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Abstract— As autonomous driving gains importance, univer-
sally applicable motion planning approaches that offer safe
and comfortable rides have to be developed. Most planning
methods up-to-date still struggle when dealing with dynamic
environments. They require extensive parameter-fine tuning in
order to generate comfortable and safe solutions and it is not
known prior to optimization which set of parameters would
produce the “best” solution. Therefore, we introduce a multi-
objective optimization that plans a set of trajectories using
several weights and targets (e.g. desired velocity or lanes).
Thus, reducing the need of extensive parameter fine-tuning and
increasing the planner’s capabilities to handle dynamic envi-
ronments. Furthermore, in order to plan multiple trajectories
in real-time, a smart-initialization of the optimization problem
is introduced that speeds up the multi-objective optimization
further. Due to the proposed architecture that consists of a
Planning-, Evaluation- and Selection-module, the planner is
capable of providing a high level of comfort and safety –
even in the case of non-convergence of the optimization. The
novel motion planning approach is evaluated in terms of its
applicability and performance.

I. INTRODUCTION

With autonomous driving gaining importance and the first
Level-3 systems driving on public roads, methods used in
these have to be refined when striving for Level-5 auton-
omy – fully autonomously acting agents. Not only will
autonomous driving provide higher comfort and safety whilst
driving, but it will also enable passengers to use their time
more productively, e.g. whilst commuting to work.

Recent advances in deep learning have increased the
capabilities of autonomous vehicles to detect, track and clas-
sify objects. In contrast, motion planning in highly-dynamic
environments and interacting with other traffic participants
mostly remains yet to be solved. This is partially due to the
vast combinatorial space motion planning problems span. In
order for autonomous vehicles to be accepted by the broader
public, the motion planner should be able to plan trajectories
that provide maximum comfort whilst being collision-free.
Optimization-based methods have proven to work well in
planning motions for autonomous vehicles. However, they
often require parameter fine-tuning or require the planning
problem to be decomposed and solved locally.

In this work, we introduce a multi-objective optimization
that uses several weights and targets (e.g. reference lanes or
the desired speed) in order to generate a greater flexibility
and variety of solutions and to reduce the need of extensive
parameter fine-tuning. Additionally, it mitigates the problem
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Fig. 1: Planned trajectories in order to overtake the red
vehicle. The colors indicate the costs of the safety-metric
ranging from bright colors being unsafe towards darker ones
being safer.

of not knowing which set of weights and targets would
produce the “best” trajectory for a situation prior to opti-
mization. This is illustrated in Figure 1 where the vehicle has
to perform a lane-change in order to avoid the other vehicle.
In order to plan multiple trajectories in real-time, a smart-
initialization is used that further speeds up the optimization.
This is achieved by using results of prior optimizations that
are similar as initial estimates.

Additionally, a novel motion planning architecture that
separates the Planning- (optimization), Evaluation- and the
Selection-module is introduced. Since these modules are
independent of each other, the Evaluation- and Selection-
module are capable of rating and selecting trajectories inde-
pendent of the objective-function used in the optimization.
The Selection-module can incorporate external weights in
order to execute higher-level strategies, such as staying on a
lane versus performing a lane-change.

To sum up, the novel approach offers a multitude of
benefits in motion planning for autonomous driving:

• Is able to handle a wide variety of situations due to the
use of multiple weights and targets in the optimization.

• Introduces a novel planning architecture that ensures
a high level of comfort and safety and that is able to
include a higher-level strategy.

• Produces kinodynamic and jerk-optimal trajectories by
using a model-based optimization approach.

This work is further organized as follows: Section II
gives a brief literature overview of optimization-based and
multi-objective optimization used in motion planning for au-

2018 IEEE Intelligent Vehicles Symposium (IV)
Changshu, Suzhou, China, June 26-30, 2018

978-1-5386-4452-2/18/$31.00 ©2018 IEEE 1185

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:17:59 UTC from IEEE Xplore.  Restrictions apply. 



tonomous driving. The proposed motion planning approach
is presented in Section III. Section IV will give brief details
about the implementation of the novel planning approach
and in Section V, the planner is evaluated in terms of
its feasibility and performance. Finally, in Section VI, a
conclusion and outlook is provided.

