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Abstract: We consider a networked control loop in which the sensors acquire partial state
information and communicate to a remote controller through a lossy communication network.
A scheduler, collocated with the sensors, decides to transmit a locally estimated state to
the controller based on an event-triggered transmission policy with stochastic thresholds.
Assuming that the local estimator either senses the communication channel or receives an ideal
acknowledgment from the remote estimator, then the optimal control law can be shown to be a
linear function of the conditional expectation of the state. However, the probability distribution
of the state conditioned on the information available to the controller based on the mentioned
transmission policy and network is not Gaussian, but rather described by a sum of Gaussians
with an increasing number of terms at every time-step. We show that the optimal LQG control
law can be determined without tracking this probability distribution for finding its expected
value. Moreover, we establish that the stochastic event-triggered scheduler can be appropriately
regulated in order to achieve a desired triggering probability at every time-step.

Keywords: Optimal LQG controller, Stochastic event-triggered scheduler, Lossy
communication network, Triggering rate

1. INTRODUCTION

Event triggered control (ETC) was introduced to decrease
the communication burden of feedback control loops and
the energy consumption of remote wireless sensors in net-
worked control systems (NCS) (Tabuada (2007); Molin
(2014); Han et al. (2013); Dolk et al. (2014); Mamduhi
et al. (2017); Khashooei et al. (2017); Balaghi and An-
tunes (2017); Demirel et al. (2017); Mamduhi and Hirche
(2018)). In recent years, much attention has been devoted
to the design of ETC policies not only guaranteing stabil-
ity, but also preserving a desired control performance for
the system (Antunes and Khashooei (2016)).

The ETC design problem can be approached from an opti-
mal control perspective. A common optimal control formu-
lation of ETC is to jointly design a scheduler, collocated
with the sensors, and a controller, collocated with the
actuators, in order to minimize a cost function, typically
an LQG-type cost. One of the challenges arising is whether
an optimal design of the controller and the event-based
scheduler is tractable. Several works in the literature con-
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sidered this problem from different approaches (e.g. Molin
(2014); Goldenshluger and Mirkin (2017)). In these works,
it is proved that under some assumptions the optimal
controller and event-based scheduler are separable where
the optimal controller for linear systems is the classical
LQG and the optimal event generator is the solution of an
optimal stopping time problem.

However, this statement is valid only when there is an
ideal communication network between the event-based
scheduler and the controller. Within a realistic scenario,
however, when several control loops share a common
communication network, then other phenomena such as
data collision and data loss can affect the optimality of
the designed scheduler and controller. For example, when
the elements of the control loop communicate through
a shared slotted-ALOHA communication network, then
there is always a probability of data collision which results
in data loss. Data loss may also occur due to bit detection
errors in the physical layer, or buffer overflow in the
network layer. Another example is in the context of cyber-
security control in which a jamming signal may try to
interrupt the communication randomly. Therefore, it is
important to investigate whether an optimal design is



possible when data transmission is carried out through a
lossy communication network.

In this work, we approach this problem by fixing a stochas-
tic policy for the scheduler and searching for an optimal
controller. This stochastic policy is similar to the one
proposed in Brunner et al. (2018) for the case of ideal
networks and specifies that transmissions occur when the
error between state measurements and the estimated state
exceeds a stochastic threshold. One of the advantages of
this approach in the context of ideal networks is that
the probability distribution of the state conditioned on
the information available at the controller remains Gaus-
sian. Note that although the optimal scheduling policy
for linear systems should be deterministic just like the
Lebesgue sampling proposed for the first-order stochastic
systems (Bernhardsson and Åström (1999)), in some of
the situations, it makes more sense to consider stochastic
policies. In fact, for example in the slotted-ALOHA com-
munication protocol data transmission is often governed
by a stochastic policy. Moreover, in the context of cyber-
security the optimal transmission policy can be designed
by using game theory which typically results in stochastic
(or mixed) policies.

