verwendung von Triethylamin noch mit KHMDS als Base (Tabelle 3, Eintrag 5 und 6). Schließlich wurden Standardbedingungen – LDA in THF mit TBSCl oder TMSTf bei tiefen Temperaturen von -50 °C bzw. -78 °C – eingesetzt, aber auch hier wurde keinerlei Produktbildung beobachtet (Tabelle 3, Eintrag 7 und 8).

n-Hex Me 0 12	0 F N_N-Bn 27	R₃SiX, Base, ⁿ⁻ Solvens ►	Hex Me R ₃ Si (Z)-13	O N−Bn oder	R ₃ Si-O O Me <i>n</i> -Hex (E)-137
Eintrag	Base	Silylreagenz	Solvens	T [°C]	Ergebnis ^a
1	NaH	TBSTf	DMF	-50	Kein Umsatz
2	NaH	TMSTf	DMF	-50	Kein Umsatz
3	NaH	TBSCl	DMF	-15	Kein Umsatz
4	NaH	TESCI	DMF	-15	Kein Umsatz
5	NEt ₃	TMSTf	CH_2Cl_2	0°C	Kein Umsatz
6	KHMDS	TMSTf	CH_2Cl_2	0°C	Kein Umsatz
7	LDA	TBSCl	THF	-50 → 25	Kein Umsatz
8	LDA	TMSTf	THF	-78	Kein Umsatz

Tabelle 3. Getestete Bedingungen zum Abfangen des Enolats als Silylether.

a) Umsatz durch DC-Chromatographie und durch Auswertung des ¹H-NMR-Spektrum des Rohprodukts ermittelt.

Diese Ergebnisse warfen die Frage auf, ob die verwendeten Basen überhaupt geeignet sind, in α -Position zum Keton zu deprotonieren, oder ob die Bildung eines Enolats vorliegt, dieses aber nicht mit den Silylreagenzien reagiert. Um dieser Frage auf den Grund zu gehen, wurde mit Allylbromid (**138**) ein robusteres Elektrophil eingesetzt, um das Enolat **133** abzufangen. Somit sollte ein stabiles isolierbares Produkt **139** erhalten werden, da mit **138**, anders als mit den Silylreagenzien, eine *C*-Alkylierung erwartet wurde. Mit LDA in THF wurde bei tiefen Temperaturen tatsächlich die Bildung des alkylierten Produktes **139** beobachtet, wenn auch mit nur unvollständigem Umsatz von **127** (Schema 9a). Nachdem gezeigt werden konnte, dass eine α -Alkylierung von **127** möglich ist, wurde nun dazu übergegangen, die Durchführbarkeit dieser Reaktion mit der nicht-koordinierenden Base NaH in DMF zu überprüfen, was bei tiefen Temperaturen von -40 °C mit vollständigem Umsatz bewerkstelligt werden konnte (Schema 19b).

Schema 19. Alkylierung in α-Position mit Allylbromid (138) unter Verwendung von LDA und NaH.

Basierend auf den Resultaten der Allylierung sollte nun in einer Reaktionsfolge zunächst das Enolat gebildet und durch anschließende Erzeugung der Haloniumspezies der Ringschluss vollzogen werden. Hierfür wurde zunächst Keton **127** bei -50 °C mit NaH deprotoniert und nach 15 min bei gleicher Temperatur NBS hinzugegeben. Diese Bedingungen führten jedoch nicht zu dem gewünschten Ringschlussprodukt, sondern zu der α-Bromierten Spezies **140** in 73% Ausbeute (Tabelle 4, Eintrag 1). Durch Zugabe der Reagenzien in umgekehrter Reihenfolge, um zunächst das Bromoniumion **134** zu generieren und anschließend ein Enolat zu erzeugen, wurde bei tiefen Temperaturen von -40, bzw. -20 °C wiederum nur Zersetzung, bei der Bromierung bei Raumtemperatur und Zugabe von NaH bei 0 °C hingegen ausschließlich das oxidierte Produkt **132** erhalten (Tabelle 4, Eintrag 2 und 3). In THF konnte nur Zersetzung beobachtet werden (Tabelle 4, Eintrag 4).

Tabelle 4. Auszug aus den Reaktionen zur Zyklisierung: α-Bromierung vs. Reaktion der Doppelbindung

127 129 ^{TO} 132 ^O 140	n-Hex Me N N N N N N Bn 127	Me N O N Bn 129	n-Hex Me 132	n-Hex O Br O Me N N N- 140
--	--	-----------------------	--------------------	----------------------------------

Eintrag	Schritt 1	Schritt 2	Solvens	Ergebnis	Ausbeute
1	NaH, -50 °C	NBS -50 °C	DMF	140 , d.r. = 50:50	73% ^a
2	NBS, -40 °C	NaH, -20 °C	DMF	Zersetzung	-
3	NBS, RT	NaH, 0 °C	DMF	132	94%
4	NBS, RT	NaH, 0 °C	THF	Zersetzung	-

a) Ansatzgröße: 0.08 mmol, die Ausbeute sank bei größeren Ansätzen auf 35%.

Die erhaltenen Ergebnisse deuteten darauf hin, dass zwar die Bildung eines Enolats **133** mit starken Basen erfolgen kann, aber der intramolekulare Angriff des Enolats am aktivierten Imidazolon möglicherweise aufgrund stereoelektronischer Faktoren nicht stattfinden kann. Die Bildung des *E*-Enolats sowie die *C*-Alkylierung sind unter den gewählten Bedingungen vermutlich immer noch zu stark begünstigt und somit der intramolekulare Angriff des Enolatsauerstoffs nicht möglich. Die Funktionalisierung in α -Position zum Keton in Substrat **127** konnte aber mit guten Ausbeuten mit dem geeigneten Elektrophil erreicht werden. Es wurde beschlossen einen anderen Syntheseweg über den Ringschluss des Alkohol-Substrats **125** zu verfolgen, in dessen Verlauf die Oxidationsstufe im Oxazolinfragment des bizyklischen Gerüsts erst im letzten Schritt durch eine *C*,*H*-Oxidation eingestellt werden sollte.

4.3 Konstruktion der Oxazolinstruktur durch C, H-Oxidation

Die gezielte Funktionalisierung der eigentlich reaktionsträgen, aliphatischen Kohlenwasserstoffbindung (C,H-Oxidation) ist ein eleganter Weg, die Effizienz von Synthesen zu steigern.^[96] Kann eine bestimmte Funktionalität zu einem späten Zeitpunkt im Syntheseverlauf selektiv eingeführt werden, entfallen aufwändige Manipulationen zur Schützung von dieser Funktionalität sowie eventuelle Modifikationen der Oxidationsstufen, um die Reaktivität im Molekül zu beeinflussen, was sich positiv auf die Syntheseökonomie auswirken kann. Das punktgenaue Installieren funktioneller Gruppen in ein strukturell komplexes Molekülgerüst durch die Oxidation einer bestimmten, einzelnen C.H-Gruppe ist bisher jedoch noch einigen Faktoren unterworfen, die substratspezifisch sind und bei der Syntheseplanung berücksichtigt werden müssen. Eine Herangehensweise, diese substratspezifischen Einschränkungen zu umgehen, ist die Nutzung von dirigierenden Gruppen. Sind solche nicht im Molekül vorhanden, hängt die Position, an der die C,H-Bindung oxidiert wird, von induktiven und sterischen Effekten ab. Generell wird die elektronenreichste C,H-Bindung bevorzugt oxidiert, wie z.B. solche, die sich in einer tertiären oder benzylische Positionen befinden. Sterische Faktoren kommen dann zum Tragen, wenn die elektronenreichste C,H-Bindung durch raumfüllende Nachbargruppen abgeschirmt wird, und deshalb keine Reaktion eingehen kann. Sind jedoch Heteroatome im Molekül vorhanden, kommt noch ein weiterer Faktor hinzu. So können C,H-Bindungen durch Konjugation oder Hyperkonjugation durch benachbarte Sauerstoffatome für Oxidationen aktiviert werden. Die nichtbindenden Elektronen des Sauerstoffs können, sofern die Orbitale richtig angeordnet sind, durch Hyperkonjugation zur Elektronendichte der benachbarten *C*,*H*-Bindung beitragen.^[97] Dies führt dazu, auch C,H-Bindungen neben einem Sauerstoff eine bevorzugte Position für C,Hdass Funktionalisierungen darstellen, wie an Tetrahydrofuranderivaten gezeigt wurde.^[98] Ebenso wurde über die Oxidation von sekundären und tertiären C,H-Bindungen in Nachbarschaft zu Stickstoffen berichtet.^[99] Übertragen auf die Herausforderung in der Synthese des Naturstoffs 29, nämlich dem Aufbau der Doppelbindung im intakten Oxazolinfragment des bizyklischen Gerüsts, ergab sich vor diesem Hintergrund eine neue Synthesestrategie: Zur Konstruktion der Doppelbindung im putativen bizyklischen Skelett des Naturstoffs HB-372 peak 8 (29) sollte das Dihydroanalogon 141 hergestellt werden und im letzten Syntheseschritt am Oxazolidinring eine C,H-Oxidation durchgeführt werden (Schema 20a).

Schema 20. a) Positionen, die in einer *C*,*H*-Oxidation begünstigt sein könnten; b) Geplanter Synthesepfad zu Naturstoff 29 über die *C*,*H*-Oxidation des Dihydroanalogs 141.

Begünstigte Positionen im Bizyklus **141** für diese Umsetzung sind die tertiäre *C,H*-Bindung an *C*-2 durch Hyperkonjugation des benachbarten Sauerstoffs, sowie *C*-3 durch Überlappung des Stickstoffs. Ferner könnte auch die dritte Position, die *C,H*-Bindung an *C*-1', reagieren. Aufgrund der hohen Ringspannung sowie der elektronenziehenden Carbonylgruppe in Nachbarschaft ist diese Position jedoch vermutlich weniger begünstigt (Schema 20a). Zur Synthese des Dihydroanalogons **141** war ein halonium-induzierter Ringschluss ausgehend von Imidazolon **125** geplant, der zu dem bizyklischen Alkohol **142** reagieren sollte, welcher durch Oxidation in das *N*-geschützte Dihydroanalogon **143** überführt und anschließend hydrogenolytisch entschützt werden sollte (Schema 20b).

4.3.1 Synthese des Dihydro-Naturstoff Analogs

Aufbauend auf früheren Studien zum halonium-induzierten Ringschluss an Modellsubstrat **119** (vgl. Abschnitt 4.1, Schema 13) sollte das Dihydroanalog **141** von HB-372 peak 8 (**29**), das sich von der Struktur des Naturstoffs **29** nur in der Oxidationsstufe des Oxazolinrings unterscheidet, ausgehend von Imidazolon **125** durch den intramolekularen Angriff der Alkoholfunktion an der aktivierten Doppelbindung aufgebaut werden. Dafür sollte **125** mit einem elektrophilen Halogenierungsreagenz NXS umgesetzt werden und zu einem Bromiraniumion **144** reagieren (Schema 21). Diese aktive Spezies hat eine tetraedrische Geometrie, die gemäß der Baldwin-Regeln zu Zyklisierungen in einem 5*-exo-tet*-Modus bevorzugt zur Bildung von 5-Ringen führen sollte.^[100] Experimente mit Diolsubstrat **119** hatten jedoch gezeigt, dass unter den Ringschlussbedingungen bevorzugt der 6-Ring entstanden war (vgl.

Abschnitt 4.1). Dies kann auf die Bildung einer Iminiumspezies zurückzuführen sein, die als Folge einer Öffnung des tetraedrischen Bromiraniumions **144** durch den benachbarten Stickstoff entsteht und nach den Baldwin-Regeln bevorzugt einen 6-*endo-trig*-Ringschluss eingehen sollte. Im vorliegenden Ringschlusssubstrat war zwar nur eine nukleophile Funktion, der sekundäre Alkohol, im Molekül vorhanden – und somit nur die Bildung des 5,5-Bizyklusses **142** möglich, der Zyklisierungsmodus kann aber einen Einfluss auf die Diastereoselektivität haben. Während die Zyklisierung über die Haliraniumionen **144a** oder **144b** immer durch einem Rückseitenangriff erfolgen wird und somit die Konfiguration an *C*-6 abhängig von *C*-3 festgelegt ist (*anti*-Addition), erfolgt der intramolekulare Angriff des Alkohols in **145** an einem planaren Iminiumkohlenstoff und kann somit entweder in Stereozentrum *C*-3 das stabilste Isomer bilden, oder zu einer gänzlich unselektiven Mischung aus allen vier möglichen Diastereomeren führen (Schema 21).

Schema 21. Überlegungen zum Ringschlussmodus des Imidazolons 127 über das Haliraniumion 144 oder Iminiumion 145.

Für die Zyklisierung der Imidazole **125** wurden also zwei Hauptdiastereomere von **142** erwartet, die sich im Stereozentrum *C*-7 und *C*-8 unterscheiden, falls der Ringschluss über ein Haliraniumion **144** verläuft, oder Diastereomere die sich nur an *C*-8 unterscheiden, was bei einer Reaktion über ein Iminiumintermediat **145** der Fall sein sollte, da sich am planaren Iminiumintermediat **145** bevorzugt der energetisch begünstigte Bizyklus bilden kann. Für den Ringschluss wurden die Diastereomere des Imidazolons **125** zunächst separat unter Zyklisierungsbedingungen mit NBS in DMF umgesetzt (Schema 22).

Schema 22. Zyklisierung des a) trans-Isomers 125 und b) des cis-Isomers 125.

Nach wässriger Aufarbeitung wurden die Ringschlussprodukte ausschließlich als Alkohole isoliert, die aus einem Halogen-Wasseraustausch resultierten. Während die Bromzyklisierung von *trans*-**125** zu zwei Hauptdiastereomeren *trans-trans-trans*-**142** und *trans-cis*-**142** in einem Verhältnis von 38:62

führte (Schema 22a), resultierten aus der Zyklisierung von *cis*-**125** ein Diastereomerenverhältnis der Hauptdiastereomere *cis-trans-trans*-**142** und *cis-trans-cis*-**142** von 87:13 (Schema 22b, Tabelle 5, Eintrag 2). Die Produkte aus *trans*-**125** waren jedoch in Lösung instabil und zersetzten sich innerhalb weniger Stunden. Zur Untersuchung der Diastereoselektivität in Abhängigkeit der Halogenquelle wurde deshalb das *cis*-Imidazolon **125** mit verschiedenen Halogenierungsreagenzien umgesetzt (Tabelle 5).

Tabelle 5. Diastereoselektivität der Ringschluss-Reaktion in Abhängigkeit des verwendeten Halogens.

Bedingungen: NXS (1.3 Äq.) in DMF (0.3 M); a) isolierte Gesamtausbeute; b) nur geöffnete Produkte wurden isoliert.

Hierfür wurden die elektrophilen Halogenierungsmittel mit **125** in DMF bei Raumtemperatur gerührt. *N*-Iodsuccinimid (NIS) führte dabei zur Bildung des bizyklischen Produkts **142** in hohen Ausbeuten (82%) mit einen Diastereomerenverhältnis von 56:44 (Tabelle 5, Eintrag 1). *N*-Iodsuccinimid bildet ein Iodiraniumion, das aufgrund der Größe und der leichten Polarisierbarkeit von Iod mit einer hohen Wahrscheinlichkeit über ein Iminiumion **145** reagiert, wodurch eine Stereokontrolle durch den Rückseitenangriff des Nukleophils nicht mehr vorhanden ist. *N*-Chlorsuccinimid (NCS) hingegen führte zu keinem Ringschluss, während mit Selectfluor hauptsächlich ein Diastereomer in sehr niedriger Ausbeute (20%) erhalten wurde (Tabelle 5, Eintrag 3 und 4). Da Fluor aufgrund seiner hohen Elektronegativität, anders als die Halogene Chlor, Brom und Iod, nicht als positiv geladenes Haloniumion übertragen wird und kein Haliranium bildet, muss die Reaktion über ein kationisches Intermediat ablaufen. Zusammenfassend konnte der Ringschluss mit unterschiedlichen Selektivitäten abhängig von dem verwendeten Reagenz durchgeführt werden. Die Resultate geben einen Hinweis auf einen bevorzugten Reaktionsweg über die Iminiumspezies **145**, wobei mit abnehmender Polarisierbarkeit des Halogens der Anteil an Produkten, die eher über das Haloniumintemediat gebildet wurden, zunimmt. n-Hex

142	do Bn	143 ^O	3n 146	' ∕ Bn ○ ○ ○ Me	130	Ö
Eintrag	Oxidant	Solvens	T [°C]	143 [%]	146 [%]	130 [%]
1	Dess-Martin Periodinan	CH ₂ Cl ₂	0	-	62	-
2	Swern-Oxidation	CH_2Cl_2	-78 → RT	Keine Reaktion		
3	PCC	CH_2Cl_2	40	94	-	-
4	BiPh ₃ CO ₃	CH_2Cl_2	RT	18	-	-
5	Oxone, Tempo, TBAB	CH_2Cl_2	RT	-	-	80
6	H ₂ O ₂ , NaOH	CH_2Cl_2	RT	-	-	53
7	Pd(OAc) ₂ , PPh ₃	THF	RT	-	-	42

Nach der geglückten Umsetzung des Imidazols 125 zur bizyklischen Struktur 142 sollte nun die Oxidation des neu gebildeten, sekundären Alkohols folgen. Für die Oxidation des sekundären Alkohols musste berücksichtigt werden, dass es sich um eine Halbaminalstruktur handelt, die gegenüber aciden, wässrigen Bedingungen empfindlich ist. Entsprechend wurde zunächst Dess-Martin-Periodinan als mildes Oxidationsmittel verwendet, was jedoch nur zu einer Acetylierung des Alkohols führte (Tabelle 6, Eintrag 1, \rightarrow 146). Unter den milden Bedingungen einer Swern-Oxidation wurde hingegen keine Reaktion beobachtet (Tabelle 6, Eintrag 2). Das Corey-Suggs Reagenz^[101] Pyridiniumchlorochromat (PCC) wurde als leicht saures Oxidationsmittel in Dichlormethan eingesetzt, und lieferte bei leicht erhöhter Temperatur das gewünschte Produkt in exzellenten Ausbeuten von 94% (Tabelle 6, Eintrag 3). Die Oxidation mit Bismuthorganyl BiPh₃CO₃ führte ebenfalls zu dem erwünschten Produkt, allerdings in geringerer Ausbeute von nur 18% (Tabelle 6, Eintrag 4). Wässrige Oxidationssysteme wie H₂O₂/NaOH oder Oxone/TEMPO/Tetrabutylammoniumbromid^[102] führten zur Öffnung der bizyklischen Struktur und zu Spezies 130 (Tabelle 6, Eintrag 5 und 6). Das gleiche Ergebnis wurde mit dem Palladium-basierten System Pd(OAc)₂ und Triphenylphosphin beobachtet (Tabelle 6, Eintrag 7).

Da Benzylschutzgruppen im Allgemeinen unter hydrogenolytischen Bedingungen abgespalten werden, welche auch zur Hydrierung von Doppelbindungen führen können, war die Entfernung der Schutzgruppe vor dem Aufbau der Doppelbindung notwendig. Dies wurde zunächst mit 143 unter milden Bedingungen in EtOAc mit Pd/C und H2 versucht, es wurde jedoch keine Reaktion beobachtet (Schema 23a). Es stellte sich heraus, dass die Abspaltung von N-Benzylgruppen an Hydantoinstrukturen eine große Herausforderung ist, so wurde an Testsystem 147 auch unter 15 bar Wasserstoffdruck im

Me

Reaktor oder mit Ammoniumformiat in siedendem Methanol keinerlei Abspaltung der Benzylgruppe beobachtet (Schema 23b). Da eine Abspaltung der Schutzgruppe unter moderaten Bedingungen nicht zu realisieren war, musste an diesem Punkt die Syntheseroute mit einer anderen Schutzgruppe wiederholt werden.

Schema 23. Versuche zur Abspaltung der N-Benzylschutzgruppe von a) Bizyklus 143, b) Testsystem 147.

Eine Schutzgruppe, die ähnlich zur Benzylschutzgruppe unter den basischen und sauren Bedingungen der Syntheseroute stabil ist, ist die *para*-Methoxybenzyl-Schutzgruppe (PMB). Die *para*-Methoxygruppe macht die Benzylgruppe jedoch anfällig gegenüber oxidativen Bedingungen und ermöglicht deren Abspaltung auch von Imidstrukturen unter moderaten oxidativen Bedingungen.^[103] Die Syntheseroute für die Substrate mit der *N*-PMB-Schutzgruppe wurde leicht geändert, und die Öffnung des Epoxids mit *N*-PMB-Hydantoin **149** durchgeführt (Tabelle 7).

Tabelle 7. Ermittlung der Bedingungen zur Öffnung von Epoxid 123 mit PMB-Hydantoin 149.

Eintrag	Base	Solvens	T [°C]	t	Ausbeute [%]
1	NaH	Toluol	60	2 d	Spuren
2	KOtBu	DMSO	60	2 d	21
3	KOtBu	DMSO	100	24 h	29
4	KOtBu	DMSO	120 (MW)	30 min	14-38
5	KOtBu	DMF	120 (MW)	30 min	45

Mit NaH in Toluol bei 60 °C wurde Produkt **150** jedoch auch nach zwei Tagen nur in Spuren gebildet, während das unverbrauchte Edukt **149** reisoliert wurde (Tabelle 7, Eintrag 1). Durch Verwendung eines superbasischen Mediums mit Kalium*-tert*-Butanolat (KOtBu) in DMSO^[104]konnte die Ausbeute leicht

gesteigert werden (21%), wenngleich die Reaktionszeit bei mehr als zwei Tagen lag (Tabelle 7, Eintrag 2). Die Erhöhung der Reaktionstemperatur auf 100 °C verringerte die Reaktionszeit in dem Maße, dass nach 24 h bereits 29% Ausbeute erhalten wurde (Tabelle 7, Eintrag 3). Um die Reaktionszeit noch weiter zu verkürzen wurde die Reaktion in der Mikrowelle durchgeführt, wodurch höhere Temperaturen und Reaktionen unter Druck möglich waren. Tatsächlich zeigte sich bereits nach 30 min eine Steigerung der Ausbeute auf 38%. Unter diesen Bedingungen trat jedoch in einigen Fällen eine Zersetzung des Lösungsmittels DMSO ein, was nicht nur die Reaktionsführung unberechenbar, sondern auch die Ausbeute unzuverlässig machte (Tabelle 7, Eintrag 4). Diesem Problem wurde durch Verwendung von DMF anstelle des DMSO begegnet, womit **150** in gleichbleibender moderater Ausbeute von 45% zugänglich war (Tabelle 7, Eintrag 5).

Ausgehend von Produkt **150** erfolgte die Reduktion zu Imidazolon **151** mit LiAlH₄ in THF mit anschließender sauren Aufarbeitung in 79% Ausbeute, gefolgt von dem Ringschluss zu **152** mit NBS in DMF, wobei **152** ohne Aufreinigung als Rohprodukt direkt weiter mit PCC umgesetzt wurde und so **153** mit 41% Ausbeute über zwei Schritte isoliert werden konnte (Schema 24). Alle Schritte wurden ohne Trennung der Diastereomere durchgeführt, um am Ende der Synthesesequenz die vier möglichen Diastereomere von **141** zu erhalten.

Schema 24. Überarbeitete Synthese des Dihydroanalogs 141 unter Verwendung einer *N*-PMB Schutzgruppe.

Die Abspaltung der *N*-PMB-Schutzgruppe wurde nach einer Literaturvorschrift oxidativ durch Verwendung von Cerammoniumnitrat (CAN) in MeOH^[103b] in 20% Ausbeute bewerkstelligt. Mit dem milderen DDQ hingegen erfolgte keine Reaktion. Die geringe Ausbeute ist dem Produktverlust während der Aufarbeitung aber auch dem hohen Anteil an Salzen in der Reaktionslösung geschuldet, wodurch ein nicht erheblicher Teil des Produkts **141** verloren wurde. Trotzdem wurde auf diese Weise ein erster Meilenstein, die Darstellung der Dihydrostruktur **141** des putativen Naturstoffs, erreicht.

4.3.2 Versuche zur Oxidation des Dihydroanalogs durch C, H-Aktivierung

Nach erfolgreicher Synthese des Dihydroanalogs **141** wurde nun der zweite Schlüsselschritt, die *late-stage C,H*-Funktionalisierung in Angriff genommen. Hierfür wurden Methoden ausprobiert, welche an ähnlichen Systemen erfolgreich waren oder Oxidation an Positionen in Nachbarschaft zu Heteroatomen begünstigen. Oxidationssysteme, die eine dirigierende Gruppe (Directing Group) benötigen, wie einige palladium- oder eisenkatalysierte Oxidationsmethoden, wurden nicht angewendet. Für die Reaktion wurden Systeme aus einer Übergangsmetallverbindung und einem starken Oxidationsmittel kombiniert, wie CrO_3 oder $RuCl_3$ mit NaIO₄ (Tabelle 8, Eintrag 1 und 2), wobei möglicherweise aufgrund der schlechten Löslichkeit von NaIO₄ in organischen Lösungsmitteln kein Umsatz oder nur Zersetzung beobachtet wurde. Der Wechsel zu *m*CPBA als Oxidationsmittel brachte keine Verbesserung (Tabelle 8, Eintrag 3).

Eintrag	Oxidationsmittel	Solvens	T [°C]	Ergebnis
1	CrO ₃ , NaIO ₄	EtOAc/MeCN/H ₂ O	-40	Kein Umsatz
2	RuCl ₃ , NaIO ₄	EtOAc (abs.)	-40	Zersetzung
3	RuCl ₃ , <i>m</i> CPBA	MeCN/EtOAc	-40	Zersetzung
4	RuCl ₃ , <i>n</i> Bu ₄ NIO ₄	EtOAc/MeCN/H ₂ O	-40	Spuren 156
5	CrO_3 , nBu_4NIO_4	MeCN/EtOAc	-40	156 (50%)
6	Ag(II)picolinate	H ₂ O/TFA	RT	Kein Umsatz
7	Pd(OAc) ₂ , PhI(OAc) ₂	CH_2Cl_2	RT	Kein Umsatz
8	DMDO	CH_2Cl_2	RT	Kein Umsatz

Verwendung von Tetrabutylammoniumperiodat *n*Bu₄NIO₄, das eine bessere Löslichkeit aufwies, führte sowohl mit CrO₃ als auch mit RuCl₃ zur Bildung eines Oxidationsprodukts, das jedoch als Keton **156** identifiziert wurde (Tabelle 8, Eintrag 4 und 5). Während mit dem Oxidationssystem RuCl₃/*n*Bu₄NIO₄ nur Spuren des Produkts per DC zu beobachten waren, konnte mit CrO₃/*n*Bu₄NIO₄, angelehnt an eine Vorschrift von Lee *et al.*,^[98a] Keton **156** in 50% Ausbeute isoliert werden. Wichtig war dabei, von einer wässrigen Aufarbeitung abzusehen und die Reaktionsmischung direkt über Kieselgel zu filtrieren, da nach Zugabe von Wasser zu dem Reaktionsgemisch kein Produkt isoliert werden konnte. Mildere

Systeme wie Silberpicolinat, das unter anderem in der Totalsynthese von Massadin von der Arbeitsgruppe von Baran zur selektiven *C*,*H*-Oxidation von Imidazolidinstrukturen eingesetzt wurde^[99a] (Tabelle 8, Eintrag 6), oder Palladiumacetat in Verbindung mit Phenyliod(III)diacetat (PIDA, Tabelle 8, Eintrag 7) zeigten keinen Umsatz, ebenso wurde mit DMDO keine Reaktion verzeichnet (Tabelle 8, Eintrag 8). Die Bildung des Ketons **156** könnte durch Oxidation des sekundären Kohlenstoffs in der Seitenkette entstanden sein, was zunächst zur Bildung eines Halbacetals führen und bei Aufarbeitung unter Abspaltung von Hexanol zu dem beobachteten Keton **156** reagieren kann. Da die *C*,*H*-Oxidationen substratspezifisch an der elektronenreichsten Stelle erfolgt und keine dirigierende Gruppen im Molekül vorhanden sind, die eventuell zur Überwindung der Selektivität genutzt werden könnten, wurden keine weiteren Bedingungen getestet.

4.3.3 Oxidation der Ketonverbindung

Die *C*,*H*-Oxidation hatte nur zur Bildung des Ketons **156** geführt, welches nun im weiteren Syntheseverlauf genutzt werden sollte, um über ein Enolat die innerzyklische Doppelbindung einzuführen. Dies sollte unter Verwendung von starken Basen zur Deprotonierung in α -Position zur Carbonylgruppe mit anschließender TMS-Schützung und Isomerisierung mit einem Palladiumkatalysator in einer Saegusa-Ito-Oxidation möglich sein. Für diese Versuche wurde das PMB-geschützte Keton **157** durch Oxidation des geschützten Bizyklus **153** mit CrO₃/*n*Bu₄NIO₄ hergestellt, da die Abspaltung der Schutzgruppe nur sehr schlechte Ausbeuten lieferte (vgl. Schema 24). Dies gelang, ohne dass eine Oxidation der Schutzgruppe aufgetreten war, mit 61% Ausbeute (Schema 25).

Schema 25. Oxidation des N-PMB-Bizyklus 153 zur Erzeugung der Ketofunktion in 157.

Keton **157** sollte unter thermodynamischen Bedingungen zu Enolat **158** umgesetzt werden, weshalb zunächst versucht wurde, Bedingungen für die selektive Enolatbildung zu finden. Zur Erzeugung der thermodynamischen Kontrolle wurde zunächst bei Raumtemperatur in DMF **157** mit LDA deprotoniert und TIPSCl zum Abfangen des Enolats hinzugegeben (Tabelle 9, Eintrag 1). Unter diesen Bedingungen wurde jedoch nur Zersetzung der bizyklischen Struktur beobachtet. Unter milderen Bedingungen mit Triethylamin und TBSCl bei 60 °C wurde kein Umsatz beobachtet (Tabelle 9, Eintrag 2), ebenso wenig wie mit TMSN₃ in THF bei Raumtemperatur (Tabelle 9, Eintrag 3). Auch mit Comins-Reagenz, das zur Triflierung von Enolaten eingesetzt wird,^[105] wurde kein Umsatz beobachtet (Tabelle 9, Eintrag 4).

Me d	R Base, R-X, Solvens Me 57 O	О	+	N N PMB 159 O
Eintrag	Base, R-X	Solvens	T [°C]	Ergebnis
1	LDA, TIPSC1	DMF	RT	Zersetzung
2	Et ₃ N, TBSCl	DMF	60	Kein Umsatz
3	$TMSN_3$	THF	RT	Kein Umsatz
4	KHMDS, Comins Reagenz	THF	0	Kein Umsatz

Tabelle 9. Versuche zur Bildung des thermodynamisch bevorzugten Enolats 158.

Nachdem die Isolierung der Silylspezies **158** nicht erfolgreich war, wurde versucht, die Oxidation von **157** zur innerzyklischen Doppelbindung in einer Reaktionskaskade durch Zugabe eines Palladiumkomplexes in einer Saegusa-Oxidation zu erzeugen (Tabelle 10). Dafür wurde zunächst Keton **157** mit LHMDS in THF bei Raumtemperatur umgesetzt und TMSCl zum Abfangen des Enolats als TMS-Ether hinzugefügt. Nach 30 min wurde Tris(dibenzylideneacetone)dipalladium (Pd₂(dba)₃, 10 mol%) hinzugefügt und bei gleicher Temperatur gerührt. Es wurde jedoch auch nach 16 h Reaktionszeit nur Edukt **157** reisoliert (Tabelle 10, Eintrag 1).

Tabelle 10. Versuche zur Einführung der Doppelbindung an Keton 157.

Eintrag	Schritt 1	Schritt 2	Solvens	T [°C]	Ergebnis
1 ^a	LHMDS, TMSC1	$[Pd_2(dba)_3]$	THF	RT	Edukt reisoliert
2 ^a	LDA, TMSCl	[Pd ₂ (dba) ₃], Diallylcarbonat	THF/MeCN	RT	Zersetzung
3ª	LDA, TMSCl	[Pd ₂ (dba) ₃], Diallylcarbonat	DMF	RT	Zersetzung
4	LHMDS, PhSeCl,	H_2O_2	THF	0	Zersetzung
5	DDQ	-	MeCN	RT	Edukt reisoliert
6	AIBN, NBS	-	CH ₃ Cl	60	Zersetzung
7 ^a	-	Pd(TFA) ₂ , O ₂ , AcOH	DMSO	55	Edukt reisoliert

a) Es wurden katalytische Mengen (10 mol%) Pd-Spezies eingesetzt.

Da LDA bereits erfolgreich bei der Bildung von Enolat **133** (vgl. Abschnitt 4.1) eingesetzt wurde, wurde nun frisch hergestelltes LDA zur Deprotonierung von **157** verwendet. Umsetzung von **157** mit TMSCl

und Pd₂(dba)₃ mit Zusatz von Diallylcarbonat führte in THF jedoch nur zu Zersetzung, ebenso wie in DMF (Tabelle 10, Eintrag 2 und 3). Auch der Versuch, die Doppelbindung durch Einbau einer Selenylgruppe mit anschließender Eliminierung durch Oxidation mit H₂O₂ zu erzeugen, schlug fehl (Tabelle 10, Eintrag 4). Weitere Versuche, über Keton 157 die Doppelbindung in einem Schritt im Oxazolidinring zu installieren, wie die Verwendung von DDQ oder durch radikalische Bromierung mit AIBN/NBS, schlugen ebenfalls fehl (Tabelle 10, Eintrag 5 und 6). Ebenso wurden Versuche zur aeroben Dehydrogenierung von 157 mit dem System Pd(TFA)₂ und AcOH in DMSO unter Sauerstoffatmosphäre, eine Methode zur Dehydratisierung von Cyclohexenonen,^[106] durchgeführt, die aber auch nach verlängerter Reaktionszeit von sieben Tagen keinerlei Produktbildung zeigten (Tabelle 10, Eintrag 7). Mit der Herstellung des Dihydroanalogs 141 wurde erfolgreich das Grundgerüst der putativen Naturstoffstruktur 29 aufgebaut, der letzte Schritt, die Einführung der Doppelbindung im bizyklischen System, konnte jedoch nicht verwirklicht werden. Die Versuche zur C,H-Oxidation zeigten eine unerwartete Reaktivität der Seitenkette, wodurch statt der erwünschten Oxidation im Bizyklus Keton 156 erhalten wurde. Die Anläufe, dieses Resultat zu nutzen, und 157 in ein α,β -ungesättigtes Keton 160 zu überführen schlugen jedoch fehl. Aufgrund des langen Synthesewegs zu 157, der in einigen Stufen und besonders bei dem Aufbau der Hexylseitenkette unter niedrigen Ausbeuten und schlechten Selektivitäten zu leiden hatte, sollte im nächsten Schritt eine Abgangsgruppe in Alkohol 125 installiert werden, welche nach dem halonium-induzierten Ringschluss unter Ausbildung einer Doppelbindung eliminiert werden sollte.

4.4 Versuche zur Einführung der Doppelbindung durch eine Abgangsgruppe

Da die *C*,*H*-Oxidation an Dihydroanaolg **141** nicht geglückt war, sollte nun zur Konstruktion der Doppelbindung im Oxazolinring eine Abgangsgruppe installiert und nach dem Zyklisierungsschritt unter Ausbildung eines Alkens eliminiert werden. Die Wahl fiel auf Selenylverbindungen, die als elektrophiles PhSeX unter Verwendung einer starken Base in α -Position zu Carbonylgruppen in **127** installiert werden können. Die resultierenden Selenylether **161** sind stabil, können aber unter oxidativen Bedingungen einfach in Selenyloxide überführt werden, die leicht unter Ausbildung einer Doppelbindung eliminieren.^[107] Da Phenylselenylhalogenide als Elektrophile auch mit Doppelbindungen reagieren können, was im vorliegenden Fall zu einer unerwünschten Nebenreaktion führen würde, wurde zuerst das Keton **127** mit der starken, sterisch anspruchsvollen Base LDA deprotoniert und erst nach einer Stunde Reaktionszeit das Selenylhalogenid PhSeBr hinzugegeben (Tabelle 11, Eintrag 1).

	n-Hex Me	O N N-Bn -	Base PhSeX THF, T	<i>n</i> -He M	x O SePh O e N N-	Bn
		127			161	
Eintrag	PhSeX	Base (Äq.)	T [°C]	t [h]	Umsatz [%]	Ausbeute [%]
1	PhSeBr ^{a)}	LDA (1.0)	-78	1	70	61 ^b
2	PhSeBr	LDA (1.0)	-78 → 0	2	100	37 ^b
3	PhSeCl	LDA (1.0)	-78	3	80	<10 ^b
4	PhSeCl	LHMDS (2.1)	-78	1	n.d.	47
5	PhSeCl ^{a)}	LHMDS (2.1)	-78	0.7	n.d.	71
6	PhSeCl ^{a)}	NaHMDS (2.1)	-78	1	n.d.	40
7	PhSeCl ^{a)}	KHMDS (2.1)	-78	1	n.d.	42

Tabelle 11. Ermittlung der Bedingungen zur Einführung der Phenylselenylgruppe an Keton 127.

a) Umkristallisiert aus CHCl₃; b) Reaktion an der Doppelbindung als Nebenprodukt.

Durch DC-Kontrolle wurde festgestellt, dass unter diesen Bedingungen nach etwa einer Stunde Reaktionszeit Zersetzungs- oder Nebenprodukte gebildet wurden. Die Reaktion wurde deshalb trotz unvollständiger Umsetzung nach dieser Zeit abgebrochen und das Produkt in 61% Ausbeute isoliert (Tabelle 11, Eintrag 1). Eine Verlängerung der Reaktionszeit sowie langsames Erwärmen auf 0 °C konnte zwar dem Umsatz steigern, gleichzeitig wurde jedoch der Anteil an Zersetzungs- und Nebenprodukten größer, sodass die Ausbeute dramatisch sank (Tabelle 11, Eintrag 2). Es wurde daraufhin PhSeCl als elektrophile Spezies eingesetzt, mit LDA als Base war jedoch keine Verbesserung zu erkennen (Tabelle 11, Eintrag 3). Es zeigte sich, dass durch Verwendung von Phenylselenylchlorid in Verbindung mit LHMDS die Reaktionszeit erheblich verkürzt werden konnte, wenngleich die Ausbeute mit 47% immer noch gering war (Tabelle 11, Eintrag 4). Durch Verwendung von umkristallisiertem PhSeCl wurde die Ausbeute auf ~70% optimiert (Tabelle 11, Eintrag 5). Die Kombination aus PhSeCl mit anderen Basen, wie NaHMDS oder KHMDS hingegen führte zu keiner Verbesserung der Ausbeute (Tabelle 11, Eintrag 6 und 7). Die α -funktionalisierte Verbindung 161 wurde als Diastereomerengemisch im Verhältnis von etwa 50:50 erhalten. Die Diastereomere von 161 ließen sich nicht durch gängige Methoden wie Säulenchromatographie trennen, weshalb die folgenden Reduktionen mit dem Diastereomerengemisch von 161 durchgeführt wurden, was zu vier möglichen Diastereomeren von 162 führen kann (Tabelle 12). Tatsächlich zeigte sich, dass Standardreduktionsbedingungen wie NaBH4 in MeOH oder LiAlH4 in Ethern zu unselektiv waren und zu einem Gemisch aus vier Diastereomeren von 162 sowie zu Produkten 125 und 127 unter Abspaltung der Selenylgruppe führten (Tabelle 12, Eintrag 1-3). Die Zuordnung der relativen Konfigurationen der Diastereomere 162a-162d erfolgte über die ³J-Kopplungskonstanten der vicinalen Protonen in Abgleich mit bekannten, ähnlichen Strukturmotiven aus der Literatur.^[108] LiAlH₄ führte zu einer Überreduktion, wodurch der Alkohol 125 als Hauptkomponente erhalten wurde (Tabelle 12, Eintrag 2 und 3). Um die Selektivität zu erhöhen wurde DIBAL-H in Toluol getestet, diese Bedingungen führten jedoch nur zu Zersetzung (Tabelle 12, Eintrag 4).

Tabelle 12. Ermittlung der optimalen Reduktionsbedingungen zur selektiven Reduktion von α-Selenylketon 161.

$\stackrel{n-\text{Hex}}{\underset{O}{\text{Me}}} \circ \stackrel{\text{SePh}}{\underset{O}{\text{He}}} \circ \stackrel{\text{Reduktionsmittel}}{\underset{O}{\text{He}}} \xrightarrow{n-\text{Hex}} \circ \stackrel{\text{SePh}}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\underset{O}{\text{He}}} \circ \stackrel{n-\text{Hex}}{\underset{O}{\underset{O}{\underset{O}}} \circ \stackrel{n-\text{He}}{\underset{O}{\underset{O}} \mathrel \stackrel{n-\text{He}}{\underset{O}} \circ \stackrel{n-\text{He}}{\underset{O}{\underset{O}} \mathrel \stackrel{n-\text{He}}{\underset{O}} \circ \stackrel{n-\text{He}}{\underset{O}} \mathrel \stackrel{n-\text{He}}{\underset{O}} \mathrel \stackrel{n-\text{He}}{$								v−Bn v−Bn	n-Hex、 Me n-Hex、 Me	O 127 O 0 127 O 0 0 0 0 0 0 0 0 0 0 0 0 0
Eintrag	Bedingungen	T [°C]	t [min]	162a	162b	162c	162d	127	125	Ausbeute
1	NaBH4, MeOH	0	120	9	5	11	4	70	-	15%
2	LiAlH ₄ , THF	-78	15	1	1	2	0	6	61	n.d.
3	LiAlH ₄ , Et ₂ O	-78	30	3	7	11	5	19	55	n.d.
4	DIBAL-H, Toluol	-78	45	-	-	-	-	-	-	-
5	CeCl ₃ ^a , NaBH ₄ ,	-10	15	22	4	7	22	44	0	30%
6	MeOH CeCl ₃ ^a , NaBH ₄ ,	-78	15	45	5	5	45	0	0	63%
	MeOH									

a) Es wurde das Pentahydrat CeCl₃·5H₂O verwendet.

Durch die Reduktion unter Luche-Bedingungen,^[109] bei welcher durch Zugabe von Certrichlorid die Carbonylgruppe aktiviert wurde, konnte die Selektivität jedoch erheblich gesteigert werden (Tabelle 6, Eintrag 5). Bei tieferer Temperatur von -78 °C wurde schließlich ein zufriedenstellendes Ergebnis erzielt, bei dem die Bildung von **127** verringert, und somit die Ausbeute auf 63% erhöht werden konnte (Tabelle 12, Eintrag 6). Obwohl die Diastereomere von **162** getrennt werden konnten, wurden die nachfolgenden Zyklisierungsreaktionen mit dem Gemisch der zwei Hauptisomere im Verhältnis 50:50 durchgeführt.

n-Hex∿ Me∕	O SePh O	Elektrophil, Solvens, T	n-Hex-O	SePh N N H H H 63 ^{HO} H	n-Hex_O ^{Br} Se ^{Ph} O MeHNN-Bn OH
Eintrag	Elektrophil [Äq.]	Solvens	T [°C]	t	Resultat
1	NBS (1.1)	DMF	0	10 min	Zersetzung
2	NBS (1.1)	DMF	-50	30 min	Umsatz unvollständig, 164
3	NBS (2.2)	DMF	-50	35 h	164
4	NBS (3.3)	DMF	-50	20 h	Zersetzung
5	NCS (1.3)	MeOH	-78 → 0	18 h	Zersetzung
6	PhSeCl (1.1)	Toluol	RT	1 h	Zersetzung

Tabelle 13. Umsetzung von Selenylalkohol 162 unter Zyklisierungsbedingungen.

Zunächst wurde **162** nach Standardbedingungen in DMF mit 1.1 Äq. NBS und bei 0 °C umgesetzt. Das Edukt **162** war bereits nach 10 min vollständig abreagiert. Es wurde jedoch nur Zersetzung beobachtet (Tabelle 13, Eintrag 1). Die Reaktionstemperatur wurde daraufhin auf -50 °C gesenkt und die Reaktion nach 30 min aufgearbeitet, um eine Zersetzung zu vermeiden. Obwohl der Umsatz nicht vollständig war, wurde im ¹H-NMR-Spektrum des Rohgemischs die Bildung eines Produkts beobachtet (Tabelle 13, Eintrag 2). Die Erhöhung der Äquivalente an NBS um das Zweifache führte nun zu einem vollständigen Umsatz des Edukts zu einem Produkt, welches jedoch noch die Doppelbindungssignale des Imidazolons aufwies. Nach säulenchromatographischer Aufreinigung des Produktgemisches wurde jedoch nur Keton **127** isoliert. Die Zersetzung des Produkts zu **162** gibt einen Hinweis darauf, dass unter den oxidativen Bedingungen mit NBS die Bildung einer Dibromselenylspezies **164** eingetreten sein könnte, welche in Reinform instabil ist und sich deshalb bei der Isolierung in das Keton **127** unter Abspaltung von Dibromselenid zersetzt (Schema 26). Diese Reaktivität ist bekannt für Selenylverbindungen, die mit Brom zu einer Dibromselenspezies reagieren können.^[110]

Schema 26. Möglicher Reaktionsweg zu Keton 127 über die Dibromierung der Selenylspezies 164.

Dadurch, dass die Umsetzung mit NBS bevorzugt eine Oxidation des Se-Atoms bewirkt, wurden die zugegebenen zwei Äquivalente an NBS in der Bromierung zu Dibromselenid **164** verbraucht und eine Reaktion an der Doppelbindung fand nicht statt. Dieser Reaktivität sollte durch die Verwendung von drei Äquivalenten NBS begegnet werden, sodass nach vollständiger Bromierung der Selenylgruppe mit dem dritten Äquivalent die Reaktion am Imidazol erfolgen kann (Tabelle 13, Eintrag 4). Jedoch wurde

auch hier nach Aufarbeitung nur Zersetzung beobachtet. Ebenso wurde die Zyklisierung mit *N*-Chlorsuccinimid (NCS) in Methanol versucht, entsprechend einer Vorschrift, die in der Synthese der Hydantoinhaltigen Naturstoffe Slagenin A und B (**96** und **97**) nach Horne^[111] zur Reaktion eines Imidazolons zum Ringschluss verwendet wurden. Diese Bedingungen führten aber im vorliegenden System ebenso wenig zum Erfolg (Tabelle 13, Eintrag 5). Schließlich wurde versucht, in Anlehnung an die Bedingungen von *Zhang et al.* PhSeCl zur Erzeugung einer Seleniraniumspezies zu verwenden,^[112] um die Oxidation der schon vorhandenen Phenylselenylgruppe zu umgehen (Tabelle 13, Eintrag 6), aber auch unter diesen Bedingungen wurde nur Zersetzung beobachtet. Obwohl die Installation der Selenylgruppe im Ringschlusssubstrat **125** über eine α -Funktionalisierung mit anschließender Reduktion geglückt war, konnte der nachfolgende Ringschluss nicht verwirklicht werden.

Aufgrund der Hürden die sich in Syntheseroute A abzeichneten wurde beschlossen, eine andere Herangehensweise zu verfolgen, und gemäß den retrosynthetischen Überlegungen zu Route B zunächst den Fokus auf den Aufbau der oxidierten, bizyklischen Grundstruktur zu setzen.

4.5 Versuche zur Synthese des Naturstoffs HB-372 (29) über Pfad B

Wie in den vorherigen Abschnitten gezeigt wurde, ist bei der Synthese des Naturstoffs 29 die Installation der innerzyklischen Doppelbindung des Oxazolinringes eine besondere Herausforderung. Dies ist auf die stereoelektronischen Eigenschaften der Substrate zurückzuführen, durch welche die Konstruktion des Oxazolinfragments über die Halozyklisierung eines Enolats und die late-stage Oxidation des Dihydro-Analogs von Naturstoff 29 fehlschlug. Die Einführung der Hexylether-Seitenkette zu Anfang der Synthesesequenz schränkte zudem die Möglichkeiten zur Manipulation des Oxazolinfragments ein (vgl. Abschnitt 4.2 und 4.3). Um diese Schwierigkeit zu umgehen, sollten in Route B zunächst die richtigen Oxidationsstufen in Bizyklus 166 eingerichtet werden. Entsprechend sollte die Hexylkette im letzten Schritt durch Methyladdition an Aldehyd 165 und Abfangen des Alkoholats mit z.B. Hexylbromid installiert werden. Aldehyd 165 war durch Oxidation in Allylstellung an Bizyklus 166 herzustellen, welcher durch Isomerisierung der exozyklischen Doppelbindung des Schlüsselintermediats 167 erhalten werden sollte. Schlüsselintermediat 167 sollte durch Eliminierung der primären Alkoholfunktion des bizyklischen Substrats 168 erhalten werden, das ausgehend von Substrat 169 mittels Halozyklisierung zugänglich gemacht werden sollte (Schema 27).

Schema 27. Retrosynthetische Überlegungen zur Darstellung von 29 über Schlüsselintermediat 167.

Die bromoniranium-induzierte Zyklisierung von Imidazol-Diolen war bereits in Vorarbeiten untersucht, und dabei eine starke Lösungsmittelabhängigkeit festgestellt worden, nach welcher ein Ringschlussprodukt ausschließlich aus Reaktionen in Lewis-basischen Lösungsmitteln wie DMF oder NMP erhalten wurde. Im Zuge dieser Arbeiten war statt der Bildung eines 5,5-bizyklischen Systems **121**, wie es gemäß der Baldwin-Regeln in der Zyklisierung an dem tetraedrischen Kohlenstoff des Bromiraniumions zu erwarten wäre,^[100, 113] hauptsächlich das 6,5-bizyklische Produkt **120** erhalten worden (vgl. Abschn. 4.1, Schema 13). Dieses Ergebnis ist ein Hinweis auf einen Reaktionsmechanismus über ein Iminiumion, welches einen Ringschluss über einen *endo-trig*-Modus durchläuft, was die Bildung des 6-Ringes begünstigt (vgl. Abschn. 4.3, Schema 21).

Schema 28. Geplante Syntheseroute zu Schlüsselintermediat 167.

Aufgrund dieser Erkenntnisse wurde die Syntheseroute ausgehend von Imidazol **169** geplant, dessen 1,2-Diolstruktur an der primären Alkoholfunktion geschützt ist. Die Oxidation des Halbaminals **168** sollte unter den in Abschnitt 4.3 ermittelten Bedingungen erfolgen und nach Entschützung der primären Alkoholfunktion die Eliminierung zu Schlüsselintermediat **167** durchgeführt werden (Schema 28).

4.5.1 Synthese des bizyklischen Alkoholintermediats 169

Die Herangehensweise, mittels einer Eliminierung der primären Alkoholfunktion in 169 die exozyklische Doppelbindung des Schlüsselintermediats 167 zu erzeugen, sollte auf früheren Arbeiten zur Zyklisierung von Diol 119 aufbauen. In diesen Studien zur Halozyklisierung von Imidazolsystemen mit Diol 119 wurde herausgefunden, dass der Ringschluss bevorzugt zu einem 6,5-bizyklischen System führt. Um diesen unerwünschten Reaktionsweg zum Sechsring auszuschließen, sollte die primäre Alkoholfunktion in Diol 119, das ausgehend von Epichlorhydrin (105) und Hydantoin 118 in wenigen Schritten hergestellt wurde (Schema 29a), mit einer geeigneten Schutzgruppe blockiert werden. Zur Ermittlung der Bedingungen wurden zunächst die Synthesen ausgehend von N-Bn-Hydantoin 118 begonnen und sollten nach Etablierung einer Syntheseroute mit einer N-PMB-Schutzgruppe wiederholt werden, da diese leichter abzuspalten ist (vgl. Abschn. 4.3). Die Anforderung an die Schutzgruppe beinhaltete sowohl eine gute Beständigkeit gegenüber oxidativen Bedingungen für den Zyklisierungsschritt und die anschließende Oxidation des Alkohols im Hydantoinring, als auch die Möglichkeit einer milden und selektiven Abspaltung nach diesen beiden Schritten. Deshalb fiel die erste Wahl auf die Silylschutzgruppe TBS (tert-Butylsilyl), die sich durch Reaktion von 119 mit TBSCl und Imidazol in guter Ausbeute von 76% einführen ließ (Tabelle 14, Eintrag 1; Schema 29a). Die Umsetzung von 169a in DMF resultierte jedoch nur in der Bildung des 6,5-bizyklischen Systems 120, anstatt der 5,5-bizyklischen Zielstruktur 170a (Schema 29b).

Schema 29. a) Schützung des primären Alkohols als TBS-Ether 169a; b) Ringschluss unter Standardbedingungen.

Dieses Ergebnis kann durch Abspaltung der TBS-Schutzgruppe während der Reaktion entstanden sein, wodurch der begünstigte 6-gliedrige Ring **120** gebildet wurde. Daraufhin wurde die robustere Silylschutzgruppe TIPS, sowie Benzoyl- und Benzylschutzgruppen durch Derivatisierung der primären Alkoholfunktion in **119** installiert (Tabelle 14). Während sich das TIPS-Derivat **169b** und das Benzoylderivat **169c** bei tiefen Temperaturen in Anwesenheit von Triethylamin oder Imidazol in zufriedenstellenden bis guten Ausbeuten von 52% und 62% darstellen ließen (Tabelle 14, Eintrag 2 und 3), war die Ausbeute der Benzylschützung aufgrund von Substitution an der sekundären Alkoholfunktion und Difunktionalisierung mit nur 15% gering (Tabelle 14, Eintrag 4).

 Tabelle 14. Derivatisierung des primären Alkohols in Imidazolons 119.

Eintrag	R-X	Bedingungen	1° vs. 2° (Disubst.) ^a	Produkt	Ausbeute [%] ^b
1	TBSCl	Imidazol, CH ₂ Cl ₂ , 0 °C	94:0:(6)	169a	76
2	TIPSCl	Imidazol, CH ₂ Cl ₂ , -78 °C	96:0: (4)	169b	62
3	PhCOCl	NEt ₃ , CH ₂ Cl ₂ , -78 °C	72:7: 21	169c	52
4	BnBr	NaH, THF, -78 °C	39:33:28	169d	15

a) Die Verhältnisse der Substitution an der primären Alkoholfunktion (1°) zur sekundären Alkoholfunktion (2°) und auftretende Disubstitution wurden aus dem ¹H-NMR Spektrum des Roh-Gemischs bestimmt; b) isolierte Ausbeute an **119**.

Die Nebenreaktionen, wie die Derivatisierung des sekundären Alkohols und die Zweifachsubstitution, welche bei zu schneller Zugabe des Reagenzes eintreten können, ließen sich durch eine Modifikation der Substratdarstellung vermeiden. Hierfür wurde Epoxid **173**, das durch die Reaktion von Imidazolon

126 mit Epichlorhydrin (105) zugänglich war, mit einem Alkohol unter basischen Bedingungen regioselektiv geöffnet, wodurch ausschließlich Imidazolon 169d oder 169e gebildet wurde (Schema 30). Für die Öffnung des Epoxids in guten Ausbeuten war ein Überschuss an Alkohol ROH, NaH sowie erhöhte Temperaturen nötig. Auf diese Weise wurde nicht nur das *O*-Bn geschützte Ringschlusssubstrat 169d hergestellt, sondern auch *O*-PMB geschütztes Imidazolon 169e in Ausbeuten von 21% und 56% (Schema 30).

