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Abstract
Understanding and anticipating human motor action in unconstrained environments is a
challenging task, even for other humans, if there is no precise task description. It is essen-
tial, however, in many application areas, such as healthcare and rehabilitation for instance.
Further, the prediction of motor behavior, is a pre-requisite for successful and intuitive
human-robot interaction. Therefore, we present in this thesis a holistic plant model for the
complex human sensorimotor system to improve the prediction quality of human motor be-
havior. Our dynamics model includes all relevant aspects, specifically the internal decision
making, the motor execution and the influence of motor dysfunctions. To consider each of
the aspects in the novel dynamics model, we employ a data-driven approach, as this is capa-
ble of representing system behavior to which first-order principles cannot be employed. For
approximating human motor behavior based on observations the Gaussian process model is
especially suitable, as this technique accounts for uncertainty in the model.
Part of the sensorimotor system dynamics evolve in the space of rigid motions, which

constitute the space of natural human behavior. Unfortunately, this space is nonlinear. So
far, the available learning approaches cannot handle dynamics evolving in the space of rigid
motions. Dynamics evolving in a nonlinear space, such as rotations for instance, are not
appropriately considered in well-known data-driven approaches. Therefore, we present in
this thesis a mathematical framework for Gaussian processes, where the valid input domain
is generalized to full rigid motions, namely the special Euclidean group SE(3). This gener-
alized Gaussian process model is suitable for approximating human motor execution. The
correctness and accuracy of our approach is validated on simulated and real human motion
data. We analyze the estimation performance of the novel Gaussian process framework by
comparing to state of the art techniques, and show significantly improved prediction accuracy
for rigid motions.
Further, we employ the findings of Gaussian process modeling on SE(3) in probabilistic

trajectory classification on SE(3) and provide an online algorithm for human movement
prediction based on the generalized Gaussian process. In the process of generating the
motion, the classification results are taken into account for directing the prediction into the
most probable direction. This approach approximates the decision making among multiple
potential movement plans in the human sensorimotor system. The algorithm outperforms
the human ability to predict other human’s motion intention in speed and accuracy.
Finally, the motor state of the human system is estimated. This approach is used to detect

faults in the sensorimotor system, such as motor dysfunctions caused by neurodegeneration.
We propose a method for monitoring Parkinson’s disease symptoms using a wearable motion
tracking device which can recognize and predict symptoms during daily living. In contrast to
alternative approaches, we do not restrict the patients’ activities during symptom monitoring
as our approach is capable of differentiating voluntary from unintended motions with high
accuracy. Experimental validation of our approach on real patient data demonstrates a
significant accordance of the estimations with medical expert assessment.
Together, the presented techniques allow for holistic consideration of the human motor

behavior, as they jointly approximate our plant model of the human sensorimotor system.
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Zusammenfassung
Das Verstehen und die Vorhersage menschlicher Bewegungen in unbeschränkter Umgebung
ist selbst für andere Menschen schwierig, wenn die Aufgabe nicht im Detail bekannt ist. In
vielen Anwendungsgebieten, wie beispielsweise im Gesundheitswesen und der Rehabilitation
ist es jedoch essentiell. Auch die Vorhersage von motorischem Verhalten ist eine Vorausset-
zung für erfolgreiche und intuitive Mensch-Roboter Interaktion. Daher stellen wir in dieser
Dissertation ein holistisches Modell für das komplexe menschliche sensomotorische System
vor, um die Vorhersagegenauigkeit des Bewegungsverhaltens zu verbessern. Unser dynamis-
ches System beinhaltet alle relevanten Aspekte, von der internen Entscheidungsfindung über
Bewegungsausführung bis hin zum Einfluss von motorischen Störungen. Um jeden dieser As-
pekte im neuen dynamischen Modell zu berücksichtigen, verwenden wir einen datengetriebe-
nen Ansatz, da er Systemverhalten darstellen kann, für das Lösungsansätze erster Ordnung
nicht anwendbar sind. Um menschliches Verhalten basierend auf Beobachtungen zu approx-
imieren, ist besonders der Gaußprozess geeignet, da dieses Verfahren Unsicherheit im Modell
berücksichtigt.
Menschliche Bewegungsdynamik beinhaltet Starrkörperbewegungen, die den Raum der

natürlichen menschlichen Bewegungen definieren. Ungünstigerweise ist dieser Raum nicht-
linear. Bisher können die vorhandenen Lernverfahren Bewegungen in diesem Raum nicht
handhaben. Also werden Rotationen in den bekannten datengetriebenen Ansätzen nicht
angemessen berücksichtigt. Daher stellen wir in dieser Dissertation ein mathematisches
Framework für Gaußprozesse vor, in dem der gültige Definitionsbereich auf die spezielle eu-
klidische Gruppe SE(3) erweitert wird. Die Richtig- und Genauigkeit unseres Ansatzes wird
auf simulierten und echten Menschendaten überprüft. Wir analysieren die Schätzungsper-
formanz des neuen Frameworks im Vergleich zum Stand der Technik und zeigen dabei eine
signifikant verbesserte Vorhersage von Starrkörperbewegungen auf.
Außerdem wenden wir die Ergebnisse über Gaußprozessmodellierung in SE(3) auf proba-

bilistische Trajektorienklassifierung in SE(3) an und entwickeln einen Algorithmus zur online
Vorhersage menschlicher Bewegung. Bei der Bewegungsgenerierung werden die Ergebnisse
der Klassifizierung berücksichtigt. Dieser Ansatz nähert die Entscheidungsfindung zwischen
verschiedener potentieller Bewegungspläne im sonsomotorischen System an. Der entwick-
elte Algorithmus übertrifft die menschlichen Fähigkeiten, die Bewegungsintention anderer
Menschen vorherzusagen.
Schließlich wird der Zustand des motorischen Systems geschätzt, um Fehler im senso-

motorischen System zu erkennen, wie etwa durch Neurodegeneration verursachte motorische
Störungen. Wir präsentieren einen Ansatz um Parkinson Symptome im alltäglichen Leben zu
erkennen und vorherzusagen. Wir verwenden einen tragbaren Bewegungsmesser zur Aufze-
ichnung der Symptome. Im Gegensatz zu alternativen Ansätzen beschränken wir die Ak-
tivitäten der Patienten währen der Symptomüberwachung nicht, da unser Ansatz gewollte
und unbeabsichtigte Bewegungen präzise unterscheiden kann. Die experimentelle Auswer-
tung unseres Ansatzes auf echten Patientendaten zeigt eine signifikante Übereinstimmung
unseres geschätzten Zustands mit professioneller medizinischer Bewertung.
Durch diese Techniken lässt sich unser Modell des sensomotorischen Systems ganzheitlich

annähern.
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Acronyms and Abbreviations
GP Gaussian process
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UK United Kingdom

AIMS Abnormal involuntary movement scale

BK Bradykinesia
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TM Tremor

PSD Power spectral density
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Symbols
Groups, fields, rings and (vector) spaces are denoted by capital letters using a blackboard
bold notation (if existent). Indices and scalar variables are denoted by lower case italic Latin-
script or Greek letters, while vector-valued variables are denoted by lower case bold Latin-
script or Greek letters. Matrices are denoted by capital bold letters. Sets are denoted by
capital script or italic letters and functions are denoted by lower case italic letters including
a subscripted label, except widely used other convention are available.

Spaces, Groups and Algebras

N natural numbers
Rn, n ∈ N n-dimensional Euclidean space
R+

0 ,R+ non-negative real numbers, positive real numbers
SE(3) special Euclidean group
TSE(3) tangent bundle
T gSE(3) tangent space to the tangent point g

TSq tangent space to the unit sphere S3 at tangent point q
H skew field of quaternions
HD ring of dual quaternions
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se(3) Lie algebra to the Lie group of rigid motions SE(3)
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Operators

‖ · ‖ norm
| · | absolute value
·> transpose
〈·, ·〉 dot product
(·, ·) tuple or pair
·̄ conjugate
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∧ logical and
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1
Introduction

Understanding the human has been an active research field for centuries in numerous dis-
ciplines such as psychology, medicine and biology. A wide variety of approaches to explain
the human have been investigated, e.g. modeling the human brain, the nervous system or
human movement generation involving muscle and joint activation, just to name a few ex-
amples. Among the many approaches to explain human functioning, we are interested in
the sensorimotor process, which defines how the nervous system interacts with other body
parts and the environment to produce purposeful, coordinated movements.
The sensorimotor system is required for a wide range of application areas, reaching from

human-robot interaction (HRI) over gaming and mobility to healthcare. In gaming applica-
tions, for instance, the movement behavior prediction allows for pre-rendering of a computer
simulated avatar, controlled by the human player, resulting in smooth movement visualiza-
tion. In mobility, the accurate prediction of human action is essential to avoid accidents
with (semi-)autonomous cars.
In this thesis we focus on the application in human-robot cooperation and healthcare.

Human-Robot Cooperation

The probably most prominent application field of human motion prediction is HRI, e.g.
jointly carrying a table. According to [1], the prediction of human motor behavior is a pre-
requisite for successful and intuitive human-robot interaction. We believe that the robot
on top needs to be able to adapt to human cooperation partners, which requires decision
making for the adequate behavior. Hence, the appropriate interpretation of human motor
intent is crucial for seamless human-robot cooperation, which is an extension of classical
physical HRI: It additionally comprises the appropriately reaction and adaptation of the
robot to the human intent (e.g. stepping aside if the human wants to pass).

Healthcare

In healthcare the estimation of human motor behavior is essential for fault detection of the
human sensorimotor system, such as characteristic motor abnormalities. Malfunctioning of
the sensorimotor system indicate movement-related deficits, which may be typical symptoms
exhibited in neuro-degenerative diseases such as Parkinson’s or Huntington’s. Being able
to detect and interpret the sensorimotor system fault allows for symptom recognition and
estimation, and thus, enables appropriate patient medication.

1



1 Introduction

In order to generate skilled and efficient actions, the sensorimotor system must find so-
lutions to several problems inherent in sensorimotor control, including nonlinearity, nonsta-
tionarity, delays, redundancy, uncertainty, and noise [2]. Further, the human sensorimotor
system is a system, that acts in a dynamically changing environment. Hence, understanding
the human motor system is challenging. An overview over the unsolved issues about how the
human sensorimotor system generates skillful motor behavior is provided in the following.
It is unknown, for instance, how humans select a particular solution out of an infinite pool

of possible movements to achieve a certain task goal. The various types of noise included in
the human nervous system, spanning from perception over planning to kinematics, were thor-
oughly investigated (e.g. see [3–5]). Obviously, the human brain is able to manage the noise,
when the human generates skillful movements. However, we do not fully understand how the
sensorimotor control copes with the noise contamination [2]. Further challenges in the motor
system concern the internal and external uncertainty. On top of the noisy human sensors [6],
unknown environmental properties add to the environmental uncertainty [7,8]. Motor com-
mands, descending from brain to endpoint movement, undergo a nonlinear transformation,
which results in complex muscle activation patterns including further uncertainty [9]. More-
over, the multi-joint, multi-link structure of the human skeleton exhibits complex nonlinear
dynamics [10] and the transformation from a command in the posterial parietal cortex to an
executed muscle contraction takes up to 40 ms according to [2], depending on the length and
type of nerve fiber. As motor commands can hence be out of date, the motor control must
consider delay times, which otherwise could lead to instability in the motor behavior. There
exists no integrated model of the sensorimotor process, which could cope with all challenges.
How the human nonetheless is able to produce well coordinated limb movement, is hence
unsolved.
So far, there is no general model available for the human sensorimotor system to generate

goal-directed movements, as the sensorimotor system dynamics is complex and evolves highly
inconsistent.

1.1 Challenges
In this thesis we develop an integrated framework for estimating and predicting human motor
behavior. In the following, we explain the main challenges that arise from the complexity of
the human sensorimotor system and briefly outline how we cope with those issues.

Challenge 1.1.1 Traditional methods are insufficient to describe the full human motor sys-
tem, as the human exhibits unknown and nonlinear system dynamics that cannot be captured
with traditional methods. All available parametric models can at most partially describe the
complex dynamics of human motor behavior, e.g. in a restricted setting as for completing a
reaching task.

In complex task settings there is no model based on first-order physical principles that suffices
to predict the human motor behavior [11]. We suggest to employ a data-driven modeling
approach for appropriate consideration of unconstrained movement behavior and actions of
humans.

Challenge 1.1.2 Human movement naturally evolves on the space of rigid motions, as hu-
man motions include rotations and translations. So far, however, the existing data-driven
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methods cannot handle dynamics evolving in the space of rigid motions, as rotations are not
appropriately considered.

We introduce a rigorous mathematical framework for modeling human motor behavior dy-
namics. The framework comprises an estimation of the human motor state employing mul-
tiple GPs and a generalization of the valid input domain of the GP to full rigid motions,
namely the special Euclidean group SE(3). Therefore, the kernel function inside the GP are
modified to exploit properties of the input data on the rigid motion manifold.

Challenge 1.1.3 Human behavior in unconstrained environment is highly variable. Given a
task allows for free movements, humans behave differently in multiple repetitions of the same
task. The variability in the behavior is due to uncertainty in the internal decision making
and motor behavior of humans.

We consider the uncertainty in human decision making and adaptation to the environment in
the human movement generation through probabilistic rigid motion trajectory classification.
The correctness and accuracy of all aspects of our approach is validated on real human
motion data.
We structure the reminder of this chapter as follows. We provide an overview of related

work on human sensorimotor process modeling and review data-driven methods, as they are
considered suitable for modeling the human. Subsequently, we present the contribution of
this thesis.

1.2 Human Motor Behavior
In literature, there are various computational methods available to model certain aspects
of human motor behavior. Various studies suggest that the sensorimotor control system
involves Bayesian decision theory [12–14]. In [12], for instance, the subjects learn a posterior
distribution of time delay, in parallel estimated a likelihood for the reliability of visual in-
formation and involved probabilistic reasoning to combine those signals. Optimal feedback
control (OFC) partially explains how the task execution is selected by solving the redundancy
of the motor system, and therefore, is successfully applied to trajectory prediction [15, 16].
OFC finds the best possible feedback control law for a given task that minimizes a mixed
cost function with components that specify both accuracy and energetic costs. Therefore,
an important feature is that it only corrects for deviations that are task relevant and allows
variation in task-irrelevant deviations, following the so-called minimum intervention princi-
ples [2]. Additionally, simple movement prediction can be carried out using the minimum
jerk profile for point-to-point movements [17, 18], although certain movements have some
path curvature depending on gravitational constraints [19]. Besides, the studies of [5,20,21]
suggest the involvement of impedance control in the sensorimotor control system. Impedance
control can be employed to describe the muscle intrinsic properties (stiffness and damping),
and thus, is suitable for approximating feedback delays and uncertainty. Conclusive evidence
for a predictive control or forward models in the human motor system could so far not be
provided, as the predicted event is not a measurable output. Numerous studies, however,
suggest their involvement [22–25].
Even though, the review of computational methods may partially explain the human

motor system functioning, the neurophysiological implementation of the presented methods
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is not understood and thus, no integrated framework for the human sensorimotor system is
available [2]. If regarded separately, none of the previously presented methods considers all
aspects required for holistic human motor behavior modeling.
The most promising approximation are achieved employing learning approaches. Data-

driven modeling is regarded superior for modeling human motor behavior due to its capability
to represent complex dynamical systems [26]. This might be due to the human employing
learning in the own sensorimotor system. According to [27], the human optimizes his/her
motions through the redundancy in the degrees of freedom of the human body. This induces
strongly nonlinear motions with high variance due to environmental constraints. In [28] it is
shown that such nonlinearities in the muscles are learned error-based. Additionally, humans
learn how to adapt the neuromuscular system to changes in the environment [29]. For
instance, the kinematic parameters of reaching movements are tuned by object characteristics
such as shape [30] and mass distribution [31], as well as its location [32] and orientation [33].
These object characteristics are integrated into human motor behavior in order to ensure
that the subsequent motor command is optimized at a critical final phase of the task [34],
as proposed in a theoretical framework termed end-state comfort.

1.3 Data-Driven Modeling
Data-driven modeling is a technique, where the parameters and components of a model are
determined based on the characteristics of some set of observations of an unknown system,
such that the model best describes the observations. The possible application areas for
data-driven modeling techniques are numerous. They comprise the modeling of complex
dynamical systems such as soft robots, unknown object estimation and mechanical system
modeling just to mention a few examples. Additionally, in image data processing learning
approaches were successfully applied, and in traffic flow forecast a data-driven nonparametric
approach is advantageous according to [35]. In the present context, we aim to apply data-
driven modeling to predict human motor behavior.
Probably the most widely studied data-driven techniques for modeling the human motor

system dynamics are Gaussian processes (GPs), Gaussian mixture models (GMMs) and
Hidden Markov models (HMMs); applied for instance by [36], [37] and [38], respectively.
These approaches convince owing to their characteristic to describe system dynamics from
mere observations. While HMMs are particularly popular for describing motion primitives,
they are limited to the discrete state space. GPs and GMMs are defined on continuous space
and therefore suitable for modeling dynamics in continuous state space. Until the late 1990s,
deep learning (DL) approaches were considered unsuitable for dynamical system modeling:
either the dynamics are not robust to noise, or the gradients vanish [39, 40]. The author
of [40] suggests to employ recurrent neural networks (RNNs) to overcome the learning long
time lag problem. For complex dynamics, however, the training of deep RNNs is difficult and
time consuming [41, Chap. 10]. Only recently a deep convolutional neural network (CNN)
architecture was proposed that overcomes scalability and robustness issues [42]. The authors
propose to use multiple convolution layers to separately store the long-term and short-term
dynamics in a CNN model. In their approach, however, the CNN stores the full dynamics
history in the model output and thus does not learn the dynamic mapping from one state
to the next.
We focus on the GP model for its property to account for the uncertainty in each prediction
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besides providing a best estimator [43]. This uncertainty estimate is highly valuable in safety-
critical applications such as human-robot interaction [44].

1.4 Main Contribution and Outline of the Thesis
This thesis introduces an integrated framework for human motor behavior prediction to
cover a large proportion of the human sensorimotor processes including the consideration of
dynamics evolving on the rigid motion manifold. We detail the framework and provide the
structure of this thesis in the following.
We start by developing a holistic dynamical model employing various GPs, which is suit-

able to cover all relevant aspects of human motor behavior prediction (Chapter 2). The
dynamics comprise three main components that correspond to rigid motion execution, deci-
sion making and motor state estimation. In Chapter 3, we detail the rigid motion prediction.
We introduce a mathematically firm GP generalization for modeling rigid motion dynam-
ics on SE(3). Herein, we explain the procedure for two possible parametizations of 6-DoF
rigid motions: the dual quaternions, and the axis-angle and translation vector. Chapter 4
concerns the human decision making, which consists of a parallel process of potential tra-
jectory planning and the weighting of those optional movements to determine a certain
movement trajectory. Therefore, we develop a recursive version of the GP over rigid motions
for online applications, that moreover allows for weighting the training data according to its
significance and information content. The overall motor state of the human is estimated in
Chapter 5. We introduce a fault detection algorithm to detect and estimate motor symptoms
in Parkinson’s disease using a multi-layer GP. We conclude the thesis in Chapter 6.
The major contribution of each of the model parts is detailed in the reminder of this

section. At the beginning of each chapter, the relevant related work and open problems are
briefly reviewed. At the end of each chapter, we shortly conclude on our solution to the
specific challenge.

Chapter 3: Gaussian Process for Rigid Motion Dynamics on SE(3)

As human movement behavior in unconstrained environments manifests as in the space of
rigid motion, we provide a formal GP definition and then generalize the GP to the man-
ifold of rigid motions. We introduce GP kernel functions on the rigid motion using the
parametrization unit and dual quaternions. In addition, we propose the representation of
rigid motions by axis-angle and Euclidean vectors to develop a GP model, that generalizes
to non-Euclidean input space more computationally efficient. We present novel mean and
kernel functions and provide proofs for both parametrizations for the important generalized
squared exponential kernel to be valid. By default, the model uncertainty of the generalized
GP is encoded in a Gaussian defined in the gradient field to SE(3). Thus, we complete
the framework by developing a proper integration method of the uncertainty prediction into
SE(3). We therefore define a probability distribution on SE(3), which possesses the prop-
erties of the Gaussian bell curve. Our generalized GP model is validated on simulated and
real experimental data. In a regression performance analysis, synthetically generated dy-
namics are modeled by the GP over dual quaternions, and are evaluated in comparison to
the traditional GP. In an experimental comparison both GP generalizations are evaluated
in terms of efficiency and accuracy. The evaluations confirm that the introduced framework

5



1 Introduction

for GP modeling over rigid motions significantly outperforms the traditional way of includ-
ing orientation into the GP via Euler angles. These results were preliminary published on
conferences [45–47] and as journal papers [48,49].

Chapter 4: Human Decision Process Estimation

Human motor behavior includes the adaptation to other humans or the environment, which
involves the decision making for a specific movement. We model the decision making by a
parallel trajectory planning and decision weighting algorithm. To allow for online motion
prediction, a novel recursive generalized GP model for rigid motion dynamics is introduced.
For modeling the decision process a clustering algorithm that enhances the GMM cluster
fitting to input data in SE(3) is presented. The resulting motion clusters are used as
potential movement trajectories in the human internal decision process. To calculate the
probability distribution for an unseen rigid motion to belong to any of the trajectory clusters,
we employ a novel Mahalanobis measure. It utilizes the findings from the generalized GP
model framework to allow for measuring distance on SE(3) in accordance to the Mahalanobis
concept. The probabilities of the data clusters are used to weight the training samples
that are assigned to the respective cluster. We then employ the weighted training data
in the generalized online GP to predict the human decision process. The experimental
evaluation of our approach to model the decision process is conducted on a toy example,
namely lower limb assistance. More precisely, an assistant robot puts on a shoe to a human
receiver. The receiver performs foot movements towards freely selected shoe dressing poses,
which are clustered employing the generalized GMM clustering algorithm. We demonstrate
that in the specific toy example, five is the optimal number of trajectory clusters. The
presented trajectory classification method is evaluated in comparison to human classification
abilities and shows faster and more accurate results than human subjects achieve in a motion
classification task from video data. Additionally, we evaluate the performance of the recursive
GP model in an experiment where it is used for online motion estimation in an object
handover task using real data. The results were partially published in [48,50].

Chapter 5: Ambient Symptom Recognition in Parkinson’s Disease

We estimate hardly measurable internal human motor states exemplary for Parkinson’s dis-
ease (PD) patients. We provide an approach that not only autonomously detects each of the
PD motor symptoms, i.e. bradykinesia with and without tremor and dyskinesia, but more-
over estimates the symptoms’ severity. Further, we do not require the patient to perform
specific movement tasks, but complete ambient symptom recognition during unconstrained
free living activities. Finally, we achieve reliable results from a single commercially available
wrist-worn low-cost wearable sensor. The key to this remarkable performance comes from
three aspects: (1) the identification of appropriate data features for the PD patients’ motor
symptom detection and symptom severity estimation, (2) our approach to model PD symp-
toms by a dynamical system and (3) the multi-layer structure of our method. Specifically,
we consider the PD motor symptom evolution as a dynamical system that can be described
by characteristic movement features and the patient’s motor states and symptoms. Then, we
propose to estimate the unknown function in the dynamical system by a multi-layer approach
in which we employ multiple GP models. As the tremor motion is highly characteristic and
thus, clearly differentiable from other motions, the model estimates the tremor presence and
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its severity in the first layer, based on the frequency ratio of the tremor motion versus vol-
untary actions. Subsequently, in the second layer, the remaining data are used to analyze
the severity of dyskinesia and bradykinesia (without tremor). As the balanced condition is
defined by the absence of movement dysfunctions, it is recognized if the severity prediction
is below a certain threshold. For each of the three estimates we apply GP regression or
prediction and thus, obtain a multi-layer GP model. These results are published as [51], and
a second publication on this topic is in preparation.
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2
Dynamics Model of the Sensorimotor System

The human sensorimotor system comprises two aspects, namely the motor system of the
human, i.e. the part of the central nervous system that is involved with motion, and the
human action, i.e. the movement output of human body parts after the sensorimotor signals
are transformed to muscle activation and coordination. Hence, it generates the required
motor commands to execute a goal-directed movement from sensory signals, such as visual
information [52]. To develop a plant model of the system, a general understanding of the
human sensorimotor processes is required. Multiple human-internal processes such as sensory
processing, memory access and motion generation are controlled by the cerebral cortex.
We consider only the relevant aspects for modeling the human motor system and human
action. The sensorimotor processes comprise the cerebral components concerned with the
motor action planning, decision making and motor command generation. Additionally, they
comprise the motor control for generating coordinated muscle activation and limb movement
to execute some action. Thus, they are responsible for the whole control loop from receiving a
task goal input to outputting a goal-directed movement to achieve the task goal. A schematic
visualization of the dynamics model is provided in Figure 2.1. The red dashed line divides
the processes taking place in the human brain and the processes involving other body parts.

Plant Model Description

We introduce in the following our suggested plant model for the sensorimotor process describ-
ing human motor dynamics. The model incorporates three major subsystems, the decision
making, the motor execution and the internal motor system state, which are highlighted by
blue boxes in the figure.
Recent neurophysiological studies suggest that the human intended movements comprise

two stages [53]: firstly, a parallel process of potential movement planning and weighting of
the movement options to decide for one of them, and secondly the actual execution of the
motion. In the plant model those stages correspond to the blue boxes 2 and 1.
In contrast to the traditional serial model in which decision making occurs before action

planning, [54, 55] show that potential spatial plans for movements (to possibly multiple
target locations) are represented simultaneously. Specifically, given a task goal in form of
a target location gT, the potential movement planner generates multiple potential desired
trajectories g1

d(t), . . . , g%d(t) in parallel, which could all serve to achieve the task goal. It is
not known how many potential movements % ∈ N+ are generated in parallel; presumably %
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<latexit sha1_base64="N0h0g3gxGOBZ1sjpGLcEhrywhnw=">AAACG3icbVDLSgMxFM3UV62vqks3wSJUkDJTRF0W3LisYB/QqSWTZtrQzGRI7lTL0P9w46+4caGIK8GFf2OmLaitBwKHc87l5h4vElyDbX9ZmaXlldW17HpuY3Nreye/u1fXMlaU1agUUjU9opngIasBB8GakWIk8ARreIPL1G8MmdJchjcwilg7IL2Q+5wSMFInX3aB3YP2k7vxrYOLcOyeYFd0JeiU/HjukCjVl2miky/YJXsCvEicGSmgGaqd/IfblTQOWAhUEK1bjh1BOyEKOBVsnHNjzSJCB6THWoaGJGC6nUxuG+Mjo3SxL5V5IeCJ+nsiIYHWo8AzyYBAX897qfif14rBv2gnPIxiYCGdLvJjgUHitCjc5YpRECNDCFXc/BXTPlGEgqkzZ0pw5k9eJPVyybFLzvVpoXI2qyOLDtAhKiIHnaMKukJVVEMUPaAn9IJerUfr2Xqz3qfRjDWb2Ud/YH1+Az3GoNw=</latexit><latexit sha1_base64="N0h0g3gxGOBZ1sjpGLcEhrywhnw=">AAACG3icbVDLSgMxFM3UV62vqks3wSJUkDJTRF0W3LisYB/QqSWTZtrQzGRI7lTL0P9w46+4caGIK8GFf2OmLaitBwKHc87l5h4vElyDbX9ZmaXlldW17HpuY3Nreye/u1fXMlaU1agUUjU9opngIasBB8GakWIk8ARreIPL1G8MmdJchjcwilg7IL2Q+5wSMFInX3aB3YP2k7vxrYOLcOyeYFd0JeiU/HjukCjVl2miky/YJXsCvEicGSmgGaqd/IfblTQOWAhUEK1bjh1BOyEKOBVsnHNjzSJCB6THWoaGJGC6nUxuG+Mjo3SxL5V5IeCJ+nsiIYHWo8AzyYBAX897qfif14rBv2gnPIxiYCGdLvJjgUHitCjc5YpRECNDCFXc/BXTPlGEgqkzZ0pw5k9eJPVyybFLzvVpoXI2qyOLDtAhKiIHnaMKukJVVEMUPaAn9IJerUfr2Xqz3qfRjDWb2Ud/YH1+Az3GoNw=</latexit><latexit sha1_base64="N0h0g3gxGOBZ1sjpGLcEhrywhnw=">AAACG3icbVDLSgMxFM3UV62vqks3wSJUkDJTRF0W3LisYB/QqSWTZtrQzGRI7lTL0P9w46+4caGIK8GFf2OmLaitBwKHc87l5h4vElyDbX9ZmaXlldW17HpuY3Nreye/u1fXMlaU1agUUjU9opngIasBB8GakWIk8ARreIPL1G8MmdJchjcwilg7IL2Q+5wSMFInX3aB3YP2k7vxrYOLcOyeYFd0JeiU/HjukCjVl2miky/YJXsCvEicGSmgGaqd/IfblTQOWAhUEK1bjh1BOyEKOBVsnHNjzSJCB6THWoaGJGC6nUxuG+Mjo3SxL5V5IeCJ+nsiIYHWo8AzyYBAX897qfif14rBv2gnPIxiYCGdLvJjgUHitCjc5YpRECNDCFXc/BXTPlGEgqkzZ0pw5k9eJPVyybFLzvVpoXI2qyOLDtAhKiIHnaMKukJVVEMUPaAn9IJerUfr2Xqz3qfRjDWb2Ud/YH1+Az3GoNw=</latexit><latexit sha1_base64="N0h0g3gxGOBZ1sjpGLcEhrywhnw=">AAACG3icbVDLSgMxFM3UV62vqks3wSJUkDJTRF0W3LisYB/QqSWTZtrQzGRI7lTL0P9w46+4caGIK8GFf2OmLaitBwKHc87l5h4vElyDbX9ZmaXlldW17HpuY3Nreye/u1fXMlaU1agUUjU9opngIasBB8GakWIk8ARreIPL1G8MmdJchjcwilg7IL2Q+5wSMFInX3aB3YP2k7vxrYOLcOyeYFd0JeiU/HjukCjVl2miky/YJXsCvEicGSmgGaqd/IfblTQOWAhUEK1bjh1BOyEKOBVsnHNjzSJCB6THWoaGJGC6nUxuG+Mjo3SxL5V5IeCJ+nsiIYHWo8AzyYBAX897qfif14rBv2gnPIxiYCGdLvJjgUHitCjc5YpRECNDCFXc/BXTPlGEgqkzZ0pw5k9eJPVyybFLzvVpoXI2qyOLDtAhKiIHnaMKukJVVEMUPaAn9IJerUfr2Xqz3qfRjDWb2Ud/YH1+Az3GoNw=</latexit>

u(t)
<latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="P1UdvdH391R0955TYQE4YUoapd4=">AAAB7XicbVBNSwMxFHzrZ63VVq9egkWol7LrRY+CF48V7Ae0S8mm2TY0m12SF6Eu/SVePCji3/HmvzHb9qCtA4Fh5j3eZKJMCoO+/+1tbe/s7u2XDsqHlaPjau2k0jGp1Yy3WSpT3Yuo4VIo3kaBkvcyzWkSSd6NpneF333i2ohUPeIs42FCx0rEglF00rBWHSQUJ7Gm09zOG3g5rNX9pr8A2STBitRhhdaw9jUYpcwmXCGT1Jh+4GcY5lSjYJLPywNreEbZlI5531FFE27CfBF8Ti6cMiJxqt1TSBbq742cJsbMkshNFjHNuleI/3l9i/FNmAuVWeSKLQ/FVhJMSdECGQnNGcqZI5Rp4bISNqGaMnRdlV0JwfqXN0nnqhn4zeDBhxKcwTk0IIBruIV7aEEbGFh4gTd49569V+9jWdeWt+rtFP7A+/wBZQ6Rug==</latexit><latexit sha1_base64="P1UdvdH391R0955TYQE4YUoapd4=">AAAB7XicbVBNSwMxFHzrZ63VVq9egkWol7LrRY+CF48V7Ae0S8mm2TY0m12SF6Eu/SVePCji3/HmvzHb9qCtA4Fh5j3eZKJMCoO+/+1tbe/s7u2XDsqHlaPjau2k0jGp1Yy3WSpT3Yuo4VIo3kaBkvcyzWkSSd6NpneF333i2ohUPeIs42FCx0rEglF00rBWHSQUJ7Gm09zOG3g5rNX9pr8A2STBitRhhdaw9jUYpcwmXCGT1Jh+4GcY5lSjYJLPywNreEbZlI5531FFE27CfBF8Ti6cMiJxqt1TSBbq742cJsbMkshNFjHNuleI/3l9i/FNmAuVWeSKLQ/FVhJMSdECGQnNGcqZI5Rp4bISNqGaMnRdlV0JwfqXN0nnqhn4zeDBhxKcwTk0IIBruIV7aEEbGFh4gTd49569V+9jWdeWt+rtFP7A+/wBZQ6Rug==</latexit><latexit sha1_base64="bpb7Ef8KoZaUy0lCAjRyJ6Hb1BI=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyxC3ZQZF+qy4MZlBfuAdiiZNNOGZjJDciPUoV/ixoUibv0Ud/6NmXYW2nogcDjnXu7JCVPBNXjet1Pa2Nza3invVvb2Dw6r7tFxRydGUdamiUhULySaCS5ZGzgI1ksVI3EoWDec3uZ+95EpzRP5ALOUBTEZSx5xSsBKQ7c6iAlMIkWmmZnX4WLo1ryGtwBeJ35BaqhAa+h+DUYJNTGTQAXRuu97KQQZUcCpYPPKwGiWEjolY9a3VJKY6SBbBJ/jc6uMcJQo+yTghfp7IyOx1rM4tJN5TL3q5eJ/Xt9AdBNkXKYGmKTLQ5ERGBKct4BHXDEKYmYJoYrbrJhOiCIUbFcVW4K/+uV10rls+F7Dv/dqzauijjI6RWeojnx0jZroDrVQG1Fk0DN6RW/Ok/PivDsfy9GSU+ycoD9wPn8AtWOTDQ==</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit><latexit sha1_base64="ojz4tklH+PrRWTDBo/MgoPBdNvU=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURUZcFNy4r2Ae0oUymk3boZBLmIdTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86U9rxvZ219Y3Nru7RT3t3bP6i4h0dtlRhJaIskPJHdECvKmaAtzTSn3VRSHIecdsLJbe53HqlULBEPeprSIMYjwSJGsLbSwK30Y6zHkcSTzMxq+nzgVr26NwdaJX5BqlCgOXC/+sOEmJgKTThWqud7qQ4yLDUjnM7KfaNoiskEj2jPUoFjqoJsHnyGzqwyRFEi7RMazdXfGxmOlZrGoZ3MY6plLxf/83pGRzdBxkRqNBVkcSgyHOkE5S2gIZOUaD61BBPJbFZExlhiom1XZVuCv/zlVdK+qPte3b+/rDauijpKcAKnUAMfrqEBd9CEFhAw8Ayv8OY8OS/Ou/OxGF1zip1j+APn8we2o5MR</latexit>

⇠(t)
<latexit sha1_base64="N+7XjIHxaLuoCPVEJ5Vz2OM+ttU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPBi8cK9gPaUDbbTbt2swm7E7GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilZvdJVPCsVyq7VXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezaCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhMXyd9oTlDObaEMi3srYQNqaYMbUBFG4K3+PIyaZ5XPbfq3V2Ua5d5HAU4hhOogAdXUINbqEMDGDzAM7zCmxM7L8678zFvXXHymSP4A+fzB/Yljqw=</latexit><latexit sha1_base64="N+7XjIHxaLuoCPVEJ5Vz2OM+ttU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPBi8cK9gPaUDbbTbt2swm7E7GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilZvdJVPCsVyq7VXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezaCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhMXyd9oTlDObaEMi3srYQNqaYMbUBFG4K3+PIyaZ5XPbfq3V2Ua5d5HAU4hhOogAdXUINbqEMDGDzAM7zCmxM7L8678zFvXXHymSP4A+fzB/Yljqw=</latexit><latexit sha1_base64="N+7XjIHxaLuoCPVEJ5Vz2OM+ttU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPBi8cK9gPaUDbbTbt2swm7E7GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilZvdJVPCsVyq7VXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezaCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhMXyd9oTlDObaEMi3srYQNqaYMbUBFG4K3+PIyaZ5XPbfq3V2Ua5d5HAU4hhOogAdXUINbqEMDGDzAM7zCmxM7L8678zFvXXHymSP4A+fzB/Yljqw=</latexit><latexit sha1_base64="N+7XjIHxaLuoCPVEJ5Vz2OM+ttU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSLUS0lE1GPBi8cK9gPaUDbbTbt2swm7E7GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilZvdJVPCsVyq7VXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezaCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhMXyd9oTlDObaEMi3srYQNqaYMbUBFG4K3+PIyaZ5XPbfq3V2Ua5d5HAU4hhOogAdXUINbqEMDGDzAM7zCmxM7L8678zFvXXHymSP4A+fzB/Yljqw=</latexit>

Fault 
detection

⇠̂(t)
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System 
monitoring

z(t)
<latexit sha1_base64="BPrUBM3o+XsdyJBp8lvEtaDGxYQ=">AAAB9HicdVDLSgMxFM34rPVVdekmWIS6GTLT2uqu4MZlBfuAdiiZNNOGZjJjkinUod/hxoUibv0Yd/6NmbaCih4IHM65l3ty/JgzpRH6sFZW19Y3NnNb+e2d3b39wsFhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Crz2xMqFYvErZ7G1AvxULCAEayN5PVCrEd+kN7PSvqsXygiu4qqVfcSGuKUUeU8I2XHdWvQsdEcRbBEo1947w0ikoRUaMKxUl0HxdpLsdSMcDrL9xJFY0zGeEi7hgocUuWl89AzeGqUAQwiaZ7QcK5+30hxqNQ09M1kFlL99jLxL6+b6ODCS5mIE00FWRwKEg51BLMG4IBJSjSfGoKJZCYrJCMsMdGmp7wp4eun8H/Scm0H2c5NpVivLevIgWNwAkrAATVQB9egAZqAgDvwAJ7AszWxHq0X63UxumItd47AD1hvnwg5kjs=</latexit><latexit sha1_base64="BPrUBM3o+XsdyJBp8lvEtaDGxYQ=">AAAB9HicdVDLSgMxFM34rPVVdekmWIS6GTLT2uqu4MZlBfuAdiiZNNOGZjJjkinUod/hxoUibv0Yd/6NmbaCih4IHM65l3ty/JgzpRH6sFZW19Y3NnNb+e2d3b39wsFhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Crz2xMqFYvErZ7G1AvxULCAEayN5PVCrEd+kN7PSvqsXygiu4qqVfcSGuKUUeU8I2XHdWvQsdEcRbBEo1947w0ikoRUaMKxUl0HxdpLsdSMcDrL9xJFY0zGeEi7hgocUuWl89AzeGqUAQwiaZ7QcK5+30hxqNQ09M1kFlL99jLxL6+b6ODCS5mIE00FWRwKEg51BLMG4IBJSjSfGoKJZCYrJCMsMdGmp7wp4eun8H/Scm0H2c5NpVivLevIgWNwAkrAATVQB9egAZqAgDvwAJ7AszWxHq0X63UxumItd47AD1hvnwg5kjs=</latexit><latexit sha1_base64="BPrUBM3o+XsdyJBp8lvEtaDGxYQ=">AAAB9HicdVDLSgMxFM34rPVVdekmWIS6GTLT2uqu4MZlBfuAdiiZNNOGZjJjkinUod/hxoUibv0Yd/6NmbaCih4IHM65l3ty/JgzpRH6sFZW19Y3NnNb+e2d3b39wsFhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Crz2xMqFYvErZ7G1AvxULCAEayN5PVCrEd+kN7PSvqsXygiu4qqVfcSGuKUUeU8I2XHdWvQsdEcRbBEo1947w0ikoRUaMKxUl0HxdpLsdSMcDrL9xJFY0zGeEi7hgocUuWl89AzeGqUAQwiaZ7QcK5+30hxqNQ09M1kFlL99jLxL6+b6ODCS5mIE00FWRwKEg51BLMG4IBJSjSfGoKJZCYrJCMsMdGmp7wp4eun8H/Scm0H2c5NpVivLevIgWNwAkrAATVQB9egAZqAgDvwAJ7AszWxHq0X63UxumItd47AD1hvnwg5kjs=</latexit><latexit sha1_base64="BPrUBM3o+XsdyJBp8lvEtaDGxYQ=">AAAB9HicdVDLSgMxFM34rPVVdekmWIS6GTLT2uqu4MZlBfuAdiiZNNOGZjJjkinUod/hxoUibv0Yd/6NmbaCih4IHM65l3ty/JgzpRH6sFZW19Y3NnNb+e2d3b39wsFhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv++Crz2xMqFYvErZ7G1AvxULCAEayN5PVCrEd+kN7PSvqsXygiu4qqVfcSGuKUUeU8I2XHdWvQsdEcRbBEo1947w0ikoRUaMKxUl0HxdpLsdSMcDrL9xJFY0zGeEi7hgocUuWl89AzeGqUAQwiaZ7QcK5+30hxqNQ09M1kFlL99jLxL6+b6ODCS5mIE00FWRwKEg51BLMG4IBJSjSfGoKJZCYrJCMsMdGmp7wp4eun8H/Scm0H2c5NpVivLevIgWNwAkrAATVQB9egAZqAgDvwAJ7AszWxHq0X63UxumItd47AD1hvnwg5kjs=</latexit>

Figure 2.1: Control scheme of relevant aspects of the human sensorimotor system and motor
output. Subsystem 2 concerns the decision making for a spatial movement action
and takes place in the posterior parietal cortex of the human brain. Subsystem 1
concerns the subsequent movement execution of the planned action. The trans-
formation from the desired trajectory to the actual end-point movement can have
a delay of up to 40 ms. Under certain circumstances the motor control can be
impaired, namely, when the internal state of the motor system is dysfunctional.
Subsystem 3 models the state of the motor system. The last remaining subsys-
tem 3̂ is an external system monitoring the human motor behavior to estimate
the human internal motor system state.

depends on the task. During the process of making the decision, the potential spatial plans
are balanced against each other (in our plant model this happens in the movement weighting
unit) resulting in some weighting of the movement options w1(t), . . . ,w%(t) [56]. In the
following unit, namely the desired trajectory generator, a desired movement plans gd(t) is
generated from the weighted potential movement plans. The chosen desired trajectory gd(t)
is passed to the following subsystem. We name the whole parallel process that we just
described decision process. It takes place primarily in the posterior parietal cortex [53],
which in the schematic plant model is highlighted as subsystem 2.
Subsequently, the actual motion execution is initialized: By demonstrating that delay

times in an online control task incur in the sensorimotor control loop, it is shown in [57]
that physical motor execution is the temporal successor of the decision process. The motion
execution is visualized in the subsystem 1. It involves sensory and motor cortical areas
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as well as the interaction with physical body parts including tendons, muscles and skeletal
joints. The desired trajectory gd(t) arrives in the motor command unit, which acts as a
controller to generate the control variable u(t) including noise. In fact, the latency of up
to 40 ms is the aggregated delay from the posterior parietal cortex down to the muscle
contraction [2]. The human can cope well with these delay times in the motor cortex, and
generates generally suitable motor commands which are not outdated by the time they arrive
at the executing body part (presumably using predictive models [58]). Therefore, we model
the delay to occur before the signal arrives in the motor cortex. However, we include noise
ins subsystem 1 to model the uncertainty the motor command unit has to manage. At this
point in the control loop, the signal u(t) exits in the human brain and traverses down the
nervous system to communicate with other relevant body parts such as muscles. Through the
muscle activation it achieves the task goal via appropriate limb movement, which generates
the trajectory g(u(t), n(t)). The muscle activation and coordination likewise includes noise.
We will explain the various types of noise contained in the motor execution subsystem later
in more detail. For now, we only want to point out, that those noises differ from each other.
The human monitors its own motor execution using sensors such as vision and touch in the
human sensor measurement unit, which again generates noisy measurements g(u(t), ñ(t)).
Those measurements are transmitted to the postrior parietal cortex (subsystem 2) in an
event triggered fashion, specifically each time the potential movement planner needs to be
reinitiated.