We consider a linear time-invariant system with partial
state information (output feedback) and the mentioned
stochastic threshold policy for the scheduler transmitting
data over a lossy network to a remote controller, as de-
picted in Figure 1. We show that, in the absence of an ideal
communication, the probability distribution of the state
conditioned on the information available to the controller
can be described by a sum of Gaussians, rather than a
single Gaussian, that is observed in the case when the
network is ideal. The number of Gaussians needed to repre-
sent this probability distribution in the controller doubles
every time-step after the last successful transmission. Still,
we establish that the optimal policy for the controller does
not need to keep track of these Gaussians and is actually
a linear function of the state estimate running at the
controller side. In other words, one can compute the state
estimate given the information available at the controller
and the control input without keeping track of the Gaus-
sians. Moreover, we show that it is possible to regulate the
triggering rate of the proposed event-based scheduler at
every time-step when the previous transmissions have not
been received by the controller.

The remainder of the paper is organized as follows. In
Section 2 we provide the problem setting. In Section 3 the
optimal linear controller is proposed. We establish how to
regulate the triggering rate of the scheduler in Section 4. In
Section 5 we validate our results by providing numerical
simulation, and we provide some concluding remarks in
Section 6.

Fig. 1. A schematic view of the ETC loop with lossy
communication network

Notation: f(y|I) = N (y; ȳ, Y ) = det(2πY )−
1
2 exp

(
(y −

ȳ)ᵀY −1(y − ȳ)
)

indicates that conditioned on the infor-
mation set I, y is a Gaussian random variable with mean
ȳ and covariance Y . Pr(.) denotes the probability of an
event. Let %(A) denote the spectral radius of the square
matrix A and we set Tk = {0, 1, . . . , k}.

2. PROBLEM SETTING

Consider an LTI system with output feedback modeled by

xk+1 = Axk +Buk + wk,

yk = Cxk + vk
(1)

where xk ∈ Rn, uk ∈ Rnu and yk ∈ Rm are, respectively,
the state, the control input and the output vectors at
time-step k ∈ N ∪ {0}. Moreover, let (w0, w1, . . . ) and
(v0, v1, . . . ) be sequences of i.i.d. Gaussian random vari-
ables with zero means and covariances W = E[wkw

ᵀ
k ]

and V = E[vkv
ᵀ
k ], ∀k ∈ N ∪ {0}. A scheduler, collocated

with the sensors, decides when to transmit the estimated
state to a remote controller, collocated with the actuators,
over a lossy communication network. The pairs (A,B)
and (A,C) are assumed to be controllable and observable,
respectively.

The communication network is assumed to be lossy due
to collisions, drop-outs or jammed signals. For each time-
step k we define a random variable ρk ∈ {0, 1} where
ρk = 1 indicates successful communication between the
scheduler and the controller of the corresponding control
loop, and ρk = 0 otherwise. Moreover, we assume that ρk
for k ∈ N ∪ {0} are i.i.d. random variables.

We define a random variable δk ∈ {0, 1} for the scheduler
which has access to the output yk at every time-step k.
It decides whether to transmit the estimated state to the
controller, in which case δk = 1, or δk = 0 otherwise.
The binary random variable σk = ρkδk denotes whether a
transmission has been successful at every time-step k. Let

Ik = {δ`, ρ`, y`|` ∈ Tk−1} ∪ {yk} (2)

and

Jk = {σ`|` ∈ Tk} ∪ {x̂`|`|σ` = 1, ` ∈ Tk} (3)

denote the available information sets in the local and
remote estimators, respectively, and x̂k|k = E[xk|Ik],
x̄k|k = E[xk|Jk] are the estimated states in these units.
We assume that the local estimator either senses the
communication channel or receives an acknowledgment
from the remote estimator via an ideal dedicated channel,
therefore, it has access to ρk−1 at every time-step k. The
control loop performance is evaluated by the following
average LQG cost

J = lim sup
T→∞

1

T
E[

T−1∑
k=0

xᵀkQxk + uᵀkRuk] (4)

in which Q is a positive semi-definite matrix and R is a
positive definite matrix with appropriate dimensions.

The scheduler of the control loop is fixed to operate based
on the stochastic threshold policy as

δk =

{
1, if

1

2
eᵀk|k−1Ψ−1

k|k−1ek|k−1 ≥ rk
0, otherwise.