II. RELATED WORK

Several methods have been applied in motion planning for
autonomous driving. This section provides a brief overview
of optimization-based methods for motion planning in au-
tonomous driving as well as a brief introduction to multi-
objective optimization.

A. Optimization-Based Motion Planning

Optimization-based methods for motion planning have
proven to work well in autonomous driving. With only these
being able to generate truly optimal trajectories in respect
to a pre-defined objective, these are prime candidates for
motion planning in autonomous driving. Analytical solutions
in optimization are often not possible since the problems
are of too complex nature [1]. Therefore, direct methods
are utilized in order to solve motion planning problems
more efficiently [2]. These can generally be categorized into
geometric- and model-based optimization approaches.

Ziegler et al. introduced a geometric optimization ap-
proach which has been developed within the Bertha-Benz
memorial drive project [3]. This approach has proven to work
well in mixed-traffic and successfully drove the complete
historic Bertha-Benz route without any human intervention.
However, geometric approaches neglect the kinematics and
dynamics of vehicles and these have to be integrated indi-
rectly using boundary conditions. Contrary to this, the novel
planning approach will use a model-based optimization in
order to intrinsically incorporate the vehicle kinematics.

Werling et al. use a model-based optimization approach
utilizing the Frenet Coordinate System (FCOS). They trans-
form the planning problem into an arclength-based coordi-
nate system which makes the planning problem easier to
solve [4]. However, the vehicle model has to be modelled
in the FCOS and each point of the trajectory has to be
transformed back to world coordinates in oder to check
the points for feasibility and collisions which requires high
computational effort [5].

Further motion planning methods combine optimization-
based techniques with machine learning approaches, e.g.
as demonstrated by Borrelli et al. [6]. In their work they
introduced an optimization based approach which is able to
“learn” in order to perform an inter-lap optimization and
to achieve faster lap-times on a race track over time. Their
approach could potentially be sped up by using a multi-
objective optimization as the planner might be capable of
learning faster.

B. Multi-Objective Optimization

Multi-objective optimization is used in a variety of engi-
neering applications. Especially, in fields that have multiple

correlated or opposing parameters and targets, such as opti-
mizing financial portfolios or mechanic structures.

Pavone et al. implemented a real-time stochastic kino-
dynamic motion planning method which utilizes a multi-
objective search called PUMP (Parallel Uncertainty-aware
Multiobjective Planning) algorithm [7]. This algorithm is
search-based and explores the state space in a parallel and
discrete fashion. In their work, they plan trajectories for
quadrocopters in indoor environments.

Zhang et al. use a multi-objective optimization based on
swarm optimization resulting in a set of trajectories which
are then evaluated by a metric [8].

In our work, a discrete and model-based approach will be
introduced that uses a muli-objective optimization in order
to deal with multiple weights and targets. By obtaining
multiple resulting trajectories, the novel planner has a greater
flexibility than conventional approaches do.

III. KINODYNAMIC MULTI-OBJECTIVE MOTION
PLANNING

This section introduces the novel planning approach. First,
the overall architecture of the planner that enables a safe
and comfortable behaviour of the vehicle – even in the case
of non-convergence – is outlined. Next, the prerequisites
(kinematic model and the objective function) for understand-
ing the modules outlined in the architecture are introduced.
Finally, the Multi-Objective Optimization-, the Evaluation-
and the Selection-module of the architecture are described
in greater detail, respectively.

A. Architecture of the Planner

The motion planning architecture consists of three mod-
ules in order to provide a high level of safety and comfort.
The first module, the Multi-Objective Optimization, gen-
erates a set of feasible trajectories using pre-defined sets
of weights and targets (e.g. the reference lane or desired
speed). The second module, the Evaluation, then rates these
obtained trajectories in respect to several in this work de-
fined metrics. This enables an independent of the objective-
function evaluation of the trajectories. The third module, the
Selection, then uses the costs determined by the Evaluation-
module and selects the “best” trajectory for a given situation.
Therefore, the second and third module can be seen as an
external “judge” that rates the trajectories and selects the
best trajectory. Furthermore, external weights can be passed
into the Selection-module in order to execute higher-level
strategies, such as favoring lane-changes to staying on the
current lane. In Figure 2, the proposed architecture is outlined
in a block-diagram.

