
Chapter 6
Industry Foundation Classes – A standardized
data model for the vendor-neutral exchange of
digital building models

André Borrmann, Jakob Beetz, Christian Koch and Thomas Liebich

Abstract The Industry Foundation Classes (IFC) provide a comprehensive, stan-
dardized data format for the vendor-neutral exchange of digital building models.
Accordingly, it is an essential basis for the establishment of Big Open BIM. This
chapter describes in detail the structure of the data model and its use for the seman-
tic and geometric description of a building and its building elements. The chapter
concludes with a discussion of the advantages and disadvantages of the IFC data
model.

6.1 Background

The idea of Building Information Modeling is based on the consistent use of a com-
prehensive building model as a basis for all data exchange operations (see Chap. 1).
This avoids the need to manually re-enter data or information already created, and
reduces the accompanying risk of errors. In addition to the numerous data exchange
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scenarios between participants in the planning process, this principle also enables
building data to be transferred digitally to the contractors in the building phase, and
on completion for the “handover” of building data to the client or operator of the
building.

A wide range of software tools already exist for the numerous different tasks in-
volved in planning buildings, for example for the geometric design of the building,
for undertaking a range of analyses and simulations (structural design, heating re-
quirement, costing, etc.), for operating the building (facility management) as well as
other applications such as those detailed in Part IV of this book. These tools address
different tasks and application areas, and for the most part serve their purpose well.

A problem, however, is that many of these tools are still islands of automation
(Fig. 6.1), i.e. have no or only limited support for data exchange between the sep-
arate applications. Consequently, data and information that already exists in digital
form needs to be re-entered manually, which is laborious and prone to introducing
new errors.

To remedy this situation, a data exchange format is required that makes it possi-
ble to transport building data between software products with as little data loss as
possible. Such a format must set out uniform, unequivocal descriptions of geometric
information that are clear in their meaning and therefore not open to misinterpreta-
tion (see Chap. 2). A further important aspect is the detailed description of semantic

Fig. 6.1 Islands of automation in construction. The image was created in 1998 ( c©Matti Hannus,
reprinted with permission)
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information, including the classification of building components within a common
hierarchy of types, the description of the relation-ships between them and the defi-
nition of their relevant properties (material, building times, etc. see Chap. 3).

This is where the term interoperability comes into play, which means the loss-free
exchange of data between software products by different vendors. What differenti-
ates the building sector from many other industries is the wide range of different
products in use and number of software vendors in the market. In other industries
(for example automobile and aircraft manufacturing), the main manufacturers stip-
ulate which software products their suppliers must use. At the same time, large,
global software manufacturers provide complete solutions for these industries that
cover many parts of the design and engineering processes. It is more straightforward
for these software manufacturers to ensure interoperability between their own soft-
ware products, because they can design their own proprietary formats and methods
without needing to go through lengthy and complex standardization procedures.

Compared with such stationary industrial applications, the building sector has
several different boundary conditions that make it more difficult to achieve the goal
of loss-free data exchange:

• A building’s design and its construction are typically undertaken by different
companies

• Building planning typically has several phases that are often undertaken by dif-
ferent planning offices

• Numerous different specialist planners are involved, each of which are separate
companies.

• The building industry is very fragmented with numerous small and medium-sized
companies. Statistics for Europe show that 93% of construction companies have
fewer than 10 employees.

• Collaborations between different companies are typically ad-hoc partnerships for
the duration of a project rather than long-term working relationships with well-
defined processes and responsibilities.

In short, the building industry is characterized by a highly fragmented process
with numerous different and independent participants. This means that lots of dif-
ferent tools are used and therefore uniform standards are difficult to enforce. At
the same time, public authorities are required to be vendor-impartial, i.e. are not
allowed to specify the use of certain software products when putting work out to
tender. Likewise, public and private clients should not become too dependent on
any one software producer to avoid vendor lock-in.

As a result, it has become common practice to specify widely-used proprietary
formats for many typical data exchange scenarios in order to achieve a degree of
predictable, i.e. pseudo-standardized interoperability. These formats are mostly used
for 2D geometry formats augmented with a limited degree of semantic information,
for example an agreed layer structure.

Proprietary formats are not conducive to realizing the BIG BIM goal of a consis-
tent, high-quality digital building information model for the entire building process
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(see Chap. 1). In most cases, proprietary data formats are tailored to specific appli-
cation scenarios and not designed to cover the full range of different data exchange
scenarios in the BIM context nor the necessary depth of information. As such, to
achieve the goal of BIG BIM, it became clear that a vendor-neutral, open and stan-
dardized data exchange format was needed.

This approach, while undoubtedly better in the long term, is more difficult and
more protracted to put into practice. The international organization buildingSMART
has dedicated many years to the development of the Industry Foundation Classes
(IFC) as an open, vendor-neutral data exchange format. This is a complex data
model with which it is possible to represent both the geometry and semantic struc-
ture of a building model using an object-oriented approach. The building is broken
down into its building components on the one hand and its spaces on the other, both
of which are described in detail along with the interrelationships between them.
Thanks to its comprehensive data structure, it can be used for almost any data ex-
change scenario in the life cycle of a building. The IFC data model is immensely
important for implementing BIM concepts and is the basis of many standardization
initiatives at an international, European and national level. It is described in detail
in this chapter.

The process of establishing a neutral data exchange format is, however, lengthy.
While the current Version 4 of the IFC can be considered largely mature and ready
for use as a standard, it can only be used in practice once the different software
vendors have implemented it as an import and export interface. The quality of the
implementation of such interfaces is crucial for its take-up in the industry. In the
past, errors in these import and export modules led to data errors or even data loss,
impacting on the reputation and market acceptance of the IFC data format.

One reason for the inadequate implementation of the import and export function-
ality by software vendors is also the complexity of the IFC data model. For example,
it is possible to represent 3D geometry in an IFC model in several different ways.
For software vendors, this means that they need to support all geometric representa-
tion methods to offer full IFC compatibility, which is an immense implementation
task.

To overcome this hurdle, buildingSMART introduced the concept of Model View
Definitions (MVD) that define which parts of an IFC data model need to be imple-
mented for a specific data exchange scenario. The underlying methods and concepts
are discussed in more detail in Chap. 7. Consequently, the Model View Definitions
form the basis for certifying the compatibility of software products with the IFC
standard. The corresponding certification procedure is presented in Chap. 8.

6.2 History of the IFC data model

As far back as the late 1980s, researchers had already begun investigating ways to
improve the exchange of data in the building and construction sector. The idea of
“product modeling” as a means of digitally describing a product and its components,
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both in terms of their geometry as well as semantic structure, stems from this time
(Eastman, 1999).

Methods for exchanging data between different CAD systems first began to be
developed in the 1970s to meet a need among major interest groups, such as the
US Ministry of Defense and the German Association of the Automotive Industry
(VDA), for a common interface for loss-free data exchange. These first data ex-
change formats, some of which are still in use today (such as the IGES Initial Graph-
ics Exchange Specification), were mostly limited to the exchange of geometric data.
Continuing efforts to improve standardization culminated in the 1980s in the de-
velopment of STEP, a Standard for the Exchange of Product model data. Through
Technical Committee 184, Sub-Committee 4 “Industrial Data” (ISO TC 184/SC
4) of the International Organization for Standardization (ISO), a series of different
sub-norms were united in the ISO 10303 Standard, developed by a broad alliance
of stakeholders from various industrial sectors. In addition to setting out an agreed
framework for describing product data representation schemas ISO 10303-11, the
family of 10303 standards included graphical notation methods, the definition of
file formats for instances (serialization) in different syntactic variants, and uniform
information processing interfaces. It also details semantic aspects of the individ-
ual product categories. Various industrial sectors grouped relevant product and data
exchange scenarios into so-called Application Protocols (APs). Alongside object
models for oil drilling platforms, airplane, automotive and ship components, a sepa-
rate object model for buildings – Application Protocol for Building Elements Using
Explicit Shape Representation – were developed.

For many stakeholders, however, the procedure for reaching a consensus on
a common approach to modeling building data and its exchange was too long-
winded: the bureaucratic framework for standardization under the auspices of the
ISO was felt to be holding back developments in the then prospering construc-
tion industry. Spurred on by a series of (often EU-funded) research projects and
the needs of the industry, a group of engineering offices, construction firms and
software manufacturers, most notably Autodesk, decided to collaborate in the foun-
dation of the International Alliance for Interoperability (IAI) in 1995 to speed up
the process of standardization. The organization, which re-branded itself in 2005
as “buildingSMART”, currently has 19 regional chapters, including the German
“buildingSMART e.V.”. More than 800 organizations, companies and institutes are
now members of buildingSMART and promote the development of standards on
behalf of the industry as a whole. A first version 1.0 of these standards was is-
sued in 1997 as the “Industry Foundation Classes – IFC” and version 1.5.1 was the
first to be implemented in dedicated construction software applications (Laasko and
Kiviniemi, 2012).

Since the first version, numerous revisions and extensions have followed (see
Fig. 6.2), which vendors then implemented shortly afterwards in their respective
products. These standards were published independently of the ISO as a vendor-
neutral standard and made freely available at no cost. Unlike other proprietary,
vendor-specific object models, such as Autodesk’s popular DWG and ARX formats,
there are no licensing fees for using the IFC model. As a consequence, numerous
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Fig. 6.2 Version history of the IFC format.

software products have since implemented the IFC model. Today there are more
than 160 implementations of the standard in individual software products, with most
widespread support for version 2x3, although this is gradually being replaced by IFC
4 (as of late 2017). The subsequent incorporation of the IFC in ISO Standard 16739
(2013) also fueled its adoption among public authorities, and in many countries it
has now become an obligatory data exchange format for construction tendering and
approval procedures.