Schema 30. Synthese der primär geschützten Diole 169d und 169e über Öffnung des Epoxids 173.

Die so hergestellten Alkohole 169 wurden nun unter den bekannten Zyklisierungsbedingungen mit NBS in DMF oder NMP umgesetzt (Tabelle 15). Jedoch resultierte wie bei 169a die Umsetzung der TIPS-Verbindung 169b ebenfalls in der Bildung des 6,5-Ringssystems 120, wobei die Reaktion in DMF nach 14 Stunden neben **120** auch viel Zersetzung aufwies, während in NMP nach drei Stunden hauptsächlich das entschützte Produkt 120 isoliert wurde (Tabelle 15, Eintrag 1-3). Auch wenn die Entstehung des 6,5-Bizyklusses 120 von einer Wanderung der Silvlgruppen herrühren könnte, scheint es wahrscheinlicher, dass auch der TIPS-Ether unter den Reaktionsbedingungen nicht stabil ist, da nach säulenchromatographischer Aufreinigung nur das ungeschützte Produkt 120 isoliert wurde. Die Schutzgruppe von Edukt 169d wurde zwar unter den gewählten Reaktionsbedingungen nicht abgespalten, die Reaktion in NMP bei 0 °C führte jedoch zu einer unselektiven Reaktion, bei der Zersetzung und Nebenreaktionen auftraten (Tabelle 15, Eintrag 6). Das benzoylgeschützte Imidazolon 169c hingegen zeigte bei einer Reaktionstemperatur von 0 °C in DMF die Bildung des gewünschten 5,5-Bizyklusses 170c. Die Reaktionszeit war mit 16 Stunden jedoch relativ lang, so dass nach vollständigem Umsatz von 169c bereits die Zersetzung des instabilen, bizyklischen Produkts 170c eingesetzt hatte, wodurch eine Isolierung aus dem Rohgemisch nicht möglich war (Tabelle 15, Eintrag 4). Die Umsetzung von 169c in NMP führte ebenfalls zu Produktbildung und lieferte nach 16 Stunden Reaktionszeit 15% eines Diastereomers von 170c, welches sich jedoch in Lösung innerhalb kurzer Zeit zersetzte (Tabelle 15, Eintrag 5). Die lange Reaktionszeit gepaart mit der Labilität der Produkte 170c machten den Einsatz von Substrat 169c ungeeignet. Durch Installation des elektronenreichen PMB-Ethers wurde die Reaktionszeit mit Substrat 169e in NMP bei 0 °C auf zwei Stunden verkürzt, wenngleich die Reaktion unselektiv verlief und Produkt 170e nur in geringen Mengen im ¹H-NMR-Spektrum des Roh-Produkts zu sehen war (Tabelle 15, Eintrag 7).

RO	O OH 169a: R = TBS 169b: R = TIPS 169c: R = Bz 169d: R = Bn 169e: R = PMB	NBS, Solvens, T	R0 H0 170a: R = 170b: R = 170c: R = 170d: R = 170d: R = 170e: R =	N N TBS TIPS Bz Bn PMB	HO N HO N HBn OH 120
Eintrag	Edukt	Lösungsmittel	T [°C]	t [h]	Ergebnis
1	169a	DMF	$0 \rightarrow RT$	14	120
2	169b	DMF	$0 \rightarrow RT$	14	Zersetzung, 120
3	169b	NMP	0	3	120
4	169c	DMF	$0 \rightarrow RT$	16	Spuren 170c
5	169c	NMP	$0 \rightarrow RT$	16	170c (15%)
6	169d	NMP	0	6	Zersetzung
7	169e	NMP	0	2	Spuren 170e
8	169e	DMF	-35	4	170e (~60%) ^a

Tabelle 15. Bromonium-induzierter Ringschluss der hergestellten Imidazolone 169a-169e.

a) Die Bestimmung der Ausbeute erfolgte aus dem ¹H-NMR-Spektrum des Rohprodukts mit NHS als interner Standard.

Die Durchführung der Reaktion bei deutlich tieferen Temperaturen von -35 °C erlaubte es schließlich, die Nebenreaktionen zu minimieren, wodurch **170e** in ca. 60% als Rohgemisch erhalten wurde (Tabelle 15, Eintrag 8). Die Instabilität der Produkte **170** und die geringe Selektivität der Reaktion dieser Substrate stehen im starken Kontrast zu den Ergebnissen der Umsetzung mit dem authentischen Substrat **142** (vgl. Abschnitt 4.3). Deshalb wurden bei der Wiederholung der Synthesesequenz mit dem *N*-PMB-Substrat **176** die Ringschlussprodukte **177** der Bromzyklisierung nicht isoliert, sondern das Rohprodukt nach erfolgtem Ringschluss durch Oxidation mit Pyridiniumchlorochromat (PCC) in CH₂Cl₂ direkt zu **178** umgesetzt (Schema 31).

Schema 31. Synthese des primären Alkohols 177 durch Ringschluss des *N*-PMB-Imidazols 176 mit anschließender Oxidation zu 178.

Die Abspaltung der *O*-PMB-Schutzgruppe von **178** erfolgte oxidativ mit DDQ bei Raumtemperatur, wodurch nach 16 Stunden Alkohol **179** in 78% Ausbeute erhalten wurde (Schema 32). Da für die oxidative Spaltung der *N*-PMB-Gruppe weitaus harschere Bedingungen nötig sind (vgl. Abschnitt 4.3), konnten diese Bedingungen verwendet werden, ohne dass eine Abspaltung der *N*-PMB-Gruppe eintrat.

Schema 32. Chemoselektive Entschützung der O-PMB-Gruppe mit DDQ.

Mit der Isolierung von Alkohol **179** wurde nun der nächste Schlüsselschritt in Angriff genommen. Für die Eliminierung der Alkoholfunktion in **179** musste nun zunächst die primäre Hydroxygruppe durch Derivatisierung in eine gute Abgangsgruppe überführt werden. Protokolle zur Dehydratisierung umfassen die Verwendung von Säuren wie H₂SO₄, Sulfoxiden, wie Tosyl- oder Triflylderivatisierungen, Selenylverbindungen, sowie schwefelbasierten Reagenzien wie das Burgess-Reagenz^[114] (**181**) oder Martins Sulfuran^[115] (**182**). Da Verbindung **179** eine säurelabile Aminalstruktur besitzt, wurde von der Verwendung säurevermittelter Dehydratisierungen abgesehen. Stattdessen wurde Alkohol **179** zunächst mit Triflatanhydrid zu **180** umgesetzt. Der Triflat-geschützte Bizyklus **180** war auf Kieselgel instabil und wurde deshalb als Rohprodukt weiter umgesetzt. Versuche zur Eliminierung der Triflatgruppe durch Zugabe von LiHMDS führten jedoch nur zu Zersetzung (Schema 33).

Schema 33. Versuche zur Erzeugung des Olefins 167a über die Derivatisierung von 179 zu Triflat 180.

Als Nächstes wurden literaturbekannte Reaktionsbedingungen getestet, welche eine Derivatisierung direkt mit der Eliminierung kombinieren. Ein mildes Reagenz für eine solche Dehydratisierung ist das Burgess-Reagenz (**181**).^[114] Die Verwendung dieses Reagenzes erlaubt die Dehydratisierung von vornehmlich sekundären oder tertiären Alkoholen durch Derivatisierung des Alkohols mit Sulfonylcarbamatsalz **181**, das in einer *syn*-Eliminierung zur Bildung einer Doppelbindung reagiert. Mit dem primären Alkohol **179** wurde jedoch in Toluol bei 50 °C keine Bildung des Alkens **167a** beobachtet (Schema 34a). Es konnten stattdessen Spuren eines Produktes ausgemacht werden, das vermutlich auf die Bildung einer Carbamat-Spezies zurückzuführen ist (nicht gezeigt), wie es für die Umsetzung von **181** mit primären Alkoholen beschrieben wurde.^[116]

Schema 34. a) Eliminierungsbedingungen mit Burgess-Reagenz 181;^[114] b) Dehydratisierung nach Martin.^[115]

Ein weiteres mildes Dehydratisierungsreagenz ist das Sulfoxylat Martins Sulfuran (**182**), das mit Alkoholen unter Ausbildung einer Doppelbindung reagiert.^[115] Mit **182** wurde in CH₂Cl₂ bei Raumtemperatur jedoch keine Reaktion beobachtet und nur das Startmaterial **179** reisoliert (Schema 34b). Eine Erhöhung der Temperatur blieb ebenfalls ohne Effekt. Auch dieses Reagenz ist für primäre Alkoholfunktionen nur bedingt einsetzbar, da es zur Bildung von Ethern führen kann. Die Eliminierung von Alkoholen nach Grieco-Bedingungen hingegen erlaubt die Überführung eines primären Alkohols in einen stabilen Selenether **183** durch die Verwendung von Selenylcyanid und Tributylphosphin (Schema 8).^[117] Durch Oxidation der Selenfunktionalität zum Selenoxid wird in einem zweiten Schritt eine gute Abgangsgruppe erzeugt, welche unter Ausbildung einer Doppelbindung eliminiert werden kann.

Schema 35. Versuch zur Eliminierung des primären Alkohols 179 unter Bedingungen nach Grieco.^[117]

Dementsprechend wurde Alkohol **179** mit *o*-Nitro-Phenylselenylcyanid und Tributylphosphin in THF umgesetzt und die Reaktion mittels Dünnschichtchromatographie (DC) verfolgt. Nach vollständigem Umsatz von **179** wurde zur Oxidation der Selengruppe eine wässr. Lösung von Wasserstoffperoxid hinzugefügt. Nach Beendigung der Reaktion wurden jedoch nur Spuren eines möglichen Produktes **167a**, sowie Alkohol **179** isoliert (Schema 35). Aufgrund der Schwierigkeiten, die sich durch die Instabilität der halbaminalischen Zwischenprodukte **170** und **177** und nicht zuletzt bei der Funktionalisierung des primären Alkohols in **179** ergaben, wurde dieser Ansatz jedoch nicht weiter verfolgt, sondern nach Möglichkeiten gesucht, die genannten Hindernisse zu umgehen. Ein weiterer Zugang zu Zwischenstufe **183** stellt die Synthese der bizyklischen Struktur durch eine Selenzyklisierung

dar. Als Nächstes wurde daher versucht, Intermediat **183** direkt über eine Selenzyklisierung zu synthetisieren, wodurch die Problematik eines instabilen Halbaminal-Intermediats umgangen, und gleichzeitig die zur Eliminierung benötigte Selenidgruppe installiert werden sollte.

4.5.2 Synthese des Schlüsselintermediats 167 durch Selenzyklisierung

Neben den halogeninduzierten Zyklisierungen sind auch Selenzyklisierungen ein probates Mittel, um in der Synthese von Naturstoffen heterozyklische Strukturen aufzubauen.^[118] Die Selenylgruppe kann durch Oxidation in eine gute Abgangsgruppe überführt werden, wodurch weitere Transformationen möglich sind, wie die Eliminierung zu einem Alken oder auch Substitutionen mit anderen Nukleophilen. Des Weiteren ist auch eine radikalische Deselenylierung möglich.^[119] Neben der unselektiven Variante wurden auch schon einige Methoden zur asymmetrischen Selenzyklisierung entwickelt.^[120] Im vorliegenden Fall wurde für die Selenzyklisierung zu **183b** ein Ringschlusssubstrat **184** benötigt, welches eine Hydroxyhydantoinstruktur mit einem Allylsubstituenten besitzt. Durch Reaktion der Doppelbindung mit PhSeCl sollte ein Seleniraniumion **185** gebildet werden, welches durch den intramolekularen Angriff der Hydroxyfunktion zu Bizyklus **183b** führt (Schema 36a). Die Synthese dieses Allylsubstrats **184** erfolgte über das Harnstoffderivat **187**, ausgehend von Allylamin (**186**) und Benzylisocyanat, welches mit Oxalylchlorid in der Hitze zu Allylparabansäure **188** kondensiert wurde (Schema 36b). Die Reduktion der Allylparabansäure **188**, angelehnt an eine Literaturvorschrift,^[121] führte jedoch zu einem 50:50 Gemisch aus Regioisomeren **184** und **189** (Schema 36b).

Schema 36. a) Syntheseplan des Selenobizyklus 183b ausgehend von Allylhydroxyhydantoin 184; b) Synthese des Allylhydroxyhydantoins 184.

Da eine Auftrennung der Regioisomere **184** und **189** nicht gelang, wurden sie in den weiteren Transformationen als Gemisch eingesetzt. Zur Selenzyklisierung wurde das Eduktgemisch mit Phenylselenylchlorid (PhSeCl) nach einer Vorschrift von Nicolaou *et al.* in MeOH umgesetzt^[122] (Tabelle 16, Eintrag 1). Diese Bedingungen führten jedoch nur zu Additionsprodukten **190**, die aus der Öffnung des Seleniraniumions **185** durch das Chlorid entstanden sind. Eine solche Reaktivität wurde

bereits von Šmit *et al.* für die Selenzyklisierung von Alkenylhydantoinen beschrieben,^[123] auch wenn eine Zyklisierung eigentlich bevorzugt sein sollte.^[124]

но Но 184	A N−Bn — 0 4	PhSeCi dditiv, Solvens	PhSe	CI HO 190	N - Bn +	PhSe ⁻ N O N Bn 183b
Eintrag	Additiv	Solvens	T [°C]	t [h]	Umsatz ^a	Ergebnis
1	-	MeOH	-78	2	95%	190
2	DMPU	Toluol	-60	2	>99%	190
3	-	Toluol	-60	2	95%	190
4	-	CH_2Cl_2	0	3	92%	190
5	-	DMF	0	24	83%	190, Zersetzung

Tabelle 16. Bedingungen zur Zyklisierung von 184 mit Phenylselenylchlorid.

a) Der Umsatz wurde aus den ¹H-NMR-Spektren des Rohproduktgemisches bestimmt.

Das gleiche Ergebnis wurde auch unter anderen Bedingungen erhalten. Sowohl in Toluol mit Zugabe von DMPU, welches in Anlehnung an eine Methode von Zhang et al.^[125] zur Zyklisierung der Phenylselenylchlorid-Addukte 190 führen sollte, als auch ohne Additiv in Toluol wurden nur die Addukte 190 erhalten (Tabelle 16, Eintrag 2 und 3). Ebenso führte die Umsetzung von 184 mit PhSeCl in CH₂Cl₂ nur zu Additionsprodukt **190** (Tabelle 16, Eintrag 4). Die Verwendung von DMF als polares Lösungsmittel zur Ladungstrennung im Seleniraniumion 185 führte ebenfalls nicht zu dem gewünschten Ringschlussprodukt, sondern nur zu dem Additionsprodukt 190, sowie Zersetzung (Tabelle 16, Eintrag 5). Die Additionsprodukte 190, die nun aus einer Mischung an Stereo- und Regioisomeren bestanden, ließen sich erneut nicht auftrennen, weshalb sie im nächsten Schritt wiederum als Isomerengemisch eingesetzt wurden. Um den Ringschluss durch den intramolekularen Angriff des Alkohols im Hydroxyhydantoin zu ermöglichen, wurde nun 190 mit verschiedenen Silbersalzen behandelt. Hierbei sollte durch Abscheiden des Chlorids in Form von Silberchlorid erneut ein Seleniraniumion und damit der elektrophile Angriffspunkt für den Alkohol erzeugt werden (Tabelle 17). Da die Bildung von Seleniraniumionen von S. Denmark et al. durch Behandlung von Selenchloriden mit nicht nukleophilen Silbersalzen durch NMR-Spektroskopie nachgewiesen wurde,^[126] erfolgte die Reaktion zunächst unter ähnlichen Bedingungen in Dichlormethan.

Tabelle 17. Silberinduzierter Ringschluss aus 1,2-Selenchloridverbindung 190.

Silber(I)Salz	Solvens	T [°C]	t [h]	Ergebnis ^{a,b}
AgBF ₄ ·xH ₂ O	CH ₂ Cl ₂	0	16	183b (64%, d.r. = 50:50), Spuren 191
AgBF _{4(s)}	CH_2Cl_2	0	16	191 (30%), Spuren 183b
AgBF _{4(aq)}	CH_2Cl_2	RT	16	191, Zersetzung
AgBF ₄	CH ₂ Cl ₂ /H ₂ O	RT	16	Zersetzung
Ag ₂ O	CH_2Cl_2	RT	16	Zersetzung
AgSbF ₆	CH_2Cl_2	0	16	191
AgPF ₆	CH_2Cl_2	0	16	191
	Silber(I)Salz AgBF4 [,] xH ₂ O AgBF4 _(aq) AgBF4 AgBF4 Ag ₂ O AgSbF ₆ AgPF ₆	Silber(I)SalzSolvensAgBF4'xH2OCH2Cl2AgBF4(s)CH2Cl2AgBF4(aq)CH2Cl2AgBF4CH2Cl2/H2OAg2OCH2Cl2AgSbF6CH2Cl2AgPF6CH2Cl2	Silber(I)SalzSolvensT [°C]AgBF4'xH2O CH_2Cl_2 0AgBF4(s) CH_2Cl_2 0AgBF4(aq) CH_2Cl_2 RTAgBF4 $CH_2Cl_2/H2O$ RTAg2O CH_2Cl_2 0AgSbF6 CH_2Cl_2 0AgPF6 CH_2Cl_2 0	Silber(I)Salz Solvens T [°C] t [h] AgBF ₄ :xH ₂ O CH ₂ Cl ₂ 0 16 AgBF _{4(s)} CH ₂ Cl ₂ 0 16 AgBF _{4(aq)} CH ₂ Cl ₂ 0 16 AgBF _{4(aq)} CH ₂ Cl ₂ RT 16 AgBF ₄ CH ₂ Cl ₂ /H ₂ O RT 16 AgBF ₄ CH ₂ Cl ₂ /H ₂ O RT 16 Ag ₂ O CH ₂ Cl ₂ RT 16 AgSbF ₆ CH ₂ Cl ₂ 0 16 AgPF ₆ CH ₂ Cl ₂ 0 16

a) Isolierte Ausbeute bezogen auf Anteil an Isomer **184** im Edukt; b) d.r. aus ¹H-NMR des Rohgemischs bestimmt.

Tatsächlich konnte nach Zugabe von AgBF4 zu dem Gemisch aus 190 in CH2Cl2 unter Lichtausschluss nach 16 Stunden das Produkt 183b als Diastereomerengemisch in 64% Ausbeute (d.r. = 50:50; Ausbeute bezogen auf Stoffmenge an eingesetztem Regioisomer 184) isoliert werden (Tabelle 17, Eintrag 1). Bei Wiederholung der Reaktion stellte sich jedoch heraus, dass auch diese Zyklisierungsreaktion empfindlich gegenüber geringen Veränderungen der Parameter ist. Während die Reaktion mit einer alten Charge von AgBF₄, welche aufgrund der hygroskopischen Eigenschaften des Silbersalzes bereits viel Wasser enthielt, zu den Stereoisomeren der 5,5-bizyklischen Selenylverbindung 183b führte, wurde mit einer neuen Charge trockenen Silbersalzes hauptsächlich das 6,5-bizyklische Produkt 191 erhalten (Tabelle 17, Eintrag 2). Die Reaktion wurde deshalb mit AgBF₄ wiederholt, welches vorher mit einem Tropfen Wasser versetzt wurde, und in einem Lösungsmittelgemisch aus dest. Wasser und Dichlormethan ($H_2O/CH_2Cl_2 = 1:9$) durchgeführt, wodurch jedoch nur die Bildung des 6,5-zyklischen Produktes 191, sowie Zersetzung erzielt wurde (Tabelle 17, Eintrag 3 und 4). Da AgBF₄ in Anwesenheit von Wasser zu Ag(OH) und Ag₂O reagiert, wurde der Ringschluss ebenfalls mit Ag₂O durchgeführt. Unter diesen Bedingungen wurde jedoch nur Zersetzung beobachtet (Tabelle 17, Eintrag 5). Auch die Verwendung von weiteren nicht nukleophilen Silbersalzen AgPF₆ und AgSbF₆ führte nur zur Bildung des Regioisomers 191 (Tabelle 17, Eintrag 6 und 7). Die Regioselektivität der Selenzyklisierung weist also eine starke Abhängigkeit von dem Anion des verwendeten Silbersalzes auf, wobei das unerwünschte Nebenprodukt 191 immer als einzelnes Diastereomer erhalten wurde, während die Bildung des 5,5-bizyklischen Produkts 183b unselektiv zur Bildung von zwei Diastereomeren führte. Per 2D-NMR Spektroskopie wurden 191 über NOESY-Wechselwirkungen die relativen Konfigurationen der Stereozentren zugeordnet (Abb. 9).

Abb. 9. Entscheidende NOESY-Wechselwirkungen für die Zuordnung der relativen Stereozentren in 191.

Die erhaltenen 5,5-bizyklischen Diastereomere *trans*-**183b** und *cis*-**183b** wurden säulenchromatographisch aufgetrennt und in den weiteren Reaktionen separat eingesetzt. Zur Erzeugung der Doppelbindung sollte nun die Selenylgruppe von Bizyklus **183b** oxidiert werden. Dies wurde sowohl mit *m*CPBA, als auch mit Wasserstoffperoxid in CH_2Cl_2 mit quantitativem Umsatz durchgeführt (Schema 37).

Schema 37. Stereospezifische Eliminierung der Selengruppe durch Oxidation an a) trans-183b und b) cis-183b.

Nach Aufarbeitung der Reaktionen stellte sich jedoch heraus, dass keine Eliminierung stattgefunden hatte, sondern nur Selenoxid **192** gebildet worden war. Für eine erfolgreiche Eliminierung der Selenoxidgruppe war ein zweiter Schritt notwendig. Angelehnt an Literaturbedingungen^[127] wurde **192** in Toluol unter Zugabe eines Überschusses an Diisopropylamin bei 50 °C umgesetzt, wodurch eine erfolgreiche Synthese des Intermediats **167b** möglich war (Schema 37a). Obwohl Bizyklus **167b** gemäß der Auswertung von ¹H-NMR-Spektren eine Hauptkomponente im Roh-Produkt darstellte, wurden nach Säulenchromatographie lediglich 10% Produkt isoliert. Interessanterweise war eine Eliminierung nur mit *trans-***183b** möglich, während mit *cis-***183b** ausschließlich Zersetzung beobachtet wurde (Schema 37b). Den geringen Ausbeuten durch Nebenreaktionen bei der Eliminierung und der Tatsache, dass nur eines von zwei gebildeten Diastereomeren zum gewünschten Eliminierungsprodukt **167b** führte, sowie nicht zuletzt den Problemen, die sich bei der Reproduzierbarkeit der Selenzyklisierung auftaten, geschuldet, wurde diese Syntheseroute nicht weiter verfolgt. Stattdessen wurden nach den Überlegungen zur Retrosynthese (Pfad C) versucht, den Ringschluss mittels Zykloisomerisierung mit dem Aufbau der exozyklischen Doppelbindung in einem Schritt zu realisieren.

4.6 Pfad C - Route zu Intermediat 167 durch Zykloisomerisierung

Die Zykloisomerisierung von Alkinen ermöglicht einen schnellen Aufbau von Heterozyklen mit exozyklischer oder endozyklischer Doppelbindung.^[128] Die Zykloisomerisierung kann sowohl baseninduziert, über die Zwischenstufe eines Allens,^[129] als auch säurevermittelt^[130] durchgeführt werden. Der Einsatz von π -aciden Metallsalzen ermöglicht es jedoch, durch Aktivierung der Dreifachbindung carbo- und heterozyklische Verbindungen unter milden Bedingungen aufzubauen. Die Fähigkeit, Alkine für den Angriff von Nukleophilen zu aktivieren, wurde für eine Vielzahl von Metallen und Metallverbindungen nachgewiesen, wie beispielsweise Quecksilber,^[131] Eisen,^[132] Platin oder Palladium,^[133] aber auch für Lanthanoide.^[134] Unter den Übergangsmetallen nehmen die Metalle Silber und Gold eine besondere Stellung ein, insbesondere in Hinblick auf die Synthese des Naturstoffs 29: So wurde eine Vielzahl von einfachen Oxazolstrukturen aus Propargylamiden durch den Einsatz von Au(I)und Au(III)-Salzen und -Komplexen aufgebaut.^[135] Ebenso wurden auch Silber-katalysierte Zyklisierungen von Alkinen mit Alkoholen zur Synthese von funktionalisierten 2-Methylen-Oxolanen beschrieben.^[136] Sowohl gold- als auch silberinduzierte Zykloisomerisierungen fanden bereits in der Totalsynthese von anderen heterozyklischen Naturstoffen wie z.B. Strictamin (nicht gezeigt) Anwendung.^[137] Die Aktivierung der Alkine erfolgt im Allgemeinen durch die Koordination der Dreifachbindung zu einem π -aciden Metallzentrum, wodurch der Angriff eines Nukleophils an der Dreifachbindung erfolgen kann. Durch Protodemetallierung (im Falle von Gold Protodeaurierung) erfolgt ein Austausch von einem Proton mit dem Metallkomplex, was zur Bildung eines Alkens führt. Für den Mechanismus wurden dabei sowohl Belege für eine anti-Addition bei der Umsetzung von Alkinen mit AuCl₃ nach Hashmi,^[138] als auch für eine syn-Addition nach Hayes et al. mit Gold(I)-Verbindungen gefunden.^[139]

Schema 38. Goldvermittelte Zykloisomerisierung am Beispiel des Hydroxyhydantoins 193.

Für die Synthese des Schlüsselintermediats **167**, welches in wenigen Folgeschritten zu Naturstoff HB-372 (**29**) führen sollte (vgl. Abschn. 4.5, Schema 27), wurde als Ausgangverbindung Propargyl-Hydroxyhydantoin **193** gewählt, das mit einer π -aciden Goldverbindung in einem 5-*exo-dig* Ringschlussmodus über Aurat **194** durch Protodeaurierung zu *exo*-Produkt **167b** reagieren sollte (Schema 38). Die Synthese des Ringschlusssubstrats **193** erfolgte nach einer Vorschrift von Urbanaité *et al.*^[140] ausgehend von Propargylamin (**195**) und Benzylisocyanat zum Aufbau des Harnstoffderivats **196**, das im nächsten Schritt mit Oxalylchlorid zu Parabansäure **197** kondensiert wurde (Schema 39). Das Ringschlusssubstrat **193** war durch anschließende Reduktion von **197** zugänglich.

Schema 39. Synthese des Ringschlusssubstrats 193 über das Parabansäurederivat 197.

Da sich die Carbonylgruppen des 1,2-Diketons nur geringfügig in ihrer unmittelbaren Umgebung unterscheiden und es leicht zu einer zweifachen Reduktion kommen kann, wurden eine äquimolare Menge an Hydrid und **197** in hoher Verdünnung eingesetzt. Die Reduktion der Carbonylgruppe (C-4)erfolgte mit NaBH₄ in MeOH, wobei das Edukt **197** zunächst für zehn Minuten gerührt wurde, um es komplett zu lösen und eine Überreduktion und damit einen unvollständigen Umsatz sowie Ausbeuteverlust durch eine Weiterreaktion des Produkts zu vermeiden. Während sich die Ausbeute durch oben genannte Faktoren gut beeinflussen ließ, war kein Effekt auf die Regioselektivität der Reaktion zu beobachten, welche gleichbleibend zu einem Isomerengemisch im Verhältnis 66:34 führte (Schema 39). Die Regioisomere ließen sich säulenchromatographisch nicht auftrennen und wurden deshalb als Gemisch in der Zykloisomerisierung weiter umgesetzt (Tabelle 18). Zunächst wurden stöchiometrische Mengen an Goldsäure HAuCl₄ in verschiedenen Lösungsmitteln getestet. Die Reaktion wies eine starke Lösungsmittelabhängigkeit auf: So wurde in Toluol bei 100 °C nach 24 Stunden ein Ringschluss beobachtet, jedoch ausschließlich zum 6,5-Bizyklus 198 (Tabelle 18, Eintrag 1). In HFIP fand keine Reaktion statt, während in DMF nur Spuren von 198 gebildet wurden (Tabelle 18, Eintrag 2 und 3). Da HAuCl₄ acide ist, wurde die Reaktion unter Zugabe von Kaliumcarbonat bei 60 °C in Toluol wiederholt, um so eventuell die Regioselektivität zu beeinflussen. Hierbei wurde jedoch auch nach verlängerter Reaktionszeit nur ein geringer Umsatz zu 198 (10%) erreicht (Tabelle 18, Eintrag 4). Neben Toluol ist auch Dichlormethan ein gängiges Lösungsmittel für Zykloisomerisierungen, weshalb 193 mit NaAuCl₄ bei Raumtemperatur in CH₂Cl₂ umgesetzt wurde. Unter diesen Bedingungen wurde jedoch keine Reaktion beobachtet (Tabelle 18, Eintrag 5). Ebenso wie das Lösungsmittel ist auch das Additiv oder Gegenion entscheidend: Bei Verwendung eines PPh₃AuCl Komplexes, welcher mit Silbertosylat (AgOTs) in situ eine aktive Spezies bildet, wurden in der Zykloisomerisierung von einfachen Oxazolen gute Ergebnisse erzielt.^[135c] Unter diesen Reaktionsbedingungen fand mit 193 jedoch keine Reaktion statt und auch die Durchführung bei erhöhter Temperatur in MeCN führte zu keiner Reaktion (Tabelle 18, Eintrag 6 und 7).

//	о N N-Bn но 193	167b	O Bn	0 N N Br 198	Me O H	0 N N-Bn 0 199	0 N N-Bn 0 197
Eintrag	Reagenz	Solvens	T [°C]	Additiv	t	Umsatz	Ergebnis
1	HAuCl ₄	Toluol	100	-	24 h	>99%	198
2	HAuCl ₄	HFIP	60	-	24 h	-	-
3	HAuCl ₄	DMF	60	-	24 h	<10%	198
4	HAuCl ₄	Toluol	60	K_2CO_3	3 d	10%	198
5	NaAuCl ₄	CH_2Cl_2	RT	-	2 d	-	-
6 ^a	PPh ₃ AuCl	CH_2Cl_2	RT	AgOTs	4 d	-	-
7 ^a	PPh ₃ AuCl	MeCN	50	AgOTs	4 d	-	-
8^{a}	PPh ₃ AuCl	CH_2Cl_2	RT	AgNTf ₂	4 d	>99%	198 + 199

Tabelle 18. Auszug aus den getesteten Bedingungen zur Zykloisomerisierung von 193.

9^a CH_2Cl_2 RT PPh₃AuCl AgBF₄ 4 d 10^a 200 CH_2Cl_2 RT AgBF₄ 7 h >99% 198 + 19911 Au(tht)Cl (201) MeCN 60 48 h _ 12 TFA Toluol RT 3 d 13 Pd(OAc)₂ Toluol 100 3 d >99% Zersetzung _ 14 K_2PtCl_4 Toluol 60 3 d _ 15 $LuCl_3$ Benzol 60 4 d 16 Ag(II)picolinat Toluol 100 3 d >99% Zersetzung 17 AgBF₄ TFE RT 12 d 197, 198, 167b 60 >99% 18 Ag_2CO_3 Benzol 4 d (26:26:48) 197, 198, 167b 19 Ag₂CO₃ Toluol 60 4 d >99% _ (36:16:47) 20 100 AgOAc Toluol 3 d >99% 197, 167b (87:13) 21 K_2CO_3 Benzol 4 d 60 22 NBS CH_2Cl_2 RT 7 d 23 PhI, mCPBA MeCN RT TsOH 2 d o-MeOPhI, 24 MeCN RT TsOH 4 d _ *m*CPBA

Reaktionsbedingungen: 0.1 mmol **193**, mit 1.1 Äq. Reagenz in 1 mL Lösungsmittel (0.1 M); a) 10 mol% Reagenz und Additiv eingesetzt.

Wurde stattdessen das Silbersalz AgNTf₂ verwendet, konnte nach vier Tagen kompletter Umsatz von **193** verzeichnet werden - jedoch nur zum 6,5-bizyklischen System **198**, zusammen mit
Nebenprodukten, die als Regioisomere von Keton **199** identifiziert wurden (Tabelle 18, Eintrag 8). Die Zugabe von AgBF₄ hingegen führte zu keiner Reaktion (Tabelle 18, Eintrag 9). Um die Regioselektivität zum 6-Ring zu umgehen, wurde nun versucht, die 5-*exo-dig* Zyklisierung durch Verwendung eines kationischen Pyridiniumphosphino-Goldkomplexes^[141] **200** zu favorisieren. Die Synthese des Goldkomplexes **200** erfolgte durch Reaktion des Au(I)-precursors **201** mit Phosphinligand **202**, welcher freundlicherweise von der Arbeitsgruppe von Prof. M. Alcarazo zur Verfügung gestellt wurde (Schema 40).

Schema 40. Herstellung des Gold(I)komplexes 200 aus Pyridiniumphosphinoligand 202 und Au(tht) (201).

Mit katalytischen Mengen an Goldkomplex 200 (10 mol%) in CH₂Cl₂ mit AgBF₄ verkürzte sich zwar die Reaktionszeit auf nur sieben Stunden, die Regioselektivität änderte sich jedoch nicht und es wurde nur der Ringschluss zu 198 beobachtet (Tabelle 18, Eintrag 10). Die Verwendung der Gold(I)-Spezies **201** alleine führte hingegen zu keiner Reaktion (Tabelle 18, Eintrag 11). Da Isomerisierungen auch säurevermittelt möglich sind, wurde Alkin 193 ebenfalls mit TFA umgesetzt, es konnte aber kein Umsatz verzeichnet werden (Tabelle 18, Eintrag 12). Neben Goldverbindungen wurden nun auch andere Metallsalze für die Zykloisomerisierung getestet. Pd(II)komplexe wurden erfolgreich zur Synthese von Methyloxazolen eingesetzt,^[133, 142] mit Pd(OAc)₂ in Toluol wurde jedoch nur Zersetzung beobachtet (Tabelle 18, Eintrag 13). Mit K₂PtCl₄ hingegen wurde keine Reaktion beobachtet, ebenso wie mit dem Lanthanoidsalz LuCl₃ (Tabelle 18, Eintrag 14 und 15). Silbersalze koordinieren ebenfalls an Dreifachbindungen und können diese für Zykloisomerisierungen aktivieren. Sie sind zudem oxophil, wodurch sie durch Koordination an Carbonylgruppen eine andere Reaktivität aufweisen können, und so vielleicht eine 5-exo-dig Zyklisierung über eine 6-endo-dig Zyklisierung bevorzugen könnten (Schema 41). Tatsächlich wurden silberkatalysierte Zykloisomerisierungen auch schon erfolgreich in einigen strukturell anspruchsvollen Naturstoffsynthesen zum Aufbau von zyklischen Enolethern eingesetzt.^[17c] Deshalb wurde zunächst Alkin 193 mit Silberpicolinat in Toluol umgesetzt, hierbei wurde jedoch nur Zersetzung beobachtet (Tabelle 18, Eintrag 16). Andere Silbersalze führten hingegen zu besseren Ergebnissen: Während mit AgBF₄ in TFE, eine Bedingung, die in der Synthese von Arboridinin nach Snyder zu guten Ergebnissen geführt hatte,^[137c] keine Reaktion zu verzeichnen war, führte Silbercarbonat in Benzol zur Bildung von dem gewünschten Produkt 167b, wenngleich auch die Entstehung von 6,5-Bizyklus 198 als Nebenprodukt, sowie die Bildung von 197 beobachtet wurde (Tabelle 18, Eintrag 17 und 18). Eine Substitutionsprüfung mit Toluol ergab ebenfalls Produkt 167b, die Regioselektivität verschlechterte sich jedoch auf 36:16:47 (Tabelle 18, Eintrag 19).

Schema 41. Mögliche Reaktionswege für die unterschiedlichen Regioselektivitäten von gold- und silbervermittelten Zykloisomerisierungen.

Mit Silberacetat wurde ebenfalls der Ringschluss zu **167b** beobachtet, allerdings nur als Minderkomponente (Tabelle 18, Eintrag 20), wobei **197** die Hauptkomponente in der Reaktion darstellte. Da Silber auch oxidative Eigenschaften hat, könnte **197** durch Oxidation der Alkoholfunktion des Regioisomers von **193**, sowie in einer Konkurrenzreaktion aus Hauptregioisomer **193** entstanden sein.

Die Regioselektivität der silbervermittelten Zykloisomerisierung im Vergleich zur goldkatalysierten Verbindung ist außergewöhnlich, da mit den verwendeten Goldkatalysatoren die Bildung des *exo*-Produkts **167b** nicht einmal in Spuren verzeichnet wurde. Dies könnte, besonders unter den basischen Bedingungen des Silbercarbonats, einen Hinweis auf einen Reaktionsweg über ein Allen sein, wie es bereits von Schmid *et al.* für Reaktionen von Silbersalzen mit Alkinen berichtet wurde^[143] – dagegen spricht, dass die Bildung des *endo*-Ringschlussprodukts **198** auch in den Silberkatalysierten Zyklisierungsreaktionen auftrat (vgl. Tabelle 18, Eintrag 18 und 19). Zudem wurde bei Verwendung von K₂CO₃ als Base unter den gleichen Bedingungen kein Umsatz erreicht (Tabelle 18, Eintrag 21). Das oxophilere Silber könnte also durch Koordination an den Sauerstoff des Substrats über **TS-2** die Bildung des *exo*-Produkts **167b** begünstigen, während mit Goldkatalysatoren ausschließlich **TS-1** durchlaufen wird (Schema 41). An diesem Punkt können jedoch nur Mutmaßungen zu dem Mechanismus aufgestellt werden. Zusätzlich wurde noch überprüft, ob sich der Ringschluss auch mit Halogenierungsreagenzien wie NBS oder mit hypervalenten Iodverbindungen durchführen lässt (Tabelle 18, Eintrag 22-24), welche erfolgreich von A. Urbanaitė *et al.* in der Zykloisomerisierung von verschiedenen Propargylamiden eingesetzt wurden.^[140] Hierbei wurde jedoch kein Umsatz erreicht.

Mit der zuverlässigen Darstellung des Schlüsselintermediats **167b** wurde ein wichtiges Etappenziel der Totalsynthese von **29** erreicht. Weitere Schritte, welche die Installation der Doppelbindung beinhalten, wurden im Rahmen der vorliegenden Arbeit jedoch nicht mehr durchgeführt.

5. Bromzyklisierungen von Zimtsäureimiden (31)

Heterozyklische Strukturen sind in Naturstoffen, aber auch in synthetischen Wirkstoffen häufig zu finden. Folglich ist nicht nur für die Naturstoffsynthese, sondern auch für die Arzneimittelforschung, die Entwicklung selektiver Methoden zum Aufbau von verschiedenen Heterozyklen von großer Bedeutung.^[144] Obwohl schon viele Methoden zur Synthese von verschiedensten heterozyklischen Systemen entwickelt wurden,^[145] besteht immer noch ein großer Bedarf an neuen, generellen Methoden zur Konstruktion sowohl von bekannten Strukturen als auch von neuartigen Systemen.^[146] Einen solchen Zugang zu heterozyklischen Strukturen verbunden mit ungewöhnlichen Reaktivitäten unter milden Bedingungen bietet der Einsatz von hypervalenten Iod-Reagenzien.^[147] Unter den hypervalenten Iod-Reagenzien haben vor allem die hypervalenten Iodane ihren vielseitigen Nutzen als milde, selektive und stabile Reagenzien unter Beweis gestellt. So wurden durch den Einsatz von Iod(III)-Verbindungen bereits eine Vielzahl an heterozyklischen Verbindungen hergestellt,^[148] unter anderem Oxazole, welche ausgehend von Ketonen durch die Verwendung von λ^3 -Iodanen unter Beteiligung des Lösungsmittels MeCN synthetisiert wurden,^[149] Isoxazole wie **205** (Schema 42a),^[150] Oxazoline **207** ausgehend von α -Oxo-Keten-*N*,*N*-diacetalen **206** (Schema 42b),^[151] sowie diverse Benzofurane^[152] und Benzoxazole^[153], Indole,^[154] oder Oxoindole **210** (Schema 42c).^[54a, 155]

Schema 42. Beispiele für Synthese von Heterozyklen durch die Verwendung von hypervalenten Iod-Reagenzien; a) Synthese von Isoxazolen 205; b) Oxazolinen 207; c) Oxoindolen 210.

Diese Iod(III)-Reagenzien weisen Reaktivitäten auf, die denen der Schwermetalle wie Pd, Pb oder Hg ähneln, sind dabei aber umweltfreundlicher und wesentlich weniger toxisch. Die Reaktivität kann nach dem Modell der Hypervalenz durch die Eigenschaften der Struktur sowie der Bindungen der λ^3 -Iodane erklärt werden: Das Iod in diesen Verbindungen hat zehn Valenzelektronen, welche in einer trigonal bipyramidalen Struktur angeordnet sind, wobei zwei elektronegativere Liganden X axial in einer linearen hypervalenten 3-Zentren-4-Elektronen Bindung (3c-4e) positioniert sind, während ein elektropositiver Ligand R sowie zwei freie Elektronenpaare die äquatorialen Positionen besetzen (Abb. 10).

Abb. 10. Strukturen von Iod(III)-Reagenzien und Beispiele deren Vertreter, wie PIDA (204), Willgeroths-Reagenz (211), Togni-Reagenz (212) und Chlorbenziodoxolon 213, das Aryliodoniumsalz 214 und das Ylid 215.

Die elektronegativeren Liganden X sind mit dem Iod einem Winkel von 180° angeordnet, wobei die X-I-Bindungen verlängert sind, wodurch die hypervalente Bindung geschwächt und polarisiert wird und der elektrophile Charakter erzeugt wird. Zudem weisen die bizyklischen Iod(III)-Verbindungen einen starken *trans*-Effekt der Liganden X auf, welcher einen großen Einfluss auf die Stabilität und Reaktivität der Verbindungen hat.^[156] Berechnungen der Bindungen dieser Reagenzien in der Gas- und kondensierten Phase weisen jedoch darauf hin, dass keine Hypervalenz der Iod(III)-Verbindungen haben vorliegen könnte, sondern sie in ihrer Valenz der Oktett-Regel folgen.^[157] Iod(III)-Verbindungen haben sich zudem als ausgezeichnete Halogenierungsreagenzien bewiesen, die zum Aufbau von C-Br, C-Cl sowie C-F Bindungen unter milden Bedingungen eingesetzt werden konnten. Methoden zur Iod(III)katalysierten Heterozyklisierung von Imiden **31** mit *in situ* gebildeten Benziodazol **216**, wurden im Arbeitskreis Gulder entwickelt. Der vorgeschlagene Reaktionsmechanismus ist verkürzt in Schema 43 abgebildet:^[54b]

Schema 43. Vereinfachte Darstellung der Bildung der aktiven Spezies Benziodazol 216 aus Iodbenzoesäureamid 209.^[54b]

Die aktive Spezies 216 wird dabei durch die Oxidation des Precursors Iodbenzoesäureamid 209 mit NBS in der Reaktion hergestellt und reagiert dann als Iod(III)-Reagenz 216 mit einem elektronenreichen Substrat 31 unter Ausbildung einer Iodiraniumspezies 217, die entweder durch den intramolekularen Angriff des Carbonylsauerstoffs geöffnet wird (\rightarrow 218) oder zunächst durch Angriff des Bromids über ein Bromiraniumion 219 weiter zu Zyklus 220 reagiert (Schema 43). Mit *N*-substituierten Acrylsäureimiden 31 wurden so durch Hydrolyse des Iminiums 220 das Amid 221 erhalten, welches unter anderem zur Konstruktion von Lactamen 222 in einer Kaskadenreaktion eingesetzt wurde (Schema 44, links).^[54c]

Schema 44. Iod(III)-vermittelte Halozyklisierung von Imiden 31 zu heterozyklischen Strukturen nach Gulder *et al.*^[54b, c]

Wurde jedoch ein Imid **31a**, welches anstelle einer Alkylgruppe am Stickstoff ein Proton trägt ($R^1 = Ph$, R^2 und $R^4 = H$) eingesetzt, konnte das zyklische Oxazolon **30a** isoliert werden (Schema 44).^[54b] Die Bildung des Oxazolons **30a** war im Hinblick auf neue Methoden für Naturstoffsynthesen besonders interessant, da dieses durch Reduktion in ein Oxazolidinon überführt werden kann, eine privilegierte Struktur, die in der Naturstoffklasse der Synoxazolidinone **15, 16** und **223** und in Wirkstoffen wie Linezolid (**224**)^[158] vorkommt (Abb. 11).

Abb. 11. Bioaktive Verbindungen mit Oxazolidinonstrukturen: Synoxazolidinon A (15), B (16), sowie C (223) und Linezolid (224).

Die Bildung des Oxazolons **30a** bei der Umsetzung von **31a** inspirierte somit zur Erforschung weiterer Anwendungsmöglichkeiten der Iod(III)-vermittelten Zyklisierung mit dem Ziel, die entwickelte Methode in der Totalsynthese von Synoxazolidinon B (**16**) einsetzen zu können. Versuche, die Grundstruktur des Naturstoffs Synoxazolidinon B (**16**) durch eine Halozyklisierung ausgehend von Imid **226** zu synthetisieren, offenbarten jedoch, dass Anstelle der erwarteten 5-*exo-tet* Zyklisierung ein *6-exotet* Ringschluss eingetreten sein musste, da nur Amid **227** in geringer Ausbeute von 12% isoliert wurde, welches vermutlich über die Zwischenstufe eines Oxazinons **226** gebildet wurde (Schema 45).

Schema 45. Versuche zur Zyklisierung des Zimtsäurederivats 225 führten zu Amid 227 über ein Oxazinon-Intermediat 226.^[159]

Während zur Darstellung von Oxazolidinonen schon mehrere Prozeduren bekannt sind,^[55f, g] ist der entsprechende 6-Ring, das Oxazinon, seltener in der Literatur vertreten. Zu den wenigen Repräsentanten dieser Klasse von Heterozyklen gehören unter anderem das Herbizid Oxaziclomefone (**228**),^[160] sowie Ketazolam (**229**), ein Benzodiazepinderivat, welches als Psychopharmakon gegen Angstzustände eingesetzt wird.^[161] Die Oxazinon-Struktur wurde zudem in dem Naturstoff Clausoxamine (**230**), der aus den Samen der Pflanze *Clausena lansium* isoliert wurde, nachgewiesen (Abb. 12).^[162]

Abb. 12. Oxazinonstrukturen in Wirkstoffen 228 und 229 und in Naturstoff 230.

Bekannte Synthesewege zu den Oxazinonen beinhalten hauptsächlich die Reaktion von Isocyanaten mit 1,3-Dicarbonylverbindungen (Schema 46a), es sind aber auch Darstellungen durch Cycloadditionen von Acylisocyanaten mit Alkenen bekannt, sowie Ringerweiterungen mit Isocyanaten und Kondensationen mit Enaminen.^[55a-c] Neuere Synthesen von Dihydro-Oxazinonen **237** beruhen auf der Cu-katalysierten Erzeugung eines Iminiumions in *ortho*-Hydroxy-Benzoesäureamiden mit anschließendem Ringschluss (Schema 46b),^[55d] oder der Co-katalysierten CO-Insertion in der Reaktion von Epoxiden mit Imiden zur Erzeugung von Oxazinanen.^[163]

Schema 46. Ausgewählte Beispiele für Methoden zur Synthese von Oxazinonen.

Des Weiteren wurde von Craig *et al.* eine Methode zum Aufbau der Oxazinonstruktur durch Verwendung von Zyklopropanverbindungen **238** entwickelt, die in der Reaktion mit Iminen **239** zu Oxazinonen **240** reagieren (Schema 46c).^[55h] Eine regioselektive Iod(III)-vermittelte Methode ausgehend von einfach zugänglichen und stabilen Substraten zum Aufbau der Oxazinon-Struktur könnte also einen wertvollen Beitrag zum synthetischen Zugang dieser heterozyklischen Strukturen liefern. Aufbauend auf die Resultate der Zyklisierung von **225** sollte deshalb nach Bedingungen gesucht werden, um die Oxazinonstruktur selektiv und in guten Ausbeuten darzustellen.

5.1 Optimierung der Bedingungen für den Ringschluss von Imiden 31 zu Oxazinonen 32

In der Zyklisierungsreaktion von 225, welche eigentlich zu einer Oxazolonstruktur führen sollte, konnten nur geringe Mengen an azyklischem Amid 227 isoliert werden, dem Hydrolyseprodukt aus einer Oxazinonzwischenstufe 226, welche jedoch nicht isoliert werden konnte (Schema 45). Es galt also zunächst, mit einem einfachen Substrat Bedingungen zu finden, unter welchen der Oxazinonring stabil ist und in guten Ausbeuten gebildet wird. Hierfür wurde α -Zimtsäureimid **31b** verwendet, welches zügig aus einfach zugänglichen Edukten Benzylamin und Zimtsäurechlorid hergestellt werden konnte. Die Reaktion von Imid 31b mit NBS und dem Katalysator 209, welcher in situ zu Benziodazol 216 gebildet wird, hatte sich schon bei der Iod(III)-vermittelten Umlagerung von Imiden zu α -Hydroxycarboxylamiden 221 bewährt (vgl. Schema 43),^[54b] und wurde zunächst in CH₂Cl₂ durchgeführt. Es wurde zudem ein Tropfen ges. Ammoniumchlorid-Lösung hinzugefügt, um die Reaktion zu beschleunigen (Tabelle 19, Eintrag 1). Obwohl die Reaktion innerhalb von zwei Stunden vollzogen war, wurde kein Oxazinon 32b isoliert, stattdessen Oxazolon 30b sowie Amid 227b, das Hydrolyseprodukt von 32b, im Verhältnis von 21:79 (Tabelle 19, Eintrag 1). Da mit der Ammoniumchlorid-Lösung Wasser in die Reaktionsmischung eingetragen wurde, welches für die Hydrolyse von 32b verantwortlich ist, wurde daraufhin Brom-Benziodoxol 241, ein stabileres hypervalentes Iodreagenz, ohne Zusatz von Additiven in CH₂Cl₂ verwendet. Auf diese Weise konnte das gewünschte Oxazinon 32b zwar nachgewiesen werden, die Reaktion war jedoch bei Raumtemperatur äußert langsam: Nach fünf Tagen waren nur 29% Umsatz zu verzeichnen, die gebildeten Produkte waren zudem ein Regioisomerengemisch aus 32b und 30b im Verhältnis von 41:59 (Tabelle 19, Eintrag 2). Die Verwendung von HFIP als Lösungsmittel hatte sich bereits in anderen Zyklisierungsreaktionen bewährt^[54b] und führte auch in diesem Fall zu einer Beschleunigung der Reaktion von 31b mit 241, so dass der Umsatz nach 72 Stunden bereits auf 72% gesteigert werden konnte. Zudem enthielt das Reaktionsgemisch nun das Oxazinon 32b als Hauptkomponente, neben 30b und Hydrolyseprodukt 227b, welches jedoch nur in 54% Ausbeute isoliert werden konnte (Tabelle 19, Eintrag 3).

	Additiv, Me Solvens, T	$ \xrightarrow{N} $	Me ''' <mark>Br +</mark> Ph Ph	Me Ph	H ₂ N	D H Ph O Br-	Ме Н СООН
31b		32b		30b		227b	241 209
Eintrag	Br^+	Additiv	Solvens	T [°C]	t	32b:30b:227b	Umsatz
1	209+NBS	NH ₄ Cl ^a	CH ₂ Cl ₂	RT	2 h	0:21:79	>99%(12% 30 , 59% 227) ^b
2	241 °	-	CH_2Cl_2	RT	5 d	41 : 59 : -	29%
3	241 °	-	HFIP	RT	72 h	88:3:9	72% (54% 32b) ^b
4	209+NBS	-	Toluol	RT	24 h	61 : 39 : -	43%
5	209+NBS	-	MeCN	RT	24 h	58 : 42 : -	>99%
6	209 +NBS	-	EtOAc	RT	24 h	63 : 37 : -	>99%
7	209 +NBS	-	Et ₂ O	RT	24 h	28:27:45	80%
8	209+NBS	MS 3 Å	HFIP	RT	23 h	99:1:-	>99% (75% 32b) ^b
9	209+NBS	MS 3 Å	HFIP	50	3 h	99:1:-	>99% (88% 32b) ^b
10	209+NBS	MS 3 Å	HFIP	0	5 d	93 : 7 : -	>99%
11	209+NBS	NH ₄ Cl ^a	HFIP	RT	7 h	80:3:17	>99% (41% 32b) ^d
12	NBS	MS 3 Å	HFIP	RT	23 h	93 : 7 : -	70% (38% a) ^d
13	NBS	MS 3 Å	HFIP	50	3 h	93 : 7 : -	80% (54% a) ^d

Tabelle 19. Ermittlung der Reaktionsbedingungen zur Iod(III)-vermittelten Halozyklisierung von 31b zu Oxazinon 32b.

Reaktionsbedingungen: 0.15 mmol **32b**, NBS (1.2 Äq.), **209** (10 mol%) in 0.5 mL Solvens (0.3 M); a) Es wurde ein Tropfen wässr. ges. NH₄Cl-Lösung zur Reaktionslösung gegeben; b) Isolierte Ausbeute; c) **241** (1.2 Äq.) als Bromierungsreagenz eingesetzt; d) unselektive Reaktion, isoliertes Produkt verunreinigt mit Nebenprodukten.

