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Abstract

Low-mass electron–positron pairs are a unique experimental tool to study the properties
of the Quark-Gluon Plasma created in ultra-relativistic heavy-ion collisions at the CERN
Large Hadron Collider (LHC). Such pairs are produced during all stages of the collision
and carry the information about the whole space-time evolution of the system to the de-
tector unperturbed by strong final-state interactions. The study of dielectron production
in inelastic proton–proton (pp) collisions provides crucial vacuum reference needed for
the interpretation of the results in heavy-ion collisions and a test of perturbative Quantum
Chromodynamics (pQCD).

This work summarises the measurement of low-mass dielectron pairs in pp collisions
at a centre-of-mass energy of √𝑠 = 13 TeV with the ALICE detector. The dielectron
production is studied as a function of invariant mass and transverse momentum at midra-
pidity (|𝑦e| < 0.8). The contributions from light-hadron decays can be calculated from
their cross sections independently measured in pp collisions. Correlated electron pairs
from semi-leptonic charm and beauty decays, which dominate in the intermediate mass
region (1.1 < 𝑚ee < 2.8 GeV/c2), are used to extract the charm and beauty cross
sections integrated over all transverse momenta for the first time at this collision energy
at midrapidity. The data are fit with templates from two different Monte Carlo event
generators, Pythia and Powheg, leading to the following values of heavy-flavour produc-
tion cross-sections: d𝜎cc/d𝑦|𝑦=0 = 974 ± 138(stat.) ± 140 (syst.) ± 214 (B.R.) μb and
d𝜎bb/d𝑦|𝑦=0 = 79 ± 14(stat.) ± 11 (syst.) ± 5 (B.R.) μb using Pythia simulations and
d𝜎cc/d𝑦|𝑦=0 = 1417 ± 184(stat.) ± 204 (syst.) ± 312 (B.R.) μb and d𝜎bb/d𝑦|𝑦=0 =
48±14(stat.)±7 (syst.)±3 (B.R.) μb using Powheg. The difference observed between
Pythia and Powheg based results points to different kinematic correlations of the heavy-
quark pairs in the two generators. These values, whose uncertainties are fully correlated
between the two generators, are consistent with extrapolations from lower energies based
on pQCD calculations.

Recent studies of pp collisions with high charged-particle multiplicities showed sur-
prising results similar to previous observations in heavy-ion collisions. Measurements
of low-mass dielectrons could provide additional information regarding the underly-
ing physics processes. This work compares the dielectron spectra in inelastic pp col-
lisions and in collisions collected with high charged-particle multiplicities in various
transverse-momentum intervals. The differences are consistent with the already mea-
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sured multiplicity-dependent production of light and heavy hadrons at lower √𝑠. The
production of direct photons in inelastic and high-multiplicity collisions is also dis-
cussed. Upper limits on the contribution of direct photons to the inclusive photon spec-
trum are extracted at 90% confidence level and found to be in agreement with pQCD
predictions.
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Zusamenfassung

Massearme Elektron–Positron Paare sind ein einzigartiges experimentelles Werkzeug,
um die Eigenschaften des Quark–Gluon Plasmas, das bei ultrarelativistischen Schwe-
rionenkollisionen am CERN Large Hadron Collider (LHC) entsteht, zu untersuchen.
Solche Paare werden in allen Stadien der Kollision erzeugt und tragen die Informa-
tion über die gesamte Raum–Zeit Entwicklung des Systems ohne Störung durch die
starke Wechselwirkung zum Detektor. Die Erforschung der Dielektronen in inelastis-
chen Proton–Proton (pp) Kollisionen dient der Erstellung einer Vakuumreferenz, die für
die Interpretation der Ergebnisse in Schwerionenkollisionen benötigt wird. Desweiteren
kann man mit ihnen Berechnungen von pp Kollisionen mit pertubativer Quantenchro-
modynamik (pQCD) testen.

Diese Arbeit behandelt die Messung von massearmen Dielektronen in pp Kollisio-
nen bei einer Kollisionsenergie von √𝑠 = 13 TeV mit dem ALICE Detektor. Die Pro-
duktion der Dielektronen wird als Funktion der invarianten Masse und des Transver-
salimpulses bei zentraler Rapidität untersucht (|𝑦e| < 0.8). Der Beitrag von Zerfällen
leichter Hadronen kann aus ihrer unabhängig gemessenen Produktion in pp Kollisio-
nen berechnet werden. Korrelierte Elektronenpaare von semileptonischen Zerfällen der
Charm und Beauty Hadronen, die das Massekontinuum im mittleren Massenbereich
(1.1 < 𝑚ee < 2.8 GeV/c2) dominieren, werden zur ersten Messung von Charm
und Beauty Wirkungsquerschnitten bei dieser Kollisionsenergie und zentraler Rapid-
ität verwendet. Die Daten werden mit Vorlagen aus zwei verschiedenen Monte-Carlo
Ereignisgeneratoren, Pythia und Powheg, gefitted. Dies führt zu folgenden Wirkungs-
querschnitten: d𝜎cc/d𝑦|𝑦=0 = 974 ± 138(stat.) ± 140 (syst.) ± 214 (B.R.) μb und
d𝜎bb/d𝑦|𝑦=0 = 79 ± 14(stat.) ± 11 (syst.) ± 5 (B.R.) μb mit Pythia Simulationen und
d𝜎cc/d𝑦|𝑦=0 = 1417 ± 184(stat.) ± 204 (syst.) ± 312 (B.R.) μb und d𝜎bb/d𝑦|𝑦=0 =
48±14(stat.)±7 (syst.)±3 (B.R.) μb mit Powheg. Der beobachtete Unterschied zwis-
chen Pythia- und Powheg-basierten Ergebnissen lässt sich auf unterschiedliche kinema-
tische Korrelationen der schweren Quarkpaare in den beiden Generatoren zurückführen.
Diese Werte, deren Unsicherheiten vollständig zwischen den beiden Generatoren korre-
liert sind, sind konsistent mit auf perturbativen QCD-Berechnungen basierten Extrapo-
lationen von Messungen bei niedrigeren Energien.

Neuere Studien von ppKollisionenmit hoherMultiplizität geladener Teilchen zeigten
überraschende Ergebnisse ähnlich den Beobachtungen, die zuvor bei Schwerionenkol-
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lisionen gemacht wurden. Die Messungen von Dielektronen könnten hier zusätzliche
Information zu den grundliegenden physikalischen Prozessen liefern. Diese Arbeit ver-
gleicht Dielektronenspektren in inelastischen pp Kollisionen und in solchen mit hoher
Multiplizität geladener Teilchen in verschiedenen Transversalimpulsintervallen. Die
Unterschiede stimmen mit der bereits gemessenen Multiplizitätsabhängigkeit der Pro-
duktion leichter und schwerer Hadronen überein. Die Produktion direkter Photonen in
pp Kollisionen wird ebenfalls diskutiert. Obergrenzen für den Beitrag von direkten Pho-
tonen zum inklusiven Photonspektrum werden bei 90% Konfidenzniveau extrahiert und
stimmen mit pQCD-Vorhersagen überein.
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1
Introduction

According to our current knowledge, all interactions in nature are due to the four fun-
damental forces: gravitational, electromagnetic, weak and strong forces. While the first
two act over large distances so that their effects can be directly observed in everyday
life, the latter two become relevant only at the subatomic level. Mathematically, these
interactions can be described as fields, which for all forces except for gravity are discrete
quantum fields with the interactions mediated by elementary particles (so-called gauge
bosons). The electromagnetic, weak and strong interactions between all known particles
are incorporated into one theory — the Standard Model of particle physics, a quantum
field gauge theory based on the symmetry group 𝐺SM = 𝑆𝑈(3)C × 𝑆𝑈(2)L × 𝑈(1)Y.
Here 𝑆𝑈(3)C colour symmetry represents the strong sector of the Standard model —
QuantumChromodynamics (QCD) which describes the interactions of gluons with other
quarks and gluons. The𝑆𝑈(2)L×𝑈(1)Y part corresponds to the electroweak sector han-
dling weak and electromagnetic interactions, where the subscript L indicates coupling
only to left-handed fermions and weak hypercharge Y is the generator of 𝑈(1)Y group.

At normal temperatures and nuclear matter densities, quarks and gluons are held
together by the strong force inside hadrons — composite particles made of either three
quarks (baryons) or of one quark and one antiquark (mesons). However, already in the
1960s it was pointed out that at high temperatures beyond some critical value nuclear
matter cannot exist in the form of hadrons [1]. The heating of hadronic matter leads to
an increase in the kinetic energies of particles and to the production of new states, and
statistical-thermodynamical treatment of nuclear matter involving only hadrons breaks
beyond some critical temperature 𝑇C. Other early theoretical descriptions of nuclear
matter, e. g. based on the model of strongly interacting particle in a finite region of
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Figure 1.1: Left: schematic QCD phase diagram showing the phases of QCD matter
at different temperatures and baryon chemical potentials [8]. The green line shows the
commonly accepted evolution path of the Universe as calculated e. g. in [9]. Right: nor-
malised pressure, energy density and entropy density as a function of the temperature [6].
The horizontal dashed line corresponds to the ideal gas limit for the energy density.

space to which fields are confined [2], also implied that at high temperatures and/or
baryonic densities a state of heated and/or compressed nuclear matter must be described
with partonic (quarks and gluons) degrees of freedom.

The properties of QCD matter can be described through thermodynamics. By anal-
ogy with the well-known example of the phase diagram for water, Fig. 1.1 (left) shows
a schematic QCD phase diagram as a function of temperature 𝑇 and baryon chemi-
cal potential 𝜇𝐵, i. e. the amount of energy needed to introduce one additional baryon
into the system. According to lattice QCD calculations [3–6], at temperatures1 around
𝑇 ≈ 155 MeV ≈ 1012 K and 𝜇𝐵 ∼ 0 a new state of matter comprising deconfined
quarks and gluons is formed. Such hot and dense (with the energy density exceeding
𝜖 ≈ 1 GeV/fm3) state with net baryon density close to zero may have existed in the
early Universe just few microseconds after the Big Bang. In the regime of high 𝑇 and
low 𝜇𝐵, lattice QCD calculations indicate a smooth crossover from confined nuclear
matter to a deconfined phase. At 𝑇 ∼𝑇C, the normalised system pressure, energy den-
sity and entropy density rapidly rise and reach approximately constant values beyond this
point (Fig. 1.1 right), which clearly indicates a crossover to a state with more degrees of
freedom. However, in the regime of higher 𝜇𝐵 effective field theories are needed, and
the order of the phase transition is extremely model dependent, see e. g. [7] for a review.
A phase boundary between two states should end up therefore in critical point.

Exact details such as the existence of the critical point or the order of phase transition
remain unknown. In the laboratory, the QCD phase diagram can be explored by means
of heavy-ion collisions at various collision energies, which for a very short period of

1If not stated otherwise, the natural units of ℏ = 𝑐 = 𝑘𝐵 = 1 are used in this thesis.

– 2 –



time ∼𝒪(10 fm/𝑐) create a hot and/or dense strongly interacting medium. At lower
collision energies, the physics of heavy-ion collisions is defined by large nuclear stopping
effect, thus producing hadronic matter at high 𝜇B and lower 𝑇 , whereas at relativistic
energies, i. e. in regime when the total energy of colliding nuclei is much higher than
their rest masses, colliding heavy ions are highly transparent and create hot medium
with almost zero net baryon density. Since nuclei are extended objects, such collisions
are also characterised in terms of “centrality”, i. e. the degree of overlap of the colliding
nuclei, which defines directly the volume of the interacting region and the geometrical
properties of the collision, such as the number of participating nucleons and the number
of binary nucleon–nucleon collisions. In central, head-on collisions, almost all incoming
nucleons can contribute their energy to a collision, and the medium is expected to have
higher temperatures and a longer lifetime. In peripheral collisions, nuclei only slightly
overlap, so a medium is expected to have a smaller lifetime and temperature. In the
field of heavy-ion physics, it is customary to introduce the concept of the centrality of
the collision, which provides an important tool to compare different measurements from
various experiments with each other and with theoretical calculations.

Many experimental results clearly indicate that in relativistic heavy-ion collisions a
new state of matter has been created — the Quark-Gluon Plasma (QGP), see e. g. [10,
11] for recent reviews. The name refers to the analogy with the conventional plasma,
where nuclei and electrons, normally bound to atoms by electromagnetic forces, can
move freely. TheQGP is thought to consist of free quarks and gluons, otherwise confined
inside hadrons at low temperatures and net baryon densities. In a QGP, quarks and
gluons still strongly interact with each other, so the system does not reach an ideal gas
approximation, which is also indicated by lattice QCD calculations in Fig. 1.1 (right).
Among other properties, this system is characterised by large energy densities well above
𝜖 ≈ 1 GeV/fm3 [12, 13] and by initial temperatures of several hundred MeV [14, 15].
A large elliptic flow is developed on a partonic level indicating early thermalisation of
the medium (including heavy charm quarks) and its behaviour as almost perfect liquid
with shear-viscosity to entropy-density ratio 𝜂/𝑠 close to the theoretical lower bound
of 1/4𝜋 [13, 16–18]. Fig. 1.2 shows a sketch of the evolution of the system created
in central relativistic heavy-ion collisions. However, the correct interpretation of the
heavy-ion results would not be possible without extensive studies of the smaller collision
systems such as proton–proton (pp) or proton–nucleus collisions. These studies provide
necessary vacuum and cold-nuclear matter references for anymodifications which can be
seen in heavy-ion collisions, allowing us to distinguish the interesting phenomena related
to the formation of QGP from other effects. Thanks to large energy transfers reached in
the initial hard parton scattering, such studies are also an important medium-free test for
perturbative QCD (pQCD) calculations.

Electromagnetic probes such as photons or dilepton pairs (𝑙+𝑙− = e+e− or 𝜇+𝜇−)
have established themselves as a particularly useful experimental tool to study the prop-
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Figure 1.2: Evolution of the system created in relativistic central heavy-ion collisions.
Time is advancing from the left to the right, the approximate time scale is shown for
each stage. The sketch is based on the simulations by the MADAI Collaboration [19].

erties of the system created in heavy-ion collisions. Once emitted, they carry the infor-
mation to the detector unaffected by strong final-state interactions with the surrounding
hadronic medium, as sketched in Fig. 1.2. Dilepton pairs are created during all stages
of heavy-ion collision via various processes with an approximate time ordering in the
invariant mass of the dilepton pair: the earlier produced, the higher its invariant mass,
thus allowing us to study the whole space-time evolution of the system.

The dielectron continuum is very rich in physics sources. A realistic simulation of
the expected dielectron invariant mass spectrum from hadronic sources in pp collisions
at the top LHC energy2 of √𝑠 = 13 TeV is shown in Fig. 1.3. This simulation in-
cludes also the detector effects such as resolution and acceptance. In the low mass re-
gion (𝑚ee ≲ 1 GeV/c2), the dielectron continuum is dominated by light-flavour meson
decays, including resonance (e. g. 𝜌 → e+e−) and Dalitz decays (e. g. 𝜋0 → 𝛾 e+e−).
The latter are in fact two-body decays with one intermediate (virtual) particle immedi-
ately decaying into two additional decay products, such as 𝜋0 → 𝛾𝛾∗ → 𝛾 e+e−. In the
intermediate mass range (1.1 ≲ 𝑚ee ≲ 2.8 GeV/c2), the continuum is dominated by
correlated dielectrons from semi-leptonic decays of charm and beauty hadrons, which
provide complementary information about heavy-quark production. At higher invariant
masses, dielectron studies give also insight into the production of bound heavy-flavour
states such as the J/𝜓 meson, which is a bound state of a charm quark and a charm
anti-quark.

Various modifications of the dielectron spectrum in heavy-ion collisions provide a
unique information about the properties of hot and dense system created in these col-
lisions. On top of ordinary Dalitz and resonance decays, thermal black-body radiation
(from both partonic and hadronic phases [20, 21]) is of particular interest as it contains
the information about the temperature of the system created in collisions. In the lowmass
region, the dielectron invariant-mass distribution is also sensitive to medium modifica-
tions of the spectral function of short-lived vector mesons that are linked to the predicted
restoration of chiral symmetry at high temperatures [20]. In the intermediate mass range,

2The definitions of kinematic variables used in this thesis can be found in Appendix A.
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Figure 1.3: Expected contributions to the dielectron mass spectrum from hadron decays
in pp collisions at √𝑠 = 13 TeV.

the mass continuum produced by semi-leptonic heavy-flavour decays is sensitive to the
energy loss [22–26] and to the degree of thermalisation of charm and beauty quarks in
the medium, as well as to heavy-quark hadronisation mechanism, e.g. recombination of
heavy quarks with light quarks from the thermalised medium [27–29].

To single out such effects related to the QGP phase, it is therefore crucial to inves-
tigate first heavy-flavour production in pp collisions. At LHC energies, heavy-flavour
quarks are copiously produced by inelastic partonic scatterings in these collisions, mostly
via gluon fusion 𝑔𝑔 → 𝑄𝑄 with a small contribution of quark–antiquark annihilation
𝑞𝑞 → 𝑄𝑄, where 𝑔, 𝑞 and 𝑄 denote gluons, light (up or down) and heavy (charm or
beauty) quarks correspondingly. The largemasses of heavy quarks, 𝑚Q, make it possible
to calculate their production cross sections perturbatively [30–32]. Hence, experimental
measurements of heavy-quark production in pp collisions provide an excellent test of
pQCD and Monte Carlo event generators in this energy regime. Flavour conservation in
the strong interaction allows heavy quarks to be only produced in pairs, which then hadro-
nise independently to (anti)charm or (anti)beauty hadrons. Hadrons which contain only
one heavy quark or antiquark are referred to as “open charm” or “open beauty” hadrons.
Since the mass of charm and beauty quarks is much larger than that of light quarks (up,
down or strange), open heavy-flavour hadrons inherit the strong initial correlation of the
original heavy-quark pair. Charm hadrons and their decay products reflect the initial
angular correlation of the heavy-quark pairs, whereas in the case of beauty hadron de-
cays the correlation of the decay products is weakened due to their large masses. In both
cases individual semi-leptonic weak decays of open heavy-flavour hadrons will lead to a
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continuum of dielectron pairs, which dominates the spectrum in the intermediate mass
region between the 𝜙 and J/𝜓 peaks. Therefore, dielectron measurements can be used
to study charm and beauty production.

Proton–proton collisions, in which a large number of charged particles are produced,
have recently attracted the interest of the heavy-ion community [33, 34]. These events ex-
hibit several features that are similar to those observed in heavy-ion collisions, e. g. col-
lective effects, such as long-range angular correlations [35–40] or enhanced strangeness
production [41]. Charged-hadron 𝑝T spectra show a hardeningwith increasingmultiplic-
ity, an effect that arises naturally from jet production [42]. Also, heavy-quark produc-
tion is found to scale faster than linearly with the charged-particle multiplicity [43, 44],
which can be explained by a substantial contribution from Multiple Parton Interactions
(MPI) [45, 46], i. e. several interactions on the parton level occurring in a single pp colli-
sion, which introduce a correlation between particle production and the total event multi-
plicity [47–49]. Moreover, if a thermalised systemwere created in such high-multiplicity
pp collisions, a signal of (virtual) thermal photons should be present. This motivates the
study of dielectron production in high-multiplicity pp collisions, which could bring ad-
ditional information regarding the underlying physical phenomena.

Thiswork presents themeasurements of low-mass dielectron pairs produced in proton–
proton collisions at a centre-of-mass energy of √𝑠 = 13 TeV recorded in 2016 and 2017
with the ALICE detector. The dielectron production has been studied at midrapidity
(|𝑦e| < 0.8) as a function of invariant mass, 𝑚ee, and pair transverse momentum, 𝑝T, ee,
over a wide range (𝑚ee < 4 GeV/c2 and 𝑝T, ee < 6 GeV/c). The dielectron yield is
compared to the expectations from known hadronic sources based on the independently
measured hadron cross sections in pp collisions. Heavy-flavour (charm and beauty) pro-
duction cross sections at midrapidity are extracted in inelastic and high-multiplicity pp
collisions by fitting the dielectron spectrumwith templates provided by twoMonte Carlo
event generators. The dielectron spectrum in inelastic collisions is compared with the
one obtained in high-multiplicity collisions in various transverse-momentum intervals.
The production of direct photons is measured in both event classes as well.

The thesis is organised in the following way: Chapter 1 presents a short theoretical
introduction into the physics of the dielectron spectrum. The ALICE detector and its
sub-systems relevant for the analysis are described in Chapter 2. The details about the
experimental data analysis such as reconstruction and selection of electron/positron can-
didates as well as the analysis of Monte Carlo simulated data are presented in Chapter 3.
Chapter 4 summarises the results obtained in this work: dielectron mass and 𝑝T, ee spec-
tra, heavy-flavour production cross sections, fraction of direct photons in inclusive pho-
ton spectrum and the comparison of dielectron spectra in high-multiplicity and inelastic
collisions. Summary and outlook for future analyses conclude the thesis in Chapter 5.
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1.1. Quantum Chromodynamics

1.1 Quantum Chromodynamics
The theory of Quantum Chromodynamics is a non-Abelian gauge theory with symmetry
group 𝑆𝑈(3) that is constructed on the basis of fermion fields (quarks) and boson medi-
ators of the strong force (gluons). The dynamics of a quantum state and the fundamental
fields are determined by the Lagrangian which can be written as:

ℒQCD = 𝜓𝑖 (𝑖(𝛾𝜇𝐷𝜇)𝑖𝑗 − 𝑀 𝛿𝑖𝑗) 𝜓𝑗 − 1
4𝐺𝑎

𝜇𝜈𝐺𝜇𝜈
𝑎 . (1.1)

Here 𝜓𝑖(𝑥) are the spin-1/2 quark fields, which are distinguished by their flavour
(up, down, strange, charm, bottom and top) and carry colour (red, blue or green, in
total 𝑁𝐶 = 3) and electric (−1/3 or +2/3) charges. 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝛼

𝜇𝜆𝛼 is the gauge
covariant derivative with Gell-Mannmatrices𝜆𝛼, flavour-independent coupling constant
𝑔 = √4𝜋𝛼𝑠 and gluon gauge field 𝐴 for 𝑁2

𝐶 − 1 = 8 different gluons 𝛼 = 1...8. The
Dirac matrices 𝛾𝜇 connect the spinor representation to the vector representation of the
Lorentz group. The mass matrix 𝑀 includes bare masses of quarks (𝑚𝑢 ≃ 3, 𝑚𝑑 ≃ 7,
𝑚𝑠 ≃ 100 MeV/c2 for light quarks and 𝑚𝑐 ≃ 1.25, 𝑚𝑏 ≃ 4.1, 𝑚𝑡 ≃ 175 GeV/c2 for
heavy quarks) along the diagonal. The gluon field strength tensor 𝐺𝑎

𝜇𝜈 (analogous to the
field strength tensor 𝐹 𝜇𝜈 in quantum electrodynamics) is given by:

𝐺𝑎
𝜇𝜈 = 𝜕𝜇𝒜𝑎

𝜈 − 𝜕𝜈𝒜𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝒜𝑏

𝜇𝒜𝑐
𝜈. (1.2)

Here 𝒜𝑎
𝜇 are the gluon fields in the adjoint representation of the 𝑆𝑈(3) gauge group,

and 𝑓𝑎𝑏𝑐 is the structure constant of 𝑆𝑈(3). Since gluons carry a gauge symmetry
charge (colour), they can also interact among themselves, which is represented by the
self-coupling term 𝑔𝑓𝑎𝑏𝑐𝒜𝑏

𝜇𝒜𝑐
𝜈. Fig. 1.4 shows the fundamental couplings of the strong

interactions.
The fact that gluons carry themselves a non-zero colour charge leads to significant

differences in QCD compared to quantum electrodynamics. In QED, (neutrally charged)

Figure 1.4: The fundamental couplings of the strong interaction (from left to right):
gluon radiation, gluon splitting and gluon self-coupling. Time is advancing from bottom
to top.
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virtual photons carry the interaction between two charges and are allowed to create an
electron-positron pair, which consequently annihilates. Such virtual e+e− pairs act as
electric dipole, screening effectively the two interacting charges and reducing the effec-
tive charge of the electron as well as the fine structure constant 𝛼QED. In QCD, gluons
are not only allowed to split into virtual quark-antiquark pairs, but also to split into gluon
pairs, which creates the opposite behaviour of the coupling constant compared to QED.
Higher order processes of the strong interaction lead to a dependence of the coupling
constant on the transferred momentum 𝑄: 𝛼𝑠 = 𝛼𝑠(𝑄), which to first order can be
written as:

𝛼𝑠(𝑄2) ≈ 12𝜋
(11𝑛 − 2𝑓) ln(𝑄2/Λ2

𝑄𝐶𝐷). (1.3)

Here 𝑛 is the number of colours, 𝑓 represents the number of quark flavours, and the
value of QCD scale parameter Λ𝑄𝐶𝐷 ≈ 210 ± 14 MeV [50] is the only intrinsic QCD
parameter. The dependence of 𝛼𝑠 on the momentum transfer 𝑄 and the potential be-
tween two quarks as a function of distance is shown in Fig. 1.5. At higher momenta,
the coupling between quarks becomes weak, and the static local potential at small quark
separation 𝑟 is proportional to ∼ 1/𝑟. However, at large distances or small momenta the
coupling between quarks increases linearly as 𝑟, which reflects the non-Abelian nature
of the underlying symmetry of QCD. As a result, at small distances or for large trans-
ferred momenta quarks and gluons in QCD behave as asymptotically free, and the small
𝛼𝑠 allows for perturbative expansion around large momentum transfers. For smaller mo-
menta or large distances the perturbative treatment breaks down, and colourless hadrons,
to which the quarks and gluons are confined, become the relevant degrees of freedom.
In this energy regime, lattice QCD is a well-established non-perturbative approach: it
describes space and imaginary time with a set of discrete points (lattice) and introduces a
natural momentum cut-off of the order of 1/𝑎, where 𝑎 is the lattice spacing [51, 52]. Lat-
tice QCD calculations on supercomputers are usually repeated at different lattice spacing
𝑎 and extrapolated to 𝑎 = 0 and an infinitely large size of the lattice, thus recovering the
continuum QCD.

In the limit of zero quark masses in Eq. 1.1, the QCD Lagrangian reveals a symmetry
under global vector and axial vector transformation in flavour space defined as:

𝜓 → 𝑒−𝑖𝛼𝑖
𝑉 𝜆𝑖

2 𝜓 and 𝜓 → 𝑒−𝑖𝛼𝑖
𝐴

𝜆𝑖
2 𝛾5𝜓 (1.4)

The corresponding vector and axial-vector Noether currents associated with this sym-
metry are:

𝑗𝜇
𝑉 ,𝑖 = 𝜓𝛾𝜇 𝜆𝑖

2 𝜓 and 𝑗𝜇
𝐴,𝑖 = 𝜓𝛾𝜇 𝜆𝑖

2 𝛾5𝜓 (1.5)
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Figure 1.5: Left: summary of experimental measurements of running coupling constant
𝛼𝑠(𝑄) [50]. Right: quark-quark potential as a function of the distance from lattice QCD
calculations [53].

The quark fields in Eq. 1.1 can then be decomposed into left- and right-handed compo-
nents, which are invariant under the transformations from Eq. 1.5:

𝜓𝐿,𝑅 → 1
2(1 ∓ 𝛾5)𝜓 (1.6)

Here 𝐿 and 𝑅 stand for left and right handed quark fields. For massless particles, quark
handedness simplifies to the projection of the spin onto the momentum direction of a
quark (for momentum transfers of 𝑄 ≈ 1 GeV/c zero quark masses is a good approx-
imation for the light quarks 𝑢, 𝑑 and, to a lesser extend, 𝑠). This quantity is conserved
under such 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅 chiral symmetry, so left- and right-handed quarks do not
mix dynamically. Significant mass differences observed experimentally between chi-
ral partners (e. g. 𝜌 and 𝑎1 mesons with 𝐽𝑃𝐶

𝜌 = 1−− and 𝐽𝑃𝐶
𝑎1

= 1++ have masses
𝑚𝜌 = 775 MeV/c2 and 𝑚𝑎1

= 1230 MeV/c2 [50]) suggest that chiral symmetry is
apparently broken spontaneously due to a non-vanishing vacuum expectation value of
the quark condensate ⟨𝜓𝜓⟩ ≠ 0. The quark condensate serves as order parameter anal-
ogously to the magnetisation of a ferromagnet, which has no net magnetisation above
the Curie temperature 𝑇C but spontaneously picks its direction below 𝑇C. While the
vector current 𝑗𝑉 = 𝑗𝐿 + 𝑗𝑅 is still conserved, the axial-vector symmetry 𝑗𝐴 = 𝑗𝐿 − 𝑗𝑅
is spontaneously broken. This means that axial-vector charge 𝑄𝑘

𝐴 = ∫ 𝑑3𝑥𝜓† 𝜆𝑘
2 𝛾5𝜓

still commutes with the Hamiltonian, but ground state has a non-zero expectation value:
𝑄𝑘

𝐴|0⟩ ≠ 0 (an often used visualisation is a system with “Mexican hat” potential). An
arbitrary choice of the ground state leads to the spontaneous breaking of the chiral sym-
metry and to the appearance of eight (massless) Goldstone bosons: 𝜋±, 𝜋0, 𝐾±, 𝐾0, 𝐾0

and 𝜂. Since quarks have non-zero masses, the chiral symmetry is also broken explicitly
(which leads to massive pseudo-Goldstone bosons), but the effect of explicit breaking is
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Figure 1.6: Expectation value of the quark condensate as a function of temperature 𝑇
and nuclear density 𝜌. Figure is taken from [58] based on theoretical calculations in [55].

small compared to the spontaneous breaking.
According to the calculations based on the𝑆𝑈(3)Nambu and Jona-Lasiniomodel [54],

the quark condensate ⟨𝜓𝜓⟩ should melt at high temperatures or densities [55]. Fig. 1.6
shows schematically the expectation value for quark condensate ⟨𝜓𝜓⟩ together with the
regions accessible by experiments. Even before the deconfinement phase transition, the
chiral symmetry is expected to be partially restored [20], which should lead to the change
of hadron masses. However, the exact effect of chiral symmetry restoration on hadron
masses is a priori not known, and various suggested scenarios include e. g. dropping of 𝜌
meson mass [56] or significant broadening of 𝜌 and 𝜔 spectral functions [20, 57]. Here,
dilepton decay channel 𝜌 → 𝑙+𝑙− provides a unique experimental information about the
meson properties in hot and dense medium right at the moment of their decay, since in
case of e. g. 𝜌 → 𝜋+𝜋− decay pions are re-scattered in surrounding medium, and the
information about 𝜌 meson properties at the moment of the decay is lost.

