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ABSTRACT 

 
Ship structures are inspected regularly to reduce uncertainty associated with deterioration and help 
identifying optimal maintenance actions. The effect of inspections can be quantified by updating 
probabilistic models of the ship structure and deterioration processes with the information obtained 
during inspections. Most deterioration processes in ship structures, such as corrosion, are spatially 
distributed. In this contribution, we investigate how the spatial distribution and dependence of corrosion 
can be adequately addressed in Bayesian updating and how it affects the ship reliability. To model the 
spatial variability of corrosion in a ship structure, we apply a hierarchical spatial model. Inspections of 
the structure by means of thickness measurements are considered. Bayesian updating of the spatial 
corrosion model and the ship reliability is performed by means of the BUS approach. Finally, comparison 
is made with reliability estimates obtained with a model that neglect spatial variability and with the 
classical approach that defines separate random variables for the corrosion groups. 
 
  

1. INTRODUCTION 
 
Ship structures are exposed to multiple 
deterioration processes during their lifetime, 
among which corrosion loss is the most common 
and often the most critical one [1]. Corrosion types 
relevant to ship structures are uniform (general) 
corrosion, pitting corrosion, crevice corrosion and 
galvanic corrosion [2]. Uniform corrosion, which 
is the focus of this contribution, can reduce the 
structural capacity by a widespread reduction of 
plate thickness, leading to a loss in cross section. 
Corrosion progress is influenced by a variety of 
factors, such as age, type, cargo type, area of 
operation. These factors vary by ship and by 
position and type of elements within a ship 
structure. Empirical models are available to 
describe corrosion progress [3-6]. Considering the 
significant uncertainty associated with the many 
influencing factors and their effect, such models 
should be formulated probabilistically. 
 
To manage corrosion and the associated 
uncertainties, inspections are carried out regularly 
on ship structures. Inspection results enable the 
determination of repair and replacement of 
corroded elements. Because these measurements 
are necessarily incomplete and subject to 
uncertainty, inspection results should themselves 
be described in a probabilistic format.  These can 
be included in a Bayesian framework, in which the 

prior corrosion model is combined with the 
information from the inspection. 
 
Corrosion processes in ship structures are spatially 
variable depending on the location and type of 
elements. For example, the bottom shell exposed 
to sea water or a tank with corrosive cargo are 
more vulnerable to corrosion than other elements 
in the ship. The mutual distance between different 
elements affects their dependence. Accordingly, 
plate elements of similar type and located closely 
to each other are likely to be in similar condition.  
 
In this study, we investigate how the spatial 
variability and dependence of corrosion can be 
adequately addressed in a Bayesian analysis and 
how it effects the reliability. The spatial 
dependence of corrosion process among a mid-
ship section is described by hierarchical spatial 
model following [7]. Effect of the spatial 
dependence on the time-variant reliability updated 
with thickness measurement data is quantified by 
means of the BUS approach [8, 9]. In the 
numerical example, the framework is exemplarily 
applied to a mid-ship section with thickness 
measurements. It is found that the effect of 
inspections on spatial dependent corrosion and the 
associated reliability can be quantified effectively 
through the Bayesian updating scheme.  
 



2. PROBABILISTIC SPATIAL 
MODELING OF CORROSION IN SHIP 
STRUCTURES 
 
2.1 TIME-DEPENDENT PLATE 
THICKNESS DUE TO CORROSION 
 
The thickness 𝑤 of a plate at time t due to uniform 
corrosion can be expressed as follows: 
 

𝑤 𝑡 = 𝑤$ +𝑀 − 𝐷 𝑡        (1) 
 
where 𝑤$  is the design plate thickness, M is the 
thickness margin, and D is the corrosion loss. The 
thickness margin accounts for the difference 
between the as-built and the planned thickness that 
is caused by plate fabrication and the ship building 
process. In this study, the thickness margin M is 
modeled as a lognormally distributed variable 
assuming non-negative margins [7]. The corrosion 
loss is calculated with a bi-linear corrosion model, 
which assumes that the corrosion loss is zero 
before the coating breaks and afterwards increases 
at a constant rate [10].  
 