(5)



in which rk∼exp(λk) is an exponentially distributed ran-
dom threshold, ek|k−1 = x̂k|k − x̄k|k−1 is the state estima-
tion error between the local and remote estimator where
x̄k|k−1 = E[xk|Jk−1] and Ψk|k−1 = E[ek|k−1e

ᵀ
k|k−1|Ik]. We

will show in Section 4 how to compute Ψk|k−1 for k ∈ N
in real time. Moreover, the optimal local state estimator
at the scheduler side is the well-known Kalman filter as

x̂k+1|k = Ax̂k|k +Buk,

x̂k|k = x̂k|k−1 + L(yk − Cx̂k|k−1)
(6)

where

L = ΘCᵀ(CΘCᵀ + V )−1,

Θ = AΘAᵀ +W −AΘCᵀ(CΘCᵀ + V )−1CΘAᵀ.
(7)

For simplicity we assume E[(x0 − x̂0|0)(x0 − x̂0|0)ᵀ] = Θ
which implies that E[(xk− x̂k|k)(xk− x̂k|k)ᵀ] = Θ, ∀k ∈ N.

2.1 Problem statement

Consider a control loop using a lossy communication
network for the data transmission between the scheduler
and the controller with the fixed scheduling policy (5).
Firstly, the goal is to find the optimal controller for this
transmission configuration for a given sequence of λk, k ∈
N∪{0}. Secondly, it is desirable to determine the λk of the
scheduling policy (5) that leads to a desired data triggering
probability (Pr[δk = 1]) at every time-step k.

3. OPTIMAL CONTROLLER

In this section, we propose the optimal controller for
the fixed scheduling policy (5) when the communication
between the scheduler and the controller is carried out
through a lossy communication network.

Theorem 1. Consider the LTI system (1) and an ETC set-
ting in which the communication between the sensor and
the controller is governed based on the stochastic thresh-
old policy (5) through a lossy communication network.
Assume that the sequence {Ψk|k−1|k ∈ N} is uniformly
bounded (U.B.). The optimal control input is then

uk = Kx̄k|k (8)

where

K = −(BᵀPB +R)−1BᵀPA,

P = AᵀPA+Q−Kᵀ(BᵀPB +R)K,

in which Q and R are given in (4) and

x̄k+1|k = Ax̄k|k +Buk,

x̄k|k =

{
x̂k|k, if σk = 1

x̄k|k−1, otherwise.

(9)

where x̂k|k is given in (6). 2

The proof is given in the Appendix. We will later give a
condition under which {Ψk|k−1|k ∈ N} is guaranteed to
be U.B. for constant triggering rate at all time-steps (see
Assumption 1) when the communication channel is ideal.

As discussed in the proof, the pdf of the state conditioned
on Jk can be described by a sum of Gaussians, with
a growing number of terms at every time-step. On the
other hand, due to the structure of the scheduler which
prevents the generation of the control input’s dual effect
in the control loop (Molin (2014)) it is possible to show

that the optimal control policy is KE[xk|Jk]. Having this
said, Theorem 1 facilitates finding the optimal controller
uk without tracking the conditional pdf in order to find
x̄k|k = E[xk|Jk].

4. REGULATION OF THE TRIGGERING RATE

In this section, we show that contrary to the conditioned
state pdf in the remote controller, the number of Gaussian
terms of the state estimation error pdf in the scheduler
f(ek|k−1|Ik) doubles only at time instances that a data
loss occurs. Therefore, one can keep track of this pdf for
determining the triggering condition (5) at every time-
step. We first consider a simpler setting in which the
communication network is ideal and there is no data loss,
i.e. ρk = 1 for all time-steps k. Then, we extend the result
to the case when the communication network is lossy.

4.1 Ideal communication network

When the communication network is ideal and the trig-
gered data is not prone to loss, it can be successfully
delivered to the controller at every triggering time-step.
In the following lemma, a recursive Lyapunov equation is
given for determining the covariance of the state estima-
tion error between the local and remote estimators when
the communication network is ideal.