Remark 2.0.1 In our straightforward applications later on, no reinitiation of the decision
process will be required. Therefore, we can assume without loss of generality that the human
sensor measurements g0 about the relevant body parts are transmitted to the decision process
only once at the beginning of each task implementation. Therefore, this signal transmission
is visualized by a dashed arrow from the sensor unit to the movement planner unit.

To get a better understanding of the noise involved in human motor execution, we re-
flect more in detail on human motor behavior. The human motor execution consist of a
consciously and willingly performed share - this is what we call intended motion - and a
non-deliberately and/or unconsciously performed share - i.e. movement that occurs from
sensorimotor uncertainty. Following Orban et al. [59], there are various types of sensorimo-
tor uncertainty: state uncertainty, i.e. a probability distribution over possible states that
result from a motor command based on noisy human sensor input, structural uncertainty,
i.e. unknowns in motor equations that make system identification difficult, and parametric
uncertainty, i.e. unknown dynamics settings of the body or unknown task characteristics.

Remark 2.0.2 In our model, the state uncertainty affects the sensor measurement unit, the
structural uncertainty affects the motor command, and the parametric uncertainty affects
the muscle activation.

Remark 2.0.3 The decision process is assumed to be noise-free. For simplicity, we model
the human system to generate “desired trajectories”, which are perfect in that sense that they
describe the true desire of the human and not some corrupted version of it.

Unintentional motor behavior includes movements the human is aware of but cannot sup-
press, and movements the human executes unconsciously. We call them unintended human
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2 Dynamics Model of the Sensorimotor System

motions. Usually, the sensorimotor uncertainty manifests in marginal unintended movements
such as little drift. Since most people exhibit this behavior all the time, the condition of
the human motor system including marginal unintended motion is referred to as normal or
balanced motor state. So far, we have assumed, that the human motor state is balanced
and thus, noise ration in the signals is reasonably small, such that signals u(t), g(u(t), n(t))
and g(u(t), ñ(t)) are not superimposed by the various noises. Now, we investigate the case
when the human motor behavior is unbalanced. The occurrence of significant unintended
movements is the result of specific motor abnormalities, for which the internal state of the
human motor system ξ(t) is responsible. It depends on many unknown external factors such
as nutrition, excitement or medication. In Parkinson’s disease (PD) for instance, the over
and under supply of the cerebral cortex with dopamine results in an unbalanced internal
motor state. We consider the state of the motor system in the model plant for the human
motor dynamics in the subsystem 3. The internal motor state ξ(t) directly affects the motor
command such that the generated signal u(t) is corrupted in the unbalanced case compared
to the balanced. Additionally, the internal motor state ξ(t) indirectly affects the muscle
activation unit. Specifically, it changes the noise ratio in the limb movement g(u(t), n(t)).

Plant Model Approximation

In the reminder of this chapter we detail our approaches to approximate the model sub-
systems 1 − 3. We start with the subsystem 1, the physical motor execution. We assume
a desired trajectory to be given and the internal motor state to be balanced. Hence, we
approximate the closed loop dynamics of subsystem 1. This dynamics evolves on the special
Euclidean group SE(3), since human movements naturally are rigid motions. Thereafter,
we approximate the noise-free dynamics in subsystem 2. We propose approximators for the
parallel movement planning and the movement weighting to determine the desired trajec-
tory. Finally, we present an estimator for the internal motor state dynamics in subsystem 3.
Since the internal state of the motor system is hardly accessibly with non-invasive methods,
we employ an external monitoring system to detect unbalanced states. Subsystem 3̂ is not
part of the human dynamics model, but serves us as fault detection system. We infer an
estimate ξ̂(t) for the human internal motor state from the motor execution. In future work,
we aim to influence the external factors to regulate the state of the human motor system;
visualized by the grey dotted arrow in Figure 2.1. We mark the elements outside the human
body in the plant model through light grey shading. We apply our motor behavior fault
detection to PD patients and estimate their internal motor states.

Remark 2.0.4 The motor abnormalities induced by unbalanced internal motor states con-
taminate the motor execution, so that the intended motion share in the resulting limb move-
ment becomes indistinguishable from the unintended motion share. Therefore, we will not
consider dynamics of the motor execution under the influence of unbalanced internal motor
states in this thesis.

The dynamics in each of the subsystems 1− 3 of the human sensorimotor dynamics plant
model are unknown. Approximating them is an open problem using traditional methods.
Therefore, we propose a data-driven approximation using (generalized) GP models.
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2.1 Human Motion Dynamics on SE(3)
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Figure 2.2: Scheme of the noisy nonlinear motion dynamics mapping from the space g ∈
SE(3) to the corresponding velocity space T gSE(3).

2.1 Human Motion Dynamics on SE(3)
In this section we aim to approximate the dynamical subsystem of physical motor execution.
We assume that this closed loop dynamics is given by ġ(t) = f̃M( g(t),n g(t), gd(t)) with a
continuous function

f̃M : SE(3)× T gSE(3)× SE(3)→ TSE(3), (2.1)

where the noise process n g(t) comprises the noise in the motor command and the muscle
activation. Since we assume that the human generates a finite set of desired trajectories gd(t),
we can re-define the dynamics f̃M to include the desired trajectory,

f̃M( g(t),n g(t), gd(t)) = f̃Md( g(t),n g(t)). (2.2)

The nonlinear motion dynamics f̃Md describes a mapping in continuous time from the rigid
motions g ∈ SE(3) and noise n g(t) to the corresponding velocity space TSE(3), which is
described by a tangent bundle

TSE(3) = {( g, ġ)| g ∈ SE(3), ġ ∈ T gSE(3)} . (2.3)

The tangent bundle (2.3) consists of pairs of a rigid motion g and corresponding time
derivative ġ in the tangent space T gSE(3). We further consider the noise process n g to be
defined in the tangent space T gSE(3), and we obtain noisy measurements of the velocity
through the mapping

f̃Md : SE(3)× T gSE(3)→ TSE(3). (2.4)

Remark 2.1.1 A noise-free version of the rigid-body motion dynamics is given by

fMd : SE(3)→ TSE(3). (2.5)

It defines the mapping ġ(t) = fMd( g(t)).

A schematic visualization of (2.5) is provided in Figure 2.2.
Our objective is to employ GP regression for finding an approximation of the unknown

dynamics (2.4). Recall, we seek to learn human motion dynamics using the GP model
due to its favorable property to account for uncertainty besides providing a best estimator.
Nevertheless, a major drawback of this model is that it is defined in Euclidean space. Even
though a formulation with non-Euclidean input space is possible in principle, the traditional
formulation requires a Euclidean vector space structure on the input as well as the output
space.
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2 Dynamics Model of the Sensorimotor System

Remark 2.1.2 Likewise the GP model, any other model incorporating Gaussian distribu-
tions is defined solely in Euclidean space, due to the nature of the Gaussian probability
distribution. For instance, this relates to the GMM.

Unconstrained human motion dynamics evolve naturally in the space of rigid motions, i.e.
on the special Euclidean group SE(3). The possible movements, hence, consist of rotation
and translation, which together generate the special Euclidean group SE(3) with elements g,
the rigid motions. For rotations, however, there exists no representation in Euclidean space.
Hence, they cannot be modeled accurately using the traditional GP model. The common
procedure, see e.g. [60], is to use the Euler angles representation for orientations, as close to
zero their space is almost Euclidean. However, when the rotation is large, for example at high
angular speed with low sampling frequency or if training data is sparse, this approach leads
to inaccurate predictions. Therefore, we suggest to generalize the GP to incorporate input
domains within the non-Euclidean space of rigid motions SE(3). The generalization enables
us to concisely learn and predict human motion dynamics such as the dynamics of subsystem
1 in our human motor behavior model in Figure 2.1. Advantageously, in the dynamics
formulations (2.4) and (2.5) the output space of the GP is a tangent bundle TSE(3), which
provides a Euclidean vector space structure. In consequence, if we find valid mean and
kernel functions over the rigid motion space SE(3), the GP output in form of a Gaussian
distribution is well-defined, and therefore also the GP for rigid motions. We will introduce
all required generalizations in Chapter 3.
To take maximum advantage of the GP proposed uncertainty, it is additionally desirable

to provide an uncertainty estimate also on the rigid motions directly. Given the dynamics
input space is a Riemannian manifold M [61], we can integrate the probability distribution
from the velocity space to SE(3). Hence, we are able to define a generalized Gaussian process
on the rigid motions.

Remark 2.1.3 In many real world applications it is advantageous to model a dynamical
system in discrete-time, e.g. when observations are received at sequential time instants only.
The presented approach of approximating a dynamical system of form (2.4) is indeed analo-
gously applicable to discrete-time dynamics in SE(3). Note, however, that it is not possible
to model discrete-time dynamics on SE(3) using the classical formulation of a mapping
from gκ to gκ+1, as SE(3) does not provide the vector space structure, which is required for
the output space of the GP.

2.2 Decision Process Dynamics

In this section we present our approximation to the dynamics of the decision process (sub-
system 2 in Figure 2.1). We assume the human decision process dynamics is given by

ġd(t) = f̌D( gd(t), gT), (2.6)

where gT denotes the task goal. Note, the drift term f̌D is unknown. Since we do not
have access to the human internal decision making units, we use human behavior in similar
situations to approximate the unknown dynamics.
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2.2 Decision Process Dynamics

We start with the potential movement planning. Hence, our first aim is to estimate the
potential desired trajectories { g1

d(t)}t≥0 , . . . , { g
%
d(t)}t≥0, where % ∈ N+ is a suitable num-

ber of movement options. Therefore, we capture multiple repetitions of human movement
executions, given an initial configuration g0, to achieve a certain task goal gT.
In the following, we analyze how those variable realizations of each time the same task

goal gT, serve as estimates for the potential desired trajectories. We assume the rigid motion
planning internally to be noise free using dynamics (2.5). The executed human movements,
however, are disturbed by a noise process n g ∈ T gSE(3) of sensorimotor uncertainty as
defined in (2.4). Hence, the finite set of recorded movement trajectories D̃η = { xk}ηk=1,
where each trajectory xk =

{
gk(t)

}
t≥0
⊂ SE(3), is assumed to represent a noisy random

sample from the set of desired trajectories

D̃d
η =

{{
g1

d(t)
}
t≥0

, . . . , { g%d(t)}t≥0

}
. (2.7)

An estimate for the unknown parameter % is obtained by unsupervised clustering of the
human movement trajectories D̃η into disjoint subsets ·∪%̂j=1Cj. Each of the clusters Cj, j =
1, . . . , %̂ contains a trajectory bundle that approximates the corresponding desired trajec-
tory

{
gjd(t)

}
t≥0

, j = 1, . . . , %̂.

Remark 2.2.1 Only the captured rigid motion data into the clusters requires to be disjoint,
the spatial distribution of the performed trajectories in various clusters is likely to be over-
lapping.

Remark 2.2.2 The motion trajectory bundles jointly represent the variety of spatial move-
ment plans, and simultaneously the execution variability of a certain plan, which is encoded
in the variance of the corresponding trajectory bundle Cj, j = 1, . . . , %.

Next we provide an approximation of the potential movement weighting unit. We define
a vector p g ∈ [0, 1]% encoding the probability of a rigid motion g ∈ SE(3) to belong to any
of the disjoint trajectory clusters C1, . . . , C%. Hence, the probability vector is given by

p g = (p1( g ∈ C1), . . . , p%( g ∈ C%))>, (2.8)

where ∑%
j=1 pj = 1. To achieve an estimation for the desired trajectory prioritization

w1(t), . . . ,w%(t), we defined p g to be calculated by the mapping

fD : SE(3)× SE(3)ν → [0, 1]%

( g, ·∪%j=1Cj) 7→ (p1( g ∈ C1), . . . , p%( g ∈ C%))>,
(2.9)

where ν = # ·∪%j=1 Cj is the total number of captured rigid motion samples.

Remark 2.2.3 An intuition for the weighting process is provided by the following: At the
beginning of the decision process, i.e. when the desired trajectory { gd(t)}t≥0 = gd(0) = g0
only consists of the initial rigid motion, the probability vector p g is uniformly distributed,
i.e. pj = 1/% for all j = 1, . . . , %. As the movement generation proceeds, the probability
vector p g prioritizes a certain cluster, and thus, it becomes clear to which trajectory class
the current motor behavior belongs.
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obstacle obstacle obstacle

probability for upper or lower path

Figure 2.3: Scheme of the decision process consisting of parallel motion prediction on SE(3)
and estimation of the belonging class.

The functioning of the decision making unit desired trajectory generator in subsystem 2 of
the human plant model, is not known in general [2]. We assume that the desired trajectory
generator recursively operates on the potential movement planning and movement weighting.
More precisely, we consider a recursive strategy to generate a desired trajectory out of the
potential movement clusters C1, . . . , C%. Hence, we assume the dynamics

ġ(t) = f̃D( g(t), p g(t),n g(t)),
p g(t) = fD( g(t), ·∪%j=1Cj)

(2.10)

to behave like the true human decision process dynamics (2.6).
The captured set of human trajectories D̃η = { xk}ηk=1 is used for training a data-driven

model to predict a new desired motion trajectory { gd(t)}t≥0. Simultaneously, we want the
estimated weights (i.e. the probabilities p1, . . . , p%) to influence the prediction of the desired
motion trajectory. Therefore, we incorporate the weight vector p g into our approximation
of the decision process dynamics f̃D. The cluster probabilities are used to leverage the data
samples in every corresponding cluster, which consequently effects the proceeding movement
prediction. In consequence the prioritization of one cluster over the others varies over time.
Figure 2.3 illustrates the parallel process of motion prediction and cluster weighting.

Remark 2.2.4 The recursive algorithm for the desired motion prediction is continued until
one of the human movement clusters C1, . . . , C% is selected through a Dirac-like distribution
of the probabilities.

We seek to employ the generalized GP model in the decision process dynamics. Therefore,
we require it to run online and to incorporate weighted training samples. We introduce
a recursive version of the generalized GP and extend it to leveraged input to meet the
requirements. Additionally, we present a realization for the mapping (2.9). All details on
the necessary methodology will be introduced in Chapter 4.

2.3 Motor State Dynamics
In this section we present our approach to estimate the internal motor state of the human
motor system. In our plant model subsystem 3 in Figure 2.1, we assume the temporal
evolution of the internal motor state to be described by the dynamics

ξ̇(t) = f̌S(ξ(t), w(t)),
ξ(0) ∈ R,

(2.11)
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where the function f̌S is unknown but smooth and the unknown state ξ(0) is initialized
through a random value in {0, . . . , 4}. The derivative ξ̇(t) depends on the internal motor
state ξ(t) and an unknown disturbance process w(t), representing external factors such as
medication intake, nutrition, arousal level among others.
With non-invasive methods, however, the internal motor state ξ(t) is hardly determinable.

Therefore, we make another assumption: If the internal motor state is not balanced, this
manifests in characteristic motor abnormalities with variable intensity levels. This means, we
assume we can identify the internal motor state with the intensity of motor abnormalities.
This assumption underlies the standard rating procedure for the internal motor state of
Parkinson’s patients [62].

Remark 2.3.1 We call the characteristic motor abnormalities “(motor) symptoms”. Clin-
ically, this convention is not accurate, since the term symptom in medical science can only
describe effects of some sort of disease. We, however, denominate all motor salience as
symptom, even if they are caused by other factors, such as medication for instance.

Employing the assumption concerning the symptom manifestation, we add an external
monitoring system to the human plant model (visualized in light grey Figure 2.1). Since the
monitoring system captures the human motor behavior with discrete-time samples only, we
discretize the dynamics in the external monitoring and fault detection system to

ξκ+1 = f̃S(ξκ, wκ),
ξ0 ∈ R.

(2.12)

Now, a measurable system output

zκ = g̃S(ξκ, vκ) (2.13)

is additionally available, which we obtain using an external tracking sensor for the human
motor executions. Both functions f̃S, g̃S are unknown but smooth. Since the internal motor
state affects the motion execution, the desired trajectory of the human is corrupted and
the executed movement includes the motor dysfunction in addition to the standard noise
level. The monitoring unit captures the resulting human limb movement gκ including the
patient’s motor dysfunction, and transforms it to a meaningful signal zκ. More precisely, the
monitoring unit generates features from the captured signal, which are suitable for the fault
detection unit. Thus, the signal zκ at time step κ ≥ 0 depends on the symptom severity ξκ
and some noise vκ, which consists of the intended motion share (from daily living activity),
the motor execution noise and the noise of the external sensor.
We aim to infer the symptom severity level ξκ in (2.12) using the available measurement

set Zκ at time instance κ ≥ 0, where

Zκ = { zκ,Zκ−1},
Z0 = { z0}.

(2.14)

A fault detection unit provides the desired property. It detects the share of motor dys-
function in the motion features. Hence, an estimate for the symptom level ξκ, given the
measurements Zκ is obtained by

ξ̂κ = E[g̃f (ξ̂κ−1)|Zκ], (2.15)
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<latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit><latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit><latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit><latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit>

w
<latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit><latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit><latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit><latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit>

System 

monitoring

g
<latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit><latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit><latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit><latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit>
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<latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit>
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g
<latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit>
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<latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit><latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit><latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit><latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit>

Internal state

⇠
<latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit><latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit><latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit><latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit>

z
<latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit><latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit><latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit><latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit>

⇠̂
<latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit><latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit><latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit><latexit sha1_base64="auXsbvx2SGN4INbG7jCvN6lJR/M=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR6rHgxWMF+wFNCJPtpl262YTdjVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXppwp7Tjf1tr6xubWdmWnuru3f3Bo1466KskkoR2S8ET2Q1CUM0E7mmlO+6mkEIec9sLJdeH37qlULBF3eppSP4aRYBEjoI0U2DVvDDr3Htks8CaQplAN7LrTcObAq8QtSR2VaAf2lzdMSBZToQkHpQauk2o/B6kZ4XRW9TJFUyATGNGBoQJiqvx8fvoMnxlliKNEmhIaz9XfEznESk3j0HTGoMdq2SvE/7xBpqMrP2cizTQVZLEoyjjWCS5ywEMmKdF8aggQycytmIxBAtEmrSIEd/nlVdK9aLhOw729rLeaZRwVdIJO0TlyURO10A1qow4i6AE9o1f0Zj1ZL9a79bFoXbPKmWP0B9bnDzdok+o=</latexit>

w
<latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit><latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit><latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit><latexit sha1_base64="2+rmOfNODN2An1bVdaRVlgRoWCQ=">AAAB8HicbVBNSwMxEM36WetX1aOXYBE8lV0R6rHgxWMF+yHtUmbTbBuaZEOSVcrSX+HFgyJe/Tne/Ddm2z1o64OBx3szzMyLFGfG+v63t7a+sbm1Xdop7+7tHxxWjo7bJkk1oS2S8ER3IzCUM0lblllOu0pTEBGnnWhyk/udR6oNS+S9nSoaChhJFjMC1kkPT4P+BJSC8qBS9Wv+HHiVBAWpogLNQeWrP0xIKqi0hIMxvcBXNsxAW0Y4nZX7qaEKyARGtOeoBEFNmM0PnuFzpwxxnGhX0uK5+nsiA2HMVESuU4Adm2UvF//zeqmNr8OMSZVaKsliUZxybBOcf4+HTFNi+dQRIJq5WzEZgwZiXUZ5CMHyy6ukfVkL/Fpwd1Vt1Is4SugUnaELFKA6aqBb1EQtRJBAz+gVvXnae/HevY9F65pXzJygP/A+fwBeBZAS</latexit>

System 

monitoring

g
<latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit><latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit><latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit><latexit sha1_base64="SLt2SWBY5yoMzeTAoR3tbfx/BAY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEwlGlXbdb6uytr6xuVXdru3s7u0f2IdHXZVmEpMOTlkq+xEowignHU01I30hCSQRI71oclP4vQciFU35vZ4KEiQw4jSmGLSRQvvET0CPYwmTfDQL/QkIAbXQrrsNdw5nlXglqaMS7dD+8ocpzhLCNWag1MBzhQ5ykJpiRmY1P1NEAJ7AiAwM5ZAQFeTz9DPn3ChDJ06leVw7c/X3Rg6JUtMkMpNFVrXsFeJ/3iDT8XWQUy4yTTheHIoz5ujUKapwhlQSrNnUEMCSmqwOHoMErE1hRQne8pdXSfey4bkN7+6q3mqWdVTRKTpDF8hDTdRCt6iNOgijR/SMXtGb9WS9WO/Wx2K0YpU7x+gPrM8fmnWVQw==</latexit>

Fault detection

desired 

trajectory

Motion 

execution

T SE(3)g
<latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit> SE(3)

TSE(3)

g
<latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit><latexit sha1_base64="6g5FziaAC+1lzzkzoGNr8o/WQb4=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiTaR7orunFZwT6gCWUynbRDJw9mJkIJ/Q03LhRx68+482+ctBVU9MDA4Zx7uWeOn3AmlWV9GIW19Y3NreJ2aWd3b/+gfHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz1/ep37vXsqJIujOzVLqBficcQCRrDSkuuGWE0CgafZeD4sVyzzslZ3apfIMmtNp2E5mtjNer3aQLZpLVCBFdrD8rs7ikka0kgRjqUc2FaivAwLxQin85KbSppgMsVjOtA0wiGVXrbIPEdnWhmhIBb6RQot1O8bGQ6lnIW+nswzyt9eLv7lDVIVOF7GoiRVNCLLQ0HKkYpRXgAaMUGJ4jNNMBFMZ0VkggUmStdU0iV8/RT9T7oXpq2bua1WWlerOopwAqdwDjY0oAU30IYOEEjgAZ7g2UiNR+PFeF2OFozVzjH8gPH2CRRBkl8=</latexit>
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⇠
<latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit><latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit><latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit><latexit sha1_base64="o3x2mTchy5GdaX62r6bO2ib4HOs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF24pNKJPtpl262Sy7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvkpxp43nfTmlldW19o7xZ2dre2d2r7h+0dZopQlsk5am6j1BTzgRtGWY4vZeKYhJx2olG11O/80iVZqm4M2NJwwQHgsWMoLHSQ/DEesEIpcRetebVvRncZeIXpAYFmr3qV9BPSZZQYQhHrbu+J02YozKMcDqpBJmmEskIB7RrqcCE6jCfXTxxT6zSd+NU2RLGnam/J3JMtB4nke1M0Az1ojcV//O6mYkvw5wJmRkqyHxRnHHXpO70fbfPFCWGjy1Bopi91SVDVEiMDaliQ/AXX14m7bO679X92/Na46qIowxHcAyn4MMFNOAGmtACAgKe4RXeHO28OO/Ox7y15BQzh/AHzucPpqKQ4w==</latexit>

Internal state

⇠
<latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit><latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit><latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit><latexit sha1_base64="VHIJrdXuQYnwLi/YLwwQ+XAAAq4=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEqMuCG5cV7AOaEG6mk3boZDLMTMQSu/BX3LhQxK2/4c6/cdJmoa0HBg7n3Ms9cyLBqNKu+22trK6tb2xWtqrbO7t7+/bBYUelmcSkjVOWyl4EijDKSVtTzUhPSAJJxEg3Gl8XfveeSEVTfqcnggQJDDmNKQZtpNA+9hPQo1jCOPcf6DT0xyAEVEO75tbdGZxl4pWkhkq0QvvLH6Q4SwjXmIFSfc8VOshBaooZmVb9TBEBeAxD0jeUQ0JUkM/yT50zowycOJXmce3M1N8bOSRKTZLITBZp1aJXiP95/UzHV0FOucg04Xh+KM6Yo1OnKMMZUEmwZhNDAEtqsjp4BBKwNpUVJXiLX14mnYu659a928tas1HWUUEn6BSdIw81UBPdoBZqI4we0TN6RW/Wk/VivVsf89EVq9w5Qn9gff4AOj+WLQ==</latexit>

z
<latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit><latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit><latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit><latexit sha1_base64="s0Xqx3HIIlvE6JY82n8B2xQZdFs=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi1GXBjcsK9gFtCDfTSTt0MhlmJmIN+RU3LhRx64+4829M2iy09cDA4Zx7uWdOIDnTxnG+rcrG5tb2TnW3trd/cHhkH9d7Ok4UoV0S81gNAtCUM0G7hhlOB1JRiAJO+8HspvD7D1RpFot7M5fUi2AiWMgImFzy7fooAjMNwvQp80czkBJqvt1wms4CeJ24JWmgEh3f/hqNY5JEVBjCQeuh60jjpaAMI5xmtVGiqQQygwkd5lRARLWXLrJn+DxXxjiMVf6EwQv190YKkdbzKMgni6R61SvE/7xhYsJrL2VCJoYKsjwUJhybGBdF4DFTlBg+zwkQxfKsmExBATF5XUUJ7uqX10nvsuk6TffuqtFulXVU0Sk6QxfIRS3URreog7qIoEf0jF7Rm5VZL9a79bEcrVjlzgn6A+vzBxCMlGY=</latexit>
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Figure 2.4: Scheme of the symptom level estimation. The internal motor state ξκ corrupts
the intended motion in case it is unbalanced. Then, the resulting executed move-
ment gκ includes motor dysfunctions. The monitoring system not only captures
the signal, but also generates features zκ suitable to characterize the motion.
The fault detection estimates the level of unintended motion in the captured
signal and hence provides an estimate ξ̂κ for the symptom level.

where g̃f is a smooth mapping, which defines the temporal evolution of the internal motor
state estimate ξ̂κ−1. Since the dynamics (2.12) only depends on the most recent previous
internal motor state ξκ, it fulfills the Markov property. This property inherits to the fault
detection,

ξ̂κ = E[gf (ξ̂κ−1, zκ)], (2.16)

where ξ̂κ−1 contributes to the model-based prediction step and zκ to the measurement based
innovation. We call the subsystem consisting of system monitoring unit and fault detection
unit a symptom level estimator. A schematic visualization of the estimator is provided in
Figure 2.4.

Remark 2.3.2 It is not possible to employ a state observer instead of the fault detection
unit to estimate the symptom severity level ξκ in the dynamics (2.12), as a state observer
controls its system model to track the unknown real system. In our system, however, the
desired trajectory input as well as the external factors are unknown. Therefore, we can
hardly reconstruct the unknown system.

We propose to use GP modeling for the fault detection, i.e. to estimate the function gf
in equation (2.16). More details on the feature generation in the monitoring system and on
how we employ GPs to achieve a reliable fault detection will be provided in Chapter 5.

2.4 Discussion
We introduced a holistic dynamics model for the human sensorimotor system in this section
consisting of three subsystems, namely the motor execution dynamics, the decision process
dynamics and the internal motor state dynamics. Our model plant is motivated by neu-
rophysiological studies and verified findings on the human sensorimotor system. It covers
all relevant aspects of the human sensorimotor system for describing the human motor and

18



2.4 Discussion

action behavior. Additionally, we provided approaches to approximate each of the three
subsystems in the human plant model. Since, the subsystem concerning the human internal
motor state is not accessible with non-invasive methods, we provided an estimator for this
subsystem consisting of a monitoring unit and a fault detection. In the following Chap-
ters 3, 4 and 5 we explicitly introduce the methodology for the model approximations, and
we experimentally validate and evaluate each of the subsystems.
Alternatively, a plant model for the sensorimotor system could be generated employing

traditional methods such as optimal feedback control, impedance control and predictive
control. In complex and general task settings, however, these approaches did not achieve
convincing results (see Section 1.2). Data-driven models, in contrast, are regarded suitable
for modeling the human sensorimotor system. We are especially convinced by the approxi-
mation capabilities of GP models in nonlinear systems. Therefore, we rely on various forms
of GP modeling in each of the subsystems 1− 3 of the human dynamics.
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3
Gaussian Process for Rigid Motion Dynamics
on SE(3)

In this chapter, we introduce the GP generalization for modeling 6-DoF rigid motions on
the manifold SE(3) after having reviewed related work on GPs and GP generalizations. We
provide a formal GP definition and highlight characteristic GP model properties. Thereafter,
we recapitulate GP model learning and prediction to point out the requirements for the
aspired GP generalization. Before we introduce a set of fundamental functions containing
the zero mean and a dot-product kernel as well as a stationary kernel function, we present
two well suited rigid motion parametrizations, namely the axis-angle and Euclidean vector,
and the dual quaternions. Next, we compare the presented GP generalization variants to
assess their optimal application scope. Last, we introduce various integration methods from
the Euclidean velocity space TSE(3) to the state space SE(3). We explain how the presented
integrations are used to define Gaussian-like probability distributions on the rigid motions
and detail the properties of different distributions. The integration methods complete the
GP framework for modeling rigid motion dynamics, as they define pullback operators into
the original space SE(3) of the dynamics (2.4).

3.1 Related Work and Open Problems

The GP model was first introduced in 1996 by [63]. The authors Williams and Rasmussen
suggested to replace supervised neural networks by GPs, as neural networks converge to GPs
for increasing number of hidden layers in the model. Neal [64] showed in his work on Bayesian
learning that the prior distribution over nonlinear functions implied by the Bayesian neural
network is part of the GP probability distributions. Gibbs [65] was the first to introduce a
kernel function, which constitutes the essential part of GP modeling, with spatially varying
length scales. This innovation paved the way for the construction of new kernel functions
from basic kernel functions as presented in [66, Chap. 6.2].
Even though since then, numerous publications on GP models flooded in, the traditional

formulation of the GP in Euclidean vector space was rarely questioned. Hence, a major
drawback of this model is that it is only defined in Euclidean space, even though a formulation
with non-Euclidean input space is possible in principle.
Independently of the machine learning community developing the GP, the control com-

munity investigated a similar concept for supervised learning, namely system identification.

21



3 Gaussian Process for Rigid Motion Dynamics on SE(3)

In the following, we disambiguate the system identification from the GP and provide an
overview of possible generalization approaches of the GP model. We especially focus herein
on kernel concepts on non-Euclidean space, as the kernel functions is essential in GP mod-
eling.

Application of GPs to Dynamical Models versus System Identification

Recently, the GP, which is a Bayesian model, was shown to be suitable for modeling human
motion [36]. Gaussian process dynamical models (GPDM) are used for motion estimation
for instance in [36, 67]. These approaches employ linear dimensionality reduction methods
in the GP regression for improved prediction results. As the lower dimensional spaces are
assumed to be Euclidean, their suitability for modeling human behavior (i.e. motion on a
non-Euclidean manifold) is limited. In parallel to the GP regression approach the control
community developed system identification (SID) for inference of the system parameters.
Also SID is a tool to derive dynamics models from data. Basically, it infers a model by
data analysis [68], i.e. by assigning a best model out of a pre-selected set of models. Re-
cently, limitations of the classical approach to linear and nonlinear system identification are
described: A formulation of the identification problem in a fully Bayesian context is still
lacking, see [69] and machine learning techniques are proposed as a promising alternative.
Since its first application to dynamical systems in [60], the GP gains popularity in this
domain.

Kernels on Manifolds

The kernel functions are considered as the core of GP modeling. However, kernels are non-
trivial to extend beyond the Euclidean space in general. In [70], the subclass of characteristic
kernels are investigated, i.e. where the mapping is injective. An example for a characteris-
tic kernel is given on the special orthogonal group SO(3) which represents rotations in R3.
However, the correlation of orientations, described by the characteristic kernel, is not related
to a distance function based on the rotation magnitude between orientations. The manifold
metrics in a Hilbert space embedding, investigated in [71], do not necessarily result in valid
kernel functions. One counter example is a kernel resulting from the Stein-divergence. A
theorem that states sufficient and necessary conditions to obtain valid Gaussian kernels on
metric spaces is introduced in [72]. We make use of their results in the development of our
kernel function. The kernels introduced in [73], used for computing a nonparametric embed-
ding of distributions do not require a Gaussian assumption. None of the kernel approaches
listed so far was applied to GP models to the best of our knowledge.
Another interesting line of research considers manifold-based learning methods. The ap-

proaches [74–76] employ nonlinear dimensionality reduction methods and find application in
machine learning as non-Gaussian manifold kernel methods. In contrast to these approaches,
the manifold kernel dimension reduction [77] is a supervised setting for dimensionality re-
duction. The authors combine the approach with manifold regression through Laplacian
eigenmaps. The kernel formulation of those methods admits an interpretation of the algo-
rithms as warping of the input space into a feature space where the manifold is flat [78].
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3.2 Gaussian Process Definition and Characteristics

Gaussian Process Generalizations

As our interest lies on GP modeling, we survey approaches that incorporate GPs over non-
Euclidean spaces in the following. So far, only a few works consider the problem of gener-
alizing the GP model to non-Euclidean input space, even though it is crucial for achieving
accurate estimation results. An embedding of latent variables into non-Euclidean space is
presented for GP latent variable models in [79]. However, as only locally linear embeddings
are considered, the standard GP structure is maintained. Another approach [80] introduces
a geodesic GP. The GP model is used to train a surface embedding in Euclidean space.
That is, the GP is defined in Euclidean space but maps geodesic distances to a Euclidean
equivalent. Further, [81] aims to model complex and non-differentiable functions, for which
the smoothness assumptions on standard kernel functions are unsuitable. A manifold GP
is introduced that jointly models two composed functions m ◦ g, where m is a determin-
istic mapping from an abstract manifold M into a Euclidean feature space and g the GP
regression task. In contrast to this approach where both mappings m and g are abstract,
we propose an alternative approach in which a concrete manifold is given. As we focus our
investigations to generalized GP models over rigid motions, this allows us to describe the
manifold M explicitly and to define an explicit mapping from the generalized GP output
space to the manifold.

