
Phase-Aware Web Browser Power Management
on HMP Platforms

N. Peters1, S. Park1, D. Clifford2, S. Kyostila2, R. McIlroy2, B. Meurer2, H. Payer2, S. Chakraborty1
Technical University of Munich1, Google Inc2

{nadja.peters,sangyoung.park,samarjit}@tum.de,{danno,skyostil,rmcilroy,bmeurer,hpayer}@google.com

ABSTRACT
Over the last years, web browsing has been steadily shifting from
desktop computers to mobile devices like smartphones and tablets.
However, mobile browsers available today have mainly focused on
performance rather than power consumption, although the battery
life of a mobile device is one of the most important usability met-
rics. This is because many of these browsers have originated in
the desktop domain and have been ported to the mobile domain.
Such browsers have multiple power hungry components such as
the rendering engine, and the JavaScript engine, and generate high
workload without considering the capabilities and the power con-
sumption characteristics of the underlying hardware platform. Also,
the lack of coordination between a browser application and the
power manager in the operating system (such as Android) results in
poor power savings. In this paper, we propose a power manager that
takes into account the internal state of a browser – that we refer to
as a phase – and show with Google’s Chrome running on Android
that up to 57.4% more energy can be saved over Android’s default
power managers. We implemented and evaluated our technique
on a heterogeneous multi-processing (HMP) ARM big.LITTLE plat-
form such as the ones found in most modern smartphones.

KEYWORDS
Android Power Management; DVFS; CPU Frequency Governor;
Heterogeneous Multi-Processing; big.LITTLE; Mobile Web Browser

1 INTRODUCTION
Mobile devices such as smartphones and tablets have become an in-
tegral part of our daily lives. The time we spend on such devices has
recently surpassed the time spent on desktop computers [29]. Using
mobile devices for daily activities like instant messaging, social net-
working, and web browsing always involves being connected to the
Internet. Although a large variety of mobile applications exists, one
of the most traditional, and one of the most preferred, continues to
be the web browser [18]. Therefore, ensuring the quality of the user
experience during mobile web browsing is an important problem.

The user experience of mobile web browsers is multi-faceted. For
example, users are sensitive to the responsiveness of the screen to
touch events, e.g., zooming or scrolling web pages [21, 43]. Hence,
modern web browsers usually target a frame rate of 60 frames per
second (FPS) to guarantee a good user experience. Further, when

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5783-8/18/06.
https://doi.org/10.1145/3205289.3205293

Idle Phase

Power
Manager 1

Touch Phase

Power
Manager 2

Load Phase

Power
Manager 3

Scroll Phase

Power
Manager 4

Figure 1: Proposed phase-aware power management.

loading a web page, users want to view the page within a reasonable
amount of time. Meanwhile, web pages and consequently also web
browsers have grown increasingly complex along with increasing
network and hardware computation speed. Given these trends, web
browser performance has always been boosted in order to ensure
good quality of the user experience. Browsers have developed into
complex applications that consist of multiple components such as
a browser engine, a rendering engine and a JavaScript engine [15].
Such complexity, and also the focus on performance are because
many mobile browsers have evolved from the desktop world.

However, high performance comes at the cost of higher power
consumption (e.g., by the underlying CPU). While this is not a
critical drawback for desktop computers, it is a much more serious
issue in battery-constrained mobile devices. For such devices, the
battery lifetime is one of the most important usability factors to
which users now pay a significant amount of attention [36]. While
power management of mobile devices has been extensively studied
for several years now, the focus has been on video decoding ap-
plications [24, 38], and also on games [13, 25]. Surprisingly, power
management techniques specifically targeting the web browser
have been less studied [35, 45, 48]. But both, its importance, and its
potential for power savings, is increasingly being recognized.

Android power management on HMP platforms:While a mo-
bile device comprises a multitude of power hungry components
such as the display or the wireless link, our work focuses on CPU
power consumption. Recent work has shown, that the CPU power
consumption contributes on average 38% towards the daily energy
drainage of a smartphone [6]. In general, the overall phone power
consumption improvement heavily depends on the usage scenario
and the power management strategies of the other components
as well, not only the CPU. E.g. if the screen is very bright, it will
consume more power whereas the whole phone power savings
would be less compared to the case where the display is dimmed.