1.2 Dilepton Pairs
In this Section various dilepton sources contributing to the dilepton continuum will be
discussed: Drell-Yan process, correlated semi-leptonic decays of open-heavy flavour
hadrons, decays of light-flavour mesons and direct photon production.

1.2.1 Drell-Yan Process
At the very first moments of the collision, a quark in one incoming hadron or nucleus
can annihilate with a sea antiquark from the other incoming hadron/nucleus to create a
virtual photon, which subsequently converts into dilepton pair — a production mecha-

– 10 –



1.2. Dilepton Pairs

Figure 1.7: Examples of leading-order (top row) and higher-order (bottom row) dia-
grams for heavy-quark production.

nism known as Drell-Yan process [59]. In pp collisions at the top LHC energies this
process is expected to have only very small contribution to the dilepton spectrum in the
investigated invariant mass range 𝑚ee < 4 GeV/c2 [60, 61].

1.2.2 Open Heavy Flavour
Semi-leptonic decays of open heavy-flavour hadrons are an important source of the dilep-
ton production at LHC energies. Heavy-quark pairs (charm and beauty, 𝑄𝑄) are pro-
duced via inelastic hard-scattering processes between constituent quarks or gluons of the
incoming nucleons. The lowest-order diagrams for heavy-quark production are shown
in the top row of Fig. 1.7. Because of the gluon self-coupling, these production mech-
anisms also include the interaction of a gluon from one incoming nucleon with a gluon
from the other nucleon (𝑔𝑔 → 𝑔∗ → 𝑄𝑄).

Once a heavy-quark pair is produced, quark hadronisation can lead to a creation of
open-heavy flavour hadrons, e. g. D0D0. The quark content of these mesons is one heavy
𝑐 or 𝑏 quark (or antiquark) and one light antiquark 𝑢, 𝑑, 𝑠 (or quark), e. g. D0 = cu or
B+ = ub. Open heavy-flavour baryons (such as Λ+

𝑐 = 𝑢𝑑𝑐 or Λ0
𝑏 = 𝑢𝑑𝑏) are composed

of in total three quarks, with only one of them being heavy (anti)quark. Due to the
large charm quark mass, the D0D0 pair inherits the initial strong correlation of 𝑄𝑄 pair,
which at leading order is back-to-back. With the total branching ratio of about 10%, the
D0 meson can afterwards weakly decay semi-leptonically, D0 → K−l+𝜈l, which leads
(in case both mesons decay semi-leptonically) to the creation of correlated 𝑙+𝑙− pair.
A schematic sketch of full process of such dilepton production mechanism is shown

– 11 –



Chapter 1. Introduction

Figure 1.8: Schematic view of dilepton production from correlated semi-leptonic decays
of open heavy-flavour hadrons (here for cc → D0D0 case).
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Figure 1.9: 𝑝T-differential production cross sections of D mesons in pp collisions at√𝑠 = 7 TeV [62]. Data are compared to the theoretical prediction from FONLL pQCD
calculations [32].

in Fig. 1.8. With different branching ratios for ℎ𝐻𝐹 → 𝑙±, the same holds true for
other open-charm (D±, Λ±

𝑐 ) and open-beauty (B±, B0, Λ0
𝑏) mesons and baryons. Such

dilepton pairs dominate the spectrum in the intermediate mass region between the 𝜙 and
J/𝜓 resonance peaks (Fig. 1.3).

Thanks to their large masses, the production of heavy quarks can be calculated per-
turbatively in QCD. However, such calculations to leading order cannot describe fully
the production of heavy-flavour quarks in nucleon-nucleon collisions. Higher order
calculations such as next-to-leading-order (NLO) or fixed-order-plus-next-to-leading-
log-order (FONLL) are in better agreement with the D-meson production cross section
measured in experiments (see e. g. [63] for excellent recent review). Theoretical un-
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Figure 1.10: In-medium spectral functions of light vector mesons in hot and dense
hadronic matter based on the hadronic many-body approach [20]. Short- and long-
dashed lines represents the results with and without medium effects induced by baryons.

certainties are nevertheless quite large due to several factors like heavy-quark masses,
non-perturbative parameters (parton distribution and fragmentation functions) and rela-
tivistic corrections, and the experimental data points constantly lie on the upper edge of
uncertainties. Fig. 1.9 shows an example of recent results on D meson production [62]
compared to FONLL calculations [32]. Measurements of the heavy-flavour production
via dielectrons have the advantage that they probe full 𝑝T range of heavy-quark pairs
and are additionally sensitive to the initial correlation of charm and beauty quarks, i. e.
the underlying production mechanism, which is not accessible in conventional single
heavy-flavour measurements. Therefore dilepton measurements provide a complemen-
tary information about charm and beauty production and can be used to further test the
pQCD and Monte Carlo event generators in pp collisions.

1.2.3 Hadron Decays
At the later stages of heavy-ion collision, the medium cools down and forms an inter-
acting hadron gas. Close to the phase boundary (i. e. shortly after the crossover from
QGP to a hadron gas) the spectral functions of vector mesons such as 𝜌, 𝜔 and 𝜙 are ex-
pected to be modified due to many-body properties of hadron interactions in hot hadronic
phase [20]. These effects are connected to the partial restoration of chiral symmetry ex-
pected at temperatures close to the phase boundary [64–66]. An example of predicted
in-medium spectral functions of light vector mesons in hot and dense hadronic matter is
shown in Fig. 1.10. In such theoretical calculations, 𝜌 and 𝜔 spectral functions (and to a
lesser extend also 𝜙, due to its longer lifetime) exhibit strong broadening towards higher
temperatures and densities.

– 13 –



Chapter 1. Introduction

At this stage, dilepton production from pion annihilation and scattering is expected to
be largely mediated by 𝜌, 𝜔 and 𝜙. Since these mesons have the same quantum numbers
as the photon, they couple directly to dilepton pairs according to the Vector Dominance
Model [67], e. g. in 𝜋+𝜋− annihilation process: 𝜋𝜋 → 𝜌 → 𝛾∗ → 𝑙+𝑙−. Among
these mesons, the 𝜌 meson is an especially useful probe to study the modifications of
spectral functions, as its lifetime (𝜏 ≈ 1.3 fm/𝑐) is smaller than the expected lifetime of
the medium in heavy-ion collisions at ultra-relativistic energies (≈ 10 fm/𝑐 [68]). The
invariant mass of the dilepton will directly reflect the mass of vector meson at the time
of its decay, providing a unique information about in-medium meson spectral functions.

After the system reaches thermal freeze-out, the dominant sources of dielectron pairs
are resonance and Dalitz decays of vector and pseudo-scalar mesons with their vacuum
properties: 𝜋0, 𝜂, 𝜂′, 𝜌, 𝜔, 𝜙, J/𝜓. In case of Dalitz decays such as 𝜋0 → 𝛾 e+e−, the
relation between hadron production and the associated e+e− pair production is described
by Kroll-Wada equation [69, 70]:

d2𝑁
d𝑚eed𝑝T, ee

= 2𝛼
3𝜋 √1 − 4𝑚2e

𝑚2ee
(1 + 2𝑚2

e
𝑚2ee

) 1
𝑚ee

𝑆(𝑚ee, 𝑝T, ee)
d𝑁h
d𝑝T

. (1.7)

Here 𝛼 ≈ 1/137 is the electromagnetic fine structure constant and 𝑆(𝑚ee, 𝑝T, ee) =
|𝐹ℎ(𝑚2

ee)|2(1 − 𝑚2
ee

𝑚2
ℎ

)3 is the electromagnetic form factor, 𝐹ℎ(𝑚2
ee), and a phase space

factor that cuts off the 𝑚ee distribution as one approaches the parent hadron mass, 𝑚ℎ.
In proton–proton collisions, the measurement of dielectron production from resonance
and Dalitz decays of vector and pseudo-scalar mesons provide crucial baseline needed
for the interpretation of results in heavy-ion collisions.

1.2.4 Direct Photons
Direct photons (i. e. photons which originate not from hadronic decays, but from inelas-
tic scattering processes between partons) are another important electromagnetic probe
to study the system created in heavy-ion collisions. Such photons can be created both in
form of real (massless) photons or as virtual photons with non-zero mass [71] converting
consequently into dilepton pair, which is allowed by uncertainty principle Δ𝐸Δ𝑡 ∼ ℏ.
In proton–proton collisions, the measurement of direct photons provides another im-
portant test of pQCD calculations, for which the leading-order diagrams are shown in
Fig. 1.11. Furthermore, at low 𝑝T ≲ 3 GeV/c, where one cannot rely on pQCD calcu-
lations, direct photon production in pp collisions provides crucial reference to establish
the presence of thermal radiation from hot and dense medium created in heavy-ion colli-
sions [14, 15, 72, 73]. Since the momentum distribution of direct photons is defined by
the characteristics of the interacting partons, the momentum distribution of thermal di-
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Figure 1.11: Examples for leading-order processes of direct photon production: quark–
antiquark annihilation (left) and quark–gluon Compton scattering (right).

rect photons (i. e. produced by partons in a thermalised medium) will reflect the medium
temperature, with a black-body radiation spectrum following ∼𝑒−𝐸/𝑇 .

A measurement of real direct photons at low 𝑝T is, however, challenging because
of the large background of hadron decay photons, with the main contribution (∼80%)
coming from 𝜋0 → 𝛾𝛾 decays. This background can be largely avoided by measuring
the contribution of virtual direct photons, which in contrast to real photons bring an addi-
tional observable— the invariant mass of the created e+e− pair— into the game. In gen-
eral, any process which creates real direct photons as e. g. in Fig. 1.11 can also produce
virtual photon which appears in form of dilepton pair. The relation between real photon
production and the associated e+e− pair production is described by the Kroll-Wada equa-
tion as defined in Eq. 1.7, in which case 𝑆(𝑚ee, 𝑝T, ee) is a process dependent factor that
accounts for differences between real and virtual photon production. For direct photon
production it approaches unity for 𝑝T, ee ≫ 𝑚ee, and the corresponding dielectron mass
spectrum has therefore the same ∼1/𝑚ee dependence as e+e− pairs from Dalitz decays
of hadrons at small 𝑚ee. The measurements of virtual direct photons allow selecting
the mass range 𝑚ee ≳ 𝑚𝜋0 = 135 MeV/c2 and therefore improving drastically the
signal-to-background ratio compared to measurements of real direct photons. Assuming
the equivalence between the fraction of real direct photons and fraction of virtual direct
photons with zero mass

𝑟dir = 𝑁𝛾
dir

𝑁𝛾
incl

≡ 𝑁𝛾∗

dir
𝑁𝛾∗

incl
∣
𝑚=0

, (1.8)

the real direct photon fraction 𝑟 can be extracted with a fit of the e+e− invariant mass
distribution above the 𝜋0 mass with a virtual photon contribution in addition to hadron
decays using the following expression:

d𝜎/d𝑚ee = 𝑟𝑓dir(𝑚ee) + (1 − 𝑟)𝑓LF(𝑚ee) + 𝑓HF(𝑚ee). (1.9)
Here 𝑓LF(𝑚ee) and 𝑓HF(𝑚ee) are contributions from light-flavour and heavy-flavour
decays correspondingly, and the shape of virtual direct photon component 𝑓dir(𝑚ee)
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is described by Eq. 1.7 in the quasi-real virtual photon regime (𝑝T, ee ≫ 𝑚ee). The
drawbacks of this method are the small internal conversion probability for virtual photon
(∼𝛼𝑒𝑚 ≈ 1/137) and rapidly decreasing cross section as a function of 𝑚ee (∼ 1/𝑚ee).

1.3 High-Multiplicity Proton–Proton Collisions
The phenomena described in previous Section (such as modification of vector meson
spectral functions or thermal radiation) are expected to be caused by a hot and dense
system. Experimental evidence for a creation of strongly-interacting hot partonic mat-
ter is found in many observations, such as the significant energy loss of high-𝑝T colour
probes [74], bulk collective effects described by relativistic hydrodynamics [75], high
initial temperatures of several hundred MeV [15, 76] and characteristic heavy-flavour
production [63] including sequential suppression of quarkonium states [77]. There are
only a few yet unresolved problems in the heavy-ion collisions which need to be ad-
dressed in the future, but they should not invalidate the general conclusion about the
formation of hot strongly-interacting QGP at RHIC and LHC energies.

Proton–proton collisions that produce a large number of charged particles have re-
cently attracted great interest of the heavy-ion community, see e. g. [33, 34] for recent
reviews. The observation of a pronounced longitudinal structure in the two-dimensional
angular correlation function in high-multiplicity pp events at √𝑠 = 7 TeV [35] has
triggered speculations that physics relevant for heavy-ion collisions is also at work in
small collision systems. Soon after that, pp and p–Pb events with high multiplicities
were found to exhibit further features that are similar to those observed in heavy-ion
collisions, e. g. collective effects [34, 36–40] or enhanced strangeness production [41].
Among the frameworks which aim at description of all collision systems on similar foot-
ing, relativistic hydrodynamics seems to be the most promising approach. The studies
of high-multiplicity small systems should provide a “bridge” between the dilute pp col-
lisions and the QGP created in heavy-ion collisions. The field of relativistic heavy ion
physics is currently continuously evolving towards a possible revolution in the under-
standing of the conditions, which are necessary for nuclear matter to create a (droplet
of) Quark–Gluon plasma.

Since the dilepton mass spectrum reflects directly various sources and physical pro-
cesses involved in the collision, measurements of dilepton production provide an excel-
lent tool for exploratory studies in high-multiplicity pp collisions. These measurements
could give us further insight and shed light on the underlying physics processes, es-
pecially regarding the direct photon, vector meson and heavy-flavour production. This
work focuses on a comparison of dielectron spectra in inelastic events and in events col-
lected with a trigger on high charged-particle multiplicities. To achieve this, the ratio of
properly normalised dielectron spectra in high-multiplicity (HM) and inelastic (INEL)
pp events is calculated as following:
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Figure 1.12: Left: the modification of charged-hadron 𝑝T spectra in high-multiplicity
pp collisions at √𝑠 = 13 TeV [42]. Right: D meson and non-prompt J/𝜓 relative
yields as a function of the relative charged-particle multiplicity in pp collisions at √𝑠 =
7 TeV [43].

𝑁ee(HM)/⟨𝑁ch(HM)⟩
𝑁ee(INEL)/⟨𝑁ch(INEL)⟩ = ⟨𝑁ch(INEL)⟩

⟨𝑁ch(HM)⟩ × 1/𝑁HM d𝑁ee/d𝑚ee|HM
1/𝑁INEL d𝑁ee/d𝑚ee|INEL

. (1.10)

Here ⟨𝑁ch⟩ is the average charged particle multiplicity and 𝑁HM (𝑁INEL) is the number
of analysed high-multiplicity (inelastic) events. In such a ratio multiplicity-independent
uncertainties of dielectron spectra cancel, and the results reflect directly the dielectron
production relative to the charged-particle multiplicity. Naively, one expects the rela-
tive yield of dielectrons from light hadron decays to scale linearly — and with slope 1
— with the relative charged particle multiplicity. Deviations from this linear behaviour
are caused by modifications of the charged hadron 𝑝T spectra [42] and by the unknown
chemistry in high-multiplicity events, e. g. by modification of the 𝜂/𝜋 ratio. The hard-
ening of charged-hadron 𝑝T spectra shown in Fig. 1.12 (left) could arise naturally from
larger production of jets (bunches of high-𝑝T particles originating from early hard pro-
cesses and concentrated in small solid angle) in high-multiplicity events. While this
hardening of 𝑝T spectra is taken into account in the corresponding hadronic cocktail
calculations (Section 3.5), possible modification of hadron chemistry can be studied for
the first time with dielectrons. Particularly interesting is the production of the 𝜌 meson:
will it be suppressed by final state interactions with surrounding charged particles, akin
to the comover model in the context of quarkonium suppression [78] or enhanced by an
increased final state production via 𝜋+𝜋− → 𝜌 annihilation?
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Furthermore, the production of open charm mesons is known to increase faster than
linearly with multiplicity for 𝑝T > 1 GeV/c [43, 44]. At LHC energies, this effect can
be attributed to larger amount of gluon radiation in hard processes or to a substantial
contribution from MPI, i. e. several interactions on the parton level in a single pp colli-
sion [45, 46]. The charged-particle multiplicity is a direct measurement of the number
of partonic interactions in the pp events, and the results on heavy-flavour production in
high-multiplicity pp events indicate that the effect ofMPI can also extend into the regime
of hard processes. Similar dependence is observed for non-prompt J/𝜓 from B mesons,
although the data are compatible within their large uncertainties with the linear slope
of 1 (Fig. 1.12 right). Here, dielectrons from correlated semileptonic charm and bottom
decays offer a unique window at the production of low-𝑝T charm and beauty hadrons.
Above 𝑝T, ee∼3 GeV/c, the dielectron spectrum in the intermediate mass range is dom-
inated by beauty hadron decays, therefore the dielectron measurement can also be used
to investigate the production of beauty hadrons in high-multiplicity pp events.

1.4 Previous Experimental Results
Before the Large Hadron Collider at CERN started to take data, several laboratories have
been studying the nuclear matter at various 𝑇 and 𝜇𝐵 in heavy-ion collisions. Among
them, the Schwerionen-Synchrotron (SIS, German for Heavy Ion Synchrotron) at GSI,
the Super Proton Synchrotron (SPS) at CERN and the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) have been colliding heavy ions at
various centre-of-mass energies. A short selection of previous results from SIS, SPS,
RHIC and LHC experiments on photon and dilepton production is presented below.

1.4.1 SIS Accelerator
The High Acceptance DiElectron Spectrometer (HADES) is a fixed-target experiment
at SIS, which has systematically measured dielectron production in low-energy colli-
sions of various nuclei: pp/np, C–C, p–Nb and Ar–KCl [79–85], where dielectrons from
quasi-free np reactions have been reconstructed by detecting the proton spectator from
the deuteron breakup. At bombarding energies of a few GeV per nucleon, i. e. in the
regime of nucleon stopping, quantitative descriptions of heavy-ion collisions indicate
that the medium radiation is apparently driven by baryonic resonances, and baryon-
driven medium effects are expected to be maximal.

Figure 1.13 (left) shows the ratio of dielectron spectra in p–Nb/pp, Ar–KCl and C–C
to the corresponding N–N reference. In the momentum range 𝑝ee < 0.8 GeV/c, the ra-
tio in p–Nb/pp reactions measured at the same kinetic beam energy of 3.5 GeV is rising
to ∼1.7, which indicates the onset of processes not accounted for in the pp system. A
direct comparison of the experimentally constrained N–N reference spectrum with the
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Figure 1.13: Left: ratio of the invariant mass yield in p–Nb/pp, Ar–KCl and C–C col-
lisions to the corresponding N–N reference [79]. Right: comparison of the reference
spectrum from elementary collisions with the results for C–C collisions; the inset dis-
plays the ratio to the reference spectrum [83]. Contributions from Dalitz decays of 𝜂
meson are subtracted from all spectra.

e+e− invariant mass distribution in the heavier system Ar–KCl at 𝐸lab = 1.76𝐴 GeV
shows an excess yield of about ∼3.5 [82], proving a qualitative change in the nature
of the excess yield in heavier systems. The dielectron spectra observed by HADES re-
sult from a four-volume integral over the emissivity, weighted with the time-dependent
temperature and density profile of the hot and dense medium described by microscopic
transport calculations [86, 87]. This approach agrees well with experiment in the region
0.4 < 𝑚ee < 0.8 GeV/c2, but seems to overpredict the results in the lower mass re-
gion. The electron pair spectra measured in C–C collisions at 𝐸lab = 1 and 2 𝐴 GeV
are compatible with a superposition of elementary np and pp collisions (Fig. 1.13 right),
leaving little room for additional electron pair sources in such light collision systems at
SIS energies [83].

In continuation of a systematic investigation of dielectron production at low energies,
HADES has recently also collected data from Au–Au collisions at 𝐸lab = 1.23𝐴 GeV,
and preliminary results are available in [79]. The studies will provide an important test
of the scenario described above.

1.4.2 Super Proton Synchrotron
The SPS machine at CERN was commissioned in June 1976 and continues to provide
fixed-target collisions nowadays, serving at the same time as the pre-accelerator for the
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Figure 1.14: Dielectron spectra in p–Be, p–Au and S–Au collisions measured by
CERES [88].

Large Hadron Collider. Already first heavy-ion SPS experiments on fixed targets found
an indication for an anomalous dielectron production (NA38 [89] andNA45/CERES [88,
90, 91]). While the dielectron yield in proton–nucleus collisions at 𝐸lab = 450 GeV
was compatible with the expected contributions from hadron decays, results in nucleus–
nucleus collisions at𝐸lab = 200𝐴 GeV clearly showed an excess over expected hadronic
sources, particularly in the mass region below 1 GeV/c2 (Fig. 1.14). The characteristics
of the excess such as the mass distribution and the onset at 𝑚ee > 2𝑚𝜋 suggested that
it originates from two-pion annihilation 𝜋𝜋 → 𝜌 → 𝑒+𝑒−. Theoretical models used to
describe CERES data included two possible scenarios for the modification of 𝜌 meson
properties: dropping of 𝜌 mass or the broadening of its width [92–94]. However, the
mass resolution and statistical precision of CERES data did not allow to distinguish be-
tween these two scenarios, with both models being able to describe the data fairly well.
In the intermediate mass region above 1 GeV/c2, an enhanced dilepton production was
also observed by Helios-3 experiment in S–W collisions at 𝐸lab = 200𝐴 GeV [95, 96]
and by NA50 experiment in Pb–Pb collisions at 𝐸lab = 158𝐴 GeV [97]. Theoretically,
this excess was attributed to enhanced open-charm production and/or thermal radiation
from the partonic phase, while experimentally this remained an open question.

These ambiguities and unresolved questions motivated the upgrade of the NA50 ex-
periment to construct the NA60 detector: a third-generation heavy-ion experiment which
was designed specifically to determine the origin of the enhancement in the intermediate
mass region. The NA60 detector complements the muon spectrometer and zero degree
calorimeter previously used by NA50 with state-of-the-art silicon detectors placed in
the target region, which provided precise information about primary interaction vertex.
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Figure 1.15: Left: background-subtracted dimuon mass spectrum in In–In collisions
at 𝐸lab = 158𝐴 GeV [98]. Dots and triangles show the spectrum before and after
the subtraction of all hadron decay sources but 𝜌. Right: the dimuon excess compared
to different model predictions for 𝜌 such as dropping mass (green line) or in-medium
broadening (blue).

Commissioned in 2001, it measured the dimuon invariant-mass spectrum in In–In col-
lisions at 𝐸lab = 158𝐴 GeV with very good mass resolution and statistical precision.
Detailed analysis of low-mass region led to clear conclusion regarding the 𝜌 spectral
function and the origin of the excess in 𝑚𝜇𝜇 ≲ 1 GeV/c2 [98, 100, 101]. Data were in
agreement with the in-medium broadening of the 𝜌 meson and thermal radiation from
hadronic and/or QGP phase, whereas vacuum 𝜌 and mass shifting scenarios were ex-
cluded (Fig. 1.15).

The NA60 Collaboration has also clarified the origin of the excess over the semilep-
tonic decays of heavy-flavour hadrons and Drell-Yan pairs in the intermediate mass
range [98, 99, 101, 102]. By using precise information from the silicon tracker placed
close to interaction point, it was shown that this excess is associated with a prompt
source, as opposed to 𝜇+𝜇− pairs from charm hadron pairs that decay further away from
the interaction point. Transverse mass spectra were used to extract the slope parame-
ter 𝑇eff in different mass windows as shown in Fig. 1.16 (left). The 𝑇eff values of the
dimuon excess rise nearly linearly with mass up to ∼1 GeV/c2, which is consistent with
the expectations for radial flow of an in-medium hadron source (𝜋+𝜋− → 𝜌) decaying
continuously into lepton pairs (Fig. 1.16 right). Beyond 𝑚𝜇𝜇 ≈ 1 GeV/c2, 𝑇eff drops
to a constant value in intermediate mass range. A natural explanation of such behaviour
is a transition to a predominantly early, i. e. partonic emission source, where radial flow
is not yet built up [101, 102]. This analysis presented the first data-based evidence for
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Figure 1.16: Left: transverse mass spectra of the dimuon excess in different mass win-
dows. The lines show fits to the data with the function ∼ 𝑒−𝑚T/𝑇eff , with 𝑇eff being
the inverse slope of the distributions. Right: the dependence of 𝑇eff parameter on the
invariant mass [99].

thermal radiation of partonic origin in nuclear collisions. Models including thermal ra-
diation from the QGP [103–106] can reproduce the data.

Soon after the NA60 measurements have been published, CERES presented new
results from Pb–Au collisions at 𝐸lab = 158𝐴 GeV [107]. Improved mass resolution
and statistical precision after a TPC upgrade allowed solving the ambiguity of the first
CERES data regarding the origin of the low-mass excess: the data clearly favoured a
substantial in-medium broadening of the 𝜌 spectral function over a density-dependent
shift of the 𝜌 pole mass, confirming the NA60 results.

1.4.3 Relativistic Heavy Ion Collider
The studies of dilepton production in nuclear collisions have been continued at RHIC by
the PHENIX and STAR Collaborations. RHIC is the first heavy-ion collider ever built,
and with energies of Au–Au collisions up to √𝑠NN = 200 GeV it is well suited for the
investigations of QGP properties in the regime of high temperature and low net-baryon
density.

Both PHENIX and STAR Collaborations have shown that dielectron production in
pp collisions at √𝑠 = 200 GeV is well described by a cocktail of expected hadronic
sources [76, 108, 109]. In addition, PHENIXmeasured the total cc and bb cross sections
in pp and d–Au collisions at √𝑠NN = 200 GeV by fitting the spectra of dielectron pairs
from heavy-flavour hadron decays simultaneously in invariant mass and pair transverse
momentum [108, 110, 111] (Fig. 1.17). At this energy, the yield from correlated pairs
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Figure 1.17: Dielectron mass spectrum in pp collisions at √𝑠 = 200 GeV after sub-
traction of light-flavour and J/𝜓 decays compared to different Monte Carlo generators
for heavy-flavour production [111]. The mass region shown in blue was excluded from
the fit used to extract the charm and beauty production cross sections.

from beauty-hadron decays dominates across all mass regions for 𝑝T, ee ≳ 2.5 GeV/c,
whereas the cc contribution is preeminent for 𝑚ee < 3 GeV/c2 and 𝑝T, ee ≲ 2 GeV/c.
Due to different rapidity and momentum distributions predicted by the models, the ex-
traction of heavy-flavour cross sections, in particular the total cc cross section, depends
nevertheless on the event generator used to extrapolate the measurements to full phase
space.

At lower masses (𝑚ee < 0.3 GeV/c2) and high pair transverse momentum (𝑝T, ee >
1 GeV/c), i. e. in the quasi-real virtual-photon region where 𝑝T, ee ≫ 𝑚ee, the mea-
sured dielectron yield was used to extract the cross section of virtual direct photons. The
corresponding yield of real direct photons in pp and d–Au collisions is reproduced by
next-to-leading order pQCD calculations [76, 112] (Fig. 1.18 right).

In Au–Au collisions, an enhancement of dielectron production in the low-mass re-
gion was also observed by PHENIX and STAR collaborations [76, 113–115]. The first
measurement by PHENIX showed a very large excess compared to the hadronic cock-
tail [76], and all models which successfully described SPS data failed to explain the new
PHENIX results [76, 116]. Later, the STAR measurements revealed a much smaller en-
hancement, compatible with models that involve the broadening of the 𝜌 meson [114].
The inconsistency between these results has been solved with the new data from the
PHENIX Collaboration after the installation of the Hadron Blind Detector [113]. The
large excess seen previously in old data was not confirmed, and new results were in
good agreement with the STAR measurements (Fig. 1.18 left). Data are consistent with
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Figure 1.18: Left: dielectron invariant mass spectrum in Au–Au collisions at √𝑠NN =
200 GeV [113]. Right: invariant cross section (pp) and invariant yield (Au–Au) of
direct photons as a function of 𝑝T [76]. The curves on the pp data represent NLO pQCD
calculations, and the dashed curves show a modified power-law fit to the pp data scaled
by geometric nuclear overlap function 𝑇AA.

models predicting a 𝜌 broadening and thermal radiation from the hadronic and/or QGP
phases. The observed strong broadening of 𝜌 meson with essentially no change of the
pole mass is consistent with the restoration of chiral symmetry [66].

The dielectron spectra in Au–Au collisions also show a further excess of the direct-
photon yield over the pp expectation (Fig. 1.18 right), which is exponential in 𝑝T with
an inverse slope in central collisions of 𝑇eff = 221 ± 19𝑠𝑡𝑎𝑡 ± 19𝑠𝑦𝑠𝑡 MeV [76]. Later,
this excess has been also measured using real photon conversions in detector material,
which resulted in similar values for the inverse slope parameter in central Au–Au col-
lisions 𝑇eff = 239 ± 25𝑠𝑡𝑎𝑡 ± 7𝑠𝑦𝑠𝑡 [117]. This excess can be attributed to thermal
radiation from the partonic and/or hadronic phase [118–120]. However, the resulting
thermal direct photon spectrum observed in experiment is a sum of all contributions
from different stages of the collision after thermalisation. High photon emission rates
in the earliest, hottest stage can be compensated by an expanded space-time volume and
a blue shift due to radial flow in the later, cooler stages [121]. This complicates the
interpretation of inverse slope parameter, but a correlation between the slope parameter
and the initial temperature still exists [122]. Models assuming thermal photon emission
from hot matter with initial temperatures in the range 300 − 600 MeV can describe the
measured spectrum [76].
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Figure 1.19: Left: the excess dielectron mass spectra in Au–Au and In–In collisions,
normalised to the charged particle multiplicity at mid-rapidity [131]. Right: integrated
yields of the normalised dilepton excesses for 0.4 < 𝑚𝑙𝑙 < 0.75 GeV/c2 as a func-
tion of charged particle multiplicity. Dashed curve and horizontal lines show theoretical
predictions for a lifetime of the medium [132].

The first measurement of elliptic flow of direct photons in Au–Au collisions by
the PHENIX Collaboration revealed, that, surprisingly, it is compatible to the one of
hadrons [123]. Further PHENIX results on more precise measurements of elliptic flow
extended to lower 𝑝T confirmed this early observation [124]. This measurement chal-
lenged theoretical models aiming at description of both large direct photon spectra and
significant flow of direct photons at the same time. This could be achieved either by an
increase of the direct photon emission from the later stages of the collision and/or sup-
press emission of the initial stage [125–127] or by assuming a new azimuthally asym-
metric source of direct photons like jet-matter interactions or synchrotron radiation in
the field of colliding nuclei [128–130]. These theoretical efforts considerably reduce
the discrepancy of the data, however, consistent reproduction of both the direct photon
spectra and flow measured at RHIC is still missing.