In recent years, the IFC has become the definitive format for realizing Open BIM.
It is already supported by numerous BIM software applications, ranging from BIM
modeling tools to structural computation tools and thermal performance analysis
tools to software for facility management.

Thanks to the open definition of the data structure and the neutrality of the IFC
format, it has become the basis of almost all public sector initiatives that prescribe
the use of BIM for public building projects. Pioneering initiatives have been made
in Singapore, Finland, Norway, the USA and Great Britain.

The open data format means that data will continue to be legible many years
into the future. This is especially important given the longevity of buildings, which
typically spans several decades or more.

Currently the IFC data model focuses on the description of buildings. Extensions
for describing other built structures, such as civil engineering infrastructure, are
currently in development.

6.3 EXPRESS – A data modeling language for the IFC standard

Although the development of the IFC evolved independently of the ISO standard-
ization body and the STEP procedure, it shares much of the same underlying tech-
nology, most notably the data modeling language EXPRESS which is defined in
part 11 of the STEP standard (ISO 10303-11, 2004).

EXPRESS is a declarative language with which one can define object-oriented
data models (Schenck and Wilson, 1993). That means it follows the object-oriented
principles described in Chap. 3, such as the abstraction of objects in the real world
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into classes (called entities in EXPRESS) which can have attributes and be related
to other classes.

EXPRESS employs the construct of an entity type1 as an equivalent to classes
in object-oriented theory. For each entity type, attributes and relationships to other
entity types can be defined. EXPRESS also implements the object-oriented concept
of inheritance, enabling attributes and relationships to apply similarly to sub-types.

A relationship (association) between an object of Type A and an object of Type B
is expressed by giving entity Type A an attribute from the type of Entity B. A special
characteristic of the EXPRESS standard is the ability to explicitly define inverse
relationships. In this case, no new information is modeled; just a relationship in the
reverse direction.

A further special aspect is that aggregation datatypes – list, array, set and bag
– are defined as part of the language, making it easier to define relationships with
groups of objects. This construct of abstract datatypes makes it possible to define
superclasses without these needing to be explicitly instantiated.

EXPRESS offers the possibility to define algorithmic conditions using an op-
tional WHERE block as a means of describing rules for data consistency. The
WHERE block contains Boolean expressions that have to evaluate as true for the
respective instance to be deemed valid.

Figure 6.3 shows an excerpt of a data model from the IFC standard defined using
EXPRESS.

The select type in EXPRESS offers an additional method, alongside inheritance
hierarchies, for assigning several entity types to a higher-level construct. This can in
turn serve as a placeholder, for example when defining the type of an attribute. An
example from the IFC data model is the select type IfcUnit, which provides a choice
between the types IfcDerivedUnit, IfcNamedUnit and IfcMonetaryUnit.

Fig. 6.3 Definition of an entity type using the data modeling language EXPRESS.

1 In this chapter, the use of the term class is synonymous with entity type.
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Fig. 6.4 Example of an EXPRESS-G diagram. The entity type Person is an abstract supertype for
both entity types Male and Female. This is shown by the thick connecting lines. A circle at the end
of a connecting lines denotes the direction of an inheritance relationship. A person has the attribute
name of type string as well as two optional attributes: father and mother of type Male and Female
respectively. The optional connection is denoted by the dashed connecting line.

Attributes that can only contain specific values from a selection of predefined
strings are modeled in EXPRESS with the help of the Enumeration Type. For ex-
ample, IfcBooleanOperator can be either UNION, INTERSECTION or DIFFER-
ENCE.

In addition to this textual notation, EXPRESS also offers a means of mod-
eling data graphically. The corresponding graphical notation language is called
EXPRESS-G. Figure 6.4 shows an example of the elements of the graphical lan-
guage.

It is important to remember that EXPRESS is designed for defining a data model
(also known as a schema). It is not possible to describe concrete instances of the data
model using EXPRESS. Various different methods can be used for this, of which
a STEP Physical File (defined in STEP part 21) is most common. Other options
include the use of XML instances or storing data in a database. More information
on this is provided in Chap. 12.

6.4 Organization in layers

The IFC data model is both extensive and complex. To improve its maintainability
and extensibility, it is therefore structured into several layers (Fig. 6.5). The general
principle is that elements in the upper layers can reference elements in the layers
below but not vice versa. This ensures that the core elements remain independent.

Core Layer
The Core Layer contains the most elementary classes of the data model. They can
be referenced by all the layers above. These classes define the basic structures, key
relationships and general concepts which can then be re-used and defined more pre-
cisely by classes in the upper layers.

The Kernel schema represents the core of the IFC data model and comprises
basic abstract classes such as IfcRoot, IfcObject, IfcActor, IfcProcess, IfcProduct,
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Fig. 6.5 The layers of the IFC data model. Source: IFC Documentation, c©buildingSMART

IfcProject, IfcRelationship. Based on these are three scheme extensions Product Ex-
tension, Process Extension and Control Extension which are also part of the Core
Layer.

The Product Extension schema describes the physical and spatial objects of a
building and their respective relationships. It comprises the subclasses of IfcProduct
such as IfcBuilding, IfcBuildingStorey, IfcSpace, IfcElement, IfcBuildingElement,
IfcOpeningElement as well as the relationships classes IfcRelAssociatesMaterial,
IfcRelFillsElement and IfcRelVoidsElement.

The Process Extension schema comprises classes for describing processes and
operations. It also provides a basic means for defining dependencies between pro-
cess elements for linking them with resources.
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The Control Extension defines the basic classes for control objects such as Ifc-
Control and IfcPerformanceHistory as well as possibilities for allocating these ob-
jects to physical and spatial objects.

Interoperability Layer
The Shared Layer lies directly above the Core Layer and represents an interoperabil-
ity layer between the basic core of the data model and the domain-specific schemes.
Here classes are defined that are derived from classes in the Core Layer and can be
used by a range of different application schemes, for example, important building
element classes such as IfcWall, IfcColumn, IfcBeam, IfcPlate, IfcWindow.

Domain Layer
The domain-specific schemes contain highly specialized classes that only apply to
a particular domain. They form the leaf nodes in the hierarchy of inheritance. The
classes defined in this layer cannot be referenced by another layer or by another
domain-specific schema.

The IFC4 defines domains for architecture, building control, construction man-
agement, electrical systems, heating, ventilation and air conditioning, plumbing and
fire protection as well as structural elements (such as foundations, pylons, reinforce-
ment, etc.) and structural analysis.

Resource Layer
At the lowest level, the Resource Layer, are schemes that detail basic data structures
that can be used throughout the entire IFC data model.

The classes in this layer do not derive from IfcRoot and therefore have no identity
of their own (see Sect. 6.5.1). Unlike entities in other layers, they cannot exist as
independent objects in an IFC model but have to be referenced by an object that
instantiates a subclass of IfcRoot.

Of these, the most important resource schemes include:

• Geometry Resource: contains basic geometric elements such as points, vectors,
parametric curves, swept surfaces (see Sect. 6.7, see also Chap. 2).

• Topology Resource: contains all classes for representing the topology of a solid
(see Sect. 6.7, see also Chap. 2).

• Geometric Model Resource: contains all classes for describing geometric mod-
els such as IfcCsgSolid, IfcFacetBrep, IfcSweptAreaSolid (see Sect. 6.7, see also
Chap. 2).

• Material Resource: contains elements for describing materials (see Sect. 6.6.4).
• Utility Resource: provides elements for describing the ownership and version

history (History) of IFC objects.

In addition to these, the resource layer also includes a whole series of further
schemes, such as Cost, Measure, DateTime, Representation, etc. that we shall not
deal with here.
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Fig. 6.6 Part of the IFC data model showing the most important entities in the upper layers of the
inheritance hierarchy. c© A. Borrmann

6.5 Inheritance hierarchy

As in any object-oriented data model, inheritance hierarchy plays a crucial role
in the IFC. It defines specialization and generalization relationships and therefore
which attributes of which classes can be inherited by other classes. Figure 6.6 shows
part of the IFC inheritance hierarchy.

The inheritance hierarchy follows a semantic approach: the meaning of objects
is the basis for modeling inheritance relationships. Here we shall concentrate on the
most important classes of the IFC inheritance hierarchy.

6.5.1 IfcRoot and its direct subclasses

The starting point and root of the inheritance tree is the class IfcRoot. All entities,
with the exception of those in the resource layer, must derive directly or indirectly
from IfcRoot. This class provides basic functionality for uniquely identifying an
object using a Globally Unique Identifier (GUID), for describing ownership and the
origin of an object and to map the history of changes made to it (identity of the
originator and other actors, its version history etc.). In addition, every object can be
given a name and description.

Directly derived from IfcRoot are the classes IfcObjectDefinition, IfcProperty-
Definition and IfcRelationship, which represent the next level in the inheritance hi-
erarchy.

The class IfcObjectDefinition is an abstract superclass for all classes that rep-
resent physical objects (e.g. building elements), spatial objects (e.g. openings and
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spaces), or conceptual elements (e.g. processes, costs, etc.). It also includes defi-
nitions for describing those involved in the building project. The three subclasses
of IfcObjectDefinition are IfcObject (individual objects in the building project), Ifc-
TypeObject (object type) and IfcContext (general project information).

The class IfcRelationship and its subclasses describes objectified relationships.
This decouples the semantic of a relationship from the object attributes so that
relationship-specific properties can be saved directly with the related object. This
concept is discussed in detail in Sect. 6.6.

The class IfcPropertyDefinition defines those properties of an object that are not
already part of the IFC data model. This aspect is detailed in Sect. 6.8.

6.5.2 IfcObject and its direct subclasses

An IfcObject represents an individual object (a thing) as part of a building project.
It is as an abstract superclass for six important classes of the IFC data model:

• IfcProduct – a physical (tangible) object or a spatial object. IfcProduct objects
can be assigned a geometric shape representation and are positioned within the
project coordinate system.

