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Abstract

Random set theory is a general framework which comprises uncertainty in the form of probability boxes, possibility distributions,

cumulative distribution functions, Dempster-Shafer structures or intervals; in addition, the dependence between the input variables

can be expressed using copulas. In this paper, the lower and upper bounds on the probability of failure are calculated by means

of random set theory. In order to accelerate the calculation, a well-known and efficient probability-based reliability method known

as subset simulation is employed. This method is especially useful for finding small failure probabilities in both low- and high-

dimensional spaces, disjoint failure domains and nonlinear limit state functions. The proposed methodology represents a drastic

reduction of the computational labor implied by plain Monte Carlo simulation for problems defined with a mixture of representations

for the input variables, while delivering similar results. Numerical examples illustrate the efficiency of the proposed approach.
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1. Introduction

The treatment of uncertainties and the calculation of the proba-

bility of limit state violations are of primary concern in modern

engineering systems. Different modes of failure can be grouped

in the so-called limit state function (LSF) g : X → R, which

depends on a set of uncertain system parameters x ∈ X ⊆ Rd.

In the framework of reliability assessment, the failure surface

g(x) = 0 splits the X −space in two domains, namely the

safe set S = {x ∈ X : g(x) > 0} and the failure set

F = {x ∈ X : g(x) ≤ 0}. The probability measure of F ⊆ X ,

also known as the probability of failure, is defined as

Pf =

∫

X

IF [x] dFX(x) =

∫

X

I

[

g(x) ≤ 0
]

dFX(x) (1)

where, FX(x) is the joint cumulative distribution function

(CDF) of the input variables and I[·] stands for the indicator
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function, which takes the values IF [x] = 1 when either x ∈ F

or the condition in square brackets is true, and IF [x] = 0 other-

wise. When FX(x) is sufficiently differentiable, the associated

joint probability density function (PDF) fX(x) exists, and in this

case equation (1) can be expressed also as

Pf =

∫

X

IF [x] fX(x) dx =

∫

X

I

[

g(x) ≤ 0
]

fX(x) dx.

One of the main drawbacks of applying the probabilistic ap-

proach to reliability analysis of structures is that the CDFs

of the input variables x ∈ X are usually known with im-

precision. This is normally due to the lack of sufficient data

for fitting the model to each input random variable. Even if

the information is plenty, there remains the problem of the

high sensitivity of the usually small probabilities of failure

to the parameters of the CDFs (see e.g. Elishakoff (1999);

Oberguggenberger and Fellin (2005)). In addition, the informa-

tion about the input variables, is not always given as joint CDFs,

but they can be expressed as well, in terms of probability boxes,

possibility distributions, Dempster-Shafer structures, intervals,

among other representations of uncertainty. All those reasons

complicate the application of the efficient methods that exist in
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the realm of probability theory for the estimation of the reliabil-

ity of structural and mechanical systems.

These difficulties have fostered the research on alternative

methods (coined under the term of imprecise probabilities) for

incorporating uncertainty in the analysis of engineering sys-

tems, such as possibility theory, info-gap theory, convex mod-

els, interval analysis, ellipsoid modeling, credal sets, Dempster-

Shafer evidence theory, random sets, random fuzzy sets, fuzzy

random sets, probability boxes, sets with parametrized proba-

bility measures, among other methods. The reader is referred

to the state-of-the-art review Beer et al. (2013) and references

within for further discussion and additional information.

In this context, random set theory appears as a unifying frame-

work which comprises several types of uncertainty representa-

tions, either aleatory or epistemic. This approach allows us

to estimate the lower and upper bounds on the probability of

events, and thus, it can be used to bound the probability of fail-

ure. Within the random set approach to structural reliability, re-

search has been done for introducing the epistemic uncertainty

in the probabilistic models. In this direction, Tonon (2004) used

random set theory to calculate the reliability bounds for the chal-

lenge problem proposed by Oberkampf et al. (2004). Du (2008)

developed a methodology, termed the unified uncertainty analy-

sis method for reliability assessment of structural and mechan-

ical systems. The approach uses a double loop optimization

process which contains probabilistic and interval analysis, and

employs the first-order reliability method (FORM) for the solu-

tion of the reliability problem. Similarly to the sampling meth-

ods developed in Alvarez (2006, 2009a), Zhang and co-workers

proposed the so-called interval Monte Carlo simulation method

(Zhang et al., 2010, 2017); also they developed an interval im-

portance sampling method (Zhang, 2012) and an interval quasi-

Monte Carlo method (Zhang et al., 2013). Xiao et al. (2014)

proposed an efficient saddle-point approximation to speed up

the results of the interval Monte Carlo simulation method.

Alvarez and Hurtado (2014) proposed a method based on the

reliability plot to estimate in a parsimonious way the lower and

upper probabilities of failure. Recently, Yang et al. (2016) used

a surrogate kriging model to accelerate the computations of the

failure probability bounds.

As it will be seen in the paper, the estimation of the lower and

upper probabilities of failure can be postulated as two stan-

dard reliability assessment problems, and consequently, any

method for the estimation of the probability of failure that

only uses probabilistic information can be applied . In par-

ticular, we will illustrate this methodology using one of the

most popular and efficient methods, namely, subset simula-

tion (Au and Beck, 2001, 2003). During the last decade, sub-

set simulation has established itself as one of the leading al-

gorithms for the estimation of failure probabilities. There-

fore, the engineering research community has focused on the

enhancement and generalization of the method; some of the

most recent contributions include: Bayesian post-processor

for subset simulation (Zuev et al., 2012), combination of sub-

set simulation with machine learning-based surrogate models

(Bourinet et al., 2013; Papadopoulos et al., 2013), and the sub-

set simulation enhancements proposed by Papaioannou et al.

(2015) and Au and Patelli (2016). Perhaps one of the most sig-

nificant developments was proposed by Walter (2015), who ap-

plied the concept of moving particles; the approach presents

two main results in the context of subset simulation (referred to

as multilevel splitting): first, the number of samples required to

populate F is considerably reduced, and second, the adaptive

selection of the intermediate levels is no longer required since

by construction the nested subsets do not exist anymore.

In this contribution, we will use subset simulation in conjunc-

tion with random set theory in order to estimate the upper and

lower bounds on the probability of failure when the input vari-

ables are defined in terms of probability boxes, possibility dis-

tributions, CDFs, Dempster-Shafer structures, or intervals. In

fact, the proposed approach is so general that any method for

assessing the probability of failure can be used as well.

The plan of this work is as follows. The document begins with

a succinct introduction to copulas and random sets in Sections 2

and 3, respectively. Then in Section 4, we introduce the mathe-

matical formulation for the estimation of the probability of fail-

ure and its relationship with random set theory. Specifically, we

will see that the calculation of the lower and upper probabilities

of failure will correspond to the evaluation of two integrals that

compute the probability of failure for two different LSFs. Sec-

tion 5 will introduce the Monte Carlo simulation method for the

estimation of the probability of failure, and Section 6 will intro-

duce the subset simulation algorithm. The proposed methodol-

ogy will be illustrated in Section 7; there, we explain how to use

subset simulation to estimate the lower and upper probabilities

of failure provided by random set theory after applying a suit-

able isoprobabilistic transformation. Section 8 demonstrates

the advantages of the proposed approach with three numerical

examples. The paper ends with the discussion of results, con-

clusions, some open problems and the corresponding acknowl-

edgements.

2. An introduction to copulas

2.1. Overview

This concise review of some important concepts about copulas

follows the exposition presented in Nelsen (2007). A copula

C is a d-dimensional CDF, C : [0, 1]d → [0, 1], whose uni-

variate marginal CDFs are uniform on the interval [0, 1]. The

main attribute of a copula is to link a given joint CDF with its

marginals, carrying all the dependence information of the ran-

dom variables.

According to the Sklar’s theorem (Sklar, 1959), a joint

CDF FX(x) = P[X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd]

with marginal CDFs FXk
(xk) = P[Xk ≤ xk] for k =

1, . . . , d, can be expressed as FX1,X2,...,Xd
(x1, x2, . . . , xd) =

C
(

FX1
(x1), FX2

(x2), . . . , FXd
(xd)

)

. In other words, any joint

CDF can be represented as a function of its univariate marginal
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CDFs and a copula C that contains all information of the depen-

dence structure between the components of the random vector

X = [X1, X2, . . . , Xd].