3.2 Gaussian Process Definition and Characteristics
Compactly stated, a GP is a collection of random variables, of which any finite number have
a joint Gaussian distribution [43] and a precise, more explicit formulation is given in the
following.

Definition 3.2.1 Let X be a (multidimensional) index set, and denote by {ϕ( x)}x∈X a real-
valued stochastic process over X . Such a process is called Gaussian, if and only if any finite
collection of random variables {ϕ( x1), . . . , ϕ( xν)} is ν-dimensional multivariate Gaussian
distributed.

A GP is fully specified by a mean function m( x) and a kernel function k( x, x′) in function
space [43]

m( x) = E [ϕ( x)] ,
k( x, x′) = E [(ϕ( x)−m( x)) (ϕ( x′)−m( x′)] ,

(3.1)

and thus, we can write
ϕ( x) ∼ GP(m( x), k( x, x′)). (3.2)

To understand the basic functioning of the GP, we have to move our point of view from
function to feature space. The GP model essentially circumvents the intrinsic limitations
in expressiveness of linear modeling by first projecting the inputs x, x′ into some (high)
dimensional feature space using a kernel function k(·, ·) before employing a linear model there.
The so called “kernel trick” allows for computationally efficient implicit calculations in the
feature space [43]. Therefore, the essential part in GP modeling concerns the kernel k(·, ·).
The mean function m(·) is often set to zero in practice, as this simplifies calculation without
limiting the expressiveness of the process [66, Chap. 6.4.1].

23



3 Gaussian Process for Rigid Motion Dynamics on SE(3)

Apart from few exceptions, the kernel functions can be divided in two classes: stationary
and dot-product kernels. A kernel is called stationary, if the obtained covariances are invariant
to translations in the input space. A dot-product kernel depends on the non-stationary inner
product between inputs. Typically, non-constant stationary kernels depend on some kind
of distance measure between input samples. Part of the most widely used stationary kernel
functions in machine learning is the squared exponential kernel

keu( x, x′) = σ2
f exp

(
− [deu( x, x′)]2

2λ2

)
+ σ2

nδij, (3.3)

where deu( x, x′) = ‖x− x′‖ is the Euclidean distance and h = (λ, σf , σn) the hyperparam-
eter vector consisting of length-scale λ, signal variance σf and signal noise σn.
We use the standard formulation of introducing a noise term σn in the kernel function as

required for (2.4), see [43]. Specifically, the δ-function is defined by

δij =


1, if i = j,

0, if i 6= j.

(3.4)

To provide an intuitive understanding of the principle of GP modeling, we detail the steps
model learning and prediction in the following. Then, we explain the traditional way of
modeling rigid motions using a GP.

3.2.1 Model training
Model training ultimately refers to optimizing the parameters of the mean and the ker-
nel function. We consider a smooth but unknown mapping f : X → V , with f( x) = ẋ.
Let Dν = {( xi, ẋi)}νi=1 be a training data set consisting of n-dimensional input-output pairs,
where the output measurements possibly are noisy. In the vector-valued stochastic pro-
cesses f = (ϕ1, . . . , ϕn)> each component ϕl is approximated by a separate Gaussian process
ϕl( x) ∼ GP(ml( x), kl( x, x′)) employing the same class of mean functions ml(·) and kernel
functions kl(·, ·) for all l = 1, . . . , n. Per output dimension l, a set of GP hyperparame-
ters hl, configuring the pre-identified classes of mean and kernel functions, is adjusted to
approximate the dynamics f . Optimal approximation of f , given the input values xi, is ob-
tained for the dimension-wise globally maximum likelihoods of the observations ẋi. Usually,
the hyperparameter optimization is performed using standard gradient decent methods to
minimize the negative marginal log likelihood, which can be calculated analytically,

h∗l = argmin
hl

− log p
(
{( ẋi)l}νi=1

∣∣∣ {xi}νi=1 ,hl
)
. (3.5)

Remark 3.2.1 In case we would like use another Bayesian method to model the mapping for
the training data set Dν = {( xi, ẋi)}νi=1 we could employ for instance latent variable mod-
els, i.e. a model that incorporates variables which are not directly observable, or probabilistic
clustering, i.e. grouping data into a finite set of categories based on a probabilistic rule (more
details see Section 4.2.1), or GMMs, i.e. a finite convex combination of (multivariate) Gaus-
sian distributions. The most prominent alternative certainly is the GMM. To train the model,
one employs the Expectation-Maximization (EM) algorithm which iteratively calculates the
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3.3 Representations of SE(3)

probability of each data point to belong to a particular category, and optimizes the parameters
of the Gaussian distribution to best describe the weighted data points. In contrast to the GP,
which provides a probability distribution over outputs given the inputs, p

(
{ ẋi}νi=1

∣∣∣{xi}νi=1

)
,

the GMM learns the probability over the whole data set, p ({xi, ẋi}νi=1).

3.2.2 Prediction
For any new input value xν+1 /∈ Dν the GP returns a predictive Gaussian probability distri-
bution defined in the target set Vl for each component l ∈ {1, . . . , n} of the n-dimensional
output value ẋν+1, namely N (µl, σl). Mean µl and variance σl of the l-th component are
calculated analytically by

µl = ml( xν+1) + K∗K−1


( ẋ1)l −ml( x1)

...
( ẋν)l −ml( xν)

 ,
σl = kl( xν+1, xν+1)−K∗K−1K>∗ ,

(3.6)

where the Gram matrix K is obtained by (K)ij = kl( xi, xj) for i, j ∈ {1, . . . , ν} and each
entry of the row vector (K∗)j = kl( xν+1, xj). These component-wise estimates in form of
scalar predictive Gaussian probability distributions are joint into one multivariate Gaussian
distribution

ẋν+1 ∼ N (µ, Σ), (3.7)

where µ := (µ1, . . . , µn)> and σl are the diagonal entries of the otherwise empty covariance
matrix Σ.

Remark 3.2.2 Prediction in the GMM alternative: The training data representation in the
learned GMM implies the prediction output to generate completely unseen input-output pairs
( xν+1, ẋν+1) by random sampling from the GMM distribution. Hence, we cannot fix the
input xν+1 of the unknown function f̌ .

3.2.3 Classic 6-DoF Gaussian Process
In real world applications it is common procedure to encode rigid motions in a 6D state
vector g = (φ, ψ, ϑ, vx, vy, vz)>. Hence, the state vector g is treated inaccurately as if it
would be defined in the Euclidean space R6. Employing (3.2) induces the classic GP for
6-DoF rigid motions

f( g) = GPR6(m( g), k( g, g′)). (3.8)

To distinguish the classic 6-DoF GP from the generalized GPs defined on SE(3), which we
will introduce later on, we denote the classic one by GPR6 .

3.3 Representations of SE(3)
We discuss various representations of g in SE(3) in this section to obtain a more concrete de-
scription of the dynamical system (2.4). Thereby, we attach importance to certain properties
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

of the parametrizations. We desire an efficient combination of rotation and translation into
a unified structure g ∈ SE(3), and we require a dot product 〈 g, g′〉 and a metric d( g, g′) to
be defined. Additionally, we expect the representation to include a computationally efficient
composition of rigid motions and integration from velocity space TSE(3) to the special Eu-
clidean group SE(3). Following, we eliminate representations with major deficiencies and
nominate the ones that best meet the requested properties.
The most popular pose representation for g ∈ SE(3) is a vector of Euler angles concate-

nated with translation vector t, i.e. g = (φ, ψ, ϑ, vx, vy, vz)>. However, the rotation angles
are not Euclidean by definition and thus, the Euclidean distance between Euler angles is
erroneous. Therefore, we exclude this representation from further investigations.
Another possible alternative is the representation of SE(3) in terms of a 4×4 homogeneous

transformation matrix g =
(

R v
0 1

)
, where R a rotation matrix and v ∈ R3 a translation

vector. Using this parametrization, the tangent space representation is obtained by left
transition g of the Lie algebra, T gSE(3) = g se(3), where the Lie algebra is represented by
the set of twists,

se(3) =


Ω τ

0 0

 ∣∣∣Ω ∈ R3×3,Ω> = −Ω, τ ∈ R3

 . (3.9)

The vector τ = (τx, τy, τz)> represents the linear velocities, and the skew symmetric matrix Ω
encodes the angular velocities ωφ, ωψ, ωϑ via

Ω =


0 ωφ ωψ

−ωφ 0 ωϑ

−ωψ −ωϑ 0

 . (3.10)

A use of this representation is theoretically plausible, but involves handling bulky 4 × 4
matrices, non-intuitive distance measures and cumbersome matrix integration. Instead of
deepening the investigations using homogeneous transformation matrices, we focus on two
further rigid motion parametrizations.
The axis-angle orientation representation is canonically combined with a translation vec-

tor. This representation is minimal, i.e. the rotation and translation representation has each
3 free parameters only. Further, it allows for a particularly efficient and distance-preserving
integration from velocity space to the space of rigid motions. On the downside, no efficient
composition algorithm is available, as the vector sum is not employable. Alternatively, there
is the dual quaternion representation g ∈ HD for 6-DoF rigid body motions, which are
derived naturally from unit quaternions representing rotations. Unit quaternions produce
smooth rotations and can be efficiently composed via quaternion multiplication. They ex-
tend naturally to dual quaternions, while preserving their properties. Hence, they permit
encapsulating rotation and translation in a unified representation [82] in a close to minimal
representation with 7 free parameters. However, the integration from velocity space into the
manifold of rigid motions SE(3) employing a global canonical projection is no isometry, i.e.
it is not distance-preserving.
In the following, we present the dual quaternion and axis-angle and translation vector

representation. For each of the parametrizations we highlight the linkage of rotation and
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translation and introduce a rigid motion composition and a dot product. The metrics on
the rigid motions for both representations will be introduced in the subsequent Section 3.4.2
and the integration will be dealt with extensively in Section 3.5, where we complete the
framework by defining a pullback into the original space SE(3) of the dynamics (2.4).

3.3.1 Dual Quaternions
We briefly recapitulate two special types of quaternions H, the unit quaternions and the
pure imaginary quaternions. Those two special cases together joint into one structure define
the dual quaternions, a unified manner of representing rigid motions g ∈ SE(3).
The quaternions H define a skew field, i.e. a ring in which division is defined. Hence

they fulfill more properties than standard rings (e.g. the matrix ring), but they lack the
multiplication commutativity of fields. The skew field of quaternions is defined by

H :=
{

q
∣∣∣ q = qw + qxix + qyiy + qziz ∧ qw, qx, qy, qz ∈ R

}
. (3.11)

It extends the field of complex numbers to three imaginary dimensions at the expense of
its commutativity. Since required for the generalized GP kernel definition, we additionally
present the dot product between quaternions,

〈q1, q2〉 = qw1qw2 + qx1qx2 + qy1qy2 + qz1qz2 . (3.12)

Besides, the special case of (3.12), where twice the same quaternion is employed, defines
the quaternion norm ‖q‖ =

√
〈q, q〉 =

√
q q, where q = qw2 − qx2ix − qy2iy − qz2iz is the

quaternion conjugate of q.
A unit quaternion qrot ∈ H is a quaternion that additionally satisfies the property
‖qrot‖ = 1. Hence, the set of unit quaternions conforms to the unit hypersphere S3. A strong
relation exists between the unit quaternions S3 and the special orthogonal group SO(3), the
group of rotations: The unit quaternions S3 are a double coverage of the group SO(3). This
means, any unit quaternion qrot ∈ S3 uniquely represents a 3D rotation in SO(3), but the
representation of rotations is not uniquely defined by unit quaternions. The group structure
of SO(3) is obtained from the operation composition of rotations ◦, which is simply inherited
by the unit quaternion through quaternion multiplication qrot1 qrot2 , i.e.

qrot1 ◦ qrot2 = qw1qw2 − qx1qx2 − qy1qy2 − qz1qz2
+ (qw1qx2 + qx1qw2 + qy1qz2 − qz1qy2)ix
+ (qw1qy2 − qx1qz2 + qy1qw2 + qz1qx2)iy
+ (qw1qz2 + qx1qy2 − qy1qx2 + qz1qw2)iz.

(3.13)

An imaginary quaternion qtra ∈ H is a quaternion, where the real parameter qw = 0,
i.e. qtra = qxix + qyiy + qziz. The imaginary quaternions are isomorphic to the space of
translations R3. Thus, a translation vector v = (vx, vy, vz)> ∈ R3 is uniquely represented
by an imaginary quaternion qtra = vxix + vyiy + vziz and vice versa. The composition of
imaginary quaternions is defined by quaternion addition, that is component wise addition in
the vector space to the basis {ix, iy, iz}

qtra1 ◦ qtra2 = (qx1 + qx2)ix + (qy1 + qy2)iy + (qz1 + qz2)iz (3.14)
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

and the imaginary quaternion dot product likewise reduces to a 3D vector dot product

〈qtra1 , qtra2〉 = qx1qx2 + qy1qy2 + qz1qz2 . (3.15)

We are interested in representing rotation and translation in a unified manner. There-
fore, we investigate the defining spaces of the representations and the rigid motions SE(3).
Together, rotation and translation define a rigid motion. Thus, the representations

{( qrot, qtra)} ' S3 × R3 (3.16)

are homeomorphic. Further, the special Euclidean group SE(3) is homeomorphic to SO(3)×
R3, where × denotes the direct Cartesian set product. As the unit quaternions S3, however,
cover the rotations SO(3) twice, we need to divide the sphere S3 into the equivalence classes
{±1} to obtain an homeomorphism S3/{±1} ' SO(3). Using this trick, we loose the direct
product as link between the rotation and translation space, due to the ambiguity in the unit
quaternion rotation representation.

Proposition 3.3.1 The dual quaternions representing rigid motions are homeomorphic to
the special Euclidean group, if we employ the semi-direct product o to connect the spaces S3
and R3,

SE(3) ' S3/{±1}oR3. (3.17)

Thus, any rigid motion g ∈ SE(3) can be equivalently represented by g ≡ ( qrot, qtra) ∈
S3/{±1}oR3.

To represent the tuple ( qrot, qtra) in a unified structure, we employ a dual extension of
the quaternions H, namely the ring of the dual quaternions HD, which is defined by

HD = { g | g = qre + ε qdu ∧ qre, qdu ∈ H}, (3.18)

where qre and qdu denote quaternions in the real and the dual space, respectively, and ε is a
dual unit which holds ε2 = 0 (for more details see [83]). The dual quaternion g representing
the rigid motion ( qrot, qtra), is composed by

g := qrot︸︷︷︸
qre

+ ε
1
2 qtra qrot︸ ︷︷ ︸

qdu

. (3.19)

The composition of dual quaternions, denoting successive execution of rigid motions, is
defined by dual quaternion multiplication of g1 and g2, calculated as

g1 ◦ g2 = qre1 qre2 + ε ( qre1 qdu2 + qdu1 qre2) . (3.20)

Additionally, the dual quaternion conjugate of g is calculated as g = qre +ε qdu, and finally,
the dual quaternion dot product is given analog to the dot product in vector spaces

〈 g1, g2〉 = 〈qre1 , qre2〉+ 〈qdu1 , qdu2〉, (3.21)

where both addends on the right define quaternion scalar products according to (3.12).
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3.3.2 Axis-angle and Translation Vectors
From Euler’s fixed point theorem (1776) [84] we know that in 3D space any rigid-body
displacement with one fixed point, i.e. any composition of rotations, can be equivalently
described by a single rotation about some non-trivial axis of rotation through the fixed point.
This axis is also called Euler axis. Thus, the set of unit length Euler axes u together with
a rotation angle θ parametrizes the rotation group, called special Orthogonal group SO(3)

SO(3) ⊂
{
θu ∈ R3

∣∣∣ ‖u‖ = 1 ∧ θ ∈ [0, π]
}
. (3.22)

The set given in (3.22) defines the solid ball Bπ(0) in R3 with radius 0 ≤ r ≤ π centered
around the origin and is thus closed, dense and compact. Ambiguity in the representation
occurs for θ = π, as πu = −πu define the same rotation. To obtain an homeomorphism
between the rotation group SO(3) and the axis-angle representation, we additionally fix the
Euler axis representation for θ = π and obtain

B̃π(0) := Bπ(0) \
{
πu

∣∣∣ uz < 0 ∨ ( uz = 0 ∧ uy < 0)

∨ ( uz = uy = 0 ∧ ux < 0)
}
.

(3.23)

This parametrization of the rotation group by a Euler axis and a rotation angle is a minimal
and unique, SO(3) ' B̃π(0).
The special orthogonal group SO(3) obtains its group structure from the operation com-

position of rotations. As the axis-angle representation only defines a pseudo-vector, none of
the vector operations addition and multiplication is suitable for rotation composition. In-
stead, we define the rotation composition of two rotations θ1u1 and θ2u2 in B̃π(0), inspired
by unit quaternion multiplication,

θ2u2 ◦ θ1u1 =
(

2 acos(
∣∣∣a− bc∣∣∣)︸ ︷︷ ︸
θ3

√
1− a2 + b( u2 × u1)√

1− (a2 − bc)2︸ ︷︷ ︸
u3

)
, (3.24)

where we substitute a = cos
(
θ2+θ1

2

)
, b = sin

(
θ2
2

)
sin

(
θ1
2

)
and c = 1+ u2 u1. The operation ×

defines the cross product of vectors u2 and u1.
We additionally introduce the dot product between rotations for the axis-angle represen-

tation, as we aspire to employ it in the GP generalization. The dot product of two rotations
in axis-angle is defined as the regular scalar product in vector spaces,

〈θ1u1, θ2u2〉 = |θ1| |θ2| cos^u1u2. (3.25)

In the following, we present our approach to combine rotation with translation, which we
represent by Euclidean vectors v ∈ R3.

Proposition 3.3.2 As B̃π(0) is a unique rotation representation, the link with translations
can be realized using the standard Cartesian set product. The spaces of rotation B̃π(0) and
translation R3 jointly define a homeomorphism to the special Euclidean group

SE(3) ' B̃π(0)× R3 (3.26)

and any rigid motion g ∈ SE(3) can be equivalently represented by g ≡ (θu, v) ∈ B̃π(0)×R3.
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

For the axis-angle representation no dual extension is available to combine rotation and
translation in a unified manner and the pair (θu, v) is kept separate.
The group structure on SE(3) is inherited from the group structure on the subspaces,

namely composition. As translation composition in R3 is defined via vector addition, we
obtain as composition operation of rigid motions in SE(3)

(θ3u3, v3) =
(
θ2u2 ◦ θ1u1, θ2u2( v1) + v2

)
, (3.27)

where θ2u2 ◦ θ1u1 as defined in (3.24) and θ2u2( v1) is obtained using the Rodrigues rotation
formula

θ2u2(v1)= v1cos θ2 + sin θ2(u2 × v1) + u2(u>2 v1)(1− cos θ2) (3.28)

for translation vectors vi ∈ R3, i = 1, 2. The dot product on SE(3) with the representation
by axis-angle pseudo-vector and translation vector is defined as in regular vector spaces,

〈 g1, g2〉 = 〈θ1u1, θ2u2〉+ 〈v1, v2〉. (3.29)

Thus, the axis angle and translation vector representation defines a group on SE(3) with
the composition ◦ as group operation on the rigid motions.

Remark 3.3.1 We introduced the most important rigid motion parametrizations: the Euler
angles concatenated with translation vector, the homogeneous transformation matrix, the
axis-angle pseudo vector concatenated with translation vector and the dual quaternions, a
dual unification of a unit and an imaginary quaternion. The latter two meet our requirements
to efficiently compose and integrate elements and to allow for a dot product 〈 g, g′〉 and a
metric d( g, g′) definition.

3.4 Gaussian Process Generalization
In this section we introduce our approach to generalize GPs to modeling rigid motion dy-
namics. We first explain the fundamental basis of the generalization and understand that it
is sufficient to define valid mean functions and kernel functions on the manifold to obtain the
generalization to 6-DoF motion dynamics. Thereafter, we detail the steps of the procedure
by presenting distance metrics on the manifold required for generalized stationary kernel
functions. Finally, we introduce a set of fundamental mean and kernel functions containing
the zero mean and a dot-product kernel as well as a stationary kernel function, from which
more kernels can be constructed.

3.4.1 Mathematical Basis Concept
We start by investigating the role of the input space X in the GP model training. Recall, that
the characteristic functions (mean and kernel), which we introduced in Section 3.2, solely
depend on the GP domain X . So far the vast majority of characteristic functions assumes
domain X to equal Rn. However, this is not a necessary requirement, which is evident from
the definition of the characteristic functions (3.1): To obtain mean and kernel functions of a
generalized GP, it suffices to define the functions in the new non-Euclidean GP domain X ,
i.e. m : X → R and k : X ×X → R+

0 . Additionally, to assure the characteristic functions to
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be valid, the characteristic properties need to be fulfilled, which means the kernel is required
to be symmetric and positive semi-definite [43]. Consequently, it suffices to provide valid
mean functions and kernel functions defined on a domain X to generalize the GP model
training to that domain.
Next, we analyze the model prediction in the output space V . The necessary and suffi-

cient requirement for the output space V is to allow the definition of a predictive Gaussian
distribution, see (3.6), which in turn requires a real underlying vector space structure to be
correctly normalized. As we selected the rigid motion dynamics (2.5) to be defined in con-
tinuous space the co-domain TSE(3) provides the required structure. Thus, the requirement
is fulfilled and the predictive output is defined.
Hence, it is sufficient to define valid mean functions and kernel functions to obtain the

generalization to 6-DoF motion dynamics.

3.4.2 Metrics and Distance Measures
In this section, we investigate metrics and distance measures on the in GP input space SE(3),
as the prominent squared exponential kernel and most other stationary kernel functions
depend on some kind of distance between input samples. We start by recapitulating the
definition of a metric. Then, we introduce metrics over pure rotations before we extend them
to full rigid motions. First the unit and dual quaternion representations are used, second
the axis-angle rotation representation and its combination with translation is employed.

Metric Definition

A metric is a function, which defines a distance d between each pair of elements in some set S
(in our case the set is the special orthogonal group SO(3) or the space of rigid motions SE(3),
respectively).
The function d : S×S → R+

0 defines a metric, if for all elements x, y, z ∈ S the following
conditions are satisfied:

non-negativity d( x, y) ≥ 0 and d( x, y) = 0 iff x = y
symmetry d( x, y) = d( y, x)

triangle inequality d( x, z) ≥ d( x, y) + d( y, z).

Note, the lower two conditions together define positive definiteness of the function d. This
will be an important property later on for kernel functions.

Unit Quaternion Metrics

We contrast three distance measures on the hypersphere S3. For the sake of clarity, the
index “rot” for quaternions qrot ∈ S3 is omitted in this section.
Figure 3.1 visualizes three distance measures that define metrics on the unit sphere S3,

i.e. they are non-negative, symmetric and fulfil the triangle inequality. All three metrics are
equally applicable in a GP generalization, but differ essentially in the underlying concept.
The quaternion norm

dnorm( q, q′) =
√

q q′ = ‖q − q′‖, (3.30)
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

Figure 3.1: The distance measures consisting of quaternion norm, arc length and projection
to the tangent space are depicted by a red dashed, green solid and blue dashed-
dotted line, respectively.

where q, q′ ∈ S3 (depicted by the red dashed line in Figure 3.1) provides identical results
to the regular vector norm of points in the space R4. Its pros concern the low computational
cost and the direct applicability of theoretical findings that are valid in Euclidean space.
Contrary to intuition, however, the quaternion norm metric yields

2 dnorm( q, q∆ q) > dnorm( q, ( q∆ q∆) q), (3.31)

when applying twice a non-trivial rotation q∆ 6= (1, 0, 0, 0)>. The arc metric (depicted by
the green solid line) between unit quaternions q, q′ ∈ S3 is calculated via

darc( q, q′) = min | arccos(± q∆w)|, (3.32)

where q∆w is the real part of the transforming unit quaternion q∆ = q′ q from q to
q′. It is an alternative metric, which satisfies equality in (3.31) for all q, q′ ∈ H with
〈q, q′〉 ≥ 0. Both distance measures introduced so far are bounded, in fact max(dnorm) =√

2 and max(darc) = π
2 . An unbounded metric can be obtained when one quaternion, for

instance q′ is projected to the other’s tangent space TSq. In Section 3.5.1 we will present
the central projection Π, generating infinite distance for π-rotations. The origin of TSq is
identical to quaternion q and thus, the tangent space distance dTSq( q, q′) between projected
quaternions is computed using the Euclidean norm in the space TSq ' R3,

dTSq( q, q′) = ‖Π−1
q ( q′)‖ = ‖q′TSq‖ = ‖Π−1

q′ ( q)‖. (3.33)

The appropriate choice of the metric is application dependent. While the tangent space
norm dTS q assumes identical costs for a π-rotation and infinite translation, the quaternion
norm dnorm produces only little inequality in (3.31) for small rotations. We suggest the use
of the arc metric darc in all other applications.

Proposition 3.4.1 The distance measures (3.30),(3.32) and (3.33) define metrics.

Proof 3.4.1 (Proposition 3.4.1) The proof for (3.30) and (3.33) to define metrics is triv-
ial, as both distance measures are vector norms in the Euclidean space. The arc distance
(3.32) is non-negative by definition of the arccos function, it is symmetric, as q−1

∆ = q∆,
which does not affect the real part q∆w of the quaternion, and a proof for the triangle in-
equality to be valid is provided in [85, pp. 195-196]. �
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Dual Quaternion Distance Measure

Motivated by the fact that the magnitude of the transforming unit quaternion results in the
topologically correct distance measure of rotations, we propose to base the dual quaternion
distance on a magnitude measure between rigid motions g, g′ ∈ HD,

g∆ = g ∗ g′. (3.34)

The transforming dual quaternion g∆ has to be applied to g, to arrive in g′. As the dual
quaternion norm equals 1 for all rigid motions, we decompose g∆ = qre∆ + ε qdu∆ into
rotation qrot∆ and translation qtra∆ using (3.19) and define the transformation magnitude
measure via

dmag( g, g′) =
√

[darc( q0, qrot∆)]2 + ‖qtra∆‖2, (3.35)

where q0 = (1, 0, 0, 0)> denotes the zero rotation. Instead of darc, any of the quaternion
metrics defined in Section 3.4.2 could be used and (3.35) would hold true defining a distance
measure. We focus on distance (3.32) as it describes topologically correct quaternion diver-
gence. The square root is introduced in the definition, as this allows for inserting d2

mag into
the kernel function without getting combined terms of rotational and translational parts.

Axis-angle Metric

We employ our findings in Section 3.4.2 and define the distance over rotations as the length
of the geodesic between rotations, as the geodesic topologically correct describes the distance
between rotations. This finding additionally is supportet by [86]. For rotation matrices and
unit quaternions such arc distance functions are used by [87] and [46]. The arc distance
for axis-angle can be derived from unit quaternions considering that the angle between
unit quaternions is half the angle between rotations, because unit quaternions are a double
coverage of the rotation group SO(3). Hence, we obtain as distance function with the axis-
angle representation exactly the double of the distance (3.32),

dgeo(θ1u1, θ2u2)=2 acos
∣∣∣∣∣cosθ1

2 cosθ2

2 + sinθ1

2 sinθ2

2 u>1u2

∣∣∣∣∣. (3.36)

Proposition 3.4.2 The distance measure (3.36) defines a metric.

Proof 3.4.2 (Proposition 3.4.2) The distance (3.36) is non-negative by definition of the
inverse cosine. It is symmetric as the scalar product, the sum and the vector dot product are
well-known to be symmetric. To proof the triangle inequality, we argue geometrically: The
distance (3.36) is a valid parametrization of the geodesic length between rotations rot1, rot2 ∈
SO(3). Hence, it is equivalent to show that

dgeo(rot1, rot2) + dgeo(rot2, rot3) ≥ dgeo(rot1, rot3). (3.37)

A proof for the geodesic length between rotations to define a metric is provided in [86]. �
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Axis-angle and Translation Vector Distance Measure

As distance function on SE(3) parametrized by axis-angle and translation vector we define
the root over a sum of squares, inspired by the distance measure over dual quaternions intro-
duced in (3.35). Additionally, we include in the distance function a convex combination of
weights, ∑i ρi = 1, where ρi ≥ 0, to allow an application dependent scaling between rotation
and translation, as we know from [87] that any distance metric in SE(3) will ultimately
depend on the choice of length scale. Hence, we define as distance function for rigid motions

dwmag( g1, g2) =
√
ρ1 [dgeo(θ1u1, θ2u2)]2 + ρ2‖v1 − v2‖2. (3.38)

This distance function (3.38) allows for incorporation of domain knowledge. To give an
intuitive example, one can imagine the divergence in motion dynamics of a spinning top
and a large truck. While the cost for a 2π rotation of a spinning top may be in the range
of millimeters in translation, a truck may cover large distances easier than a full rotation.
This dynamics difference should be reflected in the similarity measure between poses, as
application specific weighting of rotation and translation increases the regression performance
of the GP.

3.4.3 Mean and Kernel Functions
In the following we introduce a set of valid mean and kernel functions defined on the special
Euclidean group SE(3). For approximating dynamics of the form (2.4) we know from (3.1)
that each mean and kernel function has the form

m : SE(3)→ R
k : SE(3)× SE(3)→ R+

0 .
(3.39)

For the mean function m(·) no further requirements need to be satisfied. In the special
Euclidean group, the zero mean maps any input g ∈ SE(3) to the zero element, m( g) ≡ 0.
Kernel functions encode the correlation between the elements of the dynamics input do-
main SE(3) and constitute the essential part of GP modeling. A kernel is required to be
symmetric and positive semi-definite to define a valid kernel function. As in literature var-
ious strategies are available to construct more elaborate kernel functions by composition
from elementary kernels, e.g. see [88], we focus on introducing one representative kernel per
kernel class; specifically a stationary and a dot-product kernel.

Dot-product kernel

From [43] we know that the dot-product kernel defines a valid kernel function for ele-
ments xi, xj ∈ Rn, n ∈ N, ∀i, j. In our setting, we seek to approximate rigid-body motion
dynamics, where the rigid motions g ∈ SE(3). In Section 3.3 we have presented the dot
products (3.21) and (3.29) for the parametrizations dual quaternions and axis-angle pseudo-
vectors concatenated with Euclidean translation vectors, respectively. We have seen that in
the respective spaces g ≡ qre + ε qdu ∈ S3/{±1} o R3 and g ≡ (θu, v) ∈ B̃π(0)× R3, the
dot product describes the same operation as the vector space dot product in R6. Thus it
follows,

kdot( gi, gj) = 〈 gi, gj〉+ σ2
nδij, (3.40)

with hyperparameter σ2
n ≥ 0, defines a valid kernel function on the rigid motions ∀i, j.
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3.4 Gaussian Process Generalization

Stationary kernel

One of the most important stationary kernels is the squared exponential kernel. In the
following we show that the distance functions introduced in Section 3.4.2 indeed induce
valid generalized squared exponential kernel functions.
To support an intuitive understanding, we explain the squared exponential kernel general-

ization (1) over pure rotations parametrized by unit quaternions S3, (2) over full rigid motions
parametrized by dual quaternions HD, and finally (3) over full rigid motions parametrized
by axis-angle and translation vector.

Kernel over Unit Quaternions Over the metrics from Section 3.4.2, kernel functions
on S3 can be defined. We focus on the kernel function resulting from the arc length metric,
as the underlying metric preserves the unit quaternion topology.

Theorem 3.4.1 A valid kernel function kse:arc : S3×S3 → R+
0 over unit quaternions q, q′ ∈

S3, is defined by

kse:arc( q, q′) = σ2
f exp

(
− [darc( q, q′)]2

2λ2

)
+ σ2

nδij, (3.41)

where darc as in (3.32) and the hyperparameters σf , λ, σn > 0.

To prove Theorem 3.4.1 we need to show that kse:arc( q, q′) is symmetric and positive
definite ∀q, q′ ∈ S3. Since proving positive definiteness is not easy, we provide an alternative
solution. It is equivalent to show Lemma 3.4.1, following below, to prove Theorem 3.4.1.
Therefore, we need to define the notion of conditional positive definiteness (cpd). Then, we
prove Lemma 3.4.1 and thereafter, the Theorem 3.4.1.

Definition 3.4.1 (Zhang et al. [89]) Let X be a nonempty set. A real-valued symmetric
function k : X×X → R is called a conditionally positive definite (cpd) kernel function, if and
only if the Gram matrix K ∈ Rν×ν satisfies c>Kc ≥ 0 for any vector c ∈ Rν with c>1 = 0,
where 1 = (1, . . . , 1)> ∈ Rν.

Lemma 3.4.1 The squared negative distance function

ksnd( q, q′) := −([darc( q, q′)]2) (3.42)

defines a cpd kernel function.

Proof 3.4.3 (Lemma 3.4.1) Let the functions g1 : [−1, 1] → [−π
2 ,

π
2 ] given by g1(x) =

π/2 − arccos(x) and g2 : [−1, 1] → [3
2π,

π
2 ] given by g(x) = π/2 + arccos(x). Let us assume

for now that the functions g1 and g2 are kernels. Given the finite product of kernels defines
a kernel [66], then also the function g : [−1, 1] → [−3

4π
2, 1

2π
2] defined by g(x) = g1(x)g2(x)

is also a valid kernel. Hence, we can rewrite (3.42) to

ksnd( q, q′) = −π
2

4 + g(min(〈q,±q′)〉). (3.43)

From [89] we know that a constant c ∈ R is cpd, a valid kernel is also cpd and the finite
sum of cpd kernels is cpd. This induces, that (3.43) is cpd. Thus, the proof is complete,
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

if we can prove that the functions g1 and g2 are valid kernels. According to [89, Theo-
rem 4] we know that the Taylor series expansion of a function defined on the unit sphere,
such as arcsin(x), defines a valid covariance function, iff all coefficients are non-negative.
Reformulating g1(x) = arcsin(x), the function can be expressed as infinite polynomial with
non-negative coefficients via Taylor expansion. Likewise, the function g2 can be reformulated
in terms of the arcsin function, g2(x) = π + arcsin(−x). As the sum of kernels defines a
kernel function according to [66], we obtain that g1 and g2 both define valid kernels. �

Proof 3.4.4 (Theorem 3.4.1) If a kernel k is cpd, it follows that exp(ck) is a valid kernel
function for all constants c > 0 according to [72]. Further, we know from [66] that any finite
constant c̃ > 0 is a positive definite kernel function and the product of valid kernels defines a
positive definite kernel function. Together, this proves that the function kse:arc( q, q′) defines
a positive definite kernel function for all σf , λ, σn > 0. �

By introducing the distance measures (3.30) resp. (3.33) into the formula for the squared
exponential kernel (3.3), we obtain kernels kse:norm and kse:TSq , respectively, in the Euclidean
space. They, too, allow for a simple GP generalization to 3-DoF rotations.

Kernel over Dual Quaternions Analogously to the GP model generalization over pure
rotations, a squared exponential kernel function for rigid motions in SE(3) is obtained from
the proposed dual quaternion distance measure.

Theorem 3.4.2 A valid kernel function kse:mag : (S3 × R3) × (S3 × R3) → R+
0 over dual

quaternions g, g′ ∈ S3 × R3, is defined by

kse:mag( g, g′) = σ2
f exp

(
− [dmag( g, g′)]2

2λ2

)
+ σ2

nδij, (3.44)

where dmag as in (3.35) and the hyperparameters σf , λ, σn > 0.

Proof 3.4.5 (Theorem 3.4.2) We reformulate the function (3.44) using the property exp(a+
b) = exp(a) exp(b), as for each factor separately, it is simple to show, that the factor defines
a kernel function. Thus, we obtain

kse:mag( g, g′) = σ2
f exp

(
− [darc]2

2λ2

)
︸ ︷︷ ︸

?

exp
(
−‖qtra‖2

2λ2

)
︸ ︷︷ ︸

�

+σ2
nδij. (3.45)

The factor ? defines a valid kernel function according to Theorem 3.4.1 and the factor �
describes a valid kernel of standard form (3.3). To finalize the proof, we apply the kernel
construction rules via multiplication and addition. These rules state that any finite product,
respectively sum, of kernels defines a kernel, see [66, Chap. 6.2]. �

Kernel over Axis-angle and Translation Vector

Theorem 3.4.3 The function kse:wmag : SE(3)× SE(3)→ R+
0 ,

kse:wmag( gi, gj) := σ2
f exp

(
− [dwmag( gi, gj)]2

2λ2

)
+ σ2

nδij, (3.46)
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3.4 Gaussian Process Generalization

where we consider a distance function d defined by (3.38) and positive hyperparameters h =
(λ, σf , σn), namely length-scale λ > 0, signal variance σf > 0 and signal noise σn > 0,
defines a valid kernel function.