CPU Power management in Android is implemented through
CPU frequency governors, thread schedulers and wakelock mecha-
nisms in the operating system (OS). They respectively determine
at which voltage and frequency the CPUs operate, which threads
run on which CPU cores and which CPU cores are active. The most
popular governors in Android are the ondemand [33] and the in-
teractive [5] governors. They adjust the operating CPU frequency
(dynamic voltage and frequency scaling, DVFS) according to the
CPU’s utilization, with a focus on the responsiveness to user inputs

https://doi.org/10.1145/3205289.3205293


ICS ’18, June 12–15, 2018, Beijing, China Nadja Peters et al.

0
1
2
3
4
5
6

P
ow

er
 [

W
]

A15
A7

0
100
200
300
400
500

U
sa

ge
 [

%
] touch

start
foreground
load end

background
load end

0 2 4 6 8 10

Time [s]

1

1.5

2

F
re

q.
 [

G
H

z]

0
1
2
3
4
5
6

P
ow

er
 [

W
]

A15
A7

0
100
200
300
400
500

U
sa

ge
 [

%
] touch

start
foreground
load end

background
load end

0 2 4 6 8 10

Time [s]

1

1.5

2

F
re

q.
 [

G
H

z]

Figure 2: Power, CPU usage andCPU frequency for loading the Reddit pagewith ondemand (left) and browser governor (right).

by ramping up the frequency quickly and conservatively reducing
it. Also, they do not power down (power gate) CPU cores during run-
time as the penalty for turning the cores back on affects the system
responsiveness. Even though such governors perform well with
power management over a wide variety of applications, they have
fundamental limitations. A major limitation in achieving optimal
power management comes from the fact that the user application
and the OS power management entities are highly modularized, and
lack communication channels among them. In particular, this re-
sults in energy wastage on heterogeneous multi-processing (HMP)
system-on-chips (SoCs) with big.LITTLE architectures, which are
widely used in modern smartphones, such as the Nexus 5X (Snap-
dragon 808) [17, 37], the Samsung Galaxy S8 (Exynos 8895) [39]
and even the iPad pro [42].

The Android default governors monitor the CPU utilization
caused by the web browser, and reactively respond to the chang-
ing values regardless of the type of workload or the performance
requirements such as the target FPS. For web browsing, we define
two types of workload, foreground load and background load. The
workload caused by building up a web page until the user can inter-
act with it is referred to as foreground load. After the page is built,
background scripts are often executed and put a high background
load on the system. The main difference between the two is, that
the background load does not affect the user perception. Hence, it is
not critical to process this kind of workload as fast as possible, what
we exploit for power management. The interactive and ondemand
governors, however, increase the CPU frequency as a response to
the tasks’ workload while it is unnecessary to finish them early.
Such actions can significantly increase the power consumption and
reduce the device’s battery life. In addition, in many of the browsing
activities, the web browser tries to maintain a target frame rate,
e.g., 60 FPS. However, the Android governors are not aware of this,
which can lead to slack times [9, 12, 13, 28].

In order to save power, while not sacrificing user experience, the
coordination between an application and the underlying software
components related to power management is crucial. Application-
specific characteristics, rather than the CPU utilization alone, can
give a better insight into the current resource demands of the ap-
plication. In games, for example, there are different game phases
such as loading, menu, and playing with varying workload and
performance requirements [13]. During the loading phase, frames

need not be updated as frequently as during the playing phase and
the computation is memory bound. A similar observation holds
true for web browsers as well. If the governor was aware of such
contexts, or phases, it could reduce the CPU frequency without
degrading the user experience. This scheme, as shown in Figure 1,
is proposed as a basis for power management in this paper.