Ein wesentliches Problem der Reaktion des Reagenzes **241** stellte die Zersetzung in HFIP dar. So war ein vollständiger Umsatz nur nach erneuter Zugabe von Reagenz **241** nach zwei Tagen möglich. Es wurde deshalb wieder zu dem System aus **209** und NBS zurückgegriffen, welches eine höhere Reaktivität als **241** aufweist. Eine Überprüfung verschiedener Lösungsmittel ergab, dass der Einsatz von **209** mit NBS auch ohne das Additiv Ammoniumchlorid funktioniert, wenngleich die Reaktionen sehr viel langsamer waren. In Toluol wurden nach 24 Stunden nur 43% Umsatz erreicht, eine Öffnung des Sechsringes **32b**, der zusammen mit dem Regioisomer **30b** gebildet wurde (r.r. = 61:39) fand unter diesen Bedingungen nicht statt (Tabelle 19, Eintrag 4). Die Reaktionen in MeCN und EtOAc waren etwas schneller, in beiden Fällen war nach 24 h kompletter Umsatz zu beobachten, die Regioisomerenverhältnisse waren jedoch in beiden Fällen unselektiv, ebenso wie eine Umsetzung in Diethylether, bei welcher jedoch der Umsatz nach 24 Stunden nur bei 80% lag und eine Öffnung des Sechsringes **32b** eintrat (Tabelle 19, Eintrag 5-7). Es zeigte sich, dass HFIP als Lösungsmittel nicht nur zu einer Beschleunigung der Reaktion beitragen kann, sondern auch einen großen Einfluss auf die Selektivität einer Reaktion ausübt. Zu den Umsetzungen wurde etwas Molsieb hinzugefügt, um eine Öffnung des Oxazinons während der Reaktion zu minimieren. Der Umsatz von Imid 31b mit dem katalytischen System 209 (10 mol%)/NBS führte in HFIP bei Raumtemperatur nach 23 Stunden zu einem vollständigen Umsatz zu Oxazinon 32b, welches in 75% Ausbeute isoliert wurde (Tabelle 19, Eintrag 8). Durch Erhöhung der Temperatur auf 50 °C konnte die Reaktionszeit auf nur drei Stunden reduziert werden, wobei die isolierte Ausbeute auf 88% gesteigert wurde (Tabelle 19, Eintrag 9). Interessanterweise führte die Verringerung der Temperatur auf 0 °C zu einer Abnahme der Regioselektivität zu r.r. = 93:7. Es zeigte sich, dass in HFIP nicht nur die Regioselektivität beeinflusst wird, sondern auch die Hydrolyse des Oxazinons 32b ein Stück weit verhindert werden kann. Bei Zugabe von Ammoniumchlorid zu 31b in HFIP bei Raumtemperatur wurde ein kompletter Umsatz bereits nach sieben Stunden erreicht, wobei nur ein geringer Teil des Sechsringes 32b zu Amid 227b geöffnet wurde (Tabelle 19, Eintrag 10). Versuche, die Reaktion nur mit NBS ohne Iod(III)-Katalyse durchzuführen, zeigten zudem, dass die Reaktion zwar auch mit NBS alleine funktioniert, wenngleich auch längere Reaktionszeiten benötigt wurden. Neben einer Abnahme der Regioselektivität wurde dabei auch eine Abnahme der Chemoselektivität beobachtet und außer den Ringschlussprodukten 32b und **30b** wurde die Bildung von unidentifizierbaren Nebenprodukten und Zersetzung beobachtet (Tabelle 19, Eintrag 11-12). Für die Darstellung von Oxazinonen wurden so für Standardsubstrat 31b Bedingungen gefunden (209/NBS in HFIP bei 50 °C, Tabelle 19, Eintrag 9), unter denen die Reaktion schnell, selektiv und mit hohen Ausbeuten durchführbar ist.

5.2 Überprüfung der Substratbreite der Iod(III)-vermittelten Oxazinonsynthese

Nachdem Bedingungen zur selektiven Bildung des Oxazinons **32b** ermittelt wurden, sollte nun die generelle Anwendbarkeit der Methode evaluiert werden (Schema 47). Edukte **31**, deren Substituent an R¹ variiert wurde, ließen sich allesamt problemlos unter den gewählten Standardbedingungen zu **32** zyklisieren, wobei sowohl Imide mit elektronenziehenden (\rightarrow **31c**) als auch elektronenschiebenden (\rightarrow **31d-e** und **g**) Substituenten mit hohen Regioselektivitäten umgesetzt wurden. Ebenso konnte das heteroarylsubstituierte 2-Thiophenimid **31f** umgesetzt werden, wobei die isolierte Ausbeute an **32f** aufgrund von einsetzender Hydrolyse des Oxazinons **32f** zu dem azyklischen Amid **227f** mit nur 46% gering war (Schema 47). Neben *p*-F (\rightarrow **32c**) wurden auch andere Halogensubstituenten an R¹ gut toleriert (\rightarrow **32h**, **32i**, 78% und 61% Ausbeute).

Substituenten an \mathbb{R}^2 wie Ethyl- oder Benzylgruppen, wurden ebenso akzeptiert und führten zu überwiegend guten Regio- und Diastereomerenverhältnissen von 81:19 bis zu 88:12. Die etwas niedrigeren Diastereoselektivitäten sind in diesem Fall jedoch auf das *E*/*Z*-Verhältnis der Edukte zurückzuführen. Edukt **31j** wurde mit einem *E*/*Z*-Verhältnis von 87:13 eingesetzt, was sich im

Diastereomerenverhältnis des Produkts wiederspiegelt (**32j**, d.r. = 88:12). Wurde statt dem *E*-Zimtsäurederivat *E*-**31k** das *Z*-Isomer *Z*-**31k** verwendet, konnte das entsprechende *cis*-Produkt *cis*-**32k** in hoher Diastereoselektivität erhalten werden, was auf einen ionischen Mechanismus mit *anti*-Addition hinweist. Die Reaktion von Zimtsäureimid **31s** ($R^2 = H$) hingegen führte zu einer unselektiven und unsauberen Reaktion mit vielen unidentifizierbaren Nebenprodukten (Schema 48). Die Verwendung einer Methylmethoxygruppe als R^2 führte überraschenderweise zu einem Diastereomerengemisch in niedrigen Ausbeuten (\rightarrow **32l**, d.r. = 66:34, 35%, Schema 47).

Schema 47. Substratbreite der Bromzyklisierungsreaktion. a) Reaktion bei RT durchgeführt; b) Gesamtausbeute, Regioisomere nicht trennbar.

Wie zu erwarten, zeigten Substituenten an R³, die sich direkt in Konjugation zur reaktiven Doppelbindung befinden, den größten Einfluss auf die Regioselektivität der Reaktion: Während elektronenschiebende Substituenten am Aromaten, wie 4-t-Bu, oder 4-OMe, zwar zu hoher Regioselektivität und guter Ausbeute führte, wurde eine Abnahme der Diastereoselektivität beobachtet, welche nun nur noch 65:35 (32n) und 61:39 (32o) betrug (Schema 47). Elektronenziehende Substituenten wie 4-CF₃- oder 3,5-Dibrom-Gruppen hingegen führten zwar zu besserer Diastereoselektivität, dafür sank jedoch die Regioselektivität auf 60:40 und 46:54 (\rightarrow 32p und 32q, Schema 47). 3-Bromphenylzimtsäureimid 31r führte minimal zu einem besseren

Regioisomerenverhältnis von 77:23 und einem Diastereomerenverhältnis von d.r. = 90:10 (Schema 47, \rightarrow 32r). Um zu überprüfen, ob die geringe Selektivität aufgrund eines radikalischer Reaktionswegs vorliegt, wurde 31p in HFIP unter Addition des Radikalfängers TEMPO (2,2,6,6-Tetramethylpiperidine-1-oxyl) umgesetzt und das Isomerenverhältnis mittels ¹H-NMR bestimmt. Da sich das Isomerenverhältnis von 60:40 durch Zugabe des Radikalfängers nicht änderte, kann von einem ionischen Reaktionsmechanismus ausgegangen werden (vgl. 32p, Schema 47).

Schema 48. Umsetzung von Zimtsäureimid 31s.

Die erhaltenen Ergebnisse spiegeln den großen Einfluss der elektronischen Faktoren im System wider, bei dem durch eine bevorzugte Stabilisierung der positiven Ladung in benzylischer Position die Bildung der eigentlich kinetisch bevorzugte 5-*exo-tet* Zyklisierung umgangen wird. Der Einsatz von HFIP sorgt für eine Stabilisierung der positiven Ladung in dieser Position, wodurch die Regioselektivität in dem Maße beeinflusst wird, dass hauptsächlich die Bildung des Oxazinons **32** beobachtet werden kann. Wird der induktive Effekt der Elektronendichte aus dem Aromaten jedoch zu gering, etwa durch elektronenziehende Gruppen R³ im Aromaten, kommt es wieder zu einer Konkurrenzreaktion des bevorzugten 5-*exo-tet* Ringschlusses. Interessanterweise kann eine Stabilisierung der positiven Ladung mit elektronenschiebenden Substituenten im konjugierten Aromaten zur Bildung und Stabilisierung eines planaren Übergangszustands führen, wie mit den Substraten **31n** und **31o** beobachtet, in dessen Folge eine unselektive Bildung von *cis*- und *trans*-Diastereomeren zu beobachten ist (**32n** und **32o**). Diesen Überlegungen folgend sollte ein α -Phenylzimtsäureimid **31m**, welches zwei benzylische Positionen besitzt, zu einem Regioisomerengemisch führen. Tatsächlich wurde ein solches Gemisch aus Fünf- und Sechsringen erhalten (r.r. = 53:47), wobei das Oxazinon **32m** als einzelnes Diastereomerengebildet wurde (Schema 47).

Insgesamt konnten jedoch durch die Verwendung von HFIP mehrere Oxazinone selektiv hergestellt werden. Eine Herausforderung ist sicherlich die Anfälligkeit des sechsgliedrigen Heterozyklusses **32** gegenüber Hydrolyse, welche zwar auch bei längerer Reaktionszeit in HFIP kaum zu beobachten war, aber während der Aufarbeitung und Reinigung an Kieselgel einsetzte. Bei Lagerung unter Feuchtigkeitsausschluss zeigten die Oxazinone **32** aber insgesamt eine gute Stabilität.

5.3 Einfluss der Substituenten auf die Regioselektivität im System 209/NBS/Ammoniumchlorid

Um den Einfluss des Lösungsmittels HFIP auf die Selektivität der Reaktion zu untersuchen, wurden ausgewählte Substrate ebenfalls in CH₂Cl₂ mit dem katalytischen System **209**/NBS unter Zugabe von einen Tropfen Ammoniumchlorid umgesetzt (Tabelle 20). Hier zeigte sich ein ähnlicher Einfluss der Substituenten wie im HFIP-System, wobei die Regioselektivität jeweils geringer war. Mit Substraten, welche einen elektronenreichen Aromaten an R¹ besitzen, wie 4-OMe-Ph (**31d**) und 4-*t*-Bu-Ph (**31g**) wurde eine Abnahme der Regioselektivität beobachtet (r.r = 69:31 und r.r. = 75:25; Tabelle 20, Eintrag 3 und 4). Wurde jedoch 3-Br-Ph, oder 4-Me-Ph als R¹ eingesetzt, konnten Regioselektivitäten von 96:4, bzw. 89:11 erreicht werden (Tabelle 20, Eintrag 4 und 6). Ein Fluorsubstituent in *para*-Position führte hingegen zu einem Gemisch aus Amid **227c** und Oxazolon **30c** im Verhältnis 81:19 (Tabelle 20, Eintrag 2).

Eintrag	Substrat	$R^{1}/R^{2}/R^{3}$	227:30	227 d.r.	30 d.r.	Ausbeute 227 / 30
1	31b	Ph/Me/Ph	79:21	>99:1	>99:1	59% / 12%
2	31c	4-F-Ph/Me/Ph	81:19	>99:1	n.d.	75% / -
3	31d	4-OMe-Ph/Me/Ph	69:31	>99:1	>99:1	74% / 24%
4	31e	4-Me-Ph/Me/Ph	96:4	>99:1	n.d.	66% / -
5	31g	4-tBu-Ph/Me/Ph	75:25	>99:1	>99:1	70% / 18%
6	31h	3-Br-Ph/Me/Ph	89:11	>99:1	>99:1	65% / 10%
7	31k	Ph/Bn/Ph	88:12	77:23	81:19	83% / -
8	31m	Ph/Ph/Ph	30:70	>99:1	90:10	9% / 45%
9	311	Ph/CH ₂ OMe/Ph	96:4	>99:1	79:21	48% / -
10	310	Ph/Me/4-OMe-Ph	92:8	74:26	81:19	45% / -
11	31q	Ph/Me/3,5-DiBr-Ph	15:85	>99:1	95:5	15% / 69%

32k aus Produkt *E*/*Z* = 87:13

Reaktionen von Imiden mit variierenden Substituenten in Position \mathbb{R}^2 zeigten unter diesen Bedingungen jedoch einen überraschenden Einfluss auf die Regioselektivität. Zwar wurde mit α -Phenylsubstrat **31m**, wie erwartet, hauptsächlich der Fünfring gebildet (Tabelle 20, Eintrag 8), mit einen α -

Benzylsubstituenten **31k** wurden jedoch die Produkte in einem Regioisomerenverhältnis von 88:12 erhalten, wobei die Diastereoselektivität etwas sank (d.r. = 77:23, Tabelle 20, Eintrag 7). Die Umsetzung von α -CH₂OMe-Zimtsäure **311**, welche in HFIP zu einem Diastereomerengemisch von d.r. = 66:34 geführt hatte (vgl. Schema 47), lieferte in CH₂Cl₂ jedoch das Hydrolyseprodukt des Sechsrings **321**, das Amid **2271**, als Hauptprodukt (r.r. = 96:4), welches als einzelnes Diastereomer (d.r. >99:1) in 48% Ausbeute erhalten wurde (Tabelle 20, Eintrag 9). Dieses Ergebnis lässt sich durch eine Beteiligung der Methoxygruppe während der Reaktion erklären, bei der durch einen anchimeren Effekt eine Stabilisierung der positiven Partialladung in benzylischer Position erreicht wird (Schema 49). Dieser Effekt ist in HFIP durch die starken Wechselwirkungen des Lösungsmittels mit dem positiv geladenen Intermediat **242** weniger ausgeprägt.

Schema 49. Selektiver Ringschluss über eine 6-endo-tet Zyklisierung durch Nachbargruppenbeteiligung.

Im Gegensatz zur Reaktion in HFIP führten jedoch elektronenreiche Substituenten R³ nicht im gleichen Maße zu niedrigen Diastereoselektivitäten: So wurde mit Substrat **310** (R³ = 4-OMe-Ph) hauptsächlich Amid **320** (r.r. = 92:8) in einem Diastereomerenverhältnis von d.r. = 74:26 erhalten (in HFIP: d.r. = 61:39, vgl. Schema 47), während elektronenziehende Substituenten zu der bevorzugten Bildung von Oxazolon **30** führten (Tabelle 20, Eintrag 10 und 11). Die Umsetzung von 3,5-Dibromphenyl-Zimtsäureimid **31q** lieferte mit einem Regioisomerenverhältnis von r.r. = 15:85 Amid **227q** als Minderkomponente, während das Oxazolon **30q** in 69% Ausbeute isoliert wurde (Tabelle 20, Eintrag 11). Auch wenn die Reaktion in HFIP durch seine solvolytischen Eigenschaften zur Koordination und Stabilisierung von positiven Ladungen beiträgt und so die Bildung von Sechsringen klar bevorzugt, zeigten sich eben diese Eigenschaften bei Substraten mit elektronenreichen Substituenten am Aromaten R³ in Hinblick auf die Diastereoselektivität als problematisch. Für solche Substrate könnte die Reaktion in CH₂Cl₂ eine bessere Variante darstellen. Zudem wurde ein Nachbargruppeneffekt des Methylethersubstituenten in R² beobachtet. Dies wurde zwar im Rahmen der Arbeit nicht weiter untersucht, könnte aber einen nützlichen Zugang zur Synthese von Oxazinonen **32** aus Substraten darstellen, die aufgrund ihrer Substituenten unerwünschte Reaktivitäten aufweisen.

5.4 Synthese von Oxazinanen 243 ausgehend von Zimtsäureimiden 31 in einer Eintopfreaktion

Durch Reduktion können die Oxazinone **32** in die entsprechenden Oxazinane **243** transformiert werden, welche ebenso vielseitige Strukturen darstellen.^[164] Da die Oxazinone **32** während der Aufarbeitung und Reinigung leicht hydrolisieren, wurde nach Bedingungen gesucht, um die Reduktion in einer Eintopfreaktion zu vollziehen. Weil milde Reduktionsmittel wie NaBH₄ oder NaCNBH₃ auch in wässrigen Lösungsmitteln bzw. Alkoholen eingesetzt werden können, wurden diese zunächst an Standardsubtrat **5** eingesetzt. Während die Reaktion mit NaBH₄ nicht zu einem vollständigen Umsatz führte, zeigten sich mit NaCNBH₃ bessere Ergebnisse. Durch Zugabe von NaCNBH₃ in einem leichten Überschuss zur Reaktion nach vollständig abgelaufener Ringschlussreaktion konnte **31** erfolgreich in Oxazinan **243** überführt werden (Schema 50). Hierfür war weder ein Lösungsmittelwechsel notwendig, noch die Zugabe von anderen Additiven zur Aktivierung des Imins.

Schema 50. Eintopfreaktion mit Zyklisierungs- und Reduktionsschritten zur Synthese von Oxazinanen 243.

Es war jedoch eine erhöhte Reaktionstemperatur von 50 °C vonnöten, um die Reaktion innerhalb von 24 Stunden zur Vollständigkeit zu bringen. Die Reaktion des Imids **31b** verlief diastereoselektiv mit 63% Ausbeute (\rightarrow **243b**, Schema 50). Neben Phenyl- α -Methylzimtsäureimid (**31b**) konnten auch die 4-Chlorphenyl- und 3-Bromphenylderivate **31i** und **31h** erfolgreich in die entsprechenden Oxazinane **243i** und **243h** in 61% und 53% mit hoher Diastereoselektivität transformiert werden (Schema 50). Ebenso wurde das α -Ethylsubstrat **31j** erfolgreich umgesetzt, wenngleich auch mit niedrigerer Ausbeute von 46% (\rightarrow **243j**, Schema 50). Das etwas niedrigere Diastereomerenverhältnis lässt sich auf das Isomerenverhältnis des Edukts, das als *E*/*Z*-Gemisch (ca. 70:30) eingesetzt wurde, und das Diastereomerenverhältnis der Zwischenstufe **32j** (d.r. = 88:12, vgl. Schema 47) zurückführen. Die Umsetzung des Thiophensubstrats **31f** ließ sich ebenfalls mit 60% Ausbeute realisieren, wobei hier die

Diastereoselektivität (d.r. = 91:9) etwas geringer war (\rightarrow 243f, Schema 50). Auf diese Weise gelang die Darstellung von Oxazinanen 243 in guten bis exzellenten Diastereoselektivitäten und in moderaten bis guten Ausbeuten. Durch NOESY-NMR Experimente wurde die relative Konfiguration der Hauptdiastereomere anhand von 243b (*cis, trans*) bestimmt, welche durch die Messung einer Kristallstruktur von 243f bestätigt wurde.

Abb. 13. Entscheidende NOESY-Wechselwirkungen zur Bestimmung der relativen Konfiguration an Oxazinan 243b.

5.5 Versuche zur enantioselektiven Bromzyklisierung von Zimtsäureamiden 31b

Nachdem die Überprüfung der Methodik mit der Anwendung an einer Reihe von Substraten abgeschlossen war, wurde nun begonnen, die Möglichkeiten einer asymmetrischen Bromzyklisierung zu testen. Zwar gibt es schon mehrere Publikationen zur enantioselektiven Halozyklisierung von Allylamiden zu Dihydrooxazolen oder Oxazinen, welche auf Lewisbasen-Interaktionen mit z.B. chiralen Diphosphinbinaphthylen (BINAP)^[165] beruhen, diese Bedingungen sind auf die Imide aber nur bedingt übertragbar, da die Doppelbindung in den Substraten **31** aufgrund der elektronenziehenden Carbonylgruppe in Nachbarschaft weniger reaktiv ist. Zudem erwies sich der Einsatz von HFIP als Lösungsmittel für eine regioselektive Reaktion als essenziell (vgl. Abschn. 5.1), welches jedoch durch seine solvolytischen Eigenschaften als H-Brückendonor und Brønstedsäure eine Koordination von chiralen Induktoren erschweren könnte.

Schema 51. Asymmetrische Halogenzyklisierung von Amid 244 nach Hamashima *et al.*^[165a] mit (*S*)-BINAP (247) (links) und Jaganathan et al.^[166] mit (DHQD)₂PHAL (248) (rechts).

Tatsächlich wurde mit (*S*)-BINAP (**247**), angelehnt an die Bromzyklisierung von Allylamiden nach Hamashima (Schema 51, links),^[165a] keine asymmetrische Induktion beobachtet (Tabelle 21, Eintrag 1 und 2). Acetonitril als aprotisches Lösungsmittel hatte zwar in Testreaktionen einen positiven Einfluss auf die Reaktionsgeschwindigkeit (vgl. Tabelle 19, Eintrag 5), hier war jedoch wieder die Regioselektivität problematisch. Entsprechend wurde bei der Umsetzung von **31b** mit (*S*)-BINAP (**247**) in Acetonitril mit Iod(III)-Reagenz **241** ein Gemisch aus Regioisomeren gebildet, welche jeweils ebenfalls als Racemate vorlagen (Tabelle 21, Eintrag 3). Ein anderes System zur chiralen Induktion wurde von Jaganahtan *et al.* Anhand der Chlorzyklisierung von Allylamiden demonstriert: Die Verwendung von katalytischen Mengen (DHQD)₂PHAL (**248**, 2 mol%) in HFIP oder TFE führte zur Bildung von **245** mit Enantiomerenüberschüssen von 90% (Schema 51, rechts).^[75g, 166]

Tabelle 21. Versuche zur asymmetrischen Synthese von Oxazinonen 32	Tabelle 21.	Versuche zur	asymmetrischen	Synthese v	on Oxazinonen	32b.
--	-------------	--------------	----------------	------------	---------------	------

		Me Ph		Me ''Br + 'Ph Pr		$Me \rightarrow H_2N$	Ph O Ph O Pr	1	
	31	b	32b		30b		227b		
Eintrag	Br ⁺ Additiv		Solvens	Τ [°C]	t [d]	Umsatz [%]	32b/30b	ee [%]	
Linung			borvens	1[0]	ι[u]		/227b	32b	30b
1	209/NBS	(S)-BINAP	HFIP	RT	1	>99 (71) ^a	97:3:-	-	-
2 ^b	241	(S)-BINAP	HFIP	RT	7	20	99:0:1	-	-
3 ^b	241	(S)-BINAP	MeCN	RT	7	59	38:33:29	-	-
4	209/NBS	(DHQD) ₂ PHAL	HFIP	4	3	n.d.	68:32:0	-	11
5	NBS	(DHQD) ₂ PHAL	HFIP	4	3	n.d.	65:35:0	6	-
6	209/NBS	(DHQD) ₂ PHAL	TFE	4	3	~80	26:65:9	-4	-12
7	209/NBS	(DHQD) ₂ PHAL	HFIP	0	5	n.d.	67:33:0	5	5
8	209/NBS	(DHQ) ₂ PHAL	HFIP	0	5	n.d.	65:35:0	6	8
9	209/NBS	(DHQ)2PHAL	TFE	0	5	~60	42:58:0	-9	13
10 ^c	209/NBS	(DHQD) ₂ PHAL	TFE	0	5	<50	8:92:0	-	-35

a) isolierte Ausbeute 32b; b) es wurde 1.1 Äq. Reagenz 241 eingesetzt; c) 50mol% Additiv eingesetzt.

Angewendet auf die Bromzyklisierung von Substrat **31b** in HFIP konnten jedoch keine nennenswerten Enantioselektivitäten beobachtet werden. Vielmehr führte der Zusatz von 10 mol% an (DHQD)₂PHAL (**248**) in HFIP zu einer Abnahme der Regioselektivität und zur Bildung eines Gemischs aus **32b** und

30b, wobei letzteres mit 11% *ee* isoliert wurde (r.r. = 68:32, Tabelle 21, Eintrag 4). Bemerkenswerterweise wurde ein Lösungsmittel- sowie Reagenzeffekt festgestellt: Wurde nur NBS ohne den Iodkatalysator 209 eingesetzt, wurde 32b als in der Umsetzung mit 248 als Racemat erhalten, während **30b** einen minimalen ee von 6% zeigte (Tabelle 21, Eintrag 5), wurde die Reaktion mit 209/NBS und (DHQD)₂PHAL (248, 10 mol%) in TFE durchgeführt, wurde die bevorzugte Bildung des Enantiomers *ent*-**30b** (mit ee = -12%), beobachtet. Der Einfluss beschränkte sich nicht nur auf den Enantiomerenüberschuss, es wurde auch eine Umkehr der Regioselektivität zu dem Fünfring 30b als Hauptisomer verzeichnet (Tabelle 21, Eintrag 6). Die Reaktionen wurden daraufhin nicht nur bei tieferen Temperaturen von 0 °C durchgeführt, was jedoch in HFIP zu keiner Verbesserung führte (Tabelle 21, Eintrag 7), es wurde auch das Pseudo-Enantiomer von Dihydroquinidin, das Dihydrochininphthalazin (DHQ)₂PHAL (250) in HFIP und TFE eingesetzt. Auch mit 250 war die Reaktion in HFIP unselektiv und die Enantiomerenüberschüsse gering (Tabelle 21, Eintrag 8). Ebenso wurde mit (DHQ)₂PHAL (250) in TFE außer einem Vorzeichenwechsel der im Überschuss gebildeten Enantiomeren von **32b**, keine Verbesserung erzielt (Tabelle 21, Eintrag 9). Durch den Einsatz von 50 mol% (DHQD)₂PHAL (248) in TFE gelang schließlich ein Enantiomerenüberschuss von -35%, wobei fast ausschließlich der Fünfring Oxazolon **30b** gebildet wurde (r.r. = 8:92, Tabelle 21, Eintrag 10). Die enantioselektive Bromierung konnte im Rahmen der Dissertation aus Zeitgründen nicht weiter untersucht werden. Dieses Ergebnis kann nicht nur den Ausgangspunkt für zukünftige Versuche zur enantioselektiven Bromzyklisierung darstellen, sondern auch zur Untersuchung der vorliegenden Mechanismen zur Stereoinduktion inspirieren.

5.6 Versuche zur Chlor- und Fluorzyklisierung von Imid 31b

Die beobachtete Beschleunigung der Reaktion des Imids **31b** mit dem Iod(III)-Katalysator **209** in HFIP warf die Frage auf, ob die Zyklisierungen auch durch Verwendung anderer Halogenierungsmittel zu erzeugen sind (Tabelle 22). Imid **31b** wurde deshalb zunächst mit NCS und katalytischen Mengen **209** (10 mol%) in HFIP umgesetzt, mit dem Ziel, die chlorierte Spezies **32t** zu erzeugen. Diese Bedingungen führten jedoch auch bei erhöhter Temperatur und einer langen Reaktionszeit von zehn Tagen nur zu einem geringen Umsatz von 20%, wobei die möglichen chlorierten Produkte **32t**, **30t** und **227t** nur in Spuren gebildet wurden (Tabelle 22, Eintrag 1). Die Verwendung des stabileren Iodreagenzes **213** hingegen führte zu keinerlei Reaktion (Tabelle 22, Eintrag 2). Da **213** eher reaktionsträge ist, wurde versucht durch Zugabe von Lewis-sauren Additiven eine Aktivierung des Reagenzes zu erreichen. Der Einsatz von AgBF₄ verhalf jedoch weder bei Raumtemperatur, noch bei höheren Temperaturen von 50 °C zu einer Reaktion (Tabelle 22, Eintrag 3 und 4). Auch die Verwendung des Kupferkomplexes [Cu(MeCN)₄]BF₄ führte zu keinerlei Umsatz (Tabelle 22, Eintrag 5 und 6). Mit Pd(MeCN)₂(BF₄)₄ hingegen konnten nach zwei Tagen bei Raumtemperatur Spuren von chlorierten Produkten gesehen werden. Eine Erhöhung der Reaktionstemperatur auf 50 °C lieferte nach zwei Tagen die chlorierten

Produkte **32t**, **30t** und **227t**, wenngleich auch in geringer Ausbeute von 21% und unselektiv als Gemisch im Verhältnis 14:54:31 (Tabelle 22, Eintrag 7 und 8).

 $HN \xrightarrow{H} Ph \xrightarrow{O} Ph \xrightarrow{O} Ph \xrightarrow{H} Ph \xrightarrow{O} Ph \xrightarrow{H} Ph \xrightarrow{O} Ph \xrightarrow$

Tabelle 22. Umsetzungen von Imid 31b mit verschiedenen Iod(III)-Halogenierungsreagenzien.						
I(III)-Reagenz						

Eintrag	Reagenz	Additiv	Solvens	T [°C]	t	Umsatz	32:30:227	Ausbeute
1	209+NCS	-	HFIP	50	10 d	20%	Spuren	-
2	213	-	HFIP	RT	24 h	-	-	
3	213	AgBF ₄	HFIP	RT	2 d	-	-	-
4	213	AgBF ₄	HFIP	50	2 d	-	-	-
5	213	[Cu(MeCN) ₄]BF ₄	HFIP	RT	2 d	-	-	-
6	213	[Cu(MeCN) ₄]BF ₄	HFIP	50	2 d	-	-	-
7	213	Pd(MeCN) ₂ (BF ₄) ₄	HFIP	RT	2 d	Spuren	-	-
8	213	Pd(MeCN) ₂ (BF ₄) ₄	HFIP	50	2 d	77%	14:54:31	21%
9	252	$AgBF_4$	HFIP	50	5 d	-	-	-
10	252	[Cu(MeCN) ₄]BF ₄	HFIP	50	5 d	-	-	-
11	252	Pd(MeCN) ₂ (BF ₄) ₄	HFIP	50	5 d	Zers.	-	-
12	252	BF ₃ •OEt ₂	HFIP	RT	4 d	Zers.	-	
13	252	BF ₃ •OEt ₂	HFIP	50	6 d	Zers.	-	-
14 ^a	241	CuO ₂ , 2,2 bipy	DMF	80	6 d	-	-	-
15 ^a	213	CuO ₂ , 2,2 'bipy	DMF	80	5 d	-	-	-
16 ^a	252	CuO ₂ , 2,2 bipy	DMF	80	5 d	-	-	-

Bedingungen: **31b** (0.25 mmol, 1.0 Äq.), Additiv (20 mol%), Solvens (0.3 M), a) CuO_2 (40 mol%), 2,2'-bipy (40 mol%) in DMF (0.1 M) als Additiv verwendet.

Fluorbenziodoxol **252** wurde ebenfalls mit Imid **31d** umgesetzt. Trotz Zugabe von verschiedenen Additiven zur Aktivierung des Reagenzes konnte jedoch kein fluoriertes Produkt gebildet werden. Während mit AgBF₄ und [Cu(MeCN)₄]BF₄ keine Reaktion stattfand, führte die Zugabe von Pd(MeCN)₂(BF₄)₄ oder BF₃·OEt₂ nur zu Zersetzung (Tabelle 22, Eintrag 9-13). Es wurden zudem Bedingungen zur radikalischen Halogenierung in Anlehnung an die Umsetzungen von Nevado^[167] in DMF getestet, welche jedoch mit Substrat **31b** zu keiner Reaktion führte (Tabelle 2, Eintrag 14-16). Es liegt die Vermutung nahe, dass die Doppelbindung in Nachbarschaft zur Imidfunktion trotz des Phenylsubstituents für diese weniger reaktiven Halogenierungsreagenzien nicht ausreichend aktiviert ist. Eine Produktbildung wurde lediglich mit Chlorierungsreagenz **213** unter Zugabe eines Pd-Additivs zur Aktivierung des Iod(III)-Reagenzes beobachtet.

6. Zusammenfassung

Die Totalsynthese stellt unter anderem ein wichtiges Werkzeug zur Strukturaufklärung von neuartigen Naturstoffen dar, insbesondere bei Verbindungen, die aufgrund ihrer Beschaffenheit auch durch moderne spektroskopische Methoden nicht eindeutig identifiziert werden können. Gerade bei Verbindungen, die einen hohen Anteil an Heteroatomen aufweisen, kann die Bestimmung der Konfiguration oder sogar der Konstitution durch spektroskopische Methoden problematisch werden. Der kleine, bizyklische Sekundärmetabolit HB-372 peak 8 (**29**), der aus einem marinen Streptomycetenstamm gewonnen wurde, besitzt ein bisher unbekanntes Molekülgerüst, welches durch den hohen Heteroatomanteil sowie das niedrige Wasserstoff/Kohlenstoff-Verhältnis in der Grundstruktur mittels analytischer Methoden nicht zweifelsfrei bestimmt werden konnte. Deshalb sollte in der vorliegenden Arbeit die schrittweise, nachvollziehbare Synthese von **29** zur Belegung der vorgeschlagenen Struktur erfolgen.

Hierfür wurden verschiedene Konzepte erarbeitet, die in Syntheseroute A und Syntheseroute B oder C unterteilt wurden (Schema 52). Bei Syntheseroute A wurde der Ringschluss ausgehend von Schlüsselsubstraten **127**, **125** und **162** mit einer vorinstallierten Seitenkette durchgeführt und die Oxidation der bizyklischen Struktur als letzte Stufe geplant. Durch die Einstellung der Funktionalitäten im Vorfeld zum Ringschluss sollte eine kurze, übersichtliche und stufenökonomische Synthesesequenz erreicht werden. Über Syntheserouten B und C wurde mit einfachen Ausgangsverbindungen **119**, **184** und **193** zunächst das bizyklische Grundgerüst aufgebaut. Durch die Abwesenheit der Seitenkette wurde eine höhere Flexibilität in der Syntheseplanung erreicht, wodurch verschiedene Methoden zum Ringschluss untersucht werden konnten.

Schema 52. Getestete Syntheserouten A, B und C zu 29 ausgehend von unterschiedlichen Substraten mit verschiedenen Zyklisierungsstrategien.

Mit allen Herangehensweisen wurde die Synthese von Verbindungen erzielt, die nur wenige Stufen von der Zielstruktur entfernt sind, wenngleich die Totalsynthese von **29** in dieser Arbeit nicht vervollständigt werden konnte.

Im Einzelnen wurden in der Synthese des Naturstoffes HB-372 (29) folgende Ziele erreicht:

 Über den Schlüsselschritt einer Halogenzyklisierung wurde ausgehend von Butenol 122 über Imidazolon 125 erfolgreich die Konstruktion des bizyklischen Gerüsts durchgeführt. Des Weiteren wurden Bedingungen zur Oxidation der labilen Halbaminalstrukturen 142 optimiert, welche die Überführung von 142 in das Dihydroanalog 143 in hohen Ausbeuten von bis zu 94% erlaubte (Schema 53).

Schema 53. Studien zur Bromzyklisierung von Imidazolon 125 zum Aufbau des bizyklischen Gerüsts.

Durch Abspalten der PMB-Schutzgruppe von 153 gelang die Isolierung des Dihydroanalogs 141, welches sich lediglich in der Oxidationsstufe des Oxazolringes von der Zielstruktur 29 unterscheidet. Bei dem Versuch, die Doppelbindung über eine *C*,*H*-Oxidation an Dihydroanalog 141 einzuführen, wurde eine bevorzugte Reaktivität an der Seitenkette festgestellt, welche zur Bildung von Keton 156 führte (Schema 54).

Schema 54. Entschützung zu Dihydroanalog 141 mit folgender C, H-Oxidation führte zu Keton 156.

Die gewonnenen Erkenntnisse des Synthesewegs A zu 143 und 153 wurden in der Syntheseroute B angewendet, bei der die Synthese des Schlüsselintermediats 167, das eine exozyklische Doppelbindung aufweist, als Etappenziel festgelegt wurde. Ausgehend von den preiswerten und leicht zugänglichen Ausgangsverbindungen 105 und 174 wurde das geschützte Diolsubstrat 176 synthetisiert, welches in einer Bromzyklisierung und einer nachfolgenden Oxidation zu Bizyklus 178 führte. Durch Derivatisierung mittels einer Grieco-Eliminierung von 179, welches nach Entfernung der Schutzgruppe erhalten wurde, wurde die Bildung des Schlüsselintermediats 167a in Spuren beobachtet (Schema 55).

Schema 55. Syntheseweg zur Konstruktion von Schlüsselintermediat 167a über eine Halogenzyklisierung, gefolgt von einer Grieco-Eliminierung an Alkohol 179.

 Ein weiterer Syntheseansatz über eine Selenzyklisierung führte in wenigen Schritten ebenfalls zu Verbindung 167, welche in 10% Ausbeute isoliert werden konnte. Im Zuge dieser Experimente wurde eine ungewöhnliche Reaktivität der Selenzyklisierung festgestellt, durch die es in einer Nebenreaktion zur Bildung eines Sechringes 191 als einzelnes Diastereomer in Abhängigkeit von dem verwendeten Silbersalz kam (Schema 56).

Schema 56. Synthese des Schlüsselintermediats 167b über eine Selenzyklisierungs-Eliminierungs-Sequenz.

 Über die Zykloisomerisierung von Alkin 193 wurde über Syntheseroute C ein weiterer Zugang zu 167 erarbeitet. Hierbei wurde ein starker Einfluss des Metallreagenzes auf die Regioselektivität beobachtet. Während Goldkatalysatoren die Bildung des 6-*endo-dig*-Produktes 198 bevorzugten, konnte mit Silbersalzen wie Ag₂CO₃ schließlich ein verlässlicher und reproduzierbarer Zugang zu Schlüsselintermediat 167 in wenigen Schritten realisiert werden (Schema 57).

Schema 57. Zykloisomerisierung zur Darstellung von Schlüsselintermediat 167b.

Mit diesen Ergebnissen wurden die Weichen für zukünftige Arbeiten zur Vervollständigung der Synthese gestellt und mit der Synthese von **167b** ein wichtiger Schlüsselschritt in der Totalsynthese des Naturstoffs HB-372 (**29**) verwirklicht.

Die Synthese von Naturstoffen oder bioaktiven Verbindungen mit *N*- und *O*-haltigen, zyklischen Strukturen stellt aufgrund der Reaktivitäten der Heteroatome eine besondere Herausforderung an die Auswahl der angewendeten Methoden dar. Besonders zur Synthese von ungewöhnlichen heterozyklischen Strukturen bedarf es immer noch einer Erweiterung der synthetischen Werkzeuge. Im zweiten Teil der Dissertation wurde deshalb eine milde und selektive Methode unter Verwendung von hypervalenten Iod-Reagenzien wie zur Zyklisierung von Zimtsäurederivaten **31** zu Oxazinonen **32** untersucht.

In diesem Zusammenhang wurden folgende Ergebnisse erzielt:

• Es wurden Bedingungen ermittelt, welche die Herstellung der Oxazinone **32** in Ausbeuten von 35% bis 90% mit Regioselektivitäten bis zu >99:1 und Diastereoselektivitäten von 65:35 bis >99:1 erlaubten. Dabei wurde eine ausgeprägte Abhängigkeit der Regioselektivität von dem verwendeten Lösungsmittel beobachtet, nach welcher in HFIP die Bildung des Oxazinons deutlich begünstigt wurde. Andere Lösungsmittel hingegen führten zu Regioisomerengemischen von fünfgliedrigen und sechsgliedrigen Ringschlussprodukten. Der Einsatz von HFIP erzeugte gleichzeitig einen starken Einfluss der Substituenten in **31** auf die Diastereoselektivität. Die beobachteten Einflüsse der Substituenten R³ lassen dabei auf eine Stabilisierung einer positiven Ladung in Benzylstellung durch das Lösungsmittel schließen, welche bei elektronenschiebenden Substituenten R³ ningegen führten zur Bevorzugung einer 5-*exo-tet*-Zyklisierung und damit zu einer Abnahme der Regioselektivität (Schema 58).

Schema 58. Entwickelte Methodik zur Synthese von Oxazinonen 32 in einer Bromzyklisierung ausgehend von Zimtsäureimiden 31.

Eine entwickelte Eintopf-Reaktion zur Reduktion der wasserempfindlichen Oxazinone 32 ermöglichte die direkte Überführung der Sechsringe in die stabileren Oxazinane 243 in Ausbeuten von 46% - 63% und Diastereoselektivitäten von 84:16 bis >99:1 (Schema 59).

Schema 59. Eintopfreaktion zur Herstellung der Oxazinane 243 ausgehend von Zimtsäureimiden 31.

In vorläufigen Untersuchungen zur enantioselektiven Bromzyklisierungen von Zimtsäureimid 31 in fluorierten Lösungsmitteln wurde mit (DHQD)₂PHAL (248) in TFE ein System gefunden, welches nicht nur eine Umkehr der bevorzugten Regioselektivität hin zur Bildung des Oxazolons 30b mit einer Regioselektivität von 98:2 ermöglichte, sondern auch das Produkt 30b mit einem signifikanten Enantiomerenüberschuss von 35% bildete, während in HFIP eine Verschlechterung des

Diastereomerenverhältnisses, sowie nur geringfügige Enantiomerenüberschüsse des Oxazinons **32b** erreicht wurden (Schema 60).

Schema 60. Vorläufige Versuche zur enantioselektiven Bromzyklisierung mit einem chiralen Induktor 248.

Zusammenfassend wurde eine Methodik zur Bromzyklisierung von Zimtsäureimiden **31** zu den Sechsringen **32** erarbeitet sowie eine Eintopfreaktion ausgehend von **31** zu **243** entwickelt. Des Weiteren wurde ein Ansatzpunkt zur enantioselektiven Zyklisierung, sowie zur Umgehung der inhärenten Reaktivität der Zimtsäurederivate gefunden.

7. Conclusions

Total synthesis constitutes i.a. an important tool for the structure elucidation of unprecedented natural products. This applies in particular to compounds that are inaccessible for modern spectroscopic methods due to their chemical constitution. Especially in the case of frameworks with a high heteroatom content the verification of configuration or even chemical constitution by the means of spectroscopy may be insufficient. The small, bicyclic secondary metabolite HB 372 peak 8 (**29**) that was extracted from a marine streptomycetes strain, exhibits an unprecedented molecular framework, which could not be unambiguously assigned by modern analytical methods because of its high heteroatom content as well as the low proton/carbon ratio. Therefore, a step-by-step synthesis of **29** became necessary to confirm the proposed structure.

To reach this goal, several approaches were formulated and categorized into synthetic routes A, B and C (Scheme 1). Synthetic route A focused on achieving the ring-closing reaction by halocyclization using substrates **127**, **125** and **162** that all bear a pre-installed, intact side chain, followed by oxidation of the bicyclic framework in the final step. These structures containing all the functionalities were applied to ensure a short, concise and step economic synthesis sequence. In synthetic routes B and C the order of events was changed. Here, we started by using simple substrates **119**, **184** and **193** and formed the basic bicyclic structure prior to installation of the authentic side chain. This ensured more flexibility in synthesis planning due to the absence of the side chain, which allowed for multiple ring-closing methods to be investigated.

Scheme 1. Synthetic routes A and B towards the synthesis of 29 using several substrates and ring-closing strategies.

Though all pathways led to the synthesis of scaffolds that are very close to the target structure, the total synthesis of **29** could not be completed in this doctoral thesis.

The following goals were achieved towards the total synthesis of natural product HB-372 (29):

• The bicyclic skeleton was successfully synthesized starting from butenol **122** *via* imidazolone **125** using a halogen-mediated ring-closing reaction as the key step. Furthermore, the optimum reaction conditions for the oxidation of the unstable hemiaminal structures **142** were identified, which allowed the reaction from **142** to the dihydro analog **143** to proceed in high yields of 94% (Scheme 2).

Scheme 2. Studies on the bromocyclization of imidazolone 125 towards the formation of the bicyclic framework.

• The isolation of the dihydro analog **141** that only differs from the target structure in the oxidation state of the oxazole ring, was achieved by eliminating the PMB protecting group. During several attempts to introduce the endocyclic double bond into the dihydro analog **141** by *C*,*H* oxidation, a favored reactivity in the side chain was observed, resulting in the formation of ketone **156** instead of the target compound **29** (Scheme 3).

Scheme 3. Deprotection to dihydro analog 141 with subsequent C, H oxidation to ketone 156.

• The experience gained during the synthesis of **143** and **153** was applied to synthetic route B, whereas the synthesis of key intermediate **167** possessing an exocyclic double bond was formulated as the main objective. The haliranium-induced ring closure of the protected diol substrate **176**, which was available from inexpensive and easily accessible starting materials **105** and **174**, led to the formation of the bicyclic compound **178**. After cleavage of the protecting group, derivatization of **179** using a Grieco elimination gave the key intermediate **167a**, however, only in trace amounts (Scheme 4).

Scheme 4. Synthesis towards key intermediate 167a *via* halogen-mediated ring closure and subsequent Grieco elimination in alcohol 179.

• Key intermediate **167** was also obtained in a few steps using a selenocyclization pathway, allowing the desired compound **167b** to be isolated in 10% yield. These experiments showed unexpected reactivity depending on the used silver salt, which led to the formation of six-membered cycle **191** as a side product (Scheme 5).

Scheme 5. Synthesis of key intermediate 167b using a selenocyclization-elimination sequence.

• Following synthetic route C, another synthetic approach towards **167b** was entered now employing cycloisomerization of alkyne **193**. This reaction showed a strong influence of the metal reagent on the regioselectivity, with gold catalysts favoring the formation of the 6-*endo-dig* product **198**, whereas silver salts, like Ag₂CO₃, provided reliable and reproducible access to key intermediate **167b** in only a few steps (Scheme 6).

Scheme 6. Cycloisomerization towards the formation of key intermediate 167b.

The obtained results not only give insights into the reactivity of the heterocyclic structure of HB-372 (29), achieving the synthesis of key intermediate 167b also provides the basis for future investigations towards the total synthesis of this natural product.

The synthesis of natural products or bioactive compounds with *N*- and *O*-containing cyclic structures pose a particular challenge due to the reactivities of the heteroatoms. In particular, for the synthesis of unusual heterocyclic structures, an extension of the synthetic tools is still necessary. Therefore, the

second section of this dissertation focused on developing a mild and selective method for the cyclization of cinnamic acid derivatives **31** to form oxazinones **32** using hypervalent iodine reagents.

The following goals were achieved:

• Reaction conditions were elaborated allowing for the formation of oxazinones **32** in yields ranging from 35% to 90% and with regioselectivities of up to >99:1, and diastereoselectivities ranging between 65:35 and >99:1. A very distinct dependency on the used solvent was observed, with HFIP clearly favoring the formation of oxazinones. Using other solvents, such as CH_2Cl_2 , a regioisomeric mixture of five- and six-membered ring closing products **30** and **32** were detectable. When HFIP was applied as solvent a strong effect of the electronic properties of the substituents of substrates **31** on the diastereoselectivity was evident. The observed effects of the substituents R^3 suggest a stabilization of the positive charge in benzyl position by the solvent, which is enhanced by electron-donating substituents R^3 , causing a decrease in diastereoselectivity. Electron-withdrawing substituents R^3 , on the other hand, favored a 5-*exo-tet* cyclization and thus caused a decrease in regioselectivity (Scheme 7).

Scheme 7. Developed methodology towards the synthesis of oxazinones 32 using a bromocyclization starting from cinnamic acid imides 31.

In order to extend the scope of the developed cyclization a one-pot reaction including an in situ reduction of the water-sensitive oxazinones 32 was established that gave the chemically more stable oxazinanes 243 in yields ranging between 46% and 63% and with diastereoselectivities of 84:16 to > 99:1 (Scheme 8).

Scheme 8. One-pot reaction to oxazinanes 243 starting from cinnamic acid imides 31.

Preliminary studies towards the enantioselective bromine-induced cyclizations of cinnamic acid imides 31b in fluorinated solvents provided a system of (DHQD)₂PHAL (248) in TFE, which did not only reverse the favored regioselectivity to form oxazolone 30b with a regioselectivity of 98:2, but also yielded the product 30 with a significant enantiomeric excess of 35%, whereas the same conditions using HFIP as solvent led to an regioisomeric mixture of 32b and 30b with only minor enantiomeric excess of 5% of 32 (Scheme 9).

Scheme 9. Preliminary experiments towards the enantioselective bromine cyclization of 31b using a chiral inductor 248.

In summary, a methodology for the hypervalent bromo iodane induced cyclization of cinnamic acid imides **31** to the corresponding six-membered frameworks **32**, as well as a one-pot reaction from **31** to **243** was developed. Furthermore, a starting point towards the enantioselective cyclization as well as a bypass for the inherent reactivity of the cinnamic acid derivatives were found.

II. Experimenteller Teil

1. Allgemeine Methoden

Die Durchführung von luft- oder feuchtigkeitsempflindlichen Reaktionen erfolgte in trockenen, im Hochvakuum ausgeheizten Glasgeräten unter Verwendung von Standard-Schlenktechnik mit Argon als Inertgas. Die Zugabe von Feststoffen wurde im Argon-Gegenstrom durchgeführt. Die Überführung von flüssigen Reagenzien oder trockenen Lösungsmitteln erfolgte mittels einer mit Argon gespülten Einmal-Spritze mit Kanüle, oder durch die Verwendung von Transfer-Kanülen, über ein Naturkautschuk- oder Silikon-Septum. Ein positiver Argondruck während der Reaktionen wurde durch das Aufstecken von Argon-Ballons aufrechterhalten. Die verwendeten Chemikalien wurden kommerziell von den Zulieferern *abcr, Acros, Alfa Aesar, Carbolution, Fisher, Merck, Sigma Aldrich* und *TCI* in höchstmöglicher Reinheit bezogen. Wenn nötig, erfolgte eine Aufreinigung durch Destillation (TMSCl, DIPEA und Benzaldehyd), oder eine Umkristallisation (NBS aus Wasser, PhSeBr und PhSeCl aus CHCl₃) kurz vor der Verwendung. Die aufgereinigten Chemikalien wurden anschließend für den weiteren Einsatz unter Lichtausschluss gelagert. Natriumhydrid wurde als Suspension in Mineralöl (60 w%) verwendet und wenn nicht anders gekennzeichnet, ohne vorheriges Waschen eingesetzt. Die angegebenen Mengen beziehen sich auf reines Natriumhydrid.

1.1 Lösungsmittel

Die Lösungsmittel Dichlormethan, Diethylether und Tetrahydrofuran (THF) wurden für den Einsatz unter trockenen Bedingungen durch eine Lösungsmittelreinigungsanlage (SPS-800) der Fa. *M. Braun GmbH* über folgende Phasen gereinigt und getrocknet:

Tetrahydrofuran:	$2 \times MB$ -KOL-A (Aluminiumoxid)
Diethylether:	$1 \times$ MB-KOL-A (Aluminiumoxid), $1 \times$ MB-KOL-M Typ 2
	(Molekularsieb 3 Å)
Dichlormethan:	$2 \times MB$ -KOL-M Typ 2 (Molekularsieb 3 Å)

Die Lösungsmittel Dimethylformamid (DMF), Ethanol (EtOH), Hexafluoroisopropanol (HFIP), Methanol (MeOH), Toluol und Acetonitril (MeCN) wurden entsprechend einer Vorschrift über aktiviertem Molsieb getrocknet und unter Argon gelagert.^[168] Lösungsmittel für den Einsatz in der präparativen Säulenchromatographie und Dünnschichtchromatographie (DC), sowie für den Einsatz in Reaktionen, die feuchtigkeits- und luftunempfindlich waren, wurden durch einfache Destillation gereinigt, mit Ausnahme von EtOAc, welches von der Fa. *Fisher* in analytical grade bezogen wurde. Lösungsmittelgemische werden als Volumen/Volumen angegeben.

1.2 Analytische Methoden und Messgeräte

Chromatographie

Dünnschichtchromatographie (DC) zur qualitativen Reaktionskontrolle wurde mit Aluminium-Fertigplatten der Firmen *Merck* oder *Macherey Nagel* (0.25 mm Kieselgel 60, F₂₅₄) durchgeführt. Substanzen wurden durch Fluoreszenzdetektion unter UV-Licht mit den Wellenlängen $\lambda = 254$ nm und $\lambda = 366$ nm sichtbar gemacht, oder durch Derivatisierung je nach vorhandenen funktionellen Gruppen mit Tauchlösungen angefärbt:

Cerammoniummolybdat-Lösung (CAM):	2.00 g Ce(SO ₄) ₂ , 5.00 g (NH ₄) ₂ MoO ₄ , 12.0 mL konz. H ₂ SO ₄ , 188 mL dest. H ₂ O
Kaliumpermanganat-Lösung (KMnO4):	$4.00~g~KMnO_4$ und $2.00~g~NaHCO_3$ in 200 mL dest. H_2O
Ninhydrin-Lösung:	500 mg Ninhydrin, 3.0 mL AcOH in 97 mL EtOH

Die Entwicklung der Färbelösungen erfolgte durch Erwärmen mit einem Heißluftfön.

Präparative Säulenchromatographie wurde an Kieselgel Si 60 (230-240 mesh, Korngröße 40-63 µm) der Fa. *Merck* durchgeführt. Füllhöhe und Durchmesser der verwendeten Säule wurden in Anlehnung an eine Vorschrift gewählt, und jeweils individuell dem Trennproblem angepasst. Laufmittelgemische wurden isokratisch oder als Gradient eingesetzt und sind in den Versuchsvorschriften gesondert angegeben.

Hochdruckflüssigkeitschromatographie (HPLC) zur analytischen Trennung wurde an einem CHROMASTER-System der Fa. *Hitachi* bestehend aus folgenden Bauteilen durchgeführt: Autosampler 5210 (Injektionsvolumen 10-25 μ L), Pumpsystem 5110, Diodenarraydetektor 5430 und Säulenofen 5310. Steuerung des Systems sowie Auswertung der Messungen erfolgte mit der Software EZCHROM ELITE. Die Verwendeten mobilen Phasen Acetonitril, Wasser, Isopropanol und *n*-Hexan wurden jeweils in HPLC-grade mit saurem Additiv (0.01% Trifluoressigsäure) verwendet.

Kernresonanzspektroskopie (NMR)

Kernresonanzspektren wurden an den Geräten MERCURY 300, INOVA 400 und VNMRS 600 der Fa. Varian, sowie an den Geräten AV 250, AV 360, AV 500, AV 500cr, AVHD 300, AVHD 400 und AVHD 500 der Fa. *Bruker* bei 300 K aufgenommen. Die chemischen Verschiebungen δ sind in ppm angegeben und wurden im ¹H-Spektrum relativ zu den Restprotonensignalen der verwendeten deuterierten Lösungsmittel angegeben: Aceton-*d*6, $\delta = 2.05$ ppm, CDCl₃, $\delta = 7.26$ ppm, DMSO-*d*6, $\delta =$ 2.50 ppm, D₂O, $\delta = 4.79$ ppm, Methanol-*d*4, $\delta = 3.31$ ppm, Toluol-*d*8, $\delta = 2.909$ ppm. Für die ¹³C-Spektren beziehen sich die Angaben zur chemischen Verschiebung auf die deuterium-gekoppelten Multipletts des verwendeten Lösungsmittels. Aceton-d6, $\delta = 29.84$ ppm, CDCl₃, $\delta = 77.16$ ppm, DMSO $d\delta$, $\delta = 39.52$ ppm, Methanol-d4, $\delta = 49.00$ ppm. Multiplizitäten der Signale wurden mit folgenden Abkürzungen und deren Kombinationen angegeben: s = Singulett, d = Dublett, t = Triplett, q = Quartett, quint = Quintett, p = Pentett, sex = Sextett, hept = Heptett, m = Multiplett, br = breites Signal. Die angegebenen Kopplungskonstanten J entsprechen den Mittelwerten der experimentell gefundenen Werte in Hertz (Hz). ¹³C-NMR Spektren wurden protonenentkoppelt aufgenommen, ³¹P- und ¹⁹F-NMR Spektren wurden ebenfalls entkoppelt gemessen. Zur Charakterisierung von neuen Verbindungen wurden HSQC- und HMBC- sowie COSY- und zur Bestimmung von relativen Konfigurationen NOESY-Experimente durchgeführt.

Massenspektrometrie

Die ESI-MS Messungen (Elektronenspray-Ionisation, positive und negative Messung) erfolgten entweder an einem Massenspektrometer LTQ-ORBITRAP XL oder an einem LCQ FLEET Massenspektrometer beide Fa. *Thermo Fisher Scientific*.

EI-MS (Elektronenstoßionisation, 70 eV) erfolgte durch einen massenselektiven Detektor MSD 5973 mit vorgeschaltetem Gaschromatographen (GC) 6890 der Fa. *Agilent Technologies*. Die Trennung im GC erfolgte auf der Säule HP5 (30 m, 95% Dimethylpolysiloxan, 5% Diphenylpolysiloxan, Schichtdicke 25-30 μ m) und dem Trägergas Helium mit der Standardmethode (60 °C 3 min, 15 °C/min \rightarrow 250 °C, 250 °C 5 min) oder der Hochtemperaturstandardmethode (60 °C 3 min, 15 °C/min \rightarrow 300 °C 300 °C 5 min). Die Intensität der Fragmente wird in Prozent relativ zum Basispeak (I = 100%) wiedergegeben.