Proof 3.4.6 We know that the finite sum of kernels provides a kernel [66, Chap. 6.2] and
it follows from definition that σ2

nδij ≥ 0 defines a valid kernel. Hence, we can focus on the
first summand in the reminder of this proof. Introducing (3.38) in the noise-free squared
exponential kernel, we can rewrite (3.46) neglecting the noise term σ2

nδij as

σ2
f exp

(
−ρ1[dgeo(θiui, θjuj)]2

2λ2

)
︸ ︷︷ ︸

F

exp
(
−ρ2‖vi − vj‖2

2λ2

)
︸ ︷︷ ︸

♣

. (3.47)

A proof for the standard squared exponential kernel ♣ to be valid is provided in [66, Chap.
6.2]. As any kernel scaled by a positive constant and any finite product of kernels yields each
a new valid kernel [88], it suffices to show that also F defines a valid kernel, to complete
the present proof. To formally show that F is a kernel, we utilize the cpd property as
described in Definition 3.4.1. A kernel k being cpd induces that exp(ck) defines a valid
kernel function ∀c > 0 [89]. Hence, it suffices to show that the squared negative distance
function

k2snd(θ u, θ′u′) := −
(
[dgeo(θ u, θ′u′)]2

)
(3.48)

defines a cpd kernel. To derive that, we transform the orientation representation to unit
quaternions, obtained from the axis-angle representation by q = ±(cos θ

2 , sin
θ
2 u). Then,

introducing (3.32) into (3.48), we obtain

k2snd( q, q′) = −4
(

acos
∣∣∣∣Re( q q′)

∣∣∣∣)2
, (3.49)

where Re denotes the real part of a quaternion and q the quaternion conjugate.
In the following we regenerate the proof of Lemma 3.4.1 for the slightly modified distance

function 2 acos
∣∣∣∣Re( q q′)

∣∣∣∣ = 2darc( q, q′). Let us substitute z :=
∣∣∣Re( q q′)

∣∣∣. It is well-known,
that acos( z) = π

2 − asin( z). Hence, we can rewrite

k2snd( q, q′) = −π2 + 4 asin( z) (π − asin( z)) . (3.50)

From [89] we know that any constant c ∈ R is cpd, a valid kernel always is also cpd
and the finite sum of cpd kernels is cpd. Thus, if we can prove that both auxiliary func-
tions g1( z) = π − asin( z) and g2( z) = asin( z) for z ∈ [−1, 1], define valid kernels, it follows
that (3.50) is cpd, and therewith (3.49) and (3.48), which would conclude the proof. In
the remaining part of the proof, we analyze the auxiliary functions g1( z) and g2( z). Our
aim is to apply [89, Theorem 4] stating that a function f̌ (〈q, q′〉) defined on the unit
sphere, |q| = |q′| = 1, in an infinite dimensional Hilbert space is a valid kernel if and only if
its Taylor series expansion has only non-negative coefficients. It is well known, that the co-
efficients of asin, written as infinite series, are non-negative, and that − asin( z) = asin(− z)
holds. To cope with the minus in function g1( z), we re-substitute − z. The real part of a
quaternion product is calculated

Re( q q′) = 〈±q, q′〉. (3.51)
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

Taking advantage of the fact that opposing unit quaternions ±q, represent the same orien-
tation, ±q and q′ can be chosen to lie on the same hemisphere of S3, such that we obtain
a positive value for 〈±q, q′〉. Hence, we are allowed to apply [89, Theorem 4] and the proof
is complete. �

3.5 Framework Completion through Integration from
Velocity Space to Rigid Motions

In the proposed GP generalization, we seek to approximate a dynamics as given in (2.4),
mapping from the rigid motions into the velocity space. In many control applications, how-
ever, it is of interest to generate a prediction of the motion including uncertainty certificates
in SE(3). This requires the integration of the velocity signal and the corresponding trans-
formation of uncertainty, which is not trivial in general, as the space of rigid motions SE(3)
is non-Euclidean as soon as rotation is present. Consequently, the Gaussian describing the
uncertainty in velocity space, has to be transformed to a curved space, where probability
distributions inherently are not defined. This section discusses a completion of the GP
framework for approximating rigid motion dynamics by presenting integration methods for
both employed rigid motion representations.

3.5.1 Dual Quaternions
We present a projection from Euclidean space to the sphere S3, which is used to define a
probability distribution on the rigid motions and as integrator from velocity space TSE(3) to
SE(3). As the representative T gSE(3) of the velocity space depends on the tangent point g
and this tangent point continuously changes with the motion, we additionally present how
the representing tangent space T gSE(3) can be altered to a different representative T g′SE(3).

Projected Gaussian Distribution on SE(3)

Due to defining input/output spaces in form of dynamics (2.4), the generalized GP model
provides the uncertainty prediction as a Gaussian distribution in velocity space TSE(3). The
dynamics formulation in discrete time, in contrast, maps from state space to state space,

f̌Md : SE(3)× T gSE(3)→ SE(3). (3.52)

As we have explained in Remark 2.1.3, it is not possible to model discrete-time dynamics
on SE(3) using the classical formulation of a mapping from gκ to gκ+1 (because SE(3) does
not provide the required vector space structure). However, we provide here a method to
transform the predictive Gaussian uncertainty estimate from the velocity space TSE(3) into
SE(3).
We start with providing a probability distribution on pure rotation quaternions, visualized

in Figure 3.2, by employing a projection from the tangent space onto the unit sphere S3. Let
TSqrot be the tangent space of qrot to the unit hypersphere S3. The central projection Π qrot

propagates a 3D Gaussian distribution N (µrot,Σrot) given in tangent space TSqrot to the
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3.5 Integration from Velocity Space to Rigid Motions

Figure 3.2: The Gaussian distribution in the tangent plane to the north pole is projected to
the sphere S2 via central projection. Hence, each point in the plane is projected
to both opposite intersections of the sphere with a straight line through the center
of the sphere and the point in the tangent plane.

sphere S3 via

Π qrot : TSqrot → S3/{±1}

Π qrot( pTS) = ± pB

‖pB‖
,

(3.53)

where pB = qrot + B pTS ∈ R4 and pTS ∈ R3 any point in the tangent space TSqrot .

Lemma 3.5.1 The projection’s inverse Π−1
qrot( q′) is calculated analytically using trigono-

metric calculus and the intercept theorem ∀q′ ∈ S3, q′ 6⊥ qrot.

The basis B = {β1, β2, β3} ∈ R4×3 is the canonical representation of the 3D tangent
space TSqrot in the space R4.

Remark 3.5.1 The stereographic projection is an alternative to the introduced central pro-
jection (3.53), which uniquely maps all points on a unit sphere Sn, n ∈ N+ to a certain
tangent space. In contrast to projection (3.53), where the center of projection is the sphere’s
center, the stereographic projection maps the points via a projection, which is centered on
the opposite point of the tangent space. This means, if the tangent point is the north pole,
the center of projection is the south pole.

Remark 3.5.2 The exponential function exp(·) constitutes another alternative. In contrast
to the central and stereographic projection, this mapping is length preserving, i.e. a distance
in the velocity space equals the projected distance on the orientations. A disadvantage that
correlates with preserving the distance, is the ambiguity of the projection. All points in the
tangent space on a straight line through the tangent point, which have the distance 2πk + d
to the tangent point, for a fixed d ∈ [0, 2π) and an arbitrary k ∈ N, are projected to the same
point on the sphere.

39



3 Gaussian Process for Rigid Motion Dynamics on SE(3)

When projecting the Gaussian density ϕTS of the distribution N (µrot,Σrot) to the sphere
S3/{±1} using (3.53), its properties are inherited, as (3.53) is a bijective mapping (see
Lemma 3.5.1). To obtain a probability density on the hypersphere, we normalize over the
new domain S3/{±1},

ϕS3 = 1
C
ϕTS, where C =

∫
S3/{±1}

ϕTS
(
Π−1

qrot( q)
)
dq, (3.54)

following previous investigations in [45] and project the set closure {∞} of TSq to the set
of orthogonal vector-valued points q⊥rot on the sphere,

Π qrot(∞) = q⊥rot := {q′ ∈ S3|q′ ⊥ qrot}. (3.55)

As in the tangent space the set closure {∞} has probability 0, we obtain a continuous
completion of the projected probability distribution on the sphere. The projected probability
distribution is denoted by N ( qrot, µrot,Σrot).

Remark 3.5.3 The central projection satisfies the desired property of mapping the Gaussian
distribution on each hemisphere: opposing quaternions receive the same probability value.
This fits exactly the topology of unit quaternions, as opposing unit quaternions represent
the same orientation. Consequently, the positive probability on the sphere of distribution
N ( qrot, µrot,Σrot) does not reach a π rotation from the tangent point qrot.

Remark 3.5.4 In case a matrix R ∈ SO(3) is chosen as rotation representation, the stere-
ographic projection from tangent space TSpR to the unit sphere S2 constitutes the equivalent
to the central projection [90]. The stereographic projection maps the Gaussian distribution
uniquely onto the whole sphere S2 except for the one point: the point −pR opposing the
tangent point pR. A continuous completion is in this case obtained by mapping the set
closure {∞} with probability 0 to the point −pR.

Next, we extend the projection (3.53) to full 6-DoF rigid motions. As Prop. 3.3.1 holds,
defining a Gaussian counterpart on S3/{±1} o R3 is equivalent to defining one on SE(3).
Further, an isomorphism T gSE(3) ' TSqrot × R3 is induced by (3.17), for g representing
( qrot, qtra). Thus, the full projection is defined by

Π g : T gSE(3)→ S3 × R3

Π g

(
( pTS, pR3)

)
=


Π qrot( pTS), for Π g

∣∣∣
TSqrot

qtra + pR3 , for Π g

∣∣∣
R3
.

(3.56)

A distribution on the rigid motion space S3/{±1}oR3 is obtained by a regular concatenation
of the projected Gaussian N ( qrot, µrot,Σrot) with a standard Gaussian N (µtra,Σtra) in the
Euclidean space of translations R3,

µ =

µrot

µtra

 , Σ =

Σrot 0
0 Σtra

 . (3.57)

An analogous approach has been performed previously in [45].
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3.5 Integration from Velocity Space to Rigid Motions

Excursion: Alternative Distributions on the Sphere

Alternatively to the projected probability distribution N ( qrot, µrot,Σrot) there are other
probability distributions, which are defined on some unit sphere Sn, n ∈ N+. We briefly
review the characteristics and limits of the most popular ones.
The most straight forward modification of the univariate normal distribution to fit the unit

sphere S1, is by wrapping the probability density around the sphere infinitely many times.
The resulting probability distribution is called wrapped normal distribution and describes
the circular univariate normal distribution. Its density is defined by

ϕwS1
(θ|µ, σ) = 1

σ
√

2π

∞∑
k=−∞

exp
(
−(θ − µ+ 2πk)2

2σ2

)
, (3.58)

where µ and σ the mean and the standard deviation of the univariate normal distribution in
flat space, respectively. The main shortcoming of this representation is the infinite sum of
point wise probability densities, which cannot be calculated explicitly. Additionally, the gen-
eralization to wrapping a multivariate Gaussian distribution makes calculations complicated,
since the wrapping has to be performed in all dimensions simultaneously.
On the unit sphere S1 the von Mises distribution approximates the circular univariate

normal distribution. Its density is defined by

ϕS1(θ|µ, κσ) = exp(κσ cos(θ − µ))
2πI0(κσ) , (3.59)

where θ is a rotation angle, µ is the measure of location, κσ is the measure of concentration
and I0(·) is the modified Bessel function of order 0. The parameters µ and 1/κσ are equiva-
lences of the mean µ and variance σ in the univariate normal distribution N (µ, σ). In this
distribution the infinite sum is replaced by the cosine. A generalization to higher dimensions
is not straight forward.
The Fisher distribution [91] generalizes the von Mises distribution to the sphere S2. It

approximates a certain type of bivariate Gaussian distribution on S2. However, it can only
handle isotropic Gaussian distributions in the 2-dimensional plane. This means, the covari-
ance matrix Σ has to have the form Σ = σ

(
1 0
0 1

)
, and thus it describes a circle.

Through the von Mises-Fisher distribution, the isotropic Gaussian distributions with n > 2
dimension, was approximated on the sphere Sn. This distribution generalizes the von Mises
distribution - analogously to the Fisher distribution - to higher dimensions n ∈ N+.
The restriction to isotropic Gaussians could not be overcome until 1982, when Kent intro-

duced the Fisher-Bingham distribution [92], which later was named Kent distribution. For
a vector x ∈ S2 the Kent density is defined by

ϕS2( x|γµ, κσ, βσ) = 1
C(κσ, βσ) exp

(
κσγµ1 x + βσ

(
(γµ2 x)2 − (γµ3 x)2

))
, (3.60)

where γµ = (γµ1 , γµ2 , γµ2) is a 3 × 3 orthogonal matrix, κσ is the measure of concentra-
tion, βσ is the measure of ellipticity and C(κσ, βσ) is the re-normalization constant. The
re-normalization is given by

C(κσ, βσ) = 2π
∞∑
k=0

Γ(k + 1/2)
Γ(k + 1) β2k

σ (κσ/2)−2k−1/2 I2k+1/2 + (κσ), (3.61)
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3 Gaussian Process for Rigid Motion Dynamics on SE(3)

where Γ is the gamma distribution and I2k+1/2(·) is the modified Bessel function of or-
der 2k + 1/2. Since the re-normalization constant (3.61) involves an infinite sum, working
with the Kent distribution becomes unfeasible. Additionally, the generalization to higher
dimensions of this distribution is limited by the sophisticated re-normalization (3.61).

Integration from Tangent Bundle to Rigid Motions

In this section we discuss the use of the full projection (3.56) as integrator from the velocity
space to the special Euclidean group SE(3). We show that projection (3.56) composed with
our dynamics formulation (2.4) provides the standard dynamics (3.52), f̌ = Π g ◦ f̃Md .
It is well-known that rotational velocities ω are obtained from quaternions qrot by

ω(t) = 2dqrot(t)
dt

qrot(t). (3.62)

However, in many practical applications the explicit form of qrot(t) is unknown. Thus,
we propose to approximate the rotational velocity ω by ω∆ = ω∆t, obtained by zero-
order hold discretization with constant time intervals ∆t > 0. For a time-discrete form of
dynamics (2.4), the output at a certain time instance t > 0 becomes ( g(t), v g(t)) ∈ TSE(3).
Employing isomorphism T gSE(3) ' TSqrot×R3, the tangent space velocity v g = ( vTS, vR3)
is decomposed into a rotation and a translation part and the relation between rotational
tangent space velocity and the discrete-time rotational velocity becomes apparent

ω∆ = 2 vTS. (3.63)

The transforming unit quaternion q∆, rotating from t-th to (t + ∆t)-th orientation, can
be calculated using the exponential function as integrator of the discrete time rotational
velocity ω∆,

q∆ = exp
(
ω∆

2

)
. (3.64)

For integrating directly to g(t+∆t) however, we propose to employ the full projection (3.56)

Π g

(
( vTS, vR3)

)
= ( qrot(t+ ∆t), qtra(t+ ∆t)) , (3.65)

where qrot(t + ∆t) = q∆ qrot and qtra(t + ∆t) = qtra + vR3 . Thus, we spare the extra
quaternion multiplication and after dual quaternion composition (3.19) we end up with the
output of the standard dynamics (3.52).

Tangent Bundle Representative

The central projection introduced in (3.56) is a bijective mapping from any tangent space
T gSE(3) to SE(3). Its inverse Π−1

g is structurally equal to the back projection to any other
tangent space Π−1

g′ . Therefore, we introduce in the following a machinery that provides the
corresponding Gaussian in an arbitrary tangent space T g′SE(3).
The difficulty that arises is that on projecting each single value from the unit hypersphere

to the new tangent space, no Gaussian is obtained any more, as can be seen in Figure 3.3.
The original Gaussian (blue dashed) is defined in the tangent space TSqrot , the north pole.
In the tangent space TSq′

rot
the pointwise projected curve is visualized by the red solid line.
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3.5 Integration from Velocity Space to Rigid Motions

Figure 3.3: The Gaussian distribution depicted by the dashed blue line is projected via the
sphere from the tangent space at qrot = (0, 1) into the tangent space at q′rot =
(0.3, 0.95). After projection, the red curve is approximated using the unscented
transform by a Gaussian, visualized by the green dashed-dotted line.

The skewness of the pointwise projection increases with the angle size between the tangent
points qrot and q′rot. For a Gaussian approximation of the pointwise projection, we propose
to use the unscented transform [93]. Even though the unscented transform is well known
from the unscented Kalman filter, it is a novel approach to apply it to GP modeling. For
the unscented transform, sigma points ζl are calculated by

ζl,2n+l = µrot ±
(√

(n+ κ0)Σrot

)
l

(3.66)

for l = 1, . . . , n, where n is the dimension of the Gaussian, κ0 ≥ 0 a scaling parameter (see
details below) and ζ0 = µrot. They are projected to the tangent space TSq′

rot
via

Π−1
q′

rot
(Π qrot(ζl)). (3.67)

In this new tangent space, the mean µ′rot(κ0) is given by the weighted average and the
covariance Σ′rot(κ0) by the weighted outer product of the transformed points [93]. The scaling
parameter κ0 in the sigma points ζl is chosen such that the Kullback-Leibler divergence
DKL(P ||Q) [94] between the approximated Gaussian Q = N (µ′rot,Σ′rot) and the pointwise
projected distribution P = Π−1

q′
rot

(Π qrot (N (µrot,Σrot))) is minimized. For clarity in the
presentation we substitute the expression

z := Π−1
qrot

(
Π q′

rot
( p′)

)
(3.68)

and introduce p′ as short notation for pTSq′
rot
. Then, κ0 = arg min

κ∈R+
DKL(P ||Q) is determined

using

DKL(P ||Q) =
∫
Rn

(2π)−n2
∣∣∣Σrot

∣∣∣− 1
2 exp(−g1( z))

ln

√√√√∣∣∣∣∣Σrot

Σ′rot

∣∣∣∣∣+ 1
2 (g1( z)− g2( p′,κ))

 dp′,

(3.69)
where the auxiliary functions g1, g2 are given by

g1( z) = 1
2( z− µrot)>Σ−1

rot( z− µrot)

g2( p′,κ) = 1
2( p′ − µ′rot(κ))>Σ′rot(κ)−1( p′ − µ′rot(κ)).

(3.70)
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The Gaussian Q, illustrated by the green dashed-dotted line in Figure 3.3, approximating
the true underlying pointwise projected distribution P , visualized by the red solid line, meets
the desires trade-off between over and under estimating the uncertainty in the probability
distribution.

3.5.2 Axis-angle and Translation Vectors
In the following, we discuss how the exponential function is employed to integrate predictive
angular velocities to the system states. SO(3) is a compact Lie group with corresponding
Lie algebra so(3), the set of skew-symmetric matrices

so(3) =
{

Ω ∈ R3×3
∣∣∣Ω> = −Ω

}
. (3.71)

It is well-known, see [95, Chap. 3.7], that for Lie groups the exponential map

exp : so(3)→ SO(3) (3.72)

pulls back elements to the special Orthogonal group. Given any angular velocity vector
ω = (ωφ, ωψ, ωϑ)> ∈ R3, where θω = ‖ω‖ and uω = ω

‖ω‖ , the corresponding skew-symmetric
matrix

[ω]× =


0 ωφ ωψ

−ωφ 0 ωϑ

−ωψ −ωϑ 0

 (3.73)

is pulled back to an element R in the special Orthogonal group SO(3) using

R = exp([θωuω]×). (3.74)

From [86] we know that (3.74) can be calculated using Rodrigues’ rotation formula

R = cos θωI + sin θω[ uω]× + (1− cos θω) uω u>ω , (3.75)

where I denotes the identity matrix. This induces that in axis-angle space the exponen-
tial function acts locally as identity on the angular velocities ω ∈ so(3), what formally
means exp(ω) = exp(θωuω) = θωuω ∈ SO(3). Consequently, a Gaussian, representing the
velocity prediction uncertainty, which is defined in the tangent space, describes equally the
uncertainty over rotations in SO(3) for a small neighborhood U around θωuω. Outside
the neighborhood the variance is still approximated by the Gaussian, but with increasing
Euclidean distance, the approximation quality decreases rapidly. Hence, we can use the
exponential function to integrate in discrete-time from the tangent bundle TSE(3) to the
special Euclidean group SE(3). Thus, we obtain discrete-time dynamics by composing dy-
namics (2.5) with the integration, exp ◦f .

3.6 Comparison of Gaussian Process Variants
In Section 3.2.3 we introduced the classic 6-DoF GP for rigid motion approximation. How-
ever, an application of GPR6 is reasonable solely if it can be guaranteed that all occurring
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angles are in close neighborhood to zero, where Euler angles are approximately Euclidean.
Elsewhere, a generalized GP should be preferred to assure mathematical soundness of the
model on SE(3).
Both presented GP generalizations have good rights to exist in parallel. Their properties

vary depending on the underlying rigid motion representation, as the topological structure of
the rotation representation using unit quaternions on S3 is different to the axis-angle pseudo-
vector: In contrast to the rotation representation on a solid ball B̃π(0) ⊂ R3, defined in (3.23),
the unit quaternions lie on the unit hypersphere S3 ⊂ R4. While the combination of a unit
quaternion with a translation vector results in a dual quaternion, which represents the whole
rigid motion in a unified manner, the axis-angle representation combined with translation
vector is denoted by a pair. This separation can result in errors such as false application
order of rotation and translation, as those do not commute. An advantage, however, lies
in the direct access to the weighting factors ρ1, ρ2 of the distance function (3.38). Using
the representation via dual quaternions, a weighting between rotation and translation is not
directly feasible.
Further, the use of quaternions harbors the disadvantage of a higher probability of training

failures due to the topology of quaternions that induces sensitive reaction to the hyperpa-
rameter choice. Even though both GP variants use geodesic distances, differences in the
definition of the metrics result in different GP training behavior, as the distance function
affects the correlation between rigid motions. In the experimental evaluations we demon-
strate that the GP over axis-angle and translation vector exhibits in the training phase a
more robust behavior towards the initial choice of hyperparameters.
The model training complexity of both generalized GP variants is equal to the standard

GP complexity of O(n3), where n is the number of training samples, which is due to inversion
of an n× n covariance matrix. With a fixed training data size, the GP prediction complexity
for all 3 variants is O(n), where n is the number of predicted points. In addition, we analyze
the computational demand by counting floating-point operations (flops). Given a training
set of n samples, the required number of flops for calculating the covariance matrix using the
squared exponential kernel function is 18n2+36n+16 for the standard GP, 24n2+85n+18 for
the generalized GP over dual quaternions and 22n2+26n+15 for the generalized GP over axis-
angle and translation vector, respectively. This results in significant runtime improvement,
in particular as the number of training samples increases, which is demonstrated in the next
section.
Another difference is that the topological structure of quaternions requires a more com-

plex integration than the computationally more efficient GP generalization: In the GP over
dual quaternions, the integration is handled by an operation that projects values from the
velocity space to the manifold of rigid motions SE(3). In addition, a computationally de-
manding tangent space change operation is necessary, to disambiguate the tangent bundle
representative, which becomes redundant in the generalized GP over axis-angle and Eu-
clidean vector, as the integration via exponential function locally acts as identity, see (3.74)
and below. This approach, however, represents uncertainty on a locally flat neighborhood
around the estimation only, but does not allow for representing uncertainty on SE(3) glob-
ally. Hence, the robust and efficient GP generalization is not suitable for representing wide
spread uncertainty on the manifold SE(3).
The choice of the generalized GP model depends on the aspired application properties and

cannot be answered in general.
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3.7 Experimental Evaluation
We start with a numerical evaluation of the benefits of the GP generalization in contrast
to the standard 6-DoF GP. We exemplary employ the rigid motion representation dual
quaternions in this demonstration. Then, we provide a real data experiment evaluating the
influence of the underlying distance function between unit quaternions on the GP prediction,
before we present a real data experiment employing the axis-angle and translation vector
representation in the GP generalization. Finally, we compare the runtime and the rotation
prediction accuracy of both introduced GP generalizations with the classic 6-DoF GP. For
easier differentiation we denote in the following the classic 6-DoF GP by GPR6 , the gener-
alized GP over unit and dual quaternions by GPHD and the generalized GP oder axis-angle
and translation vector by GPB̃.
All experiments were implemented in MATLAB using the GPML toolbox, available on

gaussianprocess.org [96], on a commercially available PC with Intel core i5-6360U pro-
cessor and 8 GB RAM. The GPML toolbox was extended to additionally comprise the
generalized GP over axis-angle and translation vector and the GP over dual quaternions.

3.7.1 Numerical Evaluation of GP Generalization Benefits
In this section we validate the introduced framework for generalized GP modeling over rigid
motions (GPHD) in comparison to the state of the art GPR6 . Our evaluations confirm that
our approach significantly outperforms the traditional way of including orientation into the
GP via Euler angles. We carry out a numerical performance analysis on simulated data, in
which we calculate the prediction error as a function of the rotation magnitude and of the
number of training samples.
More precisely, we evaluate the prediction accuracy of GPHD and GPR6 as a function of

the sample size of the training data and of the rotation range in the dynamics drift term of
ten synthetically generated ground truth dynamics of form (2.5). The evaluation shows the
necessity to introduce the GPHD over dual quaternions for approximating nonlinear dynamics
of rigid motions, as it clearly outperforms the classic GPR6 .

Experimental Conditions

We randomly generate ten dynamics fMd of form (2.5) based on the trigonometric functions
{sin, cos, tan}, with constants in the range [1

8 , 5] and basal operations {+−,×,÷, ◦}. Each
6-DoF dynamics component comprises three to seven operations. As an example, one of the
dynamics is given by

fM( g) =



c
(
π
3 − cos( qrex) + sin( qrey + qdux)

)
c (1− qrex sin( qduz + qdux + qrez))

c
(
π
8 + sin( qduy qrez − 1)

)
2 cos( qrex qrey) sin( qdux + qrex) + qdux

sin(tan( qrez
3 + 1

2)− 2 qrey)
3 cos( qduy qduz)−

qrey
4


, (3.76)
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where g = ( qre, qdu) and c > 0 a constant. For each of the dynamics, we generate ran-
domly sampled training data sets and a ground truth data set for evaluating the estima-
tion accuracy. For reference, each data set is converted to the traditional representation
g = (φ, ψ, ϑ, vx, vy, vz)> invoking (3.17). To assure numerical stability we add an artificial
white Gaussian noise with arbitrarily selected standard deviation σ = 3 ·10−3 to the training
data sets. We use the squared exponential kernels (3.3) respectively (3.44) in the GP models.
In order to analyse the prediction quality of the GPHD and the GPR6 , we employ the

root-mean-square error (RMSE) between the predictive mean ˆ̇g and the true function value
fMd( g). For the translational output fMd( g)

∣∣∣
tra

we find no significant difference in the pre-
diction quality of GPHD and the classic GP in our experiments. For growing training data
sets, the average RMSE in translational GP prediction converges around 10−3 for both mod-
els, the size of which corresponds to the magnitude of the noise with the difference in the
RMSEs ranging in the magnitude of 10−4. Therefore, we concentrate in the reminder of
this evaluation on the quality of the rotational part of the predictive mean ˆ̇grot. In order to
obtain reliable evaluation results, the RMSE is calculated for a test set {( gi, fM( gi))}10000

i=1 of
iid pairs. The experiment is implemented in Matlab using the GPML toolbox [96]. For the
hyperparameter optimization, we use the algorithm provided in the toolbox with a Gaussian
likelihood. We initialize the training phase each time with the same set of default hyperpa-
rameters H0 = (λ0, σf0, σn0) for GPHD . As the signal range in GPR6 is π times the signal
range in GPHD , we set the default starting hyperparameters in GPR6 to (λ0, πσf0, πσn0).

RMSE Depending on Rotation Magnitude

In the first evaluation, we compare the prediction accuracy of the GP models, depending
on the rotation magnitude in (3.76). We double the constant c in the dynamics fMd from
0.125 to 8 in a stepwise manner. The number of training samples is fixed to 2000 for all 70
(seven steps times ten dynamics) repetitions, and each time, the learning is performed per
dynamics with the same set of uniformly drawn random samples. The average prediction
RMSEs with standard deviation of both GP models are contrasted. In all tested conditions
the GPHD clearly outperforms the GPR6 prediction accuracy as visualized in Figure 3.4a.
For small rotational velocities, the error difference between the models is less significant and
the superiority of GPHD may not counterbalance the additional computational complexity.
For increased rotation magnitude the performance of the GPR6 is drastically decreased while
the accuracy of the GPHD is significantly less affected. The largest condition tested, c = 8,
incorporated up to three full turns in the randomly generated dynamics. The corresponding
rightmost result in Figure 3.4a indicates that the approximation abilities of GPHD can be
exhausted for even larger rotation magnitudes. At a certain magnitude the dynamics gets
too edged for appropriate application of the squared exponential kernel.

RMSE Depending on Number of Samples

In the second numerical evaluation, we illustrate the GP prediction quality for GPHD and
the classic GPR6 for different numbers of training samples. The sample set size is relevant for
the ability of a GP to capture the underlying function, as the stepwise orientation change
increases for smaller sample sets. In this setup the rotation magnitude is fixed to c =
1. The model learning is performed on increasing sizes of training data sets, doubled in
each step from 125 to 8000 samples. Figure 3.4b shows that the GPHD approximates the
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ġrot

GPR6 ġrot
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Figure 3.4: Numerical performance analysis in predicting dynamics fM . The bars depict the
average RMSEs in the rotational velocity prediction, where solid red colors show
the GPHD and striped blue the classic GP. The standard deviation among the
ten different dynamics is shown by the error bars.

underlying ground truth dynamics significantly better than the GPR6 except for the condition
with 125 training samples. In the first tested condition, no significant difference could be
determined by an independent-sampled t-test due to the large variance in the RMSE, t(9) =
0.74, p = 0.47. On the one hand, the results indicate that the GPHD has difficulties finding
optimal hyperparameters for very sparse sample sets. On the other hand, this evaluation
demonstrates the superiority of GPHD in approximating rigid motion dynamics involving
significant rotation over GPR6 for sufficiently large sample sets.

3.7.2 Real World Experiment: GP Behavior depending on Unit
Quaternion Distance

In this section a real data experiment is conducted to compare the estimation behavior of
the generalized GP depending on the underlying distance metric over unit quaternions in the
squared exponential kernel. The results are compared to the classic GP model incorporating
Euler angles as rotation representation and the standard Euclidean distance.

Experimental Setup

A human participant draws repetitively 40 large “Z” letters on a flip chart. Even though not
instructed to do so, the human naturally follows the pen with the eye. Using a combined
system of motion capturing by Qualisys motion tracker (Sweden) and Dikablis eye tracking
(Germany), the human gaze motion was captured at 100 Hz in the workspace coordinates.
Figure 3.5 illustrates one experiment trial. From the measurements, we obtain approximate
derivatives of the gaze motion using zero-order hold. We consider solely the head and gaze
rotation, as we aim to compare pure rotation approximation behavior of the generalized GP
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Figure 3.5: A human participant repetitively draws large “Z” letters on a flip chart, while
naturally tracking the pen with the eye. The human gaze motion is captured
in workspace coordinates using a combination of eye tracking and marker based
head motion tracking.

describing human gaze dynamics of form (2.4). The captured data includes rotation up to
1.4 rad per time step, as gaze jumps in saccades, and involves a high noise level as the
eye tracking system in our setup is nonlinearly delayed against the motion capture system.
We intentionally select a challenging experimental setting to exhaust the GP approximation
abilities as only borderline test cases bring up the behavioral differences. We train the
GP models on the first 34 out of the 40 trials and test its performance on the remaining
six repetitions. As in the numerical evaluation, we fix the initial hyperparameter values
h = (λ0, σf0, σn0) for all GPs over unit quaternions and scale signal variance and signal noise
about π for the reference GP over Euler angles.

Visualization Interpretation

Figure 3.6 illustrates the prediction behavior of the four compared GP models, namely Arc,
Norm, TSq and (φ, ψ, ϑ). The GP models we compare are the following: in first row a
generalized GP using the arc metric (3.32) is shown, in second row the underlying metric
is the quaternion norm (3.30), in third row the generalized GP is based on the tangent
space distance (3.33). Fourth row illustrates the prediction behavior of the standard GP
model over Euler angles using the Euclidean distance in the kernel function (3.3) for refer-
ence. More precisely, the first three rows visualize each the rotational velocity dimensions,
{ ġTSx , ġTSy , ġTSz} of the tangent space to the sphere S3 for the conditions Arc, Norm and
TSq, while the fourth row visualizes the synchronized rotational velocities {φ̇, ψ̇, ϑ̇} for the
Euler angles (φ, ψ, ϑ). For better visibility of the differences in the estimation we do not
show all test trials of the “Z” repetitions in every column, but zoom in to the trials 1 and 2 in
the first column, 3 and 4 in the second column and 5 and 6 in the third column. We visualize
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Fig. 6 The prediction accuracy of the human gaze motion is illustrated. Blue solid lines show the mean prediction, red dashed lines the ground
truth and gray shaded areas the prediction uncertainty. The columns correspond to the rotational velocity dimensions, the rows to the different
conditions. In row one the GP model is based on the arc distance, in row two on the quaternion norm, in row three on the distance projected to the
tangent space and in row four on the Euclidean distance in combination with the Euler angle representation.

Visualization The estimation results are illustrated in Fig-
ure ??. For clear visualization the 6D output is shown per
dimension over the runtime corresponding to the sample in-
dex i = 1, . . . , ν instead of the GP input data g. The ver-
tical bar indicates the current time stamp, i.e. left of it is
the past, where the Gaussian posterior is available and on
its right is the future, where we estimate a predictive Gaus-
sian. In the past, the mean prediction (depicted by the blue
solid line) deviates little from the ground truth (depicted by
the red dashed line). The grey shaded area visualizes the 2σ
confidence interval for the estimation and captures thereby
the noise involved in real data. The distance, how soon the
mean prediction returns to zero in the future depends on the

length-scale hyperparameter λ learned from four consecu-
tive observed poses only. Recall that we could significantly
improve the estimation results through elaborate hyperpa-
rameter tuning, but as this contradicts the gist of online mod-
eling, we refrain from any preliminary task specific tuning.
We indicate the kernel reset with black dots on the ground
truth trajectory.

6 Conclusion

In this article we introduce a mathematical framework for
GP modeling over 6-Dof rigid motions. The essential con-

Figure 3.6: The prediction accuracy of the human gaze motion is illustrated. Blue solid lines
show the mean prediction, red dashed lines the ground truth and gray shaded
areas the prediction uncertainty. The columns correspond to the tangent bundle
respectively rotational velocity dimensions, the rows to the different conditions.
All columns are synchronized over time. In row one the GP model is based on
the arc distance, in row two on the quaternion norm, in row three on the distance
projected to the tangent space and in row four on the Euclidean distance in com-
bination with the Euler angle representation. Column wise a second trajectory
is highlighted by yellow background color.
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the motion velocities over time in seconds and reset the runtime to zero at the beginning of
every trial. Every second trial is contrasted per column by yellow background and the verti-
cal black line in every plot indicates the beginning of that next trial. Per dimension and test
condition (Arc, Norm, TSq and (φ, ψ, ϑ)) we depict by a red dashed line the ground truth ve-
locities, by a blue solid line the mean prediction and by a gray shaded area the 2σ-confidence
region. Overall, the GP based on the arc metric (row one) outperforms the others, which
can be seen most clearly in the third component of the velocity predictions. The squared
exponential kernel over the quaternion norm overestimates the correlation of orientations
slightly ∀q, q′ ∈ S3. The kernel used in third row holds kse:TSq( q, q′) < kse:arc( q, q′)
∀q 6= q′ in contrast. Therefore, it shows a much faster decrease in correlation for growing
dissimilarity of the quaternions. In our illustrative example it forces the optimization to
significantly smaller length scale values than in the conditions Arc and Norm. This behavior
can be valuable in applications where highly precise orientation is essential. The generalized
GP models have in common that all of them significantly outperform the classic GP model
(condition (φ, ψ, ϑ)) which has problems capturing the large rotational velocities.

3.7.3 Real World Experiment: Generalized GP using Axis-angle
and Translation Vector

In this experiment we evaluate the GPB̃ over axis-angle and translation vector in a real
world application. Our goal is to learn human behavior from demonstration. Applications
for reproduction and prediction of human-like movements are widespread in robotics, e.g. in
programming by demonstration and assistive robotics. Consider a human-robot interaction
scenario where a robot should help putting on a shoe to an elderly. Therefore, we require
a model for human motion behavior in the specific task of passing and slipping on a shoe
to someone else’s foot. We learn the human provider motion using the rigid-body GPB̃
parametrized by axis-angle pseudo-vector and Euclidean vector.

Figure 3.7: Human-human shoe providing experiment. One human puts on a shoe to another
as preliminary study for elderly assistance in service robotics. The blue lines
depict the translation part of the providers’ 6D motion trajectories.
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Figure 3.8: Visualization of the training data (colored dotted), the newly generated motion
trajectory by GP prediction (dashed black), the mean of human demonstrations
(red solid) and the standard GP prediction (blue dash-dotted).

Experiment Procedure

The setup for capturing GP training data is visualized in Figure 3.7. The translation part
of the trajectory bundle is depicted in blue. The GP is trained on 9 trials of shoe passing
and slipping on, demonstrated by different human providers. The data is captured with a
motion tracking system (Qualisys, Sweden) at 179 Hz and consists of 6D poses (rotation
and translation of the shoe while grasped by the human). The corresponding 6D rotational
and translational velocities are obtained by finite differences. The motion trajectories are
synchronized on the onset and cut when the contact force between foot and shoe exceeds a
predefined threshold, as we suggest to change the controller at that moment. To assure fast
runtime of the GP prediction, the GP training is performed on 10% random samples of the
captured data. We set the weights in (3.38) to ρ1 = 0.7 and ρ2 = 0.3, to compensate for the
magnitude difference in the captured rotations and translations. The GP training with the
total number of ν = 1752 training data pairs requires 8.05 seconds.

Results and Accuracy

After the training phase, we calculate 100 new motion trajectories, starting from previously
unseen initial 6D poses. The trajectories are generated using single-step ahead mean predic-
tion, which is integrated to pose by the exponential function. In Figure 3.8a and Figure 3.8b
one predicted trajectory is visualized exemplary dimension wise by a black dashed line. The
training trajectories are depicted by dotted lines for rotation and translation dimensions.
The mean of the training trajectories is visualized by a red solid line and the dark blue
dash-dotted line shows a trajectory, which starts at the same initial pose and is predicted
using the traditional GPR6 . All of the trajectories estimated using the GPB̃ starting within
the region of human starting poses, stayed throughout the movement within the variance of
the human training data. The full trajectory prediction requires 0.84 seconds on average.
For accuracy evaluation we resample the training all to the same length of 3.5 seconds.
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Then, we determine per time step mean and variance of the training trajectories and use the
so obtained time series distribution as our ground truth. For both GP variants we calculate
per time step the Bhattacharyya distance to our reference distribution. On average, the
distance to the GPB̃ is 2.9 and to the classic GPR6 using Euler angles it is 4.4. In addition, a
t-test is conducted to compare the Bhattacharyya distances per GP condition. We consider
per GP variant the distances per time step as random samples from a distribution describing
the similarity of the GP predictions and our ground truth distribution. The t-test shows
a significant higher similarity for the GPB̃ than for the GPR6 ; t(68) = 4.1, p = 0. For
translation, see Figure 3.8b, no significant difference between the GP variants is visible,
whereas the rotation, see Figure 3.8a, is considerably better captured by the rigid-body GPB̃
over axis-angle and Euclidean vector.

3.7.4 Simulation: Comparison of Computational Efficiency and
Prediction Accuracy

In this section we evaluate the generalized GPB̃ over axis-angle and translation vector in two
simulations; first regarding runtime of the GP prediction, and second regarding accuracy in
the rotation estimation. We compare our results with the GPHD over dual quaternions and
with the classic GPR6 in Euclidean space, where rotations are represented inaccurately as
Euler angles. We focus on the generalized squared exponential kernel (3.46), as for this kernel
a pendant is available in quaternion space and as for the dot-product kernel no significant
difference is expected, as calculations are equal to those in Euclidean space.