• IfcProcess – a process that occurs within a building project (planning, construc-
tion, operation). Processes have a temporal dimension.

• IfcControl – an object that controls or limits another object. Controls can be
laws, guidelines, specifications, boundary conditions or other requirements that
the object has to fulfill.

• IfcResource – describes the use of an object as part of a process.
• IfcActor – a human participant involved in the building project.
• IfcGroup – an arbitrary aggregation of objects.

This subdivision into the areas product, process, control element and resource
corresponds to the principal approach to modeling business processes developed
back in the 1980s by the IDEF initiative.

6.5.3 IfcProduct and its direct subclasses

IfcProduct is an abstract representation of all objects that relate to a geometric or
spatial context. All classes used to describe a virtual building model are subclasses
of IfcProduct. These can be used to describe both physical objects as well as spatial
objects. IfcProduct objects can be assigned a geometric shape representation and a
location (see Sect. 6.7).

The subclass IfcElement is the superclass for a whole series of important basic
classes including IfcBuildingElement, which is the superclass for all building ele-
ments such as IfcWall, IfcColumn, IfcWindow etc.
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The IfcSpatialElement class, by comparison, is used to describe non-physical
spatial objects. Its respective subclasses include IfcSite, IfcBuilding, IfcBuilding-
Storey and IfcSpace. The organisation of a corresponding relationship structure be-
tween these elements is described in Sect. 6.6.2.

The IfcProduct subclass IfcProxy serves as a placeholder for representation ob-
jects that do not correspond to any of the semantic types so that they can still be
defined in the IFC model, and if necessary be assigned a geometric representation.
IfcProduct has further subclasses for describing objects that are embedded within a
spatial context, for example IfcAnnotation, IfcGrid and IfcPort.

6.6 Object relationships

6.6.1 General concept

Object relationships are an important part of the IFC data model. In fact, the IFCs
powerful functions for detailing relationships between objects can be seen as one of
its key qualities. The ability to describe relationships, along with the semantic clas-
sification of objects, is a fundamental aspect of an “intelligent” building information
model that not only records building elements as isolated bodies but highlights their
function and interaction with other objects. Typical relationships can be whole/part
relationships (Meronymy, “the south wing is part of the overall building”), connec-
tions (“the floor slab is connected to the column”) or type definitions (“Beam with
an HE-A 140 profile”).

The IFC data model follows the principle of objectified relationships (see also
Sect. 3.3.2). That means that semantically relevant relationships between objects are
not formed by direct association but instead with the help of a special intermediary
object that represents the relationship itself (see Fig. 6.7). An important principle of
data modeling that has been implemented in the IFC is that the forward relationship
(the defined attribute) is always made from the relationship object and points to
the related object. The corresponding attributes of the relationship object always
have names according to the schema related...Element and relating...Element. The
reverse path from the related objects to the relating objects can be navigated using
corresponding inverse attributes.

IfcWall

IfcRefVoidsElement IfcRefFillsElement

IfcOpeningElement IfcWindow

relatingBuildingElement

(INV) hasOpenings

relatedOpeningElement

(INV) voidsElement

relatingOpeningElement

(INV) hasFillings

relatedBuildingElement

(INV) hasOpenings

Fig. 6.7 The principle of objectified relationships illustrated using the example of a wall, opening
and window.
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Fig. 6.8 The inheritance hierarchy of relationship classes in the IFC data model.

Relationship objects are always instances of a subclass of IfcRelationship. The
inheritance tree of the object relationships is shown in Fig. 6.8. The element IfcRe-
lationship is the root and every relationship can have an informal description that
details the precise purpose for using this relationship.

The following six relationship types serve specific basic functions in the IFC data
model:

• IfcRelAssociates – serves to relate an external source of information (such as
classifications, libraries or documents) to an object or its properties.

• IfcRelDecomposes – serves as a means of representing concepts of composed
objects. The decomposition relationship denotes a whole/part hierarchy with the
ability to navigate from the whole to the parts and vice versa. Its subclasses in-
clude IfcRelNests (the nested parts have an order) and IfcRelAggregates (the ag-
gregated parts have no order) and IfcVoidsElement (opening relationship).

• IfcRelDefines – links an object instance with a Property Set Definition (Sect. 6.8)
or a Type Definition (Sect. 6.9)

• IfcRelConnects – describes a connection between two objects.
• IfcRelDeclares – represents the link between an object, its defined properties and

the respective context.
• IfcRelAssigns – represents a generalization of “link” relationships between ob-

ject instances.

The purpose and application of the individual relationship types will be discussed
in the following sub-sections.

6.6.2 Spatial aggregation hierarchy

An important underlying concept for the description of buildings using IFC is the
representation of aggregation relationships between spatial objects on the different
hierarchical levels. All classes with spatial semantics inherit attributes and prop-
erties from the class IfcSpatialStructureElement. These are IfcSite which describes
the building site, IfcBuilding to represent the building, IfcBuildingStorey for repre-
senting a particular story and IfcSpace for the individual rooms and corridors. Ifc-
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Fig. 6.9 Example of the structure of a hierarchical aggregation relationship between spatial objects
in the IFC model (instance diagram). Source: IFC Documentation. c©buildingSMART

SpatialZone introduces a further method for representing general spatial zones that
does not correspond to the default building structure taking into account a functional
consideration. Instances of these classes are related to one another via relationship
objects of the type IfcRelAggregates.

Figure 6.9 shows an example of how spatial hierarchy can be represented in an
IFC model. At the top of the hierarchy is the IfcProject object that describes the
context within which the information about the project as a whole is represented.
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Important in this context is the use of the attribute CompositionType on the aggre-
gated IfcSpatialStructureElement which is used to define whether the element is part
of a whole (PARTIAL) or simply an embedded element (ELEMENT). For example,
sections of buildings are generally modeled as IfcBuilding with the Composition-
Type attribute set to PARTIAL.

The data model itself does not define which hierarchy levels may be linked to
which other hierarchy levels via aggregation relationships. However, some informal
rules do apply, for example that the resulting graph must be acyclic and that elements
on a lower level cannot encompass objects from a higher level. The correctness and
consistency of the information stored is the responsibility of the respective software
program.

To model which building elements lie in which spatial objects, instances of the
relationship class IfcRelContainedInSpatialStructure are used (see Fig. 6.10). In
most cases building elements are linked to stories. However, one must be careful
to observe that one building element can only be assigned to a single spatial object
per IfcRelContainedInSpatialStructure at any one time. Should a building element
be linked to several stories (for example a multistory facade element), it should
be linked to all other instances via the relationship IfcReferencedInSpatialStructure
(see Fig. 6.10).

Fig. 6.10 Example of the use of the relationship IfcRelContainedInSpatialStructure and IfcRefer-
encedInSpatialStructure to describe spatial relationships to a multistory wall element. Source: IFC
Documentation. c©buildingSMART
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6.6.3 Relationships between spaces and their bounding elements

Numerous applications in the BIM context require a link between a spatial object
and the objects that bound the space, such as walls, floor and ceiling. For exam-
ple, programs for calculating quantities (see Chap. 20) or for computing the energy
demand (see Chap. 18). To model such relationships, the IFC data model includes
the relationship class IfcRelSpaceBoundary (Weise et al., 2009). The attribute Re-
latingSpace refers to the spatial object while RelatedBuildingElement refers to the
respective bounding element (see Fig. 6.11).

In addition, it is possible to link a relationship object to an actual object using the
class IfcConnectionGeometry which describes the surface where the space meets the
building element. This can be invaluable for certain calculations and simulations.

Space Boundaries are always described from the perspective of the spatial object.
One differentiates between two key levels of Space Boundaries (Fig. 6.12):

• Level 1 Space Boundary: boundaries of a space disregarding any changes in
building elements or spaces on the other side.

Fig. 6.11 The relationships between a spatial object and the bounding elements are represented
using instances of the relationship class IfcRelSpaceBoundary. Source: IFC Documentation.
c©buildingSMART
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Fig. 6.12 Differences between the space boundaries on Level 1, Level 2a and Level 2b. On Level
1, the boundary of the spaces is modeled without taking into account changes in building elements
or spaces on the other side of the boundary. Level 2 takes these into account and subdivides the
surfaces accordingly. Level 2 Type A shows all surfaces with a space on the other side, Level
2 Type B all surfaces with a building element on the other side. Source: IFC Documentation.
c©buildingSMART

• Level 2 Space Boundary: boundaries of a space taking into account changes in
building elements or spaces on the other side:

– Level 2, Type A: On the other side of the boundary is a space.
– Level 2, Type B: On the other side of the boundary is a building element.

A more precise definition of space boundaries can be made using application-
specific model view definitions as the requirements for the respective situations vary
considerably (see Liebich, 2009).

6.6.4 Specifying materials

The specification of materials is an important part of a digital building model. With-
out information on the materials of each building element it would not be possible
to automatically calculate quantities of materials required. Calculations and simula-
tions such as for structural analyses or energy demand calculations likewise require
information about the materials used along with their respective parameters. A fur-
ther important aspect of the IFC model is the ability to represent building elements
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comprised of several materials. A typical example is a wall with several layers of
different materials.

Materials are specified using the relationship class IfcRelAssociatesMaterial
linked to a building element (an arbitrary subclass of IfcElement). The attribute Re-
latingMaterial typically refers to an object of the class IfcMaterialDefinition, which
can have several subclasses, the most important of which are described here:

• IfcMaterial: the basic entity for describing a material.
• IfcMaterialConstituent: describes the material as part of a building element. The

material attribute itself refers to an IfcMaterial object. The attribute Name is used
to unequivocally attribute the material to the respective building element, more
precisely to the respective part of the element via IfcShapeAspect.