In addition to the studies at √𝑠NN = 200 GeV, the excess of dielectron pairs in
low-mass region has also been measured in Au–Au collisions at various collision ener-
gies by STAR Collaboration [131, 133]: √𝑠NN = 19.6, 27, 39 and 62.4 GeV. The
excess mass spectra over the hadronic cocktail prominent at all energies are consistently
described in its 𝑚ee- and 𝑝T-dependence by a model calculation with a broadened 𝜌
spectral function from SPS up to top RHIC energies. The integrated dielectron excess
yield at √𝑠NN = 19.6 GeV in mass range 0.4 < 𝑚ee < 0.75 GeV/c2, normalised
to the charged particle multiplicity at mid-rapidity, has a value similar to that in In–In
collisions at √𝑠NN = 17.3 GeV measured by NA60 [102, 134] (Fig. 1.19 left). For√𝑠NN = 200 GeV, the normalised excess yield in central collisions is higher than that
at lower energies, and increases from peripheral to central collisions (Fig. 1.19 right),
indicating that the lifetime of the hot and dense medium created in central Au–Au colli-
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sions at top RHIC energies is longer than those in peripheral and lower-energy collisions.
Dielectron studies at various collision energies will be continued at RHIC within future
Beam Energy Scan (BES) Phase-II program, which can further improve the understand-
ing of enhancement dependence on total baryon densities.

In the intermediate mass region, the detailed analysis of a possible excess at RHIC
was complicated due to the much higher production of correlated dilepton pairs from
open heavy-flavour decays compared to SPS energies. In absence of precise inner track-
ing systems, which would allow a separation of prompt and non-prompt dielectron sour-
ces, heavy-ion results from PHENIX and STAR can be fairly well described by calcu-
lations including heavy-flavour contributions estimated in pp collisions and scaled with
the number of binary collisions [76, 113–115].

Recently, STAR observed a significant enhancement of e+e− pair production at very
low transverse momentum in non-central Au–Au collisions at √𝑠NN = 200 GeV and
U–U collisions at √𝑠NN = 193 GeV [135]. The excess over hadronic cocktail calcu-
lations is pronounced over a wide mass range, but is concentrated entirely in 𝑝T, ee <
0.15 GeV/c, with a much weaker centrality dependence compared to the hadronic pro-
duction. From comparison with model calculations it can be concluded, that the ob-
served excess is very likely due to photon-photon production in hadronic heavy-ion colli-
sions. Future studies of dielectron production in non-central collisions at other heavy-ion
experiments should clarify the characteristics of such production mechanism.

1.4.4 Large Hadron Collider
In 2010, the Large Hadron Collider at the European Organisation for Nuclear Research
(CERN) brought the heavy-ion physics to TeV scale. Four big experiments (ATLAS,
ALICE, CMS and LHCb) study proton–proton, proton–nucleus and lead–lead3 colli-
sions at unprecedented collision energies and luminosities. The medium created in ultra-
relativistic heavy-ion collisions at the LHC energies is expected to reach extreme initial
temperatures and essentially zero net baryon density. ALICE is the only large experi-
ment at the LHC designed specifically to study the properties of the hot medium created
in such collisions.

The ALICE Collaboration has reported charm and beauty production cross sections
at midrapidity (|𝑦| < 0.5) in pp collisions at centre-of-mass energies of √𝑠 = 2.76 and
7 TeV [62, 136–141]. The charm measurement at √𝑠 = 7 TeV is complemented by
ATLAS results extending to higher transverse momentum and |𝑦| < 2.1 [142]. Further-
more, the CMSCollaboration has provided a variety of charm and bottommeasurements
at midrapidity at √𝑠 = 2.76, 5 and 7 TeV [143–151]. At forward rapidity (2 < 𝑦 < 5),
the LHCb Collaboration has measured charm and beauty production cross sections in pp
collisions at √𝑠 = 5, 7, 8 and 13 TeV [152–155]. These results are generally in good

3In 2017 LHC has also delivered a short xenon test run.
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Figure 1.20: Charm (left) and beauty (right) production cross sections in nucleon–
nucleon collisions as a function of √𝑠 [139, 140]. Results fromNLO pQCD calculations
and their uncertainties are shown as solid and dashed lines.

agreement with pQCD calculations at next-to-leading order (NLO) in the strong coupling
constant 𝛼s with all-order resummation of the logarithms of 𝑝T/𝑚Q (FONLL) [30–32].
However, the measured charm production cross sections consistently lie on the upper
edge of the systematic uncertainties of the theory calculations (Fig. 1.20).

In pp collisions at √𝑠 = 2.76 TeV and 8 TeV, the ALICE Collaboration did
not yet observe a significant signal of direct photons for 𝑝T < 16 GeV/c in the in-
clusive photon measurements [73]. However, the results are consistent with expec-
tations from NLO pQCD calculations, which predict a smaller contribution of direct
photons to the inclusive photon spectrum with increasing √𝑠. In central Pb–Pb colli-
sions at √𝑠NN = 2.76 TeV, an enhancement of the direct photon production similar
to that seen at RHIC [76] is observed, with a significance of the direct photon signal in
0.9 < 𝑝T < 2.1 GeV/c of 2.6𝜎 in central collisions [15]. The inverse slope parameter
of 𝑇eff = 304 ± 11𝑠𝑡𝑎𝑡 ± 40𝑠𝑦𝑠𝑡 MeV has been extracted with a fit to the data with-
out subtracting contribution from direct pQCD photons (Fig. 1.21). As for the results
at RHIC energies, the relation between the initial medium temperature and the inverse
slope parameter 𝑇eff is not so straightforward due to the large contribution of blue-shifted
photons from the late stages of the collision evolution [121]. The results from full direct
photon calculations which take into account high radial flow velocities and the photon
emission from hadron gas phase have been compared to experimental data. Models as-
suming the formation of QGP with initial temperatures in the range of 400 − 750 MeV
and early start of hydrodynamical evolution of the system (𝜏0 = 0.1 − 0.2 fm/𝑐) are
able to describe the spectrum. The elliptic flow of direct photons has been measured
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Figure 1.21: Left: the direct photon spectra in Pb–Pb collisions at √𝑠NN = 2.76 TeV
in different centrality classes compared to NLO pQCD predictions for the direct photon
yield in pp collisions at the same energy, scaled by the number of binary nucleon colli-
sions [15]. Right: the direct photon spectra in central heavy-ion collisions at the LHC
energy compared to RHIC.

at mid-rapidity in Pb–Pb collisions at √𝑠NN = 2.76 TeV and is found to be consistent
with zero within (large) uncertainties, with a significance of 1.4𝜎 for central and 1.0𝜎 for
semi-central collisions [156]. A comparison to RHIC data shows a similar magnitude
of the measured elliptic flow, but large experimental uncertainties prevent any definitive
conclusion on direct photon flow at LHC energies. Future measurements using a larger
statistics dataset will greatly increase the precision of this measurement.

ALICE Collaboration has recently submitted the results of low-mass dielectron mea-
surements in pp collisions at √𝑠 = 7 and 13 TeV [157, 158] and in Pb–Pb collisions
at √𝑠NN = 2.76 TeV [159] for the publication. This thesis presents the results of
dielectron production measurements in pp collisions at √𝑠 = 13 TeV [158]. In in-
elastic pp collisions, the dielectron yield can be well described by the expectation from
a hadronic cocktail calculations based on their independent measurements. The charm
and beauty production cross sections at midrapidity have been extracted for the first
time at this collision energy by fitting the data in two dimensions, 𝑚ee & 𝑝T, ee, using
the templates from two Monte Carlo generators (similar to the approach used previously
at RHIC [108, 110, 111]). The results are consistent with extrapolations from lower
energies based on pQCD calculations, and the sizeable difference in the cross sections
between two generators are comparable to what is observed at √𝑠 = 7 TeV [157]. Fur-
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Figure 1.22: Total charm and beauty production cross sections in pp collisions at√𝑠 = 7 TeV extracted from the fit to the dielectron spectra with Pythia (left) and
Powheg (right) [157]. The results are compared to independent single heavy-flavour
hadron measurements.

thermore, the dielectron production is studied for the first time in pp collisions with high
charged-particle multiplicities. The fraction of direct photons in inclusive photon spec-
trum is studied in both event classes via the measurement of virtual direct photons in the
transverse-momentum range 1 < 𝑝T < 6 GeV/c, and upper limits for the contribution
of virtual direct photons extracted at 90% confidence level are found to be in agreement
with pQCD calculations.

In inelastic pp collisions at √𝑠 = 7 TeV, the dielectron yield can be also described
by hadronic cocktail calculations [157]. The total charm and beauty production cross
sections have been measured by fitting the data either in two dimensions, 𝑚ee & 𝑝T, ee,
or in one dimension, the pair transverse impact parameter4 DCAee, using the templates
from different Monte Carlo generators. The results agree between two methods within
uncertainties, however the extracted charm and beauty cross sections depend on the
model used for the fit (Fig. 1.22). In the mass region 0.14 < 𝑚ee < 1.1 GeV/c2,
the pair DCAee variable allows the prompt and non-prompt dielectron sources to be
separated and provides an additional variable to disentangle the contributions from cc
(with 𝑐𝜏 ≈ 150 μm for D mesons) and bb (with 𝑐𝜏 ≈ 470 μm for B mesons). Finally,
the ratio of inclusive to decay photons is measured with virtual direct photons in the
transverse-momentum range 1 < 𝑝T < 8 GeV/c. This is found to be unity within the
statistical and systematic uncertainties, while also being consistent with expectations

4i. e. the average distance of closest approach of the reconstructed electron and positron tracks to the
collision vertex normalised by its resolution.
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from next-to-leading order pQCD calculations.
The measurement of thermal dielectrons from the QGP is very challenging at the

LHC due to the dominant contribution of dilepton pairs from correlated semi-leptonic
heavy-flavour decays. In Pb–Pb collisions at √𝑠NN = 2.76 TeV, the ratio of the dielec-
tron spectrum and the cocktail of hadronic contributions without vacuum 𝜌 is measured
in the invariant mass range 0.15 < 𝑚ee < 0.7 GeV/c2, where an excess of dielectrons
is observed in other experiments, and its value is found to be 1.40 ± 0.28 (stat.) ±0.08
(syst.) ±0.27 (cocktail) [159]. The limited sensitivity in the low-mass region due to
the low statistics and small signal-to-background ratio prevents any quantitative analy-
sis of a possible excess. The dielectron spectrum measured in the invariant mass range
0 < 𝑚ee < 1 GeV/c2 is consistent with the predictions from two theoretical model
calculations that include thermal dielectron production from both partonic and hadronic
phases with in-medium broadened 𝜌 meson [118, 160, 161] (Fig. 1.23). The measured
fraction of virtual direct photons is found to be consistent within uncertainties with the
measurement of real direct photons and with the expectations from previous dielectron
studies at RHIC. The effect of interactions between charm quarks and other partons in
the medium was simulated using Pythia event generator assuming two extreme scenar-
ios: complete loss of initial heavy-quark correlation (random correlation for produced
e+e− pair) or absence of any medium modifications (i. e. pure pp simulations scaled by
the number of binary nucleon–nucleon collisions). The dielectron yield in the interme-
diate mass region is found to be consistent with both scenarios and the limited precision
prevents any conclusion on energy loss effects on the dielectron spectrum.
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ALI-PUB-162281

Figure 1.23: Dielectron invariant mass spectrum in Pb–Pb collisions at √𝑠NN =
2.76 TeV in comparison with the predictions from theoretical models that include ther-
mal dielectron production [159].
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2
The ALICE Apparatus

ALICE (A Large Ion Collider Experiment) is one of four big experiments situated at
the Large Hadron Collider at CERN. With its 10000 tonnes of weight and a size of
26×16×16 meters it’s one of the largest experiment in the world dedicated to the studies
of the physics of matter at an infinitely small scale. Its 19 sub-detector systems use dif-
ferent techniques to provide complementary information about each collision happening
inside the experiment. ALICE relies on an international collaboration of more than 1800
physicists, engineers and technicians from 176 physics institutes in 41 countries all over
the world. The main goal of ALICE is to study the physics of strongly interacting matter
at the highest energy densities reached so far in the laboratory and to characterise physi-
cal properties of QGP. For this purpose, the experimental data from heavy-ion collisions
are studied in details using excellent tracking (down to 𝑝T = 0.2 GeV/c at mid-rapidity)
and particle identification capabilities of the detector. A detailed description of the AL-
ICE apparatus and its performance can be found in [162–165]. Figure 2.1 shows the
schematic view of the ALICE detector during the LHC Run-2 period (2015–2018). The
layout of the ALICE detector can be divided into two large parts. The central barrel part,
which covers polar angles from 45° to 135° and is embedded in a large solenoid mag-
net, is used in this thesis to reconstruct charged particle tracks and to identify electrons
and positrons produced in collisions. The forward muon arm located at small azimuthal
angles (2° − 9°) is not used in this thesis and will be mentioned below only shortly.

Trajectories of charged particles are reconstructed in the ALICE central barrel with
the Inner Tracking System (ITS) and the Time Projection Chamber (TPC) that reside
within a large solenoid re-used from the L3 experiment, which provides a homogeneous
magnetic field of 0.5 T along the beam direction. The track finding and fitting in TPC
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Figure 2.1: Schematic view of the ALICE detector during the Run-2 data taking period
(2015–2018) [166]. The Inner Tracking System is shown in more details in the inlay in
the top right corner together with some forward detectors located nearby.

and ITS is performed with the help of the Kalman filter technique [167], and the found
tracks arematched afterwards to the other central-barrel detectors such as Time-of-Flight
(TOF) or Transition Radiation Detector (TRD). Before tracking, the primary interaction
vertex is determined using clusters in the first two ITS layers, and its position is then
further improved using the fully reconstructed tracks. A search for photon conversions
and decays of strange hadrons far from the interaction vertex concludes the central-barrel
tracking procedure. After track reconstruction, the bending radius 𝑟 of the track is used
to determine its transverse momentum, which is independent of the particle mass:

𝑝T = 0.3 GeV
Tm ⋅ 𝑞𝑟𝐵, (2.1)

where 𝑞 is the particle charge and 𝐵 is the magnetic field.
Particle identification (PID) capabilities over a large part of the phase space and

for many different particle species is a key design feature of ALICE. Both TPC and
ITS detectors provide the PID information through the measurement of specific energy
loss of charged particles, either in gas (TPC) or in silicon of the ITS layers. PID at
mid-rapidity is complemented by TOF located at larger radial distance, and by TRD,
which is optimised to distinguish electrons and pions at momenta above 1 GeV/c using
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Xe/CO2-filled wire chambers and fibre radiator. A single-arm High-Momentum Particle
Identification Detector (HMPID) consists of a 10 m2 array of ring imaging Cherenkov
counters and extends hadron identification capabilities toward higher momenta in about
10% of the central barrel acceptance.

Photons and neutral mesons are measured in a small single-arm PHOton Spectrome-
ter (PHOS)— a high-resolution and high-granularity electromagnetic calorimeter made
of dense scintillating crystals (PbW04). A set of multiwire chambers in front of PHOS
acts as a charged particle veto (CPV). An ElectroMagnetic CALorimeter (EMCAL) with
lower granularity and energy resolution than PHOS, but much larger acceptance, is a Pb-
scintillator calorimeter optimised to measure jet production and fragmentation functions
in conjunction with the charged particle tracking in other barrel detectors. In order to
extend jet measurements to di-jet studies, a second (identical, but with smaller accep-
tance) calorimeter has been installed in the central barrel opposite to the EMCAL —
the Di-Jet CALorimeter (DCAL). Forming together with EMCAL a two-arm electro-
magnetic calorimeter, it provides larger acceptance and much stronger capabilities for
back-to-back correlation measurements of jets, photons and neutral mesons.

The charm and bottom resonance states J/𝜓, 𝜓′ and Υ, Υ′, Υ″ are studied in ALICE
with the muon arm located at forward rapidity (−4 < 𝜂 < −2.4), which provides good
acceptance down to zero 𝑝T and a mass resolution sufficient enough to separate all states.
It consists of composite absorber, a large dipole magnet (placed outside the L3 magnet)
and 10 planes of thin cathode strip tracking stations with high granularity. A second
absorber behind the spectrometer and four planes of Resistive Plate Chambers are used
for muon identification and triggering.

A number of small detectors located close to the beam pipe are used for triggering
and to measure global event characteristics. The event collision time is measured with
very good precision (< 25 ps) by T0 detector comprising two sets of 12 Cherenkov
counters each. The V0 detector, two arrays of segmented scintillator counters, is used
as minimum-bias trigger and for rejection of background events such as beam–gas in-
teractions. The multiplicity information at large rapidities is provided by the Forward
Multiplicity Detector (FMD), which counts charged particles in rings made of silicon
strip detectors. The Photon Multiplicity Detector (PMD) consists of two planes of gas
proportional counters and measures the multiplicity and spatial distribution of photons
in the region 2.3 < 𝜂 < 3.7. The Zero Degree Calorimeter (ZDC) comprises two sets
of two compact calorimeters each, which are used to measure the impact parameter of
collision. Since protons which did not participate in a collision are spatially separated
from neutrons by the magnetic elements of the LHC beam line, each ZDC set is made by
two distinct detectors: one for spectator neutrons (ZN), placed between the beam pipes
at 0° relative to the LHC axis, and one for spectator protons (ZP), placed externally to
the outgoing beam pipe on the side where positive particles are deflected. On top of the
L3 magnet an array of scintillators called ACORDE (ALICE COsmic Ray DEtector) is

– 35 –



Chapter 2. The ALICE Apparatus

used to trigger on cosmic ray particles for calibration and alignment purposes [168], as
well as for cosmic ray physics [169].

The hardware trigger in ALICE combines the input from many detectors with fast
trigger capability (T0, V0, ZDC, SPD, TOF, TRD, PHOS, EMCal, Muons, ACORDE).
The trigger system includes a flexible protection against pile-up and background events
and an event priority scheme to optimise the acceptance of rare triggers as well as the
overall throughput of accepted events. The High-Level Trigger (HLT), a computing
farm currently consisting of 4480 CPU cores operating at 2.7 GHz, selects on-the-fly
the relevant part of the huge amount of incoming data and reduces the data volume by
orders of magnitude while preserving the physics information of interest. During heavy-
ion data taking, theDataAcQuisition system (DAQ) copeswith very large data flow of up
to several GB/s from detector to permanent storage, which is achieved by combination of
a custom optical data link, used throughout the experiment, with commodity equipment
(PCs and network switches) in a highly parallel and scalable architecture.

ALICE is studying proton–proton and proton–nucleus collisions both as a baseline
for the interpretation of results from nucleus–nucleus collisions and in their own right.
Experimental data from different collision systems (pp, p–Pb and Pb–Pb) at various
collision energies provided by the LHC have been recorded during several periods of
LHC operations, which can be denoted as Run-1 (2010–2013), Run-2 (2015–2018) and,
in future, Run-3 (2021–2023) and beyond. Four detector sub-systems used extensively
in this analysis are described below in more detail: the Inner Tracking System, the Time
Projection Chamber, the Time-of-Flight detector and the V0 scintillators.

2.1 Inner Tracking System
The ITS consists of six cylindrical layers of silicon detectors, with radial distances from
the beam axis of 4, 7, 15, 24, 39 and 44 cm (Fig. 2.2). It covers the rapidity range
of |𝜂| < 0.9 for all vertices located within the length of the interaction diamond, i.e.
±10 cm around the nominal interaction point along the beam direction. It is the detector
closest to the collision vertex and, therefore, is exposed to large particle densities, espe-
cially in Pb–Pb collisions (as many as 50 particles per cm2 for the innermost layer). This
drives the design of the four innermost layers as truly two-dimensional devices, which
are based on silicon pixel (SPD, two innermost ITS layers) and silicon drift detectors
(SDD, two intermediate ITS layers). In such semiconductor detectors, ionising radiation
is measured by the number of charge carriers (electrons and holes) set free in the material
arranged between two electrodes, with the number of electron-hole pairs proportional to
the energy of the radiation. Electrons which are transferred from the valence band to the
conduction band travel to the electrodes under the influence of an electric field, where
they result in a pulse that can be measured. SPD consists of a two-dimensional matrix
of reverse-biased silicon detector diodes with binary readout: in each cell, a threshold
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Figure 2.2: Layout of the ITS detector [168].

is applied to the pre-amplified and shaped signal. The digital output level changes when
the signal is above a set threshold. SDDs, like gaseous drift detectors, exploit the mea-
surement of the transport time of the charge deposited by a traversing particle to localise
the impact point in one of the dimensions, thus enhancing resolution and multi-track
capability at the expense of speed. The two outer layers are equipped with double-sided
silicon micro-strips (SSD). The four outer layers have analogue readout, with a signal
amplitude proportional to the energy loss in detector material. Therefore, SDD and SSD
layers can be used for particle identification via the measurement of specific energy loss
in the non-relativistic region.

The basic tasks of the inner tracker include the following:
• Localisation of the primary collision vertex and secondary vertices from charmed

meson and hyperon decays with a resolution better than 100 μm
• Improvement of the impact parameter and momentum resolution of charged par-

ticle tracks reconstructed in the TPC
• Tracking and identification of particles with 𝑝T < 200 MeV/c which are not

detected in the TPC
The ITS therefore contributes to practically all physics topics addressed by the ALICE
experiment. For this thesis, the ITS detector is used for the reconstruction of the primary
collision vertex as well as for the rejection of pile-up and background events as discussed
in Chapter 3. Together with the TPC detector it is used for the charged-particle tracking
in the ALICE central barrel acceptance (𝑝T > 0.2 MeV/c and |𝜂| < 0.8). For minimum
ionising particles with transverse momenta between 100 MeV/c and 3 GeV/c the rela-
tive momentum resolution achievable with the ITS is better than 2% [162]. For charged
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Figure 2.3: ITS material thickness traversed by a perpendicular track originating from
the primary vertex versus radius (left) and azimuthal angle (right) [164].

particles with transverse momenta 𝑝T > 1 GeV/c, the distance of closest approach
(DCA) resolution in the plane transverse to the beam direction is better than 75 μm.

Since the momentum and impact parameter resolution for low-momentum particles
are dominated by multiple scattering effects in the detector material, the amount of ma-
terial has been kept to a minimum, which is another key feature of the ITS detector.
The effective integrated thickness, including electronics, cabling, support structure, and
cooling system, amounts to just ∼8% of radiation length 𝑋0. Fig. 2.3 shows the ITS
material thickness as a function of radius and azimuthal angle for a perpendicular track
originating from the primary vertex. For this analysis, the low ITS material budget is
of importance as it reduces the conversion probability for real photons, which are re-
constructed as e+e− pairs. Such pairs do not only contaminate the physical signal at
very low (𝑚ee < 100 MeV/c2) invariant mass, but also contribute to the combinatorial
background (Chapter 3).

2.2 Time Projection Chamber
The TPC is the main charged-particle tracking device in the ALICE central barrel and
is with 5 m length and a radius extending from 85 cm to 247 cm the largest TPC de-
tector in the world. Despite of the drawbacks concerning speed and data volume, only
such a device can guarantee efficient and robust tracking with reliable PID performance
when ∼10000 charged particles are produced within its acceptance in central Pb–Pb col-
lisions. Figure 2.4 (left) shows a schematic view of the ALICE TPC. A large cylindrical
field cage of the TPC surrounds the gas volume, which was Ar/CO2 gas mixture (with
abundances of 88/12) in 2016 and Ne/CO2/N2 (90/10/5) in 2017. Both gas mixtures
are characterised by low diffusion, low atomic number and large ion mobility. These
requirements are needed for a good momentum and PID resolution, and to guarantee the
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Figure 2.4: Schematic layout of the ALICE TPC (left) and the sketch of TPC tracking
(right) [164].

highest possible data acquisition rate. Charged particles traversing the gaseous volume
of the TPC cause an ionisation of gas atoms and produce electrons and ions. The electric
field of 400 V/cm, applied between the central electrode and the end plates, transports
the electrons towards the endplates with a drift velocity of 2.7 cm/μs (92 μs maximum
drift time). To keep the occupancy low and to ensure necessary energy loss, position and
two-track resolution, there are about 560 000 readout pads on both end plates grouped
in 18 azimuthal sectors.

The position measurement at the endplates allows the reconstruction of a two di-
mensional projection of the particle trajectory in the 𝑥𝑦 plane, transverse to the beam
direction (Fig. 2.4 right). The third dimension along the beam direction is reconstructed
from the arrival time at the endplates relative to the event collision time. For this mea-
surement, it is important to ensure an approximately constant drift velocity of the elec-
trons from ionisation, which depends on several external parameters such as temperature
or pressure. These parameters are constantly monitored during the data taking, and the
corresponding calibrations are continually applied to the drift velocity. In this way the
complete trajectory in space is precisely determined for all charged particles. In total,
the TPC provides up to 159 spacial points per track for charged-particle reconstruction
and particle identification, each point being provided by a pad row.

The PID is performed by simultaneously measuring the specific energy loss d𝐸/d𝑥
and momentum of each particle traversing the detector gas. The mean rate of energy loss
by a relativistic charged-particle is well described by the Bethe-Bloch formula:

⟨−𝑑𝐸
𝑑𝑥 ⟩ = 𝐾𝑧2 𝑍

𝐴
1
𝛽2 [1

2 ln 2𝑚𝑒𝑐2𝛽2𝛾2𝑊𝑚𝑎𝑥
𝐼2 − 𝛽2 − 𝛿(𝛽𝛾)

2 ] (2.2)
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Figure 2.5: Specific energy loss d𝐸/d𝑥 for positive muons in copper as a function of
𝛽𝛾 = 𝑝/𝑀𝑐 over the wide range of muon’s kinetic energy. The region between second
and third vertical bands denoted as “Bethe” corresponds to the kinetic range in which
Bethe-Bloch parametrisation is applicable.

Here 𝛽 and 𝛾 are particle velocity 𝛽 = 𝑣/𝑐 and Lorentz factor 𝛾 = 1/√1 − 𝛽2

correspondingly, and 𝑍 denotes the atomic number of the absorbing material. In the
region 0.1 ≲ 𝛽𝛾 ≲ 1000 and for intermediate-𝑍 materials it describes the mean rate of
energy loss with an accuracy of a few percent [50]. Fig. 2.5 shows an example of d𝐸/d𝑥
for the positive muons in copper over wide range of muon’s kinetic energy. In a given
material and in the momentum range of 0.1 ≲ 𝛽𝛾 ≲ 1000, d𝐸/d𝑥 is approximately a
function of particle 𝛽 ⋅ 𝛾 only, therefore for fixed momentum 𝑝 = 𝑚𝛽𝛾 particles with
different mass 𝑚 will have different energy loss. Formula in Eq. 2.2 can be parametrised
by the following function originally proposed by the ALEPH collaboration [170]:

𝑓(𝛽𝛾) = 𝑃1
𝛽𝑃4

(𝑃2 − 𝛽𝑃4 − ln(𝑃3 + 1
(𝛽𝛾)𝑃5

)) , (2.3)

where 𝑃1−5 are fit parameters. Fig. 2.6 shows d𝐸/d𝑥 in the TPC measured in pp colli-
sions at √𝑠 = 13 TeV as a function of the particle momentum. It also clearly demon-
strates the separation between electrons and pions over the widemomentum range, which
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Figure 2.6: Specific energy loss d𝐸/d𝑥 in the TPC as a function of particle momentum
in pp collisions at √𝑠 = 13 TeV [166]. The lines show the parameterisations of the
expected mean energy loss for a given particle specie according to the Eq. 2.3.

is essential for this analysis. However, at 𝑝 ≈ 0.5 and 1 GeV/c electrons in the TPC
are indistinguishable from kaons and protons correspondingly. To suppress hadron con-
tamination in these regions, a complementary PID information from the TOF detector
is used in this thesis.

The inner radius of the TPC is determined by themaximum acceptable hit density, the
outer radius of 2.5 m by the length required for achieving d𝐸/d𝑥 resolution of better than
5–7% [164]. This resolution is necessary to provide particle identification in the region
of the relativistic rise up to momenta of ∼50 GeV/c. Good two-track resolution is
provided by position resolution of 1100 to 800 μm (at inner/outer radius) in 𝑟𝜙 direction
and 1250 to 1100 μm in 𝑧. The TPC-standalone momentum resolution (better than 5%
for themomentum region below 20 GeV/c) can be significantly improvedwith the usage
of combined ITS+TPC information (Fig. 2.7).
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Figure 2.7: The transverse momentum resolution for standalone TPC and for TPC+ITS
matched tracks with and without constraint to the vertex [165].

2.3 Time-of-Flight Detector
In the ALICE central barrel the particle identification capabilities of ITS and TPC are
complemented by the Time-Of-Flight detector. It provides the arrival time of the parti-
cle, which together with the event collision time is used to define the time of flight from
the interaction point up to the detector itself. The TOF array covers an area of ≈ 140 m2

with 160 000 individual cells at a radial distance from 370 cm to 399 cm from the nom-
inal interaction point. The requirement for an affordable system with a large number
of channels, an occupancy at around 10% or below as well as time resolution of better
than 100 ps, was accomplished with Multigap Resistive Plate Chambers (MRPC) [171].
The key aspect of these chambers is that the electric field is high and uniform over the
full sensitive gaseous volume of the detector. Any ionisation produced by a traversing
charged particle immediately starts a gas avalanche process which generates the observed
signals on the pick-up electrodes, so that, unlike other types of gaseous detectors, there
is no drift time associated with the movement of the electrons to a region of high electric
field. Double-stack MRPC strips each 122 cm long and 13 cm wide are placed inside
the gas-tight modules and are positioned transversely to the beam direction. Five such
modules in a row compose one supermodule, which is installed inside a framework of
longitudinal and transverse aluminium beams in each of the 18 sectors matching the TPC
sectors. A schematic layout of one supermodule inside the ALICE spaceframe is shown
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Figure 2.8: Schematic drawing of one TOF supermodule in the ALICE space-
frame [164].

in Fig. 2.8.
The arrival time of the particles is measured relative to the event collision time pro-

vided by the T0 detectors with very good precision (< 25 ps) as 𝑡T0
ev = (𝑡T0A +𝑡T0C)/2,

where 𝑡T0A and 𝑡T0C correspond to the fastest signals among T0A and T0C photomul-
tipliers correspondingly. The event collision time can be also estimated by the TOF de-
tector itself on an event-by-event basis by means of a 𝜒2-minimisation procedure [172].
For a known momentum 𝑝 and track length 𝑙, the time of flight can be related to the
particle velocity and mass as:

𝛽 = 𝑙
𝑡𝑇 𝑂𝐹 𝑐 (2.4)

𝑚 = 𝑝
𝛽𝛾 = 𝑝

𝑐
√𝑐2𝑡2

𝑇 𝑂𝐹
𝑙2 − 1. (2.5)

Due to their curved paths in the magnetic field of the solenoidal magnet, charged par-
ticles need a minimum 𝑝T of about 300 MeV/c to reach the TOF detector. For particle
momenta below ∼2.5 GeV/c TOF is capable to distinguish between electrons/pions and
kaons, and below ∼4 GeV/c between kaons and protons, with a 𝜋/K and K/p separation
better than 3𝜎 [163], where 𝜎 denotes the detector resolution. The resulting 𝛽 = 𝑣/𝑐 of
charged particles produced in pp collisions at √𝑠 = 13 TeV is shown in Fig. 2.9.
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Figure 2.9: TOF 𝛽 as a function of particle momentum in pp collisions at √𝑠 =
13 TeV [166].