Hochauflösende Massenspektren wurden am LTQ-ORBITRAP XL Spektrometer aufgenommen. Für die Auswertung wurde zunächst der theoretisch berechnete Wert, gefolgt von dem tatsächlich gemessenen Wert angegeben.

Infrarotspektroskopie

Infrarotspektren von Reinsubstanzen wurden mit dem Gerät IR-4100 der Fa. *Jasco* direkt in Substanz im Totalreflexionsverfahren ATR oder als Film in einer Durchlichtproben-Messung aufgenommen. Die Lage der Absorptionsbanden ist mit der Wellenzahl $\tilde{\nu}$ in cm⁻¹ angegeben, wobei nur die stärksten Banden angegeben sind.

Röntgenstrukturanalyse

Die Messungen und Auswertungen der Röntgenbeugungsanalyse wurden von Dr. Alex Pöthig und Dr. Christian Jandl vom Catalysis Research Center (CRC) SC-XRD Laboratory durchgeführt. Die Messungen der Reflexintensitäten erfolgte mit einem Kappa APEX II CCD System der Fa. *Bruker* mit MoK_{α}-Strahlung und einem Monochromator unter Verwendung des APEX 2 Softwarepakets. Die Struktur wurde durch direkte Methoden gelöst (SHELXL-2014 und SHELXLE) und gegen alle Daten verfeinert (SHELXL-97 Modell).

Schmelzpunkte

Die Messung der Schmelzpunkte von Feststoffen erfolgte an einem KOPFLER-Heiztisch-Mikroskop ('Thermopan') der Fa. *Reichert*. Die Lösungsmittel, aus denen der Feststoff kristallisierte, sind in Klammern angegeben, der gemessene Wert ist nicht korrigiert.

2. Synthese des Naturstoffs HB-372 (29)

2.1 Allgemeine Versuchsvorschriften (AVV)

AVV 1: Reduktion von Hydantoinen zu Imdazolen

Substituiertes Hydantoin (1 Äq.) wurde in einem ausgeheizten Schlenkkolben vorgelegt und in abs. THF (0.1 M) gelöst. Die Lösung wurde im Eisbad gekühlt und über eine Transferkanüle LiAlH₄ in THF (1.0 Äq., 0.5 M) zugetropft. Nach Beendigung der Zugabe wurde die Reaktionsmischung auf RT erwärmt und für 2-4 h gerührt. Die Reaktion wurde durch vorsichtige Zugabe von dest. H₂O bei Eiskühlung abgebrochen, und nachdem die Gasentwicklung abgeklungen war, mit konz. HCl angesäuert. Die Mischung wurde für weitere 10 min bei RT gerührt, anschließend die Phasen getrennt und die wässrige Phase mit CH₂Cl₂ extrahiert (3x). Die organischen Phasen wurden vereinigt, mit ges. wässr. NaCl-Lösung gewaschen und anschließend über Na₂SO₄ getrocknet. Das Lösungsmittel wurde bei vermindertem Druck entfernt und der Rückstand bei Bedarf mittels Säulenchromatographie an Kieselgel gereinigt.

AVV 2: Epoxidöffnung mit Alkoholen

Der jeweilige Alkohol (2.3 Äq.) wurde in einem ausgeheizten Schlenkkolben in abs. THF gelöst und bei 0 °C mit NaH (2.5 Äq.) versetzt. Die Mischung wurde für eine Stunde gerührt und dabei langsam auf RT erwärmt. Epoxid (1.0 Äq.) wurde in abs. THF gelöst und bei 0 °C zum Alkohol getropft. Anschließend wurde die Reaktionslösung auf 50 - 55 °C erwärmt und für 16-20 h bei dieser Temperatur gerührt. Die Reaktion wurde durch Zugabe von dest. H₂O abgebrochen, mit 1 M HCl-Lösung neutralisiert und die wässr. Phase mit EtOAc extrahiert (3x). Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, am Rotationsverdampfer eingeengt und der Rückstand säulenchromatographisch am Kieselgel gereinigt.

AVV 3: Bromzyklisierung von Imidazolen

Das jeweilige Imidazol (1.0 Äq.) wurde in trockenem DMF (0.1 M) gelöst und unter Schutzgas auf 0 °C bis -50 °C gekühlt. Die Reaktion wurde durch Zugabe von NBS (1.3 Äq.) gestartet und für 4-16 h gerührt. Der Fortschritt der Reaktion wurde mittels Dünnschichtchromatographie überprüft. Nach vollem Umsatz des Edukts wurde die Reaktionslösung durch Zugabe von ges. wässr. Na₂S₂O₃-Lösung abgebrochen. Anschließend wurde die Reaktionsmischung auf RT erwärmt, mit dest. H₂O und EtOAc

verdünnt und für 5 min bei RT gerührt. Die Phasen wurden getrennt, die wässrige Phase mit EtOAc extrahiert (4 x) und die organischen Phasen vereinigt, mit dest. H₂O und ges. wässr. NaCl-Lösung gewaschen (je 3x). Anschließend wurde über Na_2SO_4 getrocknet und das Lösungsmittel bei vermindertem Druck entfernt. Das Rohprodukt wurde an Kieselgel säulenchromatographisch aufgereinigt.

2.2 Synthesepfad A: Studien zur Halozyklisierung

2-(1-(Hexyloxy)ethyl)oxirane (123)

Butenol 122 (6.20 mL, 5.17 g, 71.6 mmol, 1.00 Äq.) wurde in einem ausgeheizten Schlenkkolben unter Argon-Atmosphäre abs. THF (70 mL, 1.0 M) gelöst. Die Lösung wurde auf 0 °C gekühlt und NaH (3.30 g, 82.4 mmol, 1.15 Äq.) hinzugefügt. Es wurde für 30 min bei 0 °C gerührt und anschließend Hexylbromid (11.5 mL, 13.6 g, 82.4 mmol, 1.15 Äq.), welches zuvor über ein MgSO₄-Pad filtriert worden war, zu der Lösung getropft. Nach vollständiger Zugabe wurde TBAI (n-Bu4NI, 2.60 g, 7.16 mmol, 0.10 Åq.) hinzugefügt, die Reaktionsmischung auf RT erwärmt und für 36 h gerührt. Die Reaktion wurde durch Zugabe von dest. H₂O (30 mL) abgebrochen, mit Et₂O (25 mL) verdünnt, und die Phasen getrennt. Die wässr. Phase wurde mit Et₂O extrahiert (3 x 25 mL), alle organischen Phasen vereinigt und mit dest. H₂O (10 mL) und ges. wässr. NaCl-Lösung (2 x 10 mL) gewaschen. Die Lösung wurde bei vermindertem Druck eingeengt, und der Rückstand an Kieselgel (*n*-Pentan/Et₂O = 9:1, R_f = 0.8, *n*-Hexan/EtOAc = 9:1) von unreagiertem 122 abgetrennt. Nach vorsichtigem Entfernen des Lösungsmittels am Rotationsverdampfer wurde das erhaltene, leicht flüchtige Produktgemisch in CHCl3 (125 mL, 0.6 M) gelöst, Na₂SO₄ (2.0 g) hinzugefügt und auf 0 °C abgekühlt. Zu dem Gemisch wurde mCPBA (70%ig, 18.2 g, 71.6 mmol, 1.0 Äq.), gelöst in CHCl₃ (50 mL), getropft und die Reaktion langsam auf RT erwärmt. Es wurde 16 h bei RT gerührt und dann die Reaktion durch Zugabe von ges. wässr. NaHCO₃-Lösung (75 mL) und ges. wässr. Na₂S₂O₃-Lösung (75 mL) abgebrochen. Die wässr. Phase wurde mit CH₂Cl₂ extrahiert (3 x 50 mL), die organischen Phasen vereinigt, mit ges. wässr. NaHCO₃-Lösung (3 x 50 mL) und ges. wässr. NaCl-Lösung (20 mL) gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde in vacuo entfernt und der Rückstand säulenchromatographisch an Kieselgel (n-Pentan + 5% Et₂O) gereinigt. Die Titelverbindung wurde als farbloses Öl erhalten (5.43 g, 31.5 mmol, 44%, d.r. = 50:50).

 $\mathbf{R}_{\mathbf{f}} = 0.38, 0.33 (n-\text{Hexan} + 5\% \text{ AcOEt})$
¹**H-NMR** (300 MHz, CDCl₃, *Diastereomer 1*) δ = 3.46 (ddt, *J* = 15.8, 9.1, 6.7 Hz, 2H, CH₂), 3.29 – 3.19 (m, 1H, CH), 2.87 (ddd, *J* = 5.4, 3.9, 2.7 Hz, 1H, CH), 2.78 (dd, *J* = 5.2, 3.9 Hz, 1H, CH₂), 2.69 (dd, *J* = 5.2, 2.7 Hz, 1H, CH₂), 1.60 – 1.47 (m, 2H, CH₂), 1.35 – 1.27 (m, 6H, CH₂), 1.24 (d, *J* = 6.4 Hz, 3H, Me), 0.87 (t, *J* = 6.8 Hz, 3H, Me) ppm;

¹**H-NMR** (300 MHz, CDCl₃, Diastereomer 2) $\delta = 3.56$ (ddt, J = 5.3, 9.3, 6.7 Hz, 2H, CH₂), 3.12 (p, J = 6.5 Hz, 1H, CH), 2.94 (ddd, J = 6.6, 4.2, 2.8 Hz, 1H, CH), 2.73 (ddd, J = 4.9, 4.2, 2.9 Hz, 1H, CH₂), 2.47 (dd, J = 4.9, 2.7 Hz, 1H, CH₂), 1.62 – 1.50 (m, 2H, CH₂), 1.35 – 1.27 (m, 6H, CH₂), 1.21 (d, J = 6.5 Hz, 3H, Me), 0.87 (t, J = 6.6 Hz, 3H, Me) ppm.

Die erhaltenen spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[89]

1-(4-Methoxybenzyl)-1H-imidazol-2(3H)-on (126)

Gemäß AVV 1 wurde *N*-Benzylhydantoin (**118**, 3.00 g, 15.8 mmol, 1.0 Äq.) in abs. THF (160 mL, 0.1 M) gelöst und bei 0 °C mit LiAlH₄ (0.60 g, 15.8 mmol, 1.0 Äq.) umgesetzt. Die Reaktion wurde durch vorsichtige Zugabe von dest. H₂O nach drei Stunden abgebrochen und mit konz. HCl auf pH 2 angesäuert. Die Reaktionsmischung wurde mit dest. H₂O (50 mL) und CH₂Cl₂ (50 mL) verdünnt, die Phasen getrennt und die wässr. Phase mit CH₂Cl₂ (3 x 50 mL) extrahiert. Mit den organischen Phasen wurde gemäß AVV 1 verfahren und das Produkt **126** nach Entfernen des Lösungsmittels als gelblicher Feststoff erhalten (2.60 g, 14.9 mmol, 95%).

 $R_f = 0.23$ (EtOAc);

Schmp. 115 °C (CH₂Cl₂);

¹**H-NMR** (400 MHz, CDCl₃) δ = 11.61 (br. s, 1H, NH), 7.29 – 7.20 (m, 5H, C_{Ar}-H), 6.37 (s, 1H, CH), 6.19 (s, 1H, CH), 4.82 (s, 2H, CH₂) ppm;

¹³**C-NMR** (75 MHz, CDCl₃) δ = 155.1 (C=O), 137.0 (C_q), 128.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.7 (C_{Ar}-H), 111.4 (CH), 108.8 (CH), 46.81 (CH₂) ppm;

Die erhaltenen spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[90]

1-Benzyl-3-(3-(hexyloxy)-2-hydroxybutyl)-1H-imidazol-2(3H)-on (125)

Unter Schutzgas wurde Benzyl-Imidazolon **126** (756 mg, 4.35 mmol, 2.5 Äq.) in abs. THF (3.5 mL, 0.5 M) gelöst und vorsichtig bei 0 °C NaH (180.0 mg, 11.31 mmol, 2.6 Äq.) hinzugegeben. Die Reaktionslösung wurde anschließend auf 55 °C gebracht und für 1 h gerührt. Zu dieser Lösung wurde nun in der Hitze Epoxid **123** (300.0 mg, 1.74 mmol, 1.0 Äq, d.r. = 50:50) getropft und für weitere 20 h bei gleichbleibender Temperatur von 55 °C gerührt. Die Reaktion wurde nach Abkühlung auf Raumtemperatur durch Zugabe von dest. H₂O (10 mL) abgebrochen, und mit EtOAc (5 mL) verdünnt. Nach Trennung der Phasen wurde die wässr. Phase mit EtOAc (3 x 6 mL) extrahiert, alle organischen Phasen vereinigt, und nach Waschen mit ges. wässr. NaCl-Lösung (2 mL) über Na₂SO₄ getrocknet. Das Lösungsmittel wurde unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch an Kieselgel getrennt (*n*-Hexan/EtOAc = 5:5). Das Produkt **125** wurde als gelbliches Öl erhalten (436.0 mg, 1.26 mmol, 72%, d.r. = 50:50).

 $\mathbf{R}_{\mathbf{f}} = 0.30, 0.28 (n-\text{Hexan/EtOAc} = 5:5);$

¹**H-NMR** (600 MHz, CDCl₃, *trans*-**125**) $\delta = 7.35 - 7.31$ (m, 2H, C_{Ar}-H), 7.31 - 7.27 (m, 1H, C_{Ar}-H), 7.26 - 7.23 (m, 2H, C_{Ar}-H), 6.24 (d, *J* = 2.9 Hz, 1H, C=CH), 6.11 (d, *J* = 2.9 Hz, 1H, C=CH), 4.79 (q, *J* = 15.1 Hz, 2H, CH₂), 4.00 - 3.93 (m, 1H, CH₂), 3.74 (t, *J* = 6.8 Hz, 1H, CH₂), 3.73 - 3.70 (m, 1H, CH), 3.54 (dt, *J* = 8.9, 6.6 Hz, 1H, CH₂), 3.31 (td, *J* = 7.9, 6.3, 3.9 Hz, 1H, CH) 3.27 (dt, *J* = 9.0, 6.7 Hz, 1H, CH₂), 1.59 - 1.50 (m, 2H, CH₂), 1.36 - 1.26 (m, 6H, 3 x CH₂), 1.23 (d, *J* = 6.2 Hz, 3H, Me), 0.88 (t, *J* = 6.9 Hz, 3H, Me) ppm;

¹**H-NMR** (600 MHz, CDCl₃, *cis*-125) $\delta = 7.36 - 7.31$ (m, 2H, C_{Ar}-H), 7.31 - 7.23 (m, 3H, C_{Ar}-H), 6.36 (d, *J* = 2.9 Hz, 1H, C=CH), 6.11 (d, *J* = 2.9 Hz, 1H, C=CH), 4.85 - 4.75 (m, 2H, CH₂), 3.83 - 3.75 (m, 2H, CH₂), 3.79 - 3.74 (m, 1H, CH), 3.58 (dt, *J* = 8.9, 6.6 Hz, 1H, CH₂), 3.38 - 3.33 (m, 1H, CH) 3.32 (dt, *J* = 9.1, 6.6 Hz, 1H, CH₂), 1.59 - 1.51 (m, 2H, CH₂), 1.35 - 1.24 (m, 6H, CH₂), 1.23 (d, *J* = 6.2 Hz, 2H, Me), 0.88 (t, *J* = 6.9 Hz, 3H, Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *trans*-**125**) δ = 154.4 (C=O), 136.8 (C_q), 128.9 (C_{Ar}H), 128.0 (C_{Ar}H), 112.7 (CH), 110.1 (CH), 76.24 (CH), 74.64 (CH), 68.93 (CH₂), 48.06 (CH₂), 47.48 (CH₂), 31.81 (CH₂), 30.21 (CH₂), 26.06 (CH₂), 22.74 (CH₂), 15.51 (Me), 14.18 (Me) ppm;

¹³C-NMR (101 MHz, CDCl₃, *cis*-125) δ = 153.8 (C=O), 137.0 (C_q), 128.9 (C_{Ar}H), 128.0 (C_{Ar}H), 127.9 (C_{Ar}H), 112.5 (CH), 109.9 (CH), 75.94 (CH), 74.35 (CH), 69.29 (CH₂), 47.42 (CH₂), 46.73 (CH₂), 31.79 (CH₂), 30.10 (CH₂), 26.01 (CH₂), 22.74 (CH₂), 15.39 (Me), 14.18 (Me) ppm;

MS (ESI⁺) m/z (%) = 369 (100) [M+Na]⁺, 347 (30) [M+H]⁺;

HRMS (ESI⁺): berechnet für C₂₀H₃₁N₂O₃⁺ [M+H]⁺ 347.2329, gefunden 347.2330.

1-Benzyl-3-(3-(hexyloxy)-2-oxobutyl)-1,3-dihydro-2H-imidazol-2-one (127)

Zu einer Lösung aus Alkohol **125** (0.15 mg, 0.43 mmol, 1.0 Äq.) in trockenem CH_2Cl_2 (1.40 mL, 0.3 M) wurde Dess-Martin Periodinan (DMP) (202 mg, 0.48 mmol, 1.1 Äq.) gegeben. Es wurde 3 h bei RT gerührt und dann die Reaktion durch Zugabe von ges. wässr. NaHCO₃-Lösung (4 mL) und ges. wässr. Na₂S₂O₃-Lösung (4 mL) abgebrochen. Die wässr. Phase wurde mit CH_2Cl_2 extrahiert (3 x 7 mL) und die vereinigten organischen Phasen mit dest. H₂O und ges. wässr. NaCl-Lösung (je 5 mL) gewaschen, und anschließend über Na₂SO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und **127** nach säulenchromatographischer Reinigung an Kieselgel (*n*-Hexan/EtOAc = 7:3) als farbloses Öl erhalten (127 mg, 0.37 mmol, 86%).

 $R_f = 0.40$ (*n*-Hexan/EtOAc = 5:5)

¹**H-NMR** (600 MHz, CDCl₃) $\delta = 7.37 - 7.29$ (m, 2H, C_{Ar}-H), 7.29 - 7.23 (m, 3H, C_{Ar}-H), 6.16 - 6.15 (m, 2H, CH), 4.80 (s, 2H, CH₂), 4.72 (s, 2H, CH₂), 3.96 (q, *J* = 6.8 Hz, 1H, CH), 3.55 (dt, *J* = 8.9, 6.6 Hz, 1H, CH₂), 3.47 (dt, *J* = 9.0, 6.6 Hz, 1H, CH₂), 1.61 (dq, *J* = 13.3, 6.7 Hz, 2H, CH₂), 1.36 (d, *J* = 6.8 Hz, 3H, Me), 1.33 - 1.24 (m, 8H, CH₂), 0.89 (t, *J* = 7.0 Hz, 3H, Me) ppm;

¹³C-NMR (151 MHz, CDCl₃) δ = 206.6 (C=O), 153.4 (C=O), 136.9 (C_q), 128.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 111.6 (CH), 110.5 (CH), 80.63 (CH), 70.59 (CH₂), 49.25 (CH₂), 47.41 (CH₂), 31.76 (CH₂), 29.99 (CH₂), 29.82 (CH₂), 25.93 (CH₂), 22.70 (CH₂), 17.05 (Me), 14.17 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 2929, 1678, 1452, 1239, 1105, 739, 704 \text{ cm}^{-1};$

MS (EI) m/z (%) = 345.4 (100) [M+H]⁺, 344.4 (46) [M]⁺;

HRMS (ESI⁺): berechnet für $C_{20}H_{28}N_2O_3Na^+$ [M+Na]⁺ 367.1992, gefunden 367.1991.

Analytische Daten der Produkte aus den Ringschlussversuchen mit Keton 127.

In ein Reaktionsgefäß wurden Keton **127** (30.0 mg, 87.0 μ mol, 1.0 Äq.) eingewogen und in DMF (0.3 mL, 0.3 M) gelöst. Gemäß AVV 3 erfolgte die Zugabe von NBS (17.1 mg, 0.10 mmol, 1.1 Äq.) bei 0 °C. Die Reaktion wurde auf RT erwärmt und nach 1 h durch Zugabe von ges. wässr. Na₂S₂O₃-Lösung abgebrochen. Nach Aufarbeitung gemäß AVV 3 und Aufreinigung des Rohgemischs an Kieselgel (*n*-Hex/EtOAc = 7:3) wurden die Oxidationsprodukte **131** und **130** als farbloses Öl im Verhältnis 50:50 erhalten.

3-Benzyl-1-(3-(hexyloxy)-2-oxobutyl)imidazolidine-2,4-dion (131) und 1-Benzyl-3-(3-(hexyloxy)-2-oxobutyl)imidazolidine-2,4-dion (130)

 $\mathbf{R}_{\mathbf{f}} = 0.68, 0.64 (n-\text{Hexan/EtOAc} = 6:4);$

¹**H-NMR** (600 MHz, CDCl₃ **130**) $\delta = 7.39 - 7.35$ (m, 2H, C_{Ar}-H), 7.35 - 7.28 (m, 1H, C_{Ar}-H), 7.28 - 7.25 (m, 2H, C_{Ar}-H), 4.63 (d, J = 18.5 Hz, 1H, CH₂), 4.59 (d, J = 4.0 Hz, 2H, CH₂), 4.54 (d, J = 18.4 Hz, 1H, CH₂), 3.96 (q, J = 6.9 Hz, 1H, CH), 3.82 (s, 2H, CH₂), 3.55 (dt, J = 8.9, 6.5 Hz, 1H, CH₂), 3.49 (dt, J = 9.0, 6.6 Hz, 1H, CH₂), 1.68 - 1.60 (m, 2H, CH₂), 1.38 (d, J = 6.8 Hz, 3H, Me), 1.34 - 1.26 (m, 6H, CH₂), 0.90 (t, J = 6.8 Hz, 3H, Me) ppm;

¹³C-NMR (151 MHz, CDCl3, **130**) $\delta = 205.0$ (C=O), 169.8 (C=O), 156.4 (C=O), 135.4 (C_q), 129.2 (C_{Ar}-H), 128.3 (C_{Ar}-H), 128.2 (C_{Ar}-H), 80.70 (C-H), 70.59 (CH₂), 49.38 (CH₂), 46.86 (CH₂), 44.46 (CH₂), 31.79 (CH₂), 30.01 (CH₂), 25.95 (CH₂), 22.74 (CH₂), 17.29 (Me), 14.20 (Me) ppm;

¹**H-NMR** (600 MHz, CDCl₃, **131**) $\delta = 7.42 - 7.27$ (m, 5H, C_{Ar}-H), 4.63 (d, J = 18.5 Hz, 1H, CH₂), 4.59 (m, 2H, CH₂), 4.54 (d, J = 18.5 Hz, 1H, CH₂), 3.96 (q, J = 6.8 Hz, 1H, CH), 3.82 (s, 2H, CH₂), 3.55 (dt, J = 8.9, 6.5 Hz, 1H, CH₂), 3.49 (dt, J = 9.0, 6.6 Hz, 1H, CH₂), 1.66 – 1.59 (m, 2H, CH₂), 1.38 (d, J = 6.8 Hz, 3H, Me), 1.37 – 1.21 (m, 6H, CH₂), 0.90 (t, J = 6.8 Hz, 3H, CH₃) ppm;

¹³**C-NMR** (151 MHz, CDCl₃, **131**) δ = 205.0 (C=O), 169.8 (C=O), 156.4 (C=O), 135.4 (C_q), 129.2 (C_{Ar}-H), 128.4 (C_{Ar}-H), 128.2 (C_{Ar}-H), 80.70 (CH), 70.59 (CH₂), 49.38 (CH₂), 46.86 (CH₂), 44.46 (CH₂), 31.79 (CH₂), 30.01 (CH₂), 25.95 (CH₂), 22.74 (CH₂), 17.29 (Me), 14.20 (Me) ppm;

MS (EI) m/z (%) = 363 (22), 361 (100) [M]⁺, 259 (16), 232 (49), 129 (25), 91 (18);

HRMS (ESI⁺): berechnet für $C_{20}H_{29}N_2O_4^+$ [M+H]⁺ 361.2122, gefunden 361.2122.

1-benzyl-3-(3-(hexyloxy)-2-oxobutyl)imidazolidine-2,4,5-trione (132)

 $R_{f} = 0.71 (n-Hexan/EtOAc = 6:4)$

¹**H** NMR (600 MHz, CDCl₃) δ = 7.42 – 7.31 (m, 5H, C_{Ar}-H), 4.82 (s, 2H, CH₂), 4.75 (d, *J* = 18.6 Hz, 1H, CH₂), 4.64 (d, *J* = 18.6 Hz, 1H, CH₂), 3.97 (q, *J* = 6.8 Hz, 1H, CH), 3.57 (dt, *J* = 9.1, 6.4 Hz, 1H, CH₂), 3.45 (dt, *J* = 9.1, 6.6 Hz, 1H, CH₂), 1.65 – 1.59 (m, 2H, CH₂), 1.36 (d, *J* = 6.9 Hz, 3H, Me), 1.33 – 1.27 (m, 6H, CH₂), 0.92 – 0.88 (m, 3H, Me) ppm;

¹³C-NMR (151 MHz, CDCl₃) δ = 203.6 (C=O), 156.5 (C=O), 153.3 (C=O), 134.4 (C_q), 129.1 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.7 (C_{Ar}-H), 80.51 (CH), 70.58 (CH₂), 44.68 (CH₂), 43.16 (CH₂), 31.74 (CH₂), 29.95 (CH₂), 25.95 (CH₂), 22.73 (CH₂), 17.12 (Me), 14.19 (Me) ppm;

MS (ESI⁺) m/z (%) = 399 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für C₂₀H₂₇N₂O₅⁺ [M+H]⁺ 375.1914, gefunden 375.1915.

1-Benzyl-3-(6-(hexyloxy)-5-oxohept-1-en-4-yl)-1,3-dihydro-2H-imidazol-2-on (139)

In einem ausgeheizten Schlenkrohr wurde Keton **127** (20 mg, 60 µmol, 1.0 Äq.) in DMF (0.8 mL, 0.1 M) gelöst und auf – 50 °C abgekühlt. Es wurde NaH (5.0 mg, 0.1 mmol, 2.0 Äq.) hinzugefügt und für 40 min bei gleichbleibender Temperatur gerührt. Es erfolgte die Zugabe von Allylbromid (**138**, 10.0 µL, 0.12 mmol, 2.0 Äq.) bei -50 °C, anschließend wurde die Reaktion über 2 h langsam auf 0 °C erwärmt und durch Zugabe von dest. H₂O (2 mL) abgebrochen. Die Lösung wurde mit EtOAc (2.0 mL) verdünnt, die wässr. Phase mit EtOAc extrahiert (3 x 1.0 mL) und die organischen Phasen vereinigt. Die organischen Phasen wurden mit dest. H₂O und ges. wässr. NaCl-Lösung (je 2 x 1.0 mL) gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Das Produkt **139** wurde nach säulenchromatographischer Aufreinigung an Kieselgel (*n*-Pentan/EtOAc = 5:1) als farbloses Öl erhalten (12 mg, 32 µmol, 53 %, d.r. = 61:39).

 $R_f = 0.41$ (*n*-Hexan-EtOAc = 5:5);

¹**H-NMR** (360 MHz, CDCl₃, *Gemisch aus Diastereomeren*) $\delta = 7.34 - 7.16$ (m, 8.75 H, C_{Ar}-H), 6.42 (d, J = 3.1 Hz, 0.75 H, CH) 6.31 (d, J = 3.1 Hz, 1H, CH), 6.14 (d, J = 3.1 Hz, 1H, CH), 6.12 (d, J = 3.2 Hz, 0.75 H, CH), 5.78 - 5.64 (m, 1.75 H, CH), 5.39 (dd, J = 5.0, 9.9 Hz, 0.75 H, CH), 5.33 (dd, J = 3.4, 6.0 Hz, 1H, CH), 5.14 (m, 3.5 H, 2x CH₂), 5.23 (d, J = 5.2 Hz, 1.5 H, CH₂), 4.82 - 4.76 (m, 1.5 H, CH₂), 4.06 - 3.96 (m, 1.75 H, 2x CH), 3.52 (td, J = 6.6, 1.6 Hz, 1.75 H, 2x CH₂), 3.39 - 3.30 (m, 1.75 H, 2x CH₂), 2.91 - 2.67 (m, 1.75 H, CH₂), 2.55 - 2.35 (m, 1.75 H, CH₂), 1.67 - 1.48 (m, 3.5 H, CH₂), 1.36 (d, J = 6.8 Hz, 3H, Me) 1.34 (d, J = 6.9 Hz, 2.3 H, Me), 1.32 - 1.23 (m, 10.5 H, 6 x CH₂), 0.93 - 0.83 (m, 5.3 H, 2x Me) ppm;

¹³C-NMR (91 MHz, CDCl₃) δ = 208.6 (C=O) 207.8 (C=O), 153.2 (C=O), 137.0 (C_q), 134.2 (C_q) 132.9 (CH), 132.8 (CH), 128.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 119.0 (CH₂), 118.9 (CH₂), 110.8 (CH), 110.5 (CH), 109.4 (CH), 108.8 (CH), 80.29 (CH), 79.51 (CH), 71.07 (CH₂), 70.06 (CH₂), 56.61 (CH₂), 55.91 (CH₂), 47.38 (CH₂), 47.31 (CH₂), 34.93 (CH₂), 34.47 (CH₂), 31.82 (CH₂), 31.79 (CH₂), 30.04 (CH₂), 29.92 (CH₂), 25.94 (CH₂), 22.73 (Me), 16.82 (Me), 16.66 (Me), 14.17 (Me) ppm;

MS (ESI⁺) m/z (%) = 407 (100) [M+Na]⁺, 385 (28) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{23}H_{33}N_2O_3^+$ [M+H]⁺ 385.2486, gefunden 385.2486.

In einem ausgeheizten Schlenkrohr wurde Keton **127** (20 mg, 60 µmol, 1.0 Äq.) in DMF (0.8 mL, 0.1 M) gelöst und im Trockeneisbad auf eine Temperatur von -15 °C gebracht. Es wurde NaH (4.4 mg, 0.1 mmol, 2.0 Äq.) hinzugefügt und für 1.5 h bei gleichbleibender Temperatur gerührt. Nach Zugabe von NBS (16.2 mg, 0.09 mmol, 1.5 Äq.) wurde die Reaktion über 2 h bei -15 °C gerührt und durch Zugabe von dest. H₂O (2 mL) abgebrochen. Die Lösung wurde mit EtOAc (2.0 mL) verdünnt, die wässr. Phase mit EtOAc extrahiert (3 x 1.0 mL) und die organischen Phasen vereinigt. Die organischen Phasen wurden mit dest. H₂O und ges. wässr. NaCl-Lösung (je 2 x 1.0 mL) gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel entfernt. Das Produkt **140** wurde nach säulenchromatographischer Aufreinigung an Kieselgel (*n*-Pentan/EtOAc = 8:2) als farbloses Öl erhalten (18.5 mg, 43.5 µmol, 73%, d.r. = 50:50).

 $\mathbf{R_f} = 0.23$ (*n*-Hex/EtOAc = 5:5);

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 7.36 - 7.27$ (m, 10H), 6.97 (s, 2H, 2x CH), 6.53 (d, J = 3.5 Hz, 1H, CH), 6.52 (d, J = 3.7 Hz, 1H,CH), 6.11 (d, J = 3.5 Hz, 1H), 6.0 (d, J = 3.5 Hz, 1H, CH) 4.83 - 4.72 (m, 4H, CH₂), 4.06 (dq, J = 13.5, 6.8 Hz, 2H, CH), 3.42 (dt, J = 8.8, 7.1 Hz, 2H, CH₂), 3.33 (dtd, J = 8.8, 6.5, 4.2 Hz, 2H, CH₂), 1.55 - 1.48 (m, 2H, CH₂), 1.35 (d, J = 6.7 Hz, 3H, Me), 1.32 (d, J = 6.8 Hz, 3H, Me), 1.31 - 1.22 (m, 12H, CH₂), 0.90 (t, J = 7.1 Hz, 3H, Me), 0.89 (t, J = 7.1 Hz, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 200.6 (C=O), 200.4 (C=O), 152.8 (C=O), 152.7 (C=O), 136.5 (C_q), 136.5 (C_q), 129.0 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.3 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 128.1 (C_{Ar}-H), 111.2 (CH), 111.0 (CH), 110.9 (CH), 110.8 (CH), 80.05 (CH), 78.71 (CH), 70.92 (CH₂), 70.06 (CH₂), 61.04 (CH), 60.48 (CH), 47.53 (CH₂), 47.49 (CH₂), 29.74 (CH₂), 29.71 (CH₂), 28.37 (CH₂), 28.33 (CH₂), 25.79 (CH₂), 25.77 (CH₂), 22.78 (CH₂), 22.74 (CH₂), 16.43 (Me), 16.39 (Me), 14.21 (Me) 14.20 (Me) ppm.

MS (EI) m/z (%) = 352 (11), 214 (15) [M-Br-C₈H₁₇O]⁺, 147 (29), 129 (100) [C₈H₁₇O]⁺, 112 (17), 57 (39).

Die Molekülmasse ließ sich weder durch EI-MS noch durch ESI-MS belegen, da das Produkt **140** sehr schnell fragmentierte.

6-Benzyl-2-(1-(hexyloxy)ethyl)-7-hydroxytetrahydroimidazo[5,1-b]oxazol-5(6H)-one (142)

Gemäß AVV 3 wurden 40 mg (0.12 mmol, 1.0 Äq.) Alkohol **125** in ein Reaktionsgefäß eingewogen, und in DMF (0.3 mL, 0.4 M) gelöst. Die Zugabe von NBS (26.7 mg, 0.15 mmol, 1.3 Äq.) erfolgte bei 0 °C. Die Reaktion wurde über einen Zeitraum von 16 h langsam auf Raumtemperatur erwärmt und gemäß AVV3 aufgearbeitet. Nach säulenchromatographischer Aufreinigung an Kieselgel (*n*-Hexan/EtOAc = 5:5) wurde das Produkt wurde als farbloses Öl (35.2 mg, 0.09 mmol, 78%, d.r. = 87:13) erhalten.

Aus cis-125:

 $R_f = 0.62$ (*n*-Hexan/EtOAc = 2:8);

¹**H-NMR** (600 MHz, CDCl₃, *Hauptisomer*) $\delta = 7.35 - 7.28$ (m, 3H, C_{Ar}-H), 7.28 - 7.23 (m, 2H, C_{Ar}-H), 4.90 (d, J = 8.6 Hz, 1H, CH), 4.90 (s, 1H, CH), 4.66 (d, J = 15.0 Hz, 1H, CH₂), 4.33 (d, J = 15.2 Hz, 1H, CH₂), 4.02 (dd, J = 11.7, 7.0 Hz, 1H, CH₂), 3.89 (td, J = 7.3, 4.3 Hz, 1H, CH), 3.54 (dt, J = 9.2, 6.6 Hz, 1H, CH₂), 3.37 - 3.31 (m, 2H, CH und CH₂), 3.06 (dd, J = 11.7, 7.4 Hz, 1H, CH₂), 2.55 (br. d, J = 8.8 Hz, 1H, OH), 1.56 - 1.50 (m, 2H, CH₂), 1.35 - 1.22 (m, 6H, 3x CH₂), 1.16 (d, J = 6.3 Hz, 2H, Me), 0.87 (t, J = 6.9 Hz, 3H, Me) ppm;

Tabelle 23. COSY und NOESY-Korrelationen von Hauptisomer cis, trans, trans-142

Nr	¹ H-NMR (δ , m, J)	COSY	NOESY
2	3.89 (td, <i>J</i> = 7.3, 4.3 Hz, 1H)	3a, 3b, 2	1", 3a
3a	4.02, dd, (J = 11.7, 7.1 Hz, 1H)	2, 3b	2, 3b
3b	3.07, dd (J = 11.7, 7.4 Hz, 1H)	2, 3a	3a
7	4.91, br. s, 1H)	-	-
8	4.90, (s, 1H)	-	-
1"	3.35, (m, 1H, überlagert)	2", 2	2"
2"	1.14, (d, <i>J</i> = 6.3 Hz, 3H)	1"	1"

¹³**C-NMR** (151 MHz, CDCl₃, *Hauptisomer*) δ = 162.6 (C=O), 136.5 (C_q), 128.9 (C_{Ar}-H), 128.2 (C_{Ar}-H), 127.9 (C_{Ar}-H), 94.71 (CH), 82.21 (CH), 79.88 (CH), 76.24 (CH), 69.75 (CH₂), 47.07 (CH₂), 44.76 (CH₂), 31.78 (CH₂), 30.12 (CH₂), 25.95 (CH₂), 22.74(CH₂), 15.92 (Me), 14.19 (Me) ppm.

Aus trans-125 (als Diastereomerengemisch 72:38 isoliert):

¹**H-NMR** (600 MHz, CDCl₃, *Hauptisomer*) $\delta = 7.34 - 7.27$ (m, 5H, C_{Ar}-H), 4.90 (dd, J = 8.9, 5.9 Hz, 1H, CH), 4.79 (s, 1H, CH), 4.73 (d, J = 15.0 Hz, 1H, CH₂), 4.27 (dd, J = 15.1, 1.5 Hz, 1H, CH₂), 3.91 - 3.84 (m, 2H, CH, CH₂), 3.48 (dt, J = 8.8, 6.7 Hz, 1H, CH₂), 3.35 - 3.23 (m, 2H, CH₂), 3.06 (pd, J = 6.6, 3.3 Hz, 1H, CH), 1.57 - 1.48 (m, 2H, CH₂), 1.35 - 1.20 (m, 6H, CH₂), 1.02 (d, J = 6.1 Hz, 3H, Me), 0.89 (t, J = 7.0 Hz, 3H, Me) ppm;

Tabelle 24. COSY und NOESY-Korrelationen von Hauptisomer trans, trans, cis-142

Nr	¹ H-NMR (δ , m, J)	COSY	NOESY
2	3.91 – 3.84 (m, 1H überlagert)	3b, 1'	3a, 1'
3a	3.91 – 3.84 (m, 1H, überlagert)	3b, 2	2, 3b
3b	3.35 – 3.23 (m, 1H, überlagert)	3a, 2	3a
7	4.90 (dd, <i>J</i> = 8.9, 5.9 Hz, 1H)	-	-
8	4.79 (s, 1H)	-	2, 3b
1"	3.06 (pd, <i>J</i> = 6.6, 3.3 Hz, 1H)	2", 2	2, 3a, 2"
2"	1.14, (d, J = 6.3 Hz, 3H)	1"	1"

¹³**C-NMR** (151 MHz, CDCl₃) δ = 162.7 (C=O), 136.4 (C_q), 128.9 (C_{Ar}-H), 128.4 (C_{Ar}-H), 127.9 (C_{Ar}-H), 94.88 (CH), 81.60 (CH), 80.41 (CH), 76.43 (CH), 69.63 (CH₂), 47.57 (CH₂), 44.59 (CH₂), 31.83 (CH₂), 30.08 (CH₂), 29.86 (CH₂), 25.93 (CH₂), 22.77 (CH₂), 15.75 (Me), 14.21 (Me) ppm;

MS (EI) m/z (%) = 364.4 (19), 363.4 (87) [M+H]⁺, 362.4 (64) [M]⁺, 345.3 (40), 262.2 (21), 234.2 (27), 233.2 (26), 217 (14), 216 (14), 200.2 (59), 191.1 (41), 155.1 (23), 129.2 (33), 91.1 (100), 85.2 (74), 72.2 (11), 71.2 (38), 70.2 (13), 57.3 (24), 55.3 (12), 46.4 (11), 45.4 (12);

HRMS (ESI⁺): berechnet für $C_{20}H_{30}O_4N_2Na$ [M+Na]⁺ 385.2098, gefunden 385.2100.

6-Benzyl-2-(1-(hexyloxy)ethyl)-5-oxohexahydroimidazo[5,1-b]oxazol-7-yl acetat (146)

Alkohol **142** (40.0 mg, 0.11 mmol, 1.0 Äq.) wurde in CH_2Cl_2 (0.4 mL, 0.3 M) gelöst und bei 0 °C mit Dess-Martin Periodinan (70.2 mg, 0.17 mmol, 1.5 Äq.) versetzt. Es wurde bei RT für 20 min gerührt,

die Reaktion durch Zugabe von Na₂S₂O₃ (0.4 mL) abgebrochen und mit CH₂Cl₂ (1.0 mL) und dest. H₂O (1.5 mL) verdünnt. Die Phasen wurden getrennt und die wässr. Phase mit CH₂Cl₂ extrahiert (3 x 1 mL). Die organischen Phasen wurden vereinigt, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produktgemisch wurde säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 6:4) und **146** als farbloses Öl erhalten (19.1 mg, 0.047 mmol, 43%).

 $R_{f} = 0.30$ (*n*-Hexan/EtOAc = 6:4);

¹**H-NMR** (600 MHz, CDCl₃) $\delta = 7.35 - 7.20$ (m, 5H, C_{Ar}-H), 6.09 (s, 1H, CH), 4.90 (s, 1H, CH), 4.52 - 4.41 (m, 2H, CH₂), 4.04 (dd, J = 11.7, 7.1 Hz, 1H, CH₂), 3.92 (td, J = 7.2, 4.0 Hz, 1H, CH), 3.55 (dt, J = 9.1, 6.6 Hz, 1H, CH₂), 3.39 - 3.29 (m, 2H, CH, CH₂), 3.12 (dd, J = 11.7, 7.3 Hz, 1H, CH₂), 1.85 (s, 3H, Me), 1.58 - 1.48 (m, 2H, CH₂), 1.36 - 1.23 (m, 6H, CH₂), 1.17 (d, J = 6.4 Hz, 3H, Me), 0.88 (t, J = 6.9 Hz, 3H, Me) ppm;

¹³**C-NMR** (151 MHz, CDCl₃) δ = 170.2 (C=O), 163.1 (C=O), 136.6 (C_q), 128.7 (C_{Ar}-H), 128.1 (C_{Ar}-H), 127.7 (C_{Ar}-H), 92.61 (CH), 82.01 (CH), 80.05 (CH), 76.14 (CH), 69.79 (CH₂), 47.13 (CH₂), 45.93 (CH₂), 31.77 (CH₂), 30.10 (CH₂), 25.94 (CH₂), 22.73 (CH₂), 20.70 (Me), 15.94 (Me), 14.18 (Me) ppm.

6-Benzyl-2-(1-(hexyloxy)ethyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dione (143)

Alkohol **142** (13.0 mg, 36.0 μ mol, 1.0 Äq.) wurde in CH₂Cl₂ (0.40 mL, 0.1 M) gelöst und mit PCC (11.6 mg, 54.0 μ mol, 1.5 Äq.) versetzt. Die Temperatur wurde auf 40 °C erhöht und die Reaktion bei dieser Temperatur für 3 h gerührt. Das Reaktionsgemisch wurde auf RT abgekühlt, eine Spatelspitze SiO₂ hinzugefügt um die Chromsalze zu binden, und nach wenigen Minuten über ein kurzes Silica-Pad filtriert. Nach Entfernen des Lösungsmittels bei vermindertem Druck wurde das Rohgemisch an Kieselgel (*n*-Hex/EtOAc = 8:2) aufgereinigt und lieferte das Produkt als farbloses Öl (12.2 mg, 33.8 μ mol, 94%).

 $R_f = 0.62$ (*n*-Hexan/EtOAc = 6:4);

¹**H-NMR** (600 MHz, CDCl₃) $\delta = 7.39 - 7.35$ (m, 2H, C_{Ar}-H), 7.34 - 7.27 (m, 3H, C_{Ar}-H), 5.21 (s, 1H, CH), 4.63 (d, J = 2.6 Hz, 2H, CH₂), 4.17 - 4.09 (m, 1H, CH), 4.01 (dd, J = 11.2, 7.2 Hz, 1H, CH₂), 3.56 (dt, J = 9.0, 6.4 Hz, 1H, CH₂), 3.40 (qd, J = 6.4, 3.3 Hz, 1H, CH), 3.34 - 3.28 (m, 1H, CH₂), 3.22 (dd, J = 11.3, 6.7 Hz, 1H, CH₂), 1.55 - 1.49 (m, 2H, CH₂), 1.33 - 1.24 (m, 6H, CH₂), 1.22 (d, J = 6.4 Hz, 3H, CH₃), 0.88 (t, J = 6.9 Hz, 3H, CH₃) ppm;

¹³C-NMR (151 MHz, CDCl₃) δ = 168.9 (C=O), 160.8 (C=O), 135.4 (C_q), 128.9 (C_{Ar}H), 128.7 (C_{Ar}H), 128.2 (C_{Ar}H), 87.92 (CH), 82.82 (CH), 76.17 (CH), 69.83 (CH₂), 46.43 (CH₂), 42.88 (CH₂), 31.76 (CH₂), 30.12 (CH₂), 29.86 (CH₂), 25.97 (CH₂), 22.73 (CH₂), 15.74 (Me), 14.19 (Me) ppm;

IR (Film): $\tilde{\nu}_{\text{max}} = 2927, 2858, 2107, 1793, 1728, 1435, 1408, 1356, 1200, 1148, 1092, 1016, 977, 757, 700 cm⁻¹;$

MS (EI) m/z (%) = 360.5 [M]⁺ (3), 259.4 (9.8), 231.7 (24.6), 230. 1 (44.3), 128.7 (100), 91.2 (77), 85.3 (91), 57.6 (15);

HRMS (ESI⁺) berechnet für $C_{20}H_{29}N_2O_4^+$ [M+H]⁺ 361.2122, gefunden 361.2124.

3-(4-Methoxybenzyl)imidazolidine-2,4-dion (149)

Hydantoin (8.00 g, 79.4 mmol, 1.0 Äq.) wurde in trockenem DMSO (70 mL, 1.2 M) gelöst. Zu der Lösung wurde KOt-Bu (9.86 g, 87.9 mmol, 1.1 Äq.) gegeben und 30 min bei RT gerührt. Anschließend wurde PMBCl (10.8 mL, 12.4 g, 79.4 mmol, 1.0 Äq.) zugetropft. Nach Beendigung der Zugabe wurde für 5 h bei RT gerührt. Anschließend wurde die Reaktionslösung auf Eis (200 mL) geschüttet und der ausgefallene Feststoff auf einem Büchnertrichter gesammelt. Der Filterkuchen wurde mit etwas Diethylether und dest. H₂O gewaschen, und an Luft getrocknet. Das Rohprodukt wurde aus MeOH umkristallisiert und **149** als beige Nadeln erhalten (11.0 g, 50.0 mmol, 63%).

Schmp. 170 – 173 °C (MeOH);

¹**H-NMR** (400 MHz, DMSO-*d*₆) δ = 8.08 (s, 1H, NH), 7.38 – 7.19 (m, 2H, C_{Ar}-H), 6.95 – 6.75 (m, 2H, C_{Ar}-H), 4.44 (s, 2H, CH₂), 3.94 (d, *J* = 1.1 Hz, 2H, CH₂), 3.72 (s, 3H, Me) ppm.

Die erhaltenen spektroskopischen Daten stimmen mit den in der Literatur gefundenen Werten überein.^[169]

1-(3-(Hexyloxy)-2-hydroxybutyl)-3-(4-methoxybenzyl)imidazolidine-2,4-dion (150)

In ein ofengetrocknetes Mikrowellengefäß wurde PMB-Hydantoin **149** (799 mg, 3.60 mmol, 1.3 Äq.) und KOt-Bu (456 mg, 4.10 mmol, 1.4 Äq.) eingewogen und mit trockenem DMF (5.0 mL, 0.6 M) unter Rühren bei geschlossenem Deckel gelöst. Nachdem eine homogene Mischung vorlag, wurde Epoxid **123** (500 mg, 2.90 mmol, 1.0 Äq., d.r. = 50:50) hinzugegeben, und das Reaktionsgemisch in der Mikrowelle für 30 min bei 120 °C umgesetzt. Die Reaktionsmischung wurde auf Eis (10.0 mL) geschüttet, das Reaktionsgefäß mit etwas dest. H₂O und EtOAc nachgespült, mit wässr., verd. HCl-Lösung (1.0 M) neutralisiert und die wässrige Phase mit EtOAc extrahiert (3 x 10.0 mL). Die organischen Phasen wurden vereinigt, mit dest. H₂O und ges. wässr. NaCl-Lösung (je 5.0 mL) gewaschen, und anschließend über Na₂SO₄ getrocknet. Das Lösungsmittel wurde bei vermindertem Druck entfernt und der Rückstand mittels Säulenchromatographie an Kieselgel (*n*-Hexan/EtOAc = 7:3) gereinigt. Das Produkt wurde als gelbliches Öl erhalten (512 mg, 1.31 mmol, 45%, d.r. = 50:50).

 $\mathbf{R}_{f} = 0.54, 0.41 (n-\text{Hexan/EtOAc} = 5:5);$

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 1*) $\delta = 7.35$ (d, J = 8.7 Hz, 2H, C_{Ar}-H), 6.87 – 6.80 (m, 2H, C_{Ar}-H), 4.59 (s, 2H, CH₂), 4.12 (d, J = 17.7 Hz, 1H, CH₂), 3.92 (d, J = 17.7 Hz, 1H, CH₂), 3.77 (m, 4H, CH, OMe), 3.66 (dd, J = 14.5, 2.5 Hz, 1H, CH₂), 3.52 (dt, J = 9.1, 6.6 Hz, 1H, CH₂), 3.47 – 3.37 (m, 1H, CH), 3.32 (dt, J = 9.2, 6.7 Hz, 1H, CH₂), 3.22 (dd, J = 14.5, 8.8 Hz, 1H, CH₂), 1.57 – 1.48 (m, 2H, CH₂), 1.35 – 1.22 (m, 6H, CH₂), 1.15 (d, J = 6.3 Hz, 3H, Me), 0.91 – 0.86 (m, 3H, Me) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer* 2): $\delta = 7.36$ (d, J = 8.7 Hz, 2H, C_{Ar}-H), 6.84 (d, J = 8.7 Hz, 2H, C_{Ar}-H), 4.64 – 4.55 (m, 2H, CH₂), 4.16 – 3.89 (m, 2H, CH₂), 3.78 (s, 3H, OMe), 3.70 – 3.55 (m, 1H, CH), 3.50 (dd, J = 14.5, 3.0 Hz, 1H, CH₂), 3.43 (dd, J = 14.5, 7.0 Hz, 1H, CH₂), 3.35 – 3.17 (m, H, CH), 1.59 – 1.49 (m, 2H, CH₂), 1.38 – 1.24 (m, 6H, CH₂), 1.20 (d, J = 6.2 Hz, 3H, Me), 0.89 (t, J = 6.8 Hz, 3H, Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer 1*) $\delta = 170.2$ (C=O), 159.4 (C=O), 157.4 (C_q), 130.4 (C_{Ar}-H), 128.5 (C_q), 114.1 (C_{Ar}-H), 76.38 (CH), 73.10 (CH), 69.20 (CH₂), 55.39 (OMe), 51.77 (CH₂), 45.45 (CH₂), 42.16 (CH₂), 31.77 (CH₂), 30.08 (CH₂), 25.97 (CH₂), 22.72 (CH₂), 14.71 (Me), 14.16 (Me) ppm;

¹³C-NMR (101 MHz, CDCl₃, *Diastereomer 2*) $\delta = 170.4$ (C=O), 159.4 (C=O)), 157.4 (C_q) 130.4 (C_q), 128.6 (C_{Ar}-H), 114.1 (C_{Ar}-H), 76.4 (CH), 73.1 (CH), 69.2 (CH₂), 55.4 (OMe), 51.8 (CH₂), 45.5 (CH₂), 42.2 (CH₂), 31.8 (CH₂), 30.1 (CH₂), 26.0 (CH₂), 22.7 (CH₂), 15.7 (Me), 14.2 (Me) ppm;

MS (ESI⁺) m/z (%) = 425.4 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{33}N_2O_5^+$ [M+H]⁺ 393.2384, gefunden 393.2378.

1-(3-(Hexyloxy)-2-hydroxybutyl)-3-(4-methoxybenzyl)-1,3-dihydro-2H-imidazol-2-on (151)

Gemäß AVV 1 wurde das Hydantoinderivat **150** (450 mg, 1.15 mmol, 1.0 Äq.) unter Schutzgas in abs. THF (10.0 mL, 0.10 M) innerhalb von 16 h umgesetzt. Nach Aufarbeitung gemäß AVV 1 wurde das Rohprodukt säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 7:3 \rightarrow 5:5) und **151** als farbloses Öl erhalten (342 mg, 0.91 mmol, 79%, d.r. = 50:50).

