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Abstract: Probabilistic analysis of engineering systems often requires models
that account for the random spatial variability of their parameters. Information
about a target set of parameters can be obtained using mathematical models
in combination with observational data. Bayesian inference handles this task
by computing a posterior probability distribution that quantifies the combined
effects of prior knowledge and observations. However, the complexity of the
inference process is increased when the spatial variation of the parameters is
considered. Spatially variable quantities are usually modeled by random fields
that are discretized with a high number of random variables. In this paper, the
challenge is addressed by representing the random field with the Karhunen-Loève
expansionwith the purpose of evaluating its effects on the outcomeof theBayesian
inference. To this end, the influence of the number of terms in the expansion and
the correlation length of the prior random field are assessed. The analytical study
is carried out on a cantilever beamwith spatially variable flexibility. We show that
it requires more terms in the series expansion to identify the flexibility random
field with the same accuracy as the deflection solution. Furthermore, the decay
of the variance error when estimating the posterior flexibility is slower than in
the posterior deflection.

1 Introduction
In order to realistically model the behavior of engineering systems, uncertainties in material
properties and loading conditionsmust be taken into account.Monitoring and other observational
data can be used in combination with mathematical models to obtain information on uncertain
parameters. Bayesian inference provides a framework to deal with this task by specifying a
prior probability distribution for the uncertain parameters and a likelihood function for the
representation of the data. The Bayesian inference process is often carried out numerically since
analytical solutions are difficult to compute in most cases. The computational cost involved in
the updating process is usually high, primarily because the underlying deterministic model needs
to be solved many times.
An additional level of complexity is included if the random spatial variability of the model
parameters is considered. The spatial variation is generally modeled using random fields, whose
parameter space contains an infinite number of elements describing the uncertain quantity at each
point of the continuous domain of the system [10]. A major issue is the proper representation of
spatially variable quantities with random fields defined by a finite number of random variables.
Therefore, random field discretization methods are applied to reduce the dimensionality of the
original random field and to obtain more tractable computations.



A detailed investigation of the effects of the random field discretization on the Bayesian in-
ference has not been conducted so far [9]. Among the several existing methods for random
field discretization, the Karhunen-Loève expansion is especially suitable to perform Bayesian
inference on random fields, as it often leads to efficient representations with small numbers of
random variables. The present contribution uses this method to parametrize the random field so
that the inference can be carried out on the random variables arising from the representation.
By varying the number of terms in the expansion, a dependence of the dimensionality on the
prior and likelihood can be established in order to evaluate its impact on the posterior solution.
Furthermore, a study about the influence of the correlation length of the prior random field on
the posterior statistics is also provided. In this way, different prior random field assumptions
are incorporated into the inference process. These aspects are investigated in the learning of the
flexibility of a cantilever beam based on measurements of the displacement along its length.
The advantage of this example lies in the possibility to derive closed-form expressions of the
posterior random field. This analytical representation allows us to efficiently carry out an error
analysis in order to evaluate how the Karhunen-Loève discretization of the prior random field
influences the posterior statistics.

2 Modeling and Discretization of Random Fields
2.1 Overview
Random fields are mathematical models used to represent phenomena in which the quantity of
interest fluctuates discretely or continuously through space in a non-deterministic pattern. Tradi-
tional applications of random fields include materials properties with random spatial variability,
geometrical imperfections, among others.
Let (Ω,F , P ) be a probability space and ξ ∈ Ω a random event. A random field [10] can be
understood as an indexed collection of random variables {H(x, ξ) : x ∈ D} representing the
evolution of uncertain values that are spatial coordinates on some bounded domain D ⊂ Rd.
A random field is said to be Gaussian if all finite-dimensional distributions of the set of ran-
dom variables {H(x, ξ) : x ∈ D} are Gaussian [10]. Gaussian random fields are completely
characterized by their first- and second-order moments, i.e., the mean function µH(x) : D → R
and the autocovariance function CHH(x,x′) : D × D → R = σH(x)σH(x′)ρHH(x,x′), where
σH(x) and ρHH(x,x′) are the standard deviation and autocorrelation coefficient functions of the
random field, respectively [2].
The parameter space of a random field usually contains an infinite number of elements [10].
For the numerical representation, random fields must be approximated in terms of a finite
set of random variables using stochastic discretization methods. According to the underlying
probability distribution of the random field, those methods can be grouped in two categories:
those that seek the representation of Gaussian random fields and those that deal with non-
Gaussian ones. Particularly, several methods have been proposed over the past decades for the
representation of Gaussian random fields [2]. Among the different alternatives, the so-called
series expansion methods [7] represent the random field as a finite series expansion of random
variables and deterministic functions. This contribution focuses on this approach, and more
precisely on the Karhunen-Loève expansion, which is introduced next.