2.4 V0 Scintillators
The V0 detector comprises two plastic scintillator arrays (V0A and V0C) placed on both
sides of the interaction point at 340 cm (V0A) and at −90 cm (V0C) from the interaction
vertex covering the pseudorapidities 2.8 < 𝜂 < 5.1 and −3.7 < 𝜂 < −1.7 respectively
(Fig. 2.10). The material consists of BC404 scintillating material (2.5 cm and 2.0 cm
in thickness for V0A and V0C respectively) with Wave-Length Shifting (WLS) fibres
of 1 mm diameter. In total there are 32 elementary counters arranged in 4 rings and 8
sectors of 45°.

The V0 detector has several functions. First, it provides fast “minimum-bias” trig-
ger for inelastic pp collisions for the central barrel detector, i. e. a trigger aiming at
detection of possibly largest fraction of inelastic events without introducing significant
selection bias. This trigger requires coincident signal1 on both sides of V0 detector
(“V0AND” trigger logic). This requirement reduces significantly the amount of trig-
gered background events like interactions of the beam with residual gas inside the beam
pipe or with mechanical structures of the beam line, since such collisions do not produce
particles in both V0A and V0C detectors.

As the dependence between the number of registered particles on the V0 arrays and
the number of primary emitted particles is monotone, the V0 serves as an indicator of
the event activity via the multiplicity recorded in the event. Cuts on the number of fired
counters and on the total charge can be applied to achieve rough multiplicity triggers.

1More precisely, 11 ns after the collision on V0A and 3 ns after the collision on V0C due to the
non-symmetric detector geometry.
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Figure 2.10: Schematic view of the V0 detector geometry. Front views of each individ-
ual scintillator array are shown on the left (V0A) and right (V0C) sides. [164]

In this analysis the V0 detector provides also high-multiplicity trigger for pp collisions,
which follow the same trigger logic as minimum-bias one by requiring coincident signal
on both V0 sides, with a total measured V0multiplicity (V0M) above a certain threshold.
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Analysis

This Chapter discusses the analysis of experimental data in detail. The analysis of in-
elastic and high-multiplicity data samples follow essentially the same technique, so they
are discussed in parallel, with the differences highlighted if present. The data anal-
ysis begins with the selection of good collision events (Section 3.1), followed by the
charged-particle track and electron selection discussed in Section 3.2. The pairing of
single electron and positron candidates and the pair analysis is described in Section 3.3.
The resulting raw dielectron distributions are corrected for the reconstruction and trig-
ger efficiencies as discussed in Section 3.4 and Section 3.5 presents the calculation of
expected dielectron production from hadron decays (the so-called hadronic “cocktail”).
Systematic checks and the evaluation of systematic uncertainties conclude this Chapter
in Section 3.6.

3.1 Datasets and Event Selection
The data samples used in this analysis have been recorded with the ALICE detector in
2016 and 2017 during the LHC proton–proton run at √𝑠 = 13 TeV (with the nominal
B-field strength of 0.5 T in the ALICE central barrel). The minimum-bias event trigger,
which is used to define the data sample for the analysis of inelastic pp collisions, require
coincident signals in both V0 scintillators to be synchronous with the beam crossing
time defined by the LHC clock. On average, an inelastic pp collision at √𝑠 = 13 TeV
produces at mid-rapidity about 5 charged particles per unit of rapidity [42]. To enhance
the sample of events with high multiplicities, these events are triggered on with V0 de-
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Figure 3.1: V0 high-multiplicity trigger threshold (top) and the ratio “threshold / mean
multiplicity” (bottom) as a function of run number during 2016 pp data taking [173].
All 2016 data are shown, including some periods which are not used for the analysis.

tector by additionally requiring the total signal amplitude measured in the V0 detector
(V0M) to exceed a certain threshold, i. e. by triggering on events located in the tail of
V0M distribution.

Due to the continuous ageing effect in V0 photomultipliers1, high-multiplicity trig-
ger threshold has been adjusted several times in order to keep the trigger selection factor
at around the same level of ∼0.1%, which corresponds to a factor of ∼5 in the V0M
multiplicity (Fig. 3.1). In order to avoid trigger inefficiencies due to threshold variations
during data taking, an information from the V0 detector is used for triggered events to
select 0.05% of events with the highest V0 multiplicity. In this interval, the V0 mul-
tiplicity percentile distribution is flat and the high-multiplicity trigger is fully efficient
(Fig. 3.2). For the calibration of events in each run, the mean V0 multiplicity is used
as reference point, so the overall V0 ageing effect is taken into account in the percentile
distribution. No V0 multiplicity selection is applied for the minimum-bias event class.

Figure 3.2 also shows the V0M distributions in high-multiplicity and minimum-bias
events. Since the V0M distribution in high-multiplicity events corresponds to the tail of
the minimum-bias distribution, no additional bias is introduced by such a selection. The
resulting correlation between the V0M and the charged-particle reference multiplicity at
mid-rapidity |𝜂| < 0.5 is shown in Fig. 3.3. In both event classes a monotonic increase
of reference multiplicity at mid-rapidity with V0M amplitude is found in wide V0M

1For minimum-bias trigger V0 ageing effect didn’t play any significant role.
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Figure 3.2: Left: V0M percentile distribution in high-multiplicity events (selection on
0–0.05% is applied). Right: V0M amplitude distributions in minimum-bias (tail of the
distribution) and high-multiplicity events.

Figure 3.3: Correlation between V0M amplitude and reference multiplicity at mid-
rapidity in minimum-bias (left) and high-multiplicity (right) events. Black points show
mean values of reference multiplicity for each V0M amplitude value, and the error bars
correspond to RMS of the distribution.

amplitude range. As a result, the multiplicity enhancement factor of the collected data
samples measured with V0 detector amounts to ∼5.4, which transforms to a multiplicity
enhancement factor at mid-rapidity of:

d𝑁acc
ch /d𝜂(HM)/⟨d𝑁acc

ch /d𝜂(MB)⟩|𝜂=0 = 4.54

The conditions of pp data taking such as the inelastic interaction rate, the number
of colliding bunches or the average number of inelastic collisions varied during 2016
and 2017, as can be seen in Fig. 3.4 for 2016 pp data. A proper rejection of background
events such as beam-gas interactions or collisions with debunched protons is an essential
part of the event analysis. Moreover, several pp collisions happened close in time can
produce a “pile-up” of events in slow detectors such as the TPC, which is reconstructed as
single event with artificially enhancedmultiplicity. Such events can originate either from
collisions of protons from different bunch crossings (when the separation between proton
bunches circulating in the LHC is small, i. e. when the number of colliding bunches
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Figure 3.4: The data-taking conditions as a function of run number in 2016. All runs
from 2016 data are shown, including those which are not used for the current analy-
sis [173].

and the inelastic interaction rate are high) or from multiple collisions within the same
bunch (when the average number of inelastic collisions per bunch crossing is high). In
order to reject these events, several criteria based on the information from fast detectors
(V0 and SPD) are required to be fulfilled by each collision, so that only good physical
events pass the selection. Figure 3.5 shows as an example the correlation between the
number of SPD tracklets (i. e. track segments of two hits extrapolated back to the beam
line) and the number of SPD clusters in minimum-bias and high-multiplicity triggered
events. In contrast to the number of SPD tracklets, which are required to point back
to the reconstructed primary vertex, the number of SPD clusters is sensitive to pile-
up events and beam-gas interactions, so such events appear as outliers from the main
diagonal correlation. Moreover, events are rejected if a secondary pile-up interaction
vertex is reconstructed with SPD tracklets using amultiplicity-dependent algorithm. The
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Figure 3.5: The correlation between the number of SPD tracklets and the number of
SPD clusters in all triggered events (left) and in events cleaned up by other background
rejection criteria but SPD tracklet-vs-cluster correlation (right) [173]. The top row shows
minimum-bias events, the bottom row shows results for high-multiplicity events, the red
line on the right plots shows the final SPD tracklet-vs-cluster selection applied to the
data (all events above the line are rejected).

minimum number of SPD tracklets contributing to the secondary vertex reconstruction is
required to be ≥ 3 for low-multiplicity events and ≥ 5 for events with high multiplicities
in order to avoid higher false rejection of good high-multiplicity events.

The primary vertex position, which is reconstructed with SPD tracklets, may be fur-
ther improved based on the information provided by tracks reconstructed in the ITS and
TPC. To assure that all detectors involved in the analysis cover the |𝜂| < 0.8 pseu-
dorapidity range, the vertex position is restricted to ±10 cm along the beam direction
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Figure 3.6: Distribution of vertex 𝑧 position in minimum-bias (left) and high-
multiplicity (right) events.

around the nominal interaction point (Fig. 3.6). The primary vertex should also fulfil the
following additional requirements:

• At least 1 track or tracklet contributes to the vertex reconstruction
• Rejection of SPD vertices, for which only 𝑧 coordinate is reconstructed and is

determined with poor resolution
• Rejection of SPD vertices reconstructed with large dispersion (the size of the win-

dow opened to define the tracklets used in the determination of the vertex, with
max. dispersion = 0.03 cm)

• Rejection of events if the vertices reconstructed with tracks and with SPD tracklets
differ by large absolute distance (with max. displacement along 𝑧 axis of 0.5 cm)

As an example of these requirements, Fig. 3.7 shows the correlation between SPD-
tracklet- and track-based vertex positions. Large distances between vertex positions re-
constructed with two methods may indicate the presence of a secondary pile-up vertex,
so such events are rejected from the analysis.

Various Monte Carlo (MC) simulated data are used in the analysis for the investi-
gation of detector effects and its inefficiency. Every MC production is “anchored” to
the corresponding data taking period in the sense that one tries to reproduce the same
detector configuration, extracted from the Offline Conditions DataBase, in all details
in the simulation, including active ITS zones and dead pixels, voltage settings, noisy
channels and other detector-specific aspects. For this purpose, pp events are generated
with e. g. Pythia event generator [174, 175] which is also used in this thesis. Pythia is
a program widely used for the generation of high-energy collisions of e+, e−, proton
and anti-proton in various combinations. It contains theory and models for a number
of physics aspects, including hard and soft interactions, parton distributions, initial- and
final-state parton showers, multiparton interactions, fragmentation and decay. Result-
ing particles are propagated through a detector simulation using Geant 3 package [176].
More details on MC analysis are presented in Section 3.4.

Several checks based on the detector performance, track matching, calibration etc.
are performed for all reconstructed data by the ALICE Quality Assurance group in a
centralised way. The results of such checks are recorded in the Run Condition Table

– 52 –



3.1. Datasets and Event Selection

Figure 3.7: Correlation between vertex 𝑧 positions reconstructed with tracks or SPD
tracklets. Results are shown for kINT7 triggered events after physics selection and other
vertex requirements (the vertex cuts on resolution/dispersion and displacement are not
applied).

(RCT) as quality flags for each detector and each “run”, which is the shortest period of
continuous data-taking with stable conditions and detector performance. In this analysis
only runs marked in the RCT as good are used, with a positive detector QA status for ITS,
TPC, TOF andV0. In order tomake sure that the detector performance is stable across all
data-taking periods in 2016 and 2017, on top of these selections additional custom run-
by-run checks are performed for all variables relevant for this analysis at event, track and
PID levels. In principle, even a good (according to RCT) run can significantly differ from
the rest of the period in terms of variables relevant for this analysis due to non-stable data-
taking conditions or detector performance. It is therefore important to check that such
deviations are properly described by Monte Carlo simulations, otherwise a run needs to
be excluded from the analysis. For this purpose, mean values of different variables on
event, track and pair levels are extracted for each run, both in experimental and in Monte
Carlo simulated data, and their trends are analysed as a function of time (run number).
As a result, several runs are excluded from the analysis due to significant deviations from
the typical mean for the rest of the runs, if such deviations are not reproduced by Monte
Carlo simulations.

An example of such run-by-run quality assurance is shown in Fig. 3.8, where the
mean number of electron candidates per event is shown as a function of run number in
2016 pp data. The trend observed in experimental data is shown on the top plot, and
it is well reproduced by Monte Carlo simulations on reconstruction level, i. e. after the
propagation through the detector. A run is excluded from the analysis if at least one
important parameter (such as the number of electron candidates, reference multiplicity
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Figure 3.8: The mean number of electron and positron candidates as a function of run
number in experimental data (blue) and in Monte Carlo simulated data (red); the ratio
data / Monte Carlo is shown in black. Vertical dashed lines separate different data-taking
periods in 2016, horizontal lines show the median and ±3 × RMS values.
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3.2. Track Selection and Particle Identification

at mid-rapidity, TPC and ITS tracking variables and the PID performance of the TPC
and TOF detectors) is > 3 × RMS away from the value calculated as median of all
runs and this deviation is not described by Monte Carlo simulations. The overall loss of
statistics after such run-by-run checks is only ∼5%, which means that the performance
of all relevant detectors was uniform and/or well described by Monte Carlo simulations.

At the time of the analysis a complete list of needed Monte Carlo simulations was
available only for 2016 data. For this reason, for the analysis of dielectron spectra cor-
rected for reconstruction efficiency only collisions recorded in 2016 are used in this
thesis, which corresponds to a total number of 441 × 106 minimum-bias pp events and
79.2 × 106 high-multiplicity pp events. However, since efficiency-related corrections
cancel to large extend in the ratio of dielectron spectra in Eq. 4.2, for the analysis of
high-multiplicity collisions also raw (uncorrected) spectra can be used, which allows to
add 2017 data without corresponding Monte Carlo simulations. This results in a total of
715 × 106 minimum-bias pp events and 153.8 × 106 high-multiplicity pp events used
for high-multiplicity studies.

3.2 Track Selection and Particle Identification
In proton–proton collisions at LHC energies, many particles are produced within the
acceptance of the ALICE central barrel spectrometer, but only some of them actually
relate to the physical process of interest. The role of track selection criteria listed below
in Table 3.1 is to select well-reconstructed tracks originating from the primary interac-
tion vertex and to suppress secondary tracks from conversions of real photons and other
processes not relevant for this analysis such as weak decays of strange hadrons, while
keeping at the same time particles originating from charm and beauty hadrons.

Charged-particle tracks are reconstructed in the ITS and TPC in the kinematic range
|𝜂| < 0.8 and 𝑝T > 0.2 GeV/c which defines the detector aperture. Below 𝑝T =
0.2 GeV/c particles deflected in the magnetic field of 𝐵 = 0.5 T do not leave enough
information in the TPC detector. Several further TPC track quality criteria are applied
to each track candidate, such as a sufficient number of measured space points (clusters)
or number of crossed rows. The latter is defined as the number of clusters assigned to
a track plus a number of missing (but in principle findable) clusters, for which good
clusters are found in neighbouring pad rows. In some cases a track has a large number of
TPC clusters shared with other track(s), which can indicate a single TPC track wrongly
reconstructed twice, so such track candidates are also rejected from the analysis. Finally,
a track is required to have a good fit quality, which is expressed in terms of 𝜒2 value per
TPC cluster:

𝜒2/𝑛TPC
𝑐𝑙 = 1

𝑛TPC
𝑐𝑙

𝑛TPC
𝑐𝑙

∑
𝑖=0

(𝑥𝑦)𝑖,𝑐𝑙 − (𝑥𝑦)𝑖,𝑡𝑟𝑎𝑐𝑘
𝜎2

𝑖,𝑥𝑦
+ 𝑧𝑖,𝑐𝑙 − 𝑧𝑖,𝑡𝑟𝑎𝑐𝑘

𝜎2
𝑖,𝑧

, (3.1)
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Chapter 3. Analysis

Table 3.1: Track selection criteria used in analysis. Track is accepted only if all listed
criteria are fulfilled.

Variable Requirement
𝑝T > 0.2 GeV/c
|𝜂| < 0.8
TPC refit Required
Number of TPC crossed rows ≥ 100
Number of TPC clusters ≥ 80
Ratio of TPC crossed rows / findable clusters > 0.8
𝜒2 per TPC cluster < 4
Fraction of shared TPC clusters < 0.4
ITS refit Required
Hit in first SPD layer Required
Number of ITS clusters ≥ 3
Maximum number of shared ITS clusters 0
𝜒2 per ITS cluster < 4.5
Reject kink daughters Required
DCA𝑥𝑦 < 1.0 cm
DCA𝑧 < 3.0 cm
Independent cut on DCA𝑥𝑦 and DCA𝑧 true

where 𝜎𝑥𝑦 and 𝜎𝑧 are the corresponding space point resolutions in the 𝑥𝑦 plane (trans-
verse to beam direction) and along the 𝑧 (beam) axis, correspondingly.

Similar track quality requirements are also applied for ITS variables. Real photons
produced in the same collision can convert in detector material into e+e− pairs, which
contaminate dielectron signal in the mass region below ≈ 100 MeV/c2. Moreover, elec-
trons and positrons from real photon conversions significantly increase the combinatorial
background and therefore reduce the signal-to-background ratio of the dielectron spec-
trum over the whole mass range (Section 3.3). To suppress the contribution from photon
conversions already on the level of single tracks (i. e. before the pair analysis and estima-
tion of combinatorial background), tracks are required to have a hit in the first SPD layer
and no ITS clusters shared with other reconstructed tracks in the event. A requirement
of a hit in the first SPD layer greatly suppresses real photon conversions occurring in
detector material beyond this layer, but causes some efficiency loss because of inactive
SPDmodules as shown in Fig. 3.9. A small fraction of electrons and positrons from pho-
ton conversions in the second ITS layer may still have a hit in the first layer associated
wrongly to their reconstructed track. A requirement of zero shared ITS clusters leads to
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3.2. Track Selection and Particle Identification

Figure 3.9: Left: 𝜂 − 𝜙 distribution of charged-particle tracks after track selection.
Right: active modules of the first SPD layer in 2016 and 2017 data.

further suppression of real photon conversions and improves the signal-to-background
ratio of the dielectron spectrum (Section 3.3). This requirement also reduces the amount
of conversion tracks from the first ITS layer or from the beam pipe.

The contribution from secondary tracks is reduced by requiring a maximum distance
of closest approach (DCA) to the primary vertex in the transverse plane (DCAxy <
1.0 cm) and in the longitudinal direction (DCAz < 3.0 cm). These DCA cuts are chosen
to be looser than the ones used typically in other analyses of primary particles in order to
keep dielectron pairs from the decays of semileptonic open charm and beauty mesons,
which have decay lengths of the order of hundred micrometers (𝑐𝜏 ≈ 150 μm for D
and 𝑐𝜏 ≈ 470 μm for B mesons). Some particles such as products of weak decays like
K+ → 𝜋+𝜋0 are reconstructed in the detector as a continuous track with a pronounced
“kink” topology: neutral particle, which cannot be directly reconstructed in the ITS and
TPC, carries away some part of mother particle energy, and the track of second charged
daughter (with the same charge as mother particle) is bent in the magnetic field in the
same direction, but with smaller radius. Tracks which exhibit such kink topology are
rejected from the analysis as well.

The same track selection is used for the analysis of high-multiplicity and minimum-
bias data samples. A requirement of zero shared ITS clusters leads to a small (∼2%)
additional rejection of good signal pairs due to the higher average charged-particle mul-
tiplicity, which is taken into account in the systematic uncertainty (Section 3.6).

Electron2 candidates are selected from charged-particle tracks using complementary
PID information provided by the TPC and TOF detectors. The detector PID response,
𝑛(𝜎DET

𝑖 ), is expressed in terms of the deviation between the measured and the expected
value of the specific ionisation energy loss in the TPC or time-of-flight in the TOF for a
given particle hypothesis 𝑖 and momentum, normalised by the detector resolution 𝜎DET.
For example, the TPC PID information for the electron hypothesis is given in units of
𝑛(𝜎TPC

e ) defined as:
2In the following, term ‘electron’ will be used for both electrons and positrons if not stated otherwise.
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Table 3.2: PID selection of electron candidates used in analysis. Electron candidate is
accepted if any of two sets of PID requirements is fulfilled.

Scheme Detector Particle 𝑛(𝜎) cut 𝑝 range [GeV/c]
TPC (d𝐸/d𝑥) electron [−3.0, 3.0] [0.2, ∞]

A TPC (d𝐸/d𝑥) pion [−∞, 4.0] [0.2, ∞]
TOF (𝛽) electron [−3.0, 3.0] [0.4, ∞]

TPC (d𝐸/d𝑥) electron [−3.0, 3.0] [0.2, ∞]
TPC (d𝐸/d𝑥) pion [−∞, 4.0] [0.2, ∞]

B TPC (d𝐸/d𝑥) kaon [−∞, −4.0] & [4.0, ∞] [0.2, ∞]
TPC (d𝐸/d𝑥) proton [−∞, −4.0] & [4.0, ∞] [0.2, ∞]

TOF (𝛽) electron [−3.0, 3.0] (if available) [0.4, ∞]

𝑛(𝜎TPC
e ) = (d𝐸/d𝑥)measured − ⟨d𝐸/d𝑥(e)⟩expected

𝜎e
. (3.2)

The usage of supplementary information from different detectors allows one to re-
duce the fraction of hadrons in a sample of electron candidates to a minimum, while
preserving a high electron efficiency for further pair analysis. To this purpose, a com-
bined PID approach is used in this analysis, which utilises two supplementary PID cut
settings each based on TPC and TOF requirements. These cut settings are discussed be-
low, and the final sample of electron candidates consists of particles which passed either
of two PID schemes (Table 3.2).

In both approaches electrons are selected in TPC with ∣𝑛(𝜎TPC
e )∣ < 3 and pions are

rejected by requiring 𝑛(𝜎TPC
𝜋 ) > 4. Since electrons have a larger energy loss in the

TPC than pions for momenta above 0.25 GeV/c, the 𝑛(𝜎TPC
𝜋 ) requirement is asym-

metric. Furthermore, in the selection scheme “A” kaons and protons are rejected by the
strict requirement that the candidate is positively identified as an electron in the TOF
(∣𝑛(𝜎TOF

e )∣ < 3). Since the TOF detector is located at 3.7 ≲ 𝑅 ≲ 4.0m from the beam
axis, the time-of-flight information is required only for particles with momentum above
0.4 GeV/c in order to minimise the rejection of good low-momentum tracks not reach-
ing the detector or associated withmismatched TOF hits. Fig 3.10 (a) shows the resulting
𝑛(𝜎TPC

e ) distribution as a function of particle momentum for this PID approach.
The requirement of TOF PID information leads to significant loss of signal tracks,

which is visible in Fig 3.10 (a) as a sharp drop of the number of electron candidates
at 𝑝 = 0.4 GeV/c. In order to increase the electron efficiency, the selection scheme
“B” uses the TOF information to select electron candidates with ∣𝑛(𝜎TOF

e )∣ < 3 only
if the track has an associated hit in the TOF detector. The significant kaon and proton
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a)

b)

c)

Figure 3.10: 𝑛(𝜎TPC
e ) distributions as a function of particle momentum for electron

candidates which fulfil the PID selection scheme A (a), B (b) or either of two (c).
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contamination arising in this case around 𝑝 ≈ 0.5 and 𝑝 ≈ 1.0 GeV/c is rejected with
TPC requirements of ∣𝑛(𝜎TPC

K )∣ > 4 and ∣𝑛(𝜎TPC
p )∣ > 4 respectively. Fig. 3.10 (b)

shows the corresponding 𝑛(𝜎TPC
e ) distribution, where the TPC hadron rejection bands

are clearly visible.
The final sample of electron candidates is composed of particles which pass either of

the two PID schemes, therefore the gaps created by the hadron rejection in the TPC seen
in Fig. 3.10 (b) are “filled” with electron candidates which have a good TOF PID signal
in these momentum regions and hence passed the PID selection “A” (Fig 3.10 (a)). The
resulting 𝑛(𝜎TPC

e ) distribution for all electron candidates accepted for the analysis is
shown in Fig. 3.10 (c). The same PID requirements are applied for the analyses of high-
multiplicity and minimum-bias data samples, and in both cases a high electron purity is
achieved (Section 3.6.4).

It is worth to mention that for the usage of such sophisticated PID approach a very
good agreement of PID response between Monte Carlo simulations and experimental
data is needed. In some phase-space regions, especially at low momentum and large
pseudorapidities, the electron PID calibration of TPC and TOF detectors however is not
perfect, and both real experimental data and Monte Carlo simulations show significant
deviations of 𝑛(𝜎DET

e ) distributions from ideal case of mean = 0 and 𝜎 = 1. In order
to improve the agreement and to ensure a consistent PID calibration, a special recali-
bration procedure is applied to PID response of TPC and TOF detectors, both in Monte
Carlo and in experimental data. The 𝑛(𝜎TPC

e ) and 𝑛(𝜎TOF
e ) distributions are projected

in different 𝜂 and 𝑝 intervals, and the width and mean values of the electron peak are
extracted by fitting the distributions with two Gaussian fits (one for the signal and one
for the background). Obtained values are used to re-calibrate the initial PID response,
and a good PID calibration of both detectors close to ideal case of mean = 0 and 𝜎 = 1
is achieved in experimental data and in Monte Carlo simulations3. This procedure is de-
scribed in more detail in Appendix B. After such re-calibration, Monte Carlo simulations
are proven to describe the PID selection used in analysis precisely (Section 3.6).

3.3 Pair Analysis
Experimentally the origin of each electron or positron in an event is unknown, so all
electron candidates from the same event are paired together considering combinations
with unlike-sign (𝑁+−) and like-sign charge (𝑁++ and 𝑁−−). Only a small fraction of
unlike-sign pairs in 𝑁+− originates from physical source of interest (like same mother
decay or correlated pair from open heavy-flavour decays), which defines the signal 𝑆.
Most of the electron pairs created in this way are of unphysical origin, i. e. a simple
result of combining two electrons originating from different mother particles.

3In Monte Carlo data, PID recalibration of TPC detector is already a part of the analysis framework,
so no additional work is needed in this case.
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Figure 3.11: The shape of combinatorial background estimated with same-sign pairs
from same events (blue) and with pairs from mixed events (black). The histograms are
normalised by the number of entries, the ratio between two methods is shown on the
right.

Such pairs give rise to the combinatorial background 𝐵, which needs to be properly
estimated. Mathematically it can be shown that as long as electrons are created as e+e−

pairs, such combinatorial background is described by the geometric mean of the like-
sign background 𝑁++ and 𝑁−− of pairs from the same event, independent of the primary
multiplicity distribution [76], as:

𝐵±± = 2√𝑁++ ⋅ 𝑁−−. (3.3)

In contrast to the combinatorial background estimated by uncorrelated pairs from
mixed events, i. e. by pairing electrons from different events with similar detector cov-
erage, such estimation of background 𝐵±± also includes correlated background. In the
low invariant-mass regions this can arise from e. g. 𝜋0 decays with two e+e− pairs in
the final state (𝜋0 → 𝛾(∗)𝛾(∗) → e+e−e+e−), which includes decay channels with real
photons and their subsequent conversion in detector material, or from pairs produced
in the same jet. Such processes lead to unlike- and like-sign pairs at equal rate, so the
corresponding contribution is taken into account in the estimation of 𝐵±±. At higher in-
variant mass, correlated background arises from pairs produced in back-to-back jets. The
comparison of background shapes estimated with same-sign pairs from same event and
with pairs frommixed events is shown in Fig. 3.11. From the ratio between two methods
one can clearly see a contribution of correlated background pairs, especially at low and
high invariant masses. Compared to a mixed-event based approach, the disadvantage
of the same-sign subtraction method is larger statistical uncertainties. However, with
method based on mixed events one still needs to properly normalise the uncorrelated
background yield and to estimate the contribution from correlated background, which
can lead to additional uncertainties.
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The background estimate in Eq. 3.3 needs to be corrected for the different detector ac-
ceptance of unlike- and like-sign pairs. Such differences may arise from the non-uniform
azimuthal detector coverage convoluted with opposite curvature of positive and negative
particles in the magnetic field. Since it is a purely acceptance effect, the corresponding
correction factor 𝑅 can be determined with the help of mixed events which preserve the
acceptance effects. For this purpose, the yields of unlike-sign 𝑀+− and like-sign 𝑀±±
uncorrelated pairs from mixed events are divided in the following way:

𝑅 = 𝑀+−
2√𝑀++ ⋅ 𝑀−−

. (3.4)

The physical signal is then obtained by:

𝑆 = 𝑁+− − 𝐵 = 𝑁+− − 2𝑅√𝑁++𝑁−−, (3.5)

where 𝐵 = 2𝑅√𝑁++𝑁−− represents the combinatorial background corrected for the
acceptance differences.

The 𝑅-factor correction is applied as a function of invariant mass in different 𝑝T, ee
bins, but as a cross-check its behaviour is analysed also as a function of other pair vari-
ables such as 𝑝T, ee, 𝜂ee, 𝜑ee and opening angle. In all cases the acceptance correction
factor is found to be very stable and close to unity. To assure similar detector coverage
for different events, which are mixed with each other, events are mixed within eight sep-
arate event classes defined by their vertex 𝑧 position in 2.5 cm wide bins from −10 cm
to 10 cm and only within a given run. The resulting unlike-sign spectrum 𝑁+−, com-
binatorial background 𝐵 and 𝑅-factor in minimum-bias events are shown in Fig. 3.12.
In order to avoid statistical fluctuations in the higher mass range, the 𝑅-factor is set to
unity for 𝑚ee > 0.5 GeV/c2 mass range, where no statistically significant deviations
from 1 are observed.