Runtime Comparison

We generate 80 training pairs Dν = {( gi, ġi,l)}νi=1 in this simulation, consisting of randomly
drawn rigid-body motions g ∈ SE(3) as GP input and corresponding velocity output ġl in
one dimension l ∈ {1, . . . , 6}, which is obtained by the pseudo-random output generator al-
gorithm provided in the GPML toolbox. Each training pair is once represented as axis-angle
and translation vector, once as dual quaternion and once as Euler angles with translation
vector. After the model training phase we compare the runtime required for GP velocity pre-
diction at 10001 new randomly drawn rigid-body motions for the three representations. To
obtain reliable and reproducible results, we repeat the experiment 1000 times. Figure 3.9a
visualizes the resulting average prediction times of the 10001 test points and the standard de-
viation of the average required time for each representation. An independent-samples t-test
is conducted to compare the runtime of the generalized rigid-body GPB̃ with the GPHD over
dual quaternions. The superiority of the GPB̃ is verified by a t-test, t(1998) = 37.8, p = 0,
showing a significant improvement in runtime.

Rotation Prediction Accuracy

In a second simulation we generate random rotation dynamics, mapping from the special
Orthogonal group SO(3) to the rotational velocities TSO(3). We focus on rotations, as
this is the well-known challenging issue in GP modeling. From every artificially generated
dynamics fMd as in (2.5) we obtain 1000 ground truth testing pairs consisting each of a
rotation with corresponding rotational velocity. From this data we draw 100 i.i.d. random
training samples. After the GP training, we compare the predicted GP values for the testing
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Figure 3.9: Runtime and prediction accuracy comparison. Per GP variant the box height
shows the average required time and the average root-mean-square error (RMSE),
respectively. The gray error bar depict the standard deviation over the 1000
experiment repetitions.

rotations with the ground truth velocities to evaluate the prediction accuracy for three
rotational GP variants; the GPB̃ over axis-angle, the GPHD over unit quaternions (which is
a special case of the GP over dual quaternions with purely rotational input) and the GPR6

over Euler angles.

Procedure As we are interested in nonlinear motion behavior, we generate each rotation
dynamics fMd randomly from the trigonometric functions F = {sin, cos, atan, acot}. For
simplicity of the description we consider vector-valued dynamics drift terms fMd(θu) = θ′u′
of a specific structure only: For i = 1, . . . , 3 each function component has the form

f
(i)
Md

(θu) = g

(
d

c

)
� d̃ ? c̃, (3.77)

where function g ∈ F . The operators are defined by � := +− and ? := ×/÷, the con-
stants c, c̃ ∈ {+−1,+−2

3 ,+−
1
3} influence the rotation magnitude in the dynamics and the vari-

ables d, d̃ ∈ {θu1, θu2, θu3} denote entries in the axis-angle pseudo-vector. We randomly
generate 1000 rotation dynamics of the described form, transform the axis-angle representa-
tion to unit quaternions and Euler angles for both, dynamics input and output and unwrap
the Euler angles to avoid the jump at +−π. Per simulated dynamics we train the models
using the standard procedure of minimizing the negative log marginal likelihood, where the
hyperparameter start values λ, σf are i.i.d. samples from the interval (0, 3). The signal
noise σn is set to 1 to assure numerical stability during the training phase. As evaluation,
the single-step prediction accuracy of each test value in terms of the RMSE is compared to
the ground truth.

Results It is clearly visible in Figure 3.9b that the average RMSE over 1000 repetitions of
each time 1000 predictions of the generalized GPB̃ over axis-angle outperforms the other GP
variants, as its estimation error is only about half the error of the other models. Independent-
sampled t-tests are conducted to compare the axis-angle generalization with each of the other
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GPs. A significant improvement (with significance level 1%) in the scores for both compar-
isons is obtained: t(5998) = 8.6, p = 0 for condition axis-angle versus dual quaternions
and t(5998) = 16, p = 0 for condition axis-angle versus Euler angles. These results demon-
strate the robustness of the GPB̃ over axis-angle, as it succeeds best in approximating the
dynamics under such generalized and suboptimal learning circumstances. Due to the projec-
tion required in the GPHD over unit and dual quaternions, respectively, this variant is highly
sensitive to the starting values of the GP model learning and thus, performs inferior in learn-
ing a suitable GP model for many of the 1000 random dynamics. Hence, the results show
large variance in the prediction error for the GPHD , even though theoretically comparable
estimation quality should be achievable.

3.8 Discussion
To conclude this chapter, we provide a short summary of the characteristics of the developed
GP generalization to SE(3).
The generalized GP is defined on non-Euclidean input space and captures dynamics on the

manifold SE(3) mathematically firm. We present two well suited rigid motion parametriza-
tions, namely the axis-angle and Euclidean vector and the dual quaternions. Additionally,
general information for employing the homogeneous transformation matrix as rigid motion
parametrization is provided.
For both investigated representations of the special Euclidean group SE(3), we introduce

a set of fundamental functions containing the zero mean and a dot-product kernel as well as
a stationary kernel function and prove them to be valid. In a comparison of the presented
GP generalization variants, we assess their optimal application scope: The generalized GP
employing the axis-angle representation is computationally more efficient and accurate, but
less suitable for approximating wide spread uncertainty on the manifold. The generalized GP
employing dual quaternions is more vulnerable to bad training behavior depending on the
initial choice of hyperparameters, but allows for the definition of a probability distribution
on the full space of rotations.
Both generalized GPs outperform the state of the art GPR6 where rotations are repre-

sented by Euler angles. We evaluate the generalized version of the most widely used kernel,
the squared exponential kernel, under various aspects such as computational complexity,
prediction accuracy on simulated data. We analyze how the ground truth estimation accu-
racy of the GPHD outperforms the classic GPR6 on estimating nonlinear dynamics. Further,
the suitability of the GP generalizations for modeling real data involving freely performed
human motions is proven experimentally. We contrast the characteristics of generalized GP
kernels resulting from different metrics in 6D space in a real data experiment using human
gaze motion. In this experiment we employ the dual quaternion representation. Addition-
ally, the applicability of the generalized GP is assessed in a real world experiment involving
natural human motion in the complex task of putting on a shoe. The generalized GPB̃
using the axis-angle and translation vector representation shows outstanding performance
in terms of accuracy, unsusceptibility and computational efficiency. Hence, both generalized
GP variants turn out to be suitable for approximating rigid motions, especially human motor
behavior.
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4
Human Decision Process Estimation through
Parallel Planning and Weighting

In this chapter we present the methodology for our approximation of the human decision
process dynamics (2.10). We start by reviewing related work and open problems concerning
online movement generation including uncertainty and probabilistic trajectory classification.
Recall, we seek to approximate the potential movement plans{

g1
d(t)

}
t≥0

, . . . ,
{
g%̂d(t)

}
t≥0

(4.1)

by a set of trajectory bundles ·∪%̂j=1Cj, which contains in every bundle Cj multiple executions
of assumedly each time the same potential desired trajectory { gjd(t)}t≥0. Therefore, each
trajectory

xk =
{
gk(t)

}
t≥0

(4.2)

in a set of captured human movement trajectories D̃η = { xk}ηk=1, needs to be assigned into the
clusters representing the potential movement plans. Note, the exponent k in the trajectory
formula (4.2) is an index denoting to which trajectory xk the rigid motion g belongs.

Remark 4.0.1 The set of trajectory bundles jointly represent the variety of potential de-
sired trajectories, whereas each trajectory bundle on its own represents a potential desires
trajectory, including the variance of human motion execution.

Since we solely aim for application scenarios, where the potential movement plans terminate
in distinct configurations in SE(3), it suffices to cluster the trajectory end poses, to categorize
the whole trajectory. Therefore, we review various data clustering algorithms and present
our choice for clustering rigid motion data samples g ∈ SE(3) in this chapter.
Subsequently, we present our approach for the potential desired trajectory weighting.

Recall, the mapping (2.9) is used for calculating the probability vector p g = (p1, . . . , p%̂)>
for a novel unseen rigid motion g to belong to the clusters Cj, j = 1, . . . , %̂. Now, we present
how the mapping (2.9) is obtained explicitly. Therefore, we develop a distance measure on
rigid motions g ∈ SE(3), which exploits the properties of the Mahalanobis distance.
Then, a recursive algorithm of the generalized GP is developed to approximate the dy-

namics (2.10). Recall, we approximate the human internal decision making for a certain
desired trajectory by incorporating the weight vector p g into our approximation of the de-
cision process dynamics f̃D. Specifically, the estimated probabilities p1, . . . , p%̂ are used for
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4 Human Decision Process Estimation

leveraging the training data sample of the online generalized GP. This means, the samples
are weighted according to the significance of the respective trajectory bundles C1, . . . , C%̂.
Finally, we evaluate our approximation of the human decision process along a complex

real world experiment on putting on shoes to another person and conclude the chapter with
a brief summary of the decision process approximation.

4.1 Related Work and Open Problems
The relevant related work for the decision process approximation is two-fold: Since we aim
to simultaneously represented potential spatial movement plans to possibly multiple target
locations, an appropriate approach is required to generate the movement plans online. As we
rely on human movements to approximate the potential movement plans, we have to consider
uncertainty. According to [59] human motor execution includes sensorimotor uncertainty.
Therefore, we review in the following approaches for generating movement plans online
including uncertainty. Additionally, we require an algorithm for the decision making for a
specific motion plan. Since we aim to approximate the human potential movement weighting,
we again have to consider uncertainty and online capability. Therefore, we review in addition
related work on probabilistic online trajectory classification.

Online Movement Generation including Uncertainty

A motion trajectory is the path, an object is following in space as a function of time. Very
early approaches for trajectory planning in 6D space are available since 1998 already, see [97].
Among the many online trajectory planning algorithms, such as the probabilistic roadmap
method (PRM) [98] or the rapidly-exploring random trees (RRTs) [99], we are interested in
motion trajectory generators with confidence consideration, as the confidence is required to
model the uncertainty in the human movement. Typically, the trajectory planners including
confidence employ underlying Gaussian systems. We have reviewed predictive models for
motion generation in the previous Chapter 3 already. So far, there is no mathematical firm
model available for motion generation in rigid motion space based on Gaussian systems.
Since we require a method which is capable of generating the motion online, we present

the Kernel Recursive Least-Squares (KRLS) algorithm introduced by [100]. This approach
provides an online model for motion prediction using GPs. It remains an open problem,
however, to generalize the KRLS algorithm to rigid motions. To take environmental infor-
mation into account for in the trajectory planning using GPs, Choi et al. [101] present a
method for weighting the sample reliability in the GP model learning. So far, however, the
sample reliability has not been incorporated into the online movement generation considering
uncertainty.

Probabilistic Trajectory Classification

Classification in general tries to find a rule to assign objects to predefined classes. Similarly,
trajectory classification aims at determining the class label of trajectories from a predefined
set of labels based on the characteristics of the trajectories. Besides data clustering, it is
the main component of trajectory data mining [102]. Data clustering groups the data into a
finite set of categories, also called clusters, based on their movement characteristics. Since we
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will introduce the most frequently used clustering algorithms more in detail in Section 4.2.1,
we focus here on trajectory classification. Most trajectory classification algorithms follow
a traditional two-step approach: first extracting a set of discriminative features (such as
average speed or acceleration of a trajectory, trajectory duration, etc.) and then using the
extracted features to train an existing standard classification model [102], such as support
vector machines (SVMs) [103] or the decision tree algorithm [104]. Besides, the state of the
art methods typically are based on hidden Markov models (HMMs) [38,105], a classification
approach that requires preceding trajectory segmentation. A shortcoming of the methods
presented so far is that the can only provide a delayed class nomination.
An interesting line of research is proposed by Lee et al. [106] in the trajectory clustering

framework TraClass, which partitions the trajectories and generates a hierarchy of features.
The salient performance of the framework is due to exploring region-based and trajectory-
based clustering in parallel. In [107] the approach was generalized from purely spatial to
spatial or temporal trajectories. A generalization to trajectories in rigid motion space, con-
sisting of rotation and translation, still is lacking.
In 2011 De Schutter [108] presented an approach to classify 6-DoF rigid motion trajec-

tories using the invariant representation as input. A time-based coordinate-free description
consisting of six scalar functions of time is defined based on a motion model for the instanta-
neous screw axis [109]. For the so represented motion trajectories two alternative approaches
were introduced; one based on a Dynamic Time Warping algorithm and one based on Hidden
Markov Models.
Since none of the trajectory classification methods is capable of labeling the class of a novel

unseen trajectory online, we focus on point-wise classification of rigid motions instead of full
motion trajectories. Additionally, none of the presented trajectory classification methods
considers uncertainty. To approximate human movement plan weighing, however, a proba-
bilistic method is required. To the best of the author’s knowledge, there is no method avail-
able so far that allows for online trajectory classification in the special Euclidean group SE(3)
including uncertainty.
The most promising approach in that area is a probabilistic method based on maximum

likelihood estimation [105]. As the required computational complexity of this approach is
very limited, it is appropriate for online applications. Therefore, we suggest to exploit this
line of research: the state of the art maximum likelihood estimation in online rigid motion
trajectory classification.

4.2 Differentiation of Potential Movement Plans
In this section, we present our approach for rigid motion clustering. We start with provid-
ing an overview over major data clustering algorithms, stating their pros and cons. This
induces the identification of the Expectation-Maximization (EM) algorithm using GMMs to
match best our requirements for executed human movement data. Then, we introduce a
generalization of the algorithm to allow for input on the rigid motion manifold SE(3).

4.2.1 Data Specifications and Clustering Algorithms
We provide a set of human movement properties and infer a wishlist of cluster characteristics
from them.
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4 Human Decision Process Estimation

• The human sensorimotor uncertainty depends on the posture of the limbs and tension
in the limbs. This means, data samples of human performed rigid motions have variable
uncertainty, depending for example on whether the human had the limb stretched out
or angled. Therefore, we require the algorithm, which is used to cluster the rigid
motions, to allow for variable data densities and heterogeneous cluster sizes.

• We assume all intended human movements to be equally important, and therefore,
consider the generation of an “outlier cluster” as undesired.

• Modeling human behavior using Gaussian based approaches has proven advantageous
in many applications [110–113]. Therefore, we desire the clusters to be modeled by a
(multivariate) normal distribution.

• We would like the algorithm to determine the optimal number of clusters, as this is
not always intuitively obvious for unconstrained human behavior.

In the following we informally explain the main characteristics of the five most widely used
clustering algorithm, which jointly represent the state of the art in data clustering, and
subsequently justify our choice for the GMM clustering algorithm.

K-Mean Clustering

The probably most popular algorithm is the K-Means clustering [114]. The algorithm itera-
tively assigns the samples in the data set to a pre-selected set of “group centers” and updates
each group center to mean of the assigned data subset. An advantage of this algorithm is its
simplicity and computational efficiency. A disadvantage arises from the need to select the
number of clusters in advance and the non-reproducability of the results, as the algorithm
typically is initialized by randomly drawn initial “group centers”.

Mean-Shift Clustering

This algorithm is based on a sliding-window approach. It searches for areas among the data
points with high density. Therefore, it shifts a window iteratively to a region with higher
density through moving its center to the mean of the data samples within the window. The
shifting is continued until convergence. Then, new windows are introduced, one after the
other, until all data is assigned to an area [115]. In contrast to K-means clustering this
algorithm automatically detects the required number of clusters. A drawback, however, is
that the size of the areas/windows has to be pre-selected.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

One of the most cited algorithms is the DBSCAN. It was only recently introduced by [116]
in 1996. It searches for dense data neighborhoods by assigning all samples to the same
neighborhood that are “close” (i.e. the distance is below ε > 0) to an already assigned
sample of the neighborhood. A new neighborhood can only be initialized, if it contains
“enough” (i.e. more than νmin ∈ N+) samples. All remaining samples are considered noise.
This algorithm is good in finding almost arbitrarily shaped and sized clusters. However, it
performs poorly on data sets with variable cluster densities, as the parameters ε and νmin
are set in advance.
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Hierarchical Agglomerative Clustering (HAC)

Initially each of the data samples is regarded as a separate cluster. Iteratively, the two most
similar clusters (according to some arbitrary similarity measure, such as single linkage [117])
are merged into one cluster [118]. The algorithm ends when there is only one cluster left.
An advantage is that this algorithm is not sensitive to the choice of distance metric. The
shortcomings, however, include the computational inefficiency and the need to pre-select the
number of clusters, in case the algorithm should be interrupted earlier.

GMM Clustering using the Expectation–Maximization (EM) algorithm

This algorithm requires pre-selection of the number of clusters, just like the K-mean algo-
rithm. The cluster initialization, however, is not as critical, because the EM-algorithm is
handling the cluster optimization. Iteratively the probability of each data point to belong
to a particular cluster is calculated, and the parameters of the Gaussian distribution are
optimized to best describe the weighted data points [66, Chap. 9.2.2]. Since the algorithm
uses Gaussians as clusters, their shape is described by two parameters, the mean and the co-
variance, which define an efficient way of describing the less restrictive shape of an ellipsoid.
Additionally, as the GMM clustering employs Gaussian probabilities, a single data sample
can be assigned to multiple clusters, i.e. this algorithm allows for mixed memberships.
Even though the requested pre-selection of the number of clusters is a disadvantage, we

suggest to use this algorithm for human motor behavior clustering: The clusters are defined
by Gaussians, that are well suited for modeling human movements and allow for variable
cluster size and density. Additionally, outlier clusters are not supported, and the algorithm
is computationally efficient. To handle the pre-selection of the cluster size, the algorithm is
run multiple times for different cluster sizes and determine afterwards the optimal number
according to the Bayesian information criterion (BIC) [119]. We introduce this clustering
algorithm more in depth in the following section.

4.2.2 Generalization of GMM Clustering to Rigid Motions
In this section we introduce a GMM cluster generalization to data samples on the mani-
fold SE(3). The fitting of the generalized Gaussians to the data set is performed using a
modified EM algorithm, which initially was introduced already in 1977 in [120]. Its underly-
ing idea is to fit Gaussian distributions to a data set by alternating the steps to stochastically
assign the data to the clusters and to maximize the likelihood of the Gaussians to describe
those clusters. In the generalization, we need to adapt the probability distribution to be
defined in SE(3) and we require a distance function over rigid motion g ∈ SE(3). We
propose to use the projected Gaussian distribution, introduced in Section 3.5.1 and the dual
quaternion distance metric (3.35).
An alternative approach, investigating pure rotation parametrized by unit quaternions,

was introduced in 2017 by [121]. The authors suggest to use an exponential map to transform
from the rotations into the velocity space. However, the mappings exp(·) respectively ln(·)
only allow for defining the covariance in a local neighborhood around the tangent point in
rotation space (see Section 3.5.2). Therefore, we use the central projection (3.56) in contrast
to map rigid motions on the manifold into the velocity space, as the projection Π g allows
for defining a projected Gaussian distribution on the whole rigid motions.
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Remark 4.2.1 Since switching the rigid motion representation is simple using (3.19), we
will not distinguish whether our training data set Dν is represented by dual quaternions or
by pairs of a unit quaternion and a translation vector, i.e. g = ( q, v). While we introduced
comprehensive calculus for the dual quaternion parametrization in Chapter 3, algebraic cal-
culation rules for the representation as a pair are well-known.

The generalized algorithm itself comprises four steps:

Initalization

The only necessary parameters to fully specify a generalized GMM with %̂ components (i.e.
cluster size %̂) are the mixing coefficients χj, j = 1, . . . , %̂ and the projected Gaussian dis-
tribution parameters µj, Σj at their corresponding tangent points gj for j = 1, . . . , %̂. The
factors χj define a convex combination ∑%̂

j=1 χj = 1.
To avoid coincidental poor optimization performance in the subsequent iterations, the

mean values are not sampled purely at random. Specifically, we sample at random mean
values µ1, . . . , µ%̂ without replacement, which fulfill the condition

ν∑
i=1

dmag(µj, gi) ≤ cmax, (4.3)

for some pre-selected upper bound cmax ∈ R+. In case a mean value does not meet (4.3), we
discard it and re-sample. The first value µ1 is sampled from a uniform distribution. From
then on, the following means µj for j = 2, . . . , %̂ are sampled from weighted training data

Ďν,j =
{

dmag(µj−1, gi)∑ν
i=1 dmag(µj−1, gi)

gi

}ν
i=1

(4.4)

to facilitate a homogeneous distribution of the means. The mixing coefficients are initialized
all with the same value

χj = 1/%̂ for all j ∈ {1, . . . , %̂}, (4.5)

and the initial covariance matrices Σj for all j = 1 . . . , %̂ are calculated as the stacked
diagonal entries of the pure rotational and pure translational variance of the whole training
data set Dν

Σj = (diag(Σrot), diag(Σtra))>. (4.6)

The calculation of Σtra is trivial using the formula E [({ gi}νi=1 − µtra)2], where the translation
mean µtra = 1/ν∑ν

i=1 gi. Analogously, the mean over unit quaternions µrot is calculated in
compliance with [122] as the eigenvector, which corresponds to the largest eigenvalue of the
auto-correlation matrix

Ma:corr =
ν∑
i=1

qi q>i . (4.7)

Then, the rotational variance Σrot is obtained in the tangent space to µrot as the standard
Euclidean variance of the pullback of the complete rotation data set {qi}νi=1 into the tangent
space of µrot using (3.53),

Σrot = E
[(

Π−1
µrot(µrot{ gi}νi=1)− µrot

)2
]
. (4.8)
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E-step

Given the current parameter values, we calculate the responsibilities of the data set Dν . This
means, for each sample gi ∈ Dν for i = 1, . . . , ν a vector (ρ1, . . . , ρ%̂) is computed, encoding
the probabilities of gi to belong to the clusters C1, . . . , C%̂.
A ν × %̂ responsibility matrix P (where the matrix entries (P)i,j = ρij) encoding the

probabilities per sample and per cluster is obtained by evaluating

ρij =
χj N

(
gi
∣∣∣ gj, µj,Σj

)
∑%̂
k=1 χkN

(
gi
∣∣∣ gk, µk,Σk

) . (4.9)

The projected Gaussian distribution N ( gj, µj,Σj), as defined in Section 3.5.1 applying the
projection (3.56), inherits the Gaussian distribution properties, but is defined on the man-
ifold SE(3). To obtain the individual probabilities N

(
gi
∣∣∣ gj, µj,Σj

)
for a given sample gi

and cluster Cj the projected Gaussian probability density function (3.54) is employed.

M-step

Given the current responsibility matrix P, we update the defining generalized GMM param-
eters χ̃j, µ̃j and Σ̃j for each cluster Cj, j = 1, . . . , %̂.
The updated mean µ̃j of the j-th cluster Cj is the weighted average of the samples gi

with i = 1, . . . , ν. We separately calculate the translation and rotation components of the
mean and concatenate it afterwards into one vector. Applying the weight vector (P)·,j of
the responsibility matrix, we obtain for the translation part vi in gi the new mean

µ̃traj =
∑ν
i=1 ρij vi∑ν
i=1 ρij

. (4.10)

For the rotation part qi in gi, we employ Markley’s [122] unit quaternion averaging algo-
rithm: We compute the weighted auto-correlation matrix

Ma:corr =
ν∑
i=1

ρi qi q>i (4.11)

of the full sample set and obtain the updated rotation mean µ̃rotj as the eigenvector, which
corresponds to the largest eigenvalue of matrix (4.11). The complete new mean is then given
by µ̃j = (µ̃>traj , µ̃

>
rotj)

>.
The updated covariance Σ̃j for j = 1, . . . , %̂ is given by

Σ̃j = 1∑ν
i=1 ρij

ν∑
i=1

ρij v∆TS v>∆TS, (4.12)

where the delta vector v∆TS is a concatenation of the delta translations from µ̃traj to vi and
the pullback into the velocity space using Π−1

µrotj
of the delta rotation from µrotj to gi

v∆TS =
[(

vi − µ̃traj

)>
,
(

Π−1
µrotj

(µrotj gi)
)>]>

. (4.13)
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Note, the notation v∆TS in this case represents a spatial difference between mean and the
data samples, no temporal difference. Finally, the updated mixing coefficients χ̃j for j =
1, . . . , %̂ are given by

χ̃j = 1
ν

ν∑
i=1

ρij. (4.14)

Hence, we have updated all characteristic parameters and a new generalized GMM is defined
by µ̃j, Σ̃j and χ̃j for j = 1, . . . , %̂.

Likelihood

To check for convergence of the EM algorithm, we evaluate the log likelihood of the fit-
ted generalized GMM. In the M-step we computed the Gaussian parameters µj, Σj in the
tangent space T gjSE(3) to the rigid motions and have not yet projected the Gaussian dis-
tributions into the manifold using (3.56) (this is done in the E-step). Therefore, we can
simply employ the standard log likelihood formula

ln
(
p
(
{ gi}νi=1

∣∣∣µ,Σ,χ)) =
ν∑
i=1

 %̂∑
j=1

χj N ( gi|µj,Σj)
 . (4.15)

In case (4.15) does not satisfy the convergence criterion, namely ln p({ gi}νi=1

∣∣∣µ,Σ,χ) has
increased about more than ε > 0 in comparison to the previous iteration, we return to the
E-step and proceed again from there on.
After the algorithm has converged, we calculate the BIC value, which is a criterion for

describing the quality of the model fit,

BIC = dim( g) + 1
2 %̂ dim( g) ln(ν)︸ ︷︷ ︸

penalty term

−2 ln
(
p
(
{ gi}νi=1

∣∣∣µ,Σ,χ)) . (4.16)

The lower the BIC, the better the fit. Since in GMM modeling the likelihood is increased
by adding clusters (until every data sample has its own cluster), which leads to overfitting,
the BIC criterion includes a penalty term on the number of parameters in the model.

4.3 Probabilistic Classification of Desired Trajectory
In this section we present our technique to weight and classify movement trajectories. Given
bundles of movement trajectories (the clusters C1, . . . , C%̂, which we assigned using the gen-
eralized GMM clustering introduced in Section 4.2.2), we estimate over the course of the
ongoing movement the probability of an unseen rigid motion trajectory

xη+1 =
{
gη+1(t)

}
t≥0
⊂ SE(3) (4.17)

to belong to one of the clusters. Recall, the superscript η+1 denotes the trajectory, the rigid
motion g belongs. We also consider the option that the novel trajectory belongs to none of
the clusters, but defines a new cluster C%̂+1.
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Procedure

We desire the decision process to operate online. Therefore, we compute throughout the
ongoing movement trajectory xη+1 a probability vector p gη+1(t) = (pη+1

1 (t), . . . , pη+1
%̂ (t))>

for any rigid motion gη+1(t). The probability vector p gη+1(t) is obtained from a similarity
measure between the ongoing movement and the given trajectory bundles C1, . . . , C%̂. This
similarity measure defines the mapping (2.9) which we introduced in Section 2.2. In the
following section, we present how (2.9) is calculated.
Afterwards, we introduce a set of decision rules to support the assignment of the tra-

jectory xη+1 to the corresponding desired trajectory bundle
{
gjd(t)

}
t≥0

for j ∈ {1, . . . , %̂},
depending on the probabilities p gη+1(t).

4.3.1 Similarity Measure and Class Probabilities
As we consider the decision process dynamics (2.10) for any unseen movement, we need to
introduce the mapping (2.9) to obtain the probabilities of the trajectory bundles ·∪%j=1Cj. The
method, we propose therefore, follows the state of the art classification based on maximum
likelihood estimation, as introduced in [105]:
To classify a new motion trajectory xη+1 = { gη+1(t)}t≥0 into the set of known trajectory

bundles ·∪%j=1Cj we employ at any time t ≥ 0 a class-conditional likelihood term

p( gη+1(t)|Θj, Cj) (4.18)

to estimate the cluster probabilities (pη+1
1 (t), . . . , pη+1

% (t))> for the rigid motion gη+1(t). The
set of low level model parameter estimates Θj consists of the defining generalized GMM
parameters of the j-th cluster

Θj = {µj,Σj, χj} for j = 1, . . . , %. (4.19)

The similarity measure we use inside the class-conditional likelihood term is based on the
Mahalanobis concept, but generalizes the Mahalanobis distance to the manifold SE(3). More
precisely, we provide a similarity measure for a newly observed trajectory xη+1 and a set of
training trajectories, D̃η = { xk}ηk=1, which is based on a normalized inverted Mahalanobis
distance over rigid motions. Therefore, we introduce the generalized Mahalanobis distance
on the manifold SE(3):

Definition 4.3.1 The generalized Mahalanobis distance of a new rigid motion gν+1 ∈ SE(3)
and a set of rigid motions { g1, . . . , gν} ⊂ SE(3) is defined as

dmaha( gν+1, { g1, . . . , gν}) =

√√√√√√√√√
(
dm,1 . . . dm,ν

)
k1, 1 . . . k1, ν
... . . . ...
kν, 1 . . . kν, ν


−1

dm,1
...

dm,ν

, (4.20)

where dm,i for i = 1, . . . , ν either the dual quaternion distance measure dmag( gν+1, gi) as
introduced in (3.35) or the axis angle and translation vector distance measure dwmag( gν+1, gi)
as introduced in (3.38). Respective to the rigid motion representation in the distance function,
the kernel functions ki,j are either defined by kse:mag( gi, gj) as in (3.44) or by kse:wmag( gi, gj)
as in (3.46), with i, j = 1, . . . , ν.
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Remark 4.3.1 For the explanation of the similarity measure and the class-conditional likeli-
hood, we require to know to which cluster Cj which of the training trajectories xk =

{
gk(t)

}
t≥0

,
k ∈ {1 . . . , η} are assigned. Therefore, we indicate in the reminder of this section the cluster
membership by a subscript index in addition to the superscript index. Thus, variable gkj (t)
denotes the rigid motion at time t ≥ 0 of the k-th execution in the j-th spatial motion plan.

Class-conditional Likelihood for the Rigid Motion gη+1(t)

To enable the decision process to operate online, we measure for any new trajectory xη+1

the similarity against the training trajectories
{
gkj (t)

}
t≥0

in terms of rigid motion similarity
across all conditions j = 1, . . . , %. Hence, we select for every trajectory xk in condition
Cj, the rigid motion gkj (t′) of an arbitrary time t′ ≥ 0, which is closest to the current
rigid motion gη+1(t) ∈ xη+1 according to the distance measure (3.35) or (3.38), respectively
(depending on the rigid motion parametrization). Then, we calculate the inverse d−1

maha of
the generalized Mahalanobis distance (4.20),

d−1
maha = d−1

maha

(
gν+1(t),

{
gkj (t′)

} ∣∣∣
k∈{1,...,η}, xk∈Cj

)
, (4.21)

to measure the similarity between the current rigid motion gη+1(t) of the new ongoing
movement trajectory xη+1 and the set of closest rigid motions

{
gkj (t′)

} ∣∣∣
k∈{1,...,η}, xk∈Cj

of
condition j, i.e. cluster index j is fixed, trajectory index k ∈ {1, . . . , η} restricted to xk ∈ Cj
is variable.
To obtain a probability p( gν+1(t)|Θ̂j, Cj) from the similarity measure for each cluster Cj,

the sum of the similarity measures across the clusters C1, . . . , C% is normalized to 1,

p( gν+1(t)|Θ̂j, Cj) =
d−1

maha

(
gν+1(t),

{
gkj (t′)

} ∣∣∣
k∈{1,...,η}, xk∈Cj

)
∑%
i=1 d

−1
maha

(
gν+1(t),

{
gki (t′)

} ∣∣∣
k∈{1,...,η}, xk∈Ci

) . (4.22)

The probabilities for all clusters C1, . . . , C% taken together define the cluster weight vec-
tor p gν+1(t) =

(
p( gν+1(t)|Θ̂1, C1) . . . , p( gν+1(t)|Θ̂%, C%)

)>
as introduced in (2.8).

Remark 4.3.2 The equation (4.22) defines the mapping (2.9), which we use to approximate
the human internal movement weighting.

Class-conditional Likelihood for the Trajectory xν+1

From the class-conditional likelihood at gη+1(t), a class-conditional likelihood for the whole
ongoing rigid motion xν+1 is calculated by integrating the likelihood term p( gν+1(t)|Θ̂j, Cj)
over time,

p( xν+1(T )|Θ̂j, Cj) =
∫ T

0
p( gν+1(t)|Θ̂j, Cj)dt, (4.23)

where the time limit T ≥ 0 encodes the upper bound of the continuous time interval [0, T ]
and thus, defines the progress of the trajectory xν+1(T ) = { gη+1(t)}t∈[0,T ].
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Remark 4.3.3 We require the potential movement weighting to operate online, probability
based to approximate human decision making. The state on the art regarding online proba-
bilistic classification method is based on the likelihood function. Therefore, we followed this
approach and introduced a classification method for rigid motions based on the likelihood func-
tion. The presented class-conditional likelihood (4.22) is used to calculate the mapping (2.9)
which we require for the movement weighting in the decision process dynamics (2.10).

4.3.2 Classification Rules
In the following, we introduce a set of decision rules to support the assignment of the
trajectory xη+1 to the corresponding desired trajectory bundle

{
gjd(t)

}
t≥0

for j ∈ {1, . . . , %̂}.
We define four decision rules; two for nominating and two for eliminating classes.
On the one hand, the classification probability defined in (4.22) is contrasted against preset

absolute thresholds to nominate or eliminate the candidate cluster when the probability falls
outside of these thresholds. On the other hand, we implement a sliding window technique
in parallel to either nominate or eliminate a potential spatial movement plan out of the set
of trajectory bundles based on the magnitude of their relative probabilities. In this latter
method, the integral of the probability within the most recent time window of length m is
calculated using (4.23), i.e. we integrate

∫ T
T−m p( gν+1(t)|Θ̂j, Cj)dt for every non-eliminated

cluster Cj. The window is then moved along the trajectory in real time. Therefore, this
method initiates only when m time has passed after the trajectory onset.
When the probability allocation exceeds or undergoes predefined thresholds, the corre-

sponding cluster Cj, j = 1, . . . , %̂ is nominated or eliminated from classification, respectively.
The classification is terminated when a motion cluster is nominated. When the elimination
criteria are met, the procedure resumes without the eliminated condition. Only the clusters
that have not yet been eliminated have to be considered in the parallel motion prediction
process of dynamics (2.10).

Remark 4.3.4 For each time t ≥ 0 in the dynamics (2.10), when a certain trajectory
bundle Cj, j ∈ {1, . . . , %̂} can be eliminated, the desired motion prediction for this trajectory
bundle is abandoned. Respectively, in case one trajectory bundle can be nominated at some
time instance t ≥ 0, only the motion prediction according to this trajectory bundle is pursued.

4.4 Online Trajectory Generation including Sample
Leveraging

In this section we present our approach to approximate the potential movement generation
in the decision process. Previously, we discussed various GP models already that allow for
rigid motion prediction. The models considered so far, however, are suitable for offline model
learning only. Those models are convenient for applications with static environment. In our
application domain, where we aim to approximate human decision making, the circum-
stances are time-varying, and hence, a-priori trained models are impractical, as they might
be outdated, when it comes to prediction. Hence, the training data can be meaningless for
the test case. Therefore, we introduce in the following a recursive algorithm that allows
for online model training in the generalized GP framework. It is inspired by the Kernel
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Recursive Least-Squares (KRLS) algorithm by [100] for standard GP models in Euclidean
space. Additionally, we include the cluster probabilities in the algorithm through adapting
the importance of the training data samples. We call this adaptation sample leveraging.
Let us consider a dynamical system of form ġ = f̃D( g, p g,n g) over rigid motions g as

introduced in (2.10), and a training data set Dν :=
{

( gi, ġi)
}ν
i=1

consisting of ν input-output
pairs from the dynamics f̃D = (ϕ1, . . . , ϕn)>, n ∈ N evolving on SE(3). As each output
component is processed separately and joined into one output distribution afterwards, see
Sec. 3.2, we denote by ġ

(l)
i the l-th component of the output velocity for l = 1, . . . , n and

employ per GP the according training data set D(l)
ν :=

{
( gi, ġ(l)

i )
}ν
i=1

.
Then, the online GP algorithms comprises two main steps. First, it provides an n-

dimensional predictive distribution for any new input gν+1 given training data Dν and
second, per component l it updates the joint Gaussian distribution

p
(
ϕl( g1), . . . , ϕl( gν)|D(l)

ν

)
= N

(
ϕl( g1), . . . , ϕl( gν)|µ(l)

ν ,Σ(l)
ν

)
(4.24)

to a new conditional posterior p(ϕl(g1), . . . , ϕl(gν+1)|D(l)
ν+1), which includes the new observa-

tion ( gν+1, ġ
(l)
ν+1). The mean vector µ(l)

ν ∈ Rν and the covariance matrix Σ(l)
ν ∈ Rν×ν in (4.24)

describe mean and covariance, respectively, of the prediction vector (ϕl( g1), . . . , ϕl( gν))>
in the l-th GP component for l = 1, . . . , n.
We employ leveraging of the training samples in each of the l online GPs, i.e. the samples

are weighted according to the significance of the respective trajectory bundles C1, . . . , C%̂. We
incorporate the weight of the training data into the kernel function following the leveraging
method of [101].
In the reminder of this section we introduce the generalized online leverage GP. We start

with the sample leveraging, where we explain, how the potential movement probabilities
(which we calculated in Section 4.3.1) influence the GP prediction. Subsequently, we present
the initialization and the update step of the recursive GP algorithm, and discuss character-
istic properties.

4.4.1 Sample Leveraging
To employ the probability vectors p g(t) in the motion prediction of dynamics (2.10), we
leverage the training data samples according to the significance of the trajectory bundles.
Specifically, the probability (4.22) of the j-th cluster is incorporated into a new kernel func-
tion for all rigid motions g(t) that belong to the cluster Cj. In the following, we enhance
the generalized squared exponential kernels kse:mag( g1, gj) and kse:wmag( g1, gj), introduced
in (3.44) and (3.46), respectively, to exploit the leverage of training samples.
Given the rigid-motion wise class-conditional likelihood, defined in (4.22), we obtain the

cluster probability vector p g at the rigid motion g(t) as

p g(t) =
(
p( g(t)|Θ̂1, C1) . . . , p( g(t)|Θ̂%̂, C%̂)

)>
, (4.25)

for the cluster set ·∪%̂j=1Cj and Θj the low level cluster parameters for j = 1 . . . , %̂. The
vector p g ∈ [0, 1]%̂ encodes a %̂-dimensional discrete probability distribution over the data
clusters. To employ the weights in the generalized online GP modeling we need to trans-
form the cluster weights into sample leverages. Therefore, we formally expand the vec-
tor p g to a leveraging vector b g ∈ Rν , that leverages the samples in Dν about the weight
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of the corresponding clusters. For a given unique partitioning of the samples in Dν into
the clusters ·∪%̂j=1Cj the cluster index j ∈ {1, . . . , %̂} is known for every captured rigid mo-
tion gi, i = 1, . . . , ν. Hence, we obtain the leverage parameters

b gi =
%̂∑
j=1

p gj δ̃ij for all i = 1, . . . , ν, (4.26)

where δ̃ij defines a modified Dirac delta function which depend on the sample’s cluster
affiliation

δ̃ij =


1, for gi ∈ Cj

0, otherwise.
(4.27)

To encode the variable importance of the training samples into the generalized GP model,
we present a generalized kernel function for inputs in SE(3), which influences the rigid
motion produced by GP prediction. The vector of sample leverages b g is required for the
new leveraged generalized squared exponential kernel function.