2.2  HIERARCHICAL REPRESENTATION 
OF CORROSION IN SHIP STRUCTURE 
 
Classically, spatial variability of corrosion in ship 
structures has been addressed by grouping 
structural elements depending on the location and 
type (e.g. bottom shell, side shell, deck plating), 
and modeling them with separate random 
variables, assuming independence among different 
groups [2, 11, 12]. Spatial dependence among 
corrosion at different locations can be described 
through random fields [13]. However, similarities 
in the corrosion processes at elements that are 
distant but belong to the same type of structural 
elements are not adequately represented by the 
random field. For this reason, Luque et al. [7] 
proposed to represent the spatial distribution of 
corrosion rate R, coating life C and thickness 
margin M through a hierarchical model. They 
define multiple hierarchical levels, e.g. fleet, 
frame, compartment, structural element according 
to which the elements are grouped (Figure 1). The 
basic element of the model is the plate. 
 
In the hierarchical model, the correlation between 
different elements is defined according to the level 

of hierarchies that are shared by two plates. In the 
lowest level of hierarchy, i.e. two plates in the 
same structural element, a random field defines 
their correlation. This model is capable to 
represent spatial dependence in function of 
location, type and mutual distance of elements. In 
[7], the proposed model was learnt with thickness 
measurement data from several inspection 
campaigns. 
 

 
 

Figure 1. Hierarchical structure of the spatial corrosion 
model taken from [7] 

 
In this study, the four hierarchical levels frame, 
cell, structural element, and single plate are 
considered to represent the spatial dependence of 
corrosion parameters in a mid-ship section.  
Hereafter the four hierarchical levels are denoted 
by level 1, 2, 3 and 4. The correlation between the 
logarithmic corrosion rate at two different plate 
elements is calculated as 
 

𝛾* = 𝜌 log𝑅01 , log 𝑅03 = 45
36

571
45
38

571
     (2) 

 
where 𝑥: and 𝑥; indicate the spatial coordinates of 
two plate elements; 𝜎= is the standard deviation of 
the logarithm of corrosion rate variability at level 
𝑖= ; q is the lowest level of hierarchy that is 
common to two plates. Correlation at level 𝑖?, i.e. 
between two plate elements in the same frame, cell 
and structural element type, additionally includes 
the correlation matrix 𝚷::B that defines a random 
field [7]. For simplicity, the same hierarchical 
model is here used for representing spatial 
dependence of corrosion rate, coating life and 
thickness margin. 
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Figure 2. Realizations of thickness reduction due to 
corrosion loss with different spatial dependence  

 
Figure 2 illustrates the effect of spatial dependence 
on random realizations of corrosion loss in a mid-
ship section. Variation of line color shows how 
much the simulated corrosion loss deviates from 
the average corrosion loss for the structural type. 
Clearly, neglecting spatial dependence would lead 
to an unrealistic representation of the corrosion 
processes in ship structures. 
 
3.  LOAD AND RESISTANCE MODELS 
 
3.1 ULTIMATE BENDING MOMENT 
CAPACITY 
 
The thickness loss caused by corrosion leads to a 
reduction of capacity. Because of the time-
dependent property of corrosion loss, the strength 
of a ship section 𝑀C becomes a function of time t.  

The resistance of the hull girder section against 
bending is the ultimate moment capacity. It can be 
calculated by the incremental curvature method 
described in IACS guideline [13]. In this 
contribution, we alternatively utilize an approach 
based on optimization.  
 
3.2 VERTICAL BENDING MOMENT 
 
The total bending moment is calculated as the sum 
of stillwater moment and wave-induced moment. 
These are a function of operational condition, 
cargo history, sea states, and additional parameters. 
 
The stillwater bending moment 𝑀DE  is here 
represented by a normal distribution [12, 10-17]. 
Based on [19], mean value and standard deviation 
are defined as 𝜇DE = 0.70𝑀DE,J  and 𝜎DE =
0.20𝑀DE,J , where 𝑀DE,J  is the design stillwater 
moment calculated with IACS guidelines [14]. 
 