Lemma 1. Consider the aforementioned control loop using
an ideal communication network for data transmission
between the scheduler and the controller. The distribution
of ek|k−1 remains Gaussian at every time-step k, i.e.
f(ek|k−1|Ik) = N (ek|k−1; 0,Ψk|k−1) with the covariance
matrix evolving as follows:

Ψk+1|k = AΨk|kA
ᵀ + Φ,

Ψk|k =

0, if σk = 1
1

1 + λk
Ψk|k−1, otherwise.

(10)

where Φ = AΘAᵀ − Θ + W . Moreover, the triggering
probability of the scheduler at every time-step k is

pk = Pr(δk = 1|Ik) = 1− (1 + λk)−
n
2 . (11)

2

According to (11), if the parameter λk of the random
threshold is set to a constant value λ at all time-steps, then
the probability of transmission (11) is always constant.
The following theorem provides the performance of the
control loop operating based on the given event triggering
policy (5) with a constant transmission rate p at all time-
steps. To state the next theorem, we need the following
assumption which holds when A is stable or p is sufficiently
large (Sinopoli et al. (2004)).

Assumption 1. (1− p)1+ 2
n %(A)2 < 1.

Theorem 2. Consider the aforementioned control loop us-
ing an ideal communication network for the data transmis-
sion between the scheduler and the controller. Moreover,
assume that λk = λ for all time-steps k. Suppose that As-
sumption 1 holds. Then the average covariance of the state
estimation error between the scheduler and the controller
(Ψ̄ = lim supt→∞ E[Ψt|t|It]) satisfies

Ψ̄ = gAΨ̄Aᵀ + gΦ (12)



where g := (1−p)1+ 2
n for p = 1−(1+λ)−

n
2 is the constant

data triggering rate at every time-step and Φ = AΘAᵀ −
Θ +W . Moreover, the control loop performance is

J = tr(PW + (1− g)ΘY )

+

∞∑
i=0

gi+1tr
(
Ai
(
(1− g)AΘAᵀ +W

)
AᵀiY

) (13)

where Y = Kᵀ(BᵀPB +R)K. 2

4.2 Lossy communication network

Now we consider the condition in which the communica-
tion network is lossy. In Balaghi et al. (2018), it is proved
that the stochastic threshold policy does not preserve
the Gaussianity of the propagated state estimation error
between the scheduler and the controller if there is a
probability of data loss in the communication network.

More specifically, in between every two successive success-
ful transmissions, the distribution of the state estimation
error in the local estimator remains Gaussian until the first
data loss (δk = 1 ∧ ρk = 0). However, a data loss changes
the state estimation error pdf to the sum of Gaussians. In
the following Lemma, we determine the pdf of the updated
state estimation error assuming the pdf of the predicted
state estimation error follows a single Gaussian at time-
step k as

f(ek|k−1|Ik) = N (ek|k−1; 0,Ψk|k−1). (14)

Lemma 2. Assume the pdf of the predicted state estima-
tion error follows (14). Then

pk = 1− (1 + λk)−
n
2 (15)

is the triggering probability of the scheduler at time-step
k and qk = 1− pk. Moreover,

f(ek|k|δk = 0, Ik) = N (ek|k; 0,Ψk|k)

and
f(ek|k|δk = 1, ρk = 0, Ik)

=
N (ek|k; 0,Ψk|k−1)− qkN (ek|k; 0,Ψk|k)

pk
where Ψk|k = Ψk|k−1/(1+λk), are the pdfs of the updated
state estimation errors in case of no data triggering (δk =
0) and data loss (δk = 1 ∧ ρk = 0), respectively. 2