Illustrative example: Here, we describe a scenario where a click
on a link within the Chrome browser loads a Reddit web page.
The experiments were performed on an HMP platform with a Sam-
sung Exynos5422 SoC, the Odroid-XU3 board [23] (see Section 4
for details). The board features a power-saving CPU (A7) and a
performance-oriented CPU (A15). Figure 2 shows a time-wise plot
of the power consumption, the usage, and the clock frequencies
of the CPUs. It reveals that the power consumption of the A15 is
considerably higher than the one of the A7, although the A7 usage
is larger. The graphs on the left show the results for the ondemand
governor, while the ones on the right show the results for our pro-
posed phase-aware governor, which hereafter is referred to as the
browser governor. While the ondemand governor regulates the CPU
frequency based on the workload alone, we regulate the frequency
based on the workload and the phase of the browser (see Section 6
for details). For the Load phase, both schemes behave similarly and
the foreground load times are approximately similar (4.3 s), while
the loading energy is slightly higher for the ondemand governor
(7.7 J compared to 6.1 J for the browser governor). Even after the
foreground load has completed, background load is still active for
this web page. Here, our governor knows that the browser enters a
Load/Idle phase that is not relevant for the user perception, as the
page is already fully visible. Hence, it keeps the frequency of the
high performance CPU (A15) at a low level and saves energy, unlike
the ondemand governor. After the background tasks have finished,
the web browser enters the Idle phase and the high performance
cores can be powered down. The ondemand governor does not take
this action, because powering up and down CPUs is accompanied
by a time overhead. We address this problem by establishing a chan-
nel directly from the touch screen driver to the governor that is
used to convey user input information. As a result, the energy con-
sumption for the Load/Idle phase is reduced by 40% from 8.2 J for
the ondemand governor, to 4.9 J for our proposed browser governor.



Phase-Aware Web Browser Power Management on HMP Platforms ICS ’18, June 12–15, 2018, Beijing, China

Our contributions: In this paper – as illustrated through the pre-
vious example – we propose a phase-aware web browser power
management scheme for HMP platforms, where the power manager
in the underlying operating system is aware of the context that the
web browser is in. Given the significant period of time we spend
on web browsing on mobile devices, the complexity of today’s web
pages, and the impact they have on the smartphone’s battery life,
we believe that the changes we propose in the browser and the
governor in the OS are fully justified. The resulting energy savings
are significant, as will be discussed later in the paper. The main
contributions of this work can be summarized as follows:

• We define web browsing phases, such as Idle, Load, Scroll,
Video, etc., that exhibit distinct workload characteristics and
user requirements, based on the internal information of the
Chrome browser.

• We establish a channel between the application layer, the
touch screen driver, and the governor, to directly share the
phase information and react faster to events that trigger
phase transitions.

• We implement a kernel governor – referred to as the browser
governor – that controls the CPU power state and its voltage
and frequency according to the available phase information.

• Wedemonstrate the effectiveness of this approach in terms of
power consumption as well as responsiveness of the system.

It may be noted that such browser-driven (i.e., single application-
driven) power management, as proposed in this paper, is acceptable
in case of mobile devices, since unlike in desktops or laptops, they
usually run one foreground application at a time. In other words,
when a browser is being used, other applications are either sleeping
in the background or closed. In case of systems that support the
true use of multiple applications at the same time, we envision that
each application would convey its phase to the OS, which would
then take power management decisions that are compatible with all
these applications. Such a generalization of the API that we propose
in this paper might become relevant in future mobile devices.

The rest of the paper is organized as follows. Section 2 summa-
rizes the relatedwork in this domain. Section 3 provides background
information about web browsers, and discusses the nature of in-
ternal information that is available. This is followed by Section 4
that describes the commonly used HMP platforms in modern smart-
phones and the default Android power management in such sys-
tems. Section 5 discusses different web browsing phases, followed
by Section 6 that presents the corresponding power management
strategies, and elaborates the overall architecture and the modifica-
tions to the OS kernel that we propose.We present our experimental
results in Section 7 and conclude the paper in Section 8.

2 RELATEDWORK
Various aspects of web browsing and browsers have lately re-
ceived considerable attention both in industry and in academia.
A number of recent publications have targeted the performance
of browsers [2, 7, 10, 22, 26] with the aim of improving the user
experience. However, very few studies have addressed the issue of
web browser power consumption, although battery lifetime is an
important metric when measuring the usability of mobile devices.