The architecture is not restricted to applications using
optimization-based approaches, but can also be used for
search- or interpolation-based motion planning approaches.

B. Kinematic Vehicle Model

In order for the vehicle to be able to execute the planned
motion and to include its non-holonomic characteristics, a
model-based optimization is used. In this work, an extended
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Fig. 2: Block-diagram of the motion planning architecture.
The planning architecture is split into three modules that
plan, evaluate and select trajectories.

single-track vehicle model is used as introduced in [9]. It
can be mathematically denoted in the state-space as

F (x(t), u(t)) =


v cos(θ)
v sin(θ)

v tan(δ)
l
a

 (1)

with the state x = [x, y, θ, v] and the input vector u = [δ, a]
consisting of the steering-angle and the acceleration. In order
to obtain a trajectory that can be optimized, this model is
forward-simulated using the explicit Euler’s method over a
time-horizon T . The optimizer then gradually changes the
system inputs in order to obtain an optimal trajectory in an
iterative fashion. The choice of the vehicle model embodies
an important decision as it defines the planner’s limitations –
whether it is capable of handling highly dynamic situations
or not.

C. Objective Function

The objective function is an important choice, that mainly
determines the outcome of the optimization and whether it
converges. It should provide a high level of safety whilst
also enabling a comfortable ride. The objective used in the
optimization is three-fold and is defined as

J(T ,Wi,Ti) = JSafe(T ,Wi) + JComf(T ,Wi)+ (2)
JTargets(T ,Ti). (3)

with T = [x0, . . . , xN] representing the state-trajectory.
Moreover, by injecting the weight matrices Wi and Ti

into Equation (3), the differential values of the trajectory
as well as the safety terms are weighted. The first term

JSafe penalizes proximity to other objects and incorporates
boundary conditions imposed onto the optimization-problem.
Furthermore, to ensure a continuous gradient, we use a
pseudo-distance function as introduced in [10]. The second
term JComf rates the differential values of the trajectory to
provide a high level of comfort. In order to obtain the deriva-
tives of a trajectory, a finite forward differentiation method
as shown in Appendix A is used. By using higher-order
derivatives it can be ensured that the resulting trajectories
are C2-continuous and, thus, jerk-optimal. The last term
JTargets penalizes any deviation from the targets, such as the
offset to the reference lane or desired velocity. The last two
terms in the objective function generate a comfortable motion
whereas the first term JSafe ensures the safety of the planned
trajectory. By injecting several sets of weights and targets
into Equation (3), multiple objective function are generated.
This is described in greater detail in the next section.

D. Multi-Objective Optimization-Module

In order to plan a trajectory, a non-linear model- and
optimization-based motion planner is used in this work. A
multi-objective optimization motion planning problem can
mathematically be denoted as

minimize (J1(·), J2(·), . . . , Jk(·)) (4)
subject to ẋ = F (x(t), u(t)) (5)

xk ∈ X (6)
k = 1, . . . , N (7)

uk ∈ U (8)
k = 1, . . . , N (9)

with Ji(·) representing a objective function, ẋ =
F (x(t), u(t)) the kinematic system and U and X are poly-
topes that define feasible regions of the optimization prob-
lem. Due to the vehicle model used in the optimization, the
resulting trajectories are kinodynamic and can directly be ex-
ecuted by the vehicle. In order to generate several objectives,
sets of weights [W1, . . . ,WR] and targets [T1, . . . ,TM]
are injected into Equation (3) and, thus, a resulting set of
objective functions [J1(·), . . . , JRxM (·)] is obtained.

By changing the weights and targets gradually in one
direction, e.g. penalizing the jerk more and more, and tak-
ing previous results as initial estimates, the multi-objective
optimization is sped up and a larger set of trajectories can
be planned in real-time. Therefore, the time-to-convergence
is reduced significantly – this is then referred to as smart-
initialization. In order to solve the multi-objective optimiza-
tion problem, a non-linear solver is used. The implementation
and simulation environment is explained in greater detail in
Section IV.