Based on Lemma 2, the pdf of the updated state estima-
tion error remains Gaussian up to the time-step before the
first data loss in between every two successive successful
transmissions. However, the first data loss changes the
pdf of the updated state estimation error to the sum of
two Gaussians. Moreover, the triggering probability of the
scheduler is independent of the state estimation error co-
variance up to the first data loss time-step. In the following
Theorem, we derive the propagation pattern for the pdf
of the updated state estimation error after it becomes a
sum of Gaussian terms (after the first data loss time-step).
Assume the pdf of the updated state estimation error at
time-step k − 1 is the sum of Gaussians as follows

f(ek−1|k−1|Ik) =

hk∑
l=1

αlkN (ek−1|k−1; 0,Ψl
k−1|k−1) (16)

in which hk is the number of Gaussian terms at time-step
k. Then the pdf of the predicted state estimation error at
time-step k will be

f(ek|k−1|Ik) =

hk∑
l=1

αlkN (ek|k−1; 0,Ψl
k|k−1) (17)

where the covariance of the Gaussian terms of the pre-
dicted state estimation error is determined as

Ψl
k|k−1 = AᵀΨl

k−1|k−1A+W, ∀l ∈ {1, . . . , hk}.
Since all the Gaussian terms have zero means, the total
covariance used in the scheduling law (5) is

Ψk|k−1 =

hk∑
l=1

αlkΨl
k|k−1. (18)

Theorem 3. Assume that the distribution of the predicted
state estimation error follows (17) and the event-based
scheduling law (5) is determined based on (18), then

pk = 1−
hk∑
l=1

qlk (19)

is the triggering probability of the scheduler in which

qlk = αlkdet
(
I + λkΨ−1

k|k−1Ψl
k|k−1

)− 1
2

for l ∈ {1, . . . , hk}. Moreover,

f(ek|k|δk = 0, Ik) =

hk∑
l=1

qlk
1− pk

N (ek|k; 0,Ψl
k|k) (20)

and
f(ek|k|δk = 1, ρk = 0, Ik)

=
1

pk

( hk∑
l=1

αlkN (ek|k; 0,Ψl
k|k−1)− qlkN (ek|k; 0,Ψl

k|k)
)
(21)

are the pdfs of the updated state estimation errors in case
of no data triggering (δk = 0) and data loss (δk = 1, ρk =
0), respectively, where

Ψl
k|k =

(
I + λk(Ψk|k−1)−1Ψl

k|k−1

)−1
Ψl
k|k−1. (22)

2

Based on Theorem 1, in case of no attempt of data
transmission (δk = 0), the number of Gaussian terms
of the updated state estimation error pdf remains the
same as that for the predicted state estimation error pdf.
However, every data loss in between every two successive
successful transmissions doubles the number of Gaussian
terms of the updated state estimation error pdf. Moreover,
the probability of the data triggering becomes dependent
on the Gaussian terms’ covariance of the predicted state
estimation error pdf. Therefore, the triggering probability
cannot be set to a constant value by using a constant
threshold parameter λ after the first collision time in-
stance. It is needed to solve the nonlinear equation (19)
at every time-step after the first collision instance based
on the desired triggering probability pdk to determine an
appropriate threshold parameter λdk. If one needs to keep
the triggering rate constant at all time-steps, the value
of λk should become smaller after every data loss time
instance. This is due to an increase in the covariance of
the state estimation error and as a consequence, a decrease
in the left-hand side of the triggering condition in (5).
Therefore, the probability of the right-hand side of the
triggering condition (or equivalently λk) should also be
decreased in order to keep the triggering rate constant as



the previous time-step. The following Lemma, illustrates
the existence of the solution for this equation.

Lemma 3. For any desired triggering probability pdk, there
exists a real positive threshold parameter (λdk ∈ R≥0) for
the scheduling policy (5) obtained by solving (19). 2

5. NUMERICAL SIMULATIONS

In this section, we consider a scalar system in which
A = 0.9, B = 1, C = 1.5, W = 1 and V = 0.5 and take
Q = 1 and R = 0.1 as the parameters of the controller.
We assume the network is lossy based on a Bernoulli
distribution where E[ρk] = 0.7. The LQG control perfor-
mance is determined using Monte-Carlo simulations when
the scheduler is operating based on a desired constant
probability at all time-steps. We use Matlab’s numerical
methods to regulate the threshold parameter of the event-
based scheduler by solving (19) at every time-step. In
Figure 2, we show the control performance of the stochastic
event-based scheduler is improved in comparison with that
of its non-event-based counterpart in which the scheduler
transmits randomly with the same constant probability at
all time-steps. Moreover, Figure 3 shows the value of λk
and the number of Gaussian terms of the state estimation
error pdf in the local estimator (hk) for the mentioned
ETC policy with pk = 0.75 for all time-steps over the lossy
network. As it can be seen, at every data loss time instance
in which the number of Gaussian terms of the updated
state estimation error pdf in the scheduler doubles, the
value of λk is decreased in order to keep the triggering
rate constant.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