2.2. VC-volume and Lebesgue-Stieltjes measure µC

Let us define a d-dimensional box or simply d-box [a, b], as the

Cartesian product [a, b] := ×d
k=1

[ak, bk] := [a1, b1] × [a2, b2] ×
· · · × [ad, bd], with ak ≤ bk, for all k = 1, 2, . . . , d; here

[ak, bk]|dk=1 represents a set of intervals on the real line.

The VC volume of a d-box [a, b] is the d-th order difference of

the copula C on [a, b], that is,

VC([a, b]) =

2
∑

i1=1

2
∑

i2=1

· · ·
2

∑

id=1

(−1)i1+i2+···+idC(x1i1 , x2i2 , . . . , xdid )

where, a = [a1, a2, . . . , ad], b = [b1, b2, . . . , bd], and xk1 =

ak, xk2 = bk, for all k = 1, 2, . . . , d. The VC-volume can be

understood as the volume associated to the d-box [a, b] under

the PDF corresponding to the copula C (in the case it exists); in

consequence, VC([a, b]) ≥ 0 for each [a, b] ⊆ [0, 1]d.

The generalization of the VC-volume to sets in [0, 1]d that are

not d-boxes is given by the Lebesgue-Stieltjes measure associ-

ated to the copula C, denoted µC . In this case, µC(F) is the

probability measure of the region F ∈ [0, 1]d under the copula

C (see Alvarez (2009a) for further details).

2.3. Rosenblatt transformation for copulas

Rosenblatt (1952) proposed a method that transforms a set of

dependent random variables α into a set of independent ones α′.
In other words, given the joint CDF of a (possibly dependent)

set of random variables, this transform is a one-to-one mapping

from that set of variables α onto a set of independently and

identically distributed (i.i.d.) random variables α′.

For copulas, this bijective transform is expressed as follows:

for every random vector α = [α1, . . . , αd] distributed accord-

ing to the copula C : [0, 1]d → [0, 1], the Rosenblatt trans-

form α′ = TRos(α) = [α′
1
, . . . , α′

d
] is given as: α′

1
= α1,

α′
2
= C(α2 | α1), . . . , α′

d
= C(αd | α1, α2, . . . , αd−1). In this

case, the resulting random vector α′ takes values in [0, 1]d and

is uniformly distributed according to the independence copula

(also known as product copula), C(α′) =
∏

(α′) =
∏d

k=1 α
′
k
.

Furthermore, the conditional CDFs C(αk | α1, . . . , αk−1) can be

shown to be given by (Schmitz, 2003, p.20),

C(αk | α1, . . . , αk−1) =

∂k−1

∂α1 ··· ∂αk−1
C(α1, . . . , αk, 1, . . . , 1)

∂k−1

∂α1 ··· ∂αk−1
C(α1, . . . , αk−1, 1, . . . , 1)

for k = 2, . . . , d; this holds under the assumption that C is suf-

ficiently differentiable. By construction, the arguments of the

copula in the numerator are filled with ones for the indexes

k + 1, . . . , d, and the same applies in the denominator for the

indexes k, . . . , d. The last equation is often cumbersome to ap-

ply in high dimensions, inasmuch as the numerical evaluation

of the derivatives might be computationally demanding and is

prone to round-off errors.

The inverse of the Rosenblatt transformation T−1
Ros

provides the

most general sampling method for copulas, which is known as

the conditional distribution method (see e.g. Embrechts et al.

(2003)). By drawing a set of i.i.d. samples α′
k

for k = 1, 2, . . . , d

uniformly distributed in [0, 1] and using the recursive equations

α1 = α
′
1

αk = C−1(α′k | α1, α2, . . . , αk−1) for k = 2, . . . , d, (2)

a vector α = T−1
Ros

(α′) distributed according to the copula C is

obtained. Since the computation of the conditional inverses C−1

is difficult to handle analytically, the solution of equation (2)

can be obtained numerically by solving the nonlinear equation

C(αk | α1, . . . , αk−1) − α′
k
= 0 for αk ∈ [0, 1].

3. Random sets: basic concepts

In the next, a brief review on some ideas on random sets (RS)

is presented.

3.1. Definition of a random set

Let us consider a universal set X , ∅ and its power set

P(X ), a probability space (Ω, σΩ, PΩ), and a measurable

space (F , σF ), where F ⊆ P(X ). A random set Γ is a

(σΩ − σF )-measurable mapping Γ : Ω → F , α 7→ Γ(α)

(Nguyen, 2006; Couso et al., 2014). In other words, a random

set is analogous to a random variable whose realization is a set

in F , not a number. Let us call each of those sets Γ(α) ∈ F a

focal element and F a focal set.

Similarly to the definition of a random variable, a random set

can be used to define a probability measure on (F , σF ) given

by PΓ := PΩ ◦ Γ−1. That is, an event R ∈ σF has probability

PΓ(R) = PΩ ({α ∈ Ω : Γ(α) ∈ R }). Observe that when all focal

elements of F are singletons, Γ becomes a random variable X.

Hence, Γ(α) = X(α) and the probability of occurrence of an

event F is PX(F) := (PΩ ◦ X−1)(F) = PΩ {α ∈ Ω : X(α) ∈ F }
for every F ∈ σΩ.

When applying RS theory, it is not possible to compute exactly

PX(F) but only its upper and lower probability bounds, since the

exact CDF of the input random variables is unknown. Dempster

(1967) defined those lower and upper probabilities by,

PΓ(F) := PΩ ({α ∈ Ω : Γ(α) ⊆ F, Γ(α) , ∅ }) (3a)

PΓ(F) := PΩ ({α ∈ Ω : Γ(α) ∩ F , ∅ }) (3b)

where, PΓ(F) ≤ PX(F) ≤ PΓ(F).
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3.2. Relationship between random sets and other representa-

tions of uncertainty

The definition of a random set in Section 3.1 is very general.

Alvarez (2006, 2007) proved that particularizing the probability

space as,

- Ω := (0, 1]d,

- σΩ := B(Ω), where B(Ω) is the Borel σ-algebra on Ω,

- PΩ := µC for some copula C that contains the dependence

information within the joint random set, and

- using d-boxes as elements of F ,

is enough to model several representations of uncertainty, such

as, intervals, possibility distributions, CDFs, probability boxes,

Dempster-Shafer structures, or their joint combinations.

In the following, we will describe the relationship between RSs

and the aforementioned representations of uncertainty. With-

out loss of generality, the concepts are introduced for one-

dimensional random sets, that is, Ω := (0, 1], σΩ := B(Ω),

and PΩ is a Lebesgue measure on Ω (the probability measure

corresponding to the CDF of a uniformly distributed random

variable α̃ on (0, 1]). Joint (multidimensional) random sets will

be analyzed from Section 3.3 on.

RSs and intervals

An interval I = [a, b] models a range of values between a lower

value a and an upper value b. They do not involve any knowl-

edge of the CDFs of the values within a and b, in fact, all CDFs

in I are possible. In consequence, intervals should not be con-

fused with a uniform CDF in [a, b], inasmuch as that would

imply commuting imprecision with randomness. An interval

I can be represented by the random set Γ(α) := I, that is, all

α ∈ Ω draw the same interval I.

RSs and possibility distributions

A possibility distribution is expressed as a normalized fuzzy

set, with membership function A : X → (0, 1], X ⊆ R

(Dubois and Prade, 1988). It can be represented as the random

set Γ : Ω→ F , whose focal set F is the system of all α-cuts of

the membership function A, that is, Γ(α) := {x ∈ X : A(x) ≥ α}
for α ∈ (0, 1].

RSs and cumulative distribution functions

Consider a random variable on X : Ω → R; the probability

law of the random variable can be expressed using its CDF FX .

The CDF of the random variable X can be represented by the

random set Γ(α) := F
(−1)

X
(α) for α ∈ Ω, where, F

(−1)

X
(α) :=

inf { x : FX(x) ≥ α } denotes the quasi-inverse of FX .

RSs and probability boxes

A probability box or simply p-box is the set of CDFs {FX :

FX(x) ≤ FX(x) ≤ FX(x), x ∈ R} which conjointly represents

the uncertainty about the true CDF associated to a random vari-

able X (Ferson et al., 2003). According to Crespo et al. (2013),

probability boxes can be classified into two disjoint groups: dis-

tributional and distribution-free, which are discussed next.