E. Evaluation-Module

The Evaluation-module defines a set of metrics and rates
trajectories obtained from the Multi-Objective Optimization-
module. By defining these metrics independent of the ob-
jective function, an additional layer of safety is introduced.
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The two foremost important criteria in autonomous driving
are safety and comfort. Thus, we will introduce metrics
rating these and, additionally, have a metric that penalizes
any deviation of the desired targets. In this work, the safety
metric is distance-based and penalizes the proximity to any
polygonal shaped object and is defined as

JSafety(T ) = min

O∑
i=0

N∑
j=0

δeucl(oij, xj) (10)

with T = [x0, . . . , xN] being the state-trajectory of the
ego-vehicle and O denoting time dependent objects. The
Euclidean distance δeucl(·) is used in order to calculate the
distance between the polygonal shapes.

In order to provide a comfortable ride for passengers, the
trajectories should be jerk-optimal. In order to obtain jerk-
optimal trajectories, the integral of the derivatives up to the
third degree is used. The comfort metric is defined as

JComfort(T ) =

∫ t0+T

t0

L(ẋ, ẍ,
...
x)dt (11)

with L penalizing the derivatives of the trajectory T . The
metric JTargets penalizes any deviation to a defined target,
such as the offset to a reference-curve Γ (t) or to a desired
velocity vdes. This metric is defined as the squared sum
of deviations. Further metrics could be introduced, e.g. one
rating the energy consumption denoted by JEnergy.

F. Selection-Module

The Selection-module chooses a trajectory based on the
set of optimized trajectories and costs provided by the
Evaluation-module and additional weights that are passed
in by an external strategy module. Therefore, for example,
a lane-change can be favored versus staying on the current
lane and a higher-level strategy can be incorporated. Fur-
thermore, due to the independent evaluation of the optimized
trajectories, the Selection-module can be seen as an external
“judge” that is capable of selecting a trajectory independent
of the objective function. By defining viable regions on the
metric axes, a safe and comfortable behavior of the vehicle
can be guaranteed. For example, in order to provide a safe
behavior of the vehicle, a minimum safety threshold can be
defined on the safety-metric axis. This is visualized in Figure
3, where the red-shaded area illustrates the infeasible region.
The selection cost result of a linear combination and can
mathematically be expressed as

JTotal = w0JComfort + w1JSafety + · · ·+ wRJR (12)

with [w1, . . . , wR] being the set of weights that is passed into
the Evaluation-module from an external strategy module and
JTotal are the resulting total costs used for selecting the best
trajectory.

IV. IMPLEMENTATION

The optimization-based motion planning method has been
implemented using C++ and state-of-the-art libraries, such as
the ceres-solver [11]. For better accessibility, the C++ code

Fig. 3: Evaluation metrics spanning a high-dimensional
space. The red-shaded area indicates the infeasible region
in respect to the safety metric.

has been wrapped using the Pybind11 library [12]. Based
on this, a framework and simulation environment has been
developed in Python that can read and simulate scenarios
from XML-files. The performance of the optimization could
further be improved by implementing more efficient metrics,
so that the iterative process in the optimization is sped-
up. Moreover, by using a C++ only implementation, the
performance could also be improved. All experiments and
results presented in this work have been generated using
Ubuntu with an i7-6700HQ-processor of the 6th-generation.

V. EXPERIMENTS AND EVALUATION

In order to evaluate the performance and applicability of
the novel planning approach, a scenario to avoid an obstacle
is chosen that results in a lane-change. At first, the weights
and targets are varied, obtaining a set of trajectories, each
possessing a unique point in the evaluation metric space. It
will be shown, that the choice of weights and targets is of
high importance for the level of safety and comfort. Next,
the benefits of using a smart-initialization and the resulting
increase in performance when optimizing several weights and
targets are shown.

A. Varying Weights and Targets

In this section, the benefits of using several weights and
targets are highlighted. At first, a single target and multiple
weights are planned. The results in Figure 4 on the left-
hand side show the importance of the choice of weights.
Slight modifications in the set of the weights already lead
to large differences in the resulting set of trajectories. As
shown by the gray trajectories in Figure 4, not all trajectories
are feasible and might be too critical when evaluated in
respect to a safety metric. Thus, conventional approaches
optimizing only a single objective function might struggle
to find a feasible solution. With the novel motion planning
approach, the chances of finding a suitable trajectory are
therefore increased.