Theorem 4.4.1 The function kse:lev : SE(3)× SE(3)× Rν → R+
0 ,

kse:lev( gi, gj, b g) := cos
(
π

2 ( b gi − b gj)
)
kse( gi, gj), (4.28)

where we consider a valid squared exponential kernel function kse defined on SE(3), such
as (3.44) or (3.46), and b g ∈ Rν the vector of sample leverages, defines a valid kernel
function.

Proof 4.4.1 We have proven already in Section 3.4.3 that the functions kse:mag and kse:wmag
define valid kernel functions. As we know from [66, Chap. 6.2] that a finite product of
kernels provides a kernel, it hence suffices to show that the factor cos

(
π
2 ( b gi − b gj)

)
is

positive semi-definite.
According to Bochner’s Theorem [101, Theorem 1] a stationary kernel function is a valid

kernel, if its Fourier transform is non-negative; which is well-known to be non-negative for
the cosine. Hence, the first factor of (4.28) is positive semi-definite and thus, the proof is
complete. �

A more comprehensive derivation of a leveraged kernel function in Euclidean space can be
found in [101]. In this paper, however, input data on the manifold SE(3) is not considered.

4.4.2 Initialization
For the set Dν with ν given training data pairs the generalized online GP regression is fully
described for each dimension l = 1, . . . , n by the variables mean µ(l)

ν , covariance Σ(l)
ν , and the

inverse of the Gram matrix S(l)
ν := K(l)

ν

−1, which we introduce to save the computational
effort of matrix inversion.
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We initialize those variables for a given first observation pair
{

( g1, ġ
(l)
1 )
}
, by setting

µ
(l)
1 = ġ

(l)
1 kse:lev( g1, g1)

σ2
n + kse:lev( g1, g1)

Σ(l)
1 = kse:lev( g1, g1)− kse:lev( g1, g1)2

σ2
n + kse:lev( g1, g1)

S(l)
1 = 1

kse:lev( g1, g1) ,

(4.29)

where kse:lev as defined in Theorem 4.4.1 and σ2
n denotes the variance of the noise process n g

defined below (2.10).

4.4.3 Update Step

Given the recursive variables µ(l)
ν , Σ(l)

ν and S(l)
ν (as initialized in (4.29)) and a new observa-

tion gν+1 we seek to infer the next set of variables µ(l)
ν+1, Σ(l)

ν+1 and S(l)
ν+1, which fully describes

the generalized online GP with ν+ 1 observations. To enable the prediction step, we need to
determine a scalar predictive mean value ˆ̇g(l)

ν+1 and variance σ̂2
ġ(l)ν+1 for each of the unknown

output components ġ
(l)
ν+1. Then, we update the posterior Gaussian distribution in the model

update step.

Prediction In order to keep the final equations simple and readable, four auxiliary vari-
ables are defined

sν+1 := S(l)
ν kν+1

γ2
ν+1 := kse:lev( gν+1, gν+1)− k>ν+1 S(l)

ν kν+1

ςν+1 := Σ(l)
ν sν+1

σ2
fν+1 := γ2

ν+1 + s>ν+1 ςν+1,

(4.30)

where kν+1 is a column vector with (kν+1)i = kse:lev( gi, gν+1). Each of the n components of
the predictive mean and variance are computed by

ˆ̇g(l)
ν+1 = s>ν+1µ

(l)
ν

σ̂2
ġ(l)ν+1 = σ2

n + σ2
fν+1

(4.31)

for l = 1, . . . , n. They are joint into a single multidimensional predictive distribution for the
input gν+1 via

N
(
(ˆ̇g(1)

ν+1, . . . , ˆ̇g(n)
ν+1)>, diag(σ̂2

ġ(1)ν+1, . . . , σ̂
2
ġ(n)ν+1)

)
. (4.32)

Model Update After observing the real output components ġ
(l)
ν+1 the recursive variables

µ(l)
ν , Σ(l)

ν and S(l)
ν are updated to the posterior distribution for (ν + 1)-th observation via
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estimation error reduction

µ
(l)
ν+1 =

 µ(l)
ν

ˆ̇g(l)
ν+1

+ ġ
(l)
ν+1 − ˆ̇g(l)

ν+1
σ2
fν+1

 ςν+1

σ2
fν+1



Σ(l)
ν+1 =

Σ(l)
ν ςν+1

ς>ν+1 σ̂2
fν+1

− 1
σ̂2

ġ(l)ν+1

 ςν+1

σ̂2
fν+1


 ςν+1

σ̂2
fν+1


>

S(l)
ν+1 =

S(l)
ν 0

0> 0

+ 1
γ2
ν+1

sν+1

−1


sν+1

−1


>

.

(4.33)

4.4.4 Characteristic Properties and Application
The generalized online GP allows for the same precision as its offline pendant. Given a
set of training data Dν , a set of hyperparameters h in kernel (4.28) and a new input value
gν+1, the generalized GP model yields the same predictive distribution as obtained by mean
and variance defined in (4.31), which can be verified by simple calculations. Further, while
the standard GP has complexity O(h3), as it is governed by matrix inversion, the recursive
GP algorithm reduces the computational complexity to O(h2). As observations are added
consecutively to the training data, the algorithm is suitable for learning the GP model online.
For application in practice, however, the recursive GP requires the following adaptations:

Fixed-Budget Online GP

We denote by dictionary the set of training data on which the next prediction is made. So
far, the recursive GP has an ever-growing dictionary. In order to limit the requirements
of computation and memory we introduce the fixed-budget online GP, possessing a limited
dictionary size. In case a predefined budget β is exhausted, i.e. on obtaining (β + 1)-th
observation, we select and remove the least relevant pair ( gj, ġj) ∈ Dβ+1. The index j is
determined by a cost function measuring the information loss caused by removal of the pair

j = arg min
i


(

S(l)
β+1µ

(l)
β+1

)
i

( S(l))i,i

 2

(4.34)

Then, the operators (·)−i and (·)−i,−i, which remove the ith row in a vector and both the ith
row and column in a matrix, respectively, are applied to remove the corresponding informa-
tion from the regression variables. Hence, by removal of j-th observation

µ
(l)
β+1 =

(
µ

(l)
β+1

)
−j

Σ(l)
β+1 =

(
Σ(l)
β+1

)
−j,−j

S(l)
β+1 =

(
S(l)
β+1

)
−j,−j

−

(
S(l)
β+1

)
−j,j

(
S(l)
β+1

)>
−j,j(

S(l)
β+1

)
j,j

(4.35)

we re-obtain in the (β + 1)-th recursion step a dictionary of size β.
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Forgetting Strategy

Under non-stationary working circumstances the generalized recursive GP additionally needs
a strategy to “forget” past samples to be able to adapt to a varying underlying mapping [100].
The basic idea of the forgetting strategy is to slightly reset the main vector and the covariance
matrix to their initial values after each kernel updates. A forgetting factor γ ∈ (0, 1] is applied
to the mean and covariance of the generalized online GP by

Σ(l)
ν = γΣ(l)

ν + (1− γ)k(l)
ν

µ(l)
ν = √γµ(l)

ν .
(4.36)

The smaller the forgetting factor γ, the faster the algorithm is able to track changes, mean-
while it learns less. When choosing γ = 0, the regression is with complete forgetting,
whereas γ = 1 corresponds to no forgetting.

4.5 Experimental Evaluation
In this section we validate our approach to approximate the decision process using a toy
example, namely elderly assistance in putting on shoes. Since it affects the comfort of the
human shoe receiver, we desire the robotic assistance to behave human-like in its approach
to the human, the shoe positioning relative to the human foot and the slipping of the shoe
over the foot. Hence, we capture and analyze human-human behavior in this cooperation
task to design attraction forces for a robotic control law to imitate human shoe providing
behavior.
First, we capture and cluster unconstrained human leg movement, when the participant

expects to be provided a shoe. Using the results of this analysis, we determine the number
of shoe reception conditions %̂ in which the spatial movement plans are split in and the
corresponding cluster parameters. Subsequently, we perform a human-human cooperation
analysis: One participant takes over the role of the provider, the other is the receiver (rep-
resenting the elderly that needs assistance). Meanwhile the receiver indicates the desired
dressing pose by moving the foot towards it, the provider approaches the receiver, adapts
the shoe positioning to the receivers goal and slips the shoe over the presented foot. Fig-
ure 3.7 and Figure 4.1 illustrate the procedure for different human-human pairs. Based on
the provider behavior in the preliminary human-human cooperation task, we approximate
the weighting algorithm for the receivers potential movement plans and obtain the leverage
parameters for the data samples. The sample leverage is used for predicting the human
internal spatial movement goals, which in turn are utilized as weighted attractor forces in
the robot control.
A robot with mobile platform was employed to execute the shoe putting on to a sitting

human participant. To allow for precise movement tracking of the human, markers were
attached to the human body and the robot was equipped with a rigid grasp unit for the
shoe. Figure 4.2 shows a successfully shoe dressing of a human participant by the robot.
Additionally, the picture visualizes the robotic setup including the rigid grasp unit for the
shoe.
The experiment (consisting of a human user study about the comfort and efficiency of

the lower limb assistance by the robot) could not be finalized due to a fire accident. There-
fore, the leveraged generalized online GP will not be evaluated experimentally. Instead, we
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Figure 4.1: One human puts on a shoe to another in a human-human cooperation study to
prepare intuitive elderly assistance in service robotics. A motion tracking system
captures the provider’s adaptation of the shoe to the receiver’s leg motion and
a 6-DoF force and torque sensor captures the contact forces during the slipping
over motion.

Figure 4.2: Successful robotic lower limb assistance. A robot approaches the human shoe
receiver, positions the shoe relative to the estimated receiver’s goal foot pose and
successfully slips the red shoe over the foot.
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Figure 4.3: A natural 6D human handover is visualized. The object handover starts from an
initial hand configuration, performs the object grasp and terminates at the final
configuration after the object is handed over. The handover motion in this trial
incorporates a half turn of the object.

demonstrate the generalized online GP with leverage parameters fixed to the unit vector 1
in a human-human handover scenario.

4.5.1 Generalized Online GP Demonstration
The aim of this real data experiment is to generate a human motion prediction online.
Therefore, we employ the generalized online GP with a fixed leverage parameter p g = 1. We
do not rely on task specific prior knowledge in our approach to guarantee maximal adequacy
for arbitrary tasks, but use a totally generic initial choice for the model parameters. The
example we choose in this experiment, visualized in Figure 4.3, concerns a human object
handover including significant rotational motion, namely turning the object around by a
rotation about π. We approximate this handover task by employing the decision process
dynamics (2.10). With the generalized online GP multiple potential movement plans in
SE(3) can be generated in parallel. We, however, exemplary only predict one such plan and
therefore, do not require alternative leverage parameters.

Experimental Conditions

A pair of human participants performed an object handover where the passers hand motion
was tracked using a magnetic motion tracking system (Polhemus Liberty) with a sampling
rate of 80 Hz. The subject handed over a cylinder (21 cm in length, 5.5 cm in diameter and
weight 280 g). We approximate the human motion using the generalized online GP model
and evaluate the results using the captured 6-DoF data as ground truth. The forgetting
factor is fixed to 1, i.e. no forgetting, and the dictionary size is limited to 100 observations,
as a trade-off between regression performance and computational demand. The regression
is performed online on a commercially available computer with Intel core i5 processor and
8 GB RAM. One iteration of the generalized GP model incorporats the calculation of a
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predictive mean and variance in all 6 output dimensions plus the update of the 6-DoF
posterior distribution. On average, a recursion step takes 0.38 sec.

Application of Generalized Online GP and Kernel Reset

From the captured data, we obtain the input set of dual quaternions { gi}νi=1 representing the
hand poses throughout the handover and the corresponding output velocity set { ġi}νi=1. Each
6D velocity consists of three translation velocities ġx, ġy, ġz and three rotational velocities
represented in the tangent bundle ġTSx , ġTSy , ġTSz . We approximate the dynamics (2.10)
using the GPHD over dual quaternions with squared exponential kernel kse:mag as introduced
in (3.44) and initialize the hyperparameters with h0 = (1, 1, 1). Per newly observed sample
pair ( gν+1, ġν+1) the training data set Dν increases until the budget limit 100 is reached and
the least relevant pair removal process is additionally activated.
As it is our aim to demonstrate the wide applicability of the proposed approach besides

the experimental validation, we do not perform prior investigations to find optimal hyperpa-
rameters, despite the fact that this is the common routine in GP modeling. Instead, we train
the hyperparameters on the four first observed pairs {( gi, ġi)}4

i=1 and perform the recursive
GP over dual quaternions with this possibly suboptimal hyperparameter set. As these first
poses might not be representative for the whole following motion, we accept less accurate
prediction results in favor of robustness of the algorithm and a wide application range. In
case the mean prediction deviates from the subsequently obtained ground truth value more
than a tolerated prediction error (in this experiment we use 0.6 as threshold), we train new
hyperparameters on the following four dual quaternions.

Visualization

The estimation results are illustrated in Figure 4.4. For clarity the 6D output is shown per
dimension over the runtime corresponding to the sample index i = 1, . . . , ν instead of the
GP input data g. The vertical bar indicates the current time stamp, i.e. left of it is the past,
where the Gaussian posterior is available and on its right is the future, where we estimate
a predictive Gaussian. The ground truth is depicted by the red dashed line and the mean
prediction by the blue solid line. The grey shaded area visualizes the 2σ confidence interval
for the estimation and captures thereby the noise involved in real data. In the first and
second row we depict the three dimensions of the translational velocity and tangent bundle
velocity, respectively. In the third row, the rotational velocity estimation is projected to
the sphere S3 using (3.53). We visualize the three imaginary components of the resulting
quaternions only. The velocity predictions, row one and two, demonstrate that in the past
the mean prediction deviates little from the ground truth. The distance, how soon the
mean prediction returns to zero in the future depends on the length-scale hyperparameter λ
learned from four consecutive observed poses only. We indicate the kernel reset with black
dots on the ground truth trajectory. In the third row, a slight asymmetry in the uncertainty
estimate can be observed. It results from the projection to a curved space. The results show
further that over time the prediction drifts from the ground truth as the velocity prediction
error accumulates. Recall that we could significantly improve the estimation results through
elaborate hyperparameter tuning, but as this contradicts the gist of online modeling, we
refrain from any preliminary task specific tuning.
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Fig. 7 Visualization of a 6D human motion trajectory: The object handover starts from an initial hand configuration, performs the object grasp and
terminates at the final configuration after the object is handed over. The hand orientation is visualized by coordinate systems sequentially drawn at
the according hand position.

mon routine in GP modeling. Instead, we train the hyper-
parameters on the four first observed pairs {(gi, ġi)}4

i=1 and
perform the recursive GP over dual quaternions with this
possibly suboptimal hyperparameter set. As these first poses
might not be representative for the whole following motion,
we accept less accurate prediction results in favor of robust-
ness of the algorithm and a wide application range. In case
the mean prediction deviates from the subsequently obtained
ground truth value more than a tolerated prediction error (in
this experiment we use 0.6 as threshold), we train new hy-
perparameters on the following four dual quaternions.

Visualization The estimation results are illustrated in Fig-
ure 7. For clarity the 6D output is shown per dimension over
the runtime corresponding to the sample index i = 1, . . . , ν
instead of the GP input data g. The vertical bar indicates the
current time stamp, i.e. left of it is the past, where the Gaus-
sian posterior is available and on its right is the future, where
we estimate a predictive Gaussian. The grey shaded area vi-
sualizes the 2σ confidence interval for the estimation and
captures thereby the noise involved in real data. In the first
and second row we depict the three dimensions of the trans-

lational velocity and tangent space velocity, respectively. In
the third row, the rotational velocity estimation is projected
to the sphere S3 using (34). The velocity predictions, row
one and two, demonstrate that in the past the mean predic-
tion (depicted by the blue solid line) deviates little from the
ground truth (depicted by the red dashed line). The distance,
how soon the mean prediction returns to zero in the future
depends on the length-scale hyperparameter λ learned from
four consecutive observed poses only. We indicate the ker-
nel reset with black dots on the ground truth trajectory. In
the third row, a slight asymmetry in the uncertainty estimate
can be observed. It results from the projection to a curved
space. The results show further that over time the prediction
drifts from the ground truth as the velocity prediction error
accumulates. Recall that we could significantly improve the
estimation results through elaborate hyperparameter tuning,
but as this contradicts the gist of online modeling, we refrain
from any preliminary task specific tuning.

Figure 4.4: Estimation results of the generalized online GP algorithm. The vertical bar
indicates the current time stamp. In the past, left of the bar, the Gaussian
posterior is available, whereas on its right, in the future, the motion is predicted.
The first row depicts the translational velocities, the second row the tangent space
velocities and the third row shows the imaginary components of a quaternion,
which is obtained by projecting the velocities of the row above to the sphere.
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4.5.2 Rigid Motion Clustering of Shoe Receiver
To cluster the executed receiver’s foot motions into a reasonable set of trajectory bundles, we
first capture freely performed human foot presentations (for future shoe receiving) using a
motion tracking system (Qualisys Sweden) with a sampling rate of 179 Hz. Five subjects (1
female, 4 male) with the average age of 31+−4 years and body height 1.77+−0.18 (m) performed
each 100 repetitions of intuitive foot motions. The participants were only instructed to
remain seated and to move their foot in a pose how they desired to be put on a shoe.
Otherwise, the subjects were free to perform the foot demonstrations as they wished.
Since we aim to cluster the movements according to their spatial characteristics instead

of the body characteristics of the participants, we need to scale the subjects to the size of
a virtual human. Therefore, we calculate the norm of the foot position in the coordinate
frame centered in the chest throughout the motion and use its maximum as scaling factor,

cscale = max
κ≥0
‖vfoot,κ − vchest,κ‖. (4.37)

We consider 1.5 m as maximum distance of the standard virtual human and calculate the
foot pose in chest frame scaled by 1.5/cscale, i.e. the translation is scaled, while the rotation
remains unchanged.
We apply the generalized GMM clustering to the goal poses of the foot in chest frame. In

this experiment we set the distance bound of the inequality (4.3) to cmax = 10300 and the
convergence bound for the loglikelihood (4.15) to 10−6ln p({ gj}νj=1

∣∣∣µ,Σ,χ). We calculate
the BIC value iteratively for increasing cluster cardinality from 1 to 10. Then, we repeat
the experiment 70 times, to assure reproducible results. In our experiment we found that
according to both, the lowest achieved BIC values and the average BIC values, the optimal
number of clusters %̂ = 5. Figure 4.5 visualizes on the left the average and standard de-
viation of the BIC values and on the right the optimal BIC value over the 70 experiment
repetitions for each of the 1 to 10 clusters. Globally, the optimal achieved BIC value is
3286.56. Additionally, Figure 4.6 shows a histogram of the optimal achieved BIC values over
all experiment runs. In 25 out of the 70 repetitions the GMM with 5 clusters turned out
to be BIC optimal. The lowest obtained BIC values during the remaining 45 repetitions
spreads over the cluster cardinalities 3− 8.
To proof that the optimal number of clusters (in the present case 5) only coincidentally

equals the number of subjects, we additionally visualize the distribution of clusters among
the subjects in Figure 4.7. The female subject has number 3, the shortest male subject has
number 5 and the tallest male subject has number 2. Hence, no correlation between the
subject’s body size or the gender and the clusters is discernible.
The clusters of the generalized GMM model with the globally lowest BIC value, i.e. BIC =

3286.56, are visualized in Figure 4.8. The human shape represents the standardized virtual
human with maximal foot to chest distance of 1.5 m. Since, we represent the foot motion in
chest frame of the human, as depicted in the figure, the goal positions of the foot, visualized
by colored circles in the space, depend on the posture of the participant. Hence, especially
the chest frame orientation is affected by whether the subject sits upright or crunched on
the chair. Therefore, some of the goal positions might seem out of reach for the exemplary
visualized human shape. The color code of the samples shows the cluster assignment for the
samples selecting for each the cluster with highest generalized GMM probability. We only
visualize the positions of the samples, to not superpose the data clusters with 500 cluttered
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Figure 4.5: Bayesian information criterion (BIC) value for GMM with cluster cardinality
form 1 to 10. On the left, the average and standard deviation of the BIC values
over 70 experiment repetitions are depicted; on the right the lowest BIC values
obtained throughout all 70 experiments are shown for each cluster size. In both
settings, the optimal number of GMM clusters %̂, depicted in red, is 5.

Figure 4.6: Histogram of the optimal obtained BIC values over 70 experiment repetitions.
Clearly, the GMMs with 5 clusters generated the lowest BIC value in most cases
(25 out of 70).
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Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Figure 4.7: Histogram over the final foot clusters performed by each of the 5 subjects. The
distribution over the goal configurations shows the diversity in personal pref-
erence of the individuals but no correlation between the clusters and personal
attributes of the subjects.

coordinate frames. For each generalized GMM component, however, one coordinate frame
in the center of the cluster shows the main axes of the fitted projected Gaussian distribution.
The generalized GMM covers well the reachable space of foot goal poses of the shoe receiver
and contains most of the data set within the Gaussian 2σ-uncertainty regions, depicted by
the transparent cluster ellipsoids.

4.5.3 Classification Analysis in Comparison with Humans
As we aim to design in future work a human-behavior-based control for the robot to assure
intuitive assistance, we require a model for the human motion behavior in the specific task
of passing and slipping on a shoe to another one’s foot. Hence, we carry out a human-human
interaction study to estimate the required parameters to imitate human behavior from the
preliminary interaction study. In seven teams of one shoe provider and one shoe receiver,
we analyze intuitive human interaction behavior. Based on the findings of the study, we
set up the decision making among the potential movement plans using dynamics (2.10) and
compare our algorithm to human provider ability to identify the aspired receiver’s class. The
presented decision process algorithm outperforms the human in speed and accuracy.

Experiment Setup

Every experiment repetition is conducted as follows. The shoe receiver sits on a chair with
both feet flat on the ground. The shoe provider stands approximately 2.5 m apart and
turned away, so that he/she cannot see the receiver. After a signal, the provider picks up
the shoe, which was put on a table in front of the provider, and turns towards the receiver.
Only after the receiver had visual contact with the provider, he/she initiates the own foot
movement. The receiver moves the foot towards one of the goal configurations, that were
previously identified in the clustering experiment in Section 4.5.2. The provider approaches
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Figure 4.8: Generalized GMM clusters for which we obtained the globally optimal BIC
value 3286.56. The receiver’s foot goal position is illustrated by circles, col-
ored according to the most probable cluster membership. They are presented
in human chest frame, and thus, depend on the receiver’s sitting posture. Even
though only the data positions are visualized for clarity reasons, the generalized
GMM clustering was performed on the full rigid motions gj, j = 1, . . . , %̂. The
ellipsoids represent the fitted cluster components. Each projected Gaussian is
centered at one of the coordinate frames right, left, bent, cross low, cross high
and spans the corresponding ellipsoid with it’s 2σ-uncertainty region.
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Figure 4.9: Trajectories of the shoe in 3D space. The color gradient of the trajectories
depict the evolution of the movement from the start (dark blue) to the goal
configurations, when the foot is successfully inserted in the shoe (yellow). The
same set of trajectories, which is represented in a global frame on the left, is
represented in the goal foot frame on the right. The goal foot frame is the
configuration, in which the shoe insertion in that specific cluster has taken place.

the receiver and slips the shoe over the foot, which in the meanwhile arrived in the goal
configuration.
The goal configurations are only known to the receiver, not to the provider. Every pair of

receiver and provider repeats the experiment 65 times with an priori set random permutation
of a sequence of uniformly distributed goal configurations, i.e. each of the 5 shoe putting
on configurations is conducted 13 times. The first 5 repetitions are considered as training
for the provider to get to know the possible classes. In the subsequent 12 repetitions per
condition, randomly 2 executions are delayed by the shoe receiver for a couple of seconds to
analyze the waiting behavior of the provider.

Human Behavior Analysis

In this section we analyze the behavior of the shoe provider to approximate the decision
process analogously to the human decision making, as human-like robotic behavior allows
for intuitive human-robot cooperation. We investigate the characteristics of the provider’s
shoe movement in terms of trajectories. Our findings show that the probabilistic trajec-
tory classification, presented in Section 4.3, exhibits the required characteristics to estimate
the weighting of potential spatial plans and the induced decision making. The details are
provided in the following.
Figure 4.9 demonstrates a set of shoe trajectories in 3D space, performed by various shoe

providers. The rotation is omitted for clarity of the visualization. All trajectories start from
a similar initial configuration, as the shoe is placed on a table in the beginning, and are
cut on the onset of the shoe movement. The trajectories end when the shoe is successfully
put onto the receiver’s foot for any of the 5 optional clusters of final configurations. The
trajectories are color coded: From the motion onset (in dark blue) the color gradient is
getting brighter to the trajectory’s offset with the shoe on the receiver’s foot (marked in
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Figure 4.10: Norm of the translational velocity trajectories of the shoe. On the left side, the
mean and the standard deviation of the velocities per condition are visualized
over time, and on the right side, the variability in the execution velocity is
depicted over the distance to the foot.

yellow on the trajectory). In the left plot of Figure 4.9 the trajectories are shown in a
global frame and the various final configurations can be recognized as 5 clusters of yellow
regions in translational space. Note, the cluster membership gets more obvious when one
takes rotation into account, which in this visualization is absent for the sake of simplicity.
In the right plot of Figure 4.9 the trajectories are represented in the final foot frame. Hence,
the goal configurations of each cluster are superimposed, and thus, the yellow ends of the
trajectories are joint in a similar final configuration in the goal foot frame.
The overlay of shoe trajectories demonstrates a similar provider movement at the beginning

and at the end of each experiment repetition (even though the trajectories are captured
from different providers). We interpret this behavior like this: In the initial phase where
the decision making has not yet terminated, no adaptation to the specific shoe insertion
configuration is present. Likewise, the movements show a standardized approach within a
foot neighborhood of 0.1−0.2 m, and the insertion of the foot into the shoe follows the exact
same pattern for all movement clusters. Hence, the decision making and the adaptation of
the shoe to the foot goal configuration has terminated before this final phase.
The assumption that the provider’s behavior initially is a standardized motion towards the

receiver is strengthened by the clear pattern in the velocities for all experiment repetitions.
Figure 4.10 shows the translational velocity norms over all captured shoe movements (all
conditions and participant pairs). The norm is employed to unify the 3D translational
velocities. In the left plot the mean and the standard deviation of the velocities per condition
are visualized over time, while in the right plot the variability in the execution velocity is
depicted over the distance to the foot. The velocities were calculated using zero-order hold
(i.e. the difference quotient) from the shoe movement trajectories, synchronized on the onset.

The pattern in the velocities on the left of Figure 4.10 can be interpreted as follows. The
provider continuously moves the shoe towards the receiver. Even though the motion is slowed
down during decision making, the movement towards the expected goal is continued. When
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a precise goal configuration of the foot can be anticipated, the provider positions the shoe
relative to the estimated foot configuration while adapting online to the receiver’s motion.
The small captured velocities towards the end of the trajectories, originate from the drift
in the human motor system and from measurement noise. Note that taking the norm of
the velocities additionally amplifies the appearance of the noise. We would like to point out
that the second peak in the velocities of the bent condition (drawn in green) are due to the
particular large distance of the provider and the foot in this condition. Besides, in the idle
condition, where the receiver did not move the foot, the provider comes to rest (roughly in
the time interval 3− 4 s) while waiting for the receiver to move his/her foot.
On the right of Figure 4.10 the shoe trajectory has to be understood from right to left.

When the movement is initiated, the distance between the shoe and the foot is largest (about
2.5 m); when the experiment repetition terminates, the distance between foot and shoe is
circa 0 m, since the foot is inserted in the shoe. The visualization clearly shows for distances
larger than 1.2 m a phase of standardized approach of the provider towards the receiver. The
phase when no single condition is clearly prioritized is characterized by low motion velocities
(around 1 m distance to the shoe). And finally, the third phase of the shoe providing executes
the demanded adaptation of the shoe to the foot.
Hence, we deduce from the human-human study, that a fast and reliable probabilistic

classification algorithm is required to approximate the potential movement weighting in the
decision process.

Evaluation of the Classification Algorithm

In this section we evaluate the speed and accuracy of the probabilistic trajectory classifica-
tion algorithm as introduced in Section 4.3. The algorithm is trained per condition on 15
trajectories { g(t)}t≥0 ⊂ SE(3) (consisting of positions and orientations), i.e. in total on 75
motion trajectories of the receiver’s foot. Then, the algorithm calculates online the class-
probabilistic likelihood (4.22) from unseen human receiver trajectories and estimates the
goal cluster using the classification rules introduced in Section 4.3.2. We test the algorithm
on 10 unseen trajectories per condition, which start with the motion onset. The algorithm
classified 42 of the 50 test trajectories correctly after 47.08 (+−6.48)% of the trajectory length
on average (+− standard deviation). Table 4.1 details the classification results per condition.
In most cases the classification terminated within the first second after the motion onset,
which is fast. The false classifications seem to slow down the classification time in some
cases (see for instance the conditions cross low and right). However, occasionally the false
classifications appear “rushed” (e.g. the wrong decision in the bent condition is made signif-
icantly earlier, all false classifications for condition left are faster than the correct ones and
in the right class the large standard deviation suggests partially early classifications).
The testing trajectories are cut to the rigid motion g(T ) when the classification has ter-

minated. We synchronize the test movement trajectories with video data from the receiver’s
foot. Accordingly, the videos are cut to the last video frame before the onset of the motion
and the first video frame after the algorithm finished the classification. Thus, the video
snippets contain two frames more than the information the algorithm had for the decision
making.
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Table 4.1: Overview over the classification results broken down according to the conditions.

Classification

Conditions cross low cross high left right bent

success rate (%) 80 100 80 70 90

duration mean(std)
in s

0.95(0.14) 0.97 (0.18) 0.85 (0.07) 1.04 (0.21) 0.92 (0.12)

duration mean(std)
in % of traj. length

47.00(6.62) 48.26(9.56) 41.95(3.76) 52.37(11.18) 46.00(6.05)

duration mean(std)
in % for success

46.45(4.95) 48.26(9.56) 42.37(3.39) 51.28(4.77) 47.25(4.86)

duration mean(std)
in % for failure

49.21(14.51) - (-) 40.26(6.33) 54.91(21.91) 34.74(0)

cross low cross high left right bent

cross high left

Figure 4.11: Goal configurations of the 5 clusters left, right, cross high, cross low and bent.
The pictures are shown to the participants as representatives of the possible
clusters.

Evaluation of the Human Decision Making

In this section we evaluate the speed and accuracy of humans in movement classification.
The movement patterns of each of the 5 different clusters are demonstrated to the human
participants. Then, the participants are asked to identify the corresponding cluster left, right,
cross high, cross low or bent of a random set of 100 test video sequences. The set of 100 test
movements is sampled uniformly over the 5 conditions. In this experiment, however, we ex-
clude the test trajectories where the algorithm misclassified, to avoid impeded circumstances
for the humans due to rushed decision making of the algorithm (and thus, extremely short
video snippets). After having watched the whole video sequence, the participant is asked
to select the class in which they believe the presented movement will terminate. Therefore
he/she chooses a goal configurations presented in Figure 4.11. The experiment is designed
this way to not pressure the participant to speed up, since time pressure might result in
careless mistakes. Additionally, we do not have to deal with delays of the participants due
to reaction time.
The experimental is evaluated on 11 subjects (6 male, 5 female). The average age (±

standard deviation) is 36.1 (±16.6) years. The youngest subject is 5 years old, the old-
est 65. In 57.36% the participants predict the correct goal configuration with a standard
deviation across the subjects of ±12.52%. Differences among male and female partici-
pants are not significant; accuracy of males: 57.17% (±11.60%) versus accuracy of females:
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55.40% (±17.95%). Age dependency as well can not be approved. Even the 5 year old child
performed middling. Table 4.2 details the classification results per condition. Even though
the conditions are sampled uniformly at random, the law of large numbers allows quite large
deviations among the condition frequency. The condition bent is sampled 258 times, whereas
the condition right only 190 times in total for all participants. The subjects tend to pre-
dict the cross conditions considerably more often than the other conditions. This, however,
does not mean, they perform particularly well on those conditions. In fact, the participants
perform best on the right condition. In 15.36% out of the 18.45% when the condition was
sampled, the humans correctly identify this condition. Recognizing the left condition is ap-
parently most difficult. The subjects correctly predicted it in only 5.18%. However, this
might be due to the participants predicting this condition scarcest.

Table 4.2: Overview over all 1100 repetitions broken down according to the conditions.

Evaluation (in %)

Conditions cross low cross high left right bent

How often randomly sampled 20.09 20.64 18.55 17.27 23.45

How often predicted 28.27 24.45 13.27 18.45 15.54

How often correctly predicted 13.18 11.00 5.18 15.36 12.64

How often wrongly predicted 15.09 13.45 8.09 3.09 2.90

How often wrongly not predicted 6.91 9.64 13.36 1.91 10.81

Contrasting the Algorithm against Human Decision Making

The algorithm clearly outperforms human classification abilities. The best performance
that is achieved by the humans is 80% correct classification, while the algorithm achieves
84%. On average, the human participants only achieve 57.36% correct classification. The
participants unanimously complain about not having come to a decision about the goal
configuration within the short video sequence. Hence, we demonstrate that the algorithm is
faster and more accurate than humans in the decision making, even though we provide more
information to the human than to the algorithm.
Figure 4.12 shows two different human movement trajectories that are correctly classified

into the conditions cross high (on the left) respectively left (on the right). The pictures are
the last video frames of the video snippets; when the algorithm had (correctly) classified
each of the two motions into the clusters. For humans it is hardly possible to determine the
correct condition in such an early stage of the motion, even though in the present pictures
the differences in the whole leg posture are clearly visible in the direct comparison.

Remark 4.5.1 I participated in this experiment and were not able to outperform the algo-
rithm. Even though I had developed and implemented the algorithm and had executed the
recorded movements, I only achieved the human record of 80% correct classification. If I
would be excluded from the experiment, the performance of the remaining 10 participants
would drop to 55.10% correct predictions on average with a standard deviation of ±10.56%.
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4 Human Decision Process Estimationcross low cross high left right bent

Correct identification as cross high

1 2 3 4 5

Correct identification as left

Figure 4.12: The first video frames after the online classification had correctly classified the
synchronized movement trajectories into the conditions cross high respectively
left. The algorithm is based on the foot motion only and does not take the knee
movement into account.

4.6 Discussion

To conclude this chapter, we review our achievements concerning the approximation of the
human decision process, which consists of a parallel process of potential movement planning
and weighting of the potential plans.
As we do not have access to the human internal potential desired trajectories, we rely

on executed human behavior in similar situations, where the subjects had to achieve the
same task goal. We provide an algorithm for probabilistically differentiating the human
movement plans, namely a generalization of the GMM clustering to rigid motion input
data. Using this approach to estimate the human internal movement plans, we consider
variable data densities and heterogeneous cluster sizes, as well as the uncertainty in human
motor execution by modeling the clusters with Gaussians. Additionally, the EM-algorithm,
which is employed to fit the GMM to the data, autonomously handles the required number of
clusters. In an experimental evaluation of the algorithm, we validate the GMM clustering for
human shoe putting on for different configurations on SE(3). According to the BIC measure,
we receive %̂ = 5 as optimal estimate of the number of goal configurations. Therefore, we
bundle the corresponding trajectories accordingly to approximate the human internal desired
trajectories { g1

d(t)}t≥0 , . . . , { g5
d(t)}t≥0 in this specific task.

Further, we introduce a probabilistic classification for rigid motion trajectories to weight
the movement alternatives. This algorithm is based on a point wise similarity measure
between a new unseen motion trajectory and the approximated potential movement plans.
We develop a suitable similarity measure based on the concept of the Mahalanobis distance,
but allowing for rigid motion input. Due to the point wise calculations, the weighting
operates online on the new unseen trajectory, until the algorithm has come to a decision
for the classification through applying the presented classification rules. We evaluate the
online classification algorithm in comparison to human decision making abilities in the task
of predicting the goal configuration of human foot movement. Our investigations show, that
the algorithm accomplishes this task faster and with higher accuracy than humans. Since the
algorithm is online capable, it generates a probability distribution encoding the probabilities
of the potential spatial movement plans to be assigned as underlying desired trajectory for
each captured measurement.
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The simultaneously running process for predicting the ongoing new movement trajectory
incorporates the potential movement weighting. We introduce in this chapter the procedure,
how the cluster weights are used to leverage the training samples for the online trajectory
prediction. The GP kernel function is modified to account for the sample leverages. Further,
the GP is implemented recursively to allow for online model training and prediction on rigid
motions. Hence, we introduce a generalized online GP including sample leveraging. We
validate the generalized online GP on real human motion data. However, in the presented
experiment, the sample leverages are fixed to 1.
We are looking forward to employing our decision process approximation as a whole to the

task of putting on a shoe to some human by a robot, and further applications in elderly care
and assistance. This application field is growing due to the demographic change in many
countries world wide. The idea of parallel behavior planning and weighing the options,
however, is not restricted to certain application domains, but can be applied to a wide
variety of human modeling tasks. It does not even necessarily involve movement data. It
could for instance analogously be applied to natural language domains for conversation topic
estimation.
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5
Ambient Symptom Recognition in Parkinson’s
Disease using a Wearable Tracking Device

In this chapter we present our approach of estimating the human internal motor state dy-
namics (2.11) along the example of human motor symptom estimation of Parkinson’s disease
(PD) patients. In Section 2.3 we introduced an external monitoring system to estimate the
motor state, since we have no access to the human internal motor states. Therefore, we
employ the underlying assumption of the standard internal motor state rating procedure
in PD [62]: We identify the patient’s internal motor state based on the intensity of motor
abnormalities. A fault detection system (2.16) can then detect the share of motor dysfunc-
tion in executed human motor behavior and estimates the motor symptoms. Recall, that we
denote the motor symptoms and the side effects of medication, both with “symptoms”.
In the reminder of this chapter we detail our technique for the motor symptom estimation.