Distributional p-boxes, also known as parametric, result when

there is uncertainty in the representation of the parameters

of the parental CDF (see below). Let us consider the CDF

FX(x; θ) associated to a random variable X whose vector

of parameters is θ = [θ1, . . . , θm]. When the parameters

θ are imprecisely specified as intervals, such that θi ∈ Ii

for i = 1, . . . ,m, the set of all CDFs whose parameters

comply with those intervals form the distributional p-box

{FX(x; θ) : θ ∈ I1 × · · · × Im}; here FX represents the so-

called parental CDF. For instance, consider a Gaussian dis-

tributed random variable with mean in the interval [0, 2]

and variance in [1, 3]. Only those Gaussian CDFs whose

mean and variance lie in those intervals will belong to the

p-box; in this case the parental CDF of the p-box is Gaus-

sian distributed and no other family type of CDFs within

the p-box will be allowed.

Distribution-free p-boxes, also known as non-parametric, ap-

pear when the parental family of the CDF that speci-

fies the p-box is unknown. In this case, only the CDF

bounds FX and FX are clearly and explicitly stated, and

no assumptions about the parental CDF, or shape of the

uncertain CDFs are made. Alvarez (2006) showed that

this type of p-box can be specified as the random set

Γ(α) := [FX

−1
(α), FX

−1(α)] for α ∈ Ω. Distribution-free p-

boxes do not retain information about the internal structure

within the CDF bounds FX and FX , and in consequence,

they do not elucidate which distributions within the p-box

are the most likely.

Distributional probability boxes are a useful tool to model

CDFs whose parameters are known up to intervals. However,

when used together with random set theory, they must be con-

verted to distribution-free probability boxes, with an associated

loss of information. This is because the inherent inability of

random set theory to specify the parental CDF related to the

probability box. A distributional p-box can be approximated

by a distribution-free p-box using for instance the method de-

scribed in Alvarez et al. (2017). In the same reference, it is also

devised a method to estimate the bounds of the probability of

failure dealing directly with distributional p-boxes; as a result,

tighter bounds on the probability of failure are provided since

the additional information included with the approximation of

distributional p-boxes as distribution-free ones is excluded in

the calculation.

Finally, Dempster-Shafer structures are also closely related to

random sets. The reader is referred to Alvarez (2006, 2007) for

further information.

4



3.3. Sampling from a random set

Let us consider again the probability space (Ω, σΩ, PΩ) with

Ω := (0, 1], σΩ := B(Ω) and PΩ a Lebesgue measure on (0, 1].

A sample of a one-dimensional random set is simply obtained

by generating an α from the uniform distribution in (0, 1] and

then computing the corresponding focal element Γ(α).

An extension to higher dimensions, Ω := (0, 1]d, σΩ := B(Ω)

and PΩ := µC , can be carried out by sampling an α from the

copula C and then combining the associated focal elements.

These joint focal elements are given by the Cartesian product

×d
k=1
Γk (αk), where Γk (αk) are the sampled focal elements from

every basic variable. Note that some of these Γk (αk) are in-

tervals, some other points. Thus, considering that every sam-

ple of a basic variable can be portrayed either by Γk (αk) or

by the corresponding αk, the joint focal element can be repre-

sented either by the d-box ×d
k=1
Γk (αk) ⊆ X or by the point

α = [α1, α2, . . . , αd] ∈ (0, 1]d = Ω, as illustrated in Figure 1a

and Figure 1b, respectively.

3.4. Lower and upper probabilities of the failure event F

Under the particularizations of Section 3.2, the sample space Ω

contains the regions (Alvarez, 2006),

FLP := {α ∈ Ω : Γ(α) ⊆ F, Γ(α) , ∅} (4a)

FUP := {α ∈ Ω : Γ(α) ∩ F , ∅} (4b)

which are correspondingly formed by all those points in Ω

whose respective focal elements are completely contained in

the set F or have at least one point in common with F (see Fig-

ure 1a). These sets are called respectively the lower and upper

inverses of F under the random set Γ. In particular observe that

FLP ⊆ FUP.

In this case, the lower (3a) and upper (3b) probability bounds

of F can be calculated by the Lebesgue-Stieltjes integrals

(Alvarez, 2006, 2009a)

PΓ(F) =

∫

Ω

IFLP
[α] dC(α) = µC(FLP) (5a)

PΓ(F) =

∫

Ω

IFUP
[α] dC(α) = µC(FUP), (5b)

provided that FLP and FUP are µC-measurable sets. This mea-

surability is guaranteed by the fundamental measurability theo-

rem Molchanov (2005).

3.5. Finding the image of a focal element through a function

In the context of structural reliability, it is required to es-

timate the image of a focal element Γ(α) through the LSF

g, that is, g(Γ(α)). This mapped focal element is obtained

through the application of the so-called extension principle

(Dubois and Prade, 1991), so that

g (Γ(αi)) =
[

g(αi), g(αi)
]

where, g and g are the LSFs defined in the Ω-space (see Fig-

ure 1b) and are given by,

g(αi) := min
x∈Γ(αi)

g (x) and g(αi) := max
x∈Γ(αi)

g (x) ; (6)

these are optimization problems that can be solved using any

nonlinear constrained global optimization algorithm. However,

since this procedure is computationally expensive and suffers

the curse of dimensionality, alternative approaches, such as the

sampling method, the vertex method, the function approxima-

tion method, interval arithmetic or the approach proposed in

Hurtado et al. (2012) are usually employed in order to reduce

the computational load (see e.g. Alvarez (2007)).

4. Random sets and the bounding of the probability of fail-

ure

In the context of random set theory, we cannot compute an ex-

act value of the probability of failure Pf , inasmuch as the ex-

act distribution of the input variables is not known beforehand.

However, as shown in Alvarez (2006, 2009a), it is possible to

estimate the lower and upper probabilities of failure using equa-

tions (5a) and (5b) as

Pf = PΓ(F), Pf = PΓ(F) (7)

respectively. Moreover, from equations (4) and (6), it can be

seen that the following relations apply,

I [Γ(α) ⊆ F] = IFLP
[α] = I

[

g(α) ≤ 0
]

(8a)

I [Γ(α) ∩ F , ∅] = IFUP
[α] = I

[

g(α) ≤ 0
]

(8b)

and therefore, the bounds on the probability of failure in equa-

tions (7) can be written as Alvarez and Hurtado (2014):

Pf =

∫

Ω

I

[

g(α) ≤ 0
]

dC(α) (9a)

Pf =

∫

Ω

I

[

g(α) ≤ 0
]

dC(α). (9b)

By comparing equations (1) and (9), we realize that the estima-

tion of Pf and Pf reduces to assessing the probability of failure

in the Ω-space for two different LSFs, namely g and g. This is

an important fact that allows us to use the already existing meth-

ods for the estimation of failure probabilities within random set

theory, with minor modifications.

5. Estimation of Pf and Pf using Monte Carlo simulation

Monte Carlo simulation (MCS) methods are usually employed

to evaluate the integral (1). The main idea of the MCS approach

is to solve the target problem by directly simulating the numer-

ical model a given number of times, obtaining a sequence of

solutions which is used to estimate statistics of the system re-

sponse. In structural reliability, MCS generates i.i.d. samples
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a) X -space b) Ω-space

c) U -space

FUP

FLP

xi

x j

αi

α j

ui

u j

F

S 0

0

1

1

g(x) = 0
g(α) = 0

g(α) = 0

G(u) = 0

G(u) = 0

Figure 1: Panel a): the basic variables are defined in the space X ; the realizations of these variables by means of random set theory are the focal elements which

are depicted as boxes; it is also shown the failure surface g(x) = 0 together with the safe S and failure F domains. Panel b): the copula C is defined in the space Ω;

in this space are defined the regions FLP and FUP together with the failure surfaces g(α) = 0 and g(α) = 0 (see Eqs. (6)). Notice that FLP ⊆ FUP. Panel c): the

standard Gaussian space U together with the failure surfaces G(u) = 0 and G(u) = 0 (see Eqs. (12)).

from the joint CDF of the input variables FX(x), to obtain a

large set of LSF values with the purpose of estimating the fail-

ure probability as a sample average.

The generation of samples might be carried out using the in-

verse transform method, as follows: first, N points αi =
[

α
(1)

i
, . . . , α

(k)

i
, . . . , α

(d)

i

]

for i = 1, 2, . . . ,N are simulated from

the copula C, e.g., using the conditional distribution method

explained in Section 2.3 (Nelsen (2007) provides additional

methods for sampling from copulas); thereafter, each marginal

CDF {FXk
}|d

k=1
is used to obtain the realization x

(k)

i
= F−1

Xk
(α

(k)

i
).