 $\mathbf{R}_{\mathbf{f}} = 0.21, 0.20 (n-\text{Hexan/EtOAc} = 6:4);$

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 1*) $\delta = 7.24 - 7.18$ (m, 2H, C_{Ar}-H), 6.91 - 6.83 (m, 2H, C_{Ar}-H), 6.28 (d, J = 2.7 Hz, 1H, CH), 6.15 (d, J = 2.8 Hz, 1H, CH), 4.82 - 4.70 (m, 2H, CH₂), 4.03 (dd, J = 14.3, 2.3 Hz, 1H, CH₂), 3.85 - 3.78 (m, 1H, CH₂), 3.80 (s, 3H, OMe), 3.72 (td, J = 7.0, 2.3 Hz, 1H, CH), 3.55 (dt, J = 9.1, 6.6 Hz, 1H, CH₂), 3.38 - 3.31 (m, 1H, CH), 3.28 (dt, J = 9.1, 6.7 Hz, 1H, CH₂), 1.57 - 1.50 (m, 2H, CH₂), 1.36 - 1.26 (m, 6H, CH₂), 1.24 (d, J = 6.1 Hz, 3H, Me), 0.92 - 0.84 (m, 3H, Me) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer* 2) $\delta = 7.19$ (d, J = 8.4 Hz, 2H, C_{Ar}-H), 6.89 – 6.80 (m, 2H, C_{Ar}-H), 6.33 (d, J = 2.9 Hz, 1H, CH), 6.07 (d, J = 2.9 Hz, 1H, CH), 4.75 – 4.66 (m, 2H, CH₂), 3.81 – 3.76 (m, 4H, OMe, CH₂), 3.76 – 3.68 (m, 2H, CH₂), 3.62 – 3.52 (m, 1H, CH), 3.38 – 3.28 (m, 2H, CH₂, CH), 1.60 – 1.46 (m, 2H, CH₂), 1.34 – 1.24 (m, 6H, CH₂), 1.22 (d, J = 6.2 Hz, 3H, Me), 0.88 (t, J = 6.8 Hz, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃, *Diastereomer 1*) δ = 159.4 (C=O), 154.3 (C_q), 129.5 (C_{Ar}-H), 114.3 (C_{Ar}-H), 112.6 (CH), 110.0 (CH), 76.20 (CH), 74.64 (CH), 68.92 (CH₂), 55.40 (OMe), 48.04 (CH₂), 46.97 (CH₂), 31.80 (CH₂), 30.19 (CH₂), 26.05 (CH₂), 22.74 (CH₂), 15.52 (Me), 14.19 (Me) ppm;

¹³**C-NMR** (126 MHz, CDCl₃, *Diastereomer* 2) δ = 159.3 (C=O), 153.6 (C_q), 128.8 (C_{Ar}-H), 114.2 (C_{Ar}-H), 112.4 (CH), 109.8 (CH), 75.91 (CH), 74.28 (CH), 69.27 (CH₂), 55.40 (OMe), 46.87 (CH₂), 46.65 (CH₂), 31.78 (CH₂), 30.07 (CH₂), 25.99 (CH₂), 22.74 (CH₂), 15.35 (Me), 14.19 (Me) ppm;

MS (ESI⁺) m/z (%) = 399 (100) [M+Na]⁺, 377 (50) [M+H]⁺;

2-(1-(Hexyloxy)ethyl)-6-(4-methoxybenzyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (153)

Imidazol **151** (200 mg, 0.53 mmol, d.r = 1:1, 1.0 Äq.) wurde in Anlehnung an AVV 3 mit NBS (104 mg, 0.58 mmol, 1.1 Äq.) in DMF (3.0 mL, 0.2 M) bei -35° C umgesetzt. Nach Aufarbeitung wurde das Rohprodukt in CH₂Cl₂ (3.0 mL, 0.2 M) aufgenommen, und durch Zugabe von Pyridiniumchlorochromat (171 mg, 0.80 mmol, 1.5 Äq.) bei 40 °C weiter umgesetzt. Nach Beendigung der Reaktion nach 8 h wurde etwas SiO₂ zugegeben, und die Reaktionslösung anschließend auf eine kurze SiO₂ Säule gegeben und mit CH₂Cl₂ eluiert. Das Rohgemisch wurde nach Entfernung des Lösungsmittels bei vermindertem Druck säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan + 10% EtOAc) und **153** als farbloses Öl erhalten (86.0 mg, 0.22 mmol, 41%, d.r. = 55:45 der Hauptisomere)

 $\mathbf{R}_{\mathbf{f}} = 0.52, 0.63 (n-\text{Hexan/EtOAc} = 7:3)$

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 1*) $\delta = 7.35 - 7.31$ (m, 2H, C_{Ar}-H), 6.88 - 6.77 (m, 2H, C_{Ar}-H), 5.08 (s, 1H, CH), 4.61 - 4.50 (m, 2H, CH₂), 4.09 (ddd, *J* = 7.4, 5.1, 3.8 Hz, 1H, CH), 4.01 (dd, *J* = 11.6, 3.8 Hz, 1H, CH₂), 3.77 (s, 3H, OMe), 3.35 (dt, *J* = 9.3, 6.9 Hz, 1H, CH₂), 3.29 (dd, *J* = 11.5, 7.4 Hz, 1H, CH₂), 3.21 - 3.14 (m, 1H, CH), 3.11 (dt, *J* = 9.3, 6.8 Hz, 1H, CH₂), 1.43 - 1.33 (m, 2H, CH₂), 1.33 - 1.18 (m, 6H, CH₂), 1.03 (d, *J* = 6.3 Hz, 3H, Me), 0.89 (t, *J* = 7.1 Hz, 3H, Me) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 2*) $\delta = 7.32 - 7.29$ (m, 2H), 6.86 - 6.81 (m, 2H, C_{Ar}-H), 5.14 (s, 1H, CH), 4.57 (s, 2H, CH₂), 4.05 (dd, *J* = 11.4, 6.9 Hz, 1H, CH₂), 3.97 (tt, *J* = 6.8, 4.9 Hz, 1H,, CH), 3.78 (s, 3H, OMe), 3.61 (td, *J* = 6.4, 4.4 Hz, 1H, CH), 3.55 (dt, *J* = 9.0, 6.5 Hz, 1H, CH₂), 3.37 (dt, *J* = 9.1, 6.6 Hz, 1H, CH₂), 3.30 (dd, *J* = 11.4, 7.1 Hz, 1H, CH₂), 1.55 - 1.48 (m, 2H), 1.34 - 1.23 (m, 6H), 1.10 (d, *J* = 6.4 Hz, 3H, Me), 0.89 (t, *J* = 7.2 Hz, 3H, Me) ppm;

¹³**C-NMR** (126 MHz, CDCl₃, *Diastereomer 1*) δ = 169.2 (C=O), 160.7 (C=O), 159.5 (C_q), 130.4 (C_{Ar}-H), 127.8 (C_q), 114.1 (C_{Ar}-H), 87.85 (CH), 83.56 (CH), 75.49 (CH), 69.67 (CH₂), 55.37 (OMe), 45.66 (CH₂), 42.27 (CH₂), 31.80 (CH₂), 29.86 (CH₂), 25.74 (CH₂), 22.76 (CH₂), 16.24 (Me), 14.21 (Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer* 2) δ = 169.1 (C=O), 160.5 (C=O), 155.9 (C_q), 133.9 (C_{Ar}-H), 129.3 (C_q), 111.91 (C_{Ar}-H), 87.87 (CH), 83.63 (CH), 75.57 (CH), 69.71 (CH₂), 56.40 (OMe), 45.73 (CH₂), 41.71 (CH₂), 31.81 (CH₂), 29.89 (CH₂), 25.76 (CH₂), 22.77 (CH₂), 16.25 (Me), 14.20 (Me) ppm;

MS (ESI⁺) m/z (%) = 429.1 (20) [M+K]⁺, 413.3 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{31}N_2O_5^+$ [M+H]⁺ 391.2227, gefunden 391.2223.

2-(1-(Hexyloxy)ethyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (141)

Bizyklus **153** (65.0 mg, 0.17 mmol, 1.0 Äq.,) wurde als Diastereomerengemisch in MeOH (1.7 mL, 0.1 M) gelöst und CAN ((NH₄)₄Ce(SO₄)₄·2H₂O,454 mg, 0.83 mmol, 5.0 Äq.) hinzugegeben. Es wurde für 24 h bei RT gerührt, das Lösungsmittel eingeengt und der Rückstand säulenchromatographisch an Kieselgel (*n*-Hexan/EtOAc = 8:2) gereinigt. Das Produkt **141** wurde als farbloses Öl erhalten (9.2 mg, 34 µmol, d.r. = 55:45).

 $\mathbf{R}_{\mathbf{f}} = 0.11, 0.18 (n-\text{Hexan/EtOAc} = 5:5)$

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 1*) δ = 7.50 (br. s, NH), 5.18 (s, 1H), 4.26 (dt, *J* = 7.5, 3.1 Hz, 1H), 3.91 (dd, *J* = 11.4, 3.4 Hz, 1H), 3.50 – 3.42 (m, 2H), 3.38 (tt, *J* = 6.6, 3.3 Hz, 1H), 3.36 – 3.32 (m, 2H), 3.31 – 3.26 (m, 1H), 1.53 – 1.49 (m, 2H), 1.34 – 1.22 (m, 15H), 1.16 (d, *J* = 6.3 Hz, 3H), 0.91 – 0.85 (m, 5H) ppm;

¹**H-NMR** (400 MHz, CDCl₃, *Diastereomer 2*) δ = 7.50 (br. s, 1H, NH), 5.16 (s, 1H, CH), 4.19 – 4.14 (m, 1H, CH), 4.05 (dd, *J* = 11.7, 3.5 Hz, 1H, CH₂), 3.52 – 3.44 (m, 2H, CH, CH₂), 3.34 – 3.21 (m, 2H, CH₂), 1.54 – 1.42 (m, 2H, CH₂), 1.33 – 1.24 (m, 6H, CH₂), 1.10 (d, *J* = 6.4 Hz, 3H, Me), 0.88 (t, *J* = 6.9 Hz, 3H, Me) ppm;

¹³C-NMR (101 MHz, CDCl₃, Diastereomer 1) δ = 169.7 (C=O), 159.7 (C=O), 89.23 (CH), 83.14 (CH), 75.71 (CH), 69.79 (CH₂), 47.09 (CH₂), 31.82 (CH₂), 29.78 (CH₂), 25.80 (CH₂), 22.79 (CH₂), 15.36 (Me), 14.20 (Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, Diastereomer 2) δ = 169.6 (C=O), 159.6 (C=O), 88.95 (CH), 83.63 (CH), 75.82 (CH), 69.90 (CH₂), 45.06 (CH₂), 31.81(CH₂), 29.89 (CH₂), 25.80 (CH₂), 22.77 (CH₂), 16.06 (Me), 14.20 (Me) ppm;

MS (ESI⁻) m/z (%) = 269 (100) [M-1]⁻;

HRMS (ESI⁺): berechnet für $C_{13}H_{23}N_2O_4^+$ [M+H]⁺ 271.1652, gefunden 271.1652.

2-Acetyldihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (156)

Zu einer Lösung von CrO₃ (11.0 mg, 0.11 mmol, 3.0 Äq.) in trockenem MeCN (0.2 mL 0.7 M) wurde bei –40 °C **141** (10 mg, 37 µmol, 1.0 Äq., d.r. = 55:45) in trockenem EtOAc (0.3 mL, 0.3 M) hinzugefügt. Anschließend wurde eine Lösung aus *n*-Bu₄NIO₄ (48 mg, 0.11 mmol, 3.0 Äq.) in MeCN (0.2 mL, 0.7 M) zugetropft. Es wurde für 1.5 h bei –40 °C gerührt, dann die Lösung direkt auf eine Kieselgelsäule gegeben und das Produkt eluiert (*n*-Hexan/EtOAc = 5:5). Das Produkt **156** wurde als farbloses Öl isoliert (3.40 mg, 18.5 µmol, 50%, d.r. = 55:45).

 $\mathbf{R}_{\mathbf{f}} = 0.25, 0.13 (n-\text{Hexan/EtOAc} = 5:5);$

¹**H-NMR** (500 MHz, CDCl₃, *Hauptisomer*) δ = 5.22 (s, 1H, CH), 4.53 (t, *J* = 7.5 Hz, 1H, CH), 4.30 (dd, *J* = 12.1, 7.7 Hz, 1H, CH₂), 3.34 (dd, *J* = 12.1, 7.2 Hz, 1H, CH₂), 2.32 (s, 3H, Me) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Nebenisomer*) δ = 5.27 (s, 1H, CH), 4.69 (dd, *J* = 8.0, 3.3 Hz, 1H, CH₂), 4.19 (td, *J* = 12.0, 3.2 Hz, 1H, CH), 3.47 (ddd, *J* = 13.3, 8.0, 5.2 Hz, 1H, CH₂), 2.23 (s, 3H, Me).

¹³**C-NMR** (75 MHz, CDCl₃, *Hauptisomer*) δ = 205.7 (C=O), 173.0 (C=O), 159.5 (C=O), 89.04 (CH), 81.89 (CH), 46.38 (CH₂), 26.00 (Me) ppm;

¹³**C-NMR** (75 MHz, CDCl₃, *Nebenisomer*) δ 205.4 (C=O), 167.8 (C=O), 160.2 (C=O), 87.95 (CH), 82.06 (CH), 45.85 (CH₂), 26.80 (Me) ppm;

MS (EI) m/z (%) = 156 (5) [M-CO], 142 (100), 113 (33), 70 (63);

HRMS (ESI⁻): berechnet für C₇H₇N₂O₄⁻ [M-H]⁻ 183.0411, gefunden 183.0413.

2-Acetyl-6-(4-methoxybenzyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (157)

CrO₃ (12.3 mg, 0.12 mmol, 3.0 Äq.) wurde in trockenem MeCN (0.3 mL, 0.4 M) unter Schutzgas bei -50 °C mit einer Lösung aus Bizyklus **153** (16.0 mg, 41.0 μ mol, 1.0 Äq., d.r. = 55:45) in trockenem EtOAc (0.1 mL, 0.4 M) versetzt. Es wurde für 10 min gerührt und anschließend *n*-Bu₄NIO₄ (53.3 mg, 0.12 mmol, 3.0 Äq.) in MeCN (0.3 mL, 0.4 M) hinzugetropft. Es wurde für 45 min bei -50 °C gerührt, dann wurde die Reaktionsmischung auf RT erwärmt und direkt mittels Säulenchromatographie an Kieselgel gereinigt (*n*-Hexan/EtOAc = 6:4). Das Produkt **157** wurde als farbloses Öl erhalten (7.61 mg, 25.0 µmol, 61%, d.r. = 45:55).

 $\mathbf{R}_{\mathbf{f}} = 0.29, 0.14 (n-\text{Hexan/EtOAc} = 6:4);$

¹**H-NMR** (400 MHz, CDCl₃, *Diastereomer 1*) $\delta = 7.32 - 7.29$ (m, 2H, C_{Ar}-H), 6.86 - 6.82 (m, 2H, C_{Ar}-H), 5.17 (s, 1H, CH), 4.58 (d, J = 1.5 Hz, 2H, CH₂), 4.43 (t, J = 7.5 Hz, 1H, CH), 4.27 (dd, J = 12.0, 7.7 Hz, 1H, CH₂), 3.78 (s, 3H, OMe), 3.31 (dd, J = 12.1, 7.3 Hz, 1H, CH₂), 2.29 (s, 3H, Me) ppm;

¹**H-NMR** (400 MHz, CDCl₃, *Diastereomer 2*) $\delta = 7.37 - 7.28$ (m, 2H, C_{Ar}-H), 6.88 - 6.78 (m, 2H, C_{Ar}-H), 5.20 (s, 1H, CH), 4.58 (d, J = 5.9 Hz, 3H, CH₂, CH), 4.17 (dd, J = 12.2, 3.4 Hz, 1H), 3.77 (s, 3H, OMe), 3.47 (dd, J = 12.2, 8.1 Hz, 1H, CH₂), 1.99 (s, 3H, Me) ppm.

¹³C-NMR (101 MHz, CDCl₃, *Diastereomer 1*) δ = 205.8 (C=O), 167.8 (C=O), 160.5 (C=O), 159.7 (C_q), 130.3 (C_{Ar}-H), 128.5 (C_q), 114.27 (C_{Ar}-H), 87.75 (CH), 82.28 (CH), 55.41 (OMe), 46.54 (CH₂), 42.67 (CH₂), 27.02 (Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer* 2) δ = 205.9 (C=O), 168.2 (C=O), 160.5 (C=O), 159.6 (C_q), 130.45 (C_{Ar}-H), 127.3 (C_q), 114.2 (C_{Ar}-H), 88.32 (CH), 82.50 (CH), 55.41 (OMe), 47.05 (CH₂), 42.60 (CH₂), 26.01 (Me) ppm.

MS (ESI⁺) m/z (%) = 327 [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{15}H_{17}N_2O_5^+$ [M+H]⁺ 305.1132, gefunden 305.1132.

1-Benzyl-3-(3-(hexyloxy)-2-oxo-1-(phenylselanyl)butyl)-1H-imidazol-2(3H)-on (161)

Keton **127** (186 mg, 0.54 mmol, 1.0 Åq.) wurde in ein ausgeheiztes Schlenkrohr eingewogen und unter Schutzgas in abs. THF gelöst. Die Lösung wurde im Trockeneis/*i*-PrOH Bad auf –78 °C gebracht, und LHMDS (1.13 mL einer 1.0 M Lösung in THF, 1.2 mmol, 2.1 Äq.) zugetropft. Es wurde für 1 h bei gleichbleibender Temperatur gerührt und dann PhSeCl (135 mg, 0.70 mmol, 1.3 Äq) hinzugefügt. Nach weiteren 40 min bei –78 °C wurde die Reaktion erwärmt und durch Zugabe von ges. wässr. NH₄Cl-Lösung (4 mL) abgebrochen und auf RT erwärmt. Die Reaktionslösung wurde mit EtOAc (5 mL) und dest. H₂O (4 mL) verdünnt, und die wässrige Phase mit EtOAc extrahiert. Die organischen Phasen wurden vereinigt, mit ges. wässr. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels *in vacuo* wurde der Rückstand direkt weiter gereinigt, um noch vorhandenes Selenid abzutrennen und eine Weiterreaktion zu verhindern. Die Auftrennung erfolgte säulenchromatographisch an Kieselgel (*n*-Hexan, dann *n*-Hexan/EtOAc = 7:3) und lieferte das Produkt als farbloses Öl (191.5 mg, 0.38 mmol, 71%, d.r. = 50:50)

$R_{f} = 0.73$ (*n*-Hexan/EtOAc = 5:5);

¹**H-NMR** (500 MHz, CDCl₃, *Isomerengemisch* 50:50) $\delta = 7.39 - 7.18$ (m, 20H, C_{Ar}-H), 6.00 (s, 1H, CH), 6.71 (s, 1H, CH), 6.62 (d, J = 2.8 Hz, 1H, CH), 6.51 (d, J = 2.7 Hz, 1H, CH), 6.06 (d, J = 2.3 Hz, 1H, CH), 6.03 (d, J = 2.2 Hz, 1H, CH), 4.80 (dd, J = 14.8, 2.1 Hz, 2H, CH₂), 4.70 (dd, J = 15.3, 2.7 Hz, 2H, CH₂), 4.35 (q, J = 6.4 Hz, 1H, CH), 4.14 (q, J = 7.5 Hz, 1H, CH), 3.61 – 3.44 (m, 4H, CH₂), 1.67 – 1.53 (m, 4H, CH₂), 1.54 (d, J = 6.8 Hz, 3H, Me), 1.38 (d, J = 6.8 Hz, 3H, Me), 1.39 – 1.18 (m, 12H, CH₂), 0.91 (m, 6H, Me) ppm;

¹³C-NMR (75 MHz, CDCl₃, *Isomerengemisch 50:50*) $\delta = 207.5$ (C=O), 207.4 (C=O), 152.4 (C=O), 151.3 (C=O), 136.2 (Cq), 136.0 (Cq), 135.9 (Cq), 131.7 (Cq), 129.4 (C_{Ar}-H), 129.3 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.0 (C_{Ar}-H), 127.9 (C_{Ar}-H), 111.1 (CH), 110.9 (CH), 110.5 (CH), 110.3 (CH), 79.25 (CH), 72.03 (CH), 47.30 (CH₂), 47.22 (CH₂), 31.81 (CH), 31.78 (CH), 31.73 (CH₂), 29.96 (CH₂), 25.94 (CH₂), 25.89 (CH₂), 25.82 (CH₂), 25.80 (CH₂) 22.73 (Me), 22.60 (Me) 14.21 (Me), 14.20 (Me) ppm;

MS (ESI⁺) m/z (%) = 523 [M+Na]⁺ (100);

HRMS (ESI⁺): berechnet für $C_{26}H_{33}N_2O_3Se^+$ [M+H]⁺ 501.1651, gefunden 501.1650.

1-Benzyl-3-(3-(hexyloxy)-2-hydroxy-1-(phenylselanyl)butyl)-1H-imidazol-2(3H)-on (162)

Zu einer Lösung aus Keton **161** (150 mg, 0.30 mmol, 1.0 Äq.) in MeOH (1.0 mL, 0.3 M) wurde CeCl₃·5H₂O (111 mg, 0.30 mmol, 1.0 Äq.) gegeben. Die Lösung wurde anschließend auf -78 °C gebracht und NaBH₄ (11.36 mg, 0.30 mmol, 1.0 Äq.) hinzugefügt. Es wurde für 15 min bei -78 °C gerührt, die Reaktion dem Kühlbad entnommen und ges. wässr. NH₄Cl-Lösung (2.0 mL) hinzugefügt um die Reaktion abzubrechen. Die Reaktionslösung wurde mit EtOAc (2.0 mL) verdünnt, die Phasen getrennt, die wässr. Phase mit EtOAc extrahiert, und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels bei vermindertem Druck wurde das Rohgemisch säulenchromatographisch an Kieselgel getrennt (*n*-Hexan, dann *n*-Hexan/EtOAc = 7:3) um das Produkt als gelbliches Öl (95.0 mg, 0.19 mmol, 63%, d.r. = 50:50) zu erhalten.

 $\mathbf{R}_{\mathbf{f}} = 0.47, 0.37 (n-\text{Hexan/EtOAc} = 6:4);$

¹**H-NMR** (300 MHz, CDCl₃, **162d**) $\delta = 7.60 - 7.54$ (m, 2H), 7.37 - 7.27 (m, 4H), 7.28 - 7.15 (m, 2H), 7.16 - 7.04 (m, 2H, C_{Ar}-H), 5.96 (d, J = 3.0 Hz, 1H, CH), 5.78 (d, J = 3.0 Hz, 1H, CH), 5.71 (d, J = 1.6 Hz, 1H, CH), 4.89 - 4.68 (m, 2H, CH₂), 3.88 (dd, J = 8.4, 1.6 Hz, 1H, CH), 3.72 - 3.64 (m, 1H, CH₂), 3.62 - 3.54 (m, 1H, CH), 3.45 - 3.32 (m, 1H, CH₂), 1.69 - 1.48 (m, 2H, CH₂), 1.35 (d, J = 6.0 Hz, 3H, Me), 1.36 - 1.25 (m, 6H, CH₂), 0.97 - 0.85 (m, 3H) ppm;

¹**H-NMR** (400 MHz, CDCl₃, **162a**) $\delta = 7.55 - 7.49$ (m, 2H, C_{Ar}-H), 7.38 - 7.26 (m, 4H, C_{Ar}-H), 7.25 - 7.15 (m, 2H, C_{Ar}-H), 7.12 - 7.07 (m, 2H, C_{Ar}-H), 6.66 (d, J = 3.0 Hz, 1H, CH), 6.05 (d, J = 3.0 Hz, 1H, CH), 5.87 (d, J = 4.0 Hz, 1H, CH), 4.78 (d, J = 15.2 Hz, 1H, CH₂), 4.58 (d, J = 15.2 Hz, 1H, CH₂), 3.75 (dd, J = 5.9, 4.0 Hz, 1H, CH), 3.63 (dt, J = 8.9, 6.7 Hz, 1H, CH₂), 3.58 (p, J = 6.0 Hz, 1H, CH), 3.44 (dt, J = 8.8, 6.6 Hz, 1H, CH₂), 1.68 - 1.55 (m, 2H, CH₂), 1.41 - 1.29 (m, 6H, CH₂), 1.26 (d, J = 6.0 Hz, 3H, Me), 0.97 - 0.82 (m, 3H, Me) ppm;

¹³**C-NMR** (75 MHz, CDCl₃, **162d**) δ = 152.9 (C=O), 136.5 (C_q), 136.3 (C_{Ar}-H), 129.1 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.3 (C_{Ar}-H), 128.0 (C_{Ar}-H), 127.8 (C_{Ar}-H), 127.5 (C_q), 112.3 (CH), 110.0 (CH), 77.83 (CH), 75.81 (CH), 69.15 (CH₂), 58.51 (CH), 47.35 (CH₂), 31.82 (CH₂), 30.24 (CH₂), 26.20 (CH₂), 22.73 (CH₂), 15.98 (Me), 14.16 (Me) ppm;

¹³**C-NMR** (101 MHz, CDCl3, **162a**) $\delta = 152.4$ (C=O), 136.9 (C_q), 135.4 (C_{Ar}-H), 129.1 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.1 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.8 (C_{Ar}-H), 127.6 (C_q), 110.5 (CH), 110.4 (CH), 78.25

(CH), 75.89 (CH), 69.61 (CH₂), 58.55 (CH), 47.12 (CH₂), 31.83 (CH₂), 30.12 (CH₂), 26.02 (CH₂),
22.76 (CH₂), 16.13 (Me), 14.20 (Me);
MS (ESI⁺) m/z (%) = 525 (100), 523 (50) [M+Na]⁺.

HRMS (ESI): berechnet für $C_{26}H_{35}N_2O_3Se^+$ [M+H]⁺ 503.1807, gefunden 503.1808.

2.3 Synthesepfad B: Synthese des Schlüsselintermediats 167

2.3.1 Syntheseroute zu 167 über die Halozyklisierung von Imidazolen

3-Benzyl-1-(oxiran-2-ylmethyl)imidazolidine-2,4-dion (171)

Benzylhydantoin **118** (3.00 g, 15.8 mmol, 1.0 Äq.) wurde in einem ausgeheizten Kolben unter Argonatmosphäre in Epichlorhydrin (**105**, 39.0 mL, 1.4 M) gelöst und NaH (2.52 g, 63.0 mmol, 4.0 Äq.) sowie nach Abklingen der exothermen Reaktion NH₄I (0.36 g, 3.20 mmol, 0.2 Äq.) hinzugefügt. Bei RT wurde für 16 h gerührt und die Reaktion auf 0 °C abgekühlt bevor vorsichtig dest. H₂O (30 mL) hinzugegeben wurde um die Reaktion abzubrechen. Es wurde mit CH₂Cl₂ (20 mL) verdünnt, die Phasen getrennt und die wässr. Phase mit CH₂Cl₂ extrahiert (3 x 20 mL). Die organischen Phasen wurden vereinigt und mit ges. wässr. NaCl-Lösung gewaschen (15 mL), über Na₂SO₄ getrocknet und das Lösungsmittel bei vermindertem Druck entfernt. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 7:2 \rightarrow 5:5) und lieferte Epoxid **171** als farbloses Öl (1.70 g, 6.90 mmol, 44%).

 $\mathbf{R}_{f} = 0.39 (n-\text{Hexan/EtOAc} = 4:6);$

¹**H-NMR** (400 MHz, CDCl₃) δ = 7.44 – 7.34 (m, 2H, C_{Ar}-H), 7.34 – 7.23 (m, 3H, C_{Ar}-H), 4.65 (d, *J* = 2.4 Hz, 2H, CH₂), 4.04 (d, *J* = 17.6 Hz, 2H, CH₂), 3.97 – 3.87 (m, 1H, CH), 3.16 (dd, *J* = 14.6, 6.5 Hz, 1H, CH₂), 3.10 (ddt, *J* = 6.4, 3.8, 2.4 Hz, 1H, CH₂), 2.79 (t, *J* = 4.2 Hz, 1H, CH₂), 2.57 – 2.49 (m, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 169.7 (C=O), 156.6 (C=O), 136.0 (C_q), 128.8 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.1 (C_{Ar}-H), 51.14 (CH₂), 50.28 (CH), 44.82 (CH₂), 44.60 (CH₂), 42.71 (CH₂) ppm.

Die gefundenen spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[89]

3-Benzyl-1-(2,3-dihydroxypropyl)imidazolidine-2,4-dion (172)

Epoxid **171** (0.64 g, 2.60 mmol, 1.0 Äq.) wurde in einem Gemisch aus THF und dest. H₂O (4:1, 32 mL, 0.08 M) gelöst, und HClO₄ (70%ig, 0.10 mL, 3.0 vol%) hinzugefügt. Es wurde bei RT gerührt und die Reaktion nach 72 h durch Zugabe von ges. wässr. NaHCO₃-Lösung (10 mL) und ges. wässr. Na₂S₂O₃-Lösung (5 mL) abgebrochen. Die Phasen wurden getrennt, die wässr. Phase mit EtOAc extrahiert (3 x 15 mL) und die organischen Phasen vereinigt, mit ges. wässr. NaCl-Lösung gewaschen und anschließend über Na₂SO₄ getrocknet. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Rohprodukt mittels Säulenchromatographie (Kieselgel, CH₂Cl₂/MeOH = 99:1 \rightarrow 95:5) gereinigt. Das Diol **172** wurde als farbloses Öl erhalten (474.1 mg, 1.79 mmol, 69%).

 $\mathbf{R}_{f} = 0.10 (n-\text{Hexan/EtOAc} = 3:7);$

¹**H-NMR** (600 MHz, CDCl₃) δ = 7.43 – 7.26 (m, 5H, C_{Ar}-H), 4.65 (s, 2H, CH₂), 4.03 (d, *J* = 5.5 Hz, 2H, CH₂), 3.90 – 3.87 (m, 1H, CH), 3.62 (dd, *J* = 11.5, 4.6 Hz, 1H, CH₂), 3.53 (dd, *J* = 11.5, 5.5 Hz, 1H, CH₂), 3.48 (qd, *J* = 14.7, 5.3 Hz, 2H, CH₂) ppm.

Die gefundenen spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[89]

3-Benzyl-1-(2,3-dihydroxypropyl)imidazolidine-2,4-dion (119)

Gemäß AVV 1 wurde Diol **172** (0.32 g, 1.21 mmol, 1.0 Äq.) in abs. THF (10.0 mL, 0.12 M) mit LiAlH₄ (138 mg, 3.63 mmol, 3.0 Äq.) umgesetzt. Die Reaktion wurde nach 4 h abgebrochen, gemäß der Vorschrift mit verd. HCl-Lösung (2 M, 10 mL) behandelt, die wässr. Phase mit CH₂Cl₂ (3 x 15 mL) extrahiert und die vereinigten organischen Phasen mit ges. wässr. NaCl-Lösung gewaschen (2 x 5 mL). Nach Trocknung über Na₂SO₄ wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Produkt nach säulenchromatographischer Reinigung an Kieselgel (CH₂Cl₂/MeOH = 99:1 \rightarrow 90:10) als farbloses Öl erhalten (147.0 mg, 0.59 mmol, 49%).

 $R_f = 0.12$ (EtOAc);

¹**H-NMR** (600 MHz, CDCl₃) δ = 7.37 – 7.27 (m, 1H), 7.25 – 7.19 (m, 5H, C_{Ar}-H), 6.27 (d, *J* = 2.9 Hz, 1H, CH), 6.14 (d, *J* = 2.9 Hz, 1H, CH), 4.79 (s, 2H, CH₂), 3.90 (p, *J* = 5.0 Hz, 1H, CH), 3.88 – 3.74 (m, 2H, CH₂), 3.55 (dd, *J* = 4.7, 1.6 Hz, 2H, CH₂) ppm.

Die gefundenen spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[89]

1-Benzyl-3-(3-((tert-butyldimethylsilyl)oxy)-2-hydroxypropyl)-1,3-dihydro-2H-imidazol-2-on (169a)

Diol **119** (100.0 mg, 0.40 mmol, 1.0 Äq.) wurde in einem ausgeheizten Schlenkkolben in abs. CH_2Cl_2 (3.0 mL, 1.3 M) gelöst und unter Argon auf -78 °C gekühlt. Zu der Lösung wurde Imidazol (32.7 mg, 0.48 mmol, 1.2 Äq.) gegeben und anschließend TBSCl (60.7 mg, 0.40 mmol, 1.0 Äq.) gelöst in CH_2Cl_2 (1.0 mL) langsam zugetropft. Die Reaktion wurde über einen Zeitraum von 16 h gerührt und dabei auf RT erwärmt. Die Reaktionsmischung wurde mit dest. H₂O und CH_2Cl_2 (je 5 mL) verdünnt und die wässr. Phase mit CH_2Cl_2 (3 x 5 mL) extrahiert. Die organischen Phasen wurden vereinigt und über Na_2SO_4 getrocknet. Nach Entfernung des Lösungsmittels bei vermindertem Druck wurde das Rohprodukt unter Anwendung von Säulenchromatographie an Kieselgel gereinigt (*n*-Hexan/EtOAc = 5:5) und **169a** als farbloses Öl isoliert (110 mg, 0.30 mmol, 76%).

 $R_f = 0.67 (n-Hexan/EtOAc = 2:8);$

¹**H-NMR** (600 MHz, CDCl₃) $\delta = 7.37 - 7.32$ (m, 2H, C_{Ar}-H), 7.31 - 7.23 (m, 3H, C_{Ar}-H), 6.26 (d, J = 2.9 Hz, 1H, CH), 6.11 (d, J = 2.9 Hz, 1H, CH), 4.80 (s, 2H, CH₂), 3.94 - 3.87 (m, 2H, CH, CH₂), 3.76 - 3.70 (m, 1H, CH₂), 3.61 (dd, J = 10.1, 5.5 Hz, 1H, CH₂), 3.54 (dd, J = 10.1, 6.5 Hz, 1H, CH₂), 0.90 (s, 9H, Me), 0.06 (d, J = 2.3 Hz, 6H, Me) ppm;

¹³**C-NMR** (151 MHz, CDCl₃) δ = 154.3 (C=O), 136.9 (C_q), 128.9 (C_{Ar}-H), 128.0 (C_{Ar}-H), 112.6 (CH), 110.1 (CH), 71.91 (CH), 64.14 (CH₂), 47.83 (CH₂), 47.48 (CH₂), 26.02 (Me), 18.36 (C_q), -5.27 (Me) ppm;

IR (Film) $\tilde{\nu}_{max}$ = 1663, 1470, 1456, 1240, 1109, 1082, 836, 778, 701, 668 cm⁻¹;

MS (ESI⁺) m/z (%) = 363.3 (36) [M+H]⁺, 385.1 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{19}H_{31}N_2O_3Si^+$ [M+H]⁺ 363.2098, gefunden 363.2099.

1-Benzyl-3-(2-hydroxy-3-((triisopropylsilyl)oxy)propyl)-1,3-dihydro-2H-imidazol-2-on (169b)

Diol **119** (50.0 mg, 0.20 mmol, 1.0 Äq.) wurde im ausgeheizten Kolben unter Argon in trockenem CH_2Cl_2 (0.2 mL, 1.0 M) gelöst. Bei -78 °C erfolgte die Zugabe von Imidazol (20.4 mg, 0.30 mmol, 1.5 Äq.) und TIPSCl (38.9 mg, 2.02 mmol. 1.01 Äq.), welches in wenig CH_2Cl_2 verdünnt und zugetropft wurde. Die Reaktion wurde für 18 h gerührt und dabei langsam auf RT erwärmt, der Feststoff abfiltriert und das Filtrat am Rotationsverdampfer eingeengt. Säulenchromatographische Reinigung des Rohprodukts an Kieselgel (*n*-Hexan/EtOAc = 5:5) lieferte **169e** als farbloses Öl (50.2 mg, 0.12 mmol, 62%).

 $R_{f} = 0.75 (n-Hexan/EtOAc = 6:4);$

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.48 – 7.05 (m, 5H, C_{Ar}-H), 6.28 (d, *J* = 2.9 Hz, 1H, CH), 6.11 (d, *J* = 2.8 Hz, 1H, CH), 4.79 (s, 2H, CH₂), 4.00 – 3.86 (m, 2H, CH, CH₂), 3.80 – 3.66 (m, 2H, CH₂, CH₂), 3.61 (dd, *J* = 9.8, 6.7 Hz, 1H, CH₂), 3.29 (br. s, 1H, OH), 1.17 – 0.88 (m, 21H, Me, CH) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 154.3 (C=O), 136.9 (C_q), 128.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 112.6 (CH), 110.1 (CH), 72.02 (CH), 64.44 (CH₂), 47.82 (CH₂), 47.43 (CH₂), 18.07 (CH₃), 11.97 (CH) ppm.

IR (Film): $\tilde{\nu}_{max} = 2941, 2865, 1664, 1463, 1426, 1238, 1221, 1086, 1065, 882, 798, 742, 700, 678, 657 cm⁻¹.$

MS (ESI⁺) m/z (%) = 428.4 (39), 427.3 (100) [M+Na]⁺, 406.3 (17), 405.3 (52) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{22}H_{37}N_2O_3Si^+$ [M+H]⁺ 405.2568, gefunden 405.2568.

3-(3-Benzyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-hydroxypropyl benzoat (169c)

Zu Diol **119** (30.0 mg, 0.12 mmol, 1.0 Äq.) in abs. CH_2Cl_2 (0.25 mL, 0.5 M) wurde unter Schutzgas NEt₃ (33.0 µL, 24.3 mg, 0.24 mmol, 2.0 Äq.) gegeben und die Reaktion auf 0 °C abgekühlt. Bei dieser Temperatur wurde eine Lösung von Benzoylchlorid (17.0 µL, 20.4 mg, 0.14 mmol, 1.2 Äq.) in CH_2Cl_2 (0.25 mL) langsam zugetropft und anschließend auf RT erwärmt. Nach 16 h wurde die

Reaktionsmischung durch Zugabe von dest. H₂O und CH₂Cl₂ (je 1 mL) verdünnt, die Phasen getrennt und die wässr. Phase mit CH₂Cl₂ (3 x 1 mL) extrahiert. Die organischen Phasen wurden vereinigt, mit ges. wässr. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde *in vacuo* entfernt und der Rückstand säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 5:5). Es wurde **169c** als farbloses Öl erhalten (22.2 mg, 63.0 µmol, 52%).

 $\mathbf{R}_{\mathbf{f}} = 0.15 (n-\text{Hexan/EtOAc} = 1:3);$

¹**H-NMR** (600 MHz, CDCl₃) $\delta = 8.13 - 7.91$ (m, 2H, C_{Ar}-H), 7.58 - 7.52 (m, 1H, C_{Ar}-H), 7.43 (t, J = 7.7 Hz, 2H, C_{Ar}-H), 7.32 (m, 2H, C_{Ar}-H), 7.30 - 7.26 (m, 1H, C_{Ar}-H), 7.25 - 7.21 (m, 2H, C_{Ar}-H), 6.25 (d, J = 3.0 Hz, 1H, CH), 6.11 (d, J = 2.9 Hz, 1H, CH), 4.80 - 4.72 (m, 1H, CH₂), 4.38 (dd, J = 11.4, 5.4 Hz, 1H, CH₂), 4.33 (dd, J = 11.4, 5.4 Hz, 1H, CH₂), 4.28 (qd, J = 5.6, 2.9 Hz, 1H, CH), 3.95 (dd, J = 14.5, 3.1 Hz, 1H, CH₂), 3.85 (dd, J = 14.5, 6.5 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (151 MHz, CDCl₃) δ = 166.5 (C=O), 154.2 (C=O), 136.6 (C_{Ar}-H), 133.3 (C_{Ar}-H), 129.8 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.5 (C_{Ar}-H), 128.0 (C_{Ar}-H), 127.9 (C_{Ar}-H), 112.4 (CH), 110.5 (CH), 69.52 (CH), 66.04 (CH₂), 48.28 (CH₂), 47.46 (CH₂) ppm;

IR (Film) $\tilde{\nu}_{max} = 1715$, 1660, 1513, 1451, 1270, 1244, 1176, 1111, 1069, 1027, 711, 664 cm⁻¹;

MS (ESI⁺) m/z (%) = 375.1 (100) [M+Na]⁺;

HMRS (ESI⁺): berechnet für $C_{20}H_{21}N_2O_4^+$ [M+H]⁺ 353.1496, gefunden 353.1496.

1-Benzyl-3-(3-(benzyloxy)-2-hydroxypropyl)-1,3-dihydro-2H-imidazol-2-on (169d)

Darstellung aus Diol 119 mit Benzylbromid:

Zu einer Lösung aus Diol **119** (100 mg, 0.40 mmol, 1.0 Äq.) in abs. THF (3.0 mL, 1.3 M) wurde bei -70 °C NaH (16.0 mg, 0.40 mmol, 1.01 Äq.) gegeben. Die Reaktion wurde auf 0 °C erwärmt, bis die exotherme Reaktion abgeklungen war und erneut auf -70 °C gebracht. BnBr (50.0 µL, 68.9 mg, 0.40 mmol, 1.0 Äq.) wurde in abs. THF (2 mL) gelöst und langsam zu der Reaktionsmischung getropft. Es wurde langsam auf RT erwärmt und 24 h bei RT gerührt. Durch Zugabe von dest. H₂O und EtOAc (je 5 mL) wurde die Reaktionsmischung verdünnt, die Phasen getrennt und die wässr. Phase mit EtOAc extrahiert (3 x 5 mL). Die organischen Phasen wurden über Na₂SO₄ getrocknet, eingeengt und der Rückstand säulenchromatographisch an Kieselgel gereinigt. Das Produkt **169d** wurde als farbloses Öl erhalten (20.3 mg, 0.06 mmol, 15%).

Darstellung aus Epoxid 173 und Benzylalkohol:

Gemäß AVV 2 wurde Epoxid **173** (50.0 mg, 0.22 mmol, 1.0 Äq.) mit Benzylalkohol (25.8 mg, 0.24 mmol, 1.1 Äq.) und NaH (11.0 mg, 0.28 mmol, 1.3 Äq.) in trockenem THF (1.0 mL, 0.25 M) bei 50 °C umgesetzt. Nach 3 d wurde die Reaktion abgebrochen und lieferte nach Aufreinigung des Rohprodukts mittels Säulenchromatographie an Kieselgel (*n*-Hexan/EtOAc = 1:1) **169d** als farbloses Öl (16.2 mg, 46.2 μ mol, 21%).

 $\mathbf{R_{f}} = 0.48$ (*n*-Hexan/EtOAc = 1:3);

¹**H-NMR** (600 MHz, CDCl₃) δ = 7.37 – 7.26 (m, 8H, C_{Ar}-H), 7.26 – 7.22 (m, 2H, C_{Ar}-H), 6.22 (d, *J* = 2.9 Hz, 1H, CH), 6.09 (d, *J* = 3.0 Hz, 1H, CH), 4.78 (s, 2H, CH₂), 4.53 (s, 2H, CH₂), 4.08 (qd, *J* = 6.2, 3.0 Hz, 1H, CH), 3.90 (dd, *J* = 14.5, 3.0 Hz, 1H, CH₂), 3.76 (dd, *J* = 14.4, 6.5 Hz, 1H, CH₂), 3.52 (dd, *J* = 9.5, 5.6 Hz, 1H, CH₂), 3.46 (dd, *J* = 9.5, 6.2 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (151 MHz, CDCl₃) δ = 154.2 (C=O), 138.0 (C_q), 136.8 (C_q), 128.92 (C_{Ar}-H), 128.6 (C_{Ar}-H), 128.0 (C_{Ar}-H), 127.9 (C_{Ar}-H), 112.6 (CH), 110.2 (CH), 73.60 (CH₂), 71.36 (CH₂), 70.32 (CH), 48.13 (CH₂), 47.46 (CH₂) ppm;

IR (Film) $\tilde{\nu}_{max} = 1663, 1453, 1426, 1240, 1095, 1071, 1028, 735, 698, 660 cm⁻¹;$ **MS**(ESI⁺) m/z (%) = 339.2 (41) [M+H]⁺, 361.2 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{20}H_{23}N_2O_3^+$ [M+H]⁺ 339.1703, gefunden 339.1703.

1-Benzyl-3-(oxiran-2-ylmethyl)-1,3-dihydro-2H-imidazol-2-on (173)

Imidazolon **126** (0.32 g, 2.07 mmol, 1.0 Äq.) wurde in einen ausgeheizten Schlenkkolben vorgelegt und in Epichlorhydrin (**105**, 1.6 mL, 1.4 M) gelöst. Bei 0 °C wurde NaH (0.32 g, 8.28 mmol, 4.0 Äq.) und anschließend NH₄I (60.0 mg, 0.42 mmol, 0.2 Äq.) hinzugefügt und 6 h bei RT gerührt. Die Reaktion wurde durch vorsichtige Zugabe von dest. H₂O (10 mL) bei 0 °C abgebrochen, und mit CH₂Cl₂ (5 mL) verdünnt. Die wässr. Phase wurde mit CH₂Cl₂ extrahiert (3 x 5 mL), die organischen Phasen vereinigt, mit ges. wässr. NaCl-Lösung gewaschen (5 mL) und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde bei vermindertem Druck am Rotationsverdampfer entfernt und der Rückstand säulenchromatographisch an Kieselgel gereinigt (CH₂Cl₂/MeOH = 99:1 \rightarrow 90:10). Das Produkt wurde als farbloses Öl erhalten (0.21 g, 0.93 mmol, 45%).

 $R_{f} = 0.25$ (EtOAc);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 7.39 - 7.21$ (m, 5H, C_{Ar}-H), 6.30 (d, J = 3.0 Hz, 1H, CH), 6.11 (d, J = 3.0 Hz, 1H, CH), 4.79 (s, 2H, CH₂), 4.11 (dd, J = 14.9, 2.9 Hz, 1H, CH₂), 3.57 (dd, J = 14.9, 5.9 Hz, 1H, CH₂), 3.20 (ddt, J = 5.7, 4.0, 2.8 Hz, 1H, CH), 2.82 (dd, J = 4.7, 4.0 Hz, 1H, CH₂), 2.55 (dd, J = 4.7, 2.6 Hz, 2H, CH₂) ppm;

¹³**C-NMR** (126 MHz, CDCl₃) δ = 153.1 (C=O), 136.9 (C_q), 128.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.9 (C_{Ar}-H), 111.3 (CH), 110.4 (CH), 50.68 (CH₂), 47.31 (CH), 45.99 (CH₂), 44.97 (CH₂) ppm;

IR (Film): $\tilde{\nu}_{max} = 1671, 1455, 1425, 1239, 733, 701 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 254.1 (20), 253.1 (100) [M+Na]⁺, 231.0 (16) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{13}H_{15}N_2O_2^+$ [M+H]⁺ 231.1128, gefunden 231.1128.

1-Benzyl-3-(2-hydroxy-3-(4-methoxyphenyl)propyl)-1,3-dihydro-2H-imidazol-2-on (169e)

Gemäß AVV 2 wurde Epoxid **173** (125.0 mg, 0.54 mmol,1.0 Äq.) mit *para*-Methoxybenzylalkohol (0.17 mL, 187.5 mg, 1.36 mmol, 2.5 Äq.) in THF (2.2 mL, 0.25 M) bei 60 °C innerhalb von 24 h umgesetzt. Reinigung des Rohprodukts an Kieselgel (*n*-Hexan/EtOAc = 1:2) lieferte **169e** als gelbliches Öl (111 mg, 0.30 mmol, 56%).

 $R_{f} = 0.25$ (EtOAc)

¹**H-NMR** (500 MHz, CDCl₃) δ = 7.36 – 7.28 (m, 3H, C_{Ar}-H), 7.26 – 7.23 (m, 4H, C_{Ar}-H), 6.89 – 6.86 (m, 2H, C_{Ar}-H), 6.23 (d, *J* = 2.9 Hz, 1H, CH), 6.10 (d, *J* = 2.9 Hz, 1H, CH), 4.79 (s, 2H, CH₂), 4.46 (s, 2H), 4.07 (qd, *J* = 6.3, 2.9 Hz, 1H, CH), 3.91 (dd, *J* = 14.5, 3.0 Hz, 1H, CH₂), 3.80 (s, 3H, OMe), 3.76 (dd, *J* = 14.5, 6.5 Hz, 1H, CH₂), 3.49 (dd, *J* = 9.5, 5.7 Hz, 1H, CH₂), 3.43 (dd, *J* = 9.6, 6.3 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 159.5 (C=O), 154.2 (C_q), 136.8 (C_q), 130.1 (C_q), 129.6 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.0 (C_{Ar}-H), 114.1 (C_{Ar}-H), 112.6 (CH), 110.2 (CH), 73.29 (CH₂), 71.07 (CH), 70.37 (CH₂), 55.44 (Me), 48.19 (CH₂), 47.50 (CH₂) ppm;

IR (Film): $\tilde{\nu}_{max} = 3350, 2927, 2862, 1665, 1509, 1454, 1362, 1240, 1175, 1087, 1032, 912, 820, 730 cm⁻¹;$

MS (EI) m/z (%) = 369.2 (18) [M]⁺, 368.2 (27) [M-H]⁺, 232.1 (54), 217.1 (19), 215.1 (14), 188.0 (23), 175.0 (27), 174.0 (37), 121.0 (75) [C₈H₉O]⁺, 91.1 (100) [C₇H₇]⁺;

HRMS (ESI⁺): berechnet für C₂₁H₂₅N₂O₄⁺ [M+H]⁺ 369.1809, gefunden 369.1809.

7-Benzyl-3,8-dihydroxytetrahydro-2H-imidazo[5,1-b][1,3]oxazin-6(7H)-on (120)

TBS-Imidazol **169a** (25.0 mg, 69.0 μ mol, 1.0 Äq.) wurde gemäß AVV 3 in DMF (0.2 mL, 0.3 M) bei 0 °C mit NBS (13.5 mg, 76.0 μ mol, 1.1 Äq.) umgesetzt. Aufarbeitung nach 16 h und säulenchromatographische Reinigung an deaktiviertem Kieselgel (*n*-Hexan/EtOAc = 1:1 \rightarrow EtOAc) lieferte das Produkt **120** als farbloses Öl (6.90 mg, 26.2 μ mol, 38%).

 $R_f = 0.41$ (EtOAc);

¹**H-NMR** (400 MHz, CDCl₃) δ = 7.39 – 7.22 (m, 5H, C_{Ar}-H), 4.71 (s, 1H, CH), 4.71 (d, *J* = 15.5 Hz, 1H, CHH), 4.63 (s, 1H, CH), 4.25 (d, *J* = 15.5 Hz, 1H, CH₂), 4.26 – 4.15 (m, 1H, CH₂), 4.03 (ddd, *J* = 10.9, 4.9, 1.9 Hz, 1H, CH₂), 3.72 – 3.61 (m, 1H, CH), 3.32 (t, *J* = 10.7 Hz, 1H, CH₂), 2.82 (dd, *J* = 13.2, 10.3 Hz, 1H, CH₂) ppm;

MS (EI) m/z (%) = 265.2 (30), 254.1 (100), [M]⁺, 106.1 (20), 102.1 (77), 101.1 (19), 91.1 (81), 58.2 (17).

Die spektroskopischen Daten stimmen mit den in der Literatur aufgeführten Werten überein.^[89]

(6-Benzyl-7-hydroxy-5-oxohexahydroimidazo[5,1-b]oxazol-2-yl)methyl benzoat (170c)

Gemäß AVV 3 wurde Imidazolon **169c** (100 mg, 0.28 mmol, 1.0 Äq.) in NMP (3.0 mL, 0.1 M) bei 0 °C mit NBS (54.8 mg, 0.31 mmol, 1.1 Äq.) versetzt und 16 h bei RT gerührt. Nach Aufarbeitung gemäß

AVV 3 wurde das Produktgemisch säulenchromatographisch an Kieselgel (*n*-Hexan/EtOAc = 7:3 \rightarrow 5:5) gereinigt und lieferte Produkt **170c** als farbloses Öl (15.5 mg, 42.0 µmol, 15%).

 $\mathbf{R}_{f} = 0.21$ (*n*-Hexan/EtOAc =3:1);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.06 - 7.98$ (m, 2H, C_{Ar}-H), 7.64 - 7.53 (m, 1H, C_{Ar}-H), 7.48-7.42 (m, 2H, C_{Ar}-H), 7.38 - 7.23 (m, 5H, C_{Ar}-H), 4.94 (s, 1H, CH), 4.93 (s, 1H, CH), 4.70 (d, J = 15.2 Hz, 1H, CH₂), 4.44 (dd, J = 11.7, 3.5 Hz, 1H, CH₂), 4.39 - 4.28 (m, 2H, CH, CH₂), 4.35 (d, J = 15.3 Hz, 1H), 4.23 (dd, J = 12.0, 6.9 Hz, 1H, CH₂), 3.13 (dd, J = 12.0, 7.0 Hz, 1H, CH₂) ppm;

MS (EI) m/z (%) = 368.1 (14) [M]⁺, 351.1 (15), 350.1(56) [M-H₂O]⁺, 263.1 (18), 246.1 (21), 245.1 (12), 233.1 (22), 206.0 (24), 204.1 (26), 203.1 (16), 165.0 (28), 106.1 (13), 105.0 (100), 91.1 (69), 77.1 (19).

Aufgrund der Instabilität des Produktes wurden keine weiteren analytischen Daten erhoben.

6-Benzyl-2-(((4-methoxybenzyl)oxy)methyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (170e)

Gemäß AVV 3 wurde Alkohol **169e** (125 mg, 0.34 mmol, 1.0 Äq.) mit NBS (63.0 mg, 0.36 mmol, 1.05 Äq.) in DMF (0.7 mL, 0.5 M) bei -50 °C umgesetzt. Nach 4 h wurde die Reaktion durch Zugabe von ges. wässr. Na₂S₂O₃-Lösung (1 mL) und EtOAc (1 mL) abgebrochen und auf RT erwärmt. Die Reaktionslösung wurde durch Zugabe von dest. H₂O (1 mL) weiter verdünnt, die Phasen getrennt und die wässr. Phase mit EtOAc extrahiert (3 x 1 mL). Die organischen Phasen wurden vereinigt, mit ges. wässr. NaCl-Lösung (1 mL) gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde bei vermindertem Druck entfernt, das Rohprodukt in CH₂Cl₂ (1.1 mL, 0.3 M) gelöst und mit PCC (0.11 g, 0.51 mmol, 1.5 Äq.) bei 40 °C für 24 h gerührt. Aufarbeitung gemäß AVV 3 und Aufreinigung des Rohprodukts an Kieselgel (*n*-Hexan/EtOAc = $3:1 \rightarrow 1:1$) lieferte die Diastereomere von **170e** als farbloses Öl (24.0 mg, 63.0 µmol, 19%, d.r. = 50:50).

 $\mathbf{R}_{\mathbf{f}} = 0.7, 0.5 (n-\text{Hexan/EtOAc} = 5:5);$

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 1*) δ = 7.37 – 7.27 (m, 5H, C_{Ar}-H), 7.25 – 7.21 (m, 2H, C_{Ar}-H), 6.89 – 6.86 (m, 2H, C_{Ar}-H), 5.20 (s, 1H, CH), 4.63 (d, *J* = 1.7 Hz, 2H, CH₂), 4.51 (d, *J* = 11.6 Hz, 1H, CH₂), 4.46 (d, *J* = 11.7 Hz, 1H, CH₂), 4.29 (tt, *J* = 7.1, 3.7 Hz, 1H, CH), 4.07 (dd, *J* = 11.5, 7.0 Hz, 1H, CH₂), 3.80 (s, 1H, OMe), 3.64 (dd, *J* = 10.6, 3.8 Hz, 1H, CH₂), 3.51 (dd, *J* = 10.7, 3.7 Hz, 1H, CH₂), 3.23 (dd, *J* = 11.5, 7.0 Hz, 1H, CH₂) ppm;

¹**H-NMR** (400 MHz, CDCl₃, *Diastereomer 2*) $\delta = 7.37 - 7.20$ (m, 5H, C_{Ar}-H), 7.17 (d, J = 8.5 Hz, 2H, C_{Ar}-H), 6.93 - 6.68 (m, 2H, C_{Ar}-H), 5.15 (s, 1H, CH), 4.47 - 4.39 (m, 1H, CH), 4.38 - 4.26 (m, 2H, CH₂), 4.18 - 4.10 (m, 2H, CH₂), 3.96 (dd, J = 11.5, 3.0 Hz, 1H, CH₂), 3.80 (s, 3H, Me), 3.42 - 3.33 (m, 2H, CH₂), 3.29 (dd, J = 10.4, 2.8 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer 1*) $\delta = 168.6$ (C=O), 160.8 (C=O), 159.4 (C_q), 135.2 (C_q), 129.7 (C_q), 129.5 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.3 (C_{Ar}-H), 113.9 (C_{Ar}-H), 87.50 (CH), 78.64 (CH), 73.31 (CH₂), 69.95 (CH₂), 55.29 (Me), 46.59 (CH₂), 42.77 (CH₂) ppm.

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer 2*) δ = 169.5 (C=O), 160.6 (C=O), 159.6 (C_q), 135.7 (C_q), 130.0 (C_{Ar}-H), 129.5 (C_q) 128.8 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.1 (C_{Ar}-H), 113.95 (C_{Ar}-H), 88.30 (CH), 79.07 (CH), 73.17 (CH₂), 70.50 (CH₂), 55.43 (Me), 47.12 (CH₂), 42.46 (CH₂) ppm;

MS (ESI⁺) m/z (%) = 405.1 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{23}N_2O_5^+$ [M+H]⁺ 383.1601, gefunden 383.1602.