Therefore, we introduce our method for monitoring the motor symptoms of Parkinson’s pa-
tients by stochastically modeling the relationships between their wrist movements during
unscripted daily activities and corresponding annotations about clinical displays of move-
ment abnormalities. We approach the estimation of PD motor behavior by multiple GPs for
three classes of commonly observed movement abnormalities in patients with PD including
bradykinesia with tremor, bradykinesia without tremor, and dyskinesia. A special charac-
teristic of our method is that it not only estimates the presence of those motor symptoms,
but also their severities.
This chapter is structured as follows. We start with presenting important background in-

formation and facts about PD. Then, we introduce the monitoring system, i.e. our methods
for data acquisition. Subsequently, the methodology for approximating the human motor
symptom is detailed, consisting of feature identification in the monitoring unit and mo-
tor abnormality recognition and estimation in the fault detection. Finally, we present our
application setup for a real patient data evaluation and discuss the experimental results.

5.1 Background Information on Parkinson’s Disease
PD is the second most common neurodegenerative disease after Alzheimer’s disease, primar-
ily associated with various forms of movement-related deficits [123]. As many as 60000 new
cases are diagnosed every year in North America [124], and according to a recent analysis
from [125] the prevalence of PD is estimated to be 217.22/100000 in Germany.

89



5 Ambient Symptom Recognition in Parkinson’s Disease

In the following, we describe common PD symptoms and how they are assessed using
a standard PD rating scale. Then, relevant related work on this topic of automated PD
symptom recognition is reviewed, and we highlight the remaining unsolved issues.

5.1.1 Parkinson’s Disease Symptom Rating
Commonly, patients with PD show several characteristic movement dysfunctions: brady-
hypokinesia, rigidity, tremor, postural instability, and movement initiation disorder ("freez-
ing") [126–128]. Brady-hypokinesia is the most salient symptom of PD and is characterized
by slowness and reduction of movements [129]. Rigidity is a stiffening of the body parts, clini-
cally observed during passive movements [130]. Tremor typically occurs as a rest tremor, and
is defined as an involuntary rhythmical muscle contraction with a frequency of 4-6 Hz [131].
The Movement Disorder Society sponsored Unified PD Rating Scale (MDS-UPDRS), was

developed to assess the characteristic symptoms of patients with PD [62, 132]. The MDS-
UPDRS is a 5-level rating scale and assesses motor symptoms, among others. It relies on
patient-reported data and rater assessments. Commonly, clinical trials on neurorehabilative
measures use the motor part of the MDS-UPDRS to establish clinical efficacy of any given
intervention ( [133–138]). The typical motor symptoms resulting from progressed PD can be
grouped into three categories: bradykinesia with tremor, bradykinesia without tremor and
dyskinesia. In this paper we refer to bradykinesia without tremor simply as bradykinesia and
bradykinesia with tremor as tremor. We employ the MDS-UPDRS for rating the symptom
severity.

5.1.2 Related Work and Open Problems
Numerous supervised machine learning techniques are available in literature to detect or
estimate the unbalanced motor states and/or motor system abnormalities. We provide an
overview of the relevant subset that addresses autonomous Parkinson’s symptom detection
and recognition in the following. Machine learning is employed in many studies to obtain
relationships between sensor-based data and motion patterns related to movement dysfunc-
tions of PD [133, 139–143]. According to a review of Kubota et al. [144], most approaches
focus on only one or two symptoms out of the set of motor abnormalities tremor, bradyki-
nesia, dyskinesia, and gait disturbance. However, our presented human motor model (see
Chapter 2) allows for a comprehensive solution for PD motor symptom detection.
We review common methods for data acquisition and training data labeling, since su-

pervised machine learning requires labeled data for the learning procedure. Thereafter, we
introduce related work on autonomous PD motor symptom detection and estimation. We
classify the approaches in the ones relying on linear versus nonlinear approximations.

Training Data Acquisition

As labeled training data is necessary for supervised machine learning, a movement disorder
specialist commonly monitors the patients and labels clinical observations according to the
MDS-UPDRS rating scale for PD. In the majority of such studies (e.g. [133, 139, 141, 145])
inertial measurement unit (IMU) based sensors attached to the patient’s body were used.
As an alternative to wearable sensors, video-based methods have been used to investigate
the PD motor symptoms. Butt et al. [134, 143], for example, used the hand motion data
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collected using an RGB-D camera to recognize PD patients from healthy individuals with
an accuracy of up to 85% using SVM.
In general, movements of the patients are commonly recorded using wearable sensors

such as accelerometer, gyroscope, electromyography and video-based tracking devices such
as infrared cameras. Marker-based motion tracking systems, in contrast, are considered as
ground truth for other sensors [144,146]. To ensure unsupervised usability by patients, only
wearable inertial modules (accerlerometer and gyroscope) can be taken into consideration,
as only those allow for prompt usage without significant impairment of the patients’ quality
of life.

Simple Approximations

Eskofier et al. [139] compare several supervised machine learning and deep learning algo-
rithms to detect bradykinesia. Several specific motor tasks of 10 patients with idiopathic
PD were recorded using IMU sensors. Each task was rated by a movement disorder specialist
according to the MDS-UPDRS rating scale. Using these data, a classification accuracy of
up to 85% was achieved with standard machine learning techniques such as SVM while deep
learning demonstrated 90% accuracy in predicting the presence and absence of bradykinesia.
Angeles et al. [133] were also able to classify PD symptoms such as kinetic tremor according
to the MDS-UPDRS score given by clinicians with an accuracy of up to 87% using simple
tree, linear SVM and k-nearest neighbor (kNN) algorithms. An accuracy of up to 92% was
achieved in predicting bradykinesia using kNN.
The experiments for estimating motor aspects of PD described so far take place in lab-

oratory environment, where the patients are asked to perform standardized activities. Few
examples are available on symptom estimation during free living in the literature: For in-
stance, in [147] binary classification of bradykinesia and tremor was achieved with 60-71%
sensitivity, but differentiating the motor states ON and OFF yielded statistical significance
for tremor only. Keijsers et al. [148] achieved an average sensitivity and specificity of 97% for
binary classification in the motor states ON and OFF using 6 triaxial accelerometer mod-
ules on the patients’ bodies. In contrast, a single waist sensor was used in a long-term (1-3
days) monitoring experiment by [149]. The average specificity and sensitivity were higher
than 90% in the automatic assessment of patient’s ON and OFF motor states during daily
living. Semi-supervised classification algorithm based on k-means and self-organizing tree
map clustering was applied in [150], obtaining accuracies in the range 42-99% for patients
with different levels of dyskinesia severity.
The approaches presented so far allow for binary classification, but not for regression on

symptom severity. Hence, the successful application scope for linear approaches is limited.
Additionally, most approaches are not suitable for application in unconstrained daily living
activities, since in general no straight forward generalization to non-laboratory environment
is available.

Nonlinear Approximations

To estimate the symptom severity in contrast to a binary classification whether a symptom is
present or not, requires more advanced machine learning techniques. Most prominent among
the appropriate approaches for symptom severity recognition are GMM and GP regression.
Such approaches, however, are rare in the literature. The system called PERFORM [151]
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uses accelerometer and gyroscope signals for machine learning, using the patient’s own di-
ary rating as ground truth. The output results were compared against the diary entries
and a classification accuracy of 87% was achieved in predicting the presence and absence of
tremor using a HMM. Predicting the presence and absence of bradykinesia, a classification
accuracy of approximately 75% was achieved using SVM. Hence, again in this approach,
symptom classification was binary. Further, the technology is restricted by specific hard-
ware requirements. For the presented results, the PERFORM systems required four triaxial
accelerometer devices to be physically attached the PD patient’s body at each extremity,
one accelerometer/gyroscope sensor on the waist and one data acquisition unit. Supervised
machine learning is used in [141] to classify PD during free movement and daily living. The
authors Cancela et al. report 70% to 86% classification accuracy for predicting the severity
according to MDS-UPDRS, depending on the machine learning algorithm in free movement
tasks. However, they only consider the symptom bradykinesia.

5.2 Data Collection
In this section we describe how the patient data was collected, introducing the patient
cohort of our study, the sensor device and the setting for data capturing. Afterwards, the
data acquisition itself is explained, which was performed during unrestricted daily living
activities.
The individuals taking part in the study (30 in total) were diagnosed with PD by a neu-

rologist according to UK Brain Bank Diagnostic Criteria [152] at the Schön Klinik München
Schwabing, Germany. The average age of the participants was 67+−10 and 20 were male and
10 were female. The mean disease duration was 11+−5 years. The median of the patients’
disease progress according to the Hoehn and Yahr scale [126] is 3.5 with an interquartile
range of 1. The recruitment of the patient cohort and the data acquisition was performed
at the Schön Klinik München Schwabing (Munich, Germany). This study was approved by
the ethical board of the Technical University of Munich (Ref. No. 234/16S).
In order to learn and predict the PD symptoms using GP, the movements of the par-

ticipants was recorded, together with corresponding clinical and activity information. The
linear acceleration and angular velocity of the wrist were measured using the Microsoft
Band 2 (Microsoft). Figure 5.1 illustrates how the device is worn. Inside the band is a 6-axis
gyroscope/accelerometer module (LSM6D series by STMicroelectronics) and a bluetooth
communication module (Bluetooth 4.0) for transmitting the data to a peripheral device.
The accelerometer registers motions up to +−8 G (G = 9.81 m/s2) with a resolution of
0.244 mG/LSB (least significant byte). The data range of the gyroscope is +−1000 dps (de-
gree per second) with a resolution of 35mdps/LSB. An Android application, “MS band data
collector (pro)” was used to stream and store the data on a Samsung Galaxy A5 (Android
6.0.1).
Clinical observation of PD symptom and severity was concurrently performed by a trained

expert who passively monitored the participants every minute during the data collection
period. The motor symptom was described using the MDS-UPDRS, a standard 5-level
rating scale, where bradykinesia corresponds to item III.14 and tremor to III.17. Dyskinesia
was assessed using to the modified abnormal involuntary movement scale (AIMS, item A2.5).
The balanced stage without abnormal motor symptoms is rated as 0 and the severity levels
correspond to 1 = slight, 2 = mild, 3 = moderate and 4 = severe. Furthermore, voluntary
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Understanding PD3 Labels

• Daniel’s labels describe the whole patient's clinical condition 
• Kian purely rated the hand motion 

That means, if the patient generally was in a "tremor" phase, Daniel would rate 
that time period as tremor even if the patient managed to suppress the shaking.

How do we deal with that difference in interpretation?

Notes: 
• suggestions / concerns about labelling - please reply to email 
• unified band frame and band mounting procedure Y

X

Z

upright band display

X

Display upright

Figure 5.1: Wrist-worn inertial sensor Microsoft Band 2. The band is placed medially at the
patient’s wrist as displayed to assure the reference frames of all measurements
to match.

activities (e.g., walking, standing, laying/resting and sitting) and medication intake (type
and dosage) were reported in the same one-minute time window. When multiple symptoms
and activities were present within the same time window, the predominant symptom and
activity were reported.
The data collection was performed in a free-living environment during the regular in-

patient stay at the hospital for drug dosage adaptation. On average, the data were collected
for 331.2+−192.6 minutes per participant, equaling to a total of 9937 minutes across all
patients. After being briefed on the procedure, the participants wore the band on the wrist
of the most affected side. Once the bluetooth connection was established between the band
and smartphone which stored the data, the participants were free to engage in any daily
routine including activities outside of the hospital. The recording ended when the patients
desired, or before going to bed at the latest. Furthermore, the sensing device was disabled
when the patients were in the toilet/bath or when requested.

5.3 PD Symptom Recognition
In this section, the approach for autonomous PD symptom detection and estimation is pre-
sented. We start by characterizing the collected data and their relevance for estimating PD
symptoms, thereby motivating a selection of motion features. To consider the temporal evo-
lution of PD symptom manifestation, we suggest to use the dynamical system approach for
estimating the patients’ motor symptoms introduced in Section 2.3. The PD symptom esti-
mation (2.16) is then assessed by a multiple successive GP models: At first, a GP estimates
the presence of tremor and its severity. In case tremor is absent, the following GP models
are triggered, where two estimations are performed in parallel; one for dyskinesia and one for
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Figure 5.2: Distribution of symptom severities and activities of the participants. The la-
bel distributions were calculated from the collected dataset for each participant
and then averaged. The arrows in the symptom chart (left) indicate increasing
severity of dyskinesia (DK) and bradykinesia (BK) scores in 4 levels each. The
tremor class (TM) as well has four severity levels, but is visualized here as a
single section (purple).

bradykinesia without tremor. Hence, for all incoming data that passed the tremor estimation
the severity level of both motor symptoms are predicted. The approach first estimates the
tremor presence, in order to prevent the presence of tremor from impeding differentiation of
bradykinesia with tremor to dyskinesia in inertia measurements. Then, we select the larger
predicted value’s symptom class as we intend to recognize the predominant motor symptom.

5.3.1 Data Analysis
In the following, we provide an overview of the collected patient data. The descriptive
analysis of the symptom labels, collected by the clinical expert, shows that 35.95% belongs
to the balanced class, while the bradykinesia and dyskinesia motor symptoms were observed
in 38.70% and 21.13% of the data, respectively. The percentages are obtained by averaging
the distributions of all participants. The labeled data also indicates that patients spent a
large proportion of time sitting on a chair (41.58%), see Figure 5.2 for details. The activities
gathered in the category other comprise specific tasks, for instance eating, climbing stairs
and brushing teeth or activities with external acceleration like taking a train or elevator.
As different PD motor symptoms and patient activities result in a wide bandwidth of

motion intensities, we investigate the signal power, as the power spectral density characterizes
the frequency content of a signal. In (Figure 5.3) the power spectral density (PSD) of the
accelerometer data is visualized. It shows that sitting and standing labels have PSD spread
between 1− 10 Hz and a clearly differentiated tremor at around 4− 6 Hz PSD. For walking
labels the characteristic tremor activity is partially absorbed by the walking frequency, which
is at around 2.5 Hz in harmonics, as walking itself generates a strong PSD signal. Laying
is generally described by low power across the spectrum, meaning that arm motion occurs
infrequent. The shift of the tremor PSD peak towards 7 Hz during laying might be caused
by the hand motion being constrained by a blanket. Moreover, the spectral analysis reveals
on average increasing PSD in the symptom classes from bradykinesia through the balanced
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Figure 5.3: Power spectral density (PSD) of the accelerometer data. The PSD is visualized
for bradykinesia (BK), tremor (TM), dyskinesia (DK) and the balanced condition
(none). It shows generally high densities during walking, where the dotted line
depicts the scale limit of the other three plots, and very low PSD values during
laying.

0 1 2 3 4
0

10

20

30

40

symptom severity
bradykinesia

av
er

ag
e

PS
D

0 1 2 3 4
0

10

20

30

40

symptom severity
dyskinesia

av
er

ag
e

PS
D

Figure 5.4: Average PSD of the non-tremor accelerometer data per symptom severity. The
mean (visualized by bar height) of each PSD per symptom severity level with its
standard deviation (gray error bar) is sorted from balanced to severe. In both
figures the yellow bar depicts the average PSD level in the balanced condition. On
the left side the symptom levels of bradykineasia (without tremor) are visualized
in blue shades, on the right side the levels of dyskinesia in red shades.

condition to dyskinesia, as visualized in Figure 5.4, even though the individual activities
introduce a high noise level. The tremor class is omitted in this figure, as the PSD of tremor
data is dominated by the individual symptom manifestation of a patient.
The autocorrelation among symptom severity levels is investigated to assess the temporal

relationship of PD symptoms. For each symptom class bradykinesia, dyskinesia and tremor
the expert labels of the other classes are suppressed to zero and the respective symptom
labels are normalized by the means and variances per patient. Then, the autocorrelation
is calculated on the adapted labels for a lag of +−15 min per patient. Figure 5.5 shows
the average of the autocorrelation functions across patients. It indicates that the patient’s
motor symptoms can be modeled as a temporal evolution. A slow transition is present
in the autocorrelation coefficients of the fluctuations in the symptom severity for dys- and
bradykinsia, whereas the transition is comparably faster for tremor.
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Figure 5.5: Autocorrelation of symptom labels. Autocorrelation coefficients of the bradyki-
nesia, dyskinesia and tremor fluctuations indicate a very slow transition of dys-
and bradykinesia severity whereas the transition is comparably faster for tremor
severity. The data were averaged across the (available) patients, and the error
bars indicate one standard deviation.
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Figure 5.6: Inertial data and expert ratings processing. The sensor data is pre-processed by
applying a two-directional Butterworth filter and wavelet decomposition, before
clinically relevant PD features are extracted. The result is then synchronized
with the activity and symptom severity labels of the expert rater.

5.3.2 Monitoring Unit: Data Processing and Feature Generation
The collected inertial data, consisting of accelerometer and gyroscope data, are processed
to quantify relevant PD features, which are then synchronized with the expert ratings and
activity labels as schematically visualized in Figure 5.6. The resulting data set is used for
estimating the symptoms and severities in the fault detection unit.
As the raw inertial data includes sensor noise, we mildly filter the data by applying a

two-directional Butterworth filter to accelerometer and gyroscope data, i.e. to the measured
linear accelerations {(αx, αy, αz)>i }νi=1 and rotational velocities {(ωφ, ωψ, ωϑ)>i }νi=1, respec-
tively.

(α̃x, α̃y, α̃z)> = fBw (αx, αy, αz, bl, bu) ,
(ω̃φ, ω̃ψ, ω̃ϑ)> = fBw (ωφ, ωψ, ωϑ, bl, bu) .

(5.1)

The lower bound bl of the cut-off frequency was set to 0.1 Hz to filter out sensor drift, and
the upper bound bu was set to 20 Hz to filter out high frequency noise. Furthermore, to
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avoid dependency of the signal on the wrist band placement (left versus right wrist) and
orientation (lateral versus distal and upright versus inverted), the vector norm ‖ · ‖ of both
filtered inertial units is calculated,

sacc = ‖ (α̃x, α̃y, α̃z)> ‖
sgyr = ‖ (ω̃φ, ω̃ψ, ω̃ϑ)> ‖,

(5.2)

and thus scalar signals sacc and sgyr are obtained. All subsequent feature generation is
performed on the processed signals.
As demonstrated in Figure 5.4, the different symptoms have different PSD characteristics.

Therefore, we base the feature generation on a time-frequency transformation, namely on
wavelet decomposition of the processed sensor data. The signals sacc and sgyr are transformed
using Daubechies wavelets $3 of order 3. The odd-numbered decomposition level 1, 3,
5, 7 and 9 are employed, as those layers cover the bandwidth of activity levels present
in daily living activities. In Figure 5.7 a raw accelerometer signal and the third wavelet
decomposed level of the corresponding filtered signal vector norm is depicted. The lower
part of the figure shows that wavelet decomposition is capable of differentiating voluntary
motion (white background) from the tremor symptom (green shaded area). We remove the
even-numbered layers from the model to minimize redundancy in the feature space. Then,
for each decomposed level s̃acc,i = $3(sacc, i) and s̃gyr,i = $3(sgyr, i), where i ∈ {1, 3, 5, 7, 9},
characteristic features are calculated. The features consist of standard deviation, norm,
maximum, root mean square, kurtosis and skewness, as they encode motion properties of the
previously presented PD motor symptoms and patient activities. In addition, the signals s̃acc,i
and s̃gyr,i are differentiated for all i ∈ {1, 3, 5, 7, 9} and the standard deviation, norm and
root mean square are reapplied to the differentiated signals. A logarithmic scaling is used on
a selection of features to improve the activity level separation, as the logarithmizing stretches
small positive signals. More specifically, the logarithm is taken of all features obtained from
the gyroscope and of the differentiated accelerometer features.
Every feature is computed for each one minute time window t corresponding to a label by

the expert rater, if the size of the sample set Jt, that is captured during window t, contains
at least 10% of the number of data samples that should be captured during one minute, i.e.
#Jt ≥ 360 sensor measurements (60 Hz sampling rate times 60 seconds). Hence, we only
omit data windows that suffer from severe data loss. We allow this small percentage of data
samples per captured time window, because the data transmission via Bluetooth between
sensor device and storage device is unreliable due to external interferences and consequently
frequent data losses are apparent.
The features introduced so far characterize the power in the inertial data and are thus

best suitable to describe the symptoms tremor and dyskinesia. However, bradykinesia is
characterized by very slow motion and entire absence of motions. Therefore, rest phases in
the patients’ sensor data additionally need to be quantified. Therefore, features encoding
the amount of rest phases within the time window are investigated. We define rest as the
proportion of data where the processed inertial signals (5.2) are below given thresholds a > 0,

restacc/gyr =
∑
j∈Jt

B
(
sacc/gyr(j) < a

)
#Jt

, (5.3)

where B(·) denotes the boolean operator that assigns the numbers {0, 1} depending on
whether the relation on the inside is false or true. Multiple thresholds are introduced to
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Figure 5.7: Wavelet transformation of the accelerometer data. The discrete wavelet decom-
position is performed on the vector norm of 3D accelerometer (and gyroscope)
measurements to calculate features (e.g. standard deviation, norm and root
mean square) that describe characteristics of the 60 seconds time window. Only
the third level of the accelerometer signal decomposition is depicted. The green
shaded area indicates presence of the tremor label.

compensate for inter-patient and inter-activity variability and to cover all symptom severity
levels. We use 0.1, 0.15, 0.2, 0.25 and 0.3 G as thresholds a for accelerometer data and 1, 1.25,
1.5, 1.75 and 2 dps for gyroscope data, respectively. As during severe bradykinesia it can
happen that the patient does not move during the whole one minute window, additionally the
rest proportion over a 5 minute window ⋃

t∈T Jt is calculated, consisting of the two minutes
before and after the current time window, T = {t−2, t−1, t, t+1, t+2}. As autocorrelation
of bradykinesia is high for long time intervals, see Figure 5.5, the overall condition of the
patient is assumed to be the same during those 5 minute windows.
Additionally to the previously mentioned features, we include features that are inspired by

the Parkinson’s KinetiGraph system [153]. The two raw inertial signals are filtered, using a
stronger bandpass filter (with limits 0.2 Hz and 4 Hz) to keep voluntary motion only. Then,
the maximum and the mean spectral power at the maximum are calculated, as those features
have been reported to provide promising results for PD symptom detection [154].
The total number of features obtained is 132 for both inertial sensors (the accelerometer

and gyroscope) together. They are joined into the feature vector z ∈ R132. It encodes the
clinically relevant characteristics of the motor symptoms tremor, bradykinesia and dyskine-
sia. We use this vector in our multi-layer approach for autonomous symptom recognition.

Remark 5.3.1 Through the data processing and feature generation, which we presented, we
transform the captured executed motor behavior into a feature vector zκ that incorporates
important features that characterize motor dysfunctions as well as intended motion. The
frequency analysis allows us to determine the amount of those characteristics in the captured
signal. Hence, the feature vector is a suitable basis to conduct fault detection on.
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5.3.3 Fault Detection Unit: Multi-layer GP Model
In this section, we present our technique to realize the fault detection (2.16), which we
introduced in Section 2.3. We consider as given time wise synchronized data sets for patients’
symptom severity assessment {ξκ}νκ=0 and processed inertial sensor measurements { zκ}νκ=1
from a wrist-worn wearable sensor. To realize the estimation (2.16), we suggest to use
multiple successive GPs with the squared exponential kernel, since those GPs are well suited
for approximating human movement behavior due to their property to generate smooth
motion predictions. We call the procedure of applying multiple GP models successively a
multi-layer GP model.
The employed training input {xκ}νκ=1 to the multi-layer GP consists of the previous symp-

tom levels of each patient {ξκ}ν−1
κ=0 and the feature vector { zκ}νκ=1 appended to the feature

vector,
xκ = ( zκ, ξκ−1)> for training. (5.4)

The process output describes a Gaussian distribution, which has the GP mean prediction as
expected value E[·]. Hence, we consider in the following only the GP mean predictions as
process output yκ, as the mean describes an estimate for the κ-th clinical symptom severity
rating ξκ.
Specifically, at first a tremor GP is trained to recognize the presence and severity of

tremor from the training input set
{

( zκ, ξκ−1)>
}ν
κ=1

. The training output set {yTM,κ}νκ=1 is
optimized to approximate the symptom,

yTM,κ ≈


ξκ if k ∈ JTM,

0 otherwise,
(5.5)

where the set JTM := {j ∈ {1, . . . , ν} ∧ ξj contains tremor}. The next layer is triggered for
the non-tremor data only in the measurement set

{
( zκ, ξκ−1)>

}ν
κ=1,κ/∈JTM

. This second layer
comprises two GP estimations; the dyskinesia GP for modeling dyskinesia, the bradykine-
sia GP for modeling bradykinesia. Each of the GPs is trained to approximate the symptom
and severity with its output

yDK,κ ≈


ξκ if κ ∈ JDK ∧ κ /∈ JTM,

0 else,

yBK,κ ≈


ξκ if κ ∈ JBK ∧ κ /∈ JTM,

0 else,

(5.6)

where the index sets JDK and JBK are defined as {j ∈ {1, . . . , ν} ∧ ξj dyskinetic} and {j ∈
{1, . . . , ν}∧ξj bradykinetic}, respectively. In the third layer the decision among the balanced,
dyskinesia and bradykinesia classes is made based on the results from layer two: When both
GP models provide outputs yDK,κ < ã and yBK,κ < ã below a certain threshold ã, we consider
the correct classification to be balanced. Otherwise the symptom class of the GP model
providing the higher predicted value is selected.
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⇠̂ = yBK
<latexit sha1_base64="ZPJcbKuXQEiT1/EZrk0bFrdZaDg=">AAACC3icbVDJSgNBEO1xjXEb9eilMQiewowIehGCXgQvEcwCmTDUdHpMk56F7hoxDHP34q948aCIV3/Am39jJ5mD24OCx3tVVNULUik0Os6nNTe/sLi0XFmprq6tb2zaW9ttnWSK8RZLZKK6AWguRcxbKFDybqo4RIHknWB0PvE7t1xpkcTXOE55P4KbWISCARrJt/e8IWDu3YnCz70RpCkU9JSOfQ/5HeowP7ssfLvm1J0p6F/ilqRGSjR9+8MbJCyLeIxMgtY910mxn4NCwSQvql6meQpsBDe8Z2gMEdf9fPpLQfeNMqBhokzFSKfq94kcIq3HUWA6I8Ch/u1NxP+8XobhST8XcZohj9lsUZhJigmdBEMHQnGGcmwIMCXMrZQNQQFDE1/VhOD+fvkvaR/WXafuXh3VGmdlHBWyS/bIAXHJMWmQC9IkLcLIPXkkz+TFerCerFfrbdY6Z5UzO+QHrPcvmdGbYQ==</latexit><latexit sha1_base64="ZPJcbKuXQEiT1/EZrk0bFrdZaDg=">AAACC3icbVDJSgNBEO1xjXEb9eilMQiewowIehGCXgQvEcwCmTDUdHpMk56F7hoxDHP34q948aCIV3/Am39jJ5mD24OCx3tVVNULUik0Os6nNTe/sLi0XFmprq6tb2zaW9ttnWSK8RZLZKK6AWguRcxbKFDybqo4RIHknWB0PvE7t1xpkcTXOE55P4KbWISCARrJt/e8IWDu3YnCz70RpCkU9JSOfQ/5HeowP7ssfLvm1J0p6F/ilqRGSjR9+8MbJCyLeIxMgtY910mxn4NCwSQvql6meQpsBDe8Z2gMEdf9fPpLQfeNMqBhokzFSKfq94kcIq3HUWA6I8Ch/u1NxP+8XobhST8XcZohj9lsUZhJigmdBEMHQnGGcmwIMCXMrZQNQQFDE1/VhOD+fvkvaR/WXafuXh3VGmdlHBWyS/bIAXHJMWmQC9IkLcLIPXkkz+TFerCerFfrbdY6Z5UzO+QHrPcvmdGbYQ==</latexit><latexit sha1_base64="ZPJcbKuXQEiT1/EZrk0bFrdZaDg=">AAACC3icbVDJSgNBEO1xjXEb9eilMQiewowIehGCXgQvEcwCmTDUdHpMk56F7hoxDHP34q948aCIV3/Am39jJ5mD24OCx3tVVNULUik0Os6nNTe/sLi0XFmprq6tb2zaW9ttnWSK8RZLZKK6AWguRcxbKFDybqo4RIHknWB0PvE7t1xpkcTXOE55P4KbWISCARrJt/e8IWDu3YnCz70RpCkU9JSOfQ/5HeowP7ssfLvm1J0p6F/ilqRGSjR9+8MbJCyLeIxMgtY910mxn4NCwSQvql6meQpsBDe8Z2gMEdf9fPpLQfeNMqBhokzFSKfq94kcIq3HUWA6I8Ch/u1NxP+8XobhST8XcZohj9lsUZhJigmdBEMHQnGGcmwIMCXMrZQNQQFDE1/VhOD+fvkvaR/WXafuXh3VGmdlHBWyS/bIAXHJMWmQC9IkLcLIPXkkz+TFerCerFfrbdY6Z5UzO+QHrPcvmdGbYQ==</latexit><latexit sha1_base64="ZPJcbKuXQEiT1/EZrk0bFrdZaDg=">AAACC3icbVDJSgNBEO1xjXEb9eilMQiewowIehGCXgQvEcwCmTDUdHpMk56F7hoxDHP34q948aCIV3/Am39jJ5mD24OCx3tVVNULUik0Os6nNTe/sLi0XFmprq6tb2zaW9ttnWSK8RZLZKK6AWguRcxbKFDybqo4RIHknWB0PvE7t1xpkcTXOE55P4KbWISCARrJt/e8IWDu3YnCz70RpCkU9JSOfQ/5HeowP7ssfLvm1J0p6F/ilqRGSjR9+8MbJCyLeIxMgtY910mxn4NCwSQvql6meQpsBDe8Z2gMEdf9fPpLQfeNMqBhokzFSKfq94kcIq3HUWA6I8Ch/u1NxP+8XobhST8XcZohj9lsUZhJigmdBEMHQnGGcmwIMCXMrZQNQQFDE1/VhOD+fvkvaR/WXafuXh3VGmdlHBWyS/bIAXHJMWmQC9IkLcLIPXkkz+TFerCerFfrbdY6Z5UzO+QHrPcvmdGbYQ==</latexit>

⇠̂ = yTM
<latexit sha1_base64="OPkDu2j7ivqo6rV3IPdnypavVfU=">AAACC3icbVA9SwNBEN3zM8avqKXNYhCswp0I2ghBGxshQmICuXDMbfbMkr0Pduckx3G9jX/FxkIRW/+Anf/GTbzCrwcDj/dmmJnnJ1JotO0Pa25+YXFpubJSXV1b39isbW1f6zhVjHdYLGPV80FzKSLeQYGS9xLFIfQl7/rj86nfveVKizhqY5bwQQg3kQgEAzSSV9tzR4C5OxGFl7tjSBIo6CnNPBf5BHWQty8Lr1a3G/YM9C9xSlInJVpe7d0dxiwNeYRMgtZ9x05wkINCwSQvqm6qeQJsDDe8b2gEIdeDfPZLQfeNMqRBrExFSGfq94kcQq2z0DedIeBI//am4n9eP8XgZJCLKEmRR+xrUZBKijGdBkOHQnGGMjMEmBLmVspGoIChia9qQnB+v/yXXB82HLvhXB3Vm2dlHBWyS/bIAXHIMWmSC9IiHcLIHXkgT+TZurcerRfr9at1zipndsgPWG+fuEebdQ==</latexit><latexit sha1_base64="OPkDu2j7ivqo6rV3IPdnypavVfU=">AAACC3icbVA9SwNBEN3zM8avqKXNYhCswp0I2ghBGxshQmICuXDMbfbMkr0Pduckx3G9jX/FxkIRW/+Anf/GTbzCrwcDj/dmmJnnJ1JotO0Pa25+YXFpubJSXV1b39isbW1f6zhVjHdYLGPV80FzKSLeQYGS9xLFIfQl7/rj86nfveVKizhqY5bwQQg3kQgEAzSSV9tzR4C5OxGFl7tjSBIo6CnNPBf5BHWQty8Lr1a3G/YM9C9xSlInJVpe7d0dxiwNeYRMgtZ9x05wkINCwSQvqm6qeQJsDDe8b2gEIdeDfPZLQfeNMqRBrExFSGfq94kcQq2z0DedIeBI//am4n9eP8XgZJCLKEmRR+xrUZBKijGdBkOHQnGGMjMEmBLmVspGoIChia9qQnB+v/yXXB82HLvhXB3Vm2dlHBWyS/bIAXHIMWmSC9IiHcLIHXkgT+TZurcerRfr9at1zipndsgPWG+fuEebdQ==</latexit><latexit sha1_base64="OPkDu2j7ivqo6rV3IPdnypavVfU=">AAACC3icbVA9SwNBEN3zM8avqKXNYhCswp0I2ghBGxshQmICuXDMbfbMkr0Pduckx3G9jX/FxkIRW/+Anf/GTbzCrwcDj/dmmJnnJ1JotO0Pa25+YXFpubJSXV1b39isbW1f6zhVjHdYLGPV80FzKSLeQYGS9xLFIfQl7/rj86nfveVKizhqY5bwQQg3kQgEAzSSV9tzR4C5OxGFl7tjSBIo6CnNPBf5BHWQty8Lr1a3G/YM9C9xSlInJVpe7d0dxiwNeYRMgtZ9x05wkINCwSQvqm6qeQJsDDe8b2gEIdeDfPZLQfeNMqRBrExFSGfq94kcQq2z0DedIeBI//am4n9eP8XgZJCLKEmRR+xrUZBKijGdBkOHQnGGMjMEmBLmVspGoIChia9qQnB+v/yXXB82HLvhXB3Vm2dlHBWyS/bIAXHIMWmSC9IiHcLIHXkgT+TZurcerRfr9at1zipndsgPWG+fuEebdQ==</latexit><latexit sha1_base64="OPkDu2j7ivqo6rV3IPdnypavVfU=">AAACC3icbVA9SwNBEN3zM8avqKXNYhCswp0I2ghBGxshQmICuXDMbfbMkr0Pduckx3G9jX/FxkIRW/+Anf/GTbzCrwcDj/dmmJnnJ1JotO0Pa25+YXFpubJSXV1b39isbW1f6zhVjHdYLGPV80FzKSLeQYGS9xLFIfQl7/rj86nfveVKizhqY5bwQQg3kQgEAzSSV9tzR4C5OxGFl7tjSBIo6CnNPBf5BHWQty8Lr1a3G/YM9C9xSlInJVpe7d0dxiwNeYRMgtZ9x05wkINCwSQvqm6qeQJsDDe8b2gEIdeDfPZLQfeNMqRBrExFSGfq94kcQq2z0DedIeBI//am4n9eP8XgZJCLKEmRR+xrUZBKijGdBkOHQnGGMjMEmBLmVspGoIChia9qQnB+v/yXXB82HLvhXB3Vm2dlHBWyS/bIAXHIMWmSC9IiHcLIHXkgT+TZurcerRfr9at1zipndsgPWG+fuEebdQ==</latexit>