2.2 Karhunen-Loève Expansion
Consider a real-valued random field H(x, ξ) with mean µH(x) and autocovariance function
CHH(x,x′). It can be proved that the autocovariance function is symmetric, bounded and positive
semi-definite [1]. Under these conditions,H(x, ξ) can be approximated by Ĥ(x, ξ) using a linear
combination of orthogonal functions resulting from the spectral decomposition of a certain



integral operator with the autocovariance function as kernel. This representation is known as the
Karhunen-Loève (K-L) expansion [4] and is expressed after truncating the series at the M -th
term as,

H(x, ξ) ≈ Ĥ(x, ξ) = µH(x) +
M∑
k=1

√
λkφk(x)θk(ξ), (1)

where, {θk(ξ)} is a set of mutually uncorrelated random variables with zero mean and unit
variance (i.e. E[θk(ξ)] = 0 and E[θk(ξ)θl(ξ)] = δkl), and λk ∈ [0,∞) and φk(x) : D → R
are the eigenvalues and eigenfunctions of the associated integral operator of the autocovariance
function. It is assumed that the eigenvalues are arranged in a non-increasing sequence [1].
The set of eigenpairs {λk, φk} is obtained through the solution of the homogeneous Fredholm
integral equation of the second kind [4],

∫
D
CHH(x,x′)φk(x′)dx′ = λkφk(x), for which an-

alytical solutions exist only for specific cases of autocovariance functions [6]. In general, the
solution must be estimated numerically, e.g., by approximating the eigenfunctions as a linear
combination of complete basis functions [2].
The approximation error arising from the K-L discretization can be quantified by means of
different types of measures. This allows one to evaluate the number of terms in the expansion
that must be included in the series to achieve certain error margins. For instance, the local
approximation is usually quantified in terms of the mean squared error E[(H(x, ξ)− Ĥ(x, ξ))2].
Another alternative is to consider global error measures that average local pointwise errors over
the domain [2]. These measures are functions of the number of terms in the K-L expansion and
are defined by the relative errors of the mean and variance, given respectively by the following
weighted integrals (where |D| =

∫
D

dx):

ε̄µ(M) =
1

|D|

∫
D

∣∣∣∣∣E[H(x, ξ)]− E[Ĥ(x, ξ)]

E[H(x, ξ)]

∣∣∣∣∣ dx, ε̄σ(M) =
1

|D|

∫
D

∣∣∣∣∣Var[H(x, ξ)]−Var[Ĥ(x, ξ)]

Var[H(x, ξ)]

∣∣∣∣∣ dx.

(2)

3 Inverse Problems and Bayesian Inference
In science and engineering, the estimation of uncertain model parameters based on indirect
observations is a common task. These type of inferences are known as inverse problems [5]. The
goal is to find a set of parameters such that, ỹ ≈ y = g(θ), where g : RM → Rm is the model or
observation function which describes the relationship between the data ỹ ∈ Rm and the model
parameters θ ∈ RM . When the relationship between ỹ and θ is linear and deterministic, the
model observation can be simply obtained as the solution of the system of equations y = Aθ,
where A ∈ Rm×M is called the observation matrix [5].
In real applications, the measured quantity ỹ always contains some noise representing the natural
discrepancy between the model and the available data. Thus, the classical linear inverse problem
is generally written in the form, ỹ = Aθ + ε, where the noise ε ∈ Rm is generally assumed to
be independent of θ and has a certain joint probability density function fε. There exists several
approaches for computing the solution of inverse problems. One class of methods determines
point estimates of the quantities of interest based on the available data, e.g., regularization
techniques [5]. Another common approach is the Bayesian framework [3, 5], which is the focus
of this paper and is briefly described in the following.
Let θ be a set of uncertain variables and suppose that a set of observed or measured data points
ỹ are given. Using Bayes’ theorem, the belief about θ can be updated by,

f (θ|ỹ) =
f (ỹ|θ) f (θ)

f (ỹ)
,



where the prior distribution f (θ) represents the initial knowledge about the parameters before
performing any measurement; the likelihood function L (θ) = f (ỹ|θ) is a measure of the
plausability of observing data ỹ conditional on the parameter vector θ; the model evidence
cE = f (ỹ) =

∫
f (ỹ|θ) f (θ) dθ acts as a normalizing constant; and the posterior distribution

f (θ|ỹ) represents the updated belief about θ after performing the measurement ỹ [3]. The
resulting posterior probability distribution is the solution of the inverse problem.