The probability distribution of the extreme wave-
induced moment 𝑀EL  is the Gumbel distribution 
with scale parameter 𝑎EL  and location parameter 
𝑏EL [17]. These parameters are associated with the 
design load and wave period by 𝑏EL =

𝑤 log 𝑛E,P
: =

 and 𝑎EL =
E
=
log 𝑛E,P

1Q5
5 , where 

𝑛E,P  is the mean number of wave loads in the 
return period T. 𝑤 and 𝑘 are the scale and shape 
parameters of the associated long-term distribution 
of the wave-induced moment. k is dependent on 
the environmental conditions but can be taken as 
1.0 if no further information is available [20]. w is 
calculated by requiring that the design load 𝑀EL,J 
is exceeded by the long-term wave-induced 
moments with a probability of 10-8, i.e. Pr 𝑀EL >
𝑀EL,J =10-8. The design load 𝑀EL,J  is also 
calculated based on IACS guidelines [14]. To 
calculate 𝑛E,P  for a return period 𝑇 = 1 year, the 
wave period is defined as 8s, which is 
representative of the North Atlantic [17], and it is 
assumed that 45% of operation time was is spent 
in ballast condition. Eventually, summing up the 
normal distribution of stillwater moment 𝑀DE and 
the extreme value distribution of wave-induced 
moment 𝑀EL  determines the total bending 
moment acting on the ship cross section. 
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3.3  RELIABILITY 
 
In structural reliability, the failure event F, e.g. 
collapse of a ship due to an exceedance of the 
vertical bending moment capacity, is expressed by 
the failure domain ΩY . The associated random 
variables 𝐗  and the limit state 𝑔 𝐗  define the 
failure domain as ΩY = 𝑔 𝐗 ≤ 0 . 
 
The reliability is here expressed by the annual 
probability of failure without strict consideration 
of survivor or failure of the ship in preceding years. 
The limit state function defining failure is: 
 
𝑔 𝐗, 𝑡 = 𝑋C𝑀C 𝐗𝐬, 𝑡 − 𝑋DE𝑀DE − 𝑋EL𝑀EL   (4) 
 
where 𝐗𝒔  are the random variables affecting the 
ultimate moment strength, 𝑋C represents the model 
uncertainties associated with ultimate moment 
strength calculation, 𝑋DE  and 𝑋EL  are the model 
uncertainties related to the stillwater and wave-
induced moment load calculations. They are 
defined in Table 1 following [18]. All random 
variables are combined in the vector 𝐗 =
𝐗𝐬, 𝑋C, 𝑋DE, 𝑋EL,𝑀DE,𝑀EL

P. 
 

Table 1. Random variables related to model 
uncertainties 

Random  
variables Mean COV Distribution 

𝑋C 1.0 0.10 Normal 
𝑋DE 1.0 0.05 Normal 
𝑋EL 0.9 0.15 Normal 

 
 
4.  BAYESIAN UPDATING 
 
In Bayesian analysis, the data (or observation 
event) Z is expressed by a likelihood function. 
Here, the observation event is a set of plate 
thickness measurements. Following the BUS 
approach (Bayesian Updating with Structural 
reliability methods) proposed in [8, 9, 21], the 
likelihood function 𝐿 describing 𝑍 can be cast into 
a structural reliability framework, by defining the 
observation limit state function: 
 

ℎ 𝐗, 𝑈$ = 𝑈$ − Φe: 𝑐𝐿 𝐗 ≤ 0          (5) 
 
𝑈$ is a standard normal random variable,  Φe: is 
the inverse standard normal cumulative 

distribution function, and c is a positive constant 
that can be chosen following [8]. The observation 
limit state function defines a corresponding 
domain Ωg = {ℎ 𝐗, 𝑈$ } . Then, the updated 
reliability conditional on the observation event Z, 
can be calculated as: 
 

Pr 𝐹|𝑍 = lm Y∩g
lm g

=
o𝐗(𝐗)r𝐗rC𝐗,st∈ vw∩vx

o𝐗(𝐗)r𝐗rC𝐗,st∈vx

  (6) 

 
Any classical structural reliability method can be 
used to solve Eq. (6). Here, we employ subset 
simulation, which was originally proposed in [22]. 
This method expresses the failure event as the 
intersection of intermediate events and the 
probability of failure is estimated as a product of 
conditional probabilities of the intermediate events. 
In this way small failure probabilities can be 
estimated efficiently even in high-dimensional 
problems. The adaptive MCMC algorithm 
proposed in [23] is used to improve accuracy and 
efficiency of subset simulation. 
 
