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Abstract—We propose fusion of stereo visual odometry and
ranging for Simultaneous Localization And Mapping (SLAM).
Two basic processes of feature- and keyframe-based stereo visual
odometry (Tracking and Local mapping) are operated in the
algorithm, while saving all local keyframes, map points, and
visual constraints in a global map database, as well as the
available ranging constraints of the keyframes. At the end of
the sequence, state estimates by visual odometry are fused with
ranging measurements to mitigate the inherent accumulating
errors in the process and achieve global consistency. We formulate
a simple graphical representation for the fusion, and perform
least squares estimation with the sparse Levenberg-Marquardt
algorithm to minimize the summation of the re-projection and
distance squared errors over all the defined constraints in
the global graph. The proposed algorithm is evaluated both
qualitatively and quantitatively on a real stereo image dataset
with synthetically generated distance measurements with super-
imposed Gaussian white noise. The experimental results show
that the proposed SLAM algorithm effectively compensates the
cumulative bias in visual odometry. Furthermore, the global
accuracy of the trajectory estimation is comparable to the one
of stereo vision-only SLAM with closing loops.

Index Terms—stereo vision, sensor fusion, ranging sensor,
graph-based SLAM

I. INTRODUCTION

Stereo visual odometry is a viable tool for exploring
unknown and GNSS-denied environments with unmanned
ground vehicles (rovers). Unlike monocular vision, it is possi-
ble to determine rover poses and build a map database without
scale ambiguity with stereo vision. However, incremental
errors are unavoidable since stereo visual odometry is a dead-
reckoning process in which the current state is propagated
from the previous pose determination.

The loop closing technique [3] is generally applied to mit-
igate accumulating estimation errors in visual odometry and
achieve global consistency. In this technique, matches of the
feature points observed in the current scene are continuously
searched in a global map database (loop detection), and when
matches are detected, an update step automatically refines
the state estimates in the loop (loop correction). By applying
this method, growing estimation errors in visual odometry
can be effectively compensated. However, it is challenging
to accurately detect and correct loops without introducing
significant computational complexity to the system.

Mur-Artal et al. proposed a loop closing method [4] and
implemented it in a keyframe- and feature-based SLAM algo-
rithm (ORB-SLAM) [2]. In this method, loop candidates are
searched by comparing Bag of Words [7] and ORB [8] only
from the previous keyframes which share covisibility infor-
mation with the current keyframe. When a loop is detected,
the poses of the keyframes which have a strong correlation
with the current keyframe are corrected first, followed by a
global bundle adjustment. Furthermore, the entire process of
closing loops is operated on a separated processing thread, thus
not interfering a real-time tracking process. However, in order
to operate any loop closing technique, a rover has to revisit
previously observed places. This is an intrinsic problem of
the loop closing technique which results in constraining the
mission planning.

We propose a different approach to resolve the drift prob-
lem: fusion of keyframe- and feature-based stereo visual
odometry and ranging measurements. We incrementally re-
cover rover’s poses by tracking the feature observations in the
current frame from a local map. In parallel, the local map is
refined on another processing thread, while saving all local
keyframes, map points, and visual constraints (feature point
observations) in a graphically formulated global map database.
Additionally, ranging constraints between the keyframes and
a static base station are added to the graph. At the end of
the sequence, we define the least squares problem with a cost
function given by the summation of re-projection and distance
squared errors over all the constraints in the global graph with
an appropriate relative weighting between vision and range.
Furthermore, the Huber kernel [6] is applied to robustify the
estimation process. Ranging constraints are absolute distance
measurements, independent from the past states, that enable
compensating cumulative bias and more accurately estimating
the rover’s poses.