There have been studies on managing power consumption by
considering the wireless link [27, 44, 46]. The works [27] and [44]
analyze the 3G protocol and suggest the reorganization of data
transmission phases. Combiningmultiple fragmented transmissions
into larger chunks gives more room for the wireless link to enter
low power states and save power during web page loading. The
work in [46] investigates the effect of transmission data rates on the
CPU power consumption. It concludes that CPU idle time, which
increases with lower data rates, has a significant impact on the
power consumption, and data rates can be used as an indicator for
DVFS. Our work is orthogonal to these techniques and will be able
to provide additional power savings when used together with them.

Furthermore, power reduction techniques exploiting web page-
specific characteristics have been explored. In [41], the impacts
on power consumption of different web page components such
as JavaScript, images and CSS have been analyzed. Here, multiple
strategies have been proposed to save power, targeting web page
re-organization and computation offloading. In [47, 48], a power
management technique for big.LITTLE platforms was introduced,
which chooses an appropriate CPU for a particular web page. It
uses a predictive model that is trained using web page primitives
such as CSS and HTML tags. Another approach profiles user and
system events to identify the quality of service (QoS) required
by a mobile web application [45]. This data is used to perform
CPU task allocation and DVFS on a big.LITTLE platform. The
main distinguishing feature of our work over the above works
is that while they use indirect information of the context – e.g.,
web page primitives or user events – we make use of a browser’s
internal information directly, which allows more effective power
management. For example, we use states such as Video or Load/Idle,
which are not detectable from user events as in [45] (see Section 5).

Recent work has proposed to perform powermanagement within
the browser itself [3]. It analyzes the energy consumption for mo-
bile web page loading and implements modifications to the browser
to save energy on a big.LITTLE platform. The work also proposes
to let the browser be aware of the underlying hardware, and di-
rectly handle thread scheduling. While this approach proved to be
effective, this requires modifications in the browser that are specific
to the hardware platform. In our opinion, the OS should handle
hardware-specific operations for portability reasons, while the user
space applications remain independent of the hardware. Our work
proposes that the browser should only convey phase information to
the OS such that the OS would perform better power management.

Further, RECON, a model of the energy consumption of mobile
web page loading [4] and a detailed analysis of the impact of the
underlying platform architecture on web browser power consump-
tion [35] have been presented. In [35], experimental results from an
HMP platform using various configurations such as varying CPU
frequencies and CPU core configurations have been discussed. The
conclusion is that by sacrificing browser performance marginally,
a significant amount of power may be saved. However, no new
power management strategy – i.e., no new governor – has been
proposed in neither [4] nor [35], while in this paper we propose a
new governor and compare it with the existing ones in Android. Our
work extends the studies in [46], [35] and [4]. By taking cues from
these results, we decided to design a new governor that directly
exploits a browser’s internal phases for power management.



ICS ’18, June 12–15, 2018, Beijing, China Nadja Peters et al.

Finally, the idea of establishing a communication channel be-
tween applications and the power manager was proposed in the
past, but targeting different applications. For example, there has
been work on mobile games [11, 13, 34], navigation and media
streaming [14, 30]. All the works exploit the application-specific
information provided by the respective application for power man-
agement. Another work proposes a more general approach that
shares our idea of phases [8]. This work implements a program-
ming language named Energy Types (ET), where energy phases
are passed to the compiler and translated to power management
strategies. To the best of our knowledge, this is the first proposal
for a browser-specific Linux kernel governor for HMP platforms.

3 WEB BROWSING CHARACTERISTICS
In this section, we discuss the background information on web
browsers that is necessary for understanding our work. First, we
explain how web pages are represented within a browser. We then
describe important implementation features of the browser that we
have used for the purpose of this work – the Chrome browser.

3.1 Web Page Representation in a Browser
The web browser is a complex application that transforms a set of
commands into the representation of the web page that we can see
on the display and that we interact with. The page consists of static
elements such as HTML and CSS that describe its layout and style.
The dynamic behaviors of web pages, such as animations or user
interactions, are mostly handled by JavaScript. The browser must
guarantee a smooth interaction between the user and the web page.