On the right-hand side in Figure 4 the results of varying
weights and targets are shown. In this experiment, the
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Fig. 4: (a), (b) Cartesian plot of the planned trajectories. The boundaries of the optimization problem are displayed as the solid gray lines
whereas the dotted one indicates the desired reference lane. The color-coding in this plot shows the cost of JTotal of the Selection-module.
The gray trajectories are infeasible due to their proximity to the obstacle. (c), (d) show the velocity and vehicle angle θ plotted over the
time-horizon. The color-coding is similar to figures (a) and (b).

desired velocity is changed additionally to the weights. By
varying the weights and targets, the amount of trajectories
rises quadratically. However, by using a smart-initialization,
the multi-objective optimization can be solved significantly
faster and the computational-time does not rise quadratically
as will be shown in the next sub-section. By changing both,
the variety of solutions is further increased. Due to this, the
novel planning approach trends towards universally appli-
cability and is able to handle a larger variety of situations
without the need of extensive parameter fine-tuning whilst
still being real-time capable. The results shown in Figure 4
are generated using a time-horizon of T = 10s and a step-
time of ∆t = 0.15s. The colors indicate the costs JTotal of
the Selection-module and gray indicates that a trajectory is
within the infeasible region.

B. Performance

This section evaluates the performance and speed-gain
due to the use of smart-initialization in the novel planning
approach. Table I shows the performance for optimizing
a single trajectory over several time-horizons T and step-
sizes ∆t. In time-critical situations, only a limited amount
of trajectories can be planned in real-time. Therefore, the
novel planning approach uses smart-initialization in order to
plan multiple trajectories in such situations and, thus, make
its behavior more flexible. The resulting speed-gain due to
the smart-initialization, when multiple weights and targets
are varied, is shown in Table II. The used time-horizon in
this case is 6 seconds with a step-time of ∆t = 0.2s. Due
to an average speed gain of 27% a larger set of weights and
targets can be optimized in every time-step and the variety
and flexibility of the planner is increased.
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TABLE I: Performance of the Optimization

N ∆t Time-horizon [s] Run-time [s] Iterations [N]
10 0.1 1 0.0012 7
20 0.1 2 0.0443 92
30 0.1 3 0.1453 172
40 0.1 4 0.206995 142
10 0.2 2 0.0012 16
20 0.2 4 0.0443 135
30 0.2 6 0.1453 76
40 0.2 8 0.206995 168

The data in this table has been generated using a single set of
weights and targets. The step-size ∆t and the time-horizon
are varied.

TABLE II: Smart-Initialization

Targets Weights Decrease [s] Decrease [%] Total-Time [s]
1 5 -0.467822 25% 0.78
5 1 -0.28829 40% 0.66
5 5 -0.85 16% 4.00

Performance-gain using prior results of the optimization as
initial estimates. The last column shows the total computa-
tional time using smart-initialization.

VI. CONCLUSION AND OUTLOOK

In this work, the feasibility and benefits of a multi-
objective optimization used in motion planning for au-
tonomous driving have been shown. Due to the increased
solution space, the planner is able to cope well with a large
variety of situations and, therefore, trends towards universal
applicability. Furthermore, by using a smart-initialization,
the time to convergence is decreased significantly when op-
timizing multiple trajectories. Due to the three-fold modular
architecture, the planning approach is capable of evaluating
the planned trajectories independent of the objective function
and, thus, capable of providing a higher level of safety.
Furthermore, the Selection-module can not only select the
best trajectory based on the Evaluation-module, but can also
include higher-order strategies, such as favoring lane-changes
to staying on the current lane.

Future research should be focused on situation dependent
targets and weights in order to further improve the perfor-
mance and capabilities of the planner. This could be achieved
by learning a mapping of the current environment (relative
to the ego vehicle) to specific weights and targets used in
the optimization – creating “intuition” in motion planning
for autonomous vehicles.
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APPENDIX

A. Differentiation using Finite-Differences

The derivatives of a discrete trajectory T can be calculated
using finite-differences. The first three discrete derivatives
using forward differentiation can be mathematically ex-
pressed as

ẋd =
xk+1 − xk

∆t
(13a)

ẍd =
xk+1 − 2xk + xk−1

∆t2
. (13b)

...
xd =

xk+3 − 3xk+2 + 3xk+1 − xk
∆t3

. (13c)

It has to be taken into account, that the above presented
equations introduce round-off and truncation errors.
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