We evaluate the proposed algorithm on a public stereo
vision dataset (The KITTI Vision Benchmark Suite [12]).
Distance measurements are synthetically generated using the
ground truth positions provided by the dataset with superim-
posed Gaussian white noise. First, we qualitatively compare
the trajectory and the map point estimates of the proposed
algorithm to the ones obtained with stereo visual odometry.
Then, we quantitatively compare the local accuracy and global
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consistency of the proposed algorithm to the ones of stereo
visual odometry and stereo vision-only SLAM with loop clo-
sures in terms of the Relative Pose Error (RPE) and Absolute
Trajectory Error (ATE) [15]. The evaluation results show that
the accumulating errors inherent in the dead reckoning visual
odometry are efficiently reduced by ranging fusion. Moreover,
the performance of the proposed algorithm is comparable to
the one of stereo vision-only SLAM with closing loops.

II. PRELIMINARIES

In this section, we introduce the frame definitions and the
notations used in the paper. First of all, we define three
reference frames: a) the World frame (W-frame), coinciding
with the initial camera frame, b) the Camera frame (C-frame),
attached to the camera body, and c) the Beacon frame (B-
frame) at the static base station. Fig. 1 shows the relative
geometry between the three frames. The 3D camera motion
is described by an orthonormal rotation matrix R and a
translation vector t. A generic spatial position vector in the
3D Euclidean space is denoted with p. Additional information
on the frames linked by the rigid transformation is added in
form of subscripts, whereas superscripts are used to denote the
time stamps of the camera poses and map point numbers. For
example, the camera translation with respect to the W-frame
at time t is wttc, and the 3D position of the i-th map point
with respect to the C-frame is cp

i
m.

Fig. 1. Definitions of the World (W), the Camera (C), and the Beacon (B)
frames

III. SYSTEM OVERVIEW

An overview of the proposed SLAM algorithm is given in
this section (see Fig. 2). We refer to the state-of-art keyframe-
and feature-based algorithm ORB-SLAM [2] for the two basic
stereo visual odometry processes: tracking and local map
correction. While the poses are incrementally recovered by
tracking the features on the current frame in a local map, the
map is continuously refined in another thread. All keyframes,

map points, feature observations in the local map, as well
as the available ranging measurements of the keyframes are
saved in a graphically represented global map database. At
the end of the sequence, we use the Levenberg-Marquardt
algorithm to compute the keyframe poses and map point
positions that minimize the summation of the re-projection
and the distance squared errors over all the defined visual and
ranging constraints in the graph. We explain the details of the
graph-based fusion method in the following section.

Fig. 2. An overview of the proposed SLAM algorithm

IV. FUSION OF STEREO VISUAL ODOMETRY AND
RANGING

In this section, we first present a graphical representation
of the global map database in the proposed sensor fusion
approach, detailing the state variables and the constraints.
Then, the least-squares problem is formulated with a cost
function given by the summation over all the constraints in
the graph.

A. Graph Representation

We apply a graph-based formulation for fusing stereo visual
odometry with ranging measurements as illustrated in Fig. 3.
State variables are denoted as x in circular nodes : those are
a) keyframe poses xc and b) map point positions xm (Table
I). The position of the static base station wpb is assumed
to be known. Constraints (measurements) are denoted with
z in squares on the edges between nodes: these are a) visual
measurements zv - feature point observations in keyframes
and b) ranging measurements available at keyframes zr (Table
II). From the graph, we formulate the least squares problem
with a multi-objective cost function defined by the summation
of the re-projection and distance squared errors over all the
edges in the graph as (1) and (2). The state variables and the
error functions in (1) and (2) are explained in the following
subsections. We use g2o [10] to compute the optimal states
minimizing the defined cost function (2) with the Levenberg-
Marquardt algorithm.