4 Example Problem
4.1 Exact Prior and Posterior Solution
In this study, the spatially variable flexibility F (x) of a cantilever beam is updated [8]. The beam
has length L = 5 m and is subjected to a deterministic point load P = 20 kN at the free end, as
shown in Figure 1. A set of m = 50 deflection measurements is taken at equally spaced points
x̃ = {0.1, 0.2, ..., 5} of the domain.

Figure 1: Cantilever beam: True and measured deflection. The measurements are generated by simulation
assuming a true (but in real applications unknown) deflection of the beam.

The flexibility is defined as the reciprocal of the bending rigidity of the beam, i.e. F (x) =
1/(E(x)I), where E(x) is the Young’s modulus and I is the moment of inertia. The prior
distribution of F (x) is described by a homogeneous Gaussian random field with mean µF =

1×10−7 N−1m−2 and exponential autocovariance kernel,CFF (x, x′) = σ2
F exp

(
− |x−x

′|
lF

)
, with

standard deviation σF = 3.5× 10−8 N−1m−2 and correlation length lF = 2 m.
The associated prior mean and autocovariance functions of the deflection w(x) can be evaluated
using the prior information about F (x) and assuming an Euler-Bernoulli beam model. As F (x)
is Gaussian and w(x) is a linear function of F (x), the prior distribution of w(x) is also Gaussian
[5]. The bending momentM(x) is expressed in terms of the deflection w(x) as,

M(x) = −E(x)I
d2w(x)

dx2
=⇒ −M(x)F (x) =

d2w(x)

dx2
. (3)

Integrating Eq. 3 twice and noting that the bending moment of the cantilever beam can be simply
calculated as M(x) = P (L − x), an analytical expression for the deflection (to be used as the
observation function in the Bayesian inverse setting) can be obtained by solving the following
equation,

w(x, F ) = P

∫ x

0

∫ s

0

(L− t)F (t) dtds. (4)



Consequently, the mean of w(x) can be computed using µF (x) as,

µw(x) = P

∫ x

0

∫ s

0

(L− t)µF (t) dtds =
PµF

6
x2(3L− x)

and similarly, the autocovariance function of w(x) can be deduced using CFF (x, x′) as the
solution of the following quadruple integral (which can be computed analytically):

Cww(x, x′) = P 2σ2
F

∫ x′

0

∫ x

0

∫ s′

0

∫ s

0

(L− t)(L− t′) exp

(
−|t− t

′|
lF

)
dt dt′ds ds′.

The mean and autocovariance functions for each prior random field are shown in Figure 2.
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Figure 2: Mean and autocovariance functions of the prior flexibility and prior deflection random fields
(lF = 2).

It is assumed that the measurements are subjected to an additive noise which is described by
a joint Gaussian PDF fε with zero mean vector µε = [0, ..., 0] and covariance matrix with
components Σεε(i, j) = σ2

ε exp (− |x̃i − x̃j| /lε) for i, j = 1, ...,m. The standard deviation of
the measurement error is σε = 0.001 m and its correlation length lε = 1 m. These considerations
yield a Gaussian likelihood function [8].
Since the prior and likelihood functions are modeled as Gaussian, the posterior distribution will
also be Gaussian [3]. Now, assume the vectors of Gaussian random variables [F, w̃] and [w, w̃],
where F and w correspond to the flexibility and the deflection at a discrete number of spatial
points. Note that the mean vectors and covariance matrices of the formed random vectors can be
partitioned accordingly in terms of the individual and crossed components [10]. Hence, the exact
posterior of the flexibility f (F|w̃) and the deflection f (w|w̃) can be calculated analytically as
conditional PDFs from their corresponding joint PDFs using Bayes’ theorem (see [5] for further
details). These posterior random fields given by multivariate Gaussian distributions have the
following mean and autocovariance parameters,

µF |w̃ = µF + ΣFw̃Σ−1w̃w̃ (w̃ − µw̃) ΣFF |w̃ = ΣFF −ΣFw̃Σ−1w̃w̃ΣT
Fw̃ (5)

µw|w̃ = µw + Σww̃Σ−1w̃w̃ (w̃ − µw̃) Σww|w̃ = Σww −Σww̃Σ−1w̃w̃ΣT
ww̃, (6)



where most of the quantities are known from the prior random fields and it can be seen that
Σw̃w̃ = Σww + Σεε, Σww̃ = Σww and the covariance matrix ΣFw̃ is obtained by computing
the corresponding covariance function CFw̃(x, x′) = Pσ2

F

∫ x′

0

∫ s

0
(L − t)CFF (x, t) dtds on a

given x, x′ ∈ D. Figure 3 shows the exact mean and autocovariance functions for each posterior
random field.
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Figure 3: Exact mean and autocovariance functions of the posterior flexibility and deflection random
fields (lF = 2).