The point xi =
[

x
(1)

i
, . . . , x

(k)

i
, . . . , x

(d)

i

]

will serve as a sample of

the joint CDF FX; finally, the MCS estimate of the probability

of failure (1) is computed as

P̂f =
1

N

N
∑

i=1

IF [xi] =
1

N

N
∑

i=1

I

[

g(xi) ≤ 0
]

.

When considering RSs, for each αi drawn from the copula C,

we obtain a corresponding focal element Γ(αi); this is a d-box

resulting from the Cartesian product of the unidimensional fo-

cal elements obtained for each input variable. In consequence,

this joint focal element contains all possible realizations of the

input variables for a given αi. Therefore, in Alvarez (2006,

2007, 2009a), it is shown that integrals (9) can be computed

using the unbiased and consistent estimators

P̂f =
1

N

N
∑

i=1

IFLP
[αi] =

1

N

N
∑

i=1

I

[

g(αi) ≤ 0
]

(10a)

ˆ
Pf =

1

N

N
∑

i=1

IFUP
[αi] =

1

N

N
∑

i=1

I

[

g(αi) ≤ 0
]

. (10b)

According to (8), Γ(α) * F and g(α) > 0 are equivalent expres-

sions; also Γ(α)∩F = ∅ and g(α) > 0 are equivalent. Moreover,

since Γ(α) ∩ F = ∅ implies that Γ(α) * F, hence, g(α) > 0 en-

tails g(α) > 0. This fact can be used in order to largely reduce

the number of evaluations of the function g. If the same set

of samples αi from the copula C is employed in the evaluation

6



of equations (10), it is not necessary to evaluate g for the sam-

ples that satisfy I
[

g(αi) ≤ 0
]

= 0 because this automatically

indicates I
[

g(αi) ≤ 0
]

= 0. Therefore, once equation (10b) is

computed, only those samples αi which fulfill g(αi) ≤ 0 are

employed in the evaluation of g in equation (10a).

Equations (10) are simply the implementation of the so-called

interval Monte Carlo method, after Zhang et al. (2010, 2013,

2017). Note that Zhang and co-workers originally formulated

their method assuming independence between the input vari-

ables, that is, they have assumed a product copula
∏

(α) and

have performed the sampling using simple MCS and determin-

istic low-discrepancy sequences. In this sense, the method pro-

posed by Zhang and co-workers is a particularization of the

one proposed by Alvarez (2006, 2009a) when the focal sets are

mapped through the function g using the optimization method,

inasmuch as the latter includes dependence between the basic

variables and also supports not only p-boxes and CDFs but also

possibility distributions, intervals and Dempster-Shafer struc-

tures.

As we will show in Section 7, integrals (9) can also be estimated

by any advanced Monte Carlo simulation method, e.g., subset

simulation, line sampling, importance sampling, adaptive sam-

pling, etc. In particular, we will illustrate this approach using

subset simulation.

6. Review of subset simulation

6.1. Description of the method in the U −space

The subset simulation (SuS) method, proposed by Au and Beck

(2001), is a stochastic simulation algorithm for reliability anal-

ysis of engineering systems whose failure probabilities strongly

depend on the realization of rare events. The main advantage

of this approach lies in its ability to transform a rare event sim-

ulation problem into a sequence of problems involving more

frequent events. This process is carried out by expressing a

very small probability of failure as the product of larger condi-

tional probabilities in the following way: the standard Gaussian

space U is divided into a decreasing sequence of nested sub-

sets (referred to as intermediate failure domains) starting from

the whole space and narrowing down to the target failure set,

i.e., U = F0 ⊃ F1 ⊃ · · · ⊃ Fm = F , such that F = ⋂m
j=0 F j.

Here, the failure set is defined by the LSF G : U → R as

F = {u ∈ U : G(u) ≤ 0}.

Consequently, by the general product rule of probability, the

probability of failure can be expressed as (Au and Beck, 2001),

Pf = P
(

∩m
j=0F j

)

= P
(

Fm | ∩m−1
j=0 F j

)

P
(

∩m−1
j=0 F j

)

= P (Fm | Fm−1) P
(

∩m−1
j=0 F j

)

= · · · =
m

∏

j=1

P
(

F j | F j−1

)

;

here, P
(

F j | F j−1

)

represents the conditional probability at the

( j − 1)-th level. Each intermediate failure domain is defined as

the set F j = {u ∈ U : G(u) ≤ b j}, where b1 > · · · > b j >

· · · > bm = 0 forms a decreasing sequence of threshold levels.

The set of samples that belongs to the level F j is denoted as u j;

more precisely, the notation u
(k)

j,i
indicates the k-th component

of the i-th sample that belongs to the level j. The conditional

probabilities can be estimated by MCS as,

P
(

F j | F j−1

)

≈ P̂ j =
1

N

N
∑

i=1

IF j

[

u j−1,i

]

,

where, {u j−1,i}|Ni=1
are samples distributed according to the con-

ditional standard Gaussian PDFs φU(· | F j−1). Observe that

the initial samples {u0,i}|Ni=1
are i.i.d. distributed according to

the joint standard Gaussian PDF φU(·) = φU(· | F0). However,

at higher intermediate levels, the calculation of P
(

F j | F j−1

)

for j = 2, ...,m is more complicated since it is necessary to

draw i.i.d. samples {u j−1,i}|Ni=1
from the conditional densities

φU(· | F j−1). SuS handles this task by generating samples with

especially designed Markov chains that sequentially populate

the target failure domain F . This requires the application of

a Markov chain Monte Carlo (MCMC) algorithm (this will be

discussed in Section 6.2).

In practical applications, it is not possible to make an optimal

a priori selection of the intermediate threshold values. There-

fore, they are adaptively selected in such a way that the con-

ditional failure probability of each level corresponds to a com-

mon fixed value P
(

F j | F j−1

)

= p0. Experience suggests that

p0 ∈ [0.1, 0.3] yields good efficiency; moreover, for implemen-

tation reasons, p0 is chosen such that Ns = N p0 and Nc = 1/p0

are natural numbers (Zuev et al., 2012). Observe that this adap-

tive selection implies that each threshold value b j corresponds

to the p0-percentile of the set of LSF values G(u j−1).

Provided that a suitable MCMC method is used for sampling

the intermediate conditional distributions, the SuS method pro-

ceeds as follows: from the initial MCS stage, the first interme-

diate level b1 is selected as the p0-percentile of the LSF values

G(u0), by doing so, Ns samples from u0 that lie in F1 will be dis-

tributed according to φU(· | F1). Those samples provide seeds

to simulate Markov chains using a MCMC algorithm that im-

plicitly has φU(· | F1) as stationary distribution; this process

generates new samples {u1,i}|Ni=1
. In the same way, the level b2

is selected as the p0-percentile of the LSF values G(u1) and Ns

samples from u1 that lie in F2 will be distributed according to

φU(· | F2). By repeating this process until the failure event F is

reached, the failure probability estimator of the SuS method is

given by,

P̂f =

m
∏

j=1

P̂ j = pm−1
0

∑N
i=1 IFm

[

um−1,i

]

N

where the second term of the right hand side, corresponds to

the intermediate conditional probability at the last level bm = 0

computed as the ratio between the number of samples that lie in

F = Fm and the total number of samples per level N. A general
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procedure for the implementation of the SuS method is shown

Algorithm 1.

6.2. MCMC algorithms for subset simulation

The objective of MCMC methods is the generation of samples

from arbitrary complex distributions. It should be noted that

MCMC samples are no longer independent; nevertheless, they

can still be used in the computation of the conditional proba-

bilities at the expense of a reduction in efficiency (Zuev et al.,

2012).

For subset simulation in the U -space, MCMC algorithms are

designed in such a way that the Markov chains have the in-

termediate conditional densities φU(· | F j) as their stationary

distributions. The first step of the simulation takes a sample

that belongs to F j (called seed) and computes a random walk

Algorithm 1 Subset simulation in the U -space (Au and Beck

(2001)).