• IfcMaterialConstituentSet: describes a set of IfcMaterialConstituent objects.
Each of these objects is assigned to a part of the building element. For example:
a window is comprised of the glazing and the frame. The window is modeled as a
building element and associated with an IfcMaterialConstituentSet which in turn
contains two IfcMaterialConstituent objects, one for the frame and the other for
the glazing.

• IfcMaterialLayer: describes the material of a layer of a multilayer building ele-
ment. The attribute LayerThickness denotes the thickness of the layer, while the
attribute Material refers to an IfcMaterial object. The attribute IsVentilated is set
to true if the layer is a ventilated cavity.

• IfcMaterialLayerSet: describes a set of IfcMaterialLayer objects. Instances of
this class are associated with a multilayer building element (see Fig. 6.13).

Composite materials are modeled using the relationship class IfcMaterialRela-
tionship, with which it is possible to represent aggregation relationships. The at-
tribute RelatedMaterials refers to the individual components while the attribute Re-
latingMaterial refers to the composite material.

The class IfcMaterial includes the attribute Name as a means of specifying a
unique name and can also accommodate classifying materials according to an ex-
ternal classification system by linking it with IfcExternalReferenceRelationship.

Fig. 6.13 Example for linking a building element comprised of multiple layers with its materials
using the relationship class IfcRelAssociatesMaterial.
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In addition, material parameters can also be linked to one or more objects of
the type IfcMaterialProperties, which can be referenced via the inverse attribute
HasProperties. The class IfcMaterialProperties describes a set of material proper-
ties in the form of a name-value list (see Sect. 6.8). A series of predefined property
sets already exist, for example for mechanical properties (Pset MaterialMechani-
cal), optical properties (Pset MaterialOptical), thermal properties (Pset Material-
Thermal), and parameters for energy demand calculations (Pset MaterialEnergy).
Specific parameter sets have been developed for common materials such as con-
crete, steel and wood.

Using the IfcMaterial, presentation information can also be associated with a
building element. The inverse attribute HasRepresentation is applied to an object of
type IfcMaterialDefinitionRepresentation, which defines the line type and thickness
as well as hatching (for 2D drawings) or information necessary for rendering the
surface of the material (for 3D presentations).

6.7 Geometric representations

6.7.1 Division between semantic description and geometric
representation

The IFC data model makes a strict division between the semantic description and
its geometric representation. The semantic representation is the defining aspect: all
objects within a building project are initially described as a semantic identity and
can then be linked with one or more geometric representations (Fig. 6.14). The con-
cept of identity is therefore linked only to a semantic object, and not its geometric
representation.

Fig. 6.14 The IFC data model makes a strict division between the semantic structure and geomet-
ric description. This affords the flexibility to link one or more geometric representations with a
semantic object.
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The ability to link distinct geometric representations with an object addresses the
need for distinct geometric representations for distinct application scenarios. For
example, visualization programs usually only need a simple triangulated geometric
description while BIM modeling tools need good quality Brep (boundary represen-
tation) or CSG (constructive solid geometry) descriptions in order to be able to make
changes to the model. It is also possible to link a 2D representation with a semantic
object so that drawings can be stored within an IFC model to be compliant with
standards.

The problem of maintaining consistency between the distinct representations
must be dealt with by the modeling programs as the IFC data model does not in-
clude such functionality.

6.7.2 Forms of geometric description

The IFC model implements a broad range of the geometric models presented in
Chap. 2. This section focuses on the most important geometric representations.

All the classes needed for geometric modeling belong to one of the three schemes
Geometric Model Resource, Geometry Resource, or Topology Resource. In the ma-
jority of cases, the definitions and data structures correspond exactly to those set out
in part 42 of the STEP standard, and in the case of indexed geometry descriptions
from the X3D standard (ISO/IEC 19775-1, 2004).

All geometry classes inherit from the abstract superclass IfcGeometricRepresen-
tationItem. Its subclasses can be grouped into classes for representing curves (Ifc-
Curve and its subclasses), classes for describing surfaces in space (IfcSurface and
its subclasses) and classes for representing solids (IfcSolidModel and its subclasses).
The dimensions are specified using the Dim attribute in the class IfcGeometricRep-
resentationItem.

Points, Vectors, Directions
The entity types IfcCartesianPoint, IfcCartesianPointList, IfcVector and IfcDirec-
tion are used to define points, vectors and directions.

Curves in 2D and 3D
To model line objects, the entity type IfcCurve and its subclasses IfcBoundedCurve,
IfcConic, and IfcLine are used. Freeform curves can also be modeled using the class
IfcBSplineCurve (see also Chap. 2). The IfcCompositeCurve can be used to model
complex curves comprised of several curved sections.

In addition to 3D geometric representation, the IFC data model explicitly sup-
ports the storage of 2D representations for plan drawings. In such cases, the dimen-
sionality of the respective IfcCurve objects must be set to 2. This approach can be
used to model profiles for extrusion and other similar operations.

Bounding Box
The Bounding Box is a highly simplified geometric representation for three-dimen-
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Fig. 6.15 Entities used to describe surface models.

sional objects that is commonly used only as a placeholder, or in combination with
a more detailed description. Using the class IfcBoundingBox one can define a corner
point and three edge lengths for the respective dimensions of the box.

Surface Model
Surface models offer a means of describing composite surfaces comprised of several
sub-surfaces. They are used to describe broad surfaces (such as a terrain) or very flat
surfaces (such as metal sheeting). 3D solids can also be described via their surfaces.
An advantage of this method over Brep modeling is its simpler data structure; a
disadvantage is the limited ability to verify the correctness of the modeled solid, for
example incorrect intersections (e.g. gaps or overlaps) between faces.

The IFC data model supports two different variants of surface models (Fig. 6.15).
The IfcFaceBasedSurfaceModel makes it possible to model simple bodies without
holes or cavities while the IfcShellBasedSurfaceModel can be used to model solids
with cavities or holes through the use of any number of IfcShell objects. These shell
objects can be either open shells (IfcOpenShell) or closed shells (IfcClosedShell).

Triangulated surface descriptions/Tessellation
A widely used method for describing geometric forms is the use of triangulated

nets. This very general and simple form of geometric representation can be inter-
preted by nearly all visualization software applications. Its main limitations are
that curved surfaces are not represented precisely but approximated into triangu-
lar facets, that they are data intensive and that many applications offer only limited
support for editing them. As such, this geometric representation is not always the
most suitable form for building geometries. One area where triangulated surfaces
excel is for the description of digital terrain models (DTMs).

For such uses, the IFC data model provides the class IfcTriangulatedFaceSet.
This is derived from the class IfcTessellatedFaceSet that represents the general prin-
ciple of tessellated surfaces, i.e. polygons with an arbitrary number of edges. IfcTes-
sellatedFaceSet is not derived from IfcSolidModel but instead inherits from IfcTes-
selatedItem.
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Fig. 6.16 Data structure
for the representation of
triangulated surfaces.

The IFC model implements the Indexed Face Set approach described in Chap. 2.
The class IfcTriangulatedFaceSet refers via the Coordinates attribute to an object of
type IfcCartesianPointList3D which describes a list of points (Fig. 6.16). A further
attribute, CoordIndex, describes the index of the three vertices for each triangle. The
normals for each triangle can be optionally specified using the Normals attribute. In
addition, it is possible to link color values or textures with the index values.

Solid Modeling
The IFC data model supports a number of different ways of modeling 3D solids.

These are represented by the abstract superclass IfcSolidModel and its subclasses
IfcCsgSolid, IfcManifoldSolidBRep, IfcSweptAreaSolid and IfcSweptDiskSolid (see
Fig. 6.17). This section describes each of these approaches in detail.

Boundary Representation
The most powerful and flexible approach to modeling geometric solids is through

Boundary Representation (Brep). The two subclasses of IfcManifoldSolidBrep, Ifc-
FacetedBrep and IfcAdvancedBrep implement the typical Brep data structure, as de-

Fig. 6.17 The IFC data model provides a number of different ways to model volumetric bodies
(solids).
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scribed in Chap. 2. IfcFacetedBrep is limited to flat surfaces while IfcAdvancedBrep
can model surfaces with curved edges.

Both Brep types are, however, limited to the description of shells, making them
unsuitable for modeling geometric objects with cavities and holes. To model these
kinds of objects, the corresponding subclasses IfcFactedBrepWithVoids or IfcAd-
vancedBrepWithVoids should be used which extend their respective superclasses by
providing the ability to specify several closed shell objects (Fig. 6.17).

For the modeling of solids with flat surfaces, the class IfcFacetedBrep is used
(Fig. 6.18). The basis of this is an IfcFacetedBrep object, the Outer attribute of
which references an object of type IfcClosedShell which in turn references a series
of IfcFace objects. Each of these IfcFace objects can have any number of bound-
ing surfaces modeled using IfcFaceBound. Each IfcFaceBound object refers to an
IfcLoop object which describes a list of points (the vertices of the solid). It is im-
portant that each object (point, edge) is not instantiated more than once but merely
referenced several times as required.

Fig. 6.18 Data structure for representing solids with flat surfaces and straight edges. Source: IFC
Documentation. c©buildingSMART
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Fig. 6.19 Data structure for representing solids with curved surfaces and edges. Source: IFC Doc-
umentation. c©buildingSMART

The data structure for describing solids with curved surfaces extends this ba-
sic topological data structure by providing elements for modeling the geometric
progression of surfaces and edges (Fig. 6.19). The basis for this is the class IfcAd-
vancedBrep. As above, this is linked to an IfcClosedShell object which in turn refers
to surface objects of type IfcAdvancedFace. Unlike the IfcFace objects described
above, these include an explicit geometric description. This can be a NURBS sur-
face modeled as an IfcBSplineSurface. Objects with this class refer to the corre-
sponding control points and must specify all the necessary parameters to describe
a NURBS surface (see Chap. 2). To model the (curved) progression of edges, these
can be linked to IfcBSplineCurve objects, which in turn reference the corresponding
control points and parameters.
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Fig. 6.20 Data structure for describing solids using the CSG approach.