4.2 Approximated Posterior Solution Using the K-L Expansion
The K-L expansion of the prior flexibility random field (Eq. 1) can be replaced into the forward
model (Eq. 4) to obtain,

w(x,θ) =

∫ x

0

∫ s

0
P (L− t)

[
µF (t) + σF

M∑
k=1

√
λkφk(t)θk

]
dtds = µw(x) + PσF

M∑
k=1

Φk(x)
√
λkθk

with, Φk(x) =
∫ x

0

∫ s

0
(L− t)φk(t) dtds. Alternatively, this equation can be expressed in matrix

form as,
w = µw + ΦΛθ = µw + Aθ

where the matrix Λ = PσFdiag(
√
λ) ∈ RM×M (λ is the vector of eigenvalues), the matrix

Φ ∈ Rn×M is computed by the solution of Φk(x) evaluated at a given partition of the domain
x = [x1, x2, ..., xn] ∈ D = [0, L] (for k = 1, ...,M ), and the mean vector µw ∈ Rn×1 is given
by the prior mean deflection evaluated in such a partition. Notice that Φk(x) can be solved
numerically given that the eigenpairs of the target autocovariance kernel are available. However,
since the exponential autocovariance kernel has closed-form solution for its eigenpairs [4], the
double integral Φk(x) can be solved analytically.
Now, proceeding in a similar way to the exact posterior case, we assume a Gaussian random
vector composed by the two random vectors θ and w̃. Again, the posterior distribution can be
calculated as the conditional PDF of θ given w̃ from the joint PDF f (θ, w̃) using the Bayes’
theorem [5], then



f (θ|w̃) =
1√

(2π)M det(Σθθ|w̃)
exp

(
−1

2
[θ − µθ|w̃]T Σ−1θθ|w̃ [θ − µθ|w̃]

)
where the conditional mean vector µθ|w̃ and the conditional autocovariance matrix Σθθ|w̃ are in
analogy to Eqs. 5 and 6, given by

µθ|w̃ = µθ + Σθw̃Σ−1w̃w̃ (w̃ − µw̃) Σθθ|w̃ = Σθθ −Σθw̃Σ−1w̃w̃ΣT
θw̃

here, it is seen that µw̃ = µw, µθ = 0, Σθθ = I (where I ∈ RM×M denotes the identity
matrix) and the remaining covariance terms are Σθw̃ = E

[
(θ − µθ)(w̃ − µw̃)T

]
= AT and

Σw̃w̃ = E
[
(w̃ − µw̃)(w̃ − µw̃)T

]
= AAT + Σεε. Therefore, the mean and covariance matrix of

the posterior distribution for the K-L parameters θ can be computed respectively as,

µθ|w̃ = AT
(
AAT + Σεε

)−1
(w̃ − µw) and Σθθ|w̃ = I−AT

(
AAT + Σεε

)−1
A.

The posterior distribution of the flexibility and deflection random fields can be obtained by
propagating the posterior of θ through the K-L expansion and the observation function. In this
case, both approximated posteriors random fields are also multivariate Gaussian described by
the following approximated mean and autocovariance functions,

µ̂F |w̃(x) = µF (x) + σF

M∑
k=1

√
λkφk(x)µ(k)

θ|w̃ ĈFF |w̃(x, x′) = σ2F

M∑
k=1

M∑
l=1

√
λkλlφk(x)φl(x

′)Σ(k,l)

θθ|w̃

µ̂w|w̃(x) = µw(x) + PσF

M∑
k=1

√
λk Φk(x)µ(k)

θ|w̃ Ĉww|w̃(x, x′) = (PσF )2
M∑
k=1

M∑
l=1

√
λkλl Φk(x)Φl(x

′)Σ(k,l)

θθ|w̃.

Note that the approximated posterior deflection parameters can be written in a compact matrix
form as µ̂w|w̃ = µw + Aµθ|w̃ and Σ̂ww|w̃ = AΣθθ|w̃AT.