Figure 3 shows how the browser creates a usable web page. The
Document Object Model (DOM) tree is the internal representation
of the page and is generated from the current web frame. The web
frame is a snapshot of the static code and the dynamic modifications
of this code by e.g., JavaScript. From the DOM tree, a layout tree is
created, that contains information to display the web page elements
– such as style rules. The paint layer tree combines the layout
objects and groups them by the entities that will be displayed in
the same coordinate space. The graphics layer contains already
painted elements that are composited to a displayable web page
and are rendered to the display by the GPU. One graphics layer can
contain multiple paint layer trees. These data structures are created
while the page is being loaded. Whenever anything changes, e.g.,
an animation is triggered by a script, the tree structure has to be
updated, as shown in Figure 3. In general, the web browser targets
a frame rate of 60 FPS, which is synchronized with the VSync signal
of the display. During the computation of one frame, all of the above
steps have to be completed before the next VSync signal is issued.

Figure 3: Updating a web page within the browser.

3.2 Browser Implementation Details
This section outlines the relevant implementation details of the
Chrome browser. We intend to perform DVFS and power gating
of the A15, hence, it is important to understand what sort of work-
load is generated by the browser. As mentioned, we have used
the Chrome browser [20] for all of our experiments. The share of
Chrome worldwide for mobiles and tablets is almost 60% [31]. The
second largest share is hold by Safari (30%). Given these numbers,
our implementation reaches most users of open-source browsers.
However, it is generally possible to retrieve similar information
from other browsers and apply our approach to them.

Processes: Chrome is divided into three processes, the browser,
the renderer and the gpu process. As the names suggest, the browser
process provides the user interface, the renderer process builds up
the web page and the gpu process issues GPU commands to the
display. All three processes maintain child threads. The renderer
maintains a helper thread to manage web page contents: The com-
positor thread. The compositor holds a copy of the web page tree
that was created by the main renderer to ensure the responsiveness
of the browser. The main renderer can be blocked for different
reasons, e.g., JavaScript or background script loading – both highly
resource consuming actions. This would lead to delays and degrade
the user perception. To overcome this, the compositor deals with
user interactions, such as scrolling, in place of the main renderer.

Browser state information: There is a considerable amount
of information in the previously described threads, which may
be exploited by governors for the purpose of power management.
For example, the browser tracks its own loading state. This can
be used to distinguish between foreground and background load
when loading a web page, which could be useful for reducing power
without degrading user experience. The browser also maintains
information about video streams, scrolling speed, etc. However,
current browsers and also the Android system do not have any
mechanism to communicate such information with each other. In
Sections 5 and 6, we elaborate how this can be enabled and taken
advantage of for the purpose of power management.

4 ANDROID POWER MANAGEMENT FOR
HMP ARCHITECTURES

This section describes the specific HMP platform used for our exper-
iments. We also describe how the Android default power manager
works and discuss its deficiencies.

4.1 Android System Design
The structure of the Android OS that runs the Chrome browser is
shown in Figure 4. The Android OS is divided in two parts, the ap-
plication layer and the kernel. The kernel contains all the hardware
drivers and is implemented partly in assembly and mostly in C.
As in Linux, the kernel drivers can be accessed via the file system.
The applications are usually designed in Java. However, for better
performance there exists the so-called Java Native Interface (JNI),
which allows parts of the application to be implemented in C++.

4.2 Odroid-XU3 HMP Platform
The platform that we use in this work is the Odroid-XU3 [23]
development board. It features the Exynos5422 SoC, that is also



Phase-Aware Web Browser Power Management on HMP Platforms ICS ’18, June 12–15, 2018, Beijing, China

Figure 4: Android OS system structure.

built in the Samsung Galaxy S5 smartphone. The chip is based
on the ARM big.LITTLE architecture with a power-saving little
CPU, the A7, and a performance-oriented big CPU, the A15. Both
CPUs contain four separate cores. In the following, we refer to core
clusters such as A7 or A15 as CPUs and single CPU cores as core.
The frequency levels of the CPUs can be controlled separately. The
A7 can be operated from 1.0GHz to 1.4 GHz while the A15 can be
operated from 1.2GHz to 2.0 GHz. Further, the platform supports
power gating at CPU granularity, but due to Android limitations,
only the A15 can be power gated during run time. The OS on this
platform is an Android Kitkat 4.4.4 which is based on a Linux kernel
version 3.10.9. The Chrome version that we run is 61.0.3139.0.