Input:

1: ◮ Limit state function G : U → R
2: ◮ Number of samples per conditional level N

3: ◮ Conditional failure probabilities value p0 ∈ [0.1, 0.3]

Procedure:

4: Set j = 0 (number of conditional level)

5: Set NF0
= 0 (number of failure samples at level 0)

6: Set Ns = N p0 (number of seeds per level)

7: Set Nc = 1/p0 (number of samples simulated from each seed, including

the seed)

8: Create a list u0 with N i.i.d. realizations from φU(·) = φU(· | F0) using

MCS

9: Create an empty list h0 to store limit state function values

10: for i = 1 to N do

11: Set h0,i = G(u0,i)

12: if h0,i ≤ 0 then

13: Set NF0
= NF0

+ 1

14: end if

15: end for

16: while NF j
< Ns do

17: Set h
′
j: Sort the values in h j in ascending order

18: Set u
′
j
: Order the points in u j using the same sort-key that was used to

form h
′
j

19: Set b j+1 =
1
2

(

h′
j,Ns
+ h′

j,Ns+1

)

, (that is, the p0-percentile of h j)

20: Set ũ j = {u′j,i}|
Ns

i=1
(select the seeds)

21: Create two empty lists u j+1 and h j+1

22: for i = 1 to Ns do

23: Starting from the seed ũ j,i draw Nc − 1 additional samples from φU(· |
F j+1) using

24: the MCMC sampler (e.g. Algorithm 2) with the limit state function

G. This

25: process also returns the associated limit state function values

26: Append the previous Nc samples to the list u j+1

27: Append the previous Nc limit state function values to the list h j+1

28: end for

29: Set NF j+1
= 0 (number of failure samples at level j + 1)

30: for i = 1 to N do

31: if h j+1,i ≤ 0 then

32: Set NF j+1
= NF j+1

+ 1

33: end if

34: end for

35: Set j = j + 1 (next level index)

36: end while

37: Output: P̂f = p
j

0

NF j

N

in order to generate a candidate sample also distributed accord-

ing to φU(· | F j). The second step ensures that the candidate

sample lies in the intermediate failure level F j by performing

a LSF evaluation. Since the seeds are always distributed ac-

cording to the conditional density (due to the adaptive selection

of the intermediate levels), the samples generated during the

MCMC simulation are also distributed according to this den-

sity. Hence, it is realized that all the Markov chains generated

in SuS are in stationary state from the beginning of the simula-

tion, which avoids the implementation of the common MCMC

burn-in stages. This property of the MCMC samplers in SuS is

referred to as perfect sampling (Au et al., 2012).

Traditional modified Metropolis-Hastings (MMH) algorithms

in the context of SuS are adapted and/or improved versions

of the original MH procedure, since it has been found that

the latter has difficulties simulating random variables with

many components, thus becoming very inefficient in high

dimensional problems (Au and Beck, 2003). MMH meth-

ods (also know as component-wise) overcome this deficiency

by using a sequence of one-dimensional proposal distribu-

tions to generate the candidate state one component at a

time, instead of using a high dimensional proposal to ob-

tain the candidate samples; some of these methods include:

modified Metropolis algorithm (Au and Beck, 2001), modified

Metropolis-Hastings with grouping of samples (Au and Beck,

2003), modified Metropolis-Hasting with delayed rejection

(Zuev and Katafygiotis, 2011), adaptive conditional sampling

Papaioannou et al. (2015), among others. Recently, by noting

that the dimensionality of the problem increases the rejection of

candidate states in the MCMC sampler of SuS, Au and Patelli

(2016) proposed a so-called limiting algorithm to generate

Gaussian candidate samples expressed in terms of an arbitrary

increasing number of Gaussian random variables. According

to Au and Patelli, their method tackles the problem of gener-

ating conditional samples in the standard Gaussian space from

a more general perspective than Papaioannou et al. (2015), but

generally both methods coincide.

In the following, we will employ the adaptive conditional sam-

pling method as the MCMC sampler of SuS since it allows us

to reduce the sample correlation. This gives a corresponding

reduction in the coefficient of variation (c.o.v.) of the probabil-

ity of failure estimates, with a similar computational cost com-

pared to the original modified Metropolis algorithm (MMA)

by Au and Beck (2001). Moreover, compared to other MCMC

methods for SuS, the candidate state is always accepted at the

first step of the simulation.

Adaptive conditional sampling (ACS) (Papaioannou et al.,

2015): in a Metropolis-Hastings algorithm setting, given a seed

sampled at level j (that also belongs to the level j + 1), denoted

ũ j,i ∈ F j ∩ F j+1, for j = 0, . . . ,m − 1 and i = 1, ...,Ns, the

candidate state u
∗ is drawn from the PDF φU(· | F j+1). The

idea of the conditional sampling (CS) method is to impose that

the candidate state and the seed are jointly Gaussian distributed

with component-wise correlation coefficient ρk. Therefore, writ-

ing out a new random vector with components
[

u
∗; ũ j,i

]T

, we
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are now interested in the conditional distribution φU(u∗ | ũ j,i).

Notice that the mean vectors and covariance matrices of this

random vector can be partitioned accordingly in terms of the

individual and crossed components. In this case, the vector
[

u
∗; ũ j,i

]T

is distributed according to

N

([

0

0

]

,

[

I R

R
T

I

])

where, I ∈ Rd×d is the identity matrix and the cross-covariance

matrix R ∈ Rd×d is a diagonal matrix with its k-th diagonal term

equal to the correlation coefficient ρk. Based on this partition, it

can be shown (Vanmarcke, 2010, p. 48) that the conditional dis-

tribution φU(u∗ | ũ j,i) is given by the d-dimensional Gaussian

PDF, N(Rũ j,i, I − RRT). Because of the independence, each

k-th component of this conditional distribution is given by a

one-dimensional Gaussian with mean value ρkũ
(k)

j,i
and variance

1 − ρ2
k
, for k = 1, . . . , d. If not specified, the squared correla-

tion coefficients ρ2
k

can be estimated from the sample standard

deviation σ̃ j ∈ Rd×1 of the seeds ũ j. Then, each term of the

squared correlation parameter is estimated as ρ2
k
= 1−σ2

k
, where

σk = min(1, σ̃
(k)

j
) (here, the min function is required since σ2

k

cannot be larger than the standard deviations of the marginals

of the PDF φU, which are one).

As in most of MCMC samplers, the efficiency of the CS

method is controlled by the spread of the proposal distribu-

tion, which in this case depends on the choice of the corre-

lation parameters ρk. A small ρk decreases the acceptance

rate of the candidate samples, while a large ρk increases the

correlation of the samples. Therefore, based on Haario et al.

(2001), Papaioannou et al. (2015) proposed an adaptive scheme

for tuning ρk in such a way that the acceptance probability is

close to the optimal value of 0.44; this scheme is shown in

Algorithm 2 and its details can be found in Papaioannou et al.

(2015). It is worth mentioning that the CS algorithm can be

regarded as a particular case of the MCMC sampler with pre-

conditioned Crank-Nicolson proposal presented in Cotter et al.

(2013), q(u|v) = N(u|
√

1 − σ2 v, σ2
Σ), Σ = I and σ ∈ [0, 1].

7. Proposed method: estimation of Pf and Pf based on the

U → Ω transformation

From the foregoing discussion, we learned that the estimation

of the bounds on the probability of failure when the input vari-

ables are expressed as probability boxes, possibility distribu-

tions, cumulative distribution functions or intervals, can be per-

formed using random set theory. In this way, the calculation

of the bounds of Pf is expressed as two separate probability of

failure estimations, namely equations (9). These equations use

as LSFs g, g : Ω → R, which are functions of the dependent

variables α ∈ Ω.

Many of the methods used to estimate the probability of fail-

ure, operate in the standard Gaussian space U ⊆ Rd; in con-

sequence, it is required to transform the set of dependent vari-

Algorithm 2 Adaptive conditional sampling for subset simula-

tion (Papaioannou et al. (2015)).