In this analysis, electrons originating from real photon conversions are suppressed at
the single track level by requiring a hit in first SPD layer and zero ITS clusters sharedwith
other tracks. Since real photons do not have intrinsic physical mass, both decay products
go basically in the same direction, and themagnetic field provides the only opening force.
Thus pairs originating from conversions will most likely share ITS clusters with each
other, and the requirement of no shared ITS clusters for single tracks improves signal-
to-background ratio over whole mass region while preserving high efficiency: the signal
pairs are affected only in the very low mass region below 200 MeV/c2 as it can be seen
in Fig. 3.13. It indicates that this requirement indeed rejects mainly background pairs
and only small fraction of physical dielectron signal in pp collisions.

In addition, dielectron pairs from photon conversions are characterised by a finite
apparent invariant mass. Tracking algorithm assumes the particles to originate from the
primary collision vertex, in which case electrons from conversions are tracked back to the
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Figure 3.12: Unlike-sign spectrum 𝑁+−, combinatorial background 𝐵 and 𝑅-factor in
minimum-bias events. Rejection of real photon conversions is not applied.

collision vertex rather than to the conversion vertex. This results in a non-vanishing arti-
ficial opening angle, which lies preferentially in the plane perpendicular to the magnetic
field direction and can be used to further reject such conversion dielectron pairs [76]. To
suppress such residual conversion pairs, the angle 𝜑𝑉 between the vector normal to the
pair plane and the vector along the ̂𝑧 axis, i. e. the magnetic field direction, is used in
analysis:

�⃗� = ⃗𝑝+ + ⃗𝑝−
| ⃗𝑝+ + ⃗𝑝−| , (3.6a)

⃗𝑣 = ⃗𝑝+ × ⃗𝑝−, (3.6b)
�⃗� = �⃗� × ⃗𝑣, (3.6c)

�⃗�𝑎 = �⃗� × ̂𝑧
|�⃗� × ̂𝑧| (3.6d)

𝜑𝑉 = arccos ( �⃗� ⋅ �⃗�𝑎
|�⃗�||�⃗�𝑎|) . (3.7)

Here ⃗𝑝− is the 3-momentum vector of the electron and ⃗𝑝+ the 3-momentum vector of the
positron. Fig. 3.14 shows the 𝜑𝑉 distributions of signal and conversion pairs in Monte
Carlo data in different mass bins, where conversion pairs can be seen to peak at 𝜑𝑉 ≈ 𝜋.
However, Monte Carlo simulations do not reproduce perfectly the mass distribution of
conversion pairs, with almost negligible contribution above 40 MeV/c2, whereas in
experimental data conversion pairs can be seen also above that value. Therefore in this
analysis a data-driven approach is used for the rejection of conversion pairs using 𝜑𝑉 .
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Figure 3.13: The comparison of raw signal (left) and signal-to-background ratio (right)
in minimum-bias events showing effect of no shared ITS clusters requirement.

Fig. 3.15 shows the 𝜑𝑉 distributions of signal and background pairs in different
mass bins in minimum-bias data sample, and the corresponding distributions in high-
multiplicity events are shown in Fig. 3.16. Photon conversions can be seen in the signal
𝜑𝑉 distributions as pairs which peak at 𝜑𝑉 ≈ 𝜋, with some traces from conversion pairs
visible in mass bins up to 140 MeV/c2 in high-multiplicity events. For consistency, in
both analyses all pairs with 𝜑𝑉 > 2.0 and 𝑚ee < 140 MeV/c2 are rejected from the
signal calculation according to (3.5). The rejection is applied for unlike-sign as well as
same-sign pairs in the same and mixed events as it is indicated by the vertical dashed
line in Figs. 3.15 and 3.16.

The resulting unlike-sign spectrum, combinatorial background and 𝑅-factor with
the applied 𝜑𝑉 cut are shown in Fig. 3.17 for minimum-bias events and in Fig. 3.18 for
high-multiplicity data. Figures 3.19 and 3.20 show signal-to-background ratio and the
statistical significance for dielectron signal in minimum-bias and high-multiplicity data
correspondingly. The statistical significance is defined as 𝑆/

√
𝑆 + 2𝐵, where a factor 2

is present to take into account that the background is subtracted using the like-sign pairs.
In the mass interval 0.2 < 𝑚ee < 3 GeV/c2, the signal-to-background ratio varies in
minimum-bias events between 0.3 and 0.04, with aminimum around𝑚ee ≈ 0.5 GeV/c2

(where the combinatorial background 𝐵 is the highest) and is roughly constant at 0.2 in
the intermediate mass range. In high-multiplicity events, the minimum reaches 0.01
and is about 0.08 in the intermediate mass range. Due to higher average event mul-
tiplicity, the signal-to-background ratio is lower than for minimum-bias events, while
the statistical significance is comparable. This is consistent with a simple approxima-
tion of 𝑆 ∼ 𝑁ch and 𝐵 ∼ 𝑁2

ch, where 𝑁ch denotes charged-particle multiplicity. In
background-dominated region this assumption leads to a roughly constant statistical sig-
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Figure 3.14: The 𝜑𝑉 distributions of signal (blue) and conversion pairs (red) in Monte
Carlo simulations in different mass bins.

nificance ∼ 𝑆/
√

𝐵.
Finally, raw dielectron spectra in minimum-bias and high-multiplicity event classes

normalised by the number of analysed events are shown in Figs. 3.21 and 3.22 for
𝑝T, ee < 6 GeV/c. All the analysis steps described above are also repeated in dif-
ferent 𝑝T, ee bins, and the corresponding raw dielectron spectra are shown in Figs. 3.23
and 3.24. Photon conversion rejection is used as described above in this Section, and
no signal loss correction due to the 𝜑𝑉 cut is applied yet. In the next step, these raw
dielectron spectra are corrected for the detector reconstruction efficiency as described in
Section 3.4.
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Figure 3.15: 𝜑𝑉 distributions of a) signal and b) background pairs in minimum-bias
events in different mass bins. Acceptance correction 𝑅-factor is applied. Vertical dashed
line shows 𝜑𝑉 cut used in the analysis.
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Figure 3.16: 𝜑𝑉 distributions of a) signal and b) background pairs in high-multiplicity
events in different mass bins. Acceptance correction 𝑅-factor is applied. Vertical dashed
line shows 𝜑𝑉 cut used in the analysis.
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Figure 3.17: Unlike-sign spectrum 𝑁+−, combinatorial background 𝐵 and 𝑅-factor in
minimum-bias events (𝑝T-integrated case).
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Figure 3.18: Unlike-sign spectrum 𝑁+−, combinatorial background 𝐵 and 𝑅-factor in
high-multiplicity events (𝑝T-integrated case).
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Figure 3.19: Signal-to-background ratio (left) and statistical significance (right) of di-
electron signal in minimum-bias events.
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Figure 3.20: Signal-to-background ratio (left) and statistical significance (right) of di-
electron signal in high-multiplicity events.
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Figure 3.21: Raw dielectron signal normalised by the number of analysed minimum-
bias events. Rejection of real photon conversions is applied as described in text, and no
signal loss correction due to 𝜑𝑉 cut is applied.
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Figure 3.22: Raw dielectron signal normalised by number of analysed high-multiplicity
events. Rejection of real photon conversions is applied as described in text, and no signal
loss correction due to 𝜑𝑉 cut is applied.
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Figure 3.23: Raw dielectron signal normalised by number of analysed minimum-bias
events in different 𝑝T, ee bins. Rejection of real photon conversions is applied as de-
scribed in text, and no signal loss correction due to 𝜑𝑉 cut is applied.
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Figure 3.24: Raw dielectron signal normalised by number of analysed high-multiplicity
events in different 𝑝T, ee bins. Rejection of real photon conversions is applied as de-
scribed in text, and no signal loss correction due to 𝜑𝑉 cut is applied.
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3.4 Analysis of Monte Carlo Simulation
Before the dielectron spectrum can be compared with theoretical expectations, recon-
struction efficiencies and detector effects should be taken into account and corrected
for4. This section describes the analysis of Monte Carlo (MC) simulated data and the
calculation of the corresponding dielectron signal efficiency.

In general, the reconstruction efficiency for single particle can be defined in MC
as the ratio of reconstructed electrons that passed the selection criteria in Tables 3.1
and 3.2 over the number of generated electrons within acceptance (𝑝T, e > 0.2 GeV/c
and |𝜂e| < 0.8) as a function of 𝑥 = 𝑝T, 𝜂, 𝜑:

𝜖(𝑥) = (d𝑁
d𝑥 )rec

(d𝑁
d𝑥 )gen

. (3.8)

However, as it will be shown later, electrons suffer from energy losses when traversing
the ALICE detector, so that generated and reconstructed momenta can slightly differ:
𝑝gen

T ≠ 𝑝rec
T . If one calculates single electron efficiency with 𝑝rec

T in enumerator and 𝑝gen
T

in denominator, such calculation would then lead to a wrong estimation of efficiency.
As a solution for this problem, in this thesis a special smearing procedure described in
Section 3.4.2 is applied to all generated MC tracks to take into account energy losses
and resolution, and the corresponding electron efficiency is always estimated in terms of
“measurable” variables 𝑝T, 𝜂, 𝜑, i. e. as they are reconstructed with the detector.

To correct experimental data for the reconstruction efficiencies, pp events are gen-
erated with the help of Pythia event generator [174, 175], with “Monash 2013” set of
parameters (so-called tune) of Pythia 8 [177] for light hadron decays and “Perugia 2011”
tune of Pythia 6.4 for heavy-flavour decays [178]. A choice of different Pythia ver-
sions is motivated by the fact that Monash 2013 tune reproduces many of the relevant
light hadron multiplicities [179, 180]. It used recent experimental data from LHC for
constraining the initial-state-radiation and multi-parton-interaction parameters and data
from SPS and Tevatron to constrain the energy scaling. Perugia 2011 tune of Pythia 6.4
uses the same value of ΛQCD for all shower activity (initial-state and final-state radia-
tion) to simplify matching applications and was constrained by results from LEP, SPS
and Tevatron experiments as well as by early data from LHC for minimum-bias and
underlying-event activities in pp collisions at √𝑠 = 0.9 and 7 TeV. As a result, it de-
scribes reasonably well the transverse momentum spectra of heavy-flavour hadrons. The
produced particles are propagated through the detector by Geant 3 package [176], which
simulates in all detail the detector material and response. The signal reconstruction effi-
ciency is studied as a function of 𝑚ee and 𝑝T, ee for the different e+e− sources separately:

4In this thesis, only the reconstruction efficiency within the ALICE acceptance is discussed (𝑝T, e >
0.2 GeV/c and |𝜂e| < 0.8), i. e. no correction for the full 4𝜋 acceptance is applied.
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Figure 3.25: Distribution of TPC variables in data (blue) and in MC (red) for electrons.
All other track selection criteria are applied except on the one shown on the plot as
vertical dashed line. The relative number of tracks rejected by each selection is also
listed.

resonance and Dalitz decays of light-flavour mesons, correlated semileptonic decays of
charm and beauty hadrons, as well as J/𝜓 decays. The total signal reconstruction effi-
ciency is obtained as a weighted average of efficiencies, with weights according to the
expected contribution.

3.4.1 Monte Carlo Quality Assurance
To properly calculate the single electron and pair efficiencies, it is important to check
first that the distributions of variables used for track selection (Table 3.1) are correctly
reproduced in Monte Carlo simulations. Figure 3.25 shows as example a TPC variable
distributions in real experimental data and in Monte Carlo data. In each panel, the same
track and PID selection is applied both in Monte Carlo and in experimental data. Track
selection criteria are applied according to Table 3.1 except on the variable that is shown
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in the Figure. This is done in order to have a clean sample of track candidates in exper-
imental data close to the final selection5. The results show distributions of the number
of tracks passing the selection for approximately the same number of analysed events in
experimental data and inMonte Carlo simulations. Not only the overall yield (i. e. multi-
plicity of electron candidates) and the shape of each distribution from experimental data
is well reproduced in Monte Carlo data, but also the relative number of particles rejected
by each cut (when other track cuts are applied) is found to be in good agreement. These
checks are also done in different 𝑝T intervals for the studies of systematic uncertainties
on the track reconstruction (Section 3.6).

3.4.2 Simulation of Momentum Smearing
When a moving charged particle is deflected in an external electric or magnetic field,
it emits electromagnetic radiation and hence loses part of its energy (synchrotron ra-
diation). In addition to that, electrons, due to their low mass, especially suffer from
Bremsstrahlung while traversing the ALICE detector, i. e. “braking” radiation produced
by the deceleration of an electron when it’s deflected by electromagnetic field of atomic
nuclei in detector material. This effect can be seen in Fig. 3.26 where the difference
between the generated 𝑝gen

T and the reconstructed 𝑝rec
T momenta is shown for electrons

with a generated momentum in the range 0.5 < 𝑝gen
T < 0.6 GeV/c. Apart from the fi-

nite momentum resolution of the detector of about ∼1%, which results in finite width of
Δ𝑝T/𝑝T = (𝑝gen

T − 𝑝rec
T )/𝑝gen

T around zero, this distribution shows also a tail produced
by energy losses on the left side where 𝑝rec

T < 𝑝gen
T .

As a consequence, reconstructed momenta of electrons can differ slightly from the
generated one. Due to energy losses, the 𝑝T spectrum of reconstructed electrons is softer
than the one of generated electrons, and the usage of reconstructed particle momentum
in enumerator and pure generated momentum in denominator for electron efficiency cal-
culation would then lead to a wrong estimation of efficiency, which results in an effective
mass and 𝑝T, ee shift of dielectron. Simultaneous unfolding of detector effects in multi-
ple dimensions (invariant mass, 𝑝T, ee) is highly complicated for multiple sources, and
even a simplified approach based on one-dimensional (e. g. invariant mass) unfolding
methods cannot be performed for dielectron analysis due to instabilities of the existing
algorithms in the resonance regions. Moreover, it is generally not done for previous
experimental results presented in Section 1.4.

For a proper efficiency calculation, the smearing procedure is applied to the gener-
atedMonte Carlo electrons as detailed in [181]. The same smearing of generated particle
values is also applied for the hadronic cocktail calculations for a consistent comparison
of the dielectron spectrumwith expected contributions. The transformation of the gener-

5In MC simulations one could easily reject background from secondary tracks by using information
about the origin of each particle, but for direct comparisonwith experimental data it is not done in Fig. 3.25.
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momentum of 0.5 < 𝑝gen
T < 0.6 GeV/c. The tail on the left side is produced by energy

losses in the ALICE detector.

ated values of 𝑝gen
T, e,𝜂gen

e and 𝜑gen
e into the corresponding “measurable” values (i. e. as it

is reconstructed by detector) is done by using the detector response matrices (Figs. 3.27
and 3.28). They are two dimensional histograms containing the values of 𝑝rec

T, e − 𝑝gen
T, e,

𝜂rec
e − 𝜂gen

e and 𝜑rec
e − 𝜑gen

e as the function of generated particle transverse momentum.
For each given generated 𝑝gen

T, e the detector response matrices are projected onto the
Δ𝑝T, e, Δ𝜂e and Δ𝜑e. Based on these projected distributions, three random numbers
are extracted for each value of Δ𝑝T, e, Δ𝜂e and Δ𝜑e, which are then used to transform
the generated values:

𝑝meas
T, e = 𝑝gen

T, e + Δ𝑝T, e (3.9)
𝜂meas

e = 𝜂gen
e + Δ𝜂e (3.10)

𝜑meas
e = 𝜑gen

e + Δ𝜑e (3.11)

No significant dependence of the momentum or azimuthal angle resolution on pseu-
dorapidity was observed, therefore the three variables are smeared independently. In
order to take into account the smearing effects on the edges of central barrel acceptance
(𝑝T > 0.2 GeV/c and |𝜂| < 0.8), such transformation is performed during the Monte
Carlo analysis before acceptance cuts are applied. The corresponding smearing effect
on generated pairs from same-mother resonance and Dalitz decays is shown in Fig. 3.29,
where it can be clearly seen especially for narrow resonance states such as 𝜙 → 𝑒+𝑒−

or J/𝜓 → 𝑒+𝑒− decays. For reconstructed electrons, the smearing procedure can be
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Figure 3.27: Resolution maps used for the smearing ofMC generated values: transverse
momentum (left) and pseudorapidity (right).

Figure 3.28: Resolution maps used for the smearing of MC generated values of az-
imuthal angle: for electrons (left) and for positrons (right). A slight shift between the
reconstructed values for electrons and positrons is visible due to the opposite bending in
the ALICE magnetic field.

verified by comparing the mass distributions obtained with 𝑝meas
T, e and with 𝑝rec

T, e values.
A good agreement between two spectra can be seen in Fig. 3.30, which confirms that
such transformation can reproduce the dielectron continuum as it is reconstructed by the
detector.

3.4.3 Single Electron Efficiency
This subsection shows the results of single electron efficiency calculations which are used
in the analysis for illustrative purposes only. The final signal efficiency is calculated as
a function of mass using directly pairs originating either from same mother or from
correlated semi-leptonic decays of heavy-flavour hadrons (see next subsection).

The single electron efficiency is defined as the ratio between reconstructed and gen-
erated electrons as a function of 𝑥 = 𝑝T, 𝜂, 𝜑, where for all generated particles the
smearing procedure is applied (“measurable” values):

𝜖(𝑥) = ( d𝑁
d𝑥rec )

( d𝑁
d𝑥meas ). (3.12)
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Figure 3.29: Invariant mass distribution of generated pairs from same mother decays
obtained with true generated particle values (left) and with smeared ones (right).

0 0.2 0.4 0.6 0.8 1 1.2

1

10

210

310

410

510
0π

η
' (none)η

ρ
ω
φ

ψJ/
2sψ

)2c (GeV/eem
0 0.2 0.4 0.6 0.8 1 1.2

re
c.

 / 
ge

n.
 s

m
ea

re
d

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Figure 3.30: Comparison of the invariant mass distributions of pairs from same mother
decays obtained with generated and smeared particle values (lines) and with directly
reconstructed ones (open markers), the ratio between two methods is shown on the right
plot. The comparison is done in Monte Carlo simulated data using exactly the same
electrons.

For the calculation of the single electron (as well as pair) efficiency, only pure MC
electrons originating from primary particles are used. It means that neither electrons
from real photon conversions nor hadrons misidentified as electrons nor decay products
of strange hadrons enter the equation above, and such contamination is removed in the
experimental data from dielectron spectrum using data-driven methods. Figure 3.31
shows 𝑝gen

T, e, 𝜂gen
e and 𝜑gen

e distributions of generated electrons and positrons used for
the efficiency calculation.

The track and PID selection listed in Tables 3.1 and 3.2 reduce hadron and secondary
particle contamination, but cause a loss of signal electron tracks. Fig. 3.32 shows the re-
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Figure 3.31: 𝑝gen
T, e, 𝜂gen

e and 𝜑gen
e distributions of generated electrons and positrons used

for the efficiency calculation.

construction efficiency for electron and positron candidates as a function of 𝑝T, e, 𝜂e and
𝜑e. Drops of efficiency as a function of particle momentum at 𝑝T, e∼0.5 GeV/c and at
𝑝T, e∼1.0 GeV/c reflect the rejection of hadron contamination, from kaons and protons,
respectively, with the TPC detector and the requirement of good TOF PID signal in these
crossing regions. The effect of the inactive areas in the ITS detector (and especially in
the first SPD layer, Fig. 3.9), caused by some hardware-related problems during data
taking, is clearly visible in the efficiency plot as a function of azimuthal angle 𝜑e. Small
differences between electron and positron reconstruction efficiencies can be explained
by the opposite curvature of electrons and positrons in the ALICE magnetic field folded
with the non-symmetric detector geometry. The trend of the reconstruction efficiency
as a function of the azimuthal angle between electrons and positrons is reversed for the
opposite magnetic field polarity, which is also properly simulated.
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Figure 3.32: Single electron and positron reconstruction efficiencies as a function of
𝑝T, e, 𝜂e and 𝜑e.

3.4.4 Pair Efficiency
The pair efficiency is defined as the ratio between the number of reconstructed and num-
ber of generated pairs after smearing procedure as a function of invariant mass and trans-
verse momentum:

𝜖(𝑚ee, 𝑝T, ee) =
( d2𝑁ee

d𝑚recee d𝑝ee,rec
T

)
( d2𝑁ee

d𝑚measee d𝑝ee,meas
T

)
. (3.13)

For the calculation of the pair reconstruction efficiency, only correlated MC pairs are
used in the analysis. They originate either from the same light-flavour and J/𝜓 meson
decays or from the correlated semi-leptonic decays of charmed and bottom hadrons.

Fig. 3.33 shows the mass spectrum of generated dielectron pairs from the same-
mother decays of light-flavour hadrons and the corresponding pair reconstruction effi-
ciency. For J/𝜓 → 𝑒+𝑒− decays, a special heavy-flavour enriched Monte Carlo produc-
tion is used to extract the signal efficiency in the corresponding mass range. These J/𝜓
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Figure 3.33: Mass spectrum of generated dielectron pairs from light-flavour meson de-
cays (left) and the pair reconstruction efficiency (right). The smearing procedure is ap-
plied to every generated track.
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Figure 3.34: Mass spectrum of generated dielectron pairs from J/𝜓 decays (left) and
the pair reconstruction efficiency (right). Decays include radiative J/𝜓 → 𝛾𝑒+𝑒− chan-
nel and feed-down from beauty hadrons. The smearing procedure is applied to every
generated track.

decays include radiative channel J/𝜓 → 𝛾 𝑒+𝑒−, i. e. decays when 𝛾 is emitted by one
of the electrons in final state, and the feed-down from beauty hadrons. The mass spec-
trum of generated dielectron pairs and the corresponding pair reconstruction efficiency
are shown in Fig. 3.34.

In order to improve the statistical precision, for the studies of dielectron efficiency
from open heavy-flavour decays a special heavy-flavour enriched Monte Carlo simula-
tions are used. In these MC data, several dielectron production mechanisms are gener-
ated in each event with the following probabilities:
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- cc → e+e− + 𝑋 (8%): a charm quark-antiquark pair is generated per event, and
charmed hadrons (D mesons or Λc baryons) are forced to decay semileptonically,
with a constraint on both produced electrons to be within |𝑦e| < 1.2

- bb → e+e− + 𝑋 (8%): a beauty quark-antiquark pair is generated per event, and
beauty hadrons (B mesons or Λb baryons) are forced to decay semileptonically,
with a constraint on both electrons to be within |𝑦e| < 1.2. The following decays
of produced charmed hadrons are also forced to be semileptonic, but without any
constraint on electron rapidity

- bb → e + X (66%): a beauty quark-antiquark pair is generated per event, and
at least one electron in event originating from open heavy-flavour decay should
be produced in |𝑦e| < 1.2. Neither beauty nor charmed hadrons (if present) are
forced to decay semileptonically, also no rapidity constraint is applied for any other
electrons produced in event

During the analysis of Monte Carlo simulations, dielectron pairs originating from
correlated semi-leptonic decays of heavy-flavour hadrons need a special treatment, since
such pairs originate not simply from the same parent hadron but from a 𝑄𝑄 pair. At the
quark level, the event history in Pythia simulations is sometimes unclear, especially in
the case when several 𝑄𝑄 pairs are produced in a single event [182]. The reconstruc-
tion of the electron origin and the proper electron–positron pairing therefore becomes
complicated, so for efficiency calculation the generated events are first pre-selected as
described below.

For the study of cc → e+e− pair efficiency, only events containing exactly one
charmed hadron and one charmed anti-hadron are selected, and no beauty quark or
hadron should be present in the generated event. In this way, the pairing of correlated
electrons and positrons from charmed hadrons becomes straightforward (Fig. 1.8), and
only unlike-sign pairs from charmed hadrons are produced6. These unlike-sign pairs
are used for the calculation of cc → e+e− pair efficiency shown in Fig. 3.35. As a
cross-check, the cc → e+e− pair efficiency is calculated in events with any number of
produced charm hadrons (but still the presence of beauty quark/hadron is not allowed).
In this case the like-sign combinatorial background is subtracted from both reconstructed
and generated unlike-sign pairs in the same way as for experimental data (Section 3.3).
The pair efficiency calculated in this way is found to be the same as the one obtained with
“clean” cc events containing only one charmed hadron and one charmed anti-hadron.

The studies of dielectron efficiency from open beauty decays are further complicated
due to the significant probability of B0 ↔ B0 oscillations which create unlike-sign and
like-sign dielectron pairs at various rates. For these studies, bb → e+X events are used,
in which one beauty quark-antiquark pair generated per event and at least one electron
in event produced in |𝑦e| < 1.2 , without forcing semileptonic decays. To simplify
the pairing of electrons from semi-leptonic decays of all produced charm and beauty

6Oscillation of D0 mesons with a small probability of ∼0.1% [183, 184] was not simulated.
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Figure 3.35: Mass spectrum of generated dielectron pairs from correlated semi-leptonic
charm decays (left, arbitrary normalisation) and the corresponding reconstruction effi-
ciency (right). The smearing procedure is applied to generated tracks.
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Figure 3.36: Mass spectra of generated dielectron pairs from correlated semi-leptonic
beauty decays (left, arbitrary normalisation) and the corresponding pair reconstruction
efficiency calculated with the like-sign subtraction method (right). Note that for green
and black curves on the left plot only half of the contribution is shown, the second half
(with the same yield) comes from charge-conjugated processes. The smearing procedure
is applied to generated tracks.

hadrons, only events with exactly one beauty hadron and one beauty anti-hadron are used
for the efficiency calculation, with no charm quarks present in the event and no oscillation
of B mesons. The latter is implemented in Monte Carlo simulations as “wrong-sign”
decays, i. e. as decays like B → e− or B → e+, which can be easily tagged and used as
B meson oscillation veto. For consistency with the experimental data analysis, like-sign
contributions originating from decays like B → e+ & B → D → e+ are subtracted both
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Figure 3.37: Mass spectrum of signal pairs inMonte Carlo data before and after 𝜑𝑉 < 2
requirement (left), and the corresponding signal efficiency (right). 𝜑𝑉 < 2 requirement
is applied in the mass region below 𝑚ee = 140 MeV/c2.

from generated and reconstructed unlike-sign pairs. The mass shapes of generated pairs
and bb → e+e− pair efficiency are shown in Fig. 3.36. Different mass spectra represent
different decay kinematics in various processes producing dielectron pair in the final
state, e. g. B → e+ & B → e− or B → D → e+ & B → D → e−. As a cross-check, the
bb → e+e− pair efficiency is calculated in events with any number of beauty hadrons
produced in the event and with allowed oscillations of B mesons. The pair efficiency
calculated again with like-sign subtraction method is found to be consistent to the one
obtained with “clean” bb events containing only one beauty hadron and one beauty anti-
hadron with no oscillation.

On top of the single track selection criteria listed in Table 3.1, dielectron pairs origi-
nating from real photon conversions in detectormaterial are removed from raw dielectron
spectrum using a requirement on the pair orientation in the ALICE magnetic field (Sec-
tion 3.3). This results also in the rejection of good signal pairs which are expected to
have no preferred orientation with respect to the magnetic field. The impact of 𝜑𝑉 < 2
requirement on the signal pairs is studied in Monte Carlo simulations using only de-
cays from light-flavour hadrons, and the corresponding signal efficiency due to 𝜑𝑉 cut
is shown in Fig. 3.37. Such efficiency is found to be slightly lower than the 2/𝜋 value ex-
pected from a naive flat 𝜑𝑉 distribution, which comes from the acceptance minimum for
low-mass pairs with 𝜑𝑉 ∼ 𝜋/2, imposed by the finite pseudorapidity coverage |𝜂| < 0.8
of the central barrel.

In order to obtain the final signal efficiency as a function of mass, the pair efficiencies
for same mother and heavy flavour pairs are combined in the following way:
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𝜖(𝑚ee)𝑡𝑜𝑡𝑎𝑙 = 𝜖(𝑚ee)𝐿𝐹
d𝑁𝑒𝑒

𝐿𝐹
d𝑁𝑒𝑒

+ 𝜖(𝑚ee)cc
d𝑁𝑒𝑒

cc
d𝑁𝑒𝑒

+ 𝜖(𝑚ee)bb
d𝑁𝑒𝑒

bb
d𝑁𝑒𝑒

+ 𝜖(𝑚ee)J/𝜓
d𝑁𝑒𝑒

J/𝜓
d𝑁𝑒𝑒

,
(3.14)

where 𝜖𝐿𝐹 , 𝜖cc, 𝜖bb and 𝜖J/𝜓 are shown in Figs. 3.33, 3.35, 3.36 and 3.34 respec-
tively, and the corresponding relative contributions to the total signal are taken from
hadronic cocktail calculations (Section 3.5). The total efficiency is calculated as a func-
tion of mass in each 𝑝T, ee bin used in the analysis. Figure 3.38 shows the overall signal
efficiency (also taking into account the efficiency due to the 𝜑𝑉 < 2 requirement in
𝑚ee < 140 MeV/c2) and the corrected dielectron spectrum in minimum-bias data nor-
malised by the number of analysed events for 𝑝T, ee < 6 GeV/c. The results in different
𝑝T, ee bins are shown in Fig. 3.39.

The efficiency correction of high-multiplicity data sample is complicated due to
the absence of specific Monte Carlo productions anchored to high-multiplicity data.
Therefore, the same corrections as described in this Section are applied also to high-
multiplicity raw dielectron spectra, and additional uncertainties are assigned to the cor-
rected data points due to possible multiplicity dependence (Section 3.6). Corrected high-
multiplicity data are used to extract the fraction of virtual direct photons as well as for
the measurements of heavy-flavour production cross-sections as described in Chapter 4.

Finally, the dielectron spectrum in inelastic pp collisions also needs to be corrected
for the fraction of collisions with a dielectron signal present that were lost. This can hap-
pen if such events either did not fulfil trigger condition or did not have a reconstructed
interaction vertex. The corresponding efficiencies have been studied in Pythia simu-
lations, considering all events that contained an electron–positron pair from the same
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Figure 3.39: Total signal efficiency as a function of invariant mass (left) and corrected
dielectron spectrum normalised by the number of analysed events (right) in minimum-
bias data in different 𝑝T, ee bins.
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hadron decay, with both legs in the ALICE central barrel acceptance |𝜂e| < 0.8 and
𝑝T, e > 0.2 GeV/c. The efficiency to fire minimum-bias trigger in such events was
found to be (99±1)%; open heavy-flavour events should have an even higher efficiency.
A systematic uncertainty of 1% is therefore assigned to cover the possibility of a fully
efficient minimum-bias trigger. In the same simulation, the vertex reconstruction effi-
ciency in events with a dielectron and a minimum-bias trigger is found to be 100% with
negligible uncertainties. For high-multiplicity data, the trigger and vertex reconstruction
efficiencies are assumed to be 100% with negligible uncertainties.