1-(4-Methoxybenzyl)-1,3-dihydro-2H-imidazol-2-on (174)

Gemäß AVV 1 wurde PMB-Hydantoin **149** (3.00 g, 13.6 mmol, 1.0 Äq.) in abs. THF (150 mL, 0.1 M) mit LiAlH₄ (0.52 g, 13.6 mmol, 1.0 Äq.) bei 0 °C umgesetzt. Nach Beendigung der Zugabe von LiAlH₄ wurde auf RT erwärmt und für 3 h gerührt. Das Produkt **174** wurde als farbloser Feststoff erhalten (2.70 g, 13.2 mmol, 97%).

 $R_f = 0.17$ (EtOAc);

Schmp. 104 - 105 °C (CH₂Cl₂);

¹**H-NMR** (300 MHz, CDCl₃) δ = 10.32 (s, 1H, NH), 7.24 – 7.15 (m, 2H, C_{Ar}-H), 6.91 – 6.79 (m, 2H, C_{Ar}-H), 6.29 (t, *J* = 2.4 Hz, 1H, CH), 6.10 (dd, *J* = 2.9, 1.7 Hz, 1H, CH), 4.74 (s, 2H, CH₂), 3.79 (s, 3H, Me) ppm;

¹³**C-NMR** (75 MHz, CDCl₃) δ = 159.4 (C_q), 154.8 (C=O), 129.3 (C_{Ar}-H), 129.0 (C_q), 114.3 (C_{Ar}-H), 111.3 (CH), 108.7 (CH), 55.4 (Me), 46.4 (CH₂) ppm;

IR (Film) $\tilde{\nu}_{max} = 1668, 1610, 1512, 1450, 1244, 1175, 1031, 822, 795, 724, 669 cm⁻¹;$

MS (ESI⁺) m/z (%)= 227.1 (100) [M+Na]⁺;

HMRS (ESI⁺): berechnet für $C_{11}H_{13}N_2O_2^+$ [M+H]⁺ 205.0972, gefunden 205.0972.

1-(4-Methoxybenzyl)-3-(oxiran-2-ylmethyl)-1,3-dihydro-2H-imidazol-2-on (175)

PMB-Imidazolon **174** (1.00 g, 4.90 mmol, 1.0 Äq.) wurde in einem ausgeheizten Kolben unter Schutzgas in Epichlorhydrin (**105**, 3.5 mL, 1.4 M) gelöst, und mit NaH (0.78 g, 19.6 mmol, 4.0 Äq.) versetzt. Nachdem die exotherme Reaktion abgeklungen war wurde NH₄I (0.12 mg, 0.98 mmol, 0.2 Äq.) hinzugefügt und bei RT für 6 h gerührt. Die Reaktion wurde durch vorsichtige Zugabe von dest. H₂O (15 mL) abgebrochen. Die Reaktionsmischung wurde mit CH₂Cl₂ (15 mL) verdünnt und die Phasen getrennt. Die wässr. Phase wurde mit CH₂Cl₂ extrahiert (3 x 10 mL), die organischen Phasen vereinigt und mit dest. H₂O und ges. wässr. NaCl-Lösung (je 5 mL) gewaschen. Anschließend wurde über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Nach Reinigung mittels Säulenchromatographie an Kieselgel (CH₂Cl₂/MeOH = 99:1 \rightarrow 90:10) wurde das Produkt als farbloses Öl erhalten (865.0 mg, 3.32 mmol, 68%).

 $R_f = 0.22$ (EtOAc);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 7.23 - 7.17$ (m, 2H, C_{Ar}-H), 6.92 - 6.84 (m, 2H, C_{Ar}-H), 6.29 (d, J = 3.0 Hz, 1H, CH), 6.09 (d, J = 3.0 Hz, 1H, CH), 4.72 (s, 2H, CH₂), 4.11 (dd, J = 14.9, 2.9 Hz, 1H, CH₂), 3.79 (s, 3H, OMe), 3.56 (dd, J = 14.8, 6.0 Hz, 1H, CH₂), 3.20 (ddt, J = 5.9, 4.0, 2.7 Hz, 1H, CH), 2.82 (dd, J = 4.7, 4.0 Hz, 1H, CH₂), 2.56 (dd, J = 4.7, 2.6 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 159.4 (C_q), 129.5 (C_{Ar}-H), 129.1 (C_q), 114.3 (C_{Ar}-H), 111.2 (CH), 110.3 (CH), 55.44 (Me), 50.73 (CH₂), 46.92 (CH₂), 45.06 (CH), 45.03 (CH₂) ppm.

IR (Film): $\tilde{\nu}_{max} = 1672, 1612, 1513, 1459, 1421, 1355, 1301, 1243, 1177, 1111, 1031, 850, 824, 777, 665 cm⁻¹.$

MS (ESI⁺) m/z (%) = 283.1 (100) [M+Na]⁺.

HRMS (ESI⁺): berechnet für $C_{14}H_{17}N_2O_3^+$ [M+H]⁺ 261.1234, gefunden 261.1234.

1-(2-Hydroxy-3-((4-methoxybenzyl)oxy)propyl)-3-(4-methoxybenzyl)-1,3-dihydro-2H-imidazol-2-on (176)

In Anlehnung an AVV 2 wurde 4-Methoxybenzylalkohol (464.5 mg, 3.36 mmol, 2.5 Äq.) in abs. THF (2.7 mL, 0.5 M) gelöst, und bei 0 °C mit NaH (150 mg, 3.75 mmol, 2.8 Äq.) versetzt. Anschließend wurde über einen Zeitraum von 1 h gerührt und die Reaktion dabei langsam auf RT erwärmt. Es wurde erneut auf 0 °C abgekühlt und eine Lösung von Epoxid **175** (350.0 mg, 1.34 mmol, 1.0 Äq.) in abs. THF (1.0 mL) zu der Reaktionslösung gegeben. Es wurde bei 50 °C für 16 h gerührt, dann auf RT abgekühlt und die Reaktion durch Zugabe von dest. H₂O (5 mL) abgebrochen. Die Reaktionslösung wurde mit verd. HCl-Lösung (0.1 M) auf einen neutralen pH-Wert eingestellt und die wässr. Phase mit EtOAc extrahiert (3 x 5 mL). Die organischen Phasen wurden vereinigt und über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels *in vacuo* wurde der Rückstand säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 5:5) und das Produkt als gelbliches Öl erhalten (195.2 mg, 0.49 mmol, 37%).

 $\mathbf{R_{f}} = 0.14$ (*n*-Hexan/EtOAc = 3:7);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 7.25 - 7.21$ (m, 2H, C_{Ar}-H), 7.20 - 7.16 (m, 2H, C_{Ar}-H), 6.87 (d, J = 2.2 Hz, 2H, C_{Ar}-H), 6.85 (t, J = 2.3 Hz, 2H, C_{Ar}-H), 6.19 (d, J = 2.9 Hz, 1H, CH), 6.06 (d, J = 2.9 Hz, 1H, CH), 4.70 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 4.05 (tdd, J = 6.4, 5.6, 3.1 Hz, 1H, CH), 3.87 (dd, J = 14.4, 3.1 Hz, 1H, CH₂), 3.79 (s, 3H, Me), 3.78 (s, 3H, OMe), 3.72 (dd, J = 14.5, 6.5 Hz, 1H, CH₂), 3.44 (qd, J = 9.5, 5.9 Hz, 2H, CH₂) ppm;

¹³**C-NMR** (75 MHz, CDCl₃) δ = 159.5 (C_q), 159.4 (C_q), 154.2 (C=O), 130.1 (C_q), 129.6 (C_{Ar}-H), 129.5 (C_{Ar}-H), 128.9 (C_q), 114.3 (C_{Ar}-H), 114.0 (C_{Ar}-H), 112.5 (CH), 110.0 (CH), 73.27 (CH₂), 71.07 (CH₂), 70.37 (CH), 55.42 (Me), 48.17 (CH₂), 46.98 (CH₂) ppm;

IR (Film) $\tilde{\nu}_{max} = 1667, 1612, 1513, 1463, 1360, 1302, 1245, 1175, 1103, 1032, 819, 760, 673 cm⁻¹;$ **MS**(ESI⁺) m/z (%) = 421.1 (100) [M+Na]⁺, 399.2 (38) [M+H]⁺;

HRMS (ESI⁺): berechnet für C₂₂H₂₇N₂O₅⁺ [M+H]⁺ 399.1914, gefunden 399.1915.

6-(4-Methoxybenzyl)-2-(((4-methoxybenzyl)oxy)methyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)dion (178)

In Anlehnung an AVV 3 wurde Imidazolon **176** (0.38 g, 0.88 mmol, 1.0 Äq.) in DMF (9.0 mL, 0.1 M) bei –40 °C mit NBS (172 mg, 0.97 mmol, 1.1 Äq.) versetzt und für 6 h bei -30 °C gerührt. Anschließend wurde auf 0 °C erwärmt und die Reaktion durch Zugabe von ges. wässr. Na₂S₂O₃-Lösung (5 mL) abgebrochen. Nach Extraktion der wässr. Phase mit EtOAc (3 x 5 mL) und Waschen der organischen Phasen mit dest. H₂O und ges. wässr. NaCl-Lösung (je 5 mL) wurde über Na₂SO₄ getrocknet und das Lösungsmittel bei vermindertem Druck entfernt. Das Rohprodukt wurde als gelbes Öl erhalten, welches im nächsten Schritt in CH₂Cl₂ (5.0 mL, 2.0 M) gelöst und mit PCC (284 mg, 1.32 mmol, 1.5 Äq.) versetzt wurde. Die Reaktionsmischung wurde bei RT für 16 h gerührt, und zur Aufarbeitung zunächst mit etwas SiO₂ versetzt, nach kurzem Rühren eingeengt und durch Filtration über ein Silica-Pad von den Chromschlacken befreit. Es wurde mit (*n*-Hexan/EtOAc = 5:5) nachgespült, das Lösungsmittelgemisch am Rotationsverdampfer entfernt und der Rückstand säulenchromatographisch an Kieselgel getrennt (*n*-Hexan/EtOAc = 8:2). Das Produkt **178** wurde als farbloses Öl isoliert (51.4 mg, 0.12 mmol, 14%, d.r. = 50:50).

 $\mathbf{R}_{\mathbf{f}} = 0.30, 0.24 (n-\text{Hexan/EtOAc} = 2:1);$

¹**H-NMR** (300 MHz, CDCl₃, *Diastereomer 1*) $\delta = 7.33 - 7.28$ (m, 2H, C_{Ar}-H), 7.25 - 7.19 (m, 2H, C_{Ar}-H), 6.91 - 6.85 (m, 2H, C_{Ar}-H), 6.85 - 6.79 (m, 2H, C_{Ar}-H), 5.18 (s, 1H, CH), 4.56 (s, 2H, CH₂), 4.57 - 4.40 (m, 2H, CH₂), 4.28 (tt, *J* = 7.1, 3.7 Hz, 1H, CH), 4.06 (dd, *J* = 11.5, 7.0 Hz, 1H, CH₂), 3.80 (s, 3H, Me), 3.78 (s, 3H, Me), 3.64 (dd, *J* = 10.6, 3.8 Hz, 1H, CH₂), 3.50 (dd, *J* = 10.6, 3.7 Hz, 1H, CH₂), 3.22 (dd, *J* = 11.5, 7.0 Hz, 1H, CH₂) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 2*) $\delta = 7.32 - 7.27$ (m, 2H, C_{Ar}-H), 7.19 - 7.12 (m, 2H, C_{Ar}-H), 6.90 - 6.85 (m, 2H, C_{Ar}-H), 6.81 - 6.76 (m, 2H, C_{Ar}-H), 5.13 (s, 1H, CH), 4.41 (dq, *J* = 7.6, 3.1 Hz, 1H, CH), 4.36 (d, *J* = 14.5 Hz, 1H, CH₂), 4.28 (d, *J* = 14.5 Hz, 1H, CH₂), 4.20 - 4.09 (m, 2H, CH₂), 3.96 (dd, *J* = 11.6, 3.1 Hz, 1H, CH₂), 3.80 (s, 3H, Me), 3.72 (s, 3H, Me), 3.38 (dd, *J* = 10.4, 3.5 Hz, 1H, CH₂), 3.36 (dd, *J* = 11.6, 7.4 Hz, 1H, CH₂), 3.28 (dd, *J* = 10.4, 2.9 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, $CDCl_3$, *Diastereomer 1*) $\delta = 168.7$ (C=O), 161.0 (C=O), 159.6 (C_q), 159.5 (C_q), 130.3 (C_{Ar}-H), 129.7 (C_q), 129.5 (C_{Ar}-H), 127.7 (C_q), 114.2 (C_{Ar}-H), 114.1 (C_{Ar}-H), 87.64 (CH), 78.75 (CH), 73.44 (CH₂), 70.09 (CH₂), 55.43 (Me), 55.41 (Me), 46.74 (CH₂), 42.42 (CH₂) ppm;

¹³**C-NMR** (126 MHz, CDCl₃, *Diastereomer* 2) δ = 169.6 (C=O), 160.7 (C=O), 159.5 (C_q), 159.4 (C_q), 130.4 (C_{Ar}-H), 129.9 (C_q), 129.6 (C_{Ar}-H), 129.5 (C_q), 114.1 (C_{Ar}-H), 113.9 (C_{Ar}-H), 88.28 (CH), 79.06 (CH), 73.12 (CH₂), 70.47 (CH₂), 55.43 (Me), 55.37 (Me), 47.10 (CH₂), 41.68 (CH₂) ppm;

MS (ESI⁺) m/z (%) = 451.2 (42) [M+K]⁺, 435.2 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{22}H_{25}N_2O_6^+$ [M+H]⁺ 413.1707, gefunden 413.1707.

2-(Hydroxymethyl)-6-(4-methoxybenzyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (179)

In einem ofengetrockneten Reaktionsgefäß wurde PMB-Ether **178** (11.2 mg, 27.0 µmol, 1.0 Äq., d.r. = 50:50) in CH₂Cl₂ (0.3 mL, 0.1 M) gelöst, und mit DDQ (6.8 mg, 30 µmol, 1.1 Äq.) bei RT gerührt. Nach 16 h wurde erneut DDQ (6.8 mg, 30 µmol, 1.1 Äq) zugegeben und für weitere 9 h gerührt. Die Reaktionsmischung wurde mit ges. wässr. NaHCO₃-Lösung (2 mL) und CH₂Cl₂ (2 mL) versetzt, die Phasen getrennt und die wässr. Phase mit EtOAc (3 x 1 mL) extrahiert. Die organischen Phasen wurden vereinigt und über Na₂SO₄ getrocknet. Nach Entfernen des Lösungsmittels bei vermindertem Druck wurde das Produkt mittels Säulenchromatographie an Kieselgel (*n*-Hexan/EtOAc = 9:1 \rightarrow 5:5) gereinigt. Das Produkt **179** wurde als farbloses Öl erhalten (5.8 mg, 20.0 µmol, 74% d.r. = 50:50).

 $\mathbf{R}_{\mathbf{f}} = 0.23, 0.21 (n-\text{Hexan/EtOAc} = 5:5);$

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 1*) δ = 7.35 – 7.32 (m, 2H, C_{Ar}-H), 6.87 – 6.80 (m, 2H, C_{Ar}-H), 5.13 (s, 1H, CH), 4.57 (d, *J* = 1.4 Hz, 2H, CH₂), 4.40 (dp, *J* = 7.4, 4.0, 3.5 Hz, 1H, CH), 3.93 (dd, *J* = 11.5, 4.2 Hz, 1H, CH₂), 3.78 (s, 3H, Me), 3.67 (dd, *J* = 12.1, 2.9 Hz, 1H, CH₂), 3.46 (dd, *J* = 12.1, 3.5 Hz, 1H, CH₂), 3.40 (dd, *J* = 11.5, 7.6 Hz, 1H, CH₂) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Diastereomer 2*) δ = 7.31 (d, *J* = 8.5 Hz, 2H, C_{Ar}-H), 6.87 – 6.80 (m, 2H, C_{Ar}-H), 5.17 (s, 1H, CH), 4.58 (d, *J* = 2.4 Hz, 2H, CH₂), 4.17 (tt, *J* = 7.1, 3.5 Hz, 1H, CH), 4.10 (dd, *J* = 11.6, 6.6 Hz, 1H, CH₂), 3.86 (dd, *J* = 12.4, 3.1 Hz, 1H, CH₂), 3.78 (s, 3H, Me), 3.64 – 3.60 (m, 1H, CH₂), 3.23 (dd, *J* = 11.7, 7.9 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer 1*) δ = 168.8 (C=O), 161.0 (C=O), 159.6 (C_q), 130.3 (C_{Ar}-H), 127.5 (C_q), 114.3 (C_{Ar}-H), 87.41 (CH), 79.76 (CH), 62.32 (CH₂), 55.41 (Me), 46.05 (CH₂), 42.52 (CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Diastereomer 2*) δ = 168.9 (C=O), 160.9 (C=O), 159.6 (Cq), 130.5 (C_{Ar}-H), 127.5 (C_q), 114.1 (C_{Ar}-H), 88.08 (CH), 80.56 (CH), 63.32 (CH₂), 55.40 (Me), 46.32 (CH₂), 42.50 (CH₂) ppm;

MS (ESI⁺) m/z (%) = 315.1 (100) [M+Na]⁺;

HRMS (ESI⁺): berechnet für C₁₄H₁₇N₂O₅⁺ [M+H]⁺ 293.1132, gefunden 293.1133.

2.3.2 Darstellung von 167 über eine Selenzyklisierung

1-Allyl-3-benzylurea (187)

Benzylisocyanat (0.64 mL, 690 mg, 5.20 mmol, 1.0 Äq.) wurde bei 0 °C langsam zu einer Lösung von Allylamin (300 mg, 5.20 mmol, 1.0 Äq.) in abs. CH_2Cl_2 (15.0 mL, 0.3 M) gegeben. Die Reaktionsmischung wurde auf RT erwärmt und für 4 h gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Produkt als weißer Feststoff erhalten (975.0 mg, 5.1 mmol, 99%).

Schmp. 80 -83 °C (CH₂Cl₂);

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.39 – 7.28 (m, 5H, C_{Ar}-H), 5.84 (ddt, *J* = 17.2, 10.3, 5.4 Hz, 1H, CH), 5.30 (s, 2H, CH₂), 5.22 – 5.01 (m, 2H, CH₂), 4.37 (s, 2H, NH), 3.80 (dt, *J* = 5.5, 1.6 Hz, 2H, CH₂) ppm.

¹³**C-NMR** (101 MHz, CDCl₃) δ = 158.2 (C=O) 139.0 (C_q), 135.2 (CH), 128.8 (C_{Ar}-H), 127.6 (C_{Ar}-H), 127.6 (C_{Ar}-H), 116.1 (CH₂), 44.79 (CH₂), 43.31 (CH₂) ppm;

MS (ESI⁺) m/z (%) = 190.9 (70) [M+H]⁺, 213.1 (45) [M+Na]⁺;

Die spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[170]

1-Allyl-3-benzylimidazolidine-2,4,5-trion (188)

Harnstoff **187** (0.60 g, 3.16 mmol, 1.0 Äq.) wurde in trockenem MeCN (6.3 mL, 0.5 M) gelöst. Bei 0 °C wurde Oxalylchlorid (0.27 mL, 3.16 mmol, 1.0 Äq.) hinzugetropft und anschließend bei 85 °C für 5 h unter Rückfluss erhitzt. Die Reaktionslösung wurde abgekühlt und für weitere 16 h bei RT gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der Rückstand in CH₂Cl₂ (5 mL) aufgenommen, mit ges. wässr. NaHCO₃-Lösung, dest. H₂O und ges. wässr. NaCl-Lösung gewaschen (je 4 mL), und die organische Phase über MgSO₄ getrocknet. Das Produkt wurde nach Verdampfen des Lösungsmittels als gelblicher Feststoff isoliert (704.0 mg, 2.88 mmol, 91%).

 $\mathbf{R}_{\mathbf{f}} = 0.65 (n-\text{Hexan/EtOAc} = 6:4);$

Schmp. 98 °C (CH₂Cl₂);

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.44 – 7.30 (m, 5H, C_{Ar}-H), 5.82 (ddt, *J* = 17.1, 10.1, 6.1 Hz, 1H, CH), 5.44 – 5.15 (m, 2H, CH₂), 4.79 (s, 2H, CH₂), 4.23 (dt, *J* = 6.1, 1.4 Hz, 2H, CH₂) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1722, 1442, 1402, 1353, 931, 763, 698 \text{ cm}^{-1}$;

MS (EI) m/z (%) = 244 (100) [M]⁺, 187 (16), 133 (46), 132 (25), 104 (16), 91 (92).

1-Allyl-3-benzyl-5-hydroxyimidazolidine-2,4-dion (184)

Allylparabansäure **188** (500 mg, 2.05 mmol, 1.0 Äq.) wurde in dest. MeOH (20 mL, 0.1 M) gelöst und auf 0 °C abgekühlt. Zu der Lösung wurde portionsweise NaBH₄ (19.36 mg, 0.51 mmol, 0.25 Äq.) gegeben und für 5 h bei 0 °C gerührt. Das Lösungsmittel wurde bei vermindertem Druck entfernt und der Rückstand säulenchromatographisch an Kieselgel gereinigt (259.1 mg, 1.05 mmol, 51%; r.r. = 51:49).

 $\mathbf{R_{f}} = 0.27 (n-\text{Hexan/EtOAc} = 7:3);$

¹**H-NMR** (300 MHz, CDCl₃, r.r = 51:49) δ = 7.41 – 7.27 (m, 10H, C_{Ar}-H), 5.89 – 5.68 (m, 2H, 2x CH), 5.28 – 5.16 (m, 4H, 2x CH₂), 5.14 (s, 1H, CH), 5.00 (s, 1H, CH), 4.93 (d, *J* = 15.0 Hz, 1H, CH₂), 4.70 – 4.50 (m, 2H, CH₂), 4.28 (d, *J* = 14.9 Hz, 1H, CH₂), 4.32 – 4.17 (m, 1H, CH₂), 4.15 – 4.05 (m, 2H, CH₂), 3.82 (ddt, *J* = 15.5, 7.5, 1.1 Hz, 1H, CH₂) ppm;

¹³C-NMR (75 MHz, CDCl₃, r.r = 51:49) δ = 171.8 (C=O), 171.8 (C=O), 154.9 (2x C=O), 135.6 (C_q), 135.5 (C_q), 131.7 (CH), 130.8 (CH), 129.0 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.6 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 119.2 (CH₂), 118.5 (CH₂), 77.72 (CH), 77.30 (CH), 43.74 (CH₂), 42.68 (CH₂), 42.58 (CH₂), 41.08 (CH₂) ppm;

MS (EI) m/z (%) = 246 (60) [M]⁺, 228 (28) [M-H₂O]⁺, 132 (27), 106 (72), 91 (100);

HRMS (ESI⁺): berechnet für $C_{13}H_{15}N_2O_3^+$ [M+H]⁺ 247.1077, gefunden 247.0178.

6-Benzyl-2-(phenylselanylmethyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (183b)

Hydroxyhydantoin **184** (50.0 mg, 0.20 mmol, r.r. = 51:49) wurde in Toluol (1.0 mL, 0.25 M) gelöst und das Gemisch auf -60 °C gekühlt. Zu dem Gemisch wurde PhSeCl (38.9 mg, 0.20 mmol, 1.0 Äq.) gelöst in Toluol (0.2 mL) langsam zugetropft und nach Beendigung der Zugabe für 2 h bei -60 °C gerührt. Die Reaktionslösung wurde auf RT erwärmt, das Lösungsmittel bei vermindertem Druck entfernt und der Rückstand in einem Reaktionsgefäß aus Braunglas in CH₂Cl₂ (1.0 mL, 0.25 M) gelöst. Zu der Mischung wurde AgBF₄·xH₂O (40 mg, 20.5 mmol, 1.01 Äq.) gegeben und bei RT gerührt. Nach 24 h wurde die Reaktionslösung über Celite filtriert, das Celite-Pad mit etwas EtOAc nachgewaschen und das Filtrat am Rotationsverdampfer eingeengt. Das Rohprodukt wurde säulenchromatographisch an Kieselgel gereinigt und lieferte das Produkt **183b** als farbloses Öl (26.0 mg, 65.0 µmol, 33%, (64% bezogen auf den Stoffmengenanteil an **184** im Gemisch) d.r. = 50:50).

 $\mathbf{R_f} = 0.60, 0.46 \text{ (n-Hexan/EtOAc} = 7:3)$

¹**H-NMR** (500 MHz, CDCl₃, *trans*-**183b**) δ = 7.59 – 7.48 (m, 2H, C_{Ar}-H), 7.38 – 7.27 (m, 8H, CAr-H), 5.20 (s, 1H, CH), 4.62 (s, 2H, CH₂), 4.22 (dd, *J* = 8.4, 5.0 Hz, 1H, CH), 3.20 (m, 2H, 2x CH₂), 3.03 – 2.91 (m, 2H, 2x CH₂) ppm;
Proton	¹ H-NMR (δ , m, J)	NOESY
2	4.26 – 4.20 (m, 1H)	3b, 1"a, 1"b
3a	4.26 – 4.20 (m, 1H)	1"a, 1"b
3b	3.03 – 2.93 (m, 1H)	2, 3a, 1"a
8	5.20 (s, 1H)	3b
1"a	3.20 (dd, <i>J</i> = 12.9, 3.9 Hz, 1H)	2, 1"b, 3b, 3a
1''b	3.03 – 2.93 (m, 1H)	1"a, 2

Tabelle 24. Wichtige NOESY Wechselwirkungen in Isomer trans-183b.

¹**H-NMR** (400 MHz, CDCl₃, *cis*-**183b**) $\delta = 7.48 - 7.43$ (m, 2H, C_{Ar}-H), 7.41 - 7.35 (m, 2H, C_{Ar}-H), 7.34 - 7.26 (m, 6H, C_{Ar}-H), 5.08 (s, 1H, CH), 4.72 - 4.57 (m, 2H, CH₂), 4.50 (tt, *J* = 7.4, 4.8 Hz, 1H, CH), 3.77 (dd, *J* = 11.4, 5.3 Hz, 1H, CH₂), 3.43 (dd, *J* = 11.5, 7.1 Hz, 1H, CH₂), 3.00 (dd, *J* = 13.0, 4.5 Hz, 1H, CH₂), 2.80 (dd, *J* = 13.0, 7.7 Hz, 1H, CH₂) ppm;

Tabelle 25. Wichtige NOESY Wechselwirkungen in Isomer cis-183b.

Proton	¹ H-NMR (δ , m, J)	NOESY
2	4.50 (tt, <i>J</i> = 7.4, 4.8 Hz, 1H)	3a, 3b, 1"a, 1"b
3a	3.77 (dd, <i>J</i> = 11.4, 5.3 Hz, 1H)	3b, 2
3b	3.43 (dd, <i>J</i> = 11.5, 7.1 Hz, 1H)	3a, 2, 8
8	5.08 (s, 1H)	2, 3b
1"a	3.00 (dd, <i>J</i> = 13.0, 4.5 Hz)	1"b, 2
1"b	2.80 (dd, <i>J</i> = 13.0, 7.7 Hz	1"a, 2

¹³**C-NMR** (101 MHz, CDCl₃ *trans*-**183b**) δ = 168.9 (C=O), 160.7 (C=O), 135.3 (C_q), 133.5 (C_{Ar}-H), 129.6 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.3 (C_{Ar}-H), 128.0 (C_{Ar}-H), 87.23 (CH), 78.95 (CH), 50.48 (CH₂), 42.98 (CH₂), 29.91 (CH₂) ppm.

¹³C-NMR (101 MHz, CDCl₃, *cis*-183b) δ = 168.2 (C=O), 160.8 (C=O), 135.3 (Cq), 133.5 (C_{Ar}-H), 129.5 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.3 (C_{Ar}-H), 127.8 (C_{Ar}-H), 100.13 (Cq), 87.80 (CH), 80.31 (CH), 49.53 (CH₂), 43.04 (CH₂), 31.11 (CH₂) ppm;

MS (ESI⁺) m/z (%) = 441.2 (100) [M+K]⁺;

HRMS (ESI⁺): berechnet für $C_{19}H_{19}N_2O_3Se^+$ [M+H⁺] 403.0555, gefunden 403.0556.

7-Benzyl-3-(phenylselanyl)dihydro-2H-imidazo[5,1-b][1,3]oxazine-6,8(7H,8aH)-dion (191)

Hydroxyhydantoin **184** (250 mg, 1.01 mmol, 1.0 Äq.) wurde in Toluol (4.0 mL, 0.25 M) in einem Reaktionsgefäß aus Braunglas gelöst und auf -60 °C gekühlt. Zu der Lösung wurde in der Kälte PhSeCl (194 mg, 1.01 mmol, 1.0 Äq.) gelöst in Toluol (0.20 mL) getropft, und 2 h bei -60 °C gerührt. Das Reaktionsgemisch wurde auf RT erwärmt und das Lösungsmittel bei vermindertem Druck entfernt. Der Rückstand wurde in CH₂Cl₂ (4.0 mL, 0.25 M) gelöst und mit AgBF_{4(s)} (195 mg, 1.01 mmol, 1.0 Äq.) unter Lichtausschluss für 16 h gerührt. Das Gemisch wurde über Celite filtriert, mit CH₂Cl₂ nachgewaschen und das Filtrat am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Aufreinigung an Kieselgel (*n*-Hexan/EtOAc = 8:2) wurde **191** als gelber, wachsartiger Feststoff erhalten (80.5 mg, 0.20 mmol, 20%).

 $R_{f} = 0.62 (n-Hexan/EtOAc = 2:1);$

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 7.60 - 7.54$ (m, 2H, C_{Ar}-H), 7.39 - 7.27 (m, 8H, C_{Ar}-H), 4.90 (s, 1H, CH), 4.64 (d, J = 3.0 Hz, 2H, CH₂), 4.48 (ddd, J = 13.4, 5.1, 1.6 Hz, 1H, CH₂), 4.30 (ddd, J = 11.7, 4.3, 1.7 Hz, 1H, CH₂), 3.64 (t, J = 11.7 Hz, 1H, CH₂), 3.23 (tt, J = 11.8, 4.8 Hz, 1H, CH), 3.06 (dd, J = 13.3, 12.1 Hz, 1H, CH₂) ppm;

 Tabelle 26. Wichtige NOESY Wechselwirkungen in 191.

¹ H-NMR (δ , m, J)	NOESY
4.30 (ddd, <i>J</i> = 11.7, 4.3, 1.9 Hz, 1H)	2b
3.64 (t, $J = 11.7$ Hz, 1H)	2a, 3, 9
3.23 (tdd, <i>J</i> = 11.8, 5.2, 4.4 Hz, 1H)	2b, 4b
4.48 (ddd, <i>J</i> = 13.4, 5.1, 1.8 Hz, 1H)	4b, 9
3.06 (dd, <i>J</i> = 13.5, 11.9 Hz, 1H)	3, 4a,
4.90 (s, 1H)	2b, 4a
	¹ H-NMR (δ , m, J) 4.30 (ddd, J = 11.7, 4.3, 1.9 Hz, 1H) 3.64 (t, J = 11.7 Hz, 1H) 3.23 (tdd, J = 11.8, 5.2, 4.4 Hz, 1H) 4.48 (ddd, J = 13.4, 5.1, 1.8 Hz, 1H) 3.06 (dd, J = 13.5, 11.9 Hz, 1H) 4.90 (s, 1H)

¹³**C-NMR** (101 MHz, CDCl₃) δ = 167.2 (C=O), 154.7 (C=O), 136.0 (C_{Ar}-H), 135.6 (C_q), 129.6 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.2 (C_{Ar}-H), 125.2 (C_q), 80.21 (CH), 71.15 (CH₂), 43.37 (CH₂), 42.66 (CH₂), 34.98 (CH) ppm;

MS (ESI⁺) m/z (%) = 441.0 (30) [M+K]⁺, 425.0 (80) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{19}H_{19}N_2O_3Se^+$ [M+H]⁺ 403.0555, gefunden 403.0556.

6-Benzyl-2-((phenylseleninyl)methyl)dihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dione (167b)

Selenylverbindung **183b** (16.8 mg, 42.0 μ mol, 1.0 Äq.) wurde in CH₂Cl₂ (0.5 mL, 0.08 M) gelöst und bei 0 °C mit wässr. H₂O₂-Lösung (35% ig, 15.1 μ L, 1.71 mg, 50.0 μ mol, 1.2 Äq.) versetzt. Die Reaktion wurde auf RT erwärmt und für 20 h gerührt. Durch Zugabe von ges. wässr. NaHCO₃-Lösung und ges. wässr. Na₂S₂O₃-Lösung (je 0.5 mL) wurde die Reaktion abgebrochen. Die Phasen wurden getrennt und die wässr. Phase mit CH₂Cl₂ (3 x 1 mL) extrahiert. Die organischen Phasen wurden vereinigt, über Na₂SO₄ getrocknet und das Lösungsmittel bei vermindertem Druck entfernt. Das Rohprodukt **192** wurde als gelbliches Öl erhalten, und ohne Aufreinigung im zweiten Schritt umgesetzt.

192 wurde in Toluol (0.4 mL, 0.1 M) gelöst, HNEt₂ (11.8 μ L, 8.50 mg, 84.0 μ mol, 2.0 Äq.) hinzugefügt und bei 50 °C für 3 d gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der Rückstand säulenchromatographisch an Kieselgel (*n*-Hexan/EtOAc = 8:2) gereinigt. Das Produkt **167b** wurde als farbloses Öl erhalten (1.0 mg, 4.2 μ mol, 10%).

 $\mathbf{R}_{\mathbf{f}} = 0.37 (n-\text{Hexan/EtOAc} = 8:2);$

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.43 – 7.31 (m, 5H, C_{Ar}-H), 5.38 (s, 1H, C-H), 4.69 (s, 2H, CH₂), 4.57 (dt, *J* = 15.5, 1.5 Hz, 1H, CH₂), 4.58 – 4.55 (m, 1H, CH₂), 4.14 (dq, *J* = 3.1, 1.4 Hz, 1H, CH₂), 3.91 (dt, *J* = 15.5, 2.0 Hz, 1H, CH₂) ppm.

Aufgrund der geringen Menge an **167b** wurde keine weitere Analytik durchgeführt, sie ist aber in einem späteren Abschnitt aufgeführt (s. Abschnitt 6.1.3)

2.4 Synthesepfad C: Darstellung von 167 über Zykloisomerisierungsreaktionen

1-Benzyl-3-(prop-2-yn-1-yl)urea (196)

In Anlehnung an einer Literaturvorschrift von Urbanaitė *et al.* ^[171] wurde Propargylamin (0.41 g, 7.51 mmol, 1.0 Äq.) bei RT langsam zu einer Lösung von Benzylisocyanat (1.00 g, 7.51 mmol, 1.0 Äq.) in CH_2Cl_2 (16 mL, 0.5 M) getropft und für 3 h bei RT gerührt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Produkt als leicht gelblicher Feststoff erhalten (1.41 g, 7.51 mmol, >99%).

Schmp. 110 – 114 °C (CH₂Cl₂);

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.36 – 7.26 (m, 5H, C_{Ar}-H), 4.88 (s, 1H, NH), 4.68 (s, 1H, NH), 4.37 (d, *J* = 5.8 Hz, 2H, CH₂), 3.98 (dd, *J* = 5.5, 2.5 Hz, 2H, CH₂), 2.20 (t, *J* = 2.5 Hz, 1H, C-H) ppm.

Die gefundenen spektroskopischen Daten stimmen mit den in der Literatur angegebenen Werten überein.^[171]

1-Benzyl-3-(prop-2-yn-1-yl)imidazolidine-2,4,5-trion (197)

Harnstoff **196** (1.00 g, 5.31 mmol, 1.0 Äq.) wurde in trockenem MeCN (10.0 mL, 0.5 M) gelöst und bei 0 °C Oxalylchlorid (0.46 mL, 5.31 mmol, 1.0 Äq.) hinzugefügt. Anschließend wurde bei 85 °C für 16 h refluxiert. Anschließend wurde die Reaktionslösung abgekühlt und am Rotationsverdampfer eingeengt. Der Rückstand wurde in CH₂Cl₂ (25 mL) aufgenommen, mit ges. wässr. NaHCO₃-Lösung, dest. H₂O und ges. wässr. NaCl-Lösung (jeweils 5 mL) gewaschen, und die organische Phase über MgSO₄ getrocknet. Das Produkt wurde nach Verdampfen des Lösungsmittels als farbloser Feststoff isoliert (1.28 g, 5.30 mmol, 99%).

 $R_{f} = 0.55 (n-Hexan/EtOAc = 7:3);$

Schmp. 130 -133 °C (CH₂Cl₂);

¹**H-NMR** (500 MHz, CDCl₃) δ = 7.57 – 7.30 (m, 5H, C_{Ar}-H), 4.81 (s, 2H, CH₂), 4.40 (d, *J* = 2.6 Hz, 2H, CH₂), 2.30 (t, *J* = 2.6 Hz, 1H, CH) ppm;

¹³**C-NMR** (126 MHz, CDCl₃) δ = 156.0 (C=O), 155.5 (C=O), 152.5 (C=O), 134.3 (C_q), 129.2 (C_{Ar}-H), 129.2 (C_{Ar}-H), 128.9 (C_{Ar}-H), 75.29 (C_q), 73.35 (CH), 43.25 (CH₂), 28.46 (CH₂) ppm;

IR (Film): $\tilde{\nu}_{max} = 3283$, 1724, 1443, 1402, 1354, 1341, 1147, 766, 695 cm⁻¹;

MS (**EI**) m/z (%) = 242 (46) [M]⁺, 216 (11), 203 (13), 185 (11), 133 (36), 104 (15), 91 (100).

3-Benzyl-5-hydroxy-1-(prop-2-ynyl)imidazolidine-2,4-dion (193)

Parabansäurederivat **197** (1.00 g, 4.10 mmol, 1.0 Äq.) wurde in MeOH (20.0 mL, 0.21 M) bei hoher Drehzahl gerührt, bis der Feststoff weitestgehend gelöst war. Bei 0 °C wurde portionsweise NaBH₄ (39.0 mg, 1.03 mmol, 0.25 Äq.) hinzugegeben, und nach Beendigung der Zugabe langsam auf RT erwärmt. Nach 4 h wurde das Lösungsmittel bei vermindertem Druck entfernt und das Rohprodukt säulenchromatographisch an Kieselgel (*n*-Hexan/EtOAc = 8:2) aufgereinigt. Das Produkt wurde als farbloses Öl erhalten (516 mg, 2.11 mmol, 51%, r.r. = 66:34).

 $R_{f} = 0.29 (n-Hexan/EtOAc = 2:1)$

¹**H-NMR** (500 MHz, CDCl₃, **193**) δ = 7.41 – 7.27 (m, 5H), 5.36 (s, 1H, CH), 4.71 – 4.59 (m, 2H, CH₂), 4.53 (dd, *J* = 17.8, 2.6 Hz, 1H, CH₂), 3.95 (dd, *J* = 17.8, 2.5 Hz, 1H, CH₂), 2.30 (t, *J* = 2.5 Hz, 1H, CCH) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Regioisomer*) δ = 7.40 – 7.28 (m, 5H), 5.02 (s, 1H, CH), 4.94 (d, *J* = 14.9 Hz, 1H, CH₂), 4.32 – 4.26 (m, 3H, CH₂, CH₂), 2.24 (t, *J* = 2.5 Hz, 1H, CH) ppm;

MS (EI) m/z (%) = 244 (45) [M]⁺, 226 (19) [M-H₂O]⁺, 216 (13), 132 (21), 106 (43), 91 (100);

HRMS (ESI⁺): berechnet für C₁₃H₁₃N₂O₃⁺ [M+H]⁺ 245.0921, gefunden 245.0921.

Synthese des Pyridinophosphorgoldkomplexes 200

Entsprechend der Vorschrift nach Tinnermann *et al.*^[141] wurde Ligand **202** (46.3 mg, 90.0 μ mol, 1.0 Äq.) mit Au(tht)Cl (**201**, 28.9 mg, 90.0 μ mol, 1.0 Äq.) in trockenem CH₂Cl₂ (2.0 mL, 50.0 mM) unter Lichtausschluss bei RT gerührt. Nach 3 h wurde das Lösungsmittel entfernt und Goldkomplex **200** als gelblicher Feststoff erhalten (67 mg, 90 mmol, 99%).

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.90$ (s, 1H, C_{Ar}-H), 8.41 (t, J = 7.7 Hz, 1H, C_{Ar}-H), 8.17 (d, J = 6.9 Hz, 1H, C_{Ar}-H), 7.77 – 7.59 (m, 10H, C_{Ar}-H), 7.40 (t, J = 7.3 Hz, 1H, C_{Ar}-H), 4.44 (s, 3H, Me) ppm;

³¹**P-NMR** (122 MHz, CDCl₃) δ = 28.75 ppm.

Die erhaltenen spektroskopischen Daten stimmen mit den Angaben der Literatur überein.^[141]

6-Benzyl-2-methylendihydroimidazo[5,1-b]oxazole-5,7(6H,7aH)-dion (167b)

Alkin **193** (200 mg, 0.82 mmol, 1.0 Äq.; r.r. = 66:34) wurde in ein Reaktionsgefäß aus Braunglas eingewogen und in Benzol (10.0 mL, 0.08 M) gelöst. Die Lösung wurde auf 60 °C erwärmt und Ag₂CO₃ (226 mg, 0.82 mmol, 1.0 Äq.) hinzugefügt. Es wurde bei 60 °C für 4 d gerührt, dann die Reaktionslösung über Celite filtriert und mit EtOAc nachgespült. Das Lösungsmittel wurde bei vermindertem Druck entfernt und der Rückstand mittels Säulenchromatographie gereinigt (Kieselgel, *n*-Hexan/EtOAc = 8:2). Das Produkt wurde als farbloses Öl erhalten (60 mg, 0.25 mmol, 30%).

 $\mathbf{R_{f}} = 0.37 (n-\text{Hexan/EtOAc} = 7:3);$

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.43 – 7.31 (m, 5H, C_{Ar}-H), 5.38 (s, 1H, CH), 4.69 (s, 2H, CH₂), 4.57 (dt, *J* = 15.5, 1.5 Hz, 1H, CH₂), 4.58 – 4.55 (m, 1H, CH₂), 4.14 (dq, *J* = 3.1, 1.4 Hz, 1H, CH₂), 3.91 (dt, *J* = 15.5, 2.0 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 167.3 (C=O), 160.4 (C=O), 155.4 (Cq), 135.0 (Cq), 129.0 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.4 (C_{Ar}-H), 88.25 (CH), 83.78 (CH₂), 47.05 (CH₂), 43.16 (CH₂) ppm;

Nr.	13 C-NMR (δ)	¹ H-NMR (δ , m, J)	COSY	HMBC
2	155.4	-	-	3a, 3b
3a	47.05	4.57 (dt, <i>J</i> = 15.5, 1.5 Hz, 1H)	3b	-
3b	47.05	3.91 (dt, <i>J</i> = 15.5, 2.0 Hz, 1H)	3a	-
5	160.4	-	-	8, 1', 3a, 3b
7	167.3	-	-	1'
8	88.25	5.38 (s, 1H)	-	3a
9a	83.78	4.58 – 4.55 (m, 1H)	9b	-
9b	83.78	4.14 (dq, <i>J</i> = 3.1, 1.4 Hz, 1H)	9a	-
1'	43.16	4.69 (s, 2H)	-	-
	1		1	

Tabelle 27. NMR-Daten zur Bestimmung der Struktur von 167b.

IR (Film) $\tilde{\nu}_{\text{max}} = 1730, 1436, 1409, 1357 \text{ cm}^{-1};$

MS (EI) m/z (%) = 244 (16) [M]⁺, 216 (33) [M-CO]⁺, 202 (12), 91 (100);

HRMS (ESI⁺): berechnet für $C_{13}H_{13}N_2O_3^+$ [M+H]⁺ 245.0921, gefunden 245.0921.

Analytische Daten der Nebenprodukte der Zykloisomerisierung

7-Benzyl-4H-imidazo[5,1-b][1,3]oxazine-6,8(7H,8aH)-dion (198)

 $\mathbf{R}_{\mathbf{f}} = 0.26 (n$ -Hexan/EtOAc = 8:2)

¹**H-NMR** (500 MHz, CDCl₃) δ = 7.45 – 7.37 (m, 2H, C_{Ar}-H), 7.37 – 7.25 (m, 3H, C_{Ar}-H), 6.54 (dt, *J* = 6.5, 2.1 Hz, 1H, CH), 5.16 (s, 1H, CH), 4.99 (ddd, *J* = 6.2, 3.7, 2.2 Hz, 1H, CH), 4.69 (d, *J* = 5.0 Hz, 2H, CH₂), 4.29 (ddd, *J* = 17.2, 3.6, 2.5 Hz, 1H, CH₂), 3.75 (dt, *J* = 17.3, 2.0 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 167.0 (C=O), 155.0 (C=O), 142.7 (CH), 135.6 (C_q), 128.9 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.3 (C_{Ar}-H), 101.0 (CH), 77.32 (CH), 42.68 (CH₂), 36.25 (CH₂) ppm;

IR (Film): $\tilde{\nu}_{\text{max}} = 1722, 1445, 1419, 1355, 1220, 1144, 1105, 1076, 1038, 998, 750, 700 \text{ cm}^{-1}$;

MS (ESI⁻) m/z (%) = 243.2 (100) [M-H]⁻.

HRMS (ESI⁻): berechnet für $C_{13}H_{11}N_2O_3^-$ [M-H]⁻ 243.0775, gefunden 243.0778.

1-Benzyl-5-hydroxy-3-(2-oxopropyl)imidazolidine-2,4-dion (**199**) und 3-Benzyl-5-hydroxy-1-(2-oxopropyl)imidazolidine-2,4-dion (regio-**199**)

 $\mathbf{R}_{\mathbf{f}} = 0.14, 0.12 (n-\text{Hexan/EtOAc} = 7:3)$

¹**H-NMR** (500 MHz, CDCl₃, **199**) $\delta = 7.50 - 7.24$ (m, 5H, C_{Ar}-H), 5.21 (s, 1H, CH), 4.66 (d, J = 7.0 Hz, 2H, CH₂), 4.28 (s, 2H, CH₂), 2.22 (s, 3H, Me) ppm;

¹**H-NMR** (500 MHz, CDCl₃, Regio-**199**) $\delta = 7.42 - 7.29$ (m, 5H, C_{Ar}-H), 5.06 (s, 1H, CH), 4.93 (d, J = 15.0 Hz, 1H, CH₂), 4.34 (s, 2H, CH₂), 4.32 (d, J = 14.8 Hz, 1H, CH₂), 2.25 (s, 3H, Me) ppm;

¹³**C-NMR** (126 MHz, CDCl₃, **199**) δ = 203.5 (C=O), 170.5 (C=O), 155.4 (C=O), 135.3 (C_q), 128.8 (C_{Ar}-H, 128.6 (C_{Ar}-H), 128.1 (C_{Ar}-H), 79.04 (CH), 49.98 (CH₂), 42.58(CH₂), 27.02 (Me) ppm;

¹³**C-NMR** (126 MHz, CDCl₃, Regio-**199**) δ = 200.2 (C=O), 170.6 (C=O), 154.6 (C=O), 135.4 C_q), 129.1 (C_{Ar}-H), 128.6 (C_{Ar}-H), 128.3 (C_{Ar}-H), 77.89 (CH), 47.75 (CH₂), 43.88 (CH₂), 27.17 (Me) ppm;

MS (ESI⁺) m/z (%) = 285.0 (100) [M+Na]⁺, 245.1 (20) [M-H₂O+H]⁺

3. Bromzyklisierungen der Zimtsäurederivate 31

3.1 Bromzyklisierung von Zimtsäureimiden 31

3.1.1 Allgemeine Versuchsvorschriften

Generalisierte Synthese der Imidsubstrate 31

Das jeweilige Zimtsäureamid **251** (1.2 Äq.) wurde unter Schutzgas in trockenem THF (0.3 M) gelöst und auf 0 °C abgekühlt. Es wurde NaH (2.2 Äq.) hinzugefügt und für 1 h gerührt. Dabei wurde die Reaktionsmischung langsam auf RT erwärmt. Anschließend wurde erneut auf 0°C gekühlt und das entsprechende Säurechlorid **252** (1.0 Äq.) in trockenem THF (1.0 M) langsam über eine Kanüle zugetropft. Nach vollständiger Zugabe wurde das Reaktionsgemisch auf RT erwärmt und für 8-16 h gerührt. Die Reaktion wurde durch Zugabe von 1 M HCl-Lösung abgebrochen, mit EtOAc verdünnt, und die Phasen getrennt. Die wässr. Phase wurde auf einen neutralen pH-Wert eingestellt und mit EtOAc extrahiert (3 x). Die organischen Phasen wurden vereinigt, mit ges. wässr. NaHCO₃-Lösung und ges. wässr. NaCl-Lösung gewaschen, über MgSO4 getrocknet und das Lösungsmittel bei vermindertem Druck entfernt. Das Rohprodukt wurde säulenchromatographisch an Kieselgel gereinigt und bei Bedarf erneut aus EtOAc umkristallisiert.

AVV 4: Umsetzung der Imide mit dem System 209/NBS

Imid **31** (0.15 mmol, 1.0 Äq.), wurde mit NBS (32 mg, 0.18 mmol, 1.2 Äq.), Iodbenzoesäureamid **209** (4.6 mg, 15 μ mol, 0.1 Äq.) und gemörsertem Molsieb (3 Å, ca. 20 mg) in ein ausgeheiztes Reaktionsgefäß aus Braunglas mit Septum eingewogen. Das Reaktionsgefäß wurde anschließend kurz am Hochvakuum evakuiert und mit Argon bestickt. Das Lösungsmittel (0.5 mL, 0.3 M) wurde mit einer

Spritze zum Reaktionsgemisch gegeben und die Reaktionslösung auf die gewünschte Temperatur gebracht. Der Reaktionsverlauf wurde mittels DC verfolgt. Nach vollständigem Umsatz des Edukts wurde das Reaktionsgemisch über basisches Aluminiumoxid filtriert. Das Alox-Pad wurde mit etwas EtOAc nachgewaschen und die Lösungsmittel bei vermindertem Druck entfernt. Das Rohprodukt wurde säulenchromatographisch an Kieselgel (Hexan/EtOAc = 9: 1) gereinigt.

AVV 5: Umlagerung zu α-Brom-β-hydroxyamiden 227

In ein Reaktionsgefäß aus Braunglas wurden Imid **31** (0.15 mmol, 1.0 Äq.), Iodbenzoesäureamid **209** (4.6 mg, 15 μ mol, 0.1 Äq.) und NBS (32.0 mg, 0.18 mmol, 1.2 Äq.) eingewogen und in CH₂Cl₂ (0.5 mL, 0.3 M) gelöst. Die Reaktion wurde durch Zugabe von einem Tropfen ges. wässr. NH₄Cl-Lösung gestartet. Nach Feststellung der vollständiger Umsetzung des Edukts mittels DC wurde das Reaktionsgemisch auf eine kurze Kieselgelsäule aufgetragen, und mit CH₂Cl₂ eluiert. Das Lösungsmittel wurde *in vacuo* entfernt und das Rohprodukt säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 9:1 \rightarrow 7:3).

5-Brom-5-methyl-2,6-diphenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32b)

Gemäß AVV 4 wurde **31b** (40.0 mg, 0.15 mmol) bei 50 °C in HFIP umgesetzt, und die Reaktion nach 3 h aufgearbeitet. Das Produkt **32b** wurde als farbloser Feststoff erhalten (45.7 mg, 0.13 mmol, 88%, d.r. > 99:1).

Schmp. 119-121 °C (CH₂Cl₂);

 $R_{f} = 0.38 (n-\text{Hexan/EtOAc 7:3});$

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.31 - 8.24$ (m, 2H, C_{Ar}-H), 7.73 - 7.59 (m, 1H, C_{Ar}-H), 7.54 - 7.45 (m, 2H; C_{Ar}-H), 7.42 - 7.33 (m, 3H, C_{Ar}-H), 7.31 - 7.26 (m, 2H, C_{Ar}-H), 5.88 (s, 1H, C-H), 1.74 (s, 3H, Me) ppm;

¹³**C-NMR** (100 MHz, CDCl₃) δ = 174.2 (C=O), 168.7 (C=N), 134.5 (C_{Ar}-H), 133.5 (C_q), 130.3 (C_{Ar}-H), 130.1 (C_q), 130.0 (C_{Ar}-H), 129.4 (C_{Ar}-H), 128.8 (C_{Ar}-H), 127.4 (C_{Ar}-H), 89.09 (CH), 53.94 (C-Br), 23.92 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1714, 1591, 1554, 1450, 1361, 1321, 1294, 1063, 696 cm⁻¹;$

MS (ESI⁺) m/z (%) = 344 (100), 346 (97) [M+H]⁺;

HRMS (ESI⁺) berechnet für $C_{17}H_{15}BrNO_2^+$ [M+H]⁺ 344.0281, gefunden 344.0281.

5-Brom-2-(4-fluorophenyl)-5-methyl-6-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32c)

Gemäß AVV 4 wurde **31c** (42.5 mg, 0.15 mmol) bei 50 °C für 16 h umgesetzt. Das Produkt **32c** wurde als farbloser Feststoff isoliert (36.7 mg, 0.10 mmol, 68%, d.r. > 99:1).

Schmp. 82-84 °C (CHCl₃);

 $R_{f} = 0.40 (n-Hexan/EtOAc 7:3);$

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.33 - 8.25$ (m, 2H, C_{Ar}-*H*), 7.43 - 7.34 (m, 3H C_{Ar}-*H*), 7.30 - 7.25 (m, 2H, C_{Ar}-*H*), 7.20 - 7.12 (m, 2H, C_{Ar}-*H*), 5.87 (s, 1H. C-*H*), 1.72 (s, 3H, Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 174.0 (C=O), 167.7 (C=N), 166.9 (d, *J* = 256.9 Hz, C_{Ar}-F), 133.5 (C_q), 132.7 (d, *J* = 9.61 Hz, 2x C_{Ar}-H), 130.4 (C_{Ar}-H), 129.5 (C_{Ar}-H), 127.4 (C_{Ar}-H), 126.2 (d. *J* = 2.82 Hz, C_q), 116.1 (d, *J* = 22.12, 2x C_{Ar}-H), 89.30 (CH), 53.79 (C-Br), 23.94 (Me) ppm;

¹⁹**F-NMR** (376 MHz, CDCl₃) δ = -102.85 ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1713, 1598, 1559, 1505, 1413, 1362, 1315, 1294, 1235, 1154, 1134, 1062, 850, 761, 752, 698 cm⁻¹;$

MS (ESI⁺) m/z (%) = 384 (100), 386 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{14}BrFNO_2^+$ [M+H]⁺ 362.0186, gefunden 362.0189.