Input:

1: ◮ Limit state function G : U → R ◮ Seeds ũ j ◮ Intermediate

threshold level b j

2: ◮ Number of seeds Ns = N p0 ◮ Number of chains Nc = 1/p0

3: ◮ Probability of adaptation pa ∈ [0.1, 0.2]

4: ◮ Number of chains for adaptation Na = Ns pa (Na is natural number)

5: ◮ Optimal acceptance rate a∗ = 0.44 ◮ Initial scaling parameter λ0 = 0.6

Procedure:

6: Create three empty lists u j+1, h j+1 and a j+1

7: for k = 1 to d do

8: µ̃
(k)
j
= 1

Ns

∑Ns

i=1
ũ

(k)
j,i

and σ̃
(k)
j
=

√

1
Ns−1

∑Ns

i=1

(

ũ
(k)
j,i
− µ̃(k)

j

)2
(estimate σ̃ j

from the seeds)

9: Set σk = min(1, λ0σ̃
(k)
j

) and ρk =

√

1 − σ2
k

(initial correlation parame-

ter)

10: end for

11: Shuffle the seeds in ũ j in order to avoid bias

12: Create the empty list ā (to store the acceptance/rejection values up until

adaptation)

13: for i = 1 to Ns do

14: Create the empty lists uu, hh and aa

15: Set uu1 = ũ j,i (take the i-th seed)

16: Set hh1 = G(uu1) (compute the limit state value)

17: Set aa1 = 1 (the seed is accepted by default)

18: for p = 1 to Nc − 1 do

19: for k = 1 to d do

20: Sample the candidate state u∗
k
∼ N(ρk uu

(k)
p , σ2

k
)

21: end for

22: Set s = G(u∗) (evaluate limit state function)

23: if s ≤ b j then

24: Set uup+1 = u
∗, hhp+1 = s and aap+1 = 1 (acceptance)

25: else

26: Set uup+1 = uup, hhp+1 = hhp and aap+1 = 0 (rejection)

27: end if

28: end for

29: Append the previous Nc samples in uu to the list u j+1

30: Append the previous Nc limit state values hh to the list h j+1

31: Append the previous Nc acceptance/rejection values aa to the lists a j+1

and ā

32: if mod(i,Na) == 0 then

33: Set t = floor(i/Na)

34: Set ât: Mean of the elements in the list ā (average acceptance rate)

35: Set λt = exp
[

ln(λt−1) + (ât − a∗)/
√

t
]

36: for k = 1 to d do

37: Set σk = min(1, λtσ̃
(k)
j

) and ρk =

√

1 − σ2
k

(adapt correlation pa-

rameter)

38: end for

39: Empty the list ā

40: end if

41: end for

42: Output: u j+1, h j+1 and λt (to be used as λ0 in the next level)

ables inΩ to a set of independent variables in U . This isoproba-

bilistic transformation can be easily performed using a bijective

function T that maps a dependent point in α ∈ Ω according to

the copula C to an independent point in [0, 1]d, as explained

in Ditlevsen and Madsen (1996, Chapter 7) and Lemaire et al.

(2009, Chapter 4), so that α = T−1 (Φ(u)) and thus integrals (9)

become,

Pf =

∫

U

I

[

G(u) ≤ 0
]

dΦU(u) Pf =

∫

U

I

[

G(u) ≤ 0
]

dΦU(u)

(11)
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where, the LSFs G,G : U → R (see Figure 1c) are given by

G(u) = g
(

T−1 (Φ(u))
)

and G(u) = g
(

T−1 (Φ(u))
)

;

(12)

here, ΦU stands for the standard Gaussian joint CDF, Φ(u) =

[Φ(u1), Φ(u2), . . . , Φ(ud)], and Φ is the unidimensional stan-

dard Gaussian CDF. Basically, the operation Φ(u) transforms

the standard Gaussian variables in U to the independent space

[0, 1]d and the inverse transformation T−1 maps an independent

point in [0, 1]d to a dependent one in Ω according to the copula

C. This last transformation can be performed using for instance

the Rosenblatt transform TRos, as explained in Section 2.3.

We can solve both reliability problems (11) using for example,

FORM, importance sampling, line sampling, the cross-entropy

method or even SuS. In the following section, we will illus-

trate the proposed approach using SuS. Note however that this

method is different from the one in Alvarez et al. (2014); in that

paper, we suggested an algorithm that modifies the MCMC pro-

cedure of Au and Beck (2003), so that it samples directly in

the Ω-space instead of the U -space, thus the transformation of

equation (12) is not required. That method was only applicable

to SuS, while the present approach is applicable to any method

that estimates the probability of failure in the standard Gaussian

space, as is the common practice in reliability analysis.

8. Numerical examples

Let us illustrate the proposed approach with three numerical ex-

amples that are solved using Monte Carlo simulation and sub-

set simulation with both adaptive conditional sampling (ACS)

and the modified Metropolis algorithm (MMA). For the SuS

method, the image of N = 1000 focal elements are calculated

per level and the results (probability bounds and associated co-

efficients of variation (c.o.v.)) are computed as an average of

50 independent runs with a conditional probability value of

p0 = 0.1. For ACS, the probability of adaptation pa is set to

0.1 and for MMA, a uniform proposal with width 2 is used.

Notice that in a traditional full-probabilistic setting, one LSF

evaluation will suffice to check whether the sample belongs to

the failure region or not. However, in the random set case, the

application of the extension principle is necessary to obtain the

lower and upper LSFs. This implies additional model evalua-

tions per focal element due to the optimization problem. There-

fore, in all the examples, the image of the focal element Γ(α)

through the LSF g was found by solving the constrained opti-

mization problems in equations (6) using an interior-point algo-

rithm (Potra and Wright, 2000). We are using this method in-

stead of others with a lower computational cost (e.g. the vertex

method), because this guarantees that the images of the focal

elements are precisely computed in all examples.

8.1. Example 1: a two-dimensional function

Consider the LSF g(x) = 7 − x2
1
+ x2. The input variables X1

and X2 are respectively modeled as the distributional p-boxes

N([−1, 2], 1) and N([−2, 1], 2). As described before, these dis-

tributional p-boxes must be converted to distribution-free p-

boxes in order to operate with random set theory. Moreover,

both input variables are assumed to be independent and there-

fore a product copula relates them, C(α) = α1α2.

The computation of the bounds of the probability of failure is

given by the integrals (11). After applying the MCS estima-

tors (10) using 1 × 106 focal element evaluations for the lower

bound and 1×104 for the upper bound, the estimates of the prob-

ability bounds are [P̂f ,
ˆ

Pf] = [2.590 × 10−4, 0.503]. Using the

optimization method, the determination of the image of each

focal element required in average 33.82 and 34.21 LSF evalua-

tions per element for the lower and upper bounds, respectively.

Take into account that the procedure right after equation (10)

was employed in order to reduce the number of focal element

evaluations in the estimation of Pf . In this case, 4970 samples

did not comply with G(u) ≤ 0, and therefore only 995030 fo-

cal element evaluations were required in the estimation of Pf by

means of MCS.

In SuS with ACS the lower bound is computed with G(u) as

LSF, in this case the intermediate levels are b j = [5.305, 3.097,

1.271, 0], obtaining the estimate P̂f = 2.532×10−4 with c.o.v. =

0.3132. Then, the upper bound is calculated with the LSF G(u),

in this case there are no intermediate levels b j = 0, and the esti-

mate is
ˆ

Pf = 0.500 with c.o.v. = 0.0301. This result is basically

the probability of failure estimated by MCS, and hence, SuS

is especially useful in the estimation of the lower probability

bound. For comparison, the same computation is carried out

using the classical MMA method. In this case, for the lower

bound the intermediate levels are b j = [5.329, 3.1093, 1.269, 0]

to obtain the estimate P̂f = 2.575 × 10−4 with c.o.v. = 0.4265.

For the upper bound, no intermediate levels are required b j = 0,

and the estimate is
ˆ

Pf = 0.49911 with c.o.v. = 0.0361. Finally,

during the estimation of the lower bound, the calculation of the

image of each focal element within SuS required in average

33.82, 33.34, 32.07 and 29.30 LSF evaluations at each interme-

diate threshold level.

The advantage of this example lies in the possibility to illustrate

how the samples are distributed in the three working spaces,

that is: i) the original space of basic random variables X ,

which contains the focal elements of the random set as d-boxes;

ii) the domain of definition of the copulas Ω, which allows to

model the dependence between the input variables and speci-

fies the focal elements as the points αi; and iii) the space of

standard Gaussian random variables U , where the structural re-

liability problem is solved. Figure 2 shows the distribution of

the SuS+ACS samples for the computation of the lower bound

(three intermediate levels) and of the upper bound (no interme-

diate levels). Observe that in the X -space, the focal elements

of the random sets are defined as two-dimensional boxes; here

it is also depicted the failure surface g(x) = 0. For the other

spaces is difficult to represent the shape of the corresponding

lower and upper LSFs since it would require the evaluation of a

considerable amount of samples. Thus, the failure regions can
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Table 1: Input variables of the problem analyzed in Example 2.