5.  NUMERICAL EXAMPLE 
 
5.1  SHIP EXAMPLE 
 
The mid-ship section of a tanker, taken from [12], 
is modified for this numerical example. The 
properties of the ship are as follows: length 
𝐿=255m, breadth 𝐵=57m, height 𝐻=31.1m, block 
coefficient 𝐶|=0.842, mean value of the Young’s 
modulus 𝐸=207,000MPa, mean value of the yield 
stress 𝜎~=353MPa. The mid-ship cross section is 
shown in Figure 4. The section consists of 400 
stiffened plate elements. 
 

 
 

Figure 4. Geometry of the hull girder section at mid-ship 
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Corrosion parameters of the structural elements 
are defined for 8 groups depending on their 
position and type (Table 2). The corrosion rate R 
and the coating life 𝐶� are modeled as lognormal 
random variables. The remaining random 
variables are summarized in Table 3.  
 
Table 2. Corrosion rate [mm/year] for different 
locations and structural element type (Adapted 
with modifications from [11, 12]) 
Corrosion 

group Location Mean COV Distribution 

1 Bottom shell 
plating 0.34 0.5 Lognormal 

2 Bottom 
stiffener/web 0.13 0.5 Lognormal 

3 Deck plating 0.13 0.5 Lognormal 

4 Deck 
stiffener/web 0.13 0.5 Lognormal 

5 Side shell 
plating 0.06 0.1 Lognormal 

6 Side 
stiffener/web 0.06 0.1 Lognormal 

7 Inner plating 0.13 0.1 Lognormal 

8 Inner 
stiffener/web 0.13 0.1 Lognormal 

 
Table 3. Random variables related to ship 

structure 
Random 
variables Mean COV Distribution 

Coating life 
[year] 5 0.40 Lognormal 

Thickness 
margin [mm] 1.0 0.15 Lognormal 

Yield stress 
[MPa] 353 0.10 Lognormal 

Young’s 
modulus [MPa] 207,000 0.03 Lognormal 

 
To numerically represent the spatial variability of 
corrosion processes, the ship section is discretized 
by individual plating, web and flange. The 400 
stiffened plates are divided into 1,200 
discretization elements. The corrosion loss at each 
element is determined by the probabilistic models 
of corrosion rate, coating life and the thickness 
margin. The hierarchical spatial model defines the 
correlation between the corrosion process at the 
elements considering their location, type and 
mutual distance according to the four hierarchical 

levels. The ship cross section consists of one 
frame (level 1), 22 cells (level 2) and 5 structural 
element types (level 3). Correlation lengths in y- 
and z-direction are defined as  𝐿~ = 5	𝑚 and 𝐿� =
3	𝑚  assuming stronger spatial dependence in 
transverse direction.  
 
For illustration purposes, we define a weak and a 
strong spatial dependence case, as summarized in 
Table 4. These are compared to the classical 
approach, in which separate random variables are 
defined for the 8 corrosion groups of Table 2. In 
addition, we consider a model with all elements 
treated as independent. 
 
Table 4. Correlation at each hierarchical level 

defined for two spatial dependence cases 
Correlation of 

elements 
Weak 

dependence 
Strong 

dependence 
𝛾: (Frame) 0.04 0.10 
𝛾; (Cell) 0.19 0.32 
𝛾B (Struct. 

elem.) 0.53 0.70 

 
 
5.2 RELIABILITY ANALYSIS 
 
Figure 5 shows the time-variant reliability for the 
different model assumptions. In the early phase 
(until year 5), only minor differences are observed, 
since the effect of corrosion is limited because of 
coating. With increasing time 𝑡,  the effect of 
spatial dependence becomes more apparent. 
Larger spatial dependence is associated with 
smaller reliability. The classical approach and the 
hierarchical model with strong dependence lead to 
similar reliability estimates. 
 
The effect of the dependence model is further 
illustrated in Figure 6, which shows the 
distribution of ultimate moment capacity. The 
mean value is constant, but the standard deviation 
of the capacity is strongly influenced by the spatial 
dependence. This is to be expected, since the 
capacity corresponds to a linear function of the 
element properties.  
 