⇠̂�1
<latexit sha1_base64="xNCaLKzcsYBZP7Q8ldWbyXSPWEE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigi6LblxWsA9oQriZTtqhk2SYmYg1BH/FjQtF3Pof7vwbp4+Fth64cDjnXu69JxScKe0431ZpaXllda28XtnY3NresXf3WirNJKFNkvJUdkJQlLOENjXTnHaEpBCHnLbD4fXYb99TqVia3OmRoH4M/YRFjIA2UmAfeAPQuffAiiD3hiAEnLpFYFedmjMBXiTujFTRDI3A/vJ6KclimmjCQamu6wjt5yA1I5wWFS9TVAAZQp92DU0gpsrPJ9cX+NgoPRyl0lSi8UT9PZFDrNQoDk1nDHqg5r2x+J/XzXR06ecsEZmmCZkuijKOdYrHUeAek5RoPjIEiGTmVkwGIIFoE1jFhODOv7xIWmc116m5t+fV+tUsjjI6REfoBLnoAtXRDWqgJiLoET2jV/RmPVkv1rv1MW0tWbOZffQH1ucPt6uVXw==</latexit><latexit sha1_base64="xNCaLKzcsYBZP7Q8ldWbyXSPWEE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigi6LblxWsA9oQriZTtqhk2SYmYg1BH/FjQtF3Pof7vwbp4+Fth64cDjnXu69JxScKe0431ZpaXllda28XtnY3NresXf3WirNJKFNkvJUdkJQlLOENjXTnHaEpBCHnLbD4fXYb99TqVia3OmRoH4M/YRFjIA2UmAfeAPQuffAiiD3hiAEnLpFYFedmjMBXiTujFTRDI3A/vJ6KclimmjCQamu6wjt5yA1I5wWFS9TVAAZQp92DU0gpsrPJ9cX+NgoPRyl0lSi8UT9PZFDrNQoDk1nDHqg5r2x+J/XzXR06ecsEZmmCZkuijKOdYrHUeAek5RoPjIEiGTmVkwGIIFoE1jFhODOv7xIWmc116m5t+fV+tUsjjI6REfoBLnoAtXRDWqgJiLoET2jV/RmPVkv1rv1MW0tWbOZffQH1ucPt6uVXw==</latexit><latexit sha1_base64="xNCaLKzcsYBZP7Q8ldWbyXSPWEE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigi6LblxWsA9oQriZTtqhk2SYmYg1BH/FjQtF3Pof7vwbp4+Fth64cDjnXu69JxScKe0431ZpaXllda28XtnY3NresXf3WirNJKFNkvJUdkJQlLOENjXTnHaEpBCHnLbD4fXYb99TqVia3OmRoH4M/YRFjIA2UmAfeAPQuffAiiD3hiAEnLpFYFedmjMBXiTujFTRDI3A/vJ6KclimmjCQamu6wjt5yA1I5wWFS9TVAAZQp92DU0gpsrPJ9cX+NgoPRyl0lSi8UT9PZFDrNQoDk1nDHqg5r2x+J/XzXR06ecsEZmmCZkuijKOdYrHUeAek5RoPjIEiGTmVkwGIIFoE1jFhODOv7xIWmc116m5t+fV+tUsjjI6REfoBLnoAtXRDWqgJiLoET2jV/RmPVkv1rv1MW0tWbOZffQH1ucPt6uVXw==</latexit><latexit sha1_base64="xNCaLKzcsYBZP7Q8ldWbyXSPWEE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0sigi6LblxWsA9oQriZTtqhk2SYmYg1BH/FjQtF3Pof7vwbp4+Fth64cDjnXu69JxScKe0431ZpaXllda28XtnY3NresXf3WirNJKFNkvJUdkJQlLOENjXTnHaEpBCHnLbD4fXYb99TqVia3OmRoH4M/YRFjIA2UmAfeAPQuffAiiD3hiAEnLpFYFedmjMBXiTujFTRDI3A/vJ6KclimmjCQamu6wjt5yA1I5wWFS9TVAAZQp92DU0gpsrPJ9cX+NgoPRyl0lSi8UT9PZFDrNQoDk1nDHqg5r2x+J/XzXR06ecsEZmmCZkuijKOdYrHUeAek5RoPjIEiGTmVkwGIIFoE1jFhODOv7xIWmc116m5t+fV+tUsjjI6REfoBLnoAtXRDWqgJiLoET2jV/RmPVkv1rv1MW0tWbOZffQH1ucPt6uVXw==</latexit>

z
<latexit sha1_base64="vfpGyOBpoMonOjVndQVb1foIDHU=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXRbduKxgH9CEcDOdtEMnkzAzUWrsp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+aEKWdKO863tbK6tr6xWdmqbu/s7u3btYOOSjJJaJskPJG9EBTlTNC2ZprTXiopxCGn3XB8XfjdeyoVS8SdnqTUj2EoWMQIaCMFds2LQY/CKH+cBt4Y0hQCu+40nBnwMnFLUkclWoH95Q0SksVUaMJBqb7rpNrPQWpGOJ1WvUzRFMgYhrRvqICYKj+fRZ/iE6MMcJRI84TGM/X3Rg6xUpM4NJNFULXoFeJ/Xj/T0aWfM5FmmgoyPxRlHOsEFz3gAZOUaD4xBIhkJismI5BAtGmrakpwF7+8TDpnDddpuLfn9eZVWUcFHaFjdIpcdIGa6Aa1UBsR9ICe0St6s56sF+vd+piPrljlziH6A+vzB9h5lF0=</latexit><latexit sha1_base64="vfpGyOBpoMonOjVndQVb1foIDHU=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXRbduKxgH9CEcDOdtEMnkzAzUWrsp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+aEKWdKO863tbK6tr6xWdmqbu/s7u3btYOOSjJJaJskPJG9EBTlTNC2ZprTXiopxCGn3XB8XfjdeyoVS8SdnqTUj2EoWMQIaCMFds2LQY/CKH+cBt4Y0hQCu+40nBnwMnFLUkclWoH95Q0SksVUaMJBqb7rpNrPQWpGOJ1WvUzRFMgYhrRvqICYKj+fRZ/iE6MMcJRI84TGM/X3Rg6xUpM4NJNFULXoFeJ/Xj/T0aWfM5FmmgoyPxRlHOsEFz3gAZOUaD4xBIhkJismI5BAtGmrakpwF7+8TDpnDddpuLfn9eZVWUcFHaFjdIpcdIGa6Aa1UBsR9ICe0St6s56sF+vd+piPrljlziH6A+vzB9h5lF0=</latexit><latexit sha1_base64="vfpGyOBpoMonOjVndQVb1foIDHU=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXRbduKxgH9CEcDOdtEMnkzAzUWrsp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+aEKWdKO863tbK6tr6xWdmqbu/s7u3btYOOSjJJaJskPJG9EBTlTNC2ZprTXiopxCGn3XB8XfjdeyoVS8SdnqTUj2EoWMQIaCMFds2LQY/CKH+cBt4Y0hQCu+40nBnwMnFLUkclWoH95Q0SksVUaMJBqb7rpNrPQWpGOJ1WvUzRFMgYhrRvqICYKj+fRZ/iE6MMcJRI84TGM/X3Rg6xUpM4NJNFULXoFeJ/Xj/T0aWfM5FmmgoyPxRlHOsEFz3gAZOUaD4xBIhkJismI5BAtGmrakpwF7+8TDpnDddpuLfn9eZVWUcFHaFjdIpcdIGa6Aa1UBsR9ICe0St6s56sF+vd+piPrljlziH6A+vzB9h5lF0=</latexit><latexit sha1_base64="vfpGyOBpoMonOjVndQVb1foIDHU=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXRbduKxgH9CEcDOdtEMnkzAzUWrsp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+aEKWdKO863tbK6tr6xWdmqbu/s7u3btYOOSjJJaJskPJG9EBTlTNC2ZprTXiopxCGn3XB8XfjdeyoVS8SdnqTUj2EoWMQIaCMFds2LQY/CKH+cBt4Y0hQCu+40nBnwMnFLUkclWoH95Q0SksVUaMJBqb7rpNrPQWpGOJ1WvUzRFMgYhrRvqICYKj+fRZ/iE6MMcJRI84TGM/X3Rg6xUpM4NJNFULXoFeJ/Xj/T0aWfM5FmmgoyPxRlHOsEFz3gAZOUaD4xBIhkJismI5BAtGmrakpwF7+8TDpnDddpuLfn9eZVWUcFHaFjdIpcdIGa6Aa1UBsR9ICe0St6s56sF+vd+piPrljlziH6A+vzB9h5lF0=</latexit>

State estimate

Feature vector

Bradykinesia GPDyskinesia GP

Tremor GP

yDK 2 R yBK 2 R

yTM 2 R

round( . ) round( . ) round( . )

if-else
if yTM < 0.5

if yTM � 0.5

if-elseif-else if yDK � 0.5 ^ yDK > yBK

if (yDK ^ yBK) < 0.5

if yBK � 0.5 ^ yBK > yDK

round( . )2

1

3
⇠̂ = yDK

<latexit sha1_base64="NGXDekujFzf/nWNwQ1u7uXBlClQ=">AAACC3icbVDJSgNBEO1xjXGLevTSJAiewowIehFEPQheIpgFMmGo6fQkTXoWumvEMMzdi7/ixYMiXv0Bb/6NneWgiQ8KHu9VUVXPT6TQaNvf1sLi0vLKamGtuL6xubVd2tlt6DhVjNdZLGPV8kFzKSJeR4GStxLFIfQlb/qDy5HfvOdKizi6w2HCOyH0IhEIBmgkr1R2+4CZ+yByL3MHkCSQ0zM69FzkD6iD7Oom90oVu2qPQeeJMyUVMkXNK3253ZilIY+QSdC67dgJdjJQKJjkedFNNU+ADaDH24ZGEHLdyca/5PTAKF0axMpUhHSs/p7IINR6GPqmMwTs61lvJP7ntVMMTjuZiJIUecQmi4JUUozpKBjaFYozlENDgClhbqWsDwoYmviKJgRn9uV50jiqOnbVuT2unF9M4yiQfVImh8QhJ+ScXJMaqRNGHskzeSVv1pP1Yr1bH5PWBWs6s0f+wPr8AZzdm2M=</latexit><latexit sha1_base64="NGXDekujFzf/nWNwQ1u7uXBlClQ=">AAACC3icbVDJSgNBEO1xjXGLevTSJAiewowIehFEPQheIpgFMmGo6fQkTXoWumvEMMzdi7/ixYMiXv0Bb/6NneWgiQ8KHu9VUVXPT6TQaNvf1sLi0vLKamGtuL6xubVd2tlt6DhVjNdZLGPV8kFzKSJeR4GStxLFIfQlb/qDy5HfvOdKizi6w2HCOyH0IhEIBmgkr1R2+4CZ+yByL3MHkCSQ0zM69FzkD6iD7Oom90oVu2qPQeeJMyUVMkXNK3253ZilIY+QSdC67dgJdjJQKJjkedFNNU+ADaDH24ZGEHLdyca/5PTAKF0axMpUhHSs/p7IINR6GPqmMwTs61lvJP7ntVMMTjuZiJIUecQmi4JUUozpKBjaFYozlENDgClhbqWsDwoYmviKJgRn9uV50jiqOnbVuT2unF9M4yiQfVImh8QhJ+ScXJMaqRNGHskzeSVv1pP1Yr1bH5PWBWs6s0f+wPr8AZzdm2M=</latexit><latexit sha1_base64="NGXDekujFzf/nWNwQ1u7uXBlClQ=">AAACC3icbVDJSgNBEO1xjXGLevTSJAiewowIehFEPQheIpgFMmGo6fQkTXoWumvEMMzdi7/ixYMiXv0Bb/6NneWgiQ8KHu9VUVXPT6TQaNvf1sLi0vLKamGtuL6xubVd2tlt6DhVjNdZLGPV8kFzKSJeR4GStxLFIfQlb/qDy5HfvOdKizi6w2HCOyH0IhEIBmgkr1R2+4CZ+yByL3MHkCSQ0zM69FzkD6iD7Oom90oVu2qPQeeJMyUVMkXNK3253ZilIY+QSdC67dgJdjJQKJjkedFNNU+ADaDH24ZGEHLdyca/5PTAKF0axMpUhHSs/p7IINR6GPqmMwTs61lvJP7ntVMMTjuZiJIUecQmi4JUUozpKBjaFYozlENDgClhbqWsDwoYmviKJgRn9uV50jiqOnbVuT2unF9M4yiQfVImh8QhJ+ScXJMaqRNGHskzeSVv1pP1Yr1bH5PWBWs6s0f+wPr8AZzdm2M=</latexit><latexit sha1_base64="NGXDekujFzf/nWNwQ1u7uXBlClQ=">AAACC3icbVDJSgNBEO1xjXGLevTSJAiewowIehFEPQheIpgFMmGo6fQkTXoWumvEMMzdi7/ixYMiXv0Bb/6NneWgiQ8KHu9VUVXPT6TQaNvf1sLi0vLKamGtuL6xubVd2tlt6DhVjNdZLGPV8kFzKSJeR4GStxLFIfQlb/qDy5HfvOdKizi6w2HCOyH0IhEIBmgkr1R2+4CZ+yByL3MHkCSQ0zM69FzkD6iD7Oom90oVu2qPQeeJMyUVMkXNK3253ZilIY+QSdC67dgJdjJQKJjkedFNNU+ADaDH24ZGEHLdyca/5PTAKF0axMpUhHSs/p7IINR6GPqmMwTs61lvJP7ntVMMTjuZiJIUecQmi4JUUozpKBjaFYozlENDgClhbqWsDwoYmviKJgRn9uV50jiqOnbVuT2unF9M4yiQfVImh8QhJ+ScXJMaqRNGHskzeSVv1pP1Yr1bH5PWBWs6s0f+wPr8AZzdm2M=</latexit>

Figure 5.8: Scheme of multi-layer algorithm. The feature vector zκ and the state estimate
ξκ−1 are the inputs to the multi-layer approach. After testing for tremor in the
first model layer (yTM < 0.5 or yTM ≥ 0.5), the remaining non-tremor data is
tested in the second layer for dyskinesia and bradykinesia severity. Each of the
GPs provides an estimate of the symptom severity in the continuous space R,
where, however, values outside the interval [−0.5, 4.49] are extremely rare. In
the third layer of the hierachical approach we decide among the three remaining
motor symptom conditions balanced, bradykinesia and dyskinesia depending on
the estimated symptom severities. If both predictions obtained from the dysk-
inesia GP and the bradykinesia GP, respectively, are below a certain threshold
(ã = 0.5), the balanced condition is nominated. If any of the predicted values
exceeds the threshold, the symptom class of the larger value is appointed. To
determine one of the categorical symptom severity levels 1−4, the GP prediction
is rounded to an integer value.

Remark 5.3.2 This multi-layer GP structure implicitly comprises two types of information
about the motor symptom: It tells us, which motor dysfunction is present in the motor
behavior and how severe the corresponding symptom is.

After the model training is finished in the multi-layer GP, we aim to provide symptom
estimates for unseen input data. As, however, the available measurements only consist of the
feature vector z∗κ ∈ R132, κ > 0, we initialize the internal symptom severity ξ̂∗0 ∈ {0, . . . , 4}
by generating a uniformly drawn random integer from [0, 4]. Thus, we obtain as GP input

x∗κ =
(

z∗κ, ξ̂∗κ−1

)>
for testing, (5.7)

where the previously predicted output y∗κ−1 is used for the symptom level estimate ξ̂∗κ−1 =
by∗κ−1e. The function b·e rounds the GP mean prediction y∗κ ∈ R, which is obtained in
continuous space, to the nearest integer, and in the unlikely case of predictions outside the
interval [−0.5, 4.5), maps the negative and positive values to 0 and 4, respectively. It is
required to meet the categorical format {0, 1, 2, 3, 4} of the standard PD rating scale. The
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individual steps inside the algorithm are the following. The tremor GP provides in the first
layer a symptom severity estimate yTM for the new input x∗κ. If no tremor is indicated,
predictions yDK and yBK for the severity of dyskinesia and bradykinesia, respectively, are
provided in the second layer, and the decision for one of the symptom classes is made in the
third layer. An illustration of the multi-layer approach, estimating the measurable system
output (2.16), is provided in Figure 5.8.

Remark 5.3.3 The fault detection estimates the symptom type and the severity level de-
pending on the feature vector and the previously estimated motor symptom, see Section 2.3.
Hence, we predict the symptom severity model-based through the function gf inside (2.16),
where the feature vector zκ contributes to the measurement-based innovation. The fault de-
tection is realized through employing multiple successive GP models that are arranged in a
multi-layer GP model. Hence, when we managed the free parameters in the multi-layer GP,
we are ready to apply the estimation to real human data.

5.3.4 GP Hyperparameter Characteristics
To ensure that the GPs generalize well to unseen data, the GPs should learn the symptom
characteristics instead of the data distribution. Therefore, the symptom estimation false
positives (FP, i.e. predicting a symptom where there is none) and false negatives (FN, i.e.
missing the presence of a symptom) are considered as equally undesired, as this induces
impediment of over- and underestimation of symptoms at the same time. This means the
GP models in Figure 5.8 are required to satisfy the property FN/FP = 1, which is achieved
by selecting the initial hyperparameters of each of the GP models to approximate this ratio.
As a GP model that in the initial optimization step roughly meets the FN/FP = 1 property
is already close to a local optimum and the GP model training employs a gradient descend
algorithm, it is unlikely that during training the model deviates from producing estimates
where FN/FP ≈ 1. Further, a relatively large signal noise ϑn hinders the overfitting of the
GP models to the training data sets and thus, reduces the model’s training accuracy, but
during testing supports the generalization property.

5.4 Statistical Analysis
In this section we detail the practical application of the multi-layer approach to the patient
data set. First, we introduce a feature vector reduction, to ensure efficient performance of the
multi-layer GP. Then, we present how the patient data set is split into disjoint training and
test sets, to analyze the multi-layer model’s ability to generalize to unseen data and unknown
patients. Further, we explain how we deal with the non-uniform symptom distribution in
the patient set. Finally, we provide the initial training hyperparamters and independent
training accuracies of the tremor GP, the dyskinesia GP and the bradykinesia GP.

5.4.1 Feature Vector Reduction
To reduce the computational complexity of the multi-layer GP, each internal GP model is
trained and tested on a subset of the 132 dimensional feature vector only. To determine the
informative wavelet decomposition levels a detailed interpretation of the behavioral motion
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5 Ambient Symptom Recognition in Parkinson’s Disease

spectrum of the patient data is required: Decomposition level 1 contains motions with very
low frequency (<0.2 Hz) which is slower than usual human behavior and thus can be assumed
to mainly contain sensor drift. Decomposition levels 3 and 5 cover the frequency range of
most intended motions and are thus important to distinguish voluntary motion from PD
symptoms. Decomposition level 7 includes frequencies that correspond to fast movements,
rarely found in the voluntary motion spectrum of daily living activities of elderly PD patients,
but frequently occurring during dyskinetic symptom phases. Decomposition level 9 contains
motions of the characteristic tremor frequencies (4− 6 Hz).
Therefore, we reduce the feature vector z ∈ R132 for the dyskinesia GP about the wavelet

decomposition levels 1 and 9 for both signals (accelerometer and gyroscope), and for the
bradykinesia GP about the levels 1 and 7 for both signals. Hence, in each of the GP models
the dimensionality of the input vector is reduced about 36 = 2× 2× 9 dimensions (9 is the
number of features calculated in one wavelet decomposition level). In the tremor GP the full
feature vector z ∈ R132 is employed to facilitate separation of the symptom from all other
incoming signals.

5.4.2 Disjointed Patient Sets
We split the patient cohort, consisting of 30 participants, into two disjoint sets; one group
consists of the training patients, whose data is used to train the multi-layer approach, the
other group is the test patients, whose so far unseen data is used to test the trained model’s
accuracy. With this procedure, we not only quantify the ability of our approach for perform
regression and prediction, but moreover demonstrate the model’s ability to generalize to
unknown participants. Hence, we introduce an approach that does not require fine tuning
on the target patient, but is globally applicable to PD patients.
Specifically, we perform a leave-one-subject-out (LOSO) approach, where we repeat the

training and testing procedure 30 times, in each of the independent runs the test group
consists of one participant and the training is performed on the remaining 29 patients in the
cohort. We iterate trough the patient cohort so that after the 30 trials every patient was
once the test patient.

5.4.3 Non-uniform Symptom Distribution
With respect to the three independent rating scales for the symptoms bradykinesia, dyski-
nesia and tremor, the PD data set, is extremely non-uniform distributed. In Figure 5.9, top
row, the data distributions according to the independent scales are visualized. For instance,
according to the tremor rating scale, 96% of the data does not show this symptom and thus,
each of the 30 tremor GPs has an underlying symptom distribution similar to the pie chart
in the upper right corner of Figure 5.9. We use “similar”, because in each LOSO experi-
ment run a different patient is left out, which effects slightly the symptom distribution of
the training data set of the remaining 29 patients, whereas Figure 5.9 shows the symptom
distribution of the full data set.
Finding suitable GP model hyperparameters that represent the symptom characteristics,

not the symptom frequency, gets more difficult the more non-uniformly the symptoms are
distributed in the training data set. Therefore, we do not train the three GP models on
the full data set, but on data subsets that only comprise the balanced data and the data
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Figure 5.9: Distribution of symptom severities according to the different rating scales. Ac-
cording to the independent scales all data where a specific symptom is not ap-
parent is assigned to the balanced class. To reduce the non-uniformity of the
symptom distribution during the GP model training, the dyskinesia GP, the
bradykinesia GP and the tremor GP are trained on the data subsets illustrated
in the bottom row left, middle and right, respectively. For all three GPs the
model testing, however, is performed on the full data sets (top row).

where the respective symptom (bradykinesia, dyskinesia or tremor) is present, see Figure 5.9,
bottom row. We do not further reduce the amount of balanced data, as the balanced class
covers the most widespread activities in free living and thus, contains a large diversity of
intended motion patterns that need to be distinguished from the unintended motions caused
by the symptoms.
The model testing, however, is performed on the full data set, i.e. the GP predictions of

each of the GP models in Figure 5.8 are tested against the expert labels of the respective
test patient regardless of the symptom class.

5.4.4 Initial Hyperparameters
All 30 training runs per GP model class (tremor, dyskinesia and bradykinesia) are ini-
tialized with the same vector of starting hyperparameters h = (λ, σf , σn)>, in particular
for any tremor GP the initial hyperparamter values are hTM = (96.83, 0.23, 0.50), for any
bradykinesia GP they are hBK = (96302550, 826659, 0.65) and for any dyskinesia GP they
are hDK = (10572, 148, 0.83). Those hyperparameter vectors, found by heuristics, fulfill the
FN/FP ≈ 1 property.

5.4.5 Training Accuracy of Symptom Severity
The three GP model classes in the multi-layer approach are trained independently using the
described setup for GP model training. We denote with training accuracy the percentage
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Table 5.1: Training accuracy of the symptom severity for each activity.
Symptom accuracy (%) other sitting walking standing laying all

tremor mean 89.06 79.75 82.81 78.11 86.03 83.15

std 1.24 1.58 2.05 2.83 1.66 1.87

mean 66.39 61.05 62.03 57.50 62.72 61.94bradykinesia
std 5.70 6.44 6.02 7.03 6.00 6.24

dyskinesia mean 51.72 58.98 51.67 56.35 81.25 59.99

std 3.23 2.20 2.27 4.36 1.22 2.66

of data, where (after the model training has finished) the re-estimated symptom severity
matches the expert label, and provide the achieved model training accuracies in Table 5.1.
Row-wise the training accuracy of the tremor GP, dyskinesia GP and bradykinesia GP is
provided in terms of the mean and the standard deviation of the 30 independent experiment
runs in the LOSO approach. The severity estimation accuracy percentages are given for
each of the main activity categories (sitting, walking, standing, laying and other) and for the
total amount of data under all. The presented accuracies in all GP models are normalized
by the amount of data available in each run, to prevent biased results due to the distortion
of repetitions, where the data set for a certain symptom class differs strongly in size.

5.5 Results
In this section we report the experimental results of our approach. We present the multi-
layer GP test accuracies, where we first regard each model layer as a standalone task and
report the accuracy of each GP model independently, before we provide the total accuracy
probabilities of the second layer, conditioned on the accuracy of layer one. All GP model
accuracy results are provided in terms of the mean and standard deviation per main activity
category (sitting, laying, standing, walking and other). For comparison, we additionally
present the results for pure regression where the GP input for both training and testing is
xκ = zκ, i.e. without considering a dynamical system in the approximation.

5.5.1 Individual and Total GP Model Accuracies
In the following, the test accuracies in predicting the patient’s symptom and severity level of
the three GP classes in the multi-layer approach are provided. Besides the standard accuracy,
the percentage of predictions where the expert labels 0 − 4 match the model output, we
provide the +−1 accuracy, defining the percentage when the predicted symptom severity is at
most one level off the severity assessed by the expert rater. The prediction accuracy of the
full test data is provided in column all, while the accuracies for each of the activity categories
sitting, walking, standing, laying and other are presented in the corresponding column. The
results are presented in terms of mean and standard deviation (std) of the accuracies in each
of the conducted 30 test runs when iterating through the test patients. The accuracy results
are normalized by the amount of data available for each patient and activity to avoid any
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bias in calculating the mean and standard deviation.
We start by analyzing the accuracies of each layer independently. Hence, the accuracies in

the second layer are obtained assuming 100% correct tremor detection in the first layer. In
Table 5.2 the independent in-layer results are presented. The symptom severity estimations
exceeds 75% accuracy in each activity for the tremor GP and in less than 5% of cases is
the predicted symptom severity more than one level off the expert ratings for each activity.
Hence, the tremor estimation in layer one is soundly separating the patient data into tremor
and non-tremor data, and provides quite accurate predictions of the tremor severity indepen-
dent of the performed activity. The captured movements’ composition of intended motion
and the unintended motor symptoms of dyskinesia and bradykinesia varies from patient to
patient, and usually requires individual model tuning to the test patient. Our approach of
training the GP models with unified initial hyperparameters is designed to generalize among
patients. Therefore, it shows in cases a high standard deviation in the prediction accuracy,
indicating a decreased suitability of the GP models for individual patients with atypical
movement composition in comparison to the training patient set. However, the accuracy of
symptom severity estimations in layer two never falls below 62% and 50% for bradykinesia
and dyskinesia, respectively. In some activities the motor dysfunctions dominate more than
in others. Therefore, the dyskinesia GP performs particularly well in estimating symptoms
during laying, while the most difficult activity for the bradykinesia GP is standing. The +−1
accuracy of the severity estimation for both motor symptoms clearly exceeds 80% through
all activities except for the bradykinesia GP during laying. Laying is frequently reported
for patients where severe bradykinesia symptoms are observed. The severity predictions of
the dyskinesia GP during laying, however, are in more than 99% correct or by at most 1
level off. This activity generally is disturbed by few intended motions and thus, shows pure
motor symptoms often. For the testing results we obtain averaged FN/FP ratios of 1.16,
0.99 and 0.99 for the tremor GP, the bradykinesia GP and the dyskinesia GP, respectively.
Next, we investigate the total accuracy of the symptom predictions, i.e. the probability of

both layers (the first and the second) being predicted correctly at the same time. Specifically,
the total accuracies are the percentage of accurate predictions of the bradykinesia GP and the
dyskinesia GP, respectively, intersected with the accuracy of the tremor GP. For simplicity
of presentation we provide the accuracy and the +−1 accuracy in terms of the percentage
of correct predictions of the multi-layer approach for all patients taken together. In total,
in 1318 instances of GP predictions tremor is estimated. The remaining 8619 data samples
are processed in the second layer of the multi-layer approach. Inside the second layer,
the bradykinesia GP and the dyskinesia GP never falsely predicted the presence of both
symptoms in parallel for data of the same one minute time window. Hence, symptom
discrimination worked precisely with the proposed motion features. Table 5.3 notes the
total test accuracy for the PD symptoms tremor, bradykinesia and dyskinesia and for the
balanced condition, where movement disorders are absent. The accuracies of the severity
estimations (0− 4) are provided for the activity categories sitting, walking, standing, laying,
other and all. For the full data set the tremor severity is estimated accurately in more than
80%, the bradykinesia and dyskinesia severity in more than 50% and the balanced condition
is detected correctly in 48%. For all motor symptoms the +−1 severity estimation accuracy
is above 80%, demonstrating a reliable motor symptom detection tendency.
In the above experiments we trained and tested on the dynamics (2.16) with input (5.4)

and (5.7), respectively. For comparison we present in the following results for pure regression
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Table 5.2: Individual layer testing accuracy of the symptom severity for each activity.
Symptom accuracy (%) other sitting walking standing laying all

mean 88.77 79.13 81.56 78.50 84.97 82.58

std 15.72 24.37 20.58 26.53 15.64 20.57
+−1 mean 98.92 95.53 97.77 95.74 97.52 97.09tr

em
or

+−1 std 5.17 9.22 7.57 11.93 6.55 8.09

mean 71.40 71.91 72.97 62.70 67.64 69.32

std 31.54 33.25 35.63 33.46 39.09 4.59
+−1 90.24 91.97 92.40 94.85 79.24 89.74

br
ad

yk
in
es
ia

+−1 std 17.08 15.97 15.06 9.54 34.99 18.52

mean 51.09 56.87 50.00 50.70 86.21 58.97

std 18.53 20.37 21.48 25.07 9.85 19.06
+−1 mean 89.19 90.03 88.32 87.99 99.19 90.94

dy
sk
in
es
ia

+−1 std 21.78 15.71 15.09 15.53 2.37 14.10

Table 5.3: Total testing accuracy of the symptom severity for each activity.
Motor symptom severity (%) other sitting walking standing laying all

tremor accuracy 88.77 79.13 81.56 78.50 84.97 82.58
+−1 accuracy 98.92 95.53 97.77 95.74 97.52 97.50

accuracy 67.48 67.47 63.37 46.32 60.38 64.68bradykinesia
+−1 accuracy 84.66 85.77 80.36 86.76 72.93 82.76

dyskinesia accuracy 45.77 51.84 42.76 43.38 81.29 53.20
+−1 accuracy 83.96 83.00 76.70 79.66 90.76 83.18

accuracy 45.47 53.16 36.86 35.34 72.77 48.56balanced
+−1 accuracy 90.14 87.70 77.70 80.42 93.41 85.64

without a dynamical system in the approach, i.e. where the GP input for both training and
testing equals the feature vector xκ = zκ. The accuracy results for the bradykinesia GP
and dyskinesia GP are provided in Table 5.4, as for those symptoms the autocorrelation is
high (as shown in Fig 5.5), and consequently, considering a dynamical system significantly
influences the results. The severity prediction accuracy significantly drops in each activity
for both GP models in comparison to the results including the dynamics in the model (see
Table 5.2).
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Table 5.4: Individual layer testing accuracy of the symptom severity for each activity without
dynamics.

GP type accuracy (%) other sitting walking standing laying all

mean 52.05 53.82 55.70 48.28 33.90 48.75

std 12.85 14.35 14.53 17.22 11.61 14.11
+−1 mean 89.10 90.17 91.83 89.22 77.11 87.49

br
ad

yk
in
es
ia

+−1 std 6.91 10.72 8.16 10.77 18.50 11.01

mean 42.28 48.74 41.76 44.94 81.15 51.77

std 29.67 26.14 31.71 31.13 17.09 27.15
+−1 mean 87.46 89.02 91.04 88.63 93.36 89.90

dy
sk
in
es
ia

+−1 std 23.45 18.47 16.21 22.58 6.58 17.46

5.5.2 Interpretation

A weakness of the approach concerns the data separation in the first layer. Currently a
single GP model is trained for all tremor cases, as tremor is reported as a major initial
symptom of PD [126]. Hence, the model is not capable of recognizing any other symptom
besides tremor, if tremor is present in the data. This means, we miss out on the rarely
occurring situations, when patients are co-exhibiting dyskinetic or bradykinetic symptoms.
Additionally, we keep track of the stronger symptom among dyskinesia and bradykinesia only
and disregard situations, where patients exhibit multiple symptoms in parallel. Besides, in
the current approach we assume false positive (FP ) and false negative (FN) predictions to
be equally undesired. In other medical applications, however, other prediction characteristics
could be prioritized, which require the adaptation of the initial GP hyperparameters. To give
an example for another FN/FP -ratio: detecting all non-balanced symptom states is three
times more important than predicting FP s, what induces a GP model prediction ration
of FN/FP ≈ 0.33. An alternative prediction characteristic is for instance: a symptom
should be missed in at most 5% of the estimations. In the present approach, appropriate
hyperparamters for such prediction characteristics are found by heuristics.

The results from the previous section, however, show that our multi-layer approach is
capable of estimating PD movement symptoms with high precision during daily living ac-
tivities. We achieve quite precise symptom severity predictions during the activities sitting,
walking, standing, laying and other, indicating that our approach is robust to arbitrary vol-
untary motion. In comparison to the state of the art in autonomous symptom recognition
for PD, we cover a more complete symptom range than most related work by considering
tremor, bradykinesia and dyskinesia. Further, we require only one inertial sensor and do not
depend on specific tasks and motion patterns for the ambient symptom recognition. Hence,
we significantly decrease the inconvenience to the patient during symptom detection and
severity estimation.
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5.6 Discussion
To conclude this chapter, we briefly recapitulate the characteristics of the developed mo-
tor symptom estimation in PD. We introduced an approach to monitor the human motor
behavior, and to autonomously detect motor malfunctioning, relying on sensor data from a
wearable inertial module.
The essential contribution is the development of a motor symptom detection and severity

estimation method, that accurately recognizes symptom severity in the presence of arbitrary
and unknown voluntary motion. Hence, the proposed approach is able to determine the
patient’s symptoms with high precision during daily living, without restrictions on the pa-
tient’s activities. A key property of the approach is the dynamical system formulation of the
fault detection unit (2.16), which is employed to incorporate the temporal evolution of the
PD symptoms.
The external fault detection is a framework for estimating the human internal, unknown

motor state. We achieve this using a multi-layer GP model given the available motion
measurements and a training data set of expert labels of motor symptoms including the
synchronized executed motor behavior. We analyze the symptom characteristics to propose
expressive inertial data feature and to motivate the multi-layer GP structure. The diver-
sity of motion features based on wavelet decomposition, enables our approach to achieve
accurate estimation results during unstructured patient activities. Moreover, as we rely on
a commercially available low-cost wearable sensor, handling of the tracking device is user
friendly, the device is robust and maintenance is minimal.
We achieve outstanding results in estimating PD patient motor symptoms: In an experi-

mental evaluation, we use a PD patient data set (30 participants) to analyze the recognition
accuracy of dyskinesia, bradykinesia with tremor and bradykinesia without tremor. More-
over, we estimate the symptom severity levels in terms of the MDS-UPDRS standard PD
rating scale (0-4 per symptom). The testing is performed during unstructured daily living
and provides reliable results (accuracy ca. 50− 90% and +−1 accuracy ca. 90%) for all (un-
known) patient activities; the categories in which the activities were subdivided comprise
walking, sitting, standing, lying and other. Numerous approaches are already available for
activity monitoring using motion data from smartwatches. So far we do not make use of
activity recognition in our method. In future work, however, we aim to include activity
recognition during non-symptom phases and then providing improved symptom detection
and severity estimation by filtering out voluntary motions such as cyclical arm swinging
during walking, for instance.
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In this thesis we develop a plant model for the human sensorimotor system. The plant
model includes three subsystems: (1) the posterior parietal cortex, where the human decision
process takes place, (2) the physical motor execution, where the desired motion trajectory
is transformed into motor commands, which traverse the spinal cord to the executing body
part and result in muscle activation and coordination, and (3) the motor system, which
influences the human motor state. In the following we summarize our achievements and
indicate future research directions.

Summary of Contributions
We address all challenges that arise from modeling human motor behavior: We develop novel
approximations of the human sensorimotor plant model based on data-driven modeling,
since parametric models are proven unsuitable for the complex dynamics of human motor
behavior. Further, we generalize the GP model to allow for rigid motion input data, since
human executed movements naturally evolve on the special Euclidean group SE(3). And
finally, we constantly account for the uncertainty in the human sensorimotor system through
incorporating probabilistic approach in all formal methodology.

Motor Execution Approximation

In Chapter 3 we introduce a GP generalization to allow for model input on SE(3). Therefore,
we present mean functions and fundamental kernel functions for input data in the space of
rigid motions that are based on either the dot function or a metric in the special Euclidean
group. Further, we prove those characteristic GP model parts to be valid. To represent the
space of the rigid motions, we investigate the most prominent parametrizations and evaluate
the GP generalization characteristics depending on the chosen representations, since the GP
properties depend on the topology of the parametrization.
We evaluate the generalized GP in simulations and on real word data in applications of

human-robot cooperation. The results show the GP generalization to be suitable for ap-
proximating the closed loop dynamics of human motor executions, due to their property to
generate smooth motion trajectories and to incorporate prediction confidence in the model.
From literature, we know that human motor execution is corrupted by various types of
sensorimotor uncertainty, which are considered in generalized GP modeling since the pre-
dicted output is provided in form of a Gaussian distribution. A method for integrating the
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probability distributions in velocity space to the space of rigid motions SE(3) allows for a
completion of the dynamics approximation of human motor execution.

Decision Process Approximation

The subsystem modeling the human decision making (taking place in the posterior parietal
cortex), consisting of a parallel process of potential movement planning and motion weight-
ing, is approximated in Chapter 4. We introduce model approximations for all three units
involved in the decision making unit, however, including some adaptations of the subsystem
plant model: Since we do not have access to the human internal potential movement plans,
we approximate them by executed human movement including sensorimotor noise. We dif-
ferentiate those examples of human motor behavior using a probabilistic clustering approach
based on generalized GMMs, that allow for data inputs on SE(3). For approximating the
movement weighting, we introduce a probabilistic classification method, that allows for on-
line trajectory bundle (representing the potential desired trajectories) leveraging. To develop
an approximation of the decision making unit in the human subsystem modeling the decision
process, we present the online generalized GP model including the sample leveraging. This
algorithm enhances the generalized GP to a recursive algorithm that incorporates the sample
importance in the kernel function.
The human decision process model is inspired by neurophysiological findings that sug-

gest the decision process dynamics to consist of parallel processes which jointly generate the
human internal desired trajectory. The presented approximations certainly represent only
one approach out of the numerous possible approximations. In our experimental evaluation,
however, the approach performed convincingly. The approach for generating the desired tra-
jectory is capable of predicting a completely unseen rigid motion trajectory online using a
generalized GP model. So far, however, we have not evaluated sample leveraging experimen-
tally in the generalized online GP. Further, the performance of the probabilistic classification
method is evaluated in comparison to the human. We demonstrate the online algorithm,
which relies on the point wise class-conditional likelihood, to significantly outperform the
human classification abilities.

Internal Motor State Estimation

In Chapter 5 we provide a monitoring and fault detection system for estimating the human
internal motor state. An external unit tracks human executed motor behavior and extracts
meaningful features from the captured inertial signals, based on time-frequency transforma-
tions, specifically wavelet transformations. Then, a multi-layer GP model estimates the PD
patient’s motor symptoms employing a dynamical system structure from the previous motor
state estimate and the motor behavior features, captured and calculated in the monitoring
unit. The multi-layer GP detects the presence of the most salient motor symptoms in PD
tremor, dyskinesia and bradykinesia, and estimates the severity of the most prominent of
these motor symptoms.
In the development of the motor symptom estimator, we focus on patients with PD and

therefore, solely regarded motor dysfunctions that appear for Parkinson’s patients. The
experimental evaluation on real patients’ data of those motor symptoms show clearly superior
performance compared to the state of the art in automated symptom recognition in PD: We
not only detect the presence of diverse motor symptoms, but also estimated the severity
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of those symptoms. Additionally, we allow the patient to perform unconstrained activities
of daily living. Hence, the fault detection achieved reliable estimation results of motor
symptoms besides the presence of unknown intended motions in the captured data.

Outlook
In this thesis we aim towards holistically modeling the human sensorimotor system. We
introduce for each of the dynamical subsystems in the human plant model a novel approxi-
mation based on GP models, formal results on the methodology and thorough experimental
evaluations and illustrations of the presented approximations in the areas of human-robot
cooperation and health-care, respectively.
Although many issues in modeling the human sensorimotor system have been addressed

in this thesis, a number of research problems remain to be solved in future work.

Model Generalizations to Manifolds

In future work, we aim towards introducing the generalization of GP modeling for the rigid
motion representation by homogeneous matrices. The way was paved already in this thesis
for the generalization to allow for parametrizing GPs in matrix form. It only remains open
to chose a suitable distance measure on homogeneous matrices for to complete the approach.
Another interesting line of research is the GP generalization to other manifolds than SE(3).
So far, no kernel function has been introduced for modeling correlation among data points
on a less restrictive manifold topology. Additionally, we seek to employ the generalization
fundamentals to other machine learning techniques such as neural networks for instance.

Further Analysis of Human Decision Making

The evaluation of reasons for the poor classification results of humans in the goal configu-
ration prediction experiment, remains open. The gap between the human behavior and the
algorithm might as well indicate that our model of the human decision process does not fully
capture the true process in the human brain, which results in a desired trajectory. Further,
we aim to finalize the human-robot cooperation experiment concerning the putting on of a
shoe to a human foot. Since, the demographic change in most western countries tends to a
society, which grows older, we will require more automated elderly assistance in the future.
Therefore, we are looking forward to further investigations on the topic of robots as dressing
assistants.

Motor State Estimation for general Motor Abnormalities

We believe that the ambient symptom and motor state recognition of patients with motor
abnormalities has great potential. This research field is relatively new to the community and
especially when it comes to applying advanced machine learning techniques for nonlinear
modeling, only a few approaches have been applied so far. Many diseases including motor
dysfunctions besides PD, exhibit characteristic symptoms. Wearable inertial sensors allow for
capturing those features non-invasively. Then, advanced machine learning techniques such
as deep neural nets or the presented multi-layer GP can be trained to identify symptoms
including their severities with high accuracy. However, it remains to be demonstrated in
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6 Conclusion and Future Directions

future work, what accuracy of the motor symptom estimation can be achieved in other fault
detection systems.
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