3.5 Hadronic Cocktail
Themeasured dielectron spectrum is compared to the expectations from all known hadro-
nic sources, i. e. the hadronic “cocktail”, contributing to the dielectron spectrum in the
ALICE central barrel acceptance (|𝜂e| < 0.8 and 𝑝T, e > 0.2 GeV/c). This Section
describes the cocktail calculations of light- and heavy-flavour meson decays with their
vacuum properties (𝜋0, 𝜂, 𝜂′, 𝜌, 𝜔, 𝜙, J/𝜓 and 𝜓(2S)) as well as the contributions from
open heavy-flavour decays. Cocktail calculations for high-multiplicity pp collisions are
discussed separately in Sections 3.5.3 (light-flavour part) and 3.5.4 (heavy-flavour de-
cays).

3.5.1 Light-Flavour Decays
To estimate the contributions from light-flavour mesons, a fast Monte Carlo simula-
tion is used as detailed in [157]. A dedicated phenomenological event generator “Exo-
dus” [108] is implemented in the ALICE analysis framework, which simulates Dalitz and
2-body decays of light-flavour hadrons. A summary of light-flavour decays simulated in
cocktail calculations is presented in Table 3.3. The following light-flavour hadron decays
contribute to the dielectron signal:

• 𝜋0 → 𝛾 e+e−

• 𝜂 → 𝛾 e+e−

• 𝜌0 → e+e−

• 𝜔 → 𝜋0 e+e− and 𝜔 → e+e−

• 𝜂′ → 𝛾 e+e− and 𝜂′ → 𝜔 e+e−

• 𝜙 → 𝜂 e+e−, 𝜙 → 𝜋0 e+e− and 𝜙 → e+e−

All mesons are assumed to be unpolarised, with flat rapidity distribution at mid-
rapidity. The mass distribution of dielectron Dalitz decays follows the Kroll-Wada ex-
pression in Eq. 1.7 [69], with electromagnetic form factors measured by the NA60 Col-
laboration [192, 193]. The 2-body decays of𝜔 and𝜙mesons are generated usingGounaris-
Sakurai expression to describe their mass shape [194]. The 𝜌 line shape has been stud-
ied in detail by the NA60 Collaboration [192], who confirmed the need for a Boltzmann
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Figure 3.40: Left: the ratio between charged pion spectra extrapolated to √𝑠 = 13 TeV
by using pion-to-hadron ratio from pp collisions at √𝑠 = 7 TeV [186, 187] or from pp
collisions at √𝑠 = 2.76 TeV [186, 188]. Right: extrapolated charged pion spectrum at√𝑠 = 13 TeV in INEL (black points) and in INEL> 0 (red asterisk) event classes.

term beyond the standard description [195] and provided a precise measurement of the
effective temperature parameter. Their parametrisation is used in this thesis as well.

By the time of this thesis only very limited (or no) data were available for the produc-
tion cross-sections of relevant hadrons in pp collisions at √𝑠 = 13 TeV. Therefore, the
production of each source listed in Table 3.3 is estimated by various methods described
below. They are also summarised in Table 3.3 together with the references to relevant
measurements or methods.

First, following the approach outlined in [185], the charged pion 𝑝T-spectrum at√𝑠 = 13 TeV is approximated by scaling the 𝑝T-spectrum of charged hadrons mea-
sured at √𝑠 = 13 TeV [42] by the pion-to-hadron ratio from pp collisions at √𝑠 =
7 TeV [186, 187]. The difference with respect to the same procedure based on the pion-
to-hadron ratio measured at √𝑠 = 2.76 TeV [186, 188] is smaller than 1% at low 𝑝T and
reaches 5% at high 𝑝T (Fig. 3.40 left). The difference in normalisation of the charged
hadron 𝑝T-spectra at √𝑠 = 13 TeV to INEL>0 events, i. e. inelastic collisions that
produce at least one charged particle in |𝜂| < 1, rather than inelastic events is corrected
by the 21% difference in the 𝑝T integrated d𝑁ch/d𝜂 values for these two event classes
(5.31 ± 0.18 for INEL and 6.46 ± 0.19 for INEL>0 events, Fig. 3.40 right) [42]. A con-
servative uncertainty of 10% is assigned on this extrapolation. The resulting extrapolated
charged-pion 𝑝T-spectrum is fitted with a modified Hagedorn function [76, 196]:
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Figure 3.41: 𝜂/𝜋0 ratio measured in pp collisions at √𝑠 = 7 TeV compared to NLO
pQCD predictions [189].

d2𝑁
d𝑦d𝑝T

= 𝑝T × 𝐴 × (𝑒𝑥𝑝 (𝑎𝑝T + 𝑏𝑝2
T) + 𝑝T

𝑝0
)

−𝑛
(3.15)

This function approaches an exponential at low 𝑝T and a power law at larger 𝑝T and
described very well the measured hadron spectra over the full 𝑝T range [190]. The result
of the fit is taken as proxy for the neutral-pion 𝑝T-distribution, with the simulated cross
section per unit rapidity for the 𝜋0 of d𝜎/d𝑦|𝑦=0 = 155.2 mb.

For the 𝜂 meson, a fit of the measured 𝜂/𝜋0 ratio in pp collisions at √𝑠 = 7 TeV is
used (Fig. 3.41) [189] assuming that this ratio does not change between √𝑠 = 7 TeV
and 13 TeV. The Monash 2013 tune of Pythia 8 is found to describe well the 𝜌/𝜋0 and
𝜔/𝜋0 ratios measured in pp collisions at √𝑠 = 2.76 and 7 TeV, respectively [179, 180].
Therefore, MC simulations obtained with this tune at √𝑠 = 13 TeV are used to ob-
tain the 𝜌/𝜋0 and 𝜔/𝜋0 ratios. Based on the 𝜂/𝜋0, 𝜌/𝜋0 and 𝜔/𝜋0 data, the ratios
at high 𝑝T are 0.5 ± 0.1, 1.0 ± 0.2 and 0.85 ± 0.17, respectively. Finally, 𝜂′ and
𝜙 mesons are generated assuming 𝑚T scaling, i. e. replacing 𝑝T of the meson with
√𝑚2 − 𝑚2𝜋 + (𝑝T/𝑐)2 [190]. For 𝑚T scaling, particle yields are normalised at high 𝑝T
relative to the 𝜋0 yield: 0.40±0.08 for 𝜂′ (based on Pythia calculations) and 0.13±0.04
for 𝜙 [191].

The branching ratios for the decays into dielectrons are taken from the PDG [50].
The four-body decay 𝜂′ → 𝜋+𝜋−𝑒+𝑒− is neglected since its shape is not well established
and its contribution is only marginal in the very low mass region (about two orders of
magnitude lower than the𝜋0 contribution). Both four-body decaymodes 𝜂 → 𝑒+𝑒−𝑒+𝑒−

and 𝜂 → 𝜋+𝜋−𝑒+𝑒− are neglected as well for the same reasons.
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Figure 3.42: Mass spectra of the light-flavour hadronic cocktail in pp collisions at √𝑠 =
13 TeV after acceptance cuts and resolution smearing.

Acceptance cuts of 𝑝T, e > 0.2 GeV/c and |𝜂e| < 0.8 are applied at the single track
level as for the experimental data analysis. The momentum resolution and radiative cor-
rections obtained with full-scaleMonte Carlo simulations with 13 TeV are applied to the
generated dielectron tracks before acceptance cuts in the same way as for experimental
data analysis, independently for 𝑝T, 𝜙 and 𝜂 (Figs. 3.27 and 3.28). This results in a mass
resolution of approximately 1%. The resulting mass shape of all light-flavour cocktail
components after acceptance and resolution smearing is shown in Fig. 3.42.

The following sources of systematic uncertainties have been evaluated for light-
flavour cocktail calculations: the input parameterisations of the measured spectra as
a function of 𝑝T (𝜋±, 𝜂/𝜋0 and 𝜔/𝜋0), the branching fractions of all included decay
modes, the scaling parameters at high 𝑝T and the resolution smearing. The uncertain-
ties from each of the considered sources in the light flavour mass spectrum are shown
in 3.43, where it can be seen how the highest contribution to the total uncertainty comes
from the variation of the scaling factors.
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Figure 3.43: Relative uncertainties from different contributions evaluated for light-
flavour cocktail.

3.5.2 Heavy-Flavour Decays
Electron pairs from the semi-leptonic decays of open heavy-flavour hadrons are simu-
lated with two different Monte Carlo generators: the leading-order (LO) event gener-
ator Pythia 6.4.25 [174], which includes NLO parton showering processes, with Peru-
gia 2011 tune [178] and the next-to-leading order (NLO) event generator Powheg [197–
200]. Both generators were found to be consistent with FONLL calculations [30] and to
reproduce the measurements within uncertainties [141].

For 2 → 2 processes, Pythia uses leading-order pQCD matrix elements with a
leading-logarithmic 𝑝T-ordered parton shower, and the underlying event simulation in-
cludes multiple parton interactions. The fragmentation and hadronisation of the charm
and beauty quarks are based on the Lund string model. The Perugia 2011 set of param-
eters [178] was tuned on first LHC data, mainly from multiplicity and underlying-event
related measurements. In this tune, the parton distribution functions are parametrised
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with the CTEQ5L [201] functions.
In the Powheg (POsitive Weight Hardest Emission Generator) method, the hardest

radiation is generated first using the exact NLOmatrix elements. The Powheg output can
then be interfaced to many modern Monte Carlo programs for parton shower generation
(e. g. Pythia), which can be either 𝑝T-ordered or allows the implementation of a 𝑝T
veto. In this work the Powheg BOX framework [198, 200] is used together with Perugia
2011 tune of Pythia 6.4 and CTEQ6.6 [202] functions for the input parton distribution
functions.

In order to obtain the dielectron spectrum from open charm, a dedicated MC sample
containing of at least one cc pair per event with forced semi-leptonic decays is analysed
(Section 3.4.4). All electrons, which come from the decay of a charm hadron and are
within acceptance, are paired to unlike-sign and like-sign pairs. For a consistency with
the experimental data analysis, the resulting like-sign spectrum is subtracted from the
unlike-sign pairs in order to obtain the final dielectron spectrum. For the bb MC sample,
electrons are consideredwhen coming from the decay of an intermediate charm or beauty
meson, in order to take into account dielectron pairs with electrons coming from b quarks
via intermediate charmed hadron, e. g. B → D → e+ & B → D → e−. Detector effects
are implemented as for the light-hadron cocktail. The spectra are normalised to cross
sections at midrapidity that are based on FONLL [30–32] extrapolations of the ALICE
measurements at 7 TeV:

• d𝜎cc
d𝑦 = 954 ± 69(stat.) ± 97(syst.) μb [62]

• d𝜎bb
d𝑦 = 43 ± 10 μb [140, 141].

Following the description in [203], a pQCD-driven √𝑠-scaling of these measurements
leads to the following cross sections per unit rapidity at √𝑠 = 13 TeV:

d𝜎cc
d𝑦 = 1296+172

−162 μb
d𝜎bb
d𝑦 = 68+15

−16 μb

The quoted uncertainties take into account both themeasured uncertainty and the FONLL
extrapolation uncertainties. The latter (dominated by scale uncertainties but also includ-
ing PDF and mass uncertainties) are considered to be fully correlated between the two
energies [204].

The branching fraction of charm-hadron decays to electrons is taken as (9.6±0.4)% [50].
An additional uncertainty of ±0.9% is added in quadrature to account for differences in
the Λ𝑐/D0 ratio measured by ALICE in pp collisions at √𝑠 = 7 TeV, which is 0.543
± 0.061 (stat.) ± 0.160 (syst) for 𝑝T > 1 GeV/c [205], and the LEP average of 0.113
± 0.013 ± 0.006 [206]. This translates into a 22% uncertainty at the pair level. The
branching fraction of bottom hadrons decaying into electrons, including via intermedi-
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Figure 3.44: Dielectron mass spectra from correlated semi-leptonic decays of open
charm and bottom hadrons using Pythia (left) and Powheg (right) simulations.

ate charm hadrons, is (21.53 ± 0.63)% [50], which leads to a 6% uncertainty on the bb
contribution.

The resulting e+e− spectra from heavy-flavour correlated semi-leptonic decays are
shown in Fig. 3.44 for both Pythia and Powheg simulations. The uncertainties on the
spectra take into account the statistical uncertainty of theMCproduction added in quadra-
ture to the uncertainty derived from the cc and bb cross sections at √𝑠 = 13 TeV, but
do not include the uncertainty due to branching fraction to electrons (22% for charm and
6% for beauty decays).

The J/𝜓 contribution is simulatedwith Pythia 6.4 and normalised to the cross-section
at √𝑠 = 13 TeV of d𝜎J/𝜓

d𝑦 |𝑦=0 = 9.55+1.54
−1.57 μb. This cross-section is also obtained with

FONLL [140] from the measurement at √𝑠 = 7 TeV by the ALICE Collaboration:
d𝜎J/𝜓

d𝑦 |𝑦=0 = 6.87+1.11
−1.13 μb [207]. The 𝜓(2S) contribution is normalised to J/𝜓 based on

a cross section ratio of 𝜎(𝜓(2𝑆) → e+e−)/𝜎(J/𝜓 → e+e−) = 1.59 ± 0.17% [208].
Both contributions to the dielectron spectrum are shown in Fig. 3.45.

3.5.3 High-Multiplicity Light-Flavour Cocktail
A cocktail of hadronic dielectron sources is also used to estimate the expected dielec-
tron mass spectrum in high-multiplicity events. For light-flavour hadrons the input
hadron 𝑝T-distributions are adjusted according to the measured modifications of the
charged-hadron 𝑝T spectra [42]. Figure 3.46 (left) shows the ratio of spectra mea-
sured in three intervals of raw (uncorrected) multiplicity 𝑁acc

ch (1 ≤ 𝑁acc
ch < ⟨𝑁acc

ch ⟩,
⟨𝑁acc

ch ⟩ ≤ 𝑁acc
ch < 2⟨𝑁acc

ch ⟩ and 𝑁acc
ch > 2⟨𝑁acc

ch ⟩) to the inclusive spectrum in INEL> 0
event class. For this ratio, the spectra are normalised by the integral prior to dividing.
The data clearly show the correlation of the 𝑝T spectrum with multiplicity for the whole
𝑝T range. In particular, in events with 𝑁acc

ch > 2⟨𝑁acc
ch ⟩ 𝑝T spectrum becomes harder,
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Figure 3.45: Dielectron mass spectra from J/𝜓 and 𝜓(2S) decays.

which in first order can be explained by large contribution from jets.
Themodification of charged particle spectrum needs to be estimated for amultiplicity

scaling factor obtained in this analysis. For raw (uncorrected) multiplicities in accepted
high-multiplicity and minimum-bias events, this factor amounts to:

d𝑁acc
ch /d𝜂(HM)/⟨d𝑁acc

ch /d𝜂(MB)⟩ = 4.54

Two different weights have been used as lower and upper limit based on ratios of 𝑝T dis-
tributions shown in Fig. 3.46 (left). The lower limit corresponds to the ratio of charged
particle spectra in events with multiplicities 𝑁acc

ch ≥ 2⟨𝑁acc
ch ⟩, which is shown in red. In

this multiplicity class, the corresponding multiplicity enhancement factor is ≈3. For the
upper limit, the 𝑝T spectrum in events with 𝑁acc

ch ≥ 2⟨𝑁acc
ch ⟩ is divided by the spectrum

shown in blue in the same figure. The latter corresponds to the 𝑝T spectrum of charged
particles in events with multiplicities 1 ≤ 𝑁acc

ch < ⟨𝑁acc
ch ⟩, where the average multiplic-

ity is reduced by a factor 2. In this way an upper limit corresponds roughly to an increase
in the average multiplicity by a factor of ≈6.

To estimate individual hadron spectra, these 𝑝T ratios are translated into an 𝑚T de-
pendence by using a mean hadron mass calculated for each 𝑝T bin. This is done by
using 𝑝T spectra of pions, kaons and protons measured at midrapidity by ALICE at√𝑠 = 7 TeV [209] (Fig. 3.46 right) and by weighting their masses in each 𝑝T bin
according to the relative contributions. The resulting mean hadron mass is shown in
Fig.3.47 (left), and the obtained 𝑚T-dependent weights are shown in Fig.3.47 (right).
The latter are applied to scale the production of all hadrons in the cocktail simulation.
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The contributions from different hadrons are normalised in such a way that the rel-
ative contribution to the cocktail from each particle specie is kept the same between
minimum-bias and high-multiplicity events. The uncertainties of high-multiplicity cock-
tail from light-hadron decays are about ±15%, reaching up to +50% in the region domi-
nated by the 𝜂 meson due to uncertainties in the extrapolation to low 𝑝T. Themultiplicity
dependence has an uncertainty that varies between about 12% at low 𝑝T and 40% at high
𝑝T.
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Figure 3.48: Average D meson 𝑝T as a function of dielectron invariant mass in Pythia
simulations.
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Figure 3.49: Left: average D meson relative yields as a function of the relative charged-
particle multiplicity in different 𝑝T intervals. Right: 𝑝T-integrated relative yield of J/𝜓
as a function of the relative charged-particle multiplicity [43].

3.5.4 High-Multiplicity Heavy-Flavour Cocktail

For high-multiplicity heavy-flavour cocktail calculations, open charm contribution are
simulated with Pythia and weighted as a function of 𝑝T according to the measured en-
hancement of D mesons with 𝑝T > 1 GeV/c at √𝑠 = 7 TeV [43] (Fig. 3.49 left).
The relative enhancement of D meson production is in fact shown here as a function
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Figure 3.50: Enhancement factors applied to high-multiplicity heavy-flavour cocktail
as a function of the D meson 𝑝T. Blue and red lines represent upper and lower enhance-
ments according to the measured values in [43] for a multiplicity increase of a factor 4,
which are shown as grey shaded area. The same enhancement factors are also applied
for open beauty mesons.

of d𝑁acc
ch /d𝜂(HM)/⟨d𝑁acc

ch /d𝜂(INEL > 0), so the results at relative charged-particle
multiplicity of ≈ 4 are the ones closest to the multiplicity factor obtained in this anal-
ysis. These enhancement factors are applied as a function of D-meson 𝑝T as shown
in Fig. 3.50. Here, the blue and red lines represent the upper and lower enhancements
simulated according to the measured values shown as grey shaded area. To bracket the
expected enhancement, systematic and statistical errors of the measurement are added
in quadrature. No measurement of the multiplicity dependence exists for D mesons with
𝑝T < 1 GeV/c. While they still can contribute to the dielectron spectrum, their con-
tribution is expected to be relatively small: the average D meson 𝑝T as a function of
dielectron invariant mass has been evaluated using Pythia simulations, and the result is
shown in Fig. 3.48. For the weighting of D mesons with 𝑝T < 1 GeV/c the measure-
ment of D mesons with 1 < 𝑝T < 2 GeV/c is assumed as a conservative estimate.

The same weights are also applied to the open beauty contribution as no significant
difference between the production of D mesons and J/𝜓 from beauty-hadron decays
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is observed [43]. For electrons originating from charm or beauty hadrons with 𝑝T <
1 GeV/c, the same weight as for 1 < 𝑝T < 2 GeV/c is applied in the absence of a
measurement. The same enhancement is also assumed for Λc baryon. The multiplicity
dependence of heavy-flavour cocktail has an uncertainty that varies between about 40%
at low 𝑝T decreasing to 20% at high 𝑝T.

Finally, the J/𝜓 contribution is scaled according to a dedicated, 𝑝T-integrated mea-
surement [43] at relative charged-particle multiplicity of ≈ 4, which is also shown in
Fig. 3.49 (right).

With all ingredients taken into account, the expected ratio of dielectron spectra in
high-multiplicity over minimum-bias events after acceptance cuts is shown in Fig. 3.51.
The blue band on the upper panel represents the light-flavour uncertainty between the
lower and upper multiplicities considered for the high-multiplicity cocktail, and ma-
genta band corresponds to the heavy-flavour part of high-multiplicity cocktail. The light-
flavour and heavy-flavour expectations are weighted according to their relative contri-
butions, and the expectation for the dielectron spectra ratio from the combination of all
sources can be seen in the lower panel.

3.6 Systematic Checks and Uncertainties
This Section describes analysis cross-checks and the evaluation of systematic uncertain-
ties. Different aspects of the analysis are considered as sources for possible systematic
biases: event, track and electron selection, hadron contamination, photon conversions,
𝑅-factor as well as integrated luminosity. Systematic uncertainties specific for the high-
multiplicity data analysis are discussed separately in Section 3.6.9.

3.6.1 Event Selection
As described in Section 3.1, a physics selection with additional background rejection
is applied to the experimental data. It was verified that this physics selection does not
bias the selection of good physics events, and no additional correction or uncertainty is
needed in the analysis [210]. On top of the physics selection, events are also rejected
if a secondary (pile-up) interaction vertex is reconstructed with SPD tracklets. Another
pile-up rejection tool is used as a cross-check. Instead of relying on the SPD information
only, multiple vertices are reconstructed in the event with full ITS+TPC tracks (the so-
called “multi-vertexer” algorithm); such algorithm has a wider time coverage than the
SPD vertex finder and is therefore more sensitive to pile-up events from different bunch
crossings. Depending on the data-taking period, the multi-vertexer leads to an additional
rejection of ≲ 2% of events compared to the SPD pile-up rejection, but with no signifi-
cant effect on the dielectron spectrum (Fig. 3.52). Therefore no additional uncertainties
due to pile-up rejection need to be assigned to the results.
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3.6.2 Tracking
Several sources are considered for the systematic uncertainties due to the track selection.
As a result of checks described below, residual disagreements between experimental data
and Monte Carlo simulations add a 6.5% uncertainty on the single track level. Since
such uncertainties are correlated for two electrons in a signal pair, this leads to a 13%
uncertainty for pairs.

First, Monte Carlo simulations are checked to reproduce in detail the distributions
of track variables used for track selection (Table 3.1). For this purpose, all such dis-
tributions are checked in different 𝑝T ranges (0.2 < 𝑝T < 0.4 GeV/c, 0.4 < 𝑝T <
1.0 GeV/c and 𝑝T > 1.0 GeV/c), and the number of tracks kept by each selection cri-
teria (when other selection criteria are applied) is compared between Monte Carlo and
experimental data. In all cases a very good agreement is found, and the relative differ-
ences for each cut variable are added quadratically, which results in only 1% of system-
atic uncertainty for single tracks with very small 𝑝T dependence (2% for pairs). Fig. 3.53
shows an example of such comparison for the 𝑝T interval 0.4 < 𝑝T < 1.0 GeV/c for
DCA- and ITS-related requirements.

Further systematic uncertainties due to track reconstruction are estimated by compar-
ing the following efficiencies in MC simulations and in experimental data: a) ITS–TPC
matching, b) requirement of a hit in the first SPD layer and c) requirement of zero ITS
clusters shared with other tracks. The ITS–TPC matching efficiency is estimated as the
ratio of the number of electron candidates with ITS+TPC tracking requirements over
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Figure 3.53: Distributions of DCA and ITS variables in data (blue) and in MC (red) for
tracks with 0.4 < 𝑝T < 1.0 GeV/c. All other track selection criteria are applied except
the one shown on the plot as vertical dashed line. Relative number of tracks rejected by
each selection is also listed.

the number of electron candidates with only TPC tracking requirements. Here the same
TPC tracking requirements are used as in main analysis (Table 3.1), whereas for the ITS
a hit in any SPD layer is required (the bias due to the requirement of a hit in the first SPD
layer is estimated separately). In all cases very tight DCA requirements (0.1 cm) are
applied in order to suppress the contribution from photon conversions, which may not
be perfectly reproduced by Monte Carlo simulations. The results are shown in Fig. 3.54
(top left) as a function of single-track 𝑝T. A good agreement between experimental data
and Monte Carlo simulations is found in all cases. The overall difference of 1.5% (with
negligible 𝑝T-dependence) for single electrons leads to a 3% uncertainty for pairs.

The requirement of a hit in the first SPD layer is used in the analysis to suppress
tracks originating from late photon conversions. The corresponding “SPD first” match-
ing efficiency is estimated in a similar way as the number of electron candidates with a
hit in the first SPD layer over the number of electron candidates with hit in any of the two
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Figure 3.54: Fraction of electron candidates passing the requirement of ITS track cuts
(top left panel), hit in first SPD layer (top right) and no shared ITS clusters (bottom) in
experimental data (blue) and in Monte Carlo simulations (red) as a function of 𝑝T, see
text for details.

SPD layers. In both cases, tight DCA cuts are used again in order to suppress the contri-
bution from real photon conversions. The relative difference between experimental data
and Monte Carlo simulations of 3% (with a small 𝑝T-dependence) for single electrons
results in a 6% uncertainty for pairs (Fig. 3.54 top right).

The requirement of no ITS clusters shared with other tracks is also tested in a similar
way in experimental data and inMonte Carlo simulations, and the corresponding fraction
of electron candidates surviving this selection criterion is checked as a function of of 𝑝T
(Fig. 3.54 bottom panel). In all cases tight DCA cuts are used in order to suppress the
contribution from real photon conversions. Again only small 𝑝T-dependence is found in
this case, and the relative difference between data and Monte Carlo simulations of < 2%
for single electrons results in a 4% uncertainty for pairs.

All the uncertainties described above have been tested in hadronic cocktail simula-
tions, which have shown that a small 𝑝T dependence of tracking uncertainty results in a
negligible dependence of the dielectron signal uncertainty on 𝑚ee and 𝑝T, ee.
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3.6.3 Electron Identification
The PID selection leads to a significant drop of the single electron efficiency at 𝑝T ≈
0.5 GeV/c and at 𝑝T ≈ 1.0 GeV/c (Fig. 3.32) due to the rejection of hadrons in the
TPC. To check that all the details of the PID selection are properly described by Monte
Carlo simulations, the following test is performed in experimental and in Monte Carlo
data.

For the studies of systematic uncertainties due to tracking described previously, one
needs a sample of primary tracks originating from event vertex, so photon conversions
are suppressed by tight DCA requirements. However, in order to test the PID response
of the TPC and TOF detectors, one would need only a clean sample of electrons (to
minimise hadron contamination and therefore any possible biases due to non-perfect
particle abundances in Monte Carlo data) without tight requirements on their origin.
Such a clean sample of electrons can be obtained in experimental data with electrons
from photon conversions.

Late conversions in outer ITS layers or in detector material before the TPC are recon-
structed with a special “V0 finder” algorithm, which in general searches for secondary
vertices of neutral particle decays into two charged tracks. After that, a PID selection
including only TPC requirements for electrons and pions (first two lines in Table 3.2,
which are common for schemes “A” and “B”) is already sufficient to obtain a very clean
sample of electrons from conversions in experimental data, since neither kaons nor pro-
tons pass the “V0 finder” reconstruction requirements. Although in Monte Carlo one
could select pure electrons directly by using MC information, for a proper comparison
with the experimental data the same “V0 finder” algorithm is used in MC to select elec-
trons from photon conversions. TPC PID response is checked to reproduce in detail all
characteristics of such clean electrons as a function of their 𝑝T and 𝜂, both in MC and in
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experimental data. The ITS tracking requirements, which would reject a large fraction
of such late conversions, are not applied to the tracks, whereas TPC track requirements
are the same as in main analysis.

After that, all PID requirements used in the analysis are applied according to Ta-
ble 3.2 to the sample of electrons described above, and the fraction of electrons survived
PID requirements is checked in Monte Carlo and in experimental data (Fig. 3.55). Since
all sources of possible biases are suppressed as described above, such a ratio directly
represents the combined PID efficiency of the TPC and TOF detectors for electrons in
experimental data and in MC simulations. Very good agreement is found over whole
𝑝T range, with maximum difference of up to 3% in kaon (𝑝T ≈ 0.5 GeV/c) and proton
(𝑝T ≈ 1 GeV/c) crossing regions. Simulations of this uncertainty with hadronic cock-
tail have shown that it leads to a ≲ 2% difference in dielectron signal, which is taken
as a conservative estimate for the corresponding systematic uncertainty in whole mass
range.

It is worth to mention that such a good agreement, especially in the hadron rejection
region, is also a result of the careful PID re-calibration of TPC and TOF detectors de-
scribed in Apendix B. The uncertainty shown in Fig. 3.55 (right) also includes possible
uncertainties introduced by the PID re-calibration procedure.

3.6.4 Hadron Contamination
This Section describes an approach to evaluate hadron contamination as a function of
𝑝, which is then converted to pair and signal purity. A high purity of electron sample
reached both in minimum-bias and in high-multiplicity events minimises the effect of
hadron contamination on the dielectron spectrum. Moreover, most of the contaminated
pairs are subtracted from dielectron spectrum during the pair analysis, since as a rule
they are of uncorrelated origin. Therefore, the main problem is correlated contamina-
tion, which arise from e. g. 𝜙 → K+K− decays when both kaons are mis-identified as
electrons.

For particle momenta below 400 MeV/c, where electron identification relies only
on the TPC energy loss, the main contamination comes from pions passing the 𝑛(𝜎TPC

𝜋 )
rejection. To evaluate this background, the 𝑛(𝜎TPC

e ) distribution from experimental data
is fitted in momentum slices with a skew normal distribution defined as

𝑓(𝑥) = 1√
2𝜋𝜎2 exp (−(𝑥 − 𝜇)2

2𝜎2 ) (1 + erf (𝛼(𝑥 − 𝜇)√
2𝜎2 )) (3.16)

both for the electron signal and the pion background with a total of 8 free parameters
in the range −4 < 𝑛(𝜎TPC

e ) < 4. The result of the fit is then evaluated in the nominal
−3 < 𝑛(𝜎TPC

e ) < 3 range used for the electron selection.
The hadron contamination for momenta above 400 MeV/c is dominated by kaons in

the range 400–800 MeV/c, protons in 800–1200 MeV/c and pions above 1200 MeV/c.
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Figure 3.56: ITS d𝐸/d𝑥 in pp collisions at √𝑠 = 13 TeV [166].