Θ∗ = argmin F(Θ)

where Θ =
[

wxt0
c . . . wx

tf
c wx0

m . . . wxN
m

]T
(1)
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Fig. 3. Graphical representation for fusion of stereo visual odometry and ranging measurements

TABLE I
STATE VARIABLES IN THE GRAPH

Variable Symbol Domain Dimension
Camera pose wxt

c se(3) 6
Map point position wxi

m R3 3

TABLE II
CONSTRAINTS IN THE GRAPH

Constraint Symbol Domain Dimension Error function
Vision zt,iv R3 3 et,iv (wxt

c,w xi
m) (5)

Range ztr R1 1 etr(wxt
c) (8)

F(Θ) =
∑
t,i

et,i
v (wxt

c,w xi
m)

T
Ωt,i

v et,i
v (wxt

c,w xi
m)

+
∑
t

et
r(wxt

c)
TΩt

re
t
r(wxt

c)
(2)

B. State Variables

The camera pose is parameterized in terms of rotation
and translation vectors, describing the axis-angle represented
orientation and the relative position with respect to the W-
frame. The location of a map point is defined by a position
vector in the 3D Euclidean space with respect to the W-frame:
• Camera poses wxt

c = [wwt
c,wttc]

T ∈ se(3)
• Map point positions wxi

m = wpi
m ∈ R3

C. Visual Constraints and Re-Projection Errors

Feature point observations of a map point are represented
via edges connecting the nodes associated to the camera
poses and the corresponding map point. In addition to the
x-y pixel coordinates in the left image, there is an additional

measurement for stereo vision; the x coordinate in the right
image. Under the assumption of Gaussian white noise, the
measurement error can be modeled with a covariance matrix:
• Visual constraint: zt,iv = [ut,i, vt,i, u′

t,i
]T ∈ R3

• Inverse covariance of the measurement: Ωt,i
v ∈ R3×3

The measurement function is defined as

ẑt,iv = ht,i
v (wxt

c,wxi
m) =


fx

cp
i
m,x

cpi
m,z

+ cx

fy
cp

i
m,y

cpi
m,z

+ cy

fx
cp

i
m,x−b

cpi
m,z

+ cx

 (3)

where cp
i
m = [cp

i
m,x, cp

i
m,y, cp

i
m,z]T is a 3D position vector

of the i-th map point with respect to the C-frame:

cp
i
m = [cp

i
m,x, cp

i
m,y, cp

i
m,z]T = f(wxt

c,wxi
m)

=
[

Rt
cw wttc

](wpi
m

1

)
= Rt

cwwpi
m + wttc

(4)
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It is assumed that the intrinsic parameters of the left and
right cameras are the same, and the center of the right camera
is located at [b, 0, 0]T with respect to the one of the left camera.
The focal lengths are denoted with fx and fy , and [cx, cy]T

is the coordinate of the principal point in an image.
Finally, a re-projection error of the i-th map point in the

keyframe at t is calculated as

et,i
v (wxt

c,w xi
m) = zt,iv − ht,i

v (wxt
c,wxi

m) (5)

D. Ranging Constraints and Distance Errors

A distance measurement between a keyframe and a static
base station is modeled as a ranging constraint. The measure-
ment error is assumed to be Gaussian white noise:
• Ranging constraint: ztr = ρt ∈ R1

• Inverse covariance of the measurement: Ωt
r ∈ R1

A range measurement is predicted as the norm of a keyframe
position vector with respect to the B-frame:

ẑtr = ht
r(wxt

c) = ||bpt
c|| (6)

bpt
c = wpt

c − wpb = −Rt
cw

T
wttc − wpb (7)

A ranging error of the keyframe at t is computed as the
difference between a measurement and a predicted value:

et
r(wxt

c) = zbt − ht
r(wxt

c) (8)

E. Robust Least Squares

The least squares problem with the cost function (2) is
robustified by the Huber kernel [10], which is quadratic for
small |x| but linear for large |x|:

Fk = eT
k Ωkek = ρH

(√
eT
k Ωkek

)
(9)

ρH(x) :=

{
x2 if |x| < r

2r|x| − r2 else
(10)

V. EXPERIMENTS

In this section, we present both qualitative and quantita-
tive experimental results obtained by applying the proposed
algorithm on a real stereo image sequence with synthetically
generated ranging measurements. We compare the proposed
algorithm to stereo visual odometry and stereo vision-only
SLAM with loop closures, demonstrating the effectiveness of
the proposed approach.