Constructive Solid Geometry
As described in Chap. 2, the Constructive Solid Geometry (CSG) approach mod-
els solids by combining predefined basic solid objects (primitives) using Boolean
operations such as union, intersection and difference. The IFC data model provides
the class IfcCsgPrimitive3D with its subclasses IfcBlock, IfcRectangularPyramid,
IfcRightCircularCone, IfcRightCircularCylinder and IfcSphere.

The class IfcBooleanResult is used to model the results of the combination op-
erations (Fig. 6.20). This class provides an Operator attribute which can have one
of three values – UNION, INTERSECTION, or DIFFERENCE – along with the
attributes FirstOperand and SecondOperand which refer to the two operands. The
operands can be of type IfcSolidModel, IfcHalfSpaceSolid, IfcCsgPrimitive3D or
IfcBooleanResult. CSG models are described exclusively by the latter two classes.
The class IfcBooleanResult can be used recursively to define a tree-like structure.
What makes this data structure especially powerful is the ability to use instances
of any subclass of IfcSolidModel as an operand, for example solids that have been
defined elsewhere by extrusion.

Clipping
Clipping can be used to model solids that are cut off by a plane. Clipping is im-
plemented as a special variant of the CSG approach. The first operand is always a
volumetric solid (IfcSolidModel) and second operand is a so-called half-space solid
(IfcHalfSpaceSolid), that is defined along a plane and in one direction. The operator
is always DIFFERENCE. Clippings can occur anywhere as a node in a CSG tree,
and are used, for example, to model the slanted tops of walls that meet diagonal
surfaces (see Fig. 6.21).

Rotation, Extrusion and Swept Solids
The IFC data model also provides a means for modeling 3D solids as the result of
the rotation or extrusion of a 2D profile (Fig. 6.22) through the class IfcSweptArea-
Solid and its subclasses IfcExtrudedAreaSolid, IfcRevolvedAreaSolid, IfcFixedRef-
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Fig. 6.21 Clippings are often used to model the slanted tops of walls that meet diagonal surfaces.
Source: IFC Documentation. c©buildingSMART

Fig. 6.22 The geometric representations IfcRevolvedAreaSolid and IfcExtrudedAreaSolid. Source:
IFC Documentation. c©buildingSMART

erenceSweptAreaSolid, and IfcSurfaceCurveSweptAreaSolid. In addition, there is
also the class IfcSweptDiskSolid, which inherits directly from IfcSolidModel.

The basis for each operation is the definition of a profile in the form of an IfcPro-
fileDef object referenced by the SweptArea attribute. The most common subclass
of IfcProfileDef is IfcArbitraryClosedProfileDef, which defines a closed profile by
referencing an arbitrary IfcCurve object.

Through the use of the class IfcExtrudedAreaSolid, this profile can be used as
a basis for an extrusion operation along a given direction (ExtrudedDirection at-
tribute) for a specified distance (Depth attribute). Using the class IfcRevolvedArea-
Solid, the profile is instead rotated around a given axis (Axis attribute) for a specified
angle (Angle attribute).

The class IfcFixedReferenceSweptAreaSolid can be used to model an object as
the result of the sweeping of a profile along a given curve in space (Directrix at-
tribute). A key characteristic of this representation is that the profile does not twist
during the sweep but remains orientated on reference to the fixed reference vector
(FixedReference attribute).
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Fig. 6.23 The geometric representations IfcSectionedSpine and IfcSweptDiskSolid.

Using instances of the class IfcSectionedSpine it is possible to describe ob-
jects that result from the linear interpolation between a series of successive profiles
(Fig. 6.23 left). The attribute refers to an IfcCompositeCurve object which describes
the path as a composite curve, the segments of which lie between two profiles. The
CrossSections attribute refers to a list of profiles whose positions are defined by the
attribute CrossSectionPositions.

The class IfcSweptDiskSolid is not derived from IfcSweptArea but directly from
IfcSolidModel. The underlying profile is always a circular disc which follows the
path of a curve through space (Directrix attribute) as shown in Fig. 6.23 (right). Un-
like IfcFixedReferenceSweptAreaSolid the circular profile does not maintain a fixed
orientation but turns with the path of the sweep so that it is always perpendicular to
the path of the curve.

6.7.3 Relative positioning

Geometric modeling in the IFC data model is strongly oriented around the use of a
local coordinate system. As such the corners of a wall object, for example, are not
specified globally but in relation to the coordinate system of the respective story.
The story’s coordinates are, in turn, modeled in relation to the coordinate system
of the building, and so on. This hierarchical organization of the coordinate system
affords greater flexibility should changes occur. For example, if the height of an
individual object in the building needs to be modified, only one value needs to be
changed, and all relative coordinates remain unchanged.

In the IFC data model, this concept is known as Local Placement. The IFC in-
cludes a series of classes for this purpose that all inherit from IfcObjectPlacement
(Fig. 6.24). The class IfcLocalPlacement is derived from IfcObjectPlacement and
provides two attributes: the optional attribute PlacementRelTo refers to the IfcOb-
jectPlacement that the parent coordinate system provides. If this is not set, the re-
spective object is positioned absolutely within the global coordinate system. The
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Fig. 6.24 The inheritance hierarchy of entities for describing location relationships.

Fig. 6.25 The functioning of
relative positioning using an
IfCAxis2Placement3D.

attribute RelativePlacement refers to an IfcAxis2Placement object that defines the
transformation between the parent coordinate system and the embedded local coor-
dinate system. This transformation can be either in 2D (IfcAxis2Placement2D) or
3D (IfcAxis2Placement3D).

Figure 6.25 shows how IfcAxis2Placement3D works. The location of the origin
of the local coordinate system in relation to the parent coordinate system is defined
using the Location attribute. Any rotation of the local coordinate system is specified
by two vectors: the Axis vector defines the direction of the local z-axis while the
RefDirection vector defines the direction of the local x-axis. Both vectors must be
perpendicular to each other. The class IfcAxis2Placement2D works the same way
but for 2D coordinate systems. Here only one rotation needs to be given, namely the
attribute RefDirection.

There is a close relationship between the hierarchy of the IfcLocalPlacement
objects and the aggregation hierarchy of the spatial objects (see also Sect. 6.6.2). The
convention is that only the IfcSite object is positioned within the global coordinate
system. All elements beneath this in the spatial hierarchy are positioned as a local
placement with respect to the respective parent object (Fig. 6.26).

In addition to the aforementioned method of local placement, there is also the
ability to use a grid as a basis for aligning objects. The class IfcGrid provides a
very flexible means of defining grids. The predefined grid types include rectangular,
radial and triangular grid layouts (Fig. 6.27) but entirely irregular grids can also
be defined. The actual placement is undertaken using the class IfcGridPlacement
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Fig. 6.26 Relationship between LocalPlacement and aggregation hierarchy of the building object.

Fig. 6.27 Different forms of grids on which building elements can be placed.

and its attribute PlacementLocation which refers to a node in the underlying grid
(IfcVirtualGridIntersection).

6.8 Extension mechanisms: Property sets and proxies

Several key characteristics of objects, for example of door and wall elements, can be
defined directly within a schema of the IFC model with the help of attributes in an
entity definition. For standard doors, these might the absolute height and width of
the door, which can be specified by the attributes OverallWidth and OverallHeight
when instantiating a door object. The many other important and desirable charac-
teristics of doors (fire safety class, security, thermal performance, etc.) would make
the already extensive schema unnecessarily bloated and slow its implementation.
Similarly, it would not be possible to include all the unforeseen or international
standardized characteristics needed by various users without making changes to the
schema. To address this problem, the IFC model takes a two-pronged approach to
defining characteristics: static attributes that are defined within the schema along
with dynamically created properties. Such properties can be defined with the help of
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the subclasses of IfcProperty (typically IfcPropertySingleValue) and added freely as
required to the instance model. There is no limit to the number of properties that can
be added. The definition of a new object property is defined via a simple name-value
datatype-unit tuple, for example: “Name: ’FireRating’; Value: ’F30’; Datatype: ’If-
cLabel”’. Individual IfcProperty definitions are grouped into an IfcPropertySet and
assigned to an object (IfcRelDefinesByProperties). A schematic overview of these
two primary mechanisms for defining properties is shown in Fig. 6.28.

Software vendors need only implement the basic entity of the properties, for ex-
ample IfcPropertySingleValue with the attributes ’Name’, ’NominalValue’ ’Type’
and ’Unit’ in order to provide a generally applicable template mechanism in their
application. This extension mechanism for property definitions is supplemented by
the placeholder entity IfcProxy which makes it possible to also define the semantic
meaning of a class dynamically (i.e. “in run-time”). This provides the IFC with a
meta-model that permits numerous semantic extensions, making it possible to cover
a wide range of application scenarios independently of the implementation. This
flexibility is desirable for many scenarios where special objects and properties are
not defined in the schema, for example because they have limited general appli-
cability. German building codes, acoustics simulations or vendor-specific product
properties are not general enough to warrant their definition in a globally applicable
data schema, but can nevertheless be created within a model as needed in a standard-
compliant form that can be transported and read by software. If the recipient/receiv-
ing software is unable to interpret a property (for example the value “FireRating”
for the attribute instance “Name”) in its respective context, it can simply leave it as
is.