Those hadrons can pass the selection criteria, if they originate from fake matches be-
tween ITS+TPC tracks and TOF hits. Even with a TOF PID requirement |𝑛(𝜎TPC

e )| <
3 some true electrons identified by TOF could be matched to a hadron track recon-
structed in ITS+TPC. The mismatch probability is expected to be slightly higher in
high-multiplicity data sample. Since in the TPC kaons and protons completely overlap
in the corresponding crossing regions, this contamination is evaluated by fitting 𝑛(𝜎ITS

e )
distributions from experimental data. Thanks to different specific energy loss in silicon
ITS layers than in TPC gas, kaons and protons have different d𝐸/d𝑥 than electrons also
in TPC crossing regions (Fig. 3.56). The 𝑛(𝜎ITS

e ) distribution is fitted in momentum
slices with the following contributions:

• Monte Carlo templates of 𝑛(𝜎ITS
e ) for kaons and protons; the kaon template is

included in fits below 800 MeV/c and the proton template above
• A skew normal distribution for the electron signal from Eq. 3.16
• A total of 5 parameters for each fit, 4 from the signal distribution and one additional

for the background normalisation
• Additional constrains in momentum bins with large overlap of signal and hadrons,

which rely on the shape of momentum spectra for kaons and protons passing the
electron selection criteria in Monte Carlo simulations

Finally, the pion contamination in the momentum range above 400 MeV/c is eval-
uated by fitting the 𝑛(𝜎TPC

𝜋 ) distribution from experimental data in momentum slices,
with both the signal (that in this case is the true electron signal plus the kaon/proton con-
tamination to avoid its double counting) and the pion background fitted by skew normal
distributions. The fit contains therefore in total 8 free parameters and is performed in
the range −3 < 𝑛(𝜎TPC

𝜋 ) < 20. The results of the fit is then evaluated in the nominal
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Figure 3.57: Example of the fits of 𝑛(𝜎TPC
e ) (a) and 𝑛(𝜎TPC

𝜋 ) (b) used to evaluate pion
background below and above 400 MeV/c, respectively. 𝑛(𝜎ITS

e ) distribution is used for
the evaluation of kaon/proton contamination ((c) and (d)).
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Figure 3.58: Pion, kaon and proton contamination in minimum-bias (a) and high-
multiplicity (b) events.

𝑛(𝜎TPC
𝜋 ) > 4 range used for electron selection.
Examples of the fits can be seen in Fig. 3.57 showing the pion shape in 𝑛(𝜎TPC

e ) and
kaon/proton shapes in 𝑛(𝜎ITS

e ). The obtained hadron contamination in minimum-bias
and high-multiplicity events is summarised in Fig. 3.58 for all fitted momentum bins.
The purity of the electron sample is >93% in all 𝑝T bins, with a 𝑝T-integrated hadron
contamination of about 4% for both event classes. The obtained single-electron purity
is used afterwards in Monte Carlo simulations to estimate the contamination of final
dielectron signal.

Due to the non-perfect simulation of particle abundances, single electron purity was
found in Monte Carlo data to be higher than the one obtained from the data-driven ap-
proach described above (Fig. 3.59). Therefore, in order to reproduce the purity seen
in experimental data, each hadron contaminating electron sample is re-weighted in MC
(Fig. 3.59) to obtain the pair purity using true MC information about the origin of each
particle. The pair contamination is estimated separately for pairs originating from light-
flavour hadron decays and for pairs from semi-leptonic heavy-flavour decays.

For light-flavour decays, the dielectron signal is defined as a true electron and positron
pair originating from the same-mother decay, and hadron contamination as a pair of par-
ticles from same-mother decay where at least one leg is a mis-identified hadron. No
such contaminated pairs have been found in a sample of more than 350×103 pairs using
Monte Carlo simulations of inelastic pp events. The pair contamination becomes signifi-
cant when one uses relaxed PID selection, e. g. the exclusion of kaons and protons in the
TPC with |𝑛(𝜎TPC

K,p )| > 2 requirement (instead of default 4). Figure 3.60 shows the true
dielectron signal and all unlike-sign pairs originating from light-flavour same-mother
decays in case of such relaxed PID selection. One can see that significant hadron con-
tamination leads in this case to a peak at ∼250 MeV/c2 originating from 𝜙 → K+K−
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Figure 3.59: Electron purity in experimental data and in Monte Carlo simulations (un-
weighted and re-weighted).
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Figure 3.60: True dielectron signal (red) and all unlike-sign correlated pairs (black)
originating from same decay of light-flavour hadrons in case of relaxed PID selection,
see text for details. The resulting pair contamination is shown in green. True dielectron
signal with standard PID selection is shown in blue (with zero contaminated pairs).

decay, where both kaons are misidentified as electrons with the wrong mass assigned
to each leg. Other electron-hadron and hadron-hadron pairs create a continuum over a
wide mass range.
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Table 3.4: Summary of hadron contamination for heavy-flavour decays

PID scheme Event Type ULS pairs
(contamination)

LS pairs
(contamination)

cc 14314 (1) 0 (0)
A bb no osc. 19124 (9) 7925 (1)

bb with osc. 9546 (4) 5778 (3)
cc 3958 (1) 0 (0)

B bb no osc. 6380 (3) 2310 (1)
bb with osc. 2826 (2) 1831 (1)

For heavy-flavour decays, the contamination has been investigated for 3 different
cases: cc, bb with no oscillation and bb with at least one oscillation. To select only
correlated pairs, in all cases events are filtered to ensure that one and only one type of
heavy-flavour pair has been created during the generation. The pair contamination is
found to be negligible for both cc and bb events (Table 3.4). For bb events also like-sign
pairs are checked to have negligible hadron contamination.

As a result, hadron contamination on dielectron signal is found to be negligible and
no systematic uncertainty or correction is applied to the final dielectron spectrum.

3.6.5 Photon Conversion Rejection
In order to ensure that conversion pairs are rejected in experimental data, a 𝜑𝑉 < 2
requirement is applied for all pairs in the mass region below 140 MeV/c2. As a cross-
check, a tighter selection of 𝜑𝑉 < 𝜋/2 is used for pure signal pairs in Monte Carlo
data and for unlike-sign pairs in experimental data (Fig. 3.61). The fraction of pairs
kept by 𝜑𝑉 < 𝜋/2 requirement relative to the default requirement is found to be in
good agreement between data and Monte Carlo simulations, which implies only a small
residual fraction of photon conversions that survive the default requirement. The relative
difference of less than 2% is taken as an uncertainty (below 140 MeV/c2) for the final
results.

3.6.6 𝑅-Factor Calculation
Since the 𝑅-factor enters directly in the signal calculation (Eq. 3.5), a possible bias in
its estimation leads to a systematic uncertainty in final dielectron signal, which depends
inversely on the signal-to-background ratio:
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Figure 3.61: Unlike-sign pairs in experimental data (top left) and signal pairs in Monte
Carlo simulations (top right) for two different 𝜑𝑉 requirements. The relative fraction of
pairs with 𝜑𝑉 < 𝜋/2 is shown on the bottom panel in experimental data (blue) and in
MC (red).

Δ𝑆 = Δ𝑅 ⋅ 𝐵/𝑆. (3.17)

Therefore, several checks have been done in order to evaluate any possible uncer-
tainty in the 𝑅-factor calculation. As a result, an uncertainty of 2% on the dielectron
signal is used as an estimate of total systematic uncertainty due to 𝑅-factor calculation.

To check the dependence of the 𝑅-factor on 𝑝T, ee and its effect on the raw dielectron
spectrum, the signal extraction procedure is done in each 𝑝T, ee bin (0 − 1, 1 − 2, 2 − 3
and 3 − 6 GeV/c) using the corresponding 𝑅-factors extracted from data. The sum
of raw signals in 𝑝T, ee bins is compared then to the dielectron spectrum obtained in
𝑝T, ee < 6 GeV/c bin using the 𝑝T, ee-independent 𝑅-factor. The results are shown in
Fig. 3.62, where no significant difference is seen between two approaches. Therefore,
no uncertainty is assigned to the final data points, and for the final results for 𝑝T, ee < 6
GeV/c case are calculated as the sum of dielectron spectra in different 𝑝T, ee bins.

In order to minimise the effect of statistical fluctuations, the 𝑅-factor is set to unity
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Figure 3.62: Left: raw dielectron spectra calculated as the sum in different 𝑝T, ee bins
with corresponding 𝑅-factors or in 𝑝T, ee < 6 GeV/c. The ratio between two ap-
proaches is shown on the right.
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Figure 3.63: Left: raw dielectron spectra calculated with different 𝑅-factors: from data
itself or set to unity in 𝑚ee > 0.5 GeV/c2. The ratio between two methods is shown on
the right. Below 𝑚ee = 0.5 GeV/c2 two methods give the same results by construction.

for 𝑚ee > 0.5 GeV/c2 where no statistically significant deviations from 1 are observed
(Fig. 3.12 right). As a cross-check, the signal extraction procedure is repeated without
assumption 𝑅 = 1, and the resulting effect on the dielectron mass spectrum as a function
of the invariant mass is shown in Fig. 3.63. No significant difference is found between
two approaches as expected.

Assuming that 𝑅-factor represents only detector acceptance effects and does not de-
pend on multiplicity, a small difference observed between 𝑅-factors from high-multipli-
city and minimum-bias data samples (Fig. 3.64) results in systematic uncertainty of 2%.

To test the 𝑅-factor dependence on the number of event mixing bins and the vertex
position, the event mixing is done in 20 vertex 𝑧 position bins each 1.0 cm wide (from
−10 cm to 10 cm). The results are compared to the default approach using 8 bins each
2.5 cm wide. No significant difference can be seen between two approaches (Fig. 3.65),
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Figure 3.64: 𝑅-factor in high-multiplicity and minimum-bias events (left) and the cor-
responding difference scaled by 𝐵/𝑆 (right).
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Figure 3.65: 𝑅-factor calculated with different number of vertex 𝑧 position bins (left)
and the corresponding difference scaled by 𝐵/𝑆 (right).

so no further systematic uncertainty is assigned.

3.6.7 Integrated Luminosity
The minimum-bias trigger described in Section 3.1 requires simultaneous signal in both
V0 detectors. Let us denote such event class as “V0AND” (i. e. events which fulfil V0A
and V0C trigger requirement), then the integrated luminosity of analysed minimum-bias
data sample is calculated as:

ℒMB
int = 𝑁V0AND/𝜎V0AND

pp , (3.18)

i. e. the ratio of the measured V0AND cross section (𝜎V0AND
pp = 57.8 ± 2.9mb), ob-

tained from a van-der-Meer scan [211], and the number of V0AND (i. e. minimum-bias)

– 114 –



3.6. Systematic Checks and Uncertainties

Table 3.5: Uncertainties assigned to dielectron spectrum in inelastic pp collisions.

Source Uncertainty
Tracking 13%
PID selection 2%
Conversion rejection (𝑚ee < 0.14 GeV/c2) 2%
𝑅-factor 2%
Total 13.5%

triggered events (𝑁V0AND). The latter is calculated as the number of minimum-bias
events considered for the analysis (𝑁evt = 441.26 × 106), i. e. triggered events with
a reconstructed interaction vertex and passing the physics event selection, corrected for
the vertex reconstruction efficiency (𝜀vtx

evt ):

𝑁V0AND = 𝑁evt/𝜀vtx
evt . (3.19)

While the efficiency to reconstruct the collision vertex is basically 100% when two elec-
trons are present in the event, this is not generally true for V0AND triggered events.
The latter efficiency is found to be 𝜀vtx

evt = 97.0 ± 0.5%, the difference observed be-
tween various methods (based either on Pythia MC simulations or on data-driven ap-
proaches) has been used as systematic uncertainty. This leads to an integrated luminos-
ity of ℒMB

int = 7.87 ± 0.40 nb−1 for the minimum-bias pp data sample. The luminosity
uncertainty is a global uncertainty and is therefore omitted from the point-to-point un-
certainties; instead, it is explicitly mentioned in the figures.

3.6.8 Total Systematic Uncertainty
As a result of the checks described above, no significant variation of systematic uncer-
tainties on 𝑚ee or 𝑝T, ee is observed in the analysis, and the same total uncertainty of
13.5% is assigned as point-to-point correlated uncertainties on the differential dielectron
cross section in inelastic pp collisions. All sources of uncertainties are summarised in
Table 3.5.

3.6.9 High-Multiplicity Analysis
The analysis of the high-multiplicity data sample carries additional systematic uncer-
tainties which are discussed below. As a result, the total systematic uncertainty adds up
to 15% for the corrected high-multiplicity dielectron spectra.

A shift in the vertex 𝑧 position of about ∼0.3 cm towards higher positive values is
found in high-multiplicity events compared to the minimum-bias data (Fig. 3.6). It can
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be explained by the non-symmetric geometry of the V0 scintillators (Fig. 2.10): the
V0A detector is located 340 cm from the vertex on the negative 𝑧 side whereas V0C is
fixed to the front face of the hadron absorber of muon arm, 90 cm from the vertex on the
positive 𝑧 side. Despite the smaller active area of V0C detector (0.315 m2 compared to
0.548 m2 for V0A), its solid angle visible from the nominal interaction point at 𝑧 = 0 cm
is much larger: 0.39 for V0C compared to 0.047 for V0A. The online V0 multiplicity
is calculated as the sum of two signals from V0A and V0C, and the constant threshold
value for this sum is used to trigger events with high multiplicities. This fact gives events
closer to V0C (i. e. with higher positive vertex 𝑧 values) a higher chance to produce a
multiplicity above threshold, which leads to the observed bias in the vertex 𝑧 position.

For the estimation of this effect, the mean reference multiplicity is calculated for
events in ±4.1 cm around the mean vertex 𝑧 position, which corresponds to the RMS of
the vertex 𝑧 distribution shown in Fig. 3.6. This range is shifted afterwards by 1 cm (3
times more than the observed shift between minimum-bias and high-multiplicity events)
towards larger and smaller vertex Z values. In both minimum-bias and high-multiplicity
events this leads to a change of less than 0.5% for the reference multiplicity measured
in |𝜂| < 0.5 (top row of Fig. 3.66). However, the total number of electron and positron
candidates measured in |𝜂| < 0.8 and additionally affected by the PID efficiency of
TPC and TOF detectors changes by 3% in each event class (bottom row of Fig. 3.66).
Since no dedicated MC simulation was performed for the analysis of high-multiplicity
pp collisions to take into account this effect, the final result includes uncertainty of 6%.

The requirement of no ITS clusters shared with other tracks leads to further rejection
of good signal pairs in high-multiplicity data sample due to higher average multiplicity
in the event. The ratio of the raw dielectron spectrum with such a cut over the dielec-
tron spectrum without cut is checked in minimum-bias and in high-multiplicity events
(Fig. 3.67). The difference of ∼2% observed between the results is assigned as a sys-
tematic uncertainty to the corrected spectrum.

For the corrected high-multiplicity dielectron spectra, the same systematic uncer-
tainties as listed in Table 3.5 are assigned to the data points. In addition, 6% uncertainty
is used because of the shift of the vertex 𝑧 position, 6% due to the multiplicity depen-
dence of the single track reconstruction efficiency and electron identification [212] and
2% due to multiplicity dependence of the no shared ITS clusters requirement. Added in
quadrature, this amounts to a total uncertainty of 15%. However, since the multiplicity-
independent uncertainties cancel in the ratio (Eq. 4.2), the systematic uncertainty on the
dielectron spectra ratio is reduced to ∼9%. It is dominated by the shift of the vertex 𝑧
position and the multiplicity dependence of tracking and PID selection.

For high-multiplicity triggered events (with a total number of events 79.2×106), the
vertex reconstruction efficiency is 100% with negligible uncertainties. Offline informa-
tion from the V0 detector is used to select 0.05% of 𝜎V0AND

pp cross-section, which results
in an integrated luminosity of ℒHM

int = 2.79±0.15 pb−1 for high-multiplicity data sam-
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Figure 3.66: Top row: correlation between the reference multiplicity in |𝜂| < 0.5 and
the vertex 𝑧 position. Bottom row: correlation between the number of electrons and the
vertex 𝑧 position. Results in minimum-bias events are shown on the left, right panels
correspond to high-multiplicity pp collisions. Black points show the mean values of
reference multiplicity or number of electrons for each vertex 𝑧 position, and the error
bars correspond to RMS of distribution. Note the different 𝑦 axis scale for two plots on
the top row.

ple collected in 2016. However, for the analysis of high-multiplicity pp collisions also
raw uncorrected dielectron spectra can be used in Eq. 4.2, which allows to consider also
2017 data without corresponding Monte Carlo simulations. This results in a total of
715 × 106 minimum-bias pp events and 153.8 × 106 high-multiplicity pp events which
are used for high-multiplicity studies only. These values correspond to integrated lumi-
nosities of ℒMB

int,2016+2017 = 12.37±0.63 nb−1 and ℒHM
int,2016+2017 = 5.42±0.29 pb−1.
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Figure 3.67: The effect of no shared ITS clusters requirement on raw dielectron spec-
trum inminimum-bias (left) and high-multiplicity (right) events. The difference between
ratios of ∼ 2% is taken as systematic uncertainty for high-multiplicity data analysis.

Table 3.6: Uncertainties assigned to dielectron spectrum in high-multiplicity pp colli-
sions.

Source Uncertainty
Min. bias analysis 13.5%
Vertex Z shift 6%
Multiplicity dependence of eff. and PID 6%
ITS shared cluster 2%
Total 15%
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Results

This Chapter presents the results of the analyses of inelastic and high-multiplicity pp col-
lisions. The dielectron mass, 𝑚ee, and transverse momentum, 𝑝T, ee, spectra in inelastic
collisions are shown in Section 4.1, followed by the discussion of the dielectron spec-
trummodification in high-multiplicity collisions in Section 4.2. The extraction of charm
and beauty production cross sections in both event classes is presented in Section 4.3.
Finally, the fraction of direct photons in the inclusive photon spectrum is discussed in
Section 4.4.

4.1 Dielectron Cross Sections in Inelastic Events
The differential dielectron cross section is reported in the form of:

d2𝜎ee
d𝑚eed𝑝T, ee

= 1
ℒint

𝑆(𝑚ee, 𝑝T, ee)
Δ𝑚ee𝜀trig

ee 𝜀vtxee 𝜀recee (𝑚ee, 𝑝T, ee)
, (4.1)

where:
• 𝑆(𝑚ee, 𝑝T, ee) is the measured dielectron signal yield defined in (3.5);
• ℒint = 7.87±0.40 nb−1 is the integrated luminosity of the pp data set as discussed

in Section 3.6.7;
• Δ𝑚ee and Δ𝑝T, ee is the bin width in GeV;
• 𝜀trig

ee = 0.99±0.01 is theV0ANDefficiency to trigger on a pp collisions containing
an e+e− pair in the acceptance (Section 3.4.4);
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• 𝜀vtx
ee = 1 is the vertex reconstruction efficiency in events that contain an e+e− pair

in the acceptance and that fired the V0AND trigger (Section 3.4.4);
• 𝜀rec

ee (𝑚ee, 𝑝T, ee) is the reconstruction efficiency defined in (3.14), i. e. the mass-
and 𝑝T, ee-dependent efficiency to reconstruct an e+e− pair in events with a re-
constructed vertex that fired the V0AND trigger and that had an e+e− pair in the
acceptance.

The results are shown either as d𝜎/d𝑚ee (integrated over 𝑝T, ee < 6 GeV/c or over
some limited 𝑝T, ee range) or as d𝜎/d𝑝T, ee (integrated over some mass bin). The dielec-
tron cross sections are presented within the ALICE central barrel acceptance |𝜂e| < 0.8
and 𝑝T, e > 0.2 GeV/c, i. e. without correction to full phase space which largely de-
pends on the models used to extrapolate the results.

In each 𝑝T, ee bin, the mass binning of the dielectron spectra presented below is
defined by the requirement for expected statistical significance to be above a certain
threshold. To calculate the expected value for statistical significance 𝑆/

√
𝑆 + 2𝐵, the

raw signal 𝑆 is estimated as a signal from cocktail calculations multiplied by dielectron
reconstruction efficiency 𝜀rec

ee (𝑚ee, 𝑝T, ee), and the combinatorial background 𝐵 is taken
from data. The resulting significance is then investigated in narrow 𝑚ee bins of Δ𝑚ee =
10 MeV/c2 width to see how wide each final 𝑚ee bin has to be in order to reach the
expected significance ≥ 5𝜎. It this way one obtains an unbiased estimation of dielectron
mass spectrum binning. Of course, the actual statistical significance of dielectron signal
can be below 5𝜎 as it is shown in Fig. 3.19. Similar studies are done for the high-
multiplicity data analysis as well.

The dielectron spectrum, integrated over 𝑝T, ee < 6 GeV/c, is shown as a func-
tion of 𝑚ee in Fig. 4.1. The experimental data are compared to the expectation from
the hadronic decay cocktail discussed in Section 3.5 using Pythia simulations for the
heavy-flavour decays. The global scale uncertainty on the pp luminosity (5%) is not
shown. The data are in agreement within uncertainties with the expectation from the
hadron decay cocktail over the whole mass range. Good agreement between data and
cocktail calculations is also found as a function of 𝑝T, ee, which can be seen for 𝑝T, ee-
spectra in different 𝑚ee intervals in Fig. 4.2 and for mass spectra in different 𝑝T, ee-bins
in Fig. 4.3. This confirms that the measured dielectron distributions can be described
with the hadronic decays. Similar good agreement with cocktail expectations is also
found for the Powheg-based simulations of open heavy-flavour contribution (Figs. 4.4
and 4.5).
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Figure 4.1: The dielectron cross section in inelastic pp collisions at √𝑠 = 13 TeV
as a function of invariant mass 𝑚ee using Pythia simulations to estimate open heavy-
flavour decays. The global scale uncertainty on the pp luminosity (5%) is not shown.
The statistical and systematic uncertainties of the data are shown as vertical bars and
boxes. The expectation from the hadronic decay cocktail is shown as a band, and the
bottom plot shows the data-to-cocktail ratio together with the cocktail uncertainty.
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Figure 4.2: The dielectron cross section in inelastic pp collisions at √𝑠 = 13 TeV as
a function of pair transverse momentum 𝑝T, ee in different mass intervals using Pythia
simulations to estimate open heavy-flavour decays. The global scale uncertainty on the
pp luminosity (5%) is not shown. The statistical and systematic uncertainties of the data
are shown as vertical bars and boxes. The expectations from the hadronic decay cocktail
are shown as bands. Acceptance effect of the 𝑝T, e > 0.2 GeV/c requirement is visible
in the low mass regions at 𝑝T, ee < 0.4 GeV/c.
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Figure 4.3: The dielectron cross section in inelastic pp collisions at √𝑠 = 13 TeV
as a function of invariant mass in different 𝑝T, ee intervals using Pythia simulations to
estimate open heavy-flavour decays. The global scale uncertainty on the pp luminosity
(5%) is not shown. The statistical and systematic uncertainties of the data are shown
as vertical bars and boxes. The expectation from the hadronic decay cocktail is shown
as a band, and the data-to-cocktail ratio is presented below together with the cocktail
uncertainty.
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Figure 4.4: The dielectron cross section in inelastic pp collisions at √𝑠 = 13 TeV as
a function of invariant mass using Powheg simulations to estimate open heavy-flavour
decays. The global scale uncertainty on the pp luminosity (5%) is not shown. The statis-
tical and systematic uncertainties of the data are shown as vertical bars and boxes. The
expectation from the hadronic decay cocktail is shown as a band, and the data-to-cocktail
ratio is presented below together with the cocktail uncertainty.
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Figure 4.5: The dielectron cross section in inelastic pp collisions at √𝑠 = 13 TeV as
a function of invariant mass in different 𝑝T, ee intervals using Powheg simulations to
estimate open heavy-flavour decays. The global scale uncertainty on the pp luminosity
(5%) is not shown. The statistical and systematic uncertainties of the data are shown
as vertical bars and boxes. The expectation from the hadronic decay cocktail is shown
as a band, and the data-to-cocktail ratio is presented below together with the cocktail
uncertainty.
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4.2 High-Multiplicity pp Collisions
Modifications of the dielectron spectrum in high-multiplicity pp collisions are investi-
gated in experimental data as the ratio of the dielectron spectrum in high-multiplicity
events over the spectrum in inelastic collisions:

𝑁ee(HM)/⟨𝑁ch(HM)⟩
𝑁ee(INEL)/⟨𝑁ch(INEL)⟩ = ⟨𝑁ch(INEL)⟩

⟨𝑁ch(HM)⟩ × 1/𝑁HM d𝑁ee/d𝑚ee|HM
1/𝑁INEL d𝑁ee/d𝑚ee|INEL

. (4.2)

The results are compared to a dedicated cocktail simulation of light- and heavy-flavour
production (Sections 3.5.3 and 3.5.4). To account for the trivial scaling with charged-
particle multiplicity, the ratio is scaled by the multiplicity factor, which for corrected
multiplicities in inelastic and in high-multiplicity pp collisions amounts to:

d𝑁ch/d𝜂(HM)/⟨d𝑁ch/d𝜂(INEL)⟩ = 6.27 ± 0.22, (4.3)
where d𝑁ch/d𝜂(HM) = 33.29 ± 0.39 and ⟨d𝑁ch/d𝜂(INEL)⟩ = 5.31 ± 0.18 are the
charged-particle multiplicities in |𝜂ch| < 0.5 measured in high-multiplicity and inelastic
pp collisions, respectively [42]. Figures 4.6 and 4.7 show the ratios of the dielectron
spectra in high-multiplicity over inelastic events as a function of 𝑚ee for different 𝑝T, ee
intervals. The ratio is found to be in good agreement with the hadronic decay cocktail
calculations over the whole measured 𝑚ee and 𝑝T, ee range.

For light-flavour mesons, and in particular for 𝜋0 and 𝜂, this confirms the hypoth-
esis that different light mesons have the same multiplicity dependence as a function of
𝑚T, which was used in the construction of the high-multiplicity hadron cocktail (Sec-
tion 3.5.3). At low invariant mass, both data and cocktail simulations exhibit a ratio
above 1, which comes from the low-𝑝T cut of 𝑝T, e > 0.2 GeV/c convoluted with the
hardening of charged-particle 𝑝T spectrum with multiplicity shown in Fig. 3.46.

In the intermediate mass range, the ratio is in good agreement with the cocktail cal-
culations based on measured single D meson production at similar relative multiplicity
(Section 3.5.4). From the agreement between data and cocktail in the high-𝑝T range
(3 < 𝑝T, ee < 6 GeV/c2), which is dominated by open beauty, it can be also con-
cluded that at measured multiplicity enhancement open beauty production at high 𝑝T
has a multiplicity dependence similar to that of open charm.

While not the primary goal on this thesis, the results are also happen to be the first
measurement of J/𝜓 production in high-multiplicity pp collisions in different 𝑝T in-
tervals. The 𝑝T dependence of enhancement can be seen in Fig. 4.7 in the mass bin
around 𝑚ee ≈ 3.1 GeV/c2, which is compared to the cocktail expectations based on
previous 𝑝T-integrated J/𝜓 measurements at √𝑠 = 7 TeV at similar relative multiplic-
ity [44]. The results in different 𝑝T intervals are found to be in good agreement with
preliminary results from a dedicated J/𝜓 analysis in high-multiplicity pp collisions at√𝑠 = 13 TeV [213].
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Figure 4.6: Ratio of dielectron spectra in HM and INEL events scaled by the charged-
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as vertical bars and boxes. The expectation from the hadronic decay cocktail calculation
is shown as a grey band.
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Figure 4.7: Ratio of dielectron spectra in HM and INEL events scaled by the charged-
particle multiplicity in different 𝑝T, ee intervals. The statistical and systematic uncertain-
ties of the data are shown as vertical bars and boxes. The expectation from the hadronic
decay cocktail calculation is shown as a grey band.
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4.3 Charm and Beauty Production Cross Sections
The charm and beauty production cross sections, 𝜎cc and 𝜎bb, can be extracted from the
dielectron spectrum in intermediate mass region, which is dominated by open heavy-
flavour decays. In this thesis, the production cross-sections are extracted at mid-rapidity,
i. e. d𝜎cc/d𝑦|𝑦=0 and d𝜎bb/d𝑦|𝑦=0. For this purpose, data are fitted simultaneously in
𝑚ee (1.03 < 𝑚ee < 2.86 GeV/c2) and 𝑝T, ee (𝑝T, ee < 6 GeV/c) with Pythia and
Powheg templates of open charm and beauty production. Light-flavour and J/𝜓 contri-
butions from hadronic cocktail calculations are kept fixed, which introduces negligible
uncertainties on the resulting heavy-flavour cross section. The fit is performed with the
sum of two contributions:

𝑓𝐺𝐸𝑁 = 𝑆𝑐 ̄𝑐𝑓𝐺𝐸𝑁
𝑐 ̄𝑐 + 𝑆𝑏�̄�𝑓𝐺𝐸𝑁

𝑏�̄� , (4.4)

where 𝑓𝐺𝐸𝑁
𝑐 ̄𝑐 and 𝑓𝐺𝐸𝑁

𝑏�̄� are the cross sections of dielectron pairs from charm and beauty-
hadron decays calculated with the event generator 𝐺𝐸𝑁 and normalised to
d𝜎cc/d𝑦|REF

𝑦=0 = 1296+172
−162 μb andd𝜎bb/d𝑦|REF

𝑦=0 = 68+15
−16 μb, respectively (Section 3.5.2).

The two fit parameters are the scaling factors 𝑆𝑐 ̄𝑐 and 𝑆𝑏�̄� defined as:

d𝜎cc/d𝑦|𝑦=0 = 𝑆𝑐 ̄𝑐 × d𝜎cc/d𝑦|𝑦=0
REF, (4.5)

d𝜎bb/d𝑦|𝑦=0 = 𝑆𝑏�̄� × d𝜎bb/d𝑦|𝑦=0
REF. (4.6)

For each combination of scaling factors𝑆𝑐 ̄𝑐 and𝑆𝑏�̄�, the𝜒2 value is calculated as follows:

𝜒2 =
𝑛

∑
𝑖=1

⎛⎜⎜
⎝

𝑥𝑖 − 𝜇𝑖

√(𝜎𝑠𝑡𝑎𝑡𝑥𝑖
)2 + (𝜎𝑠𝑡𝑎𝑡𝜇𝑖

)2
⎞⎟⎟
⎠

2

. (4.7)

The values of the data points and MC calculations in bin 𝑖 are given by 𝑥𝑖 and 𝜇𝑖 respec-
tively, while 𝜎𝑠𝑡𝑎𝑡

𝑥𝑖
and 𝜎𝑠𝑡𝑎𝑡

𝜇𝑖
represent their statistical uncertainties. The result of the fit

is determined by the minimum of the 𝜒2 value.
The Pythia and Powheg fits of dielectron spectra in inelastic events projected over

𝑝T, ee and 𝑚ee are shown in the left and right panels of Fig. 4.8, respectively. The fit
using Pythia templates leads to the following rescale factors:

𝑆cc = 0.75 ± 0.11(stat.),
𝑆bb = 1.16 ± 0.21(stat.).