5-Brom-2-(4-methoxyphenyl)-5-methyl-6-phenyl-5,6-dihydro-4H-1,3-oxazin-4-one (**32d**)

Gemäß AVV 4 wurde **31d** (44.3 mg, 0.15 mmol) bei 50 °C für 6 h gerührt. Das Produkt wurde als farbloser Feststoff erhalten (39.7 mg, 0.11 mmol, 71%, d.r. > 99:1);

Schmp. 152-157 °C (CH₂Cl₂);

 $R_{f} = 0.30 (n-Hexan/EtOAc = 7:3);$

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.33 - 8.13$ (m, 2H, C_{Ar}-H), 7.42 - 7.34 (m, 3H, C_{Ar}-H), 7.32 - 7.28 (m, 2H, C_{Ar}-H), 6.99 - 6.94 (m, 2H, C_{Ar}-H), 5.85 (s, 1H, C-H), 3.89 (s, 3H, OMe), 1.73 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 174.2 (C=O), 168.6 (C=N), 165.0 (C_q), 133.6 (C_q), 132.4 (C_{Ar}-H), 130.2 (C_{Ar}-H), 129.5 (C_{Ar}-H), 127.5 (C_{Ar}-H), 122.0 (C_q), 114.2 (C_{Ar}-H), 88.75 (CH), 55.57 (C-Br), 54.26 (OMe), 23.95 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1701, 1604, 1582, 1550, 1516, 1423, 1362, 1296, 1261, 1259, 1169, 1064 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 374 (100), 376 (96) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{17}BrNO_{3}^{+}$ [M+H]⁺ 374.0386, gefunden 374.0386.

5- Brom-5-methyl-6-phenyl-2-(p-tolyl)-5,6-dihydro-4H-1,3-oxazin-4-one (32e)

Gemäß AVV 1 wurde **31e** (41.9 mg, 0.15 mmol) bei 50 °C in HFIP umgesetzt. Die Reaktion wurde nach 16 h abgebrochen. **32e** wurde als farbloser Feststoff erhalten (34.0 mg, 95.0 μ mol, 63%, d.r. > 99:1).

Schmp. 149 °C (CHCl₃);

 $R_{f} = 0.38$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 Mhz, CDCl₃) $\delta = 8.18 - 8.13$ (m, 2H, C_{Ar}-H), 7.46 - 7.33 (m, 3H, C_{Ar}-H), 7.32 - 7.27 (m, 4H, C_{Ar}-H), 5.86 (s, 1H, CH), 2.44 (s, 3H, Me), 1.73 (s, 3H, Me) ppm;

¹³**C-NMR** (100 MHz, CDCl₃) δ = 174.3 (C=O), 168.9 (C=N), 145.7 (C_q), 133.6 (C_q), 130.2 (C_{Ar}-H), 130.2(C_{Ar}-H), 129.6 (C_{Ar}-H), 129.4 (C_{Ar}-H), 127.5 (C_{Ar}-H), 127.3 (C_q), 88.96 (CH), 54.14 (C-Br), 23.96 (Me), 21.99 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1707, 1584, 1550, 1362, 1318, 1291, 1179, 1064, 913, 743 cm⁻¹;$

MS (ESI⁺) m/z (%) = 380 (100), 382 (96) [M+Na]⁺;

HRMS (ESI⁺): berechnet für C₁₈H₁₇BrNO₂ [M+H]⁺ 358.0437, gefunden 358.0437.

5-Brom-5-methyl-6-phenyl-2-(thiophen-3-yl)-5,6-dihydro-4H-1,3-oxazin-4-one (32f)

AVV 4 folgend wurde **31f** (52.5 mg, 0.25 mmol) bei 50 °C umgesetzt. Aufarbeitung nach 16 h lieferte **32f** als gelbliches Öl (24.4 mg, 0.07 mmol, 46%, d.r.> 99:1).

Schmp. 147-155 °C (CH₂Cl₂);

 $R_{f} = 0.32$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.38$ (dd, J = 3.1, 1.2 Hz, 1H, C_{Ar}-H), 7.73 (dd, J = 5.1, 1.2 Hz, 1H, C_{Ar}-H), 7.46 – 7.35 (m, 5H, C_{Ar}-H), 7.32 – 7.27 (m, 2H, C_{Ar}-H), 5.83 (s, 1H, C-H), 1.72 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 174.3 (C=O), 165.0 (C=N), 134.9 (C_{Ar}-H), 133.5 (C_q), 133.5 (C_q), 130.3 (C_{Ar}-H), 129.4 (C_{Ar}-H), 128.1 (C_{Ar}-H), 127.4 (C_{Ar}-H), 126.8 (C_{Ar}-H), 89.04 (CH), 53.97 (C-Br), 24.01 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1709, 1555, 1420, 1306, 1292, 1061, 738, 697 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 350 (100), 352 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{15}H_{13}BrNO_2S^+$ [M+H]⁺ 349.9845, gefunden 349.9845.

5- Brom-2-(4-tert-butylphenyl)-5-methyl-6-phenyl-5,6-dihydro-4H-1,3-oxazin-4-one (32g)

Gemäß AVV 1 wurde **31g** (48.2 mg, 0.15 mmol) bei 50 °C umgesetzt. **32g** wurde nach 3 h als farbloses Öl isoliert (52.0 mg, 0.13 mmol, 84%, d.r. > 99:1).

 $\mathbf{R}_{\mathbf{f}} = 0.44$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.29 - 8.04$ (m, 2H, C_{Ar}-H), 7.52-7.48 (m, 2H, C_{Ar}-H), 7.43 - 7.33 (m, 3H, C_{Ar}-H), 7.31 - 7.26 (m, 2H, C_{Ar}-H), 5.87 (s, 1H, C-H), 1.73 (s, 3H, CH₃), 1.34 (s, 9H, 3x CH₃) ppm;

¹³**C-NMR** (75 MHz, CDCl₃) δ = 174.3 (C=O), 168.8 (C=N), 158.7 (C_q), 133.6 (C_q), 130.2 (C_{Ar}-H), 130.0 (C_{Ar}-H), 129.4 (C_{Ar}-H), 127.4 (C_{Ar}-H), 127.2 (C_q), 125.8 (C_{Ar}-H), 88.91 (CH), 54.01 (C-Br), 35.45 (C_q), 31.17 (Me), 23.97 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1703, 1580, 1551, 1373, 1326, 1306, 1295, 1249, 1068, 762, 731, 695 cm⁻¹;$

MS (ESI⁺) m/z (%) = 400 (100), 402 (98) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{23}BrNO_2^+[M+H]^+400.0907$, gefunden 400.0908.

5-Brom-2-(3-bromphenyl)-5-methyl-6-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32h)

Gemäß AVV 4 wurde **31h** (51.6 mg, 0.15 mmol) bei 50 °C gerührt. Aufarbeitung nach 25 h lieferte **32h** als farblosen Feststoff (49.5 mg, 0.12 mmol, 78%, d.r. > 99:1).

Schmp. 179 – 185 °C (CHCl₃);

 $R_{f} = 0.44$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.43 (t, *J* = 1.8 Hz, 1H, C_{Ar}-H), 8.28 – 8.15 (m, 1H, C_{Ar}-H), 7.91 – 7.68 (m, 1H, C_{Ar}-H), 7.44 – 7.38 (m, 4H, C_{Ar}-H), 7.31 – 7.26 (m, 2H, C_{Ar}-H), 5.91 (s, 1H, C-H), 1.75 (s, 3H, Me) ppm;

¹³C-NMR (75 MHz, CDCl₃) δ = 173.8 (C=O), 167.3 (C=N), 137.3 (C_{Ar}-H), 133.3 (C_q), 132.8 (C_{Ar}-H), 132.1 (C_q), 130.5 (C_{Ar}-H), 130.3 (C_{Ar}-H), 129.6 (C_{Ar}-H), 129.2 (C_{Ar}-H), 128.5 (C_{Ar}-H), 127.4 (C_{Ar}-H), 122.9 (C_q), 89.52 (CH), 53.55 (C-Br), 23.92 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1719, 1685, 1582, 1554, 1455, 1426, 1361, 1311, 1247, 1201, 1110, 1065, 967, 910, 734, 699, 679 cm⁻¹;$

MS (ESI⁺) m/z (%) = 422 (52), 424 (100), 426 (50) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{23}BrNO_2^+$ [M+H]⁺ 421.9386, gefunden 421.9387.

5-Brom-2-(4-chlorophenyl)-5-methyl-6-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32i)

Gemäß AVV 4 wurde **31i** (44.95 mg, 0.15 mmol E/Z = 96:4) für 12 h bei 50 °C gerührt. Nach säulenchromatographischer Aufarbeitung wurde **32i** als farbloses Öl erhalten (34.5 mg, 91.1 µmol, 61%, d.r.= 93:7, r.r. = 94:6).

 $R_f = 0.53$ (*n*-Hexan/EtOAc 7:3)

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.31 - 8.13$ (m, 2H, C_{Ar}-H), 7.49 - 7.43 (m, 2H, C_{Ar}-H), 7.42 - 7.34 (m, 3H, C_{Ar}-H), 7.29 - 7.23 (m, 2H, C_{Ar}-H), 5.87 (s, 1H, CH), 1.72 (s, 3H, Me) ppm;

¹³**C-NMR** (75 MHz, CDCl₃) δ = 173.9 (C=O), 167.8 (C=N), 141.2 (C_q), 133.4 (C_q), 131.3 (C_{Ar}-H), 130.4 (C_{Ar}-H), 129.5 (C_{Ar}-H), 129.2 (C_{Ar}-H), 128.5 (C_q), 127.4 (C_{Ar}-H), 89.34 (CH), 53.72 (C-Br), 23.92 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1715, 1583, 1553, 1487, 1403, 1362, 1340, 1310, 1294, 1282, 1242, 1174, 1133, 1091, 1062, 1014, 844, 745, 698 cm⁻¹;$

MS (ESI⁺) m/z (%) = 378 (100), 380 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{14}BrClNO_2^+$ [M+H]⁺ 377.9891, gefunden 377.9890.

5-Brom-5-ethyl-2,6-diphenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32j)

Gemäß AVV 1 wurde **31j** (42.0 mg, 0.15 mmol, E/Z = 64:32) für 16 h bei 50 °C gerührt. **32j** wurde als farbloser Feststoff erhalten (48.3 mg, 0.14 mmol, 90%, d.r. = 88:12).

Schmp. 133 – 136 °C (CH₂Cl₂);

 $R_{f} = 0.36$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃, *Hauptdiastereomer*) δ = 8.35 – 8.15 (m, 2H, C_{Ar}-H), 7.79 – 7.55 (m, 1H, C_{Ar}-H), 7.50 – 7.44 (m, 2H, C_{Ar}-H), 7.43 – 7.37 (m, 5H, C_{Ar}-H), 5.88 (s, 1H, CH), 2.22 (dq, *J* = 14.9, 7.4 Hz, 1H, CH₂), 1.62 (dq, *J* = 15.2, 7.3 Hz, 1H, CH₂), 1.09 (t, *J* = 7.3 Hz, 3H, CH₃) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Hauptdiastereomer*) δ = 174.3 (C=O), 168.3 (C=N), 134.4 (C_{Ar}-H), 133.4 (C_q), 130.3 (C_{Ar}-H), 130.0 (C_q), 129.9 (C_{Ar}-H), 129.2 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.1 (C_{Ar}-H), 87.61 (CH), 62.54 (C-Br), 27.76 (CH₂), 9.56 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1707, 1591, 1559, 1450, 1362, 1339, 1320, 1295, 1238, 1067, 765, 731, 698 cm⁻¹;$

MS (ESI⁺) m/z (%) = 358 (100), 360 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{17}BrNO_2^+$ [M+H]⁺ 358.0437, gefunden 358.0438.

5-Benzyl-5-brom-2,6-diphenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32k)

Gemäß AVV 4 wurde *E*-**32** (40.0 mg, 0.12 mmol, E/Z = 87:13) bei 50 °C für 19 h gerührt. Aufarbeitung lieferte **32k** als farblosen Feststoff (38.9 mg, 92.0 µmol, 76%, d.r. 81:19).

Schmp. 186 °C (CHCl₃);

 $R_{f} = 0.44$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 8.34 - 8.14$ (m, 2H, 2x C_{Ar}-H), 7.67 - 7.59 (m, 1H, C_{Ar}-H), 7.51 - 7.34 (m, 7H, C_{Ar}-H), 7.33 - 7.19 (m, 3H, C_{Ar}-H), 7.14 - 7.04 (m, 2H, C_{Ar}-H), 5.78 (s, 1H, C-H), 3.70 (d, J = 15.1 Hz, 1H, CH₂), 3.08 (d, J = 15.1 Hz, 1H, CH₂) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Nebendiastereomer*) $\delta = 8.31 - 8.16$ (m, 2H, 2x C_{Ar}-H), 7.74 - 7.55 (m, 1H, C_{Ar}-H), 7.54 - 7.35 (m, 7H, 7x C_{Ar}-H), 7.33 - 7.25 (m, 3H, 3x C_{Ar}-H), 7.26 - 7.18 (m, 2H, 2x C_{Ar}-H), 5.46 (s, 1H, C-H), 4.19 (d, J = 14.8 Hz, 1H, CH₂), 3.14 (d, J = 14.8 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 174.2$ (C=O), 168.3 (C=N), 134.5 (C_{Ar}-H), 134.0 (C_q), 133.1 (C_q), 131.0 (C_{Ar}-H), 130.4 (C_{Ar}-H), 130.0 (C_q), 130.0 (C_{Ar}-H), 129.2 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.2 (C_{Ar}-H), 127.7 (C_{Ar}-H), 87.10 (C-H), 62.04 (C-Br), 39.90 (CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Nebendiastereomer*) δ = 174.3 (C=O), 170.0 (C=N), 135.5 (C_q), 134.6 (C_{Ar}-H), 132.5 (C_q), 130.7 (C_{Ar}-H), 130.3 (C_{Ar}-H), 130.0 (C_{Ar}-H), 129.9 (C_q), 129.5 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.3 (C_{Ar}-H), 127.7 (C_{Ar}-H), 82.67 (C-H), 61.65 (C-Br), 41.88 (CH₂) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1593, 1559, 1450, 1340, 732, 698 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 420 (100), 422 (98) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{23}H_{19}BrNO_2^+$ [M+H]⁺ 420.0594, gefunden 420.0594.

5-Brom-5-(methoxymethyl)-2,6-diphenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32l)

Gemäß AVV 4 wurde **311** (44.3 mg, 0.15 mmol) bei 50 °C umgesetzt. Aufarbeitung und Aufreinigung nach 3 h lieferte **321** als farbloses Öl (19.6 mg, 52.5 μ mol, 35 %, d.r. = 66:34).

 $R_{\rm f} = 0.36$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 8.33 - 8.24$ (m, 2H, C_{Ar}-H), 7.72 - 7.61 (m, 2H, C_{Ar}-H), 7.51 - 7.45 (m, 4H, C_{Ar}-H), 7.39 - 7.32 (m, 2H, C_{Ar}-H), 5.96 (s, 1H, CH), 4.25 (d, *J* = 9.6 Hz, 1H, CH₂), 3.48 (s, 3H, OMe), 3.38 (d, *J* = 9.6 Hz, 1H, CH₂) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Nebendiastereomer*) $\delta = 8.33 - 8.24$ (m, 2H, C_{Ar}-H), 7.72 - 7.61 (m, 2H, C_{Ar}-H), 7.51 - 7.45 (m, 4H, C_{Ar}-H), 7.39 - 7.32 (m, 2H, C_{Ar}-H), 6.06 (s, 1H, CH), 3.97 (d, *J* = 11.6 Hz, 1H, CH₂), 3.31 (s, 3H, OCH₃), 3.27 (d, *J* = 11.6 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 172.9 (C=O), 169.3 (C=N), 134.6 (C_{Ar}-H), 133.3 (C_q), 130.2 (C_{Ar}-H), 130.1 (C_A-H), 130.1 (C_q), 129.3 (C_{Ar}-H), 128.8 (C_A-H), 127.3 (C_A-H), 86.9 (CH), 73.7 (CH₂), 59.3 (OMe), 55.8 (C_q) ppm;

IR (Film) $\tilde{\nu}_{max} = 1591, 1553, 1450, 1361, 1339, 1321, 1294, 1103, 969 cm⁻¹;$

MS (ESI⁺) m/z (%) = 374 (100), 376 (98) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{17}BrNO_3^+$ [M+H]⁺ 374.0386, gefunden 374.0387.

5-Brom-2,5,6-triphenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32m)

Gemäß AVV 4 wurde **31m** (49.5 mg, 15.0 μ mol) bei 50 °C für 16 h gerührt und lieferte **32m** als farblosen Feststoff (36.9 mg, 91.0 μ mol, 61%, d.r. >99:1, r.r. = 53:47, untrennbares Regioisomerengemisch).

 $R_{\rm f} = 0.40 \ (n-{\rm Hexan/EtOAc}\ 7:3);$

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.32 - 8.25$ (m, 2H, C_{Ar}-H), 7.77 - 7.71 (m, 2H, C_{Ar}-H), 7.52 - 7.47 (m, 2H, C_{Ar}-H), 7.47 - 7.40 (m, 1H), 7.36 - 7.32 (m, 1H), 7.25 - 7.14 (m, 5H), 7.06 (t, *J* = 6.4 Hz, 2H), 6.10 (s, 1H, CH) ppm;

¹³**C-NMR** (126 MHz, CDCl₃) $\delta = 173.1$ (C=O), 169.9 (C=N), 135.9 (C_q), 134.8 (C_q), 133.2, 132.4, 130.2, 129.7, 129.4, 129.2, 129.1, 128.9, 127.9, 125.2, 88.07 (C-Br), 64.28 (CH) ppm*;

MS (ESI⁺) m/z (%) = 406 (100), 408 (97) $[M+H]^+$;

HRMS (ESI⁺) berechnet für $C_{22}H_{17}BrNO_2^+$ [M+H]⁺ 406.0437, gefunden 406.0438.

*Die ¹³C-Signale konnten aufgrund der Überlappungen mit anderen Regioisomeren nicht alle zugeordnet werden.

5-Brom-6-(4-tert-butylphenyl)-5-methyl-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32n)

31n (68.0 mg, 0.15 mmol) wurde gemäß AVV 4 bei 50 °C umgesetzt. **32n** wurde nach 18 h als farbloses Öl erhalten (37.8 mg, 90.0 µmol, 63%, d.r. 65:35);

 $R_{f} = 0.53$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃; *Hauptdiastereomer*) $\delta = 8.30 - 8.20$ (m, 2H, C_{Ar}-H), 7.66 - 7.59 (m, 1H, C_{Ar}-H), 7.52 - 7.45 (m, 2H, C_{Ar}-H), 7.41 - 7.34 (m, 2H, C_{Ar}-H), 7.23 - 7.17 (m, 2H, C_{Ar}-H), 5.86 (s, 1H, CH), 1.74 (s, 3H, Me), 1.28 (s, 9H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 174.4$ (C=O), 168.8 (C=N), 153.6 (C_q), 134.4 (C_{Ar}-H), 130.5 (C_q), 130.2 (C_q), 130.1 (C_{Ar}-H), 128.8 (C_{Ar}-H), 127.2 (C_{Ar}-H), 126.4 (C_{Ar}-H), 89.07 (CH), 53.97 (C-Br), 34.90 (C_q), 31.27 (Me), 24.04 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1713, 1591, 1559, 1450, 1357, 1321, 1296, 1266, 1250, 1108, 1064, 702 cm⁻¹;$

MS (ESI⁺) m/z (%) = 400 (100), 402 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{23}BrNO_2^+$ [M+H]⁺ 400.0907, gefunden 400.0908.

5-Brom-6-(4-methoxyphenyl)-5-methyl-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (320)

Gemäß AVV X wurde **310** (44.0 mg, 14.9 µmol) bei RT umgesetzt. Nach 16 h wurde **320** als farbloser Feststoff erhalten (38.1 mg, 0.10 mmol, 68% Ausbeute, d.r.= 61:39)

Schmp. 133 – 136 °C (EtOAc);

 $R_{f} = 0.45$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 8.26$ (d, J = 7.4 Hz, 2H, C_{Ar}-H), 7.63 (t, J = 7.4 Hz, 1H, C_{Ar}-H), 7.50 – 7.45 (m, 2H, C_{Ar}-H), 7.21 (d, J = 8.7 Hz, 2H, C_{Ar}-H), 6.87 (d, J = 8.7 Hz, 2H, C_{Ar}-H), 5.83 (s, 1H, C-H), 3.79 (s, 3H, OMe), 1.73 (s, 3H, Me) ppm;

¹**H-NMR** (400 MHz, CDCl₃, *Nebendiastereomer*) δ = 8.26 (dd, *J* = 8.2, 1.5 Hz, 2H, C_{Ar}-H), 7.71 – 7.57 (m, 1H, C_{Ar}-H), 7.57 – 7.42 (m, 4H, C_{Ar}-H), 7.10 – 6.97 (m, 2H, C_{Ar}-H), 5.22 (s, 1H, C-H), 3.88 (m, 3H, OMe), 1.81 (s, 3H, Me) ppm;

¹³**C-NMR** (100 MHz, CDCl₃, *Hauptdiastereomer*) δ = 174.3 (C=O), 168.7 (C=N), 160.8 (C_q), 134.3 (C_{Ar}-H), 130.1 (C_q), 129.9 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.6 (C_{Ar}-H), 125.4 (C_q), 114.7 (C_{Ar}-H), 88.80 (C-H), 55.36 (OMe), 54.07 (C-Br), 23.85 (Me) ppm;

¹³**C-NMR** (100 MHz, CDCl₃, *Nebendiastereomer*) δ = 175.2 (C=O), 169.8 (C=N), 161.0 (C_q), 134.5 (C_{Ar}-H), 130.0 (C_q), 129.9 (C_{Ar}-H), 129.9 (C_{Ar}-H), 128.8 (C_{Ar}-H), 124.1 (C_q), 113.8 (C_{Ar}-H), 84.39 (C-H), 56.16 (C-Br), 55.54 (OMe), 22.58 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1708, 1591, 1554, 1515, 1450, 1360, 1176, 1134, 1063, 1027, 964, 909, 831, 700 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 374 (100), 376 (97) [M+H]⁺; **HRMS** (ESI⁺): berechnet für C₁₈H₁₇BrNO₃⁺ [M+H]⁺ 374.0386, gefunden 374.0386.

5-Brom-5-methyl-2-phenyl-6-(4-(trifluoromethyl)phenyl)-5,6-dihydro-4H-1,3-oxazin-4-one (32p)

Gemäß AVV 4 wurde **31p** (50.0 mg, 0.15 mmol) bei RT umgesetzt. Aufarbeitung nach 19 h lieferte **32p** als farbloses Öl (19.7 mg, 50.0 μ mol, 31%, d.r. = 90:10, r.r. = 60:40).

 $R_{f} = 0.43$ (*n*-Hexane/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.41 - 8.19$ (m, 2H, C_{Ar}-H), 7.75 - 7.64 (m, 3H, C_{Ar}-H), 7.55 - 7.46 (m, 4H, C_{Ar}-H), 5.98 (s, 1H, CH), 1.77 (s, 3H, Me) ppm;

¹³**C-NMR** (100 MHz, CDCl₃) δ = 173.8 (C=O), 168.6 (C=N), 137.2 (C_q), 134.8 (C_{Ar}-H), 132.5 (q, *J* = 32.9 Hz, C_qCF₃), 130.1 (C_{Ar}-H), 129.7 (Cq), 128.9 (C_{Ar}-H), 128.1 (C_{Ar}-H), 126.4 (q, *J* = 3.8 Hz, 2x C_{Ar}-H), 123.6 (q, *J* = 272.4 Hz, CF₃), 87.87 (CH), 53.76 (C-Br), 23.66 (Me) ppm;

¹⁹**F-NMR** (376 MHz, CDCl₃) δ = -63.04 ppm;

IR (Film) $\tilde{\nu}_{max} = 1713, 1592, 1559, 1451, 1361, 1324, 1298, 1169, 1131, 1068, 1018, 700 cm⁻¹;$ **MS**(ESI⁺) m/z (%) = 412 (100), 414 (96) [M+H]⁺;

 $\label{eq:HRMS} \text{(ESI^+)} \text{ berechnet für } C_{18}H_{14}BrF_3NO_2^+ \ [M+H]^+ \ 412.0155, \ gefunden \ 412.0153.$

5-Brom-6-(3,5-dibromphenyl)-5-methyl-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32q)

Gemäß AVV 4 wurde **31q** (63.5 mg, 0.15 mmol) bei RT für 36 h gerührt. Das Produkt **32q** wurde als farbloser Feststoff erhalten (31.0 mg, 60.0 μ mol, 41% Ausbeute, d.r. > 99:1, r.r.= 46:54).

Schmp. 184 °C (CHCl₃);

 $R_{f} = 0.43$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.32 - 8.17$ (m, 2H, C_{Ar}-H), 7.74 (t, J = 1.7 Hz, 1H, C_{Ar}-H), 7.70 - 7.63 (m, 1H, C_{Ar}-H), 7.56 - 7.48 (m, 2H, C_{Ar}-H), 7.42 (d, J = 1.7 Hz, 2H, C_{Ar}-H), 5.80 (s, 1H, CH), 1.76 (s, 3H, Me) ppm;

¹³**C-NMR** (100 MHz, CDCl₃) δ = 173.5 (C=O), 168.3 (C=N), 136.9 (C_q), 136.1 (C_{Ar}-H), 134.9 (C_{Ar}-H), 130.1 (C_{Ar}-H), 129.5 (C_{Ar}-H), 129.4 (C_{Ar}-H), 128.9 (C_{Ar}-H), 123.9 (C_q), 86.89 (CH), 53.88 (C-Br), 23.54 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1729, 1684, 1590, 1555, 1451, 1352, 1291, 1254, 1093, 1066, 1026, 859, 733, 702 cm⁻¹;$

MS (ESI⁺) m/z (%) = 500 (31), 502 (100), 504 (98), 506 (30) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{13}Br_3NO_2^+$ [M+H]⁺ 499.8491, gefunden 499.8489.

5-Brom-6-(3-bromphenyl)-5-methyl-2-phenyl-5,6-dihydro-4H-1,3-oxazin-4-on (32r)

Gemäß AVV 4 wurde **31r** (51.6 mg, 0.15 mmol) bei 50 °C für 24 h gerührt. Das Produkt **32r** wurde als farbloses Öl isoliert (41.9 mg, 99.0 μ mol, 66%, r.r = 77:23, d.r. = 90:10).

 $R_{f} = 0.45$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.33 - 8.20$ (m, 2H, C_{Ar}-H), 7.68 - 7.63 (m, 1H, C_{Ar}-H), 7.56 (dt, J = 7.1, 2.0 Hz, 1H, C_{Ar}-H), 7.53 - 7.46 (m, 3H, C_{Ar}-H), 7.28 - 7.22 (m, 2H, C_{Ar}-H), 5.84 (s, 1H, CH), 1.75 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ =173.9 (C=O), 168.6 (C=N), 135.5 (C_q), 134.7 (C_{Ar}-H), 133.5 (C_{Ar}-H), 131.0 (C_{Ar}-H), 130.8 (C_{Ar}-H), 130.1 (C_{Ar}-H), 129.7 (C_q), 128.9 (C_{Ar}-H), 125.9 (C_{Ar}-H), 123.3 (C_q), 87.92 (CH), 53.76 (C-Br), 23.75 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1717, 1591, 1450, 1355, 1294, 703 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 422 (52), 424 (100), 426 (50) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{14}Br_2NO_2^+$ [M+H]⁺ 421.9386, gefunden 421.9388.

3-Amino-2-brom-2-methyl-3-oxo-1-phenylpropyl benzoat (227b)

AVV 5 folgend wurde **31b** (40.0 mg, 0.15 mmol) bei RT innerhalb von 3 h umgesetzt. Das Produkt **227b** wurde als farbloser Feststoff erhalten (31.7 mg, 87.0 μ mol, 59%, d.r. > 99:1);

Schmp. 174-177 °C (CH₂Cl₂);

 $R_{f} = 0.22$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.22 - 8.05$ (m, 2H, C_{Ar}-H), 7.68 - 7.57 (m, 1H, C_{Ar}-H), 7.55 - 7.45 (m, 4H, C_{Ar}-H), 7.38 - 7.26 (m, 3H, C_{Ar}-H), 6.58 (s, 1H, NH₂), 6.44 (s, 1H, CH), 6.00 (s, 1H, NH₂), 2.08 (s, 3H, Me) ppm;

¹³C-NMR (100 MHz, CDCl₃) δ = 171.3 (C=O), 164.8 (C=O), 135.9 (C_q), 133.7 (C_{Ar}-H), 130.0 (C_q), 129.6 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 79.22 (CH), 68.78 (C-Br), 28.18 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1725, 1680, 1451, 1315, 1260, 1093, 1069, 1025, 734, 709, 699 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 384 (100), 386 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{17}BrNO_3^+$ [M+H]⁺ 362.0386, gefunden 362.0388.

5-(Brom(phenyl)methyl)-2-(4-methoxyphenyl)-5-methyloxazol-4(5H)-on (**30b**)

AVV 5 folgend wurde **31b** (40.0 mg, 0.15 mmol) bei RT innerhalb von 3 h umgesetzt. Das Produkt **30b** wurde als farbloses Öl erhalten (6.6 mg, 19 μ mol, 12%, d.r. > 99:1).

 $R_{f} = 0.32$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.35 - 8.09$ (m, 2H, C_{Ar}-H), 7.80 - 7.67 (m, 1H, C_{Ar}-H), 7.59 - 7.45 (m, 2H, C_{Ar}-H), 7.44 - 7.33 (m, 2H, C_{Ar}-H), 7.25 - 7.00 (m, 3H, C_{Ar}-H), 5.25 (s, 1H, CH), 1.84 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 190.0 (C=N), 185.4 (C=O), 135.6 (C_{Ar}-H), 135.4 (C_q), 130.3 (C_{Ar}-H), 129.5 (C_{Ar}-H), 129.2 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.6 (C_{Ar}-H), 125.4 (C_q), 89.24 (C_q), 55.98 (CH), 23.18 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1756, 1730, 1685, 1603, 1590, 1546, 1507, 1452, 1357, 1261, 1153, 1102, 1089, 765, 700 cm⁻¹;$

MS (ESI⁺) m/z (%) = 344 (100), 346 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{15}BrNO_2^+$ [M+H]⁺ 344.0281, gefunden 344.0280.

3-Amino-2-brom-2-methyl-3-oxo-1-phenylpropyl 4-fluorobenzoat (227c)

Gemäß AVV 5 wurde **31c** (42.5 mg, 0.15 mmol) umgesetzt. Nach 16 h wurde **227c** als farbloser Feststoff erhalten (41.4 mg, 11.4 μ mol, 75%, d.r. < 99:1);

Schmp. 180 – 183 °C (CHCl₃);

 $R_{f} = 0.21$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.29 - 8.08$ (m, 2H, C_{Ar}-H), 7.57 - 7.44 (m, 2H, C_{Ar}-H), 7.35 - 7.28 (m, 3H, C_{Ar}-H), 7.22 - 7.11 (m, 2H, C_{Ar}-H), 6.55 (s, 1H, NH), 6.41 (s, 1H, CH), 5.86 (s, 1H, NH), 2.07 (s, 3H, CH₃) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 171.2 (C=O), 166.2 (q, *J* = 255.0 Hz, C-F), 163.9 (C=O), 135.8 (C_{Ar}-H),132.6 (d, *J* = 9.4 Hz, C_{Ar}-H), 132.5 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 125.9 (d, *J* = 3.0 Hz, C_q), 116.0 (d, *J* = 22.1 Hz, C_{Ar}-H), 79.29 (CH), 68.97 (C-Br), 28.28 (Me) ppm;

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.45 ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1726, 1680, 1601, 1507, 1258, 1240, 1154, 1103, 1088, 853, 764, 731, 700, 689 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 402 (100), 404 (96) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{16}BrFNO_{3}^{+}$ [M+H]⁺ 380.0292, gefunden 380.0291.

3-Amino-2-brom-2-methyl-3-oxo-1-phenylpropyl 4-methoxybenzoat (227d)

Gemäß AVV 5 wurde **31d** (44.3 mg, 0.15 mmol) bei RT für 24 h gerührt. Das Produkt wurde als farbloser Feststoff erhalten (43.1 mg, 0.11 mmol, 74%, d.r. > 99:1).

Schmp. 152 – 154 °C (CH₂Cl₂);

 $R_{f} = 0.16$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.20 - 7.99$ (m, 2H, C_{Ar}-H), 7.57 - 7.47 (m, 2H, C_{Ar}-H), 7.34 - 7.29 (m, 3H, C_{Ar}-H), 7.00 - 6.91 (m, 2H, C_{Ar}-H), 6.57 (br. s, 1H, NH), 6.40 (s, 1H, CH), 5.86 (br. s, 1H, NH), 3.87 (s, 3H, OMe), 2.06 (s, 3H, CH₃) ppm;

¹³C-NMR (75 MHz, CDCl₃) δ = 171.4 (C=O), 164.6 (C=O), 164.0 (C_q), 136.1 (C_q), 132.1 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 121.9 (C_q), 114.0 (C_{Ar}-H), 78.85 (C-H), 69.03 (C-Br), 55.65 (OMe), 28.20 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1718, 1681, 1604, 1511, 1254, 1167, 1096, 1027, 767, 700 cm⁻¹;$

MS (ESI⁺) m/z = 414 (100), 416 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{19}BrNO_4^+$ [M+H]⁺ 392.0492, gefunden 392.0491.

5-(Brom(phenyl)methyl)-2-(4-methoxyphenyl)-5-methyloxazol-4(5H)-on (**30d**)

Gemäß AVV 5 wurde **31d** (44.3 mg, 0.15 mmol) bei RT für 24 h gerührt. Das Produkt wurde als farbloser Feststoff erhalten (16.0 mg, 40.0 μ mol, 24%, d.r. > 99:1);

 $R_{f} = 0.21$ (*n*-Hexan/EtOAc 3:1);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.28 - 7.96$ (m, 2H, C_{Ar}-H), 7.44 - 7.31 (m, 2H, C_{Ar}-H), 7.18 - 7.10 (m, 3H, C_{Ar}-H), 7.07 - 6.95 (m, 2H, C_{Ar}-H), 5.24 (s, 1H, CH), 3.92 (s, 3H, OCH₃), 1.82 (s, 3H, CH₃) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 189.9 (C=O), 184.8 (C=N), 165.7 (C_q), 135.6 (C_q), 132.8 (C_{Ar}-H), 129.4 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.5 (C_{Ar}-H), 117.5 (C_q), 114.64 (C_{Ar}-H), 89.03 (C_q), 56.28 (C-H), 55.86 (OMe), 23.23 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1748, 1604, 1582, 1547, 1497, 1454, 1425, 1360, 1264, 1172, 1149, 699 cm⁻¹;$

MS (ESI⁺) m/z (%) = 374 (100), 376 (97) [M+H]⁺;

HRMS (ESI⁺) berechnet für $C_{18}H_{17}BrNO_3^+$ [M+H]⁺ 374.0386, gefunden 374.0386.

3-Amino-2-brom-2-methyl-3-oxo-1-phenylpropyl 4-methylbenzoat (227e)

Gemäß AVV 5 wurde **31e** (41.9 mg, 0.15 mmol) bei RT für 16 h gerührt. Das Produkt **227e** wurde als farbloser Feststoff erhalten (37.1 mg, 98.0 μ mol, 66%, d.r. > 99:1).

Schmp. 186 – 189 °C (CH₂Cl₂);

 $R_{f} = 0.22$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.16 - 8.00$ (m, 2H, C_{Ar}-H), 7.55 - 7.46 (m, 2H, C_{Ar}-H), 7.35 - 7.27 (m, 5H, C_{Ar}-H), 6.57 (br. s, 1H, NH), 6.42 (s, 1H, CH), 5.86 (br. s, 1H, NH), 2.43 (s, 3H, CH₃), 2.07 (s, 3H, CH₃) ppm;

¹³C-NMR (100 MHz, CDCl₃) δ = 171.3 (C=O), 164.9 (C=O), 144.5 (C_q), 136.0 (C_q), 130.0 (C_{Ar}-H), 129.5 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.3 (C_{Ar}-H), 128.1 (C_{Ar}-H), 126.9 (C_q), 79.03 (C-H), 68.88 (C-Br), 28.19 (Me), 21.87 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1724, 1684, 1611, 1314, 1262, 1177, 1094, 1020, 750, 732, 700 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 398 (100), 400 (98) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{19}BrNO_{3}^{+}$ [M+H]⁺ 376.0543, gefunden 376.0542.

3-Amino-2-brom-2-methyl-3-oxo-1-phenylpropyl 4-(tert-butyl) benzoat (227g)

Gemäß AVV 5 wurde **31g** (48.0 mg, 0.15 mmol) für 16 h gerührt und lieferte **227g** als farbloses Öl (43.9 mg, 10.5 μ mol, 70% *d.r.* > 99:1).

 $R_{f} = 0.23$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.23 - 8.00$ (m, 2H, C_{Ar}-H), 7.59 - 7.46 (m, 4H, C_{Ar}-H), 7.40 - 7.26 (m, 3H, C_{Ar}-H), 6.59 (br. s, 1H, NH), 6.41 (s, 1H, CH), 5.87 (br. s, 1H, NH), 2.07 (s, 3H, Me), 1.35 (s, 9H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 171.3 (C=O), 164.8 (C=O), 157.5 (C_q), 136.0 (C_q), 129.9 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 126.8 (C_q), 125.8 (C_{Ar}-H), 78.99 (CH), 68.86 (C-Br), 35.31 (C_q), 31.23 (Me), 28.18 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1725, 1684, 1608, 1315, 1264, 1189, 1112, 1093, 1016, 853, 772, 737, 699 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 440 (100), 442 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{25}BrNO_3 [M+H]^+ 418.1012$, gefunden 418.1010.

5-(Brom(phenyl)methyl)-2-(4-(tert-butyl)phenyl)-5-methyloxazol-4(5H)-one (**30g**)

Nach AVV 5 wurde aus **31g** (48.0 mg, 0.15 mmol) nach 16 h **30g** als farblos Öl erhalten (10.8 mg, 2.70 µmol, 18% d.r.> 99:1).

 $R_{f} = 0.53$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.14 - 8.00$ (m, 2H, C_{Ar}-H), 7.57 - 7.50 (m, 2H, C_{Ar}-H), 7.45 - 7.33 (m, 2H, C_{Ar}-H), 7.19 - 7.10 (m, 3H, C_{Ar}-H), 5.24 (s, 1H, CH), 1.82 (s, 3H, CH₃), 1.37 (s, 9H, CH₃) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 190.1 (C=N), 185.3(C=O), 160.0 (C_q), 135.6 (C_q), 130.3 (C_{Ar}-H), 129.4 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.6 (C_{Ar}-H), 126.2 (C_{Ar}-H), 122.5 (C_q), 89.03 (C-Br), 56.05 (C-H), 35.67 (C_q), 31.13 (Me), 23.25 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1755, 1608, 1581, 1546, 1498, 1413, 1373, 1367, 1352, 1147, 701 cm⁻¹;$

MS (ESI⁺) m/z (%) = 400 (100), 402 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{21}H_{23}BrNO_2^+$ [M+H]⁺ 400.0907, gefunden 400.0905.

3-Amino-2-brom-2-methyl-3-oxo-1-phenylpropyl 3-brombenzoate (227h)

AVV 5 folgend wurde **31h** (51.6 mg, 0.15 mmol) umgesetzt. Nach 24 h wurde **227h** als farbloser Feststoff isoliert (43.0 mg, 97.0 μ mol, 65% yield, d.r. > 99:1).

Schmp. 149 – 152 °C (CH₂Cl₂);

 $R_{f} = 0.22$ (*n*-Hexan/EtOAc 2:1);

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.25$ (t, J = 1.8 Hz, 1H, C_{Ar}-H), 8.07 (dt, J = 7.8, 1.3 Hz, 1H, C_{Ar}-H), 7.74 (ddd, J = 8.0, 2.0, 1.1 Hz, 1H, C_{Ar}-H), 7.53 – 7.45 (m, 2H, C_{Ar}-H), 7.37 (t, J = 7.9 Hz, 1H, C_{Ar}-H), 7.34 – 7.31 (m, 3H, C_{Ar}-H), 6.56 (br. s, 1H, NH), 6.43 (s, 1H, CH), 6.02 (br. s, 1H, NH), 2.07 (s, 3H, CH₃) ppm;

¹³**C-NMR** (100 MHz, CDCl₃) δ = 171.2 (C=O), 163.6 (C=O), 136.6 (C_{Ar}-H), 135.6 (C_q), 132.9 (C_{Ar}-H), 131.6 (C_q), 130.3 (C_{Ar}-H), 129.1 (C_{Ar}-H), 128.5 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 122.9 (C_q), 79.56 (C-H), 68.73 (C-Br), 28.26 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1730, 1684, 1570, 1281, 1247, 1105, 1080, 1067, 999, 743, 700 cm⁻¹;$

MS (ESI⁺) m/z (%) = 462 (51), 464 (100), 466 (50) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{16}Br_2NO_3^+$ [M+H]⁺ 439.9491, gefunden 439.9491.

3-Amino-2-benzyl-2-brom-3-oxo-1-phenylpropyl benzoat (227k)

Imid **31k** (22.9 mg, 7.0 μ mol) wurde gemäß AVV 5 in CH₂Cl₂ (2.5 mL, 0.3 M) umgesetzt. Nach 24 h wurde **227k** als farbloser Feststoff erhalten (25.5 mg, 5.80 μ mol, 83%, *d.r.* = 88:12).

Schmp. >230 °C;

 $\mathbf{R_{f}} = 0.27$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃; *Hauptdiastereomer*) $\delta = 8.28 - 8.18$ (m, 2H, C_{Ar}-H), 7.68 - 7.51 (m, 4H, C_{Ar}-H), 7.43 - 7.24 (m, 9H, C_{Ar}-H), 6.68 (s, 1H, CH), 6.23 (s, 1H, NH), 5.38 (s, 1H, NH), 3.84 (d, J = 13.8 Hz, 1H, CH₂), 3.37 (d, J = 13.8 Hz, 1H, CH₂) ppm;

¹**H-NMR** (300 MHz, CDCl₃, *Nebendiastereomer*) $\delta = 8.15 - 8.09$ (m, 2H, C_{Ar}-H), 7.67 - 7.49 (m, 4H, C_{Ar}-H), 7.48 - 7.21 (m, 9H, C_{Ar}-H), 6.59 (s, 1H, CH), 5.56 (s, 1H, NH) zweites NH-Signal wurde nicht gefunden, 3.76 (d, J = 13.7 Hz, 1H, CH₂), 2.73 (d, J = 13.7 Hz, 1H, CH₂) ppm;

¹³**C-NMR** (126 MHz, CDCl₃, *Hauptdiastereomer*) δ = 170.5 (C=O), 164.3 (C=O), 135.7 (C_q), 134.5 (C_q), 133.5 (C_{Ar}-H), 131.2 (C_{Ar}-H), 130.0 (C_{Ar}-H), 129.8 (C_q), 129.2 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.6 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.1 (C_{Ar}-H), 127.5 (C_{Ar}-H), 79.50 (CH), 77.10 (C-Br), 44.47 (CH₂) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1726, 1681, 1451, 1315, 1261, 1107, 1069, 1026, 711, 699 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 460 (100), 462 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{23}H_{21}BrNO_{3}^{+}$ [M+H]⁺ 438.0699, gefunden 438.0700.

3-Amino-2-brom-2-(methoxymethyl)-3-oxo-1-phenylpropyl benzoat (2271)

Gemäß AVV 5 wurde **311** (29.5 mg, 10.0 μ mol) umgesetzt. Nach 16 h wurde **2271** als farbloser Feststoff erhalten (18.7 mg, 4.80 μ mol, 48% yield d.r. > 99:1).

Schmp. 126 °C (CH₂Cl₂);

 $\mathbf{R_{f}} = 0.10 (n-\text{Hexan/EtOAc } 3:1);$

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.22 - 8.08$ (m, 2H, C_{Ar}-H), 7.66 - 7.58 (m, 1H, C_{Ar}-H), 7.58 - 7.44 (m, 4H, C_{Ar}-H), 7.40 - 7.26 (m, 3H, C_{Ar}-H), 6.73 (br. s, 1H, NH), 6.59 (s, 1H, CH), 5.80 (br. s, 1H, NH), 4.15 (d, J = 10.4 Hz, 1H, CH₂), 3.80 (d, J = 10.3 Hz, 1H, CH₂), 3.44 (s, 3H, OMe) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 169.0 (C=O), 164.5 (C=O), 135.3 (C_q), 133.7 (C_{Ar}-H), 130.0 (C_{Ar}-H), 129.6 (C_q), 129.0 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.2 (C_{Ar}-H), 77.33 (C-H), 76.70 (CH₂), 72.83 (C-Br), 59.72 (OMe) ppm;

IR (Film) $\tilde{\nu}_{max} = 1726, 1685, 1584, 1451, 1316, 1264, 1094, 1069, 1026, 711 cm⁻¹;$

MS (ESI⁺) m/z (%) = 414 (100), 416 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{19}BrNO_4^+$ [M+H]⁺ 392.0492, gefunden 392.0492.

3-Amino-2-brom-3-oxo-1,2-diphenylpropyl benzoat (227m)

$$H_2N$$
 H_2N H_2N

Gemäß AVV 5 wurde **31m** (49.4 mg, 0.15 mmol) innerhalb von 24 h umgesetzt. Produkt **227m** wurde als farbloser Feststoff erhalten (6.0 mg, 1.4 μ mol, 9%, d.r. > 99:1);

Schmp. >230 °C;

 $\mathbf{R_{f}} = 0.17$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.04 - 7.96$ (m, 2H, C_{Ar}-H), 7.74 - 7.67 (m, 2H, C_{Ar}-H), 7.61 - 7.48 (m, 1H, C_{Ar}-H), 7.45 - 7.38 (m, 2H, C_{Ar}-H), 7.37 - 7.31 (m, 5H, C_{Ar}-H), 7.29 - 7.20 (m, 3H C_{Ar}-H), 7.04 (s, 1H, CH), 6.26 (br. s, 1H, NH), 5.60 (br. s, 1H, NH) ppm;

¹³**C-NMR** (126 MHz, CDCl₃) δ =170.5 (C=O), 164.5 (C=O), 136.6 (C_q), 136.1 (C_q), 133.4 (C_{Ar}-H), 129.9 (C_{Ar}-H), 129.8 (C_q), 129.4 (C_{Ar}-H), 129.3 (C_{Ar}-H), 129.2 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.6 (C_{Ar}-H), 128.2 (C_{Ar}-H), 127.6 (C_{Ar}-H), 77.73 (CH), 73.76 (C-Br) ppm;

IR (Film) $\tilde{\nu}_{max} = 1717, 1668, 1606, 1267, 1105, 1093, 975, 710, 694 cm⁻¹;$

MS (ESI⁺) m/z (%) = 446 (100), 448 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für $C_{22}H_{19}BrNO_3^+$ [M+H]⁺ 424.0543, gefunden 424.0541.

5-(Brom(phenyl)methyl)-2,5-diphenyloxazol-4(5H)-on (30m)

Gemäß AVV 5 wurde **31m** (49.4 mg, 0.15 mmol) innerhalb von 24 h umgesetzt. Produkt **30m** wurde als farbloser Feststoff erhalten (27.3 mg, 6.70 μ mol, 45 %, d.r. = 90:10).

Schmp. 196 °C (CHCl₃);

 $R_{f} = 0.40 (n-\text{Hexan/EtOAc 7:3});$

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.31 - 8.24$ (m, 2H, C_{Ar}-H), 7.81 - 7.72 (m, 3H, C_{Ar}-H), 7.62 - 7.54 (m, 2H, C_{Ar}-H), 7.53 - 7.47 (m, 2H, C_{Ar}-H), 7.46 - 7.39 (m, 3H, C_{Ar}-H), 7.23 - 7.12 (m, 3H, C_{Ar}-H), 5.59 (s, 1H, CH) ppm;

¹³C-NMR (101 MHz, CDCl₃) δ = 187.6 (C=N), 185.3 (C=O), 135.8 (C_{Ar}-H), 135.5 (C_q), 134.9 (C_q), 130.3 (C_{Ar}-H), 129.6 (C_{Ar}-H), 129.4 (C_{Ar}-H), 129.3 (C_{Ar}-H), 129.3 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.5 (C_{Ar}-H), 125.3 (C_q), 125.0 (C_{Ar}-H), 91.21 (C_q), 57.49 (CH) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1754, 1603, 1590, 1549, 1489, 1450, 1351, 1178, 1067, 907, 750, 730, 700, 661 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 406 (100), 408 (96) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{22}H_{17}BrNO_2^+$ [M+H]⁺ 406.0437, gefunden 406.0438.

3-Amino-2-brom-1-(4-methoxyphenyl)-2-methyl-3-oxopropyl benzoat (2270)

Gemäß AVV 5 wurde **310** (44.3 mg, 0.15 mmol) für 16 h gerührt. Das Produkt **2270** wurde als farbloser Feststoff erhalten (26.4 mg, 7.00 µmol, 45%, d.r. 74:26).

 $R_{f} = 0.14$ (*n*-Hexan/EtOAc 3:1);

¹**H-NMR** (500 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 8.16 - 8.10$ (m, 2H, C_{Ar}-H), 7.64 - 7.58 (m, 1H, C_{Ar}-H), 7.49 (t, *J* = 7.8 Hz, 2H, C_{Ar}-H), 7.46 - 7.42 (m, 2H, C_{Ar}-H), 6.86 - 6.81 (m, 2H, C_{Ar}-H), 6.57 (br. s, 1H, NH), 6.37 (s, 1H, CH), 5.72 (br. s, 1H, NH), 3.78 (s, 3H, OCH₃), 2.06 (s, 3H, CH₃) ppm;

¹**H-NMR** (500 MHz, CDCl₃, *Nebendiastereomer*) $\delta = 8.16 - 8.10$ (m, 2H, C_{Ar}-H), 7.64 - 7.58 (m, 1H, C_{Ar}-H), 7.53 - 7.41 (m, 4H, C_{Ar}-H), 6.86 - 6.81 (m, 2H, C_{Ar}-H), 6.33 (s, 1H, CH), 5.85 (br. s, 1H, NH) second NH signal not detected, 3.79 (s, 3H, OCH₃), 2.04 (s, 3H, CH₃) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Hauptdiastereomer*) $\delta = 171.4$ (C=O), 164.8 (C=O), 160.0 (C_q), 133.6 (C_{Ar}-H), 129.9 (C_{Ar}-H), 129.7 (C_q), 129.6 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.0 (C_q), 113.5 (C_{Ar}-H), 79.1 (CH), 69.2 (C-Br), 55.3 (OMe), 28.2 (Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃, *Nebendiastereomer*) δ = 172.4 (C=O), 164.5 (C=O), 160.2 (C_q), 133.4 (C_{Ar}-H), 130.2 (C_{Ar}-H), 129.8 (C_q), 128.6 (C_{Ar}-H), 128.5(C_{Ar}-H), 127.5 (C_q), 113.6 (C_{Ar}-H), 78.69 (CH), 69.79 (C-Br), 55.37 (OMe), 27.56 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1724, 1681, 1513, 1249, 1176, 1105, 1095, 1069, 1026, 710 cm⁻¹;$

MS (ESI⁺) m/z (%) = 414 (100), 416 (97) [M+Na]⁺;

HRMS (ESI⁺): berechnet für C₁₈H₁₉BrNO₄ [M+H]⁺ 392.0492, gefunden 392.0491.

3-Amino-2-brom-1-(3,5-dibromphenyl)-2-methyl-3-oxopropyl benzoat (227q)

Gemäß AVV 5 wurde **31q** (63.5 mg, 0.15 mmol) für 16 h gerührt. **227q** wurde als farbloser Feststoff erhalten (12.5 mg, 2.40 μ mol, 15%, d.r. > 99:1).

Schmp. 123 °C (CH₂Cl₂);

 $R_{f} = 0.30 (n-\text{Hexan/EtOAc 7:3});$

¹**H-NMR** (500 MHz, CDCl₃) $\delta = 8.17 - 8.08$ (m, 2H, C_{Ar}-H), 7.67 - 7.62 (m, 2H, C_{Ar}-H), 7.59 (d, J = 1.8 Hz, 2H, C_{Ar}-H), 7.52 (t, J = 7.8 Hz, 2H, C_{Ar}-H), 6.62 (s, 1H, NH), 6.36 (s, 1H, CH), 5.89 (s, 1H, NH), 2.09 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ =170.8 (C=O), 164.7 (C=O), 139.9 (C_q), 134.7 (C_{Ar}-H), 134.7 (C_{Ar}-H), 134.0 (C_{Ar}-H), 130.1 (C_{Ar}-H), 129.0 (C_q), 128.9 (C_{Ar}-H), 122.6 (C_q), 68.8 (CH), 29.8 (CBr), 28.7 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1729, 1684, 1584, 1559, 1451, 1261, 1093, 1068, 1026, 743, 710, 689 cm⁻¹;$

MS (ESI⁺) m/z (%) = 540 (35), 542 (100), 544 (98), 546 (30) [M+Na]⁺;

HRMS (ESI⁺) berechnet für $C_{17}H_{15}Br_3NO_3^+$ [M+H]⁺ 517.8597, gefunden 517.8595.

5-(Brom(3,5-dibromphenyl)methyl)-5-methyl-2-phenyloxazol-4(5H)-on (30q)

Gemäß AVV 5 wurde **31q** (63.5 mg, 0.15 mmol) bei RT innerhalb von 16 h zu **30q** umgesetzt, welches als farbloser Feststoff isoliert wurde (51.1 mg, 0.10 mmol, 69%, d.r. 95:5).

Schmp. 186 – 190 °C (CH₂Cl₂);

 $R_{f} = 0.47 (n-\text{Hexan/EtOAc 7:3});$

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.24 - 8.16$ (m, 2H, C_{Ar}-H), 7.73 (ddt, J = 8.1, 7.0, 1.4 Hz, 1H, C_{Ar}-H), 7.60 - 7.51 (m, 2H, C_{Ar}-H), 7.49 - 7.40 (m, 3H, C_{Ar}-H), 5.09 (s, 1H, CH), 1.83 (s, 3H, CH₃) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 189.4 (C=O), 185.6 (C=N), 139.0 (C_q), 139.0 (C_{Ar}-H), 135.1 (C_{Ar}-H), 130.8 (C_{Ar}-H), 130.4 (C_{Ar}-H), 129.3 (C_{Ar}-H), 125.0 (C_q), 122.9 (C_q), 88.51 (C_q), 53.52 (CH), 22.86 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1751, 1602, 1589, 1543, 1490, 1451, 1351, 1146, 862, 753, 730, 705, 690 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 500 (34), 502 (100), 504 (97), 506 (30) [M+H]⁺;

HRMS (ESI⁺) berechnet für $C_{17}H_{13}Br_3NO_2^+$ [M+H]⁺ 499.8491, gefunden 499.8488.