Variable Units Modeled as

X1 (F1) kN N(2, 0.22)

X2 (F2) kN N(3, 0.32)

X3 (P) kN G([11.9, 12.1], [1.19, 1.21])

X4 (T ) N·m N(90, [8.952, 9.052])

X5 (σy) MPa LN(220, 222)

X6 (t) mm fuzzy trapezoidal(2.8, 2.9, 3.1, 3.2)

X7 (d) mm fuzzy triangular(41.8, 42, 42.2)

X8 (L1) mm interval(119.75, 120.25)

X9 (L2) mm interval( 59.75, 60.25)

X10 (θ1) degrees interval(19, 21)

X11 (θ2) degrees interval(30, 35)

be differentiated from the safe regions by the distribution of the

samples. Note also that all of the “failure boxes” (in red) as-

sociated to the estimation of Pf were contained in the failure

region F, while none of the “failure boxes” associated to the

estimation of Pf were completely contained in the safe region

S .

8.2. Example 2: a cantilever tube

Let us consider a modified version of the example proposed in

Du (2008), which deals with a cantilever tube beam of diameter

d and thickness t, sketched in Figure 3. The beam is subjected

to a torsional moment T , external lateral forces F1, F2 and axial

force P.

The failure of the beam occurs when the maximum von Mises

stress on the top surface of the tube at the support, σmax =
√

σ2
x + 3τ2

xz, is larger than the yield strength σy of the mate-

rial; in this sense, the LSF is defined as the difference g(x) =

σy − σmax, where

σx =
P + F1 sin θ1 + F2 sin θ2

A
+

Md

2I

stands for the normal stress produced by the axial and lateral

forces and bending moments, τxz = (Td)/(4I) is the shear stress

produced by the torsion at the support, A = π
(

d2 − (d − 2t)2
)

/4

is the cross-sectional area, I = π
(

d4 − (d − 2t)4
)

/64 is the sec-

ond moment of inertia, and M = F1L1 cos θ1 + F2L2 cos θ2 rep-

resents the bending moment in the beam.

The uncertain input variables to the system are listed in Table 1.

Here, X1, X2 and X5 are represented as CDFs, X3 and X4 are

modeled as distributional p-boxes converted to distribution-free

p-boxes, X6 and X7 are possibility distributions, and variables

X8, X9, X10 and X11 are typified as intervals. In Table 1, the

nomenclature N(µ, σ2) expresses the Gaussian CDF with mean

µ and variance σ2, G(µ, σ) symbolizes a Gumbel (Type I ex-

treme value) CDF G(x; µ, σ) = exp
(− exp ((x − µ)/σ)

)

with lo-

cation parameter µ and scale parameter σ, and LN(m, v) stands

for a lognormal CDF with mean m and variance v.

Furthermore, we will suppose that variables X5 to X11 are in-

dependent and consequently they are related through a product

copula C(α) :=
∏dim(α)

i=1
αi, while variables X1 to X4 are related

through a Frank copula

CFrank(α; δ) := ψ−1

















dim(α)
∑

i=1

ψ(αi; δ); δ

















with ψ(t; δ) = − ln
(

exp(−δt)−1

exp(−δ)−1

)

, ψ−1(t; δ) =

− 1
δ

ln
(

1 + exp(−t)(exp(−δ) − 1)
)

and parameter δ ∈ R\0
set to be equal to δ = 10 . In consequence, the copula that

relates all implied variables is

C(α) = CFrank([α1, α2, α3, α4]; 10) ·
11
∏

i=5

αi.

As in the previous example, the failure probability bounds are

initially estimated by MCS. In this case, N = 1 × 106 and

N = 1 × 105 focal elements are used for the estimation of

the lower and upper bounds. The determination of the im-

age of each focal element using the optimization method re-

quired in average 112.3 and 107.3 LSF evaluations per element

for the lower and upper bounds, respectively. The results are

[P̂f ,
ˆ

Pf] = [5.230 × 10−4, 1.003 × 10−2]. Again, by applying

the procedure right after equation (10), the number of focal el-

ement evaluations in the estimation of Pf was reduced. In this

case, 98997 samples did not comply with G(u) ≤ 0, and thus

901003 focal element evaluations were required in the estima-

tion of Pf by means of MCS.

In SuS with ACS, the estimation of the lower bound required

four intermediate levels and the estimate is P̂f = 5.136 × 10−4

with c.o.v. = 0.2429. For the upper bound three intermedi-

ate level are reached, giving the estimate
ˆ

Pf = 8.588 × 10−3

with c.o.v. = 0.1039. Again, SuS runs are also performed with

MMA. For the lower bound, the estimate is P̂f = 5.244 × 10−4

with c.o.v. = 0.2916. For the upper bound, the estimate is
ˆ

Pf = 8.301×10−3 with c.o.v. = 0.1382. Moreover, in the estima-

tion the lower bound, the calculation of the image of each focal

element within SuS required in average 112.29, 113.04, 113.26

and 113.56 LSF evaluations at each intermediate threshold

level; and for the upper bound, the calculation of the image

of each focal element required in average 107.16, 107.50 and

107.96 LSF evaluations at each intermediate level.

In this example the failure threshold level σy is also considered

uncertain, thus, it is not feasible to generate an excursion prob-

ability plot to represent the evolution of the response quantity

σmax (threshold levels) with respect to the probability of failure.

However, it is possible to illustrate how the lower and upper

LSFs values h evolve with the probability; Figure 4 shows this

evolution using the MCS and SuS+ACS methods. For each

bound, the average of 50 SuS runs shows a good agreement with

the reference MCS estimation. Furthermore, Figure 5 shows a

comparison between the ACS and MMA methods, in terms of

the coefficients of variation of the probability estimates.
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Figure 2: SuS evolution in the spaces X , Ω and U for the computation of lower bound P̂f (left) and upper bound (right)
ˆ

Pf of the Example 1.
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Figure 5: Limit state function values vs. coefficient of variation, for MCS and

SuS with the ACS and MMA methods (Example 2).

8.3. Example 3: a six-bar truss

Consider the six-bar steel truss shown in Figure 6. The struc-

tural failure occurs when the displacement of upper-right node

in the positive x-direction ∆ (drift) exceeds 1.25 mm; therefore,

the LSF is defined as g(x) = 1.25 − ∆(x). Here, ∆ is measured

in millimeters, the Young modulus is E = 210 GPa, the exter-

nal cross-sectional areas of the bars (A1, ..., A4) are described

by random variables, and the applied loads (P1, ..., P4) and the

internal cross-sectional areas (A5 and A6) are described by dis-

Table 2: Input variables of the problem analyzed in the Example 3.

Variable Units Modeled as

X1, . . . , X4 (P1, . . . , P4: kN) N([35, 37], 52)

X5, . . . , X8 (A1, . . . , A4: cm2) LN(10, 0.012)

X9, X10 (A5, A6: cm2) U([9.2, 10.3], [10.8, 12.1])

tributional p-boxes, as specified in Table 2.

1

2

3 4

5

6

P1

P2

P3

P4

0.6 m

0.8 m

Figure 6: Six-bar truss considered in the Example 3.

In this example, the dependence between variables P1 and P2

is given by a Frank copula with δ = 5, the dependence between

variables P3 and P4 is also given by a two-dimensional Frank

copula with δ = 5; and variables A1, . . . , A6 are related by

a Gaussian copula CGauss([α5, . . . , α10]; RG) with correlation

matrix

RG =



















































1 0.9 0.3 0.3 0.3 0.3

0.9 1 0.3 0.3 0.3 0.3

0.3 0.3 1 0.9 0.3 0.3

0.3 0.3 0.9 1 0.3 0.3

0.3 0.3 0.3 0.3 1 0.9

0.3 0.3 0.3 0.3 0.9 1



















































.

The Gaussian copula with correlation matrix RG ∈ [−1, 1]d×d is

given by

CGauss(α; RG) = ΦRG

(

Φ−1(α1), . . . , Φ−1(αd)
)

where, Φ−1 is the quantile function of a standard Gaussian CDF

andΦRG
is the joint CDF of a multivariate Gaussian distribution

with zero mean vector and covariance matrix equal to RG. Since

the groups of variables {P1, P2}, {P3, P4} and {A1, . . . , A6} are

independent, the variables are related by the copula:

C(α) = CFrank([α1, α2]; 5) ·CFrank([α3, α4]; 5)

·CGauss([α5, . . . , α10]; RG).
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On the one hand, integrals (11) are estimated using MCS, ob-

taining the failure probability bounds P̂f = 2.580 × 10−5 and

ˆ
Pf = 1.670×10−3; this estimation was computed by calculating

the image of 1 × 107 and 1 × 105 focal elements, respectively.