1.5
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2.5
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J

Non-event-based
Event-based

Fig. 2. Comparison of the average control performance
of the stochastic threshold event-triggered scheduling
and its non-event-based counterpart scheduling poli-
cies in which transmissions occur randomly with the
same constant probability at all time-steps.
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16
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Fig. 3. The value of λk and the number of Gaussian terms
of the state estimation error pdf in the local estimator
(hk) with pk = 0.75 for all time-steps.

6. CONCLUSIONS

This work considers a networked control loop in which
an event-based scheduler decides when to transmit the
estimated state to the controller via a lossy communication
network. The scheduler is fixed to operate based on the
stochastic threshold event-triggered policy. The optimal
controller for this transmission configuration is a linear
function of the conditional expectation of the state which
as established here, can be determined without tracking its
conditional pdf in the controller. Moreover, the scheduler
is adapted to trigger data with a desired probability by
tuning its threshold parameter.

7. APPENDIX

7.1 Proof of Theorem 1

The finite horizon optimal LQG event-based output-
feedback controller for the linear systems has the cer-
tainty equivalent property when the scheduler prevents
the generation of the control input’s dual effect as the
one proposed in (5) (Molin (2014)). The result can be
extended to the average cost problem (4) provided that
the cost is bounded (Molin, 2014, Ch. 6, Sec. 2). This
can be shown under the assumption that {Ψk|k−1|k ∈ N}
is uniformly bounded and (A,B), (A,C) are controllable
and observable, respectively, following the same steps as in
Brunner et al. (2018). The details are omitted due to space
constraints. It shall be noted that the acknowledgment of
ρk−1 to the local estimator at every time-step k provides a
nested information structure for the controller, therefore,
uk = KE[xk|Jk] where K is determined by (7). In order to
determine x̄k|k = E[xk|Jk], we follow an induction proof.
Without loss of generality assume that at t = 0, σ0 = 1,
then the predicted pdf of the state in the remote estimator
at the next time-step is Gaussian, i.e.

f(x1|J0, x̄1|0) = N (x1; x̄1|0,Γ1|0) (23)

where J0 = {σ0 = 1, x̂0|0}, x̄1|0 = Ax̂0|0 + Bu0 and
Γ1|0 = AΘAᵀ +W . Moreover, the updated pdf is

f(x1|J1) = f(x1|J0, x̄1|0, σ1, {x̂1|1|σ1 = 1}).
If σ1 = 1, then f(x1|J0, σ1 = 1, x̂1|1, x̄1|0) = N (x1; x̂1|1,Θ)
in which x̂1|1 is the updated state estimation determined
by the Kalman-filter running in the local estimator at
t = 1. However, if σ1 = 0, then by using the Bayes law
of conditional probability

f(x1|J0, x̄1|0, σ1 = 0)

=
Pr(σ1 = 0|J0, x̄1|0, x1)

Pr(σ1 = 0|J0, x̄1|0)
f(x1|J0, x̄1|0).