In addition, the Odroid-XU3 board contains four INA231 sensors
that measure the power consumption of the A7, A15, the GPU and
the RAM. These sensors can be read from the Android OS directly.
We have instrumented the sensors for our measurements and mea-
sure the A7, A15 and GPU power values at approximately 1 kHz.

4.3 Power Management for HMP Platforms
The default Android power management system is divided in three
separate entities: The task scheduler, the frequency governor and
the wakelock mechanism. These entities work independently of
each other. For each CPU, there is a governor and a scheduler.
The scheduler decides which task is executed based on its priority.
The governor monitors the workload of the cores and adjusts the
frequency of the CPU depending on the workload. State-of-the-
art governors, such as ondemand and interactive, tend to ramp
up the frequency to the maximum while the workload is high.
The wakelock keeps the CPU active as long as work needs to be
done, e.g., if an application is currently running on the device. For
HMP platforms, an additional HMP scheduler was designed, which
decides whether a task is allocated to the A7 or the A15. It prefers
the A7, but migrates a task to the A15 if the utilization of the task
surpasses a certain threshold. The HMP scheduler only considers
active CPU cores and does not migrate a task to power gated cores.

4.4 Android Power Management Limitations
The drawback of current Android powermanagement is that it lacks
communication channels among the power management entities
in the kernel and the user applications. For example, a web browser
cannot deliver the information about performance requirements
to the underlying operating system to meet user QoS expectations.
This results in over- or under-achieving the performance goals, e.g.,
frame rate or load time, and losing the potential for additional power
reduction as we have seen in the previous illustrative example.

Another important issue is that Android default governorsmainly
use the lowest and the highest frequency levels, while many CPUs
allow a variety of frequency levels. Considering the fact that the

Table 1: Frequency, idle power and voltage of the A15.

Freq. [GHz] Idle Pow. [W] Voltage [V]
1.2 0.26 1.0
1.3 0.30 1.0
1.4 0.33 1.0
1.5 0.37 1.0
1.6 0.44 1.1
1.7 0.51 1.1
1.8 0.58 1.1
1.9 0.69 1.2
2.0 0.88 1.3

power consumption at high frequency levels is disproportionally
higher than the associated performance gains, such a strategy is
not beneficial for power savings. Table 1 shows the A15 frequen-
cies and idle power consumptions corresponding to their voltage
levels. While the increase in frequency from 1.2GHz to 2.0 GHz
would result in a maximum performance gain of 1.67, the power
consumption increases by a factor of 3.38x. Further, the default
governor’s reluctance to power gate the A15 processor increases
the system’s power consumption. Many applications such as text
messaging, timers, etc. can be run solely on the little CPU without
any adverse performance impact. However, instead of putting the
big CPU to sleep during such occasions, the A15 remains in an idle
state in order to avoid the high wakeup delays. We have measured
that a power-gated A15 consumes only about 0.045W, while its idle
power is 0.26W at the lowest frequency level (a factor of 6x larger).

5 WEB BROWSING PHASES
In this section, we explain the browsing phases that we exploit
for power management. First, we introduce the user-centric per-
formance model RAIL in Chrome. Then, we define phases with
different performance requirements based on the RAIL model.

5.1 User-Centric Performance Model RAIL
Within the Chrome browser, the user performance requirements
are determined by the so-called user-centric RAILmodel [21]. RAIL
aims to provide a fast and smooth browsing experience. It defines
the performance targets for the Response, Animation, Idle and Load
(RAIL) phases as shown in Table 2, that have been adapted from the
Human-Computer Interaction (HCI) domain [32]. Generally, there
are two metrics to classify performance or QoS for web browsing:
The response latency and the frame rate. The response latency is the
time that the user needs to wait for an action to complete, e.g., for a
web