As in the previous examples, by applying the ideas right after

equation (10), the number of focal element evaluations in the

estimation of Pf can be reduced. In this case, 99833 samples

did not comply with G(u) ≤ 0, and therefore 9900167 focal ele-

ment evaluations were required in the estimation of Pf by means

of MCS. Using the optimization method, the determination of

the image of each focal element required in average 206.91 and

255.01 samples per element, for the lower and upper bounds.

On the other hand, the average SuS+ACS runs estimated five

intermediate levels b j = [0.959, 1.065, 1.145, 1.212, 1.25] for

the calculation of the lower bound to obtain P̂f = 2.523 × 10−5

with c.o.v. = 0.3325; and for the upper bound, three interme-

diate levels are reached b j = [1.068, 1.181, 1.25] giving the

estimate
ˆ

Pf = 1.609 × 10−3 with c.o.v. = 0.2026. The same

computation is carried out using the MMA, providing the fol-

lowing results: for the lower bound, the intermediate levels are

b j = [0.989, 1.096, 1.176, 1.242, 1.25] to obtain the estimate

P̂f = 2.565×10−5 with c.o.v. = 0.3979; and for the upper bound,

the intermediate levels are b j = [1.066, 1.181, 1.25] to estimate
ˆ

Pf = 1.664 × 10−3 with c.o.v. = 0.2454. During the estimation

the lower bound, the calculation of the image of each focal ele-

ment in SuS required in average 206.65, 203.43, 201.28, 199.61

and 198.35 LSF evaluations at each intermediate threshold

level; and for the upper bound, the calculation of the image

of each focal element required in average 254.91, 254.39 and

253.61 LSF evaluations at each intermediate level.

In contrast to Example 2, the probability excursion can be esti-

mated since the failure threshold level is assumed to be constant

(1.25 mm). Figure 7 shows a plot of the lower and upper prob-

abilities of failure for each drift level ∆(x). As in Example 2, it

is seen that the results by MCS and SuS+ACS are in agreement.

Observe that with the average runs of subset simulation we can

obtain the bounds of the probability of failure for each demand

level up to the largest one considered. Additionally, Figure 8

presents a comparison between the ACS and MMA methods, in

terms of the evolution of the drift values and the coefficients of

variation of the failure probability estimates.

9. Discussion of results

The problem of finding the lower and upper bounds of the prob-

ability of failure has been expressed as a reliability problem that

models the dependence by means of copulas. However, since

many of the methods for the estimation of the probability of

failure have been designed to operate in the standard Gaussian

space, it is required to use a a suitable isoprobabilistic transfor-

mation to map any copula to such space.

The proposed examples confirm that subset simulation is espe-

cially useful in the estimation of those bounds. This is mainly
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Figure 7: Probability excursion: estimate of the probability of failure bounds

for the Example 3.
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Figure 8: Drift levels vs. coefficient of variation, for MCS and SuS with the

ACS and MMA methods (Example 3).

related to the fact that the method results in a considerable re-

duction of the computational effort, and at the same time, gives

results that are in a good agreement with the reference Monte

Carlo solution. Perhaps the main issue of subset simulation lies

in the variability of the simulation results which generally pro-

duces large coefficients of variation. We assessed the perfor-

mance of two well-known MCMC samplers for subset simula-

tion, namely, the modified metropolis algorithm and the adap-

tive conditional sampler. For all the examples, the ACS algo-

rithm provides lower coefficients of variation compared to the

MMA. Nevertheless, the estimation of the failure probability

bounds by subset simulation using either MMA or ACS pro-

vides results that in average are in agreement with the reference

Monte Carlo solution.

Since the calculation of G(u) and G(u) requires the solution

of two optimization problems, many LSF evaluations per focal

element are required. Therefore, the average number of LSF

calls is also computed as a measure of the computational cost.

Particularly, for most of the examples using SuS, the number of

LSF calls decreased with each intermediate level as the failure
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space is sequentially explored.

When using imprecise probability methods, small intervals in

the definition of the parameters of the input variables, may lead

to wide bounds on the estimated probability of failure. This

should not be taken as an argument against these techniques,

though; on the contrary, this indicates that it is very dangerous

to assume unique values on the parameters of the input vari-

ables, especially in the case of scarce data or vague information,

in order to obtain a point estimate of the probability of failure.

Naturally, the width of those intervals is expected to narrow

when additional information is available. In those cases, sensi-

tivity analysis methods can also be used to address the situation

(see e.g. Alvarez (2009b); Patelli et al. (2014)).

As previously commented, Alvarez et al. (2017) devised a

method to estimate the bounds of the probability of failure by

dealing directly with distributional p-boxes, without recurring

to the approximation of a distributional p-box as a distribution-

free p-box. As a result, narrower bounds on the probability of

failure are found, since the additional information included with

the approximation is excluded in the calculation. For instance,

when using the methods introduced in Alvarez et al. (2017),

the bound on the probability of failure for the Example 1 is

[8.999 × 10−3, 0.431], which compared to the bound provided

by random set theory (that is [2.590× 10−4, 0.503]) produces a

tightening of around 16%.

Finally, the results are summarized in Table 3 for MCS,

SuS+ACS and SuS+MMA, where the coefficients of variation

for SuS were computed using 50 independent runs. The aver-

age number of LSF in SuS was computed along the simulation

runs and also along the intermediate levels.

10. Conclusions and open research problems

An efficient approach for the reliability analysis of structures

under uncertainty, in which the input variables are modeled us-

ing random set theory (that is, possibility distributions, inter-

vals, CDFs, distribution-free p-boxes or even Dempster-Shafer

structures) was presented. Each focal element that is sampled

from the random set is modeled either as a point in a space Ω,

or as a d-dimensional box in the space of input variables X .

In the Ω-space, a copula C models the dependence between

the input variables; also in Ω there exists two limit state func-

tions g and g that define the lower and upper inverses of the

failure set, that is FLP and FUP. The focal elements correspond-

ing to FLP and FUP contribute to the evaluation of the lower

and upper probability of failure, respectively. By mapping the

limit state functions g and g to the standard Gaussian space,

using an inverse isoprobabilistic transformation T−1 (e.g. the

inverse Rosenblatt transform) that maps an independent point

in [0, 1]d to a dependent one in Ω according to the copula C,

we can easily estimate by any advanced Monte Carlo method,

such as subset simulation, importance sampling, line sampling,

or the cross-entropy method, among others, the lower and up-

per bounds on the probability of failure. Particularly, we illus-

trated this approach using subset simulation with two different

MCMC samplers, adaptive conditional sampling and modified

Metropolis-Hastings. The numerical experiments demonstrated

the solid foundation of this proposal, where a drastic reduction

of the computational labor implied by plain Monte Carlo simu-

lation was obtained for problems defined with uncertain input

aleatory and/or epistemic distributions.

Some open research problems are the following: the proposed

method reduces the number of focal element images that are

needed in order to estimate Pf and Pf , however, the number of

evaluations of the limit state function g required in the calcu-

lation, although considerably reduced, still is a large number

that should be diminished. A possible solution for this is to

employ the proposed method with subset simulation together

with response surfaces, such as, kriging or neural networks; see

for example (Hurtado et al., 2000; Hurtado and Alvarez, 2001;

Echard et al., 2011; Papadopoulos et al., 2013). Furthermore, it

is important to mention that copulas solely model the depen-

dence between the input variables and not within the focal el-

ements. It might seem strange that a copula can contain the

dependence information of two possibility distributions as in-

put variables. However, take into account that many copulas

are t-norms and many t-norms are copulas, i.e., copulas are the

mathematical tool for combining CDFs and p-boxes, while t-

norms are the mathematical tool for combining membership

functions of fuzzy sets and possibility distributions. For fur-

ther discussion on the relationship between copulas, p-boxes

and Dempster-Shafer structures, see for example Ferson et al.

(2004). Up to the author’s knowledge, the use of copulas to

model the dependence between p-boxes and possibility distri-

butions is up to now an open problem in the context of the esti-

mation of the probability of failure using random sets.
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