3.2 Synthese von Oxazinanen 243 in einer Eintopfreaktion

AVV 6: Synthese der Oxazinane 243

Imid **31** (0.15 mmol, 1.0 Äq.), NBS (0.18 mmol, 1.2 Äq.) sowie **209** (15.0 µmol, 0.1 Äq.) wurden in ein Reaktionsgefäß aus Braunglas mit Septum eingewogen und unter Schutzgas in trockenem HFIP (0.5 mL, 0.3 M) gelöst. Die Reaktion wurde auf 50 °C erwärmt und für 4-6 Stunden gerührt, bis die Reaktionskontrolle mittels DC einen vollständigen Umsatz des Edukts anzeigte. Das Reaktionsgefäß wurde für den Druckausgleich mit einem Argonballon bestückt, und NaCNBH₃ (0.30 mmol, 2.0 Äq.) zur Reaktionslösung hinzugefügt. Es wurde für 24 h bei 50 °C weiter gerührt, dann wurde die Reaktion durch Zugabe von 2 M NaOH-Lösung (3 mL) abgebrochen und mit dest. H₂O (3 mL) und EtOAc (5 mL) verdünnt. Die wässr. Phase wurde mit EtOAc extrahiert (3 x 5 mL), die organischen Phasen vereinigt, mit ges. wässr. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Nach Entfernen des Lösungsmittels bei vermindertem Druck wurde das Rohprodukt säulenchromatographisch an Kieselgel gereinigt (*n*-Hexan/EtOAc = 7:3). 5-Brom-5-methyl-2,6-diphenyl-1,3-oxazinan-4-on (243b)

Gemäß AVV 6 wurde Imid **31b** (40.0 mg, 0.15 mmol, 1.0 Äq.) mit NBS (32.0 mg, 0.18 mmol) in HFIP bei 50 °C umgesetzt. Nach Zugabe von NaCNBH₃ (18.9 mg, 0.30 mmol, 2.0 Äq.) wurde für 24 h gerührt. **243b** wurde als farbloser Feststoff erhalten (32.6 mg, 9.4 μ mol 63%, d.r. = 99:1).

Schmp. 182 -184 °C (CH₂Cl₂);

 $R_{f} = 0.23$ (*n*-Hexan/EtOAc 2:1);

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 7.57 - 7.53$ (m, 2H, C_{Ar}-H), 7.51 - 7.42 (m, 5H, C_{Ar}-H), 7.39 - 7.33 (m, 3H, C_{Ar}-H), 6.89 (s, 1H, NH), 5.97 (s, 1H, CH), 5.41 (s, 1H, CH), 1.74 (s, 3H, Me) ppm;

Tabelle 28.	Entscheidende	NOESY	-Wechselwirku	ngen in 243b .
-------------	---------------	-------	---------------	-----------------------

Proton	1H-NMR (δ, m, J)	NOESY
2	5.97 (s, 1H)	3
3	6.89 (s, 1H)	6, 2
6	5.41 (s, 1H)	3

¹³C-NMR (101 MHz, CDCl₃) δ = 169.8 (C=O), 137.3 (C_q), 134.8 (C_q), 130.3 (C_{Ar}-H), 129.1 (C_{Ar}-H), 129.0 (C_{Ar}-H), 128.8 (C_{Ar}-H), 128.5 (C_{Ar}-H), 128.2 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.2 (C_{Ar}-H), 126.9 (C_{Ar}-H), 86.13 (CH), 85.01 (CH), 60.77 (C-Br), 24.58 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1646, 1453, 1393, 1371, 1309, 1118, 1045, 1026, 893, 764, 735, 696 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 346 (100), 348 (95) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{17}BrNO_2^+$ [M+H]⁺ 346.0437, gefunden 346.0439.

5-Brom-5-methyl-6-phenyl-2-(thiophen-3-yl)-1,3-oxazinan-4-on (243f)

Gemäß AVV 6 wurde **31f** (50.4 mg, 185 μ mol) mit NBS (39.2 mg, 0.22 mmol, 1.2 Äq.) und NaCNBH₃ (23.3 mg, 0.37 mmol, 2.0 Äq.) in HFIP (0.6 mL, 0.3 M) bei 50 °C umgesetzt. Das Produkt **243f** wurde als farbloser Feststoff erhalten (39.2 mg, 11.1 μ mol, 60%, d.r. = 91:9).

 $R_{f} = 0.17 (n-Hexan/EtOAc = 6:4);$

Schmp. 216 °C (EtOAc/CH₂Cl₂);

¹**H-NMR** (500 MHz, CDCl₃) δ = 7.57 – 7.51 (m, 2H, C_{Ar}-H), 7.50 (dd, *J* = 3.0, 1.3 Hz, 1H, C_{Ar}-H), 7.41 (dd, *J* = 5.0, 2.9 Hz, 1H, C_{Ar}-H), 7.41 – 7.32 (m, 3H, C_{Ar}-H), 7.22 (dd, *J* = 5.1, 1.3 Hz, 1H, C_{Ar}-H), 6.22 (br. s, 1H, NH), 6.11 (s, 1H, CH), 5.40 (s, 1H, CH), 1.77 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 169.5 (C=O), 138.8 (C_q), 134.7 (C_q), 128.9 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.0 (C_{Ar}-H), 127.7 (C_{Ar}-H), 125.4 (C_{Ar}-H), 125.1 (C_{Ar}-H), 85.13 (CH), 81.97 (CH), 60.75 (CBr), 24.64 (Me) ppm;

IR (Film) $\tilde{\nu}_{max} = 1674, 1455, 1378, 1317, 1289, 1113, 1047, 784, 750, 738, 701 cm⁻¹;$

MS (ESI⁺) m/z (%) = 352 (100), 354 (97) [M+H]⁺;

HRMS (ESI⁺) :berechnet für $C_{15}H_{15}BrNO_2S^+$ [M+H]⁺ 352.0001; gefunden 352.0000.

5-Brom-2-(3-bromphenyl)-5-methyl-6-phenyl-1,3-oxazinan-4-on (243h)

Gemäß AVV 6 wurden Imid **31h** (51.6 mg, 0.15 mmol), NBS (32.0 mg, 0.18 mmol, 1.2 Äq.) und NaCNBH₃ (18.9 mg, 0.30 mmol, 2.0 Äq.) zu **243h** umgesetzt, das als farbloser Feststoff erhalten wurde (34.0 mg, 8.0 μ mol, 53% d.r.= 99:1).

Schmp. 189 °C (CH₂Cl₂);

 $R_{f} = 0.24$ (*n*-Hexan/EtOAc 7:3);

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.66 (t, *J* = 1.8 Hz, 1H, C_{Ar}-H), 7.60 – 7.51 (m, 3H, C_{Ar}-H), 7.45 – 7.36 (m, 4H, C_{Ar}-H), 7.32 (t, *J* = 7.8 Hz, 1H, C_{Ar}-H), 7.28 (s, 1H, NH), 5.95 (s, 1H, CH), 5.39 (s, 1H, CH), 1.72 (s, 3H, Me) ppm;

¹³C-NMR (126 MHz, CDCl₃) δ = 170.1 (C=O), 139.3 (C_q), 134.4 (C_q), 133.4 (C_{Ar}-H), 130.7 (C_{Ar}-H), 129.9 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.0 (C_{Ar}-H), 125.7 (C_{Ar}-H), 123.1 (C_q), 85.23 (CH), 84.95 (CH), 60.50 (C-Br), 24.49 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1672, 1454, 1386, 1319, 1296, 1205, 1118, 1071, 1047, 999, 782, 749, 699, 680 \text{ cm}^{-1}$

MS (ESI⁺) m/z (%) = 424 (54), 426 (100), 428 (50) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{17}H_{16}Br_2NO_2^+$ [M+H]⁺ 423.9542, gefunden 423.9543 .

5-Brom-2-(4-chlorophenyl)-5-methyl-6-phenyl-1,3-oxazinan-4-on (243i)

Gemäß AVV 6 wurde Imid **31i** (45.0 mg, 0.15 mmol, 1.0 Äq.) mit NBS (32.0 mg, 0.18 mmol, 1.2 Äq.) und NaCNBH₃ (18.9 mg, 0.30 mmol, 2.0 Äq.) zu **243i** umgesetzt, welches als farbloser Feststoff erhalten wurde (34.7 mg, 9.10 μ mol, 61%, d.r. > 99:1).

Schmp. 196 °C (CH₂Cl₂);

 $R_{f} = 0.24$ (*n*-Hexan/EtOAc 2:1);

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.62 – 7.51 (m, 2H, C_{Ar}-H), 7.51 – 7.36 (m, 4H, C_{Ar}-H), 7.43 – 7.31 (m, 3H, C_{Ar}-H), 6.92 (br. s, 1H, NH), 5.97 (s, 1H, CH), 5.40 (s, 1H, CH), 1.74 (s, 3H, Me) ppm;

¹³**C-NMR** (126 MHz, CDCl₃) δ = 169.8 (C=O), 136.3 (C_q), 135.7 (C_q), 134.5 (C_q), 129.4 (C_{Ar}-H), 128.9 (C_{Ar}-H), 128.3 (C_{Ar}-H), 128.2 (C_{Ar}-H), 128.0 (C_{Ar}-H), 85.42 (CH), 85.05 (CH), 60.57 (C-Br), 24.58 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1671, 1493, 1454, 1385, 1319, 1296, 1117, 1089, 1046, 1015, 836, 785, 752, 700 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 380 (100), 382 (96) [M+H]⁺;

HRMS (ESI⁺) berechnet für $C_{17}H_{16}BrClNO_2^+$ [M+H]⁺ 380.0047 gefunden 380.0046.
5-Brom-5-ethyl-2,6-diphenyl-1,3-oxazinan-4-on (243j)

Gemäß AVV 6 wurde Imid **31j** (42.0 mg, 0.15 mmol, E/Z = 64:32) mit NBS (32.0 mg, 0.18 mmol, 1.2 Äq.) und NaCNBH₃ (18.9 mg, 0.30 mmol, 2.0 Äq.) zu **243j** umgesetzt, das als farbloser Feststoff erhalten wurde (25.0 mg, 6.9 µmol, 46%, d.r. = 84:16).

Schmp. 182 °C (CH₂Cl₂);

 $R_{f} = 0.28 (n-\text{Hexan/EtOAc 7:3});$

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.70 – 7.58 (m, 2H, C_{Ar}-H), 7.50 – 7.39 (m, 2H C_{Ar}-H), 7.39 – 7.33 (m, 3H, C_{Ar}-H), 7.39 – 7.33 (m, 3H, C_{Ar}-H), 6.84 (s, 1H, NH), 5.97 (s, 1H, CH), 5.48 (s, 1, CH), 2.19 – 1.89 (m, 2H, CH₂), 1.07 (t, *J* = 7.4 Hz, 3H, Me) ppm;

¹³**C-NMR** (101 MHz, CDCl₃) δ = 168.4 (C=O), 137.3 (C_q), 134.8 (C_q), 130.4 (C_{Ar}-H), 129.1 (C_{Ar}-H), 128.7 (C_{Ar}-H), 128.2 (C_{Ar}-H), 127.9 (C_{Ar}-H), 127.0 (C_{Ar}-H), 86.42 (CH), 85.63 (CH), 66.39 (CBr), 30.49 (CH₂), 11.28 (Me) ppm;

IR (Film) $\tilde{\nu}_{\text{max}} = 1648, 1472, 1455, 1394, 1307, 1285, 1128, 1053, 1028, 722, 695 \text{ cm}^{-1}$;

MS (ESI⁺) m/z (%) = 360 (100), 392 (97) [M+H]⁺;

HRMS (ESI⁺): berechnet für $C_{18}H_{19}BrNO_2^+$ [M+H]⁺ 360.0594, gefunden 360.0594.

3.3 Versuchsvorschrift zur asymmetrischen Bromzyklisierung

Der chirale Induktor (0.1 -0.5 Äq.) und NBS (16.0 mg, 90 μ mol, 1.1 Äq.) sowie **209** (2.3 mg, 7.5 μ mol, 0.1 Äq.) wurden in ein ofengetrocknetes Braunglasvial eingewogen. Das Reaktionsgefäß wurde mit einem Schraubdeckel mit Septum bestückt, und durch abwechselndes Evakuieren und Besticken mit Argon eine Schutzgasatmosphäre erzeugt. Die Feststoffe wurden in dem jeweiligen Lösungsmittel (1.0 mL, 0.08 M) gelöst und auf die gewünschte Temperatur gebracht. Anschließend wurde Imid **31b** (20 mg, 75 mmol, 1.0 Äq.) hinzugefügt und die Reaktion für die angegebene Dauer gerührt. Zur Aufarbeitung wurde die Reaktionslösung über basisches Aluminiumoxid filtriert, mit EtOAc nachgewaschen und die Lösungsmittel bei vermindertem Druck entfernt. Säulenchromatographie an Kieselgel (*n*-Hexan/EtOAc = 9:1) lieferte die Produkte, welche mittels HPLC an chiraler Phase aufgetrennt wurden. AICEL Chiralpak® IA column (4.6 mm x 250 mm, particle size 5 μ m) *i*-PrOH/*n*-

Hexane (10:90 \rightarrow 50:50 in 30 min), 0.5 mL/min. **32b** $t_1 = 15.7$ min, $t_2 = 18.7$ min, **30b** $t_1 = 15.6$ min, $t_2 = 17.1$ min.

3.4 Versuche zur Chlorzyklisierung von Zimtsäureimid 31b

5-Chloro(phenyl)methyl)-5-methyl-2-phenyloxazol-4(5H)-on (30t)

Imid **31b** (40 mg, 0.15 mmol, 1.0 Äq.) wurden mit Chlorreagenz **213** (46.8 mg, 0.17 mmol, 1.1 Äq.) in einem Reaktionsgefäß aus Braunglas eingewogen, und unter Schutzgasatmosphäre in trockenem HFIP (0.5 mL, 0.3M) gelöst. Es folgte die Zugabe von Pd(MeCN)₂(BF₄)₄ (13.3 mg, 30.0 μ mol, 0.2 Äq.), anschließend wurde auf 50 °C erwärmt. Die Reaktion wurde nach 48 h durch das Filtrieren der Reaktionslösung über basisches Aluminiumoxid (EtOAc) abgebrochen. Das Produktgemisch wurde als farbloses Öl erhalten (9.4 mg, 32 μ mol, 21%, r.r = 54:46).

 $\mathbf{R}_{f} = 0.37 (n-\text{Hexan/EtOAc} = 7:3);$

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.16 - 8.07$ (m, 2H, C_{Ar}-H), 7.72 - 7.65 (m, 1H, C_{Ar}-H), 7.58 - 7.48 (m, 2H, C_{Ar}-H), 7.39 - 7.32 (m, 2H, C_{Ar}-H), 7.22 - 7.12 (m, 3H, C_{Ar}-H), 5.22 (s, 1H, CH), 1.83 (s, 3H, Me) ppm;

¹³C-NMR (75 MHz, CDCl₃) δ = 190.7 (C=O), 185.7 (C=N), 135.6 (C_{Ar}-H), 134.7 (C_q), 130.3 (C_{Ar}-H), 129.5 (C_q), 129.1 (C_{Ar}-H), 128.5 (C_{Ar}-H), 128.4 (C_{Ar}-H), 89.35 (C_q), 65.12 (CH), 21.43 (Me) ppm;

MS (ESI⁺) m/z (%) = 300 (100), 302 (40) $[M+H]^+$;

HRMS (ESI⁺): berechnet für $C_{17}H_{15}CINO_2^+$ [M+H]⁺ 300.0786, gefunden 300.078.

3.5. Kristallstrukturdaten der Verbindung 243f

Abb. 14. Darstellung der Kristallstruktur von 243f.

Tabelle 29. Verbindungs- und Kristallstrukturdaten von 243f.

Bezeichnung	KohSt1_2	
Summenformel	$C_{15}H_{14}BrNO_2S$	
Molekulargewicht	352.24	
Temperatur	100(2) K	
Wellenlänge	0.71073 Å	
Größe des Kristalls	0.398 x 0.603 x 0.646 mm	
Farbe/Beschaffenheit	Klares, farbloses Fragment	
Kristallsystem	Monoclinic	
Raumgruppe	P1 21/c 1	
Zellengröße (Winkel)	a = 12.6180(4) Å	$\alpha = 90^{\circ}$
	b = 10.9291(3) Å	$\beta = 100.240(2)^{\circ}$
	c = 10.5521(3) Å	$\gamma = 90^{\circ}$
Volumen	1431.99(7) Å ³	
Z	4	
Dichte (berechnet)	1.634 g/cm ³	
Absorptionskoeffizient	3.016 mm ⁻¹	
F(000)	712	
Θ-Bereich	2.48 bis 27.10°	
Datensatz	-16 < = h < = 16, -13 < = k < = 14, -13 < = l < = 13	
Reflexe, total	51993	
Reflexe, einzigartig	3150 [R(int) = 0.0848]	

Anzahl Daten/ Beschränkungen /	3150 / 0 / 182	
Parameter		
$GOF(F^2)$	1.058	
Finale R Indizes	2817 data;	R1 = 0.0339, wR2 = 0.0910
	I<σ(I)	
	all data	R1 = 0.0386, wR2 = 0.0932
Gewichtung	$w = 1/[\sigma^2(F_o^2) + 2F_c^2)/3$	
Max., Min residuale Dichte	1.042 und -0.885 eÅ ⁻³	

Abkürzungsverzeichnis

Abb.	Abbildung	
abs.	absolut	
Abschn.	Abschnitt	
Äq.	Äquivalent	
Ar.	Aryl-	
ATR	Abgeschwächte Totalreflexion	
AVV	Allgemeine Versuchsvorschrift	
BINAP	2,2`-Bis (diphenyl phosphino)-1,1`-bin a phthyl	
BINOL	1,1'-Bi-2-naphthol	
bipy	Bipyridin	
BPO	Bromperoxidase	
CAM	Cerammoniummolybdat	
CAN	Cerammoniumnitrat	
COSY	Correlation Spectroscopy	
СРО	Chlorperoxidase	
СТ	Computertomographie	
d.r.	Diastereomerenverhältnis	
DBDMH	Dibromdimethylhydantoin	
DC	Dünnschicht-Chromatographie	
DDQ	2,3-Dichlor-5,6-dicyano-1,4-benzochinon	
dest.	Destilliert	
DIBAL-H	Diisobutylaluminiumhydrid	
DIPEA	Diisopropylethylamin	
DMDO	Dimethyldioxiran	
DMF	Dimethylformamid	
DMSO	Dimethylsulfoxid	
ee	Enantiomerenüberschuss	
EI	Elektronenstoßionisation	
ESI	Elektronensprayionisation	
ESR	Elektronenspinresonanz	
Et	Ethyl-	
et al.	et alii	
FAD	Flavin Adenin Dinukleotid	
FCKW	Fluorchlorkohlenwasserstoff	

FDH	Flavin-abhängige Halogenase	
GC	Gaschromatographie	
ges.	gesättigt	
HFIP	Hexafluoroisopropanol	
HMBC	Heteronuclear Multiple Bond Correlation	
HPLC	Hochleistungsflüssigkeischromatographie	
НРО	Haloperoxidase	
HRMS	Hochauflösende Massenspektrometrie	
HSAB	Hard and Soft Acids and Bases	
HSQC	Heteronuclear Single Quantum Coherence	
IR	Infrarotspektroskopie	
KHMDS	Kaliumhexamethyldisilazid	
konz.	konzentriert	
LDA	Lithiumdiisopropylamid	
Μ	Molar	
mCPBA	meta-Chlorperbenzoesäure	
MS	Massenspektrometrie	
n.d.	not determined	
NBS	N-Bromsuccinimid	
NCS	N-Chlorsuccinimid	
NHFe-Halogenase	Nicht-Häm-Eisen-abhängige Halogenase	
NIS	N-Iodsuccinimid	
NMP	N-Methyl-2-pyrrolidon	
NMR	Nuclear Magnetic Resonance	
NOESY	Nuclear Overhauser Effect Spectroscopy	
Nu	Nukleophil	
PCC	Pyridiniumchlorochromat	
PET	Positronen-Emissions-Tomographie	
PMB	para-Methoxybenzyl-	
ppm	parts per million	
PTFE	Polytetrafluorethylen	
PVC	Polyvinylchlorid	
r.r.	Regioisomerenverhältnis	
R _f	Retentionsfaktor	
ROV	Remotely Operated Vehicle	
RT	Raumtemperatur	

S-Adenosyl-L-Methionin
Schmelzpunkt
Self-Contained Underwater Breathing Apparatus
$\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime} \text{-} Tetraaryl-1, 3\text{-} dioxolan-4, 5\text{-} dimethanol$
tert-Butyldimethylsilyl
2,2,6,6-Tetramethylpiperidinyloxyl
Tetrafluorethylen
Tetrahydrofuran
Tetrahydrothiophen
Triisopropylsilyl
Trimethylsilyl
Vanadium-abhängige Chlorperoxidase
Vergleich
Vanadium-abhängige Haloperoxidase
versus
wässrig
zum Beispiel
Zersetzung

Literaturverzeichnis

- [1] P. Georlette, in *Fire Retardant Materials* (Eds.: A. R. Horrocks, D. Price), Woodhead Publishing, **2001**, pp. 264-292.
- [2] a) M. A. Bettmann, T. W. Morris, *Radiol. Clin. N. Am.* 1986, 24, 347-357; b) T.-Y. Lee, *Trends Biotechnol.* 2002, 20, S3-S10; c) K. T. Bae, *Radiology* 2010, 256, 32-61; d) T. K.
 Kawada, *Drug Intell. Clin. Pharm.* 1985, 19, 525-529.
- [3] F. J. Vingerhoets, M. Schulzer, T. J. Ruth, J. E. Holden, B. J. Snow, J. Nucl. Med. 1996, 37, 421-426.
- [4] M. M. Alauddin, Am. J. Nucl. Med. Mol. Imaging 2011, 2, 55-76.
- [5] F. M. Reichle, P. F. Conzen, Best Pract. Res. Clin. Anaesthesiol. 2003, 17, 29-46.
- [6] H. L. Zuckerbraun, H. Babich, R. May, M. C. Sinensky, *Eur. J. Oral Sci.* 1998, 106, 628-636.
- [7] M. Z. Hernandes, S. M. T. Cavalcanti, D. R. M. Moreira, W. F. de Azevedo, A. C. L. Leite, *Curr. Drug Targets* 2010, 11, 303-314.
- [8] P. Jeschke, *Pest Manag. Sci.* **2017**, *73*, 1053-1066.
- [9] a) M. J. Molina, F. S. Rowland, *Nature* 1974, 249, 810; b) S. Solomon, *Nature* 1990, 347, 347-354.
- [10] P. A. Bertazzi, I. Bernucci, G. Brambilla, D. Consonni, A. C. Pesatori, *Environ. Health Perspect.* 1998, 106, 625-633.
- [11] G. W. Gribble, Am. Sci. 2004, 92, 342-349.
- [12] A. L. Demain, A. Fang, in *History of Modern Biotechnology I* (Ed.: A. Fiechter), Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 1-39.
- [13] R. S. Griffith, *Rev. Infect. Dis.* **1981**, *3*, S200-S204.
- [14] H.-M. Xu, G.-Z. Zeng, W.-B. Zhou, W.-J. He, N.-H. Tan, *Tetrahedron* **2013**, *69*, 7964-7969.
- [15] Y.-P. Li, X.-N. Li, L.-H. Gao, H.-Z. Li, G.-X. Wu, R.-T. Li, J. Agric. Food Chem. 2013, 61, 7219-7224.
- [16] T. Matsumoto, T. Hosoya, H. Tomoda, M. Shiro, H. Shigemori, *Chem. Pharm. Bull.* 2011, 59, 1559-1561.
- [17] C. E. Müller, *Pharm. Unserer Zeit* **1996**, *25*, 85-92.
- [18] D. A. Dias, S. Urban, U. Roessner, *Metabolites* **2012**, *2*, 303-336.
- [19] a) J. W. Blunt, B. R. Copp, W.-P. Hu, M. H. G. Munro, P. T. Northcote, M. R. Prinsep, *Nat. Prod. Rep.* 2009, *26*, 170-244; b) J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro, M. R. Prinsep, *Nat. Prod. Rep.* 2016, *33*, 382-431; c) S. Soldatou, B. J. Baker, *Nat. Prod. Rep.* 2017, *34*, 585-626; d) J. W. Blunt, A. R. Carroll, B. R. Copp, R. A. Davis, R. A. Keyzers, M. R. Prinsep, *Nat. Prod. Rep.* 2018, *35*, 8-53.
- [20] G. Gribble, *Mar. Drugs* **2015**, *13*, 4044.

- [21] M. T. Cabrita, C. Vale, A. P. Rauter, *Mar. Drugs* **2010**, *8*, 2301-2317.
- [22] D. J. Faulkner, Nat. Prod. Rep. 1984, 1, 551-598.
- [23] a) T. Irie, M. Suzuki, T. Masamune, *Tetrahedron Lett.* 1965, *6*, 1091-1099; b) S. Teruaki, K. Kuniko, S. Minoru, K. Etsuro, *Chem. Lett.* 1983, *12*, 1639-1642.
- [24] R. W. Fuller, J. H. Cardellina, Y. Kato, L. S. Brinen, J. Clardy, K. M. Snader, M. R. Boyd, J. Med. Chem. 1992, 35, 3007-3011.
- [25] M. Tadesse, J. Svenson, M. Jaspars, M. B. Strøm, M. H. Abdelrahman, J. H. Andersen, E. Hansen, P. E. Kristiansen, K. Stensvåg, T. Haug, *Tetrahedron Lett.* 2011, 52, 1804-1806.
- [26] a) N. Ruocco, S. Costantini, F. Palumbo, M. Costantini, *Mar. Drugs* 2017, *15*, 173; b) G.
 Esposito, R. Teta, R. Miceli, L. S. Ceccarelli, G. Della Sala, R. Camerlingo, E. Irollo, A.
 Mangoni, G. Pirozzi, V. Costantino, *Mar. Drugs* 2015, *13*, 444-459, 416 pp.
- [27] E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-8359.
- [28] E. Parisini, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo, *Chem. Soc. Rev.* 2011, 40, 2267-2278.
- [29] M. K. Renner, P. R. Jensen, W. Fenical, J. Org. Chem. 1998, 63, 8346-8354.
- [30] R. D. Birkenmeyer, F. Kagan, J. Med. Chem. 1970, 13, 616-619.
- [31] F. Le Goffic, J. Antimicrob. Chemother. **1985**, 16, 13-21.
- [32] Z. Xu, Z. Yang, Y. Liu, Y. Lu, K. Chen, W. Zhu, J. Chem. Inf. Model. 2014, 54, 69-78.
- [33] J.-P. Bégué, D. Bonnet-Delpon, J. Fluor. Chem. 2006, 127, 992-1012.
- [34] D. B. Harper, D. O'Hagan, Nat. Prod. Rep. 1994, 11, 123-133.
- [35] a) P. W. Clutterbuck, S. L. Mukhopadhyay, A. E. Oxford, H. Raistrick, *Biochem. J.* 1940, 34, 664-677; b) L. P. M. Hager, David R.; Brown, Frederick S.; Eberwein, Horst J. Biol. Chem. 1966, 241, 1769 -1777.
- [36] C. S. Neumann, C. T. Walsh, R. R. Kay, Proc. Natl. Acad. Sci. 2010, 107, 5798-5803.
- [37] E. Yeh, S. Garneau, C. T. Walsh, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3960-3965.
- [38] K. Yamanaka, K. S. Ryan, T. A. M. Gulder, C. C. Hughes, B. S. Moore, J. Am. Chem. Soc. 2012, 134, 12434-12437.
- [39] a) J. M. Winter, B. S. Moore, *J. Biol. Chem.* 2009, 284, 18577-18581; b) A. Butler, J. N.
 Carter-Franklin, *Nat. Prod. Rep.* 2004, 21, 180-188; c) R. Wever, B. E. Krenn, R. Renirie, in *Methods in Enzymology*, Academic Press, 2018.
- [40] H. Vilter, *Phytochemistry* **1984**, *23*, 1387-1390.
- [41] E. de Boer, Y. van Kooyk, M. G. M. Tromp, H. Plat, R. Wever, *Biochim. Biophys. Acta* 1986, 869, 48-53.
- [42] J. N. Carter-Franklin, A. Butler, J. Am. Chem. Soc. 2004, 126, 15060-15066.
- [43] K. Kaneko, K. Washio, T. Umezawa, F. Matsuda, M. Morikawa, T. Okino, *Biosci. Biotechnol. Biochem.* 2014, 78, 1310-1319.

- [44] J. M. Winter, M. C. Moffitt, E. Zazopoulos, J. B. McAlpine, P. C. Dorrestein, B. S. Moore, J. Biol. Chem. 2007, 282, 16362-16368.
- [45] a) L. C. Blasiak, F. H. Vaillancourt, C. T. Walsh, C. L. Drennan, *Nature* 2006, 440, 368; b) F.
 H. Vaillancourt, J. Yin, C. T. Walsh, *Proc. Natl. Acad. Sci. U. S. A.* 2005, *102*, 10111-10116.
- [46] a) F. H. Vaillancourt, D. A. Vosburg, C. T. Walsh, *ChemBioChem* 2006, 7, 748-752; b) Q.
 Zhu, M. L. Hillwig, Y. Doi, X. Liu, *ChemBioChem* 2016, *17*, 466-470.
- [47] F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. E. O'Connor, C. T. Walsh, *Nature* 2005, 436, 1191.
- [48] D. Khare, B. Wang, L. Gu, J. Razelun, D. H. Sherman, W. H. Gerwick, K. Håkansson, J. L. Smith, *Proc. Natl. Acad. Sci.* **2010**, *107*, 14099-14104.
- [49] V. Agarwal, Z. D. Miles, J. M. Winter, A. S. Eustáquio, A. A. El Gamal, B. S. Moore, *Chem. Rev.* 2017, 117, 5619-5674.
- [50] A. S. Eustáquio, F. Pojer, J. P. Noel, B. S. Moore, *Nat. Chem. Biol.* 2007, 4, 69.
- [51] M. J. Egorin, D. L. Sentz, D. M. Rosen, M. F. Ballesteros, C. M. Kearns, P. S. Callery, J. L. Eiseman, *Cancer Chemother. Pharmacol.* 1996, *39*, 51-60.
- [52] M. J. Egorin, D. M. Rosen, S. E. Benjamin, P. S. Callery, D. L. Sentz, J. L. Eiseman, *Cancer Chemother. Pharmacol.* 1997, 41, 9-14.
- [53] C. Bucher, R. M. Deans, N. Z. Burns, J. Am. Chem. Soc. 2015, 137, 12784-12787.
- [54] a) D. C. Fabry, M. Stodulski, S. Hoerner, T. Gulder, *Chem. Eur. J.* 2012, *18*, 10834-10838; b)
 A. Ulmer, M. Stodulski, S. V. Kohlhepp, C. Patzelt, A. Pöthig, W. Bettray, T. Gulder, *Chem. Eur. J.* 2015, *21*, 1444-1448; c) C. Patzelt, A. Pöthig, T. Gulder, *Org. Lett.* 2016, *18*, 3466-3469; d) A. Ulmer, C. Brunner, A. M. Arnold, A. Pöthig, T. Gulder, *Chem. Eur. J.* 2016, *22*, 3660-3664; e) A. M. Arnold, A. Pöthig, M. Drees, T. Gulder, *J. Am. Chem. Soc.* 2018, *140*, 4344-4353; f) C. Brunner, A. Andries-Ulmer, G. M. Kiefl, T. Gulder, *Eur. J. Org. Chem.* 2018, *2018*, 2615-2621.
- [55] a) R. Lattrell, Justus Liebigs Ann. Chem. 1969, 722, 142-154; b) L. R. Smith, A. J. Speziale, J. E. Fedder, J. Org. Chem. 1969, 34, 633-637; c) J. C. Martin, P. L. Carter, J. L. Chitwood, J. Org. Chem. 1971, 36, 2225-2227; d) A. Modak, U. Dutta, R. Kancherla, S. Maity, M. Bhadra, S. M. Mobin, D. Maiti, Org. Lett. 2014, 16, 2602-2605; e) N. V. Shymanska, I. H. An, J. G. Pierce, Angew. Chem., Int. Ed. 2014, 53, 5401-5404; f) A. Acharya, K. Montes, C. S. Jeffrey, Org. Lett. 2016, 18, 6082-6085; g) K. Zhang, C. Yang, H. Yao, A. Lin, Org. Lett. 2016, 18, 4618-4621; h) A. J. Craig, B. C. Hawkins, Synthesis 2017, 49, 1955-1968; i) Q. Jia, Z. Du, K. Zhang, J. Wang, Org. Chem. Front. 2017, 4, 91-94; j) P.-L. Shao, Z.-R. Li, Z.-P. Wang, M.-H. Zhou, Q. Wu, P. Hu, Y. He, J. Org. Chem. 2017, 82, 10680-10686; k) K. E. Eckert, B. L. Ashfeld, Org. Lett. 2018, 20, 2315-2319.

- [56] a) C. C. Hughes, A. Prieto-Davo, P. R. Jensen, W. Fenical, Org. Lett. 2008, 10, 629-631; b) K.
 Shiomi, H. Nakamura, H. Iinuma, H. Naganawa, T. Takeuchi, H. Umezawa, Y. Iitaka, J.
 Antibiot. 1987, 40, 1213-1219.
- [57] Y. A. Cheng, W. Z. Yu, Y.-Y. Yeung, Org. Biomol. Chem. 2014, 12, 2333-2343.
- [58] W. A. Nugent, J. Am. Chem. Soc. 1998, 120, 7139-7140.
- [59] a) M. Oestreich, Angew. Chem., Int. Ed. 2005, 44, 2324-2327; b) L. Hintermann, A. Togni,
 Angew. Chem., Int. Ed. 2000, 39, 4359-4362.
- [60] a) S. E. Denmark, W. E. Kuester, M. T. Burk, *Angew. Chem., Int. Ed.* 2012, *51*, 10938-10953;
 b) A. J. Cresswell, S. T. C. Eey, S. E. Denmark, *Angew. Chem., Int. Ed.* 2015, *54*, 15642-15682.
- [61] I. Roberts, G. E. Kimball, J. Am. Chem. Soc. 1937, 59, 947-948.
- [62] G. A. Olah, J. M. Bollinger, J. Brinich, J. Am. Chem. Soc. 1968, 90, 2587-2594.
- [63] a) S. E. Denmark, W. E. Kuester, M. T. Burk, *Angew. Chem. Int. Ed.* 2012, *51*, 10938-10953;
 b) S. E. Denmark, M. T. Burk, A. J. Hoover, *J. Am. Chem. Soc.* 2010, *132*, 1232-1233.
- [64] a) W.-j. Chung, C. D. Vanderwal, *Angew. Chem., Int. Ed.* 2016, 55, 4396-4434; b) M. L.
 Landry, N. Z. Burns, *Acc. Chem. Res.* 2018, 51, 1260-1271.
- [65] S. A. Snyder, Z.-Y. Tang, R. Gupta, J. Am. Chem. Soc. 2009, 131, 5744-5745.
- [66] T. R. Kelly, A. Whiting, N. S. Chandrakumar, J. Am. Chem. Soc. 1986, 108, 3510-3512.
- [67] D. X. Hu, F. J. Seidl, C. Bucher, N. Z. Burns, J. Am. Chem. Soc. 2015, 137, 3795-3798.
- [68] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974-5976.
- [69] D. X. Hu, G. M. Shibuya, N. Z. Burns, J. Am. Chem. Soc. 2013, 135, 12960-12963.
- [70] M. L. Landry, D. X. Hu, G. M. McKenna, N. Z. Burns, J. Am. Chem. Soc. 2016, 138, 5150-5158.
- [71] B. B. Jay, W. F. X., M. R. E., Chem. Lett. 1975, 4, 1111-1114.
- [72] J. Elovson, P. R. Vagelos, Proc. Natl. Acad. Sci. 1969, 62, 957-963.
- [73] C. Nilewski, R. W. Geisser, E. M. Carreira, *Nature* **2009**, *457*, 573.
- [74] a) T. Yoshimitsu, N. Fukumoto, R. Nakatani, N. Kojima, T. Tanaka, J. Org. Chem. 2010, 75, 5425-5437; b) T. Yoshimitsu, R. Nakatani, A. Kobayashi, T. Tanaka, Org. Lett. 2011, 13, 908-911.
- [75] a) D. K. Bedke, G. M. Shibuya, A. Pereira, W. H. Gerwick, T. H. Haines, C. D. Vanderwal, J. Am. Chem. Soc. 2009, 131, 7570-7572; b) D. K. Bedke, G. M. Shibuya, A. R. Pereira, W. H. Gerwick, C. D. Vanderwal, J. Am. Chem. Soc. 2010, 132, 2542-2543; c) D. K. Bedke, C. D. Vanderwal, Nat. Prod. Rep. 2011, 28, 15-25; d) C. Nilewski, N. R. Deprez, T. C. Fessard, D. B. Li, R. W. Geisser, E. M. Carreira, Angew. Chem., Int. Ed. 2011, 50, 7940-7943; e) W.-j. Chung, J. S. Carlson, D. K. Bedke, C. D. Vanderwal, Angew. Chem., Int. Ed. 2013, 52, 10052-10055; f) W.-j. Chung, J. S. Carlson, C. D. Vanderwal, J. Org. Chem. 2014, 79, 2226-2241; g)

A. Jaganathan, B. Borhan, *Org. Lett.* **2014**, *16*, 3616-3619; h) T. Umezawa, F. Matsuda, *Tetrahedron Lett.* **2014**, *55*, 3003-3012.

- [76] G. W. Gribble, *Naturally Occurring Organohalogen Compounds A Comprehensive Update*, Springer Wien, **2010**.
- [77] T. Kato, I. Ichinose, J. Chem. Soc., Perkin Trans. 1 1980, 1051-1056.
- [78] A. Sakakura, A. Ukai, K. Ishihara, *Nature* **2007**, *445*, 900.
- [79] R. C. Samanta, H. Yamamoto, J. Am. Chem. Soc. 2017, 139, 1460-1463.
- [80] G. E. Veitch, E. N. Jacobsen, Angew. Chem., Int. Ed. 2010, 49, 7332-7335.
- [81] M. Aursnes, J. E. Tungen, T. V. Hansen, J. Org. Chem. 2016, 81, 8287-8295.
- [82] D. W. Klosowski, S. F. Martin, Org. Lett. 2018, 20, 1269-1271.
- [83] D. H. Paull, C. Fang, J. R. Donald, A. D. Pansick, S. F. Martin, J. Am. Chem. Soc. 2012, 134, 11128-11131.
- [84] D. W. Klosowski, J. C. Hethcox, D. H. Paull, C. Fang, J. R. Donald, C. R. Shugrue, A. D. Pansick, S. F. Martin, J. Org. Chem. 2018, 83, 5954-5968.
- [85] a) K. C. Nicolaou, R. Li, Z. Lu, E. N. Pitsinos, L. B. Alemany, J. Am. Chem. Soc. 2018, 140, 8091-8095; b) A. K. Ghosh, L. A. Kassekert, J. D. Bungard, Org. Biomol. Chem. 2016, 14, 11357-11370; c) T. Kuranaga, Y. Sesoko, K. Sakata, N. Maeda, A. Hayata, M. Inoue, J. Am. Chem. Soc. 2013, 135, 5467-5474.
- [86] G. R. Pettit, J. McNulty, D. L. Herald, D. L. Doubek, J.-C. Chapuis, J. M. Schmidt, L. P. Tackett, M. R. Boyd, J. Nat. Prod. 1997, 60, 180-183.
- [87] K. I. M. Nakajima, Y. Takamatsu, T. Kinoshita, T. Okazaki, K. Kawakubo, M. Shindo, T. Honma, M. Tohjigamori, T. Haneishi, *J. Antibiot.* 1991, 44, 293-300.
- [88] a) P. Lamers, Bachelor thesis, RWTH Aachen 2011; b) L. Henkel, Bachelor thesis, RWTH (Aachen), 2012; c) C. Patzelt, RWTH (Aachen), 2011.
- [89] S. V. Kohlhepp, Master thesis, RWTH (Aachen), 2013.
- [90] S. Cortes, H. Kohn, J. Org. Chem. 1983, 48, 2246-2254.
- [91] O. Wong, J. Huntington, R. Konishi, J. H. Rytting, T. Higuchi, J. Pharm. Sci. 1988, 77, 967-971.
- [92] K. Omura, D. Swern, *Tetrahedron* **1978**, *34*, 1651-1660.
- [93] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156.
- [94] a) R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533-3539; b) T.-L. Ho, Chem. Rev. 1975, 75, 1-20.
- [95] a) B. Miller, H. Margulies, T. Drabb, Jr., R. Wayne, *Tetrahedron Lett.* 1970, 3805-3808; b) J.
 Corset, F. Froment, M. F. Lautie, N. Ratovelomanana, J. Seyden-Penne, T. Strzalko, M. C.
 Roux-Schmitt, *J. Am. Chem. Soc.* 1993, *115*, 1684-1694.
- [96] Y. Qiu, S. Gao, Nat. Prod. Rep. 2016, 33, 562-581.
- [97] T. Newhouse, P. S. Baran, Angew. Chem., Int. Ed. 2011, 50, 3362-3374.

- [98] a) S. Lee, P. L. Fuchs, *Org. Lett.* 2004, *6*, 1437-1440; b) R. Curci, L. D'Accolti, M. Fiorentino,
 C. Fusco, W. Adam, M. E. González-Nunez, R. Mello, *Tetrahedron Lett.* 1992, *33*, 4225-4228.
- [99] a) S. Su, I. B. Seiple, I. S. Young, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 16490-16491; b)
 I. B. Seiple, S. Su, I. S. Young, C. A. Lewis, J. Yamaguchi, P. S. Baran, Angew. Chem., Int. Ed. 2010, 49, 1095-1098; c) D. P. O'Malley, J. Yamaguchi, I. S. Young, I. B. Seiple, P. S. Baran, Angew. Chem., Int. Ed. 2008, 47, 3581-3583; d) F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 6771-6772.
- [100] J. E. Baldwin, J. Chem. Soc. Chem. Comm. 1976, 734-736.
- [101] E. J. Corey, J. W. Suggs, Tetrahedron Lett. 1975, 16, 2647-2650.
- [102] C. Bolm, A. S. Magnus, J. P. Hildebrand, Org. Lett. 2000, 2, 1173-1175.
- [103] a) Y. Masanori, S. Tsuneji, H. Hironobu, Y. Juji, O. Thoru, S. Chung-gi, *Bull. Chem. Soc. Jpn.* 1985, 58, 1413-1420; b) Y. Juji, Y. Masanori, S. Tsuneji, H. Hironobu, *Chem. Lett.* 1983, 12, 1001-1002.
- [104] a) B. A. Trofimov, Sulfur Reports 1992, 11, 207-227; b) W. N. Olmstead, Z. Margolin, F. G.
 Bordwell, J. Org. Chem. 1980, 45, 3295-3299.
- [105] D. L. Comins, A. Dehghani, *Tetrahedron Lett.* **1992**, *33*, 6299-6302.
- [106] Y. Izawa, D. Pun, S. S. Stahl, *Science* **2011**, *333*, 209-213.
- [107] H. J. Reich, J. M. Renga, I. L. Reich, J. Am. Chem. Soc. 1975, 97, 5434-5447.
- [108] W. Klute, M. Krüger, R. W. Hoffmann, Chem. Ber. 1996, 129, 633-638.
- [109] A. L. Gemal, J. L. Luche, J. Am. Chem. Soc. 1981, 103, 5454-5459.
- [110] J.-F. Duclos, F. Outurquin, C. Paulmier, *Tetrahedron Lett.* 1993, 34, 7417-7420.
- [111] A. C. Barrios Sosa, K. Yakushijin, D. A. Horne, Org. Lett. 2000, 2, 3443-3444.
- [112] H. Zhang, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2014, 136, 16485-16488.
- [113] K. Gilmore, R. K. Mohamed, I. V. Alabugin, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 487-514.
- [114] G. M. Atkins, E. M. Burgess, J. Am. Chem. Soc. 1968, 90, 4744-4745.
- [115] J. C. Martin, R. J. Arhart, J. Am. Chem. Soc. 1971, 93, 4327-4329.
- [116] E. M. Burgess, H. R. Penton, E. A. Taylor, J. Org. Chem. 1973, 38, 26-31.
- [117] P. A. Grieco, S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41, 1485-1486.
- [118] a) P. R. Hewitt, E. Cleator, S. V. Ley, Org. Biomol. Chem. 2004, 2, 2415-2417; b) A. Endo, S. J. Danishefsky, J. Am. Chem. Soc. 2005, 127, 8298-8299; c) K. Wang, R. W. Bates, J. Org. Chem. 2017, 82, 12624-12630.
- [119] D. L. J. Clive, G. J. Chittattu, V. Farina, W. A. Kiel, S. M. Menchen, C. G. Russell, A. Singh,
 C. K. Wong, N. J. Curtis, J. Am. Chem. Soc. 1980, 102, 4438-4447.
- [120] J. Y. See, H. Yang, Y. Zhao, M. W. Wong, Z. Ke, Y.-Y. Yeung, ACS Catal. 2018, 8, 850-858.
- [121] C. Metzger, J. Kurz, Chem. Ber. 1975, 108, 375-376.

- [122] K. C. Nicolaou, W. E. Barnette, R. L. Magolda, J. Am. Chem. Soc. 1981, 103, 3486-3497.
- [123] B. M. Smit, R. Z. Pavlovic, D. A. Milenkovic, Z. S. Markovic, *Beilstein J. Org. Chem.* 2015, 11, 1865-1875.
- [124] M. D. Rvovic, V. M. Divac, N. Radenkovic, Z. M. Bugarcic, Z. Naturforsch., B: J. Chem. Sci.
 2011, 66, 1275-1277.
- [125] H. Zhang, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2014, 136, 16485-16488.
- [126] S. E. Denmark, W. R. Collins, M. D. Cullen, J. Am. Chem. Soc. 2009, 131, 3490-3492.
- [127] J.-M. Lancelin, J.-R. Pougny, P. Sinaÿ, *Carbohydr. Res.* 1985, 136, 369-374.
- [128] C. I. Stathakis, P. L. Gkizis, A. L. Zografos, Nat. Prod. Rep. 2016, 33, 1093-1117.
- [129] B. M. Nilsson, U. Hacksell, J. Heterocycl. Chem. 1989, 26, 269-275.
- [130] P. Wipf, Y. Aoyama, T. E. Benedum, Org. Lett. 2004, 6, 3593-3595.
- [131] M. Riediker, J. Schwartz, J. Am. Chem. Soc. 1982, 104, 5842-5844.
- [132] G. C. Senadi, W.-P. Hu, J.-S. Hsiao, J. K. Vandavasi, C.-Y. Chen, J.-J. Wang, Org. Lett. 2012, 14, 4478-4481.
- [133] E. M. Beccalli, E. Borsini, G. Broggini, G. Palmisano, S. Sottocornola, J. Org. Chem. 2008, 73, 4746-4749.
- [134] S. Seo, X. Yu, T. J. Marks, J. Am. Chem. Soc. 2009, 131, 263-276.
- [135] a) H. Harkat, J.-M. Weibel, P. Pale, *Tetrahedron Lett.* 2007, *48*, 1439-1442; b) W. J. P., H. A. S. K., S. Andreas, H. Tobias, S. Stefanie, L. Anna, R. Matthias, H. Melissa, V. Jorge, R. Frank, F. Wolfgang, B. J. W., *Chem. Eur. J.* 2010, *16*, 956-963; c) A. S. K. Hashmi, M. C. Blanco Jaimes, A. M. Schuster, F. Rominger, *J. Org. Chem.* 2012, *77*, 6394-6408.
- [136] P. Patrick, C. Josselin, Eur. J. Org. Chem. 2000, 2000, 1019-1025.
- [137] a) D. Nishiyama, A. Ohara, H. Chiba, H. Kumagai, S. Oishi, N. Fujii, H. Ohno, *Org. Lett.* **2016**, *18*, 1670-1673; b) M. W. Smith, Z. Zhou, A. X. Gao, T. Shimbayashi, S. A. Snyder, *Org. Lett.* **2017**, *19*, 1004-1007; c) P. Gan, J. Pitzen, P. Qu, S. A. Snyder, *J. Am. Chem. Soc.* **2018**, *140*, 919-925.
- [138] A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Organic Letters 2004, 6, 4391-4394.
- [139] J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. 1998, 110, 1475-1478.
- [140] U. Aurelija, J. Mantas, B. Rita, B. Simonas, Č. Inga, *Eur. J. Org. Chem.* 2015, 2015, 7091-7113.
- [141] T. Hendrik, W. Christian, A. Manuel, Angew. Chem., Int. Ed. 2014, 53, 8732-8736.
- [142] a) A. Arcadi, S. Cacchi, L. Cascia, G. Fabrizi, F. Marinelli, *Org. Lett.* 2001, *3*, 2501-2504; b)
 A. Bacchi, M. Costa, B. Gabriele, G. Pelizzi, G. Salerno, *J. Org. Chem.* 2002, *67*, 4450-4457.
- [143] a) H. Schlossarczyk, W. Sieber, M. Hesse, H.-J. Hansen, H. Schmid, *Helv. Chim. Acta* 1973, 56, 875-944; b) Y. Shigemasa, M. Yasui, S. Ohrai, M. Sasaki, H. Sashiwa, H. Saimoto, J. Org. Chem. 1991, 56, 910-912.
- [144] W. R. Pitt, D. M. Parry, B. G. Perry, C. R. Groom, J. Med. Chem. 2009, 52, 2952-2963.

- [145] M. A. Ciufolini, *Il Farmaco* **2005**, *60*, 627-641.
- [146] A. P. Taylor, R. P. Robinson, Y. M. Fobian, D. C. Blakemore, L. H. Jones, O. Fadeyi, Org. Biomol. Chem. 2016, 14, 6611-6637.
- [147] a) Z. S. Zheng, D. Zhang-Negrerie, Y. F. Du, K. Zhao, *Sci. China: Chem.* 2014, *57*, 189-214;
 b) J. Sun, D. Zhang-Negrerie, Y. Du, K. Zhao, *Rep. Org. Chem.* 2016, *6*, 25-45.
- [148] K. S. Gayen, N. Chatterjee, S. Khamarui, P. K. Tarafdar, Eur. J. Org. Chem. 2018, 2018, 425-439.
- [149] A. Saito, N. Hyodo, Y. Hanzawa, *Molecules* **2012**, *17*, 11046-11055.
- [150] S. W. Park, S.-H. Kim, J. Song, G. Y. Park, D. Kim, T.-G. Nam, K. B. Hong, *Beilstein J. Org. Chem.* 2018, 14, 1028-1033.
- [151] T. Guo, F. Huang, Q. Jiang, Z. Yu, Chem. Eur. J. 2018, 24, 14368-14372.
- [152] a) S.-C. Lu, P.-R. Zheng, G. Liu, J. Org. Chem. 2012, 77, 7711-7717; b) C.-W. Yang, Y.-X.
 Bai, N.-T. Zhang, C.-C. Zeng, L.-M. Hu, H.-Y. Tian, *Tetrahedron* 2012, 68, 10201-10208; c)
 F. V. Singh, S. R. Mangaonkar, *Synthesis* 2018, Ahead of Print.
- [153] O. Prakash, K. Pannu, A. Kumar, *Molecules* **2006**, *11*, 43-48.
- [154] H.-D. Xia, Y.-D. Zhang, Y.-H. Wang, C. Zhang, Org. Lett. 2018, 20, 4052-4056.
- [155] X. Jiang, C. Zheng, L. Lei, K. Lin, C. Yu, Eur. J. Org. Chem. 2018, 2018, 1437-1442.
- [156] M. Ochiai, T. Sueda, K. Miyamoto, P. Kiprof, V. V. Zhdankin, Angew. Chem., Int. Ed. 2006, 45, 8203-8206.
- [157] A. Stirling, Chem. Eur. J. 2018, 24, 1709-1713.
- [158] M. R. Barbachyn, D. K. Hutchinson, S. J. Brickner, M. H. Cynamon, J. O. Kilburn, S. P. Klemens, S. E. Glickman, K. C. Grega, S. K. Hendges, D. S. Toops, C. W. Ford, G. E. Zurenko, J. Med. Chem. 1996, 39, 680-685.
- [159] C. Brunner, in unveröffentlichte Ergebnisse, 2016.
- [160] N. O'Looney, S. C. Fry, Annals of Botany 2005, 96, 1097-1107.
- [161] J. V. Basmajian, K. Shankardass, D. Russell, V. Yucel, Arch. Phys. Med. Rehabil. 1984, 65, 698-701.
- [162] L. Huang, D. Li, Y.-S. Xu, Z.-L. Feng, F.-C. Meng, Q.-W. Zhang, L.-S. Gan, L.-G. Lin, *RSC Adv.* 2017, 7, 46900-46905.
- [163] a) Y. Zhang, J. Ji, X. Zhang, S. Lin, Q. Pan, L. Jia, *Org. Lett.* 2014, *16*, 2130-2133; b) L. Liu, H. Sun, *Angew. Chem. Int. Ed.* 2014, *53*, 9865-9869.
- [164] a) J. I. Jiménez, G. Goetz, C. M. S. Mau, W. Y. Yoshida, P. J. Scheuer, R. T. Williamson, M. Kelly, J. Org. Chem. 2000, 65, 8465-8469; b) E. Testa, L. Fontanella, G. Cristiani, G. Gallo, J. Org. Chem. 1959, 24, 1928-1936; c) L. Zhuang, C. M. Tice, Z. Xu, W. Zhao, S. Cacatian, Y.-J. Ye, S. B. Singh, P. Lindblom, B. M. McKeever, P. M. Krosky, Y. Zhao, D. Lala, B. A. Kruk, S. Meng, L. Howard, J. A. Johnson, Y. Bukhtiyarov, R. Panemangalore, J. Guo, R.

Guo, F. Himmelsbach, B. Hamilton, A. Schuler-Metz, H. Schauerte, R. Gregg, G. M. McGeehan, K. Leftheris, D. A. Claremon, *Bioorg. Med. Chem.* **2017**, *25*, 3649-3657.

- [165] a) Y. Nagao, T. Hisanaga, H. Egami, Y. Kawato, Y. Hamashima, *Chem. Eur. J.* 2017, 23, 16758-16762; b) Y. Nagao, T. Hisanaga, T. Utsumi, H. Egami, Y. Kawato, Y. Hamashima, *J. Org. Chem.* 2018; c) Y. Kawato, H. Ono, A. Kubota, Y. Nagao, N. Morita, H. Egami, Y. Hamashima, *Chem. Eur. J.* 2016, 22, 2127-2133.
- [166] A. Jaganathan, A. Garzan, D. C. Whitehead, R. J. Staples, B. Borhan, *Angew. Chem., Int. Ed.* **2011**, *50*, 2593-2596.
- [167] a) N. Fuentes, W. Kong, L. Fernández-Sánchez, E. Merino, C. Nevado, J. Am. Chem. Soc.
 2015, 137, 964-973; b) W. Kong, M. Casimiro, E. b. Merino, C. Nevado, J. Am. Chem. Soc.
 2013, 135, 14480-14483.
- [168] D. B. G. Williams, M. Lawton, J. Org. Chem. 2010, 75, 8351-8354.
- [169] S. Mio, R. Ichinose, K. Goto, S. Sugai, S. Sato, *Tetrahedron* 1991, 47, 2111-2120.
- [170] L. P. Jay, T. J. Barker, Eur. J. Org. Chem. 2016, 2016, 1829-1831.
- [171] A. Urbanaitė, M. Jonušis, R. Bukšnaitienė, S. Balkaitis, I. Čikotienė, Eur. J. Org. Chem. 2015, 2015, 7091-7113.