5 Numerical Investigations
Figures 4 and 5 present the 95% confidence intervals (CI) of the posterior flexibility and deflection
for different correlation lengths of the prior random field lF = [0.5, 2.5, 4.5] and number of terms
in the K-L expansionM = [5, 10, 20]. The exact 95% CI of the posterior solution is highlighted
(blue shaded area). Notice that all approximated CIs are within the exact interval. As expected,
in both cases the results are more accurate for larger correlation lengths.
It can be seen that the number of terms in the K-L expansion of the posterior flexibility (Figure 4)
must be increased for small correlation lengths in order to obtain a better approximation (M ≈
20). As the correlation length increases, this number can be reduced since the estimation
improves considerably. A similar study was conducted to illustrate the approximation in the
posterior deflection (Figure 5). In this case, the K-L representation requires a smaller number
of terms (M ≈ 5), since the approximation is almost in agreement with the exact solution even
when the variability of the random field is high. This behavior can be attributed to the fact
that the posterior deflection is computed by an averaging of the K-L expansion of the flexibility
random field. As a result of this process, the influence of the higher K-L eigenfunctions is
almost negligible, and hence, only the first modes have a large contribution to the random field
representation.
The error measures given in Eq. 2 are computed for the prior and posterior flexibility and
deflection random fields as a function of the number of terms in the expansion (M = 1, ..., 100)
and for different correlation lengths of the prior random field (lF = [0.5, 2.5, 4.5]); the results
are shown in log-log scale plots on Figures 6 and 7.



Figure 4: Posterior flexibility: 95% CI for different correlation lengths and terms in the K-L expansion.
The shaded area corresponds to the exact CI.

Figure 5: Posterior deflection (relative to the prior mean): 95% CI for different correlation lengths and
terms in the K-L expansion. The shaded area corresponds to the exact CI.

The comparison between the averaged relative mean error ε̄µ(M) in the posterior random fields
is shown in Figure 6. For the prior random field, this error measure becomes zero since the
exact and approximated mean function values coincide. However, for the posterior random field,
the truncation in the K-L expansion induces an error in the mean approximation. This error is
controlled primarily by the number of terms in the expansion and its magnitude is considerable
small as this number increases. Despite the fact that ε̄µ(M) is small in this particular application,



it can be seen that it is at least one order of magnitude higher for the posterior flexibility than
for the posterior deflection.
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Figure 6: Averaged relative mean error in the posterior flexibility and deflection random fields for different
correlation lengths and terms in the K-L expansion.

Next, the comparison between the averaged relative variance error ε̄σ(M) in the prior and
posterior random fields are shown in Figure 7, which illustrates the prior (first column) and
the posterior (second column) approximations. It is interesting to see that the influence of the
correlation length in the posterior random field is not as large as for the prior random field. The
variance error decay of the flexibility (proportional to 1/M ) is slower than in the deflection.
Hence, the uncertainty about the posterior flexibility random field is more difficult to reduce as
more terms in the K-L expansion are required to obtain the same variance error levels as for
the posterior deflection. This characteristic behavior is again a consequence of the averaging,
since the decay in the deflection is proportional to some power of 1/M (this can be verified
analytically and is left as a further study).

6 Conclusions
The present paper investigates the influence of the random field discretization on the outcome
of the Bayesian inference based on an example with analytical solution. In particular, the prior
random field has been approximated using the truncated K-L expansion in order to reduce the
dimensionality and to efficiently parametrize the random field. The advantage of the proposed
example lies in the possibility to derive the exact and approximated posterior random fields
analytically. This allows us to efficiently carry out an error analysis. We have shown through this
study that the K-L discretization has different influence on the prior and posterior random fields
of the inverse and forward problems. In the forward problem (deflection), the approximation
errors of the posterior mean and variance are small. Due to the averaging process that is carried
out during the computation of the deflection, the higher K-L modes are essentially canceled
out, and therefore, only the first modes of the expansion contribute to the representation. This
behavior is different when the quantity of interest is highly dependent on the local fluctuations,
e.g. strains and stresses (this is left as a further study). In the inverse problem (flexibility), the
variance error decrease is slow compared to the deflection, and thus a larger number of terms in
the K-L expansion are required for its accurate representation. Furthermore, in spite of the fact
that the error levels in both quantities are not considerably drastic in this example, the results
indicate that it might be desirable in complex engineering applications the use of a finer K-L
discretization when dealing with inverse problems.
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Figure 7: Averaged normalized variance error in the prior and posterior flexibility and deflection random
fields for different correlation lengths and terms in the K-L expansion.
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