High quality of the fit (𝜒2/ndf = 57.8/66) has been confirmed in detailed studies as
described in [182]. These two parameters are found to be highly anti-correlated (𝜌 =
−0.70), so future studies should utilise the impact parameter information DCAee for a
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Figure 4.8: Projection of the heavy-flavour dielectron fit (grey line) in inelastic pp col-
lisions at √𝑠 = 13 TeV onto the dielectron mass (top panel) and 𝑝T, ee (bottom panel)
using Pythia and Powheg event generators. The lines show the charm (red) and beauty
(magenta) contributions after the fit. The global scale uncertainty on the pp luminosity
(5%) is not shown. The statistical and systematic uncertainties of the data are shown as
vertical bars and boxes.
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more precisemeasurement [157]. The current statistics is not enough for a 3-dimensional
simultaneous fit in 𝑚ee, 𝑝T, ee and DCAee, while the standalone DCAee fit is roughly
as precise as the 2-dimensional fit in 𝑚ee and 𝑝T, ee [157].

To take into account the systematic uncertainties of the data, which are highly cor-
related from bin to bin, the fit is repeated twice, having moved all data by ±1𝜎 of the
systematic uncertainties. The resulting cross sections are:

d𝜎cc
d𝑦 ∣

𝑦=0
= 974 ± 138 (stat.) ± 140 (syst.) μb,

d𝜎bb
d𝑦 ∣

𝑦=0
= 79 ± 14 (stat.) ± 11 (syst.) μb,

where the first uncertainty is the statistical uncertainty from the data and the second is
the systematic uncertainty on the data.

The cross-section extraction from the fit to the data was repeated using the heavy-
flavour templates from Powheg event generator. The fit (with 𝜒2/ndf = 52.6/66) leads
to rescale factors of:

𝑆cc = 1.09 ± 0.14(stat.)
𝑆bb = 0.71 ± 0.21(stat.).

Again, the two parameters are found to be highly anti-correlated (𝜌 = −0.77). The
data have been moved by ±1𝜎 of the statistical uncertainties, and the fit was repeated in
order to take into account the systematic uncertainties of the data. The resulting cross-
sections are:

d𝜎cc
d𝑦 ∣

𝑦=0
= 1417 ± 184 (stat.) ± 204 (syst.) μb,

d𝜎bb
d𝑦 ∣

𝑦=0
= 48 ± 14 (stat.) ± 7 (syst.) μb,

i.e. with Powheg one obtains substantially larger c ̄c and lower bb̄ cross-sections than
with Pythia.

The resulting cross sections are summarised in Table 4.1. Both event generators are
able to reproduce the (𝑚ee, 𝑝T, ee) spectra reasonably well and give similar minimum 𝜒2

per number of degree of freedom (0.88 for Pythia and 0.80 for Powheg). The results are
consistent with extrapolations from lower energies based on FONLL pQCD calculations
discussed in Section 3.5.2.

The sizeable difference in the cross sections between two MC event generators are
comparable to what is observed for dielectron measurements in pp collisions at √𝑠 =
7 TeV [157]. The different cross sections obtained from fits with Pythia and Powheg
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Pythia Powheg
d𝜎cc/d𝑦|𝑦=0 974±138 (stat.)±140 (syst.) μb 1417±184 (stat.)±204 (syst.) μb
d𝜎bb/d𝑦|𝑦=0 79±14 (stat.)±11 (syst.) μb 48±14 (stat.)±7(syst.) μb
d𝜎cc/d𝑦|HM

𝑦=0 4.14±0.67 (stat.)±0.66 (syst.) μb 5.95±0.91 (stat.)±0.95 (syst.) μb
d𝜎bb/d𝑦|HM

𝑦=0 0.29±0.07 (stat.)±0.05 (syst.) μb 0.17±0.07 (stat.)±0.03 (syst.) μb

Table 4.1: Heavy-flavour production cross sections in inelastic and high-multiplicity pp
collisions at √𝑠 = 13 TeV. The 24% (6%) branching fraction uncertainty for charm
(beauty) decays into electrons is not listed. Like statistical and systematic uncertainties,
it is fully correlated between the Pythia and Powheg based results.

simulations are caused by acceptance differences of e+e− pairs from heavy-flavour hadron
decays in these two event generators because of different kinematic correlations of the
heavy quark pairs, in particular in rapidity [157]. Since the hadronization of the charm
and beauty quarks as well as the decay kinematics of the heavy-flavour hadrons is in
both cases performed by Pythia, this points to important differences in the heavy-quark
production mechanisms implemented in the two generators. It can result in different
kinematic correlations of the 𝑞 ̄𝑞 pair and therefore in different probabilities for the e+e−

pair to enter the detector acceptance. The result of the fit depends also on the 𝑝T, ee
distributions of correlated e+e− pairs from charm and beauty-hadron decays, which are
harder in Powheg than in Pythia.

It should be stressed that single heavy-flavour measurements are insensitive to these
differences as the cross sections obtained from such measurements agree between Pythia
and Powheg based extrapolations [139, 142, 153]. Here, dielectron measurements can
give further constraints on the MC event generators. When such complementary infor-
mation on heavy-flavour production provided by dielectrons is properly modelled, mea-
surements of production cross sections with Pythia and Powheg should lead to consistent
results.

Table 4.1 also summarises the corresponding cross sections for the high-multiplicity
data. In case of Pythia, the measured charm cross section translates into a 𝑝T-integrated
enhancement of 1.86 ± 0.40 (stat.) ± 0.40 (syst.) relative to the charged-particle multi-
plicity increase. This is consistent with the modelled multiplicity dependence used as
input for the cocktail in Figs. 4.6 and 4.7. For the beauty cross section, the observed 𝑝T-
integrated enhancement is 1.63 ± 0.50 (stat.) ± 0.35 (syst.). This is consistent with the
multiplicity dependence observed for open charm, but a scaling with charged-particle
multiplicity cannot be excluded.
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4.4 Direct Photons
As discussed in Section 1.2.4, the fraction of real direct photons to inclusive photons
can be extracted from the dielectron spectrum at small invariant masses assuming the
equivalence between this fraction and the ratio of virtual direct photons to inclusive
photons. To this purpose, the data are fitted, in bins of 𝑝T, ee, with the sum of the light-
flavour cocktail (𝑓LF(𝑚ee)), open heavy-flavour contribution (𝑓HF(𝑚ee)) and a virtual
direct photon component (𝑓direct(𝑚ee)) using the following expression:

d𝜎/d𝑚ee = 𝑟𝑓dir(𝑚ee) + (1 − 𝑟)𝑓LF(𝑚ee) + 𝑓HF(𝑚ee). (4.8)

The normalisation of the open heavy-flavour component 𝑓HF is fixed to the mea-
sured open charm and beauty cross sections presented above, using the Pythia simula-
tions for the nominal fit (as systematic uncertainty estimate, the Powheg simulation is
used instead). The light-flavour cocktail 𝑓LF and virtual direct photon templates 𝑓dir are
normalised independently to the data in 𝑚ee < 0.04 GeV/c2, i. e. in a mass window in
which Dalitz decays and direct photons have the same ∼1/𝑚ee dependence (Eq. 1.7).
These normalisation factors are unity within ≃ 1.5% thanks to the good agreement be-
tween data and cocktail. The direct photon fraction 𝑟 is then the only fit parameter, which
is extracted by fitting the data in the mass interval 0.14 < 𝑚ee < 0.32 GeV/c2 (i. e.
above the 𝜋0 mass to suppress the most dominant hadron background) in 𝑝T, ee bins of
1 − 2, 2 − 3 and 3 − 6 GeV/c.

The following sources of systematic uncertainties are considered: the fit range, the
systematic uncertainties of the data and of the hadronic cocktail components, as well
as the normalisation range. Among them, the largest contribution comes from the sys-
tematic uncertainty due to hadronic cocktail calculations. In the mass region of 100 −
300 MeV/c2 (dominated by 𝜂 decays), the relative cocktail uncertainty reaches ∼20 −
30%.

Figures 4.9 and 4.10 show the fits tominimum-bias and high-multiplicity data in each
𝑝T bin, and Fig. 4.11 shows the results for 𝑟 in inelastic and high-multiplicity events. The
results are consistent with unity within the statistical and systematic uncertainties, which
also prevent any conclusions on the scaling of direct-photon production with charged-
particle multiplicity. The results in inelastic pp collisions are compared with a NLO
pQCD calculation [214] shown as grey band in Fig. 4.11 (left), which is performed with
the CT10 PDFs [215–217]. The width of the theory band is given by the variations
of the factorisation and renormalisation scales from 𝜇 = 𝑝T to 𝜇 = 0.5𝑝T and 𝜇 =
2𝑝T (for 𝜇 = 0.5𝑝T the calculation is limited to 𝑝T > 2 GeV/c). These calculations
predict a small fraction of direct photons over the measured 𝑝T range, compatible with
the measurements within uncertainties. The pQCD results for 𝜇 = 𝑝T in each 𝑝T bin
are summarised in Table 4.2.

– 133 –



Chapter 4. Results

)2c (GeV/eem
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

))2 c
 (

m
b 

/ (
G

eV
/

ee
m

/dσd

3−10

2−10

1−10

1

10

210

Data

)eem(dirf

)eem(HFf

)eem(HFf)+eem(LFf

)eem(HFf)+eem(dirfr)+eem(LFf)r−(1

 = 13 TeVs ALICE pp 

| < 0.8
e

η, |c > 0.2 GeV/
T,e

p

c < 2 GeV/
T,ee

p1 < 

 0.006 (stat.)± = 0.007 r

)2c (GeV/eem
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

))2 c
 (

m
b 

/ (
G

eV
/

ee
m

/dσd

4−10

3−10

2−10

1−10

1

10

Data

)eem(dirf

)eem(HFf

)eem(HFf)+eem(LFf

)eem(HFf)+eem(dirfr)+eem(LFf)r−(1

 = 13 TeVs ALICE pp 

| < 0.8
e

η, |c > 0.2 GeV/
T,e

p

c < 3 GeV/
T,ee

p2 < 

 0.012 (stat.)± = 0.012 r

)2c (GeV/eem
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

))2 c
 (

m
b 

/ (
G

eV
/

ee
m

/dσd

4−10

3−10

2−10

1−10

1

10

Data

)eem(dirf

)eem(HFf

)eem(HFf)+eem(LFf

)eem(HFf)+eem(dirfr)+eem(LFf)r−(1

 = 13 TeVs ALICE pp 

| < 0.8
e

η, |c > 0.2 GeV/
T,e

p

c < 6 GeV/
T,ee

p3 < 

 0.018 (stat.)±0.046 − = r

Figure 4.9: Fit of theminimum-bias data sample in different 𝑝T, ee intervals with a three-
component fit function to extract the fraction of direct photons to inclusive photons.
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Figure 4.10: Fit of the high-multiplicity data sample in different 𝑝T, ee intervals with a
three-component fit function to extract the fraction of direct photons to inclusive photons.
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Figure 4.11: Ratio of direct to inclusive photon cross sections extracted from the dielec-
tron spectra in inelastic (left) and high-multiplicity (right) pp collisions at√𝑠 = 13 TeV.
The result in inelastic pp collisions is compared with a NLO pQCD calculation [214].
Statistical and systematic uncertainties are shown as vertical bars and boxes.

Data sample 1<𝑝T, ee<2 GeV/c 2<𝑝T, ee<3 GeV/c 3<𝑝T, ee<6 GeV/c
Minimum-bias 0.057 0.072 0.023
High-multiplicity 0.060 0.083 0.055
pQCD 0.003 0.007 0.013

Table 4.2: Upper limits at 90% C.L. on the direct-photon fractions in comparison with
the expectation in inelastic pp collisions based on a NLO pQCD calculation for a fac-
torisation and renormalisation scale choice of 𝜇 = 𝑝T [214].

Since no significant direct photon contribution is observed in neither the inelastic
nor the high-multiplicity events, the upper limits for direct photon production are ex-
tracted at 90% confidence level (C.L.) using the Feldman–Cousins method [218]. For
this purpose, statistical and systematic uncertainties are treated independently as Gaus-
sian distributions and summed in quadrature. The obtained upper limits are summarised
in Table 4.2 and are also shown graphically in Fig. 4.11.
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5
Summary and Outlook

This thesis presented the first measurement of dielectron production at midrapidity in
proton–proton collisions at √𝑠 = 13 TeV, the highest collider energy ever studied. The
dielectron continuum in inelastic pp collisions can bewell described by the expected con-
tributions from decays of light- and heavy-flavour hadrons, which validates the hadronic
cocktail calculation and the assumptions used for it.

The charm and beauty production cross sections are extracted for the first time at
midrapidity integrated over all 𝑝T at √𝑠 = 13 TeV using templates from two event
generators, and the results are consistent with extrapolations frommeasurements at lower
energies based on pQCD calculations. The differences observed between Powheg and
Pythia imply different kinematic correlations of the heavy-quark pairs in these two event
generators. Here, dielectron measurements are uniquely sensitive to the heavy quark
production mechanisms and can provide further constraints on the MC event generators,
which aim at describing the production of open heavy-flavour hadrons.

The dielectron production has been also studied in pp collisions with high charged-
particle multiplicities. This is the first measurement sensitive to the production of 𝜋0, 𝜂,
𝜔 and 𝜙 in high-multiplicity pp collisions. The result confirms the hypothesis that these
light mesons have the samemultiplicity dependence as a function of 𝑚T. The agreement
between data and cocktail in the high-𝑝T range, which is dominated by open beauty, pro-
vides for the first time constraints on the scaling of beauty production with multiplicity,
validating the assumption that at least at high 𝑝T it scales like charm production. Pre-
vious measurements via non-prompt J/𝜓 had no significant constraining power [43], in
particular in the multiplicity regime d𝑁ch/d𝜂(HM)/⟨d𝑁ch/d𝜂(INEL)⟩ = 6.27 ± 0.22
investigated in this thesis. This puts additional constraints on mechanisms used to de-
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scribe heavy-flavour production in high-multiplicity pp collisions, such as multiple par-
ton interactions, percolation or hydrodynamic models.

It is also the first attempt to estimate the production of direct photons in high-multipli-
city pp collisions. The fraction of direct photons in the inclusive photon spectrum has
been extracted from dielectron mass spectra, and the results are found to be consistent
with zero within experimental uncertainties. The current uncertainties prevent any con-
clusion on the multiplicity scaling of direct photon production. In inelastic pp collisions,
upper limits on direct photon production are in agreement with predictions from pertur-
bative quantum chromodynamics calculations.

The e+e− pair production will be further studied in pp, p–Pb and Pb–Pb collisions
with the LHC Run-2 data, which are currently being recorded (2015–2018). The studies
of the full pp data sample from Run-2, with about 4 times more events and with future,
more precise measurements of hadron production as cocktail input, might already allow
one to measure the direct photon production at low 𝑝T in inelastic and high-multiplicity
pp collisions. For this, especially a precise 𝜂 measurement would be needed in order to
reduce the current systematic uncertainties of the direct photon measurement. Detailed
dielectron studies of heavy-flavour production cross sections, with reduced statistical and
systematic uncertainties, will provide an important constraint forMonte Carlo generators
and probably will be able to exclude one of the model in favour of other: the information
on pair DCAee, successfully tested recently in pp analysis at √𝑠 = 7 TeV [157], can
be used simultaneously with 𝑚ee and 𝑝T, ee to further improve the fit results and to
pin down the difference between Monte Carlo generators. With high enough statistics,
angular correlations between dielectrons from open heavy-flavour decays also have the
potential to provide more discrimination power between models [111].

To fully exploit the scientific potential of LHC, a wide ALICE physics program is
proposed for the LHC Run-3 period (2021–2023) and beyond [219]. High statistics Pb–
Pb measurements will be accompanied by precision measurements in pp and p–Pb colli-
sions, which will serve both as a quantitative base for comparison with results from Pb–
Pb collisions and as further fundamental studies of QCD. The statistics of pp collisions
collected in Run-3 will allow for precise dielectron studies sensitive to heavy-flavour
production mechanisms, for which an increase of factor of ∼100 in statistics would be
needed compared to Run-2 [182]. Measurements of thermal radiation with dielectrons in
small systems, if produced, may also be possible with the full Run-3 statistics. However,
for such measurement the definition of a proper reference, which would include direct
photon production from MPI and all other non-thermal sources, most probably will be
complicated. Here, a possible approach could be e. g. an assumption of direct photon
production scaling at high 𝑝T.

One of the main objectives of the ALICE physics program for the LHC Run-3 and
beyond will be the precise measurement of dielectron production in heavy-ion colli-
sions. After a major upgrade of main detector systems, the ALICE experiment will
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collect about 100 times more data in central Pb–Pb collisions [220–223]. A new Inner
Tracking Systemwill greatly improve the capabilities of DCAmeasurements and low-𝑝T
tracking [223], which are needed to study open heavy-flavour production in detail and to
enhance the discrimination power between prompt and non-prompt dielectron sources.
Anticipated interaction rates up to 50 kHz (a factor ∼50 higher compared to Run-2)
make it also necessary to upgrade the current TPC read-out, which in the future will be
based on Gas Electron Multipliers (GEMs) [221, 222]. In order to further increase the
acceptance of dielectrons with low mass and transverse momentum, part of the Pb–Pb
data will be recorded with a magnetic field in the central barrel solenoid reduced from
0.5 T to 0.2 T. Simulations of the detector performance indicate that from the analy-
sis of the low-mass region a detailed study of the in-medium properties of the 𝜌 meson
will be possible. The initial QGP temperature is expected to be measured with a preci-
sion of 10–20% from an exponential fit to the intermediate mass region of the dielectron
spectrum, where the contribution from charm decays will be strongly suppressed by the
improved secondary vertex resolution of the upgraded detectors.
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A
Kinematic Variables

This Appendix introduces relevant kinematic variables used throughout this thesis. If
not stated otherwise, in the following the natural units of ℏ = 𝑐 = 𝑘𝐵 = 1 are used.
Only the case of particle collision going in opposite directions is considered.

In general, any particle can be described by its 4-momentum vector defined as:

𝑝𝜇 = (𝑝0, 𝑝1, 𝑝2, 𝑝3) = (𝐸, ⃗𝑝), (A.1)
where 𝐸 and ⃗𝑝 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) are particle’s energy and momentum, a superscript (sub-
script) denotes the contravariant (covariant) variables, and axes 𝑥, 𝑦 and 𝑧 defines the
coordinate system. A natural choice of such a system in a collision of two particles
is the one with the 𝑧 axis along the beam (particle) direction. The particle’s momen-
tum transverse to the beam direction is then ⃗𝑝T = (𝑝𝑥, 𝑝𝑦), with an absolute value of
𝑝T = √𝑝2𝑥 + 𝑝2𝑦. The Lorentz transformation between two frames with relative velocity
𝑣 leads to a change of particle’s 4-momentum 𝑝 = (𝐸, ⃗𝑝T, 𝑝𝑧) → 𝑝′ = (𝐸′, ⃗𝑝T′, 𝑝𝑧′)
according to:

𝐸′ = 𝛾(𝐸 − 𝛽𝑝𝑧), (A.2)
𝑝𝑧′ = 𝛾(𝑝𝑧 − 𝛽𝐸), (A.3)
⃗𝑝T′ = ⃗𝑝T, (A.4)

where 𝛽 = 𝑣/𝑐 and 𝛾 = 1/√1 − 𝛽2 is the Lorentz factor. The transverse momentum
⃗𝑝T and the transverse mass defined as 𝑚T = √𝑚2 + 𝑝2

T are Lorentz invariant under
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longitudinal transformation along axis 𝑧, so therefore these variables are useful for the
studies of particle production in various experiments. Another essential characteristic
of each particle is its rapidity 𝑦 defined as:

𝑦 = 1
2 ln 𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧
, (A.5)

which for small velocities when 𝑝𝑧 ≪ 𝐸 approaches 𝑦 ≈ 𝛽L = 𝑝𝑧/𝐸. Under Lorentz
transformations 𝑦 → 𝑦′ rapidity possesses a simple transformation property. Consider
a laboratory system 𝑆 and a system 𝑆′ moving along the 𝑧 axis with a relative velocity
𝛽 ≡ 𝛽𝑆′ and an object with rapidity 𝑦′ measured in 𝑆′, then:

𝑦 = 1
2 ln 𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧
= 1

2 ln 𝛾(𝐸′ + 𝛽𝑝𝑧′) + 𝛾(𝑝𝑧′ + 𝛽𝐸′)
𝛾(𝐸′ + 𝛽𝑝𝑧′) − 𝛾(𝑝𝑧′ + 𝛽𝐸′) = 1

2 ln (1 + 𝛽)(𝐸′ + 𝑝𝑧′)
(1 − 𝛽)(𝐸′ − 𝑝𝑧′)

= 1
2 ln 1 + 𝛽

1 − 𝛽 + 1
2 ln 𝐸′ + 𝑝𝑧′

𝐸′ − 𝑝𝑧′ , (A.6)

i. e. 𝑦 = 𝑦′+𝑦𝑆′. In experiment, however, the measurement of 𝑦 requires the knowledge
about particlemass𝑚, so instead another variable called pseudorapidity 𝜂 is widely used.
It is defined through the polar angle 𝜃 between the particle 3-momentum ⃗𝑝 and the beam
axis as:

𝜂 = − ln (tan (𝜃
2)) . (A.7)

Pseudorapidity 𝜂 therefore amounts to zero for particles produced at 𝜃 = 90° and tends
towards infinity for small angles. For massless particles 𝜂 = 𝑦, which is also approxi-
mately true for particles with | ⃗𝑝| ≫ 𝑚:

𝑦 = 1
2 ln 𝐸 + | ⃗𝑝| cos 𝜃

𝐸 − | ⃗𝑝| cos 𝜃 ≈ 1
2 ln 1 + cos 𝜃

1 − cos 𝜃 = 1
2 ln 2 cos2 𝜃/2

2 sin2 𝜃/2 = − ln tan 𝜃
2 = 𝜂 (A.8)

In a collision of two particles with momenta ⃗𝑝1 and ⃗𝑝2 one can always choose a
frame in which ⃗𝑝1 = − ⃗𝑝2, i. e. the centre-of-mass frame CM. The Lorentz-invariant
Mandelstam variable 𝑠 is defined as:

𝑠 = (𝑝1 + 𝑝2)2 = (𝐸CM
1 + 𝐸CM

2 )2 , (A.9)
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where 𝑝1 = (𝐸1, ⃗𝑝1) and 𝑝2 = (𝐸2, ⃗𝑝2) are the particle 4-momenta. Therefore, √𝑠
represents the total energy available in a collision in the centre-of-mass frame. For
fixed-target experiments, when a particle 1 with 𝑝1 = (𝐸𝑙𝑎𝑏

1 , ⃗𝑝lab
1 ) collides with a target

particle 2 𝑝2 = (𝑚2, 0), 𝑠 equals to:

𝑠 = [(𝐸lab
1
⃗𝑝lab
1

) + (𝑚2
⃗0 )]

2
= (𝐸lab

1 )2 + 2𝐸lab
1 𝑚2 + 𝑚2

2 − ( ⃗𝑝lab
1 )2 =

= 𝑚2
1 + 𝑚2

2 + 2𝐸lab
1 𝑚2. (A.10)

The total energy available in a collision in the centre-of-mass frame is:

√𝑠 = √𝑚2
1 + 𝑚2

2 + 2𝐸lab
1 𝑚2 (A.11)

For collider experiments the incoming particles can be described with 𝑝1 = (𝐸1, ⃗𝑝1)
and 𝑝1 = (𝐸2, ⃗𝑝2), therefore:

𝑠 = [(𝐸1
⃗𝑝1
) + (𝐸2

⃗𝑝2
)]

2
= 𝐸2

1 + 2𝐸1𝐸2 + 𝐸2
2 − ( ⃗𝑝2

1 + 2 ⃗𝑝1 ⃗𝑝2 + ⃗𝑝2
2)

= 𝑚2
1 + 𝑚2

2 + 2𝐸1𝐸2 − 2 ⃗𝑝1 ⃗𝑝2. (A.12)

For 𝑚1 = 𝑚2 the centre-of-mass frame ⃗𝑝1 = − ⃗𝑝2 in such a collision is the same as the
laboratory frame, and √𝑠 = 2𝐸1 = 2𝐸2 = 2𝐸.

For a direct comparison with nucleon–nucleon collisions such as pp, it is useful to
normalise the centre-of-mass energy √𝑠 available in heavy-ion collisions by the number
of nucleon–nucleon pairs, i. e. √𝑠NN = √𝑠/𝐴, where 𝐴 denotes the atomic number of
a nucleus, e. g. for Pb it amounts to 𝐴 = 208.

The invariant mass of the parent particle decaying into two daughters with 𝐸1, ⃗𝑝1
and 𝐸2, ⃗𝑝2 is the sum of their 4-momenta squared:

𝑚2
parent = 𝑠 = [(𝐸1

⃗𝑝1
) + (𝐸2

⃗𝑝2
)]

2
= (𝐸1 + 𝐸2)2 − ( ⃗𝑝1 + ⃗𝑝2)2 =

= 𝑚2
1 + 𝑚2

2 + 2𝐸1𝐸2 − 2 ⃗𝑝1 ⋅ ⃗𝑝2 (A.13)

Finally, the pair transverse momentum of the parent particle is calculated as:

𝑝2
T,parent = (𝑝x,1 + 𝑝x,2)2 + (𝑝y,1 + 𝑝y,2)2 (A.14)
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B
TPC and TOF Post-Calibration

This Appendix describes the TPC and TOF re-calibration procedure in experimental data
and in Monte Carlo simulations.

In this procedure the sample of electron candidates passed the PID Schema “A” is
used. The𝑛(𝜎TPC

e ) and𝑛(𝜎TOF
e ) distributions are projected in different 𝜂 and 𝑝 intervals

in the range |𝜂| < 0.8 and 𝑝 < 1.5 GeV/c. The width 𝑤 (in terms of detector resolution
𝜎) and the mean 𝑚 values of the electron peak are extracted by fitting the projections
with two Gaussian fits (one for signal and one for background) as shown in Figs. B.1
and B.2. Good overall quality of the fit expressed in terms of 𝜒2 per degree of freedom
is found in each 𝑝 − 𝜂 bin. The mean and width values extracted in this way are shown
in Fig. B.3 for 𝑛(𝜎TPC

e ) and in Fig. B.4 for 𝑛(𝜎TOF
e ) on left panels. In order to suppress

the statistical fluctuations, these 𝑝 − 𝜂 maps are smoothed in 𝑝 > 1.0 GeV/c range.
No significant dependence of such correction maps on data-taking period has been

found. To re-calibrate the initial detector parametrisation of 𝑛(𝜎DET
e ) distribution, the

obtained 𝑚 and 𝑤 values are applied to the data according to the following transforma-
tion:

𝑛(𝜎DET
e ) → 𝑛(𝜎DET

e ) − 𝑚
𝑤 . (B.1)

As it can be seen in Figs. B.3 and B.4 on the right panels, both the mean and the
width values of 𝑛(𝜎TPC

e ) and 𝑛(𝜎TOF
e ) distributions are close to ideal case of 𝑚 = 0

and 𝑤 = 1 after re-calibration. The mean values are also found to be stable and close
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Figure B.1: Example of 𝑛(𝜎TPC
e ) distribution fit (in −0.2 < 𝜂 < −0.1 and in 0.3 <

𝑝 < 0.4 GeV/c interval, left) and 𝜒2 of the fit in all 𝑝 − 𝜂 bins (right).
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Figure B.2: Example of 𝑛(𝜎TOF
e ) distribution fit (in −0.1 < 𝜂 < 0.0 and in 1.2 < 𝑝 <

1.3 GeV/c interval, left) and 𝜒2 of the fit in all 𝑝 − 𝜂 bins (right).

to zero as a function of run number after the re-calibration procedure as it is shown in
Fig. B.5.

Similar re-calibration procedure of TOF PID response is applied for the Monte Carlo
simulations, for which the corresponding mean and width values of 𝑛(𝜎TOF

e ) distribu-
tion are shown in Fig. B.6. The values show different behaviour with respect to the one
observed in data (Fig. B.4). The results of the re-calibration procedure are shown in
Fig. B.6 on the right side.

For MC simulations, the re-calibration procedure of 𝑛(𝜎TPC
e ) values is implemented

as a part of analysis framework when one analyses MC data with a so-called “tuneOn-
Data” option enabled. It takes into account the parameterisations of expected signals
(TPC “splines”) of the corresponding data-taking period, which are extracted directly
from the experimental data and sampled (according to a parameterised resolution) to
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Figure B.3: Mean (top panels) and width (bottom panels) values of 𝑛(𝜎TPC
e ) distribu-

tion as a function of 𝑝 and 𝜂. The results before and after the re-calibration are shown
on the left and on the right, correspondingly.

Figure B.4: Mean (top panels) and width (bottom panels) values of 𝑛(𝜎TOF
e ) distribu-

tion as a function of 𝑝 and 𝜂. The results before and after the re-calibration are shown
on the left and on the right, correspondingly.

generate a gaussian PID signal around them. The corresponding 𝑛(𝜎TPC
e ) values are

found to be close to the perfect case and stable vs run number (Fig. B.7).
The PID re-calibration procedure is also applied in the analysis of high-multiplicity
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Appendix B. TPC and TOF Post-Calibration
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Figure B.5: The mean 𝑛(𝜎𝑇 𝑃𝐶
e ) (top panel) and 𝑛(𝜎TOF

e ) (bottom panel) values in
experimental data as a function of run number after re-calibration.

data sample. No significant dependence of correction maps on multiplicity has been
found, and the correction maps extracted from the minimum-bias data sample are also
used in high-multiplicity data analysis.

As a result of re-calibration procedure, the TPC and TOF PID information is con-
sistent between the experimental data and the Monte Carlo simulations, and the mean
and width values show stable behaviour as a function of run number, track momentum
and pseudorapidity. The re-calibration procedure impact on the corrected dielectron
spectrum is found to be ∼6% in the very low-mass range below 100 MeV/c2 and non-
significant at higher masses. As it was mentioned in Section 3.6.3, any possible uncer-
tainties introduced by re-calibration procedure are included in the uncertainty shown in
Fig. 3.55.
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Figure B.6: Mean (top panels) and width (bottom panels) values of 𝑛(𝜎TOF
e ) distribu-

tion as a function of 𝑝 and 𝜂 inMC simulations. The results before and after re-calibration
are shown on the left and on the right, correspondingly.
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Figure B.7: Mean (top left) and width (top right) of 𝑛(𝜎TPC
e ) as a function of 𝑝 and

𝜂 in Monte Carlo data with “TuneOnData” option enabled. Bottom panel shows the
behaviour of the mean value as a function of run number.
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