Fig. 6.28 Example use of properties. Left: Ad hoc properties assigned at the level of the instance,
Right: Properties from a standardized PropertySet.
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The disadvantage of this dynamic approach and the external definition of se-
mantics is the potential for the creation of large numbers of arbitrary objects and
properties by different parties for the same purpose: what one user defines as “Fir-
eRating” may be “FireResistanceClass” for another. To help minimize multiple oc-
currences (which was the original dilemma that the IFC tries to address in order to
improve interoperability) users and developers have jointly attempted to voluntarily
standardize the most common properties.

Instead of anchoring these within the schema, they are made available as sep-
arate files, embedded within the model documentation, on the website of the
buildingSMART organization. These PropertySet definitions are saved as straight-
forward XML-format files with the naming scheme “Pset *.xml”, for example
“Pset DoorCommon.xml”. Many object classes such as typical building elements
(roof, wall, column, etc.) have extensive collections of such standardized prop-
erties. The door classes IfcDoor and IfcDoorType, for example, have, in addi-
tion to the Pset DoorCommon collection with 16 properties (e.g. “AcousticRating”
and “FireExit”), further property sets including Pset DoorWindowGlazingType and
Pset DoorWindowShadingType covering door glazing and shading properties.

Together with the door-specific properties for the door frame, door case and door
leaf and the general properties that apply to all building elements (environmental
aspects, guarantee and service properties, vendor-specific information, etc.), more
than 135 further properties are available for describing doors.

As the administration and upkeep of the growing amount of additional infor-
mation in individual files has become increasingly ineffective, the buildingSMART
organization began with version 2x3 to incorporate the standardized PropertySet-
Definitions into the database of the buildingSMART Data Dictionary (bSDD, see
also Chap. 9) for better administration. Alongside the master definitions in English,
many properties are now also available in other languages such as German, French,
Japanese and Chinese.

A further means of extending the IFC model is by making direct references to
properties in external classification and product libraries such as the bSDD. This
approach is described in a section of its own in Chap. 9.

Future developments, for example in the field of the “Semantic Web”, will in-
troduce further means of dynamic property generation and more flexible extension
possibilities.

6.9 Typification of building elements

To describe building elements that occur frequently within a project (beams with
a certain profile, internal doors, light fittings, etc.) more efficiently, the IFC model
supports the concepts of reusable types. To begin with, a “template” of an element
is defined which can then be instantiated and adapted accordingly. As a result, only
the data that is different needs to be adapted, for example the spatial location of
the object or its relationship to a neighboring building element (“Door in a wall”,
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Fig. 6.29 Semantic typification of an object. Source: IFC Documentation. c©buildingSMART

“Beam resting on a column”) while the other basic parameters remain unchanged.
The IFC model supports typification in two different places:

Semantic typification: An IfcTypeObject is assigned to an object using the IfcRel-
DefinesByType relationship. Before a concrete object is instantiated, a collection of
properties is defined and grouped in IfcPropertySets (see Sect. 6.8) and then applied
via the attribute HasPropertySets to the type that will be valid for all object instances
of that type, such as the fire rating of a door. All concrete instances of an IfcDoor
object that are assigned via IfcRelDefinesByType to this IfcTypeObject will then have
the same fire rating class. This mechanism is shown schematically in Fig. 6.29. The
type properties can, however, be adapted for each instance of an object. A door,
that has been assigned the property “FireRating” is “F30” through a door type, can
be assigned the same “FireRating” with a higher rating “F60” at the level of the
instance. This value that applies to the individual instance overrides or replaces the
original “F30” value of the type object.

Geometric typification, i.e. the recurrence of a geometric representation of an ob-
ject can be modeled in the IFC model using the concept of IfcMappedItems (see
Fig. 6.30). In a manner similar to the block concept of most CAD programs, a
geometric representation of the form (IfcShapeRepresentation) is first created and
stored together with a local coordinate system in an IfcRepresentationMap object.
This is then, as with the semantic IfcPropertySets, assigned to an IfcTypeObject,
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Fig. 6.30 Example for the use of object types in IFC – an instance object is associated with a
type object containing a geometric representation, which is mapped to the instance object using
the MappedItem concept. Source: IFC Documentation. c©buildingSMART

for example a door type. When a new door instance is created, the IfcRepresenta-
tionMap is then referenced. The spatial position of the element instance is then de-
termined using a local transformation (IfcCartesianTransformationOperator). With
the help of this transformation it is also possible to change not only the position
and rotation of an instance but also its scale. In practice, however, this is rarely
undertaken as it can easily lead to inconsistencies and simple changes in scale are
not parametric, i.e. increasing the width of a window also increases the size of the
profiles and the window handle rather than maintaining their size and repositioning
them accordingly as would happen with a true parametric object.
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Fig. 6.31 Example model HelloWall.ifc

6.10 Example: HelloWall.ifc

The following section uses a simple example of a wall with a window to show how
a building is modeled using the IFC and saved in the file HelloWall.ifc2. Figure 6.31
shows the example model in an IFC viewer. The IFC file is saved in the alphanu-
meric file format defined in part 21 of the STEP standard ISO 10303-21. An IFC file
is structured in two sections: (1) a HEADER section with information about the file,
and (2) a DATA section with the project information. Internal file object identifiers
are denoted in the STEP21 file format by a natural number prefixed by a #-sign.

The first line denotes that the physical file adheres to the format defined in STEP-
Standard ISO 10303 Part 21. The HEADER section follows immediately thereafter.
The file description (FILE DESCRIPTION) indicates the model view definition
to which the IFC file complies (see also Chap. 7), in this case the Coordination
View with additional elements according to the Quantity Take-off view. The entry
FILE NAME specifies the file name, the creation time of the file, the file creator and
the organization to which the creator belongs, the name of the application, and the
name of the authorizing user. Finally, the version of the IFC schema is specified, in
this case Version IFC 2x3.

ISO-10303-21;
HEADER;

2 The example is available online from: http://www.buildingsmart-tech.org/implementation/get-
started/hello-world/example-1

http://www.buildingsmart-tech.org/implementation/get-started/hello-world/example-1
http://www.buildingsmart-tech.org/implementation/get-started/hello-world/example-1
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FILE_DESCRIPTION ((’ViewDefinition [CoordinationView,
QuantityTakeOffAddOnView]’), ’2;1’);
FILE_NAME (’HelloWall.ifc’, ’2014-10-20T17:02:56’,

(’Architect’), (’Building Designer Office’), ’My IFC tool’,
’My IFC tool’, ’Simon Sample);

FILE_SCHEMA ((’IFC2X3’));
ENDSEC;

The file data section follows the header and contains information about the
project. To begin with the IFC project (#1) is given a globally unique identifier
(0YvctVUKr0kugbFTf53O9L) as the root element in an IFC exchange file for the
coordination view. In addition, details on the past user history (#2), the basic units
(#7 - #19) and the geometric representation contexts for the shape representations in
the file (#20 - #22) are given, including precision factor (0.00001) and the relative
placement point (0,0,0).

DATA;
#1 = IFCPROJECT(’0YvctVUKr0kugbFTf53O9L’, #2, ’Default Project’,

’Description of Default Project’, $, $, $, (#20), #7);
#2 = IFCOWNERHISTORY(#3, #6, $, .ADDED., $, $, $, 1217620436);
#3 = IFCPERSONANDORGANIZATION(#4, #5, $);
#4 = IFCPERSON(’ID001’, ’Sample’, ’Simon’, $, $, $, $, $);
#5 = IFCORGANIZATION($, ’MF’, ’Testco’, $, $);
#6 = IFCAPPLICATION(#5, ’0.10’, ’My IFC tool’, ’TA 1001’);
#7 = IFCUNITASSIGNMENT((#8, #9, #10, #11, #15, #16, #17, #18,

#19));
...
#11 = IFCCONVERSIONBASEDUNIT(#12, .PLANEANGLEUNIT., ’DEGREE’,

#13);
#12 = IFCDIMENSIONALEXPONENTS(0, 0, 0, 0, 0, 0, 0);
#13 = IFCMEASUREWITHUNIT(IFCPLANEANGLEMEASURE(1.745E-2), #14);
...
#20 = IFCGEOMETRICREPRESENTATIONCONTEXT($, ’Model’, 3, 1.000E-5,

#21, $);
#21 = IFCAXIS2PLACEMENT3D(#22, $, $);
#22 = %IFCCARTESIANPOINT((0., 0., 0.));

The next section defines the project structure. This example shows a three level
project structure, created by exactly one site (#23), one building (#29), and one
building story (#35). The position of the building site is given within the global
coordinate system located at 24◦ 28′ 0′′ north, 54◦ 25′ 0′′ west. The local coordinate
system of the building site is positioned at the origin (0.0, 0.0, 0.0) with no rotation
(#24 - #28). Both the building and the building story are positioned relative to the
building site with no rotation or offset (#30 - #34 and #36 - #40).

#23 = IFCSITE(’3rNg_N55v4CRBpQVbZJoHB’, #2, ’Default Site’,
’Description of Default Site’, $, #24, $, $, .ELEMENT.,
(24, 28, 0), (54, 25, 0), $, $, $);

#24 = IFCLOCALPLACEMENT($, #25);
#25 = IFCAXIS2PLACEMENT3D(#26, #27, #28);
#26 = IFCCARTESIANPOINT((0., 0., 0.));
#27 = IFCDIRECTION((0., 0., 1.));
#28 = IFCDIRECTION((1., 0., 0.));
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#29 = IFCBUILDING(’0yf_M5JZv9QQXly4dq_zvI’, #2,
’Default Building’, ’Description of Default Building’,
$, #30, $, $, .ELEMENT., $, $, $);

#30 = IFCLOCALPLACEMENT(#24, #31);
#31 = IFCAXIS2PLACEMENT3D(#32, #33, #34);
#32 = IFCCARTESIANPOINT((0., 0., 0.));
#33 = IFCDIRECTION((0., 0., 1.));
#34 = IFCDIRECTION((1., 0., 0.));
#35 = IFCBUILDINGSTOREY(’0C87kaqBXF$xpGmTZ7zxN$’, #2,

’Default Building Storey’,
’Description of Default Building Storey’, $, #36, $, $,
.ELEMENT., 0.);

#36 = IFCLOCALPLACEMENT(#30, #37);
#37 = IFCAXIS2PLACEMENT3D(#38, #39, #40);
#38 = IFCCARTESIANPOINT((0., 0., 0.));
#39 = IFCDIRECTION((0., 0., 1.));
#40 = IFCDIRECTION((1., 0., 0.));

The section that follows defines the project structure hierarchy of the project lev-
els defined above by placing them in an aggregation relationship (see also Chap. 3).
The building (#29) comprises one building story (#35), one building (#29), the
building site (#23) and the project (#1). A hierarchy of spatial relationships is like-
wise defined (#44) within which the wall (#45) and window (#124) are assigned to
the building story (#35), in this case the only one in this model.