A. Setup

In order to evaluate the performance of the proposed SLAM
algorithm, sequence 07 of the KITTI dataset [12] was used.
This dataset contains stereo images from a large-scale outdoor
environment (191m×209m) over a time interval of 114s (see
Fig. 4). The dataset also provides accurate ground truth poses
estimated with GPS and Velodyne laser scanner. However,
the dataset does not provide distance measurements, hence
we derived ranging measurements by using the ground truth
positions with the following assumptions:

• A static base station is located at the origin of the W-
frame

• Ranging measurements are superimposed with Gaussian
white noise. Two noise levels are simulated (σ = 0.1, 0.5)

• Ranging data reception is regular and synchronized with
stereo images (a ranging measurement for every 5 stereo
image pairs)

Fig. 4. An example image of the KITTI dataset sequence 07 with detected
ORB features

B. Experimental Results

We first present the trajectory and map point estimates
obtained with the proposed algorithm and stereo visual odom-
etry on Fig. 5. The location of the static base station is
marked with a black cross. It is qualitatively shown that the
trajectory estimated by the proposed algorithm are closer to
the ground truth than the one by stereo visual odometry. Map
point estimates cannot be quantitatively assessed, since there
is no ground truth available for the map points. However,
trajectory and map point estimations are correlated, hence
the more precise trajectory estimates, the more accurate map
point estimates. To compare the local accuracy, Relative Pose
Errors (RPE) [15] are computed with various segment lengths
(Fig. 6). It is shown that both translational and rotational
errors are greatly reduced with the proposed algorithm. In
addition, we calculated the RMS of Absolute Trajectory Errors
(ATE) [15] of the trajectory estimates obtained with the
proposed approach, stereo visual odometry, and stereo vision-
only SLAM to quantify the global estimation accuracy (Table
III). The values of the proposed algorithm with both noise
levels (σ = 0.1, 0.5) are lower than the one of visual odometry.
Especially, the performance of the proposed SLAM algorithm
is comparable to the one of stereo vision-only SLAM with
loop closures.

VI. CONCLUSION

We proposed fusion of stereo visual odometry with ranging
measurements for reducing the accumulated estimation errors
inherent in visual odometry. The proposed algorithm is eval-
uated both qualitatively and quantitatively by processing a
widely used benchmark dataset with synthetically generated
ranging measurements. The experimental results show that
the estimation drifts in visual odometry are compensated by
ranging fusion. Moreover, the performance of the proposed
algorithm is comparable with the one of stereo vision-only
SLAM with loop closures.
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Fig. 5. Trajectories (top) and map points (bottom) of stereo visual odometry without closing a loop (StereoVO) and the proposed SLAM algorithm with the
Gaussian white noise assumption (Fusion(σ = 0.1[m])) on XZ- and XY-Planes (blue: StereoVO; green: Fusion(σ = 0.1[m]); black: GroundTruth)

Fig. 6. Relative Pose Error [15] comparison between stereo visual odometry (StereoVO) and the proposed SLAM algorithm with superimposed Gaussian
white noise (Fusion) (blue: StereoVO; green: Fusion(σ = 0.1[m]); red: Fusion(σ = 0.5[m]))

TABLE III
THE ABSOLUTE TRAJECTORY ERRORS [15] BETWEEN THE GROUND TRUTH AND THE ESTIMATES OVER ALL TIME STAMPS (RMSE) [M]

Stereo visual odometry Stereo vision-only SLAM SLAM with fusion of stereo visual odometry and ranging

(with loop closures) σ = 0.1m σ = 0.5m

1.43 0.54 0.37 0.52
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We applied the fusion algorithm in post-processing, without
evaluating the real-time capabilities. As a next step, we are
going to implement a real-time version of the method. By
operating the fusion steps on a separate processing thread,
as proposed in PTAM [1] and ORB-SLAM [2], the real-
time tracking will not be hindered by the proposed global
optimization step.

A further topic to be addressed is the correct utilization of
asynchronous measurements, as the ranging observations and
the image frame acquisition may not be triggered by the same
clock signal.
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