(24)

Moreover,

Pr(σ1 = 0|J0,x̄1|0, x1) = Pr(δ1 = 0|J0, x̄1|0, x1)

+ Pr(ρ1 = 0)Pr(δ1 = 1|J0, x̄1|0, x1).
(25)

Now consider ẑ1 = x1−x̂1|1, z̄1 = x1−x̄1|0, z1 = x̂1|1−x̄1|0
where f(ẑ1) = N (ẑ1; 0,Θ) and E[z1z

ᵀ
1 |σ0 = 1] = Φ1|0 in

which Φ1|0 = AᵀΘA−Θ +W . Then

Pr(δ1 = 0|J0, x1, x̄1|0) = Pr(δ1 = 0|J0, z̄1)

=

∫
ẑ1∈Rn

∞∫
r0,

(λ1e
−λ1r)e−

1
2 ẑ

ᵀ
1 Θ−1ẑ1

det(2πΘ)
1
2

drdẑ1



where r0 = 1
2z

ᵀ
1 Φ−1

1|0z1 = 1
2 (z̄1 − ẑ1)ᵀΦ−1

1|0(z̄1 − ẑ1), then

Pr(δ1 = 0|J0, x1, x̄1|0) = ξ1e
− 1

2 z̄
ᵀ
1 Π−1

1|0z̄1 (26)

where

Π1|0 =
(
λ1Φ−1

1|0 − λ1Φ−1
1|0(λ1Φ−1

1|0 + Θ−1)−1λ1Φ−1
1|0
)−1

and ξ1 = 1/
(

det(λ1Φ−1
1|0 + Θ−1) det(Θ)

)
. Moreover,

Pr(δ1 = 1|J0, x1, x̄1|0) = 1− ξ1e−
1
2 z̄

ᵀ
1 Π−1

1|0z̄1 . (27)

First substitute (26) and (27) into (25) which results in

Pr(σ1 = 0|J0,x̄1|0, x1) = 1− q + qξ1e
− 1

2 ȳ
ᵀ
1 Π−1

1|0ȳ1

where q = Pr(ρ1 = 1), then substitute the result into (24)

f(x1|J0, x̄1|0, σ1 = 0) =
1− q + qξ1e

− 1
2 z̄

ᵀ
1 Π−1

1|0z̄1

1− p
e
− 1

2 z̄
ᵀ
1 Γ−1

1|0z̄1

det(2πΓ−1
1|0)

=

2∑
i=1

β′iN (xk; x̄1|0,Γ
i
1|1)

(28)

where
∑2
i=1 β

′
i = 1. As it is seen, at the first time-

step after the successful transmission the updated state
estimation pdf is the sum of two Gaussian terms with
different covariances. However, their means are equal to
the one obtained at the prediction stage. Therefore,

x̄1|1 = E[x1|x̂0|0, σ0 = 1, σ1 = 0] = x̄1|0.

Now let us assume that at t = k time-step after the
last successful transmission the pdf of the updated state
estimation is the sum of h′k Gaussian terms as follows

f(xk|Jk−1, x̄k|k−1, σk−1 = 0) =

h′k∑
i=1

βiN (xk; x̄k|k−1,Γ
i
k|k)

(29)
where their means are equal and their covariances are
different. Then the predicted state estimation pdf at t =
k + 1 will be

f(xk+1|Jk, x̄k+1|k) =

h′k∑
i=1

βiN (xk+1; x̄k+1|k,Γ
i
k+1|k) (30)

where
x̄k+1|k = Ax̄k|k−1 +Buk,

Γik+1|k = AΓik|kA
ᵀ +W, ∀i ∈ {1, . . . , h′k}.

(31)

It is clear if σk+1 = 1, then the updated state estimate
at t = k + 1 is equal to x̂k+1|k+1 whose distribution is
N (xk+1; x̂k+1|k+1,Θ). However, if σk+1 = 0, then by using
the same method as the one used for t = 1 in (24)-(28) we
can prove that

f(xk+1|Jk, x̄k+1|k, σk+1 = 0) =

2h′k∑
i=1

β′iN (xk+1; x̄k+1|k,Γ
i
k+1|k+1)

(32)

As it is seen, the number of Gaussian terms of the updated
state estimation pdf is twice that of the updated state
estimation at the previous time-step. However, the mean
of all Gaussian terms is equal to the mean of the Gaussian
terms of the predicted state estimation i.e. x̄k+1|k+1 =
x̄k+1|k when σk+1 = 0. Therefore, the assumption of
induction is correct and we can conclude that x̄k|k in (9)
is the state conditional expectation given the information
set available for the controller.
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