#41 = IFCRELAGGREGATES(’2168U9nPH5xB3UpDx_uK11’, #2,
’BuildingContainer’, ’Container for BuildingStories’,
#29, (#35));

#42 = IFCRELAGGREGATES(’3JuhmQJDj9xPnAnWoNb94X’, #2,
’SiteContainer’, ’Container for Buildings’, #23, (#29));

#43 = IFCRELAGGREGATES(’1Nl_BIjGLBke9u_6U3IWlW’, #2,
’ProjectContainer’, ’Container for Sites’, #1, (#23));

#44 = IFCRELCONTAINEDINSPATIALSTRUCTURE(’2O_dMuDnr1Ahv28oR6ZVpr’,
#2, ’Default Building’, ’Contents of Building Storey’,
(#45, #124), #35);

The section that follows defines the creation of the actual wall object of type
IfcWallStandardCase (#45) positioned relative to the building story (#46 points to
#36). Two different geometric representations are defined for the wall (#51). The
wall axis is defined as a two-dimensional curve (#79) comprised of a polyline (#80)
from (0.0, 0.15) to (5.0, 0.15), and the three-dimensional volumetric solid is de-
fined as a “SweptSolid” (#83, #84). This solid is the product of the extrusion of the
footprint (#85) described by a closed polyline (#86). The extrusion is in the vertical
direction (0.0, 0.0, 1.0) (#96) with a height of 2.30 meters (#84).

#45 = IFCWALLSTANDARDCASE(’3vB2YO$MX4xv5uCqZZG05x’, #2,
’Wall xyz’, ’Description of Wall’, $, #46, #51, $);

#46 = IFCLOCALPLACEMENT(#36, #47);
#47 = IFCAXIS2PLACEMENT3D(#48, #49, #50);
#48 = IFCCARTESIANPOINT((0., 0., 0.));
#49 = IFCDIRECTION((0., 0., 1.));
#50 = IFCDIRECTION((1., 0., 0.));
#51 = IFCPRODUCTDEFINITIONSHAPE($, $, (#79, #83));
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#79 = IFCSHAPEREPRESENTATION(#20, ’Axis’, ’Curve2D’, (#80));
#80 = IFCPOLYLINE((#81, #82));
#81 = IFCCARTESIANPOINT((0., 1.500E-1));
#82 = IFCCARTESIANPOINT((5., 1.500E-1));
#83 = IFCSHAPEREPRESENTATION(#20, ’Body’, ’SweptSolid’, (#84));
#84 = IFCEXTRUDEDAREASOLID(#85, #92, #96, 2.300);
#85 = IFCARBITRARYCLOSEDPROFILEDEF(.AREA., $, #86);
#86 = IFCPOLYLINE((#87, #88, #89, #90, #91));
#87 = IFCCARTESIANPOINT((0., 0.));
#88 = IFCCARTESIANPOINT((0., 3.000E-1));
#89 = IFCCARTESIANPOINT((5., 3.000E-1));
#90 = IFCCARTESIANPOINT((5., 0.));
#91 = IFCCARTESIANPOINT((0., 0.));
#92 = IFCAXIS2PLACEMENT3D(#93, #94, #95);
#93 = IFCCARTESIANPOINT((0., 0., 0.));
#94 = IFCDIRECTION((0., 0., 1.));
#95 = IFCDIRECTION((1., 0., 0.));
#96 = IFCDIRECTION((0., 0., 1.));

The next section defines the wall layers and their materials. The wall in the exam-
ple has a single layer (#77) of thickness 0.3 meters made of the material “Reinforced
concrete C30/37”. This material layer is placed in the middle of the wall axis (#79)
as expressed by the negative offset of -0.15 meters (#75).

#74 = IFCRELASSOCIATESMATERIAL(’2zeggBjk9A5wcc3k9CYqdL’, #2, $,
$, (#45), #75);

#75 = IFCMATERIALLAYERSETUSAGE(#76, .AXIS2., .POSITIVE.,
-1.500E-1);

#76 = IFCMATERIALLAYERSET((#77), $);
#77 = IFCMATERIALLAYER(#78, 3.000E-1, $);
#78 = IFCMATERIAL(’Reinforced concrete C30/37’);

The definition of alphanumeric properties such as dimensions and quantity infor-
mation follows. For these a property set (IfcPropertySet, #52) and an element quan-
tity set (IfcElementQuantity, #64) are defined and attached to the wall by means of
relationship objects (IfcRelDefinesByProperties, #63 and #73). Lines #53 to #63 de-
fine properties such as “ThermalTransmittance” (#58) while lines #65 to #72 specify
values for measurements and quantities such as the gross volume (#69). The names
“Pset WallCommon” and “BaseQuantities” indicates that these properties and quan-
tities information are defined as part of the IFC specification.

#52 = IFCPROPERTYSET(’18RtPv6efDwuUOMduCZ7rH’, #2,
’Pset_WallCommon’, $, (#53, #54, #55, #56, #57, #58,
#59, #60, #61, #62));

...
#58 = IFCPROPERTYSINGLEVALUE(’ThermalTransmittance’,

’ThermalTransmittance’, IFCREAL(2.400E-1), $);
...
#61 = IFCPROPERTYSINGLEVALUE(’LoadBearing’, ’LoadBearing’,

IFCBOOLEAN(.F.), $);
...
#63 = IFCRELDEFINESBYPROPERTIES(’3IxFuNHRvBDfMT6_FiWPEz’, #2, $,

$, (#45), #52);
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#64 = IFCELEMENTQUANTITY(’10m6qcXSj0Iu4RVOK1omPJ’, #2,
’BaseQuantities’, $, $,
(#65, #66, #67, #68, #69, #70, #71, #72));

#65 = IFCQUANTITYLENGTH(’Width’, ’Width’, $, 3.000E-1);
#66 = IFCQUANTITYLENGTH(’Length’, ’Length’, $, 5.);
...
#69 = IFCQUANTITYVOLUME(’GrossVolume’, ’GrossVolume’, $, 3.450);
...
#73 = IFCRELDEFINESBYPROPERTIES(’0cpLgxVi9Ew8B08wF2Ql1w’, #2, $,

$, (#45), #64);

The next section defines the creation of an opening object of type IfcOpeningEle-
ment (#97) relative to the local coordinate system of the wall (#98 points to #46).
A geometric representation (#103) is defined for the opening object as a three-
dimensional “SweptSolid” (#110, #111) and the opening object (#97) is related via
IfcRelVoidsElement (#109) to the wall (#45), indicating that the opening is to be
subtracted from the wall.

#97 = IFCOPENINGELEMENT(’2LcE70iQb51PEZynawyvuT’, #2,
’Opening Element xyz’, ’Description of Opening’, $,
#98, #103, $);

#98 = IFCLOCALPLACEMENT(#46, #99);
#99 = IFCAXIS2PLACEMENT3D(#100, #101, #102);
#100 = IFCCARTESIANPOINT((9.000E-1, 0., 2.500E-1));
#101 = IFCDIRECTION((0., 0., 1.));
#102 = IFCDIRECTION((1., 0., 0.));
#103 = IFCPRODUCTDEFINITIONSHAPE($, $, (#110));
#109 = IFCRELVOIDSELEMENT(’3lR5koIT51Kwudkm5eIoTu’, #2, $, $,

#45, #97);
#110 = IFCSHAPEREPRESENTATION(#20, ’Body’, ’SweptSolid’,

(#111));
#111 = IFCEXTRUDEDAREASOLID(#112, #119, #123, 1.400);
#112 = IFCARBITRARYCLOSEDPROFILEDEF(.AREA., $, #113);
...

Here too a set of measurements and quantities is defined (#104) and associated
with the opening object (#97) by means of a relation #108.