 



 
 

Figure 5. Time-variant reliability under varying dependence 
assumptions 

 
 

 
 

Figure 6. Statistical properties of the ultimate moment 
capacity under varying dependence assumptions (at year 25) 

 
These results indicate that the classical approach 
assumes a strong spatial dependence overall by 
representing spatial variability of the elements 
with a few random variables. The statistical 
properties of the ultimate moment strength are also 
summarized in Table 5. 
 
5.3 RELIABILITY UPDATING WITH 
THICKNESS MEASUREMENTS 
 
To demonstrate the reliability updating, a set of 
hypothetical thickness measurement data is 
generated based on a Monte Carlo simulation of 
the plate thicknesses. Measurements have an error 
that follows a normal distribution with 𝜎�=1mm, 
i.e. 𝜖~𝑁 0, 𝜎� . It is assumed that 13 elements in 
the mid-ship section are inspected at 5, 15, and 25 
years (Figure 7). The utilized thickness 
measurement data are summarized in Figure 8.  

 

 
 

Figure 7. Locations of 13 elements assumed to be inspected 
regularly 

 

 
 

Figure 8. Thickness measurements of the inspected elements 
at 5, 15 and 25 years 

 
The time-variant reliability updated with the 
thickness measurements is shown in Figure 9. 
Note that the assumption of spatial independence 
results in negligible changes of reliability 
estimates.  
 
To better understand the effect of spatial 
dependence assumptions on the updated reliability 
estimate, statistical properties of the updated 
ultimate moment capacity at year 25 are shown in 
Figure 10. The reference moment capacity 
calculated with the remaining plate thicknesses 
underlying the generated measurement data is also 
plotted. Statistical properties of the updated 
ultimate moment capacity and the reference value 
are summarized in Table 5. 
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(a) spatial independence 

 
(b) weak dependence 

 
(c) strong dependence 

 
(d) classical approach 

 
Figure 9. Reliability updated with the observation events 𝑍 

under varying dependence assumptions 

 
 
Figure 10. Comparative plots of statistical properties of the 

ultimate moment strength updated with different observation 
events and spatial dependence (at 25th year) 

 
 

Table 5. Comparison of prior/updated 
statistical properties of the ultimate moment 

strength and the exact ultimate moment 
strength [in GN-m] (at 25th year) 

Spatial 
dependence 

Without 
inspection Updated 

𝑀C,��o 
𝜇�s 𝜎�s 𝜇�s 𝜎�s 

Spatial 
independence 16.74 1.24 16.79 1.24 

17.32 

Weak  
dependence 16.74 1.56 17.20 1.46 

Strong 
dependence 16.75 1.68 17.26 1.48 

Classical 
approach 16.75 1.77 16.65 1.58 

 
For the investigated example, the classical 
approach is less effective than the hierarchical 
models when computing the reliability conditional 
on the inspection data, even though it assumes a 
strong dependence and leads to accurate results in 
the prior case. It remains to investigate to what 
degree this result can be generalized. 
 
  



5. SUMMARY AND CONCLUSIONS 
 
The effect of spatial dependence of the corrosion 
process on the time-variant reliability is 
investigated. In particular, the conditional 
reliability estimate given inspection data is 
compared for different assumptions on the 
dependence structure.  
 
The spatial variability of corrosion in a mid-ship 
section was described through a hierarchical 
approach. Results from this model were compared 
to those obtained under the assumption of spatially 
independent elements and with the classical 
approach, in which a few random variables 
represent the parameters of the corrosion process 
in groups of elements that belong to the same 
structural element type and location.  
 
The exemplarily results show that the simplified 
assumptions of the classical approach lead to good 
estimates of the reliability when no inspections are 
available. When including inspection results, it 
leads to a slight misestimation of the posterior 
mean, and an underestimation of the remaining 
reliability. However, it remains to be investigated 
if and to what extend this result can be generalized. 
Nevertheless, the hierarchical model better reflects 
the real situation and is preferable. As 
demonstrated in this paper, reliability analysis and 
updating with this model is computationally 
feasible with subset simulation, whose 
performance does not depend directly on the 
number of random variables.   
 
It is expected that the effect of the implemented 
hierarchical spatial model will be more crucial 
when the inspected locations are few and not well 
distributed along the ship section. The effect of the 
correlation assumptions will also be more crucial 
when assessing the whole ship structure or a fleet 
of ships.  
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