#104 = IFCELEMENTQUANTITY(’2yDPSWYWf319fWaWWvPxwA’, #2,
’BaseQuantities’, $, $, (#105, #106, #107));

#105 = IFCQUANTITYLENGTH(’Depth’, ’Depth’, $, 3.000E-1);
#106 = IFCQUANTITYLENGTH(’Height’, ’Height’, $, 1.400);
#107 = IFCQUANTITYLENGTH(’Width’, ’Width’, $, 7.500E-1);
#108 = IFCRELDEFINESBYPROPERTIES(’2UEO1blXL9sPmb1AMeW7Ax’, #2,

$, $, (#97), #104);

Finally, the creation of the window object of type IfcWindow (#124) is defined
and positioned relative to the local coordinate system of the opening (#125 points to
#98). A three-dimensional geometric representation (#130) is defined for the object
as a “SweptSolid” (#150, #151). This solid is created by extruding the footprint
(#152) described as a closed polyline (#153). The window object (#124) is given
a IfcRelFillsElement (#131) relationship to the opening (#97), indicating that the
opening is to be filled with the window.
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#124 = IFCWINDOW(’0LV8Pid0X3IA3jJLVDPidY’, #2, ’Window xyz’,
’Description of Window’, $, #125, #130, $, 1.400,
7.500E-1);

#125 = IFCLOCALPLACEMENT(#98, #126);
#126 = IFCAXIS2PLACEMENT3D(#127, #128, #129);
#127 = IFCCARTESIANPOINT((0., 1.000E-1, 0.));
#128 = IFCDIRECTION((0., 0., 1.));
#129 = IFCDIRECTION((1., 0., 0.));
#130 = IFCPRODUCTDEFINITIONSHAPE($, $, (#150));
#131 = IFCRELFILLSELEMENT(’1CDlLMVMv1qw1giUXpQgxI’, #2, $, $,

#97, #124);
#150 = IFCSHAPEREPRESENTATION(#20, ’Body’, ’SweptSolid’,

(#151));
#151 = IFCEXTRUDEDAREASOLID(#152, #159, #163, 1.400);
#152 = IFCARBITRARYCLOSEDPROFILEDEF(.AREA., $, #153);
#153 = IFCPOLYLINE((#154, #155, #156, #157, #158));
...

As with the wall above, alphanumeric properties (#132) and quantities and mea-
surements (#146) are defined for the window and related to it via the relationship
objects (IfcRelDefinesByProperties, #145 and #149). Lines #133 to #144 specify
properties and values, such as “ThermalTransmittance” (#139) while lines #147 and
#148 define measurement values, in this case the height (#147) and breadth (#148)
of the window.

The penultimate line marks the end of the project data section (DATA) of the IFC
file and the final line the end of the entire ISO standard file.

#132 = IFCPROPERTYSET(’0fhz_bHU54xB$tXHjHPUZl’, #2,
’Pset_WindowCommon’, $, (#133, #134, #135, #136, #137,
#138, #139, #140, #141, #142, #143, #144));

...
#139 = IFCPROPERTYSINGLEVALUE(’ThermalTransmittance’,

’ThermalTransmittance’, IFCREAL(2.400E-1), $);
...
#145 = IFCRELDEFINESBYPROPERTIES(’2fHMxamlj5DvGvEKfCk8nj’, #2,

$, $, (#124), #132);
#146 = IFCELEMENTQUANTITY(’0bB_7AP5v5OBZ90TDvo0Fo’, #2,

’BaseQuantities’, $, $, (#147, #148));
#147 = IFCQUANTITYLENGTH(’Height’, ’Height’, $, 1.400);
#148 = IFCQUANTITYLENGTH(’Width’, ’Width’, $, 7.500E-1);
#149 = IFCRELDEFINESBYPROPERTIES(’0FmgI0DRX49OXL_$Wa2P1E’, #2,

$, $, (#124), #146);$
ENDSEC;
END-ISO-10303-21;

6.11 ifcXML

The descriptive language of the IFC schema is EXPRESS (ISO 10303-11, 2004),
a data modeling language specially developed for product modeling. As mentioned
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earlier, the accompanying exchange format for model instances is defined in part
21 of the STEP specification. When the IFC was first developed, the XML format
(developed by W3C, 2015) which is now very popular, was not available.

From the early 2000s onwards the eXtensible Markup Language XML, a sim-
pler and optimized version of the SGML standard, began to gain popularity. Many
development tools were introduced and XML became a mainstream language for
formally describing structured data.

As a consequence, buildingSMART were asked to also provide IFC data in XML
format. From 2001 onwards, a number of different approaches to translating the
EXPRESS schema into an XML compatible form were developed as a means of
creating valid IFC XML documents:

• 2001 – the first version of an XML translation of the IFC 2.0 schema as an XDR
(XML Data Reduced) schema definition. The translation rule from EXPRESS to
XDR was a private development.

• 2002 – the first version of an XML translation of the IFC 2.0 schema as an XSD
(XML Schema Definition). Here too the translation rule from EXPRESS to XSD
was a private development that was later adopted as a proposal by the ISO Group
ISO/TC 184/SC 4 for a general standard for mapping EXPRESS to XSD.

• 2005 – a new method for XML translation of the IFX2x2 schema according to
the developmental stage (working draft) of the ISO 10303:28-ed2 standard which
was developed for the standard-compliant translation of EXPRESS to XSD. A
default configuration was chosen which, however, led to very large XML data
files.

• 2007 – the same methodology, this time for the IFC2x3 schema.
• 2013 – a newly developed version of ifcXML was developed as part of the devel-

opment of IFC4 in which the transfer from IFC EXPRESS to XSD is compliant
to the final version of ISO 10303-28:ed2 using an optimized configuration of the
mapping rules. XSD definitions were given alongside the EXPRESS definition in
the official IFC4 documentation. The new configuration of the ISO 10303-28:ed2
rules is much more efficient and this method is often known as Simple ifcXML.

As a rule, the XML serialization of IFC data has exactly the same depth of in-
formation as the Part-21 serialization. IFC XML data can be validated against the
online ifcXML XSD schema. Only detailed validation against the validation rules
available in EXPRESS is not possible as the scope of the XSD language is not suf-
ficient to translate these rules. Another limitation is that inverse attributes are not
included in the ifcXML schema.

Due to the additional XML syntax, ifcXML files are significantly larger than a
regular ifc file for the same information content. In the earlier ifcXML conversions
(up to IFC2x3), ifcXML files were typically 6-8 times larger than an ifc file, but
with the newer simple ifcXML convention in IFC4 they are now approximately 2-3
times larger.
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6.12 Summary

The IFC data model is an open, mature and internationally standardized data model.
It permits the exchange of digital building models beyond the limits of functional-
ity of individual applications and between various software vendors and supports a
diverse range of application scenarios.

With the IFC data model it is possible to model buildings digitally in great detail
including the comprehensive semantic description of a building, the modeling of
all building elements and spaces as well as the reciprocal relationships between
them. Each semantic building object can have one or more geometric representations
associated with it, making it possible to cater for the different needs for presenting
building information geometrically.

The IFC data model is an extremely powerful and also very complex data model.
That has the advantage that buildings can be described very completely and in differ-
ent ways. But it also has disadvantages. For example, different planning stages may
require different geometric representations, for example a surface model or a finite
element net, each of which can be modeled differently. A typical stumbling block
is the modeling of a continuous external wall as opposed to story-wise in individual
sections. Both variants are possible, and even sensible for different application sce-
narios, but they can rarely be derived from one another or described parallel to one
another.

This complexity requires a considerable effort for software vendors that wish
to make their products compatible with the IFC standard. Many software vendors
therefore only offer partial support for the data model in their import and export
modules. To avoid incompatibilities as a result of this, buildingSMART introduced
the concept of Model View Definitions (MVD, described in Chap. 7), with which it
is possible to specify which parts of the IFC data model must be implemented for
specific data exchange scenarios. Accordingly, MVDs are also the basis for certify-
ing IFC compatibility: software products are not certified for the entire data schema
but only for specifically defined sections.

Despite the formal mechanisms of the data scheme and the MVDs, the model’s
flexibility is still so complex that further agreements are necessary to achieve homo-
geneous and compatible implementations. These so-called “Implementers’ Agree-
ments” can contain extensive sets of agreements, but are increasingly being de-
scribed in semi-automated test procedures and therefore becoming part of the cer-
tification of software products. This is expected to lead to further improvements in
the quality and reliability of IFC data, as described in detail in Chap. 8.

Despite the complexity of the data model and the problems this brings with it,
the IFC data format plays a key role in the path towards Big Open BIM. On the one
hand, a neutral, open format is the only way to ensure vendor-neutrality and true,
sustainable data continuity. And on the other hand, rules governing the provision of
BIM models must specify an open format in order to avoid skewing the competition
in favor of specific software vendors. Last but not least, the usefulness of the long-
term archiving of digital data from the monitoring of a building’s operation can only
be reliably guaranteed if this information is available in an open, well-documented
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format that is not dependent on an individual manufacturer’s specific format. Similar
attempts to make data available in the long term in a vendor-neutral format can be
observed in other industrial sectors such as the automotive industry and in aerospace
technology. As a consequence, some national organizations have decided to specify
the use of the IFC format for public building projects, including public authorities
in Singapore, the Netherlands and Finland. Similar developments are expected to
follow in the near future in the USA, Great Britain and in the Scandinavian coun-
tries. In the long term, therefore, one can expect to see the IFC standard play an
important role in the search for a legally-binding digital equivalent to paper-based,
rubber-stamped and hand-signed planning documents at a national and European
level.

The standardization organization buildingSMART offers all its members, whether
individuals, companies or public authorities and organizations, extensive opportu-
nities to participate and contribute to the IFC, and with it numerous opportunities to
influence the quality and future development of the standards.

Among these future developments, outlined in part in the Technical Committee’s
“Roadmap 2020”, are ways of integrating complementary standards and models
such as the IDM/MVD (see Chap. 7), bSDD (see Chap. 9) and BCF (see Chap. 14)
as well as improvements to the quality of implementation through more stringent
certification procedures (see Chap. 8). Further developments are also underway in
the field of extending geometric representations, for example through the support
of point clouds, the improved support of model servers and the dynamization of
semantic extensions and distributed instance models using Semantic Web Tech-
nologies such as the Resource Description Framework (RDF). To improve model
consistency, it would be desirable in the long term to parametrize objects to remedy
the currently lacking connection between an attribute (such as the “OverallWidth”
of a door) and its geometric representation. Similarly, links to existing standards
from the field of Geo-information (CityGML, LandXML, etc.) as well as model ex-
tensions for infrastructure objects such as bridges and tunnels or streets and railway
tracks are currently being actively developed.
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STEP, 5, 6, 41

Physical File, 8
Surface model, 22

Tesselation, 22
Triangulated nets, 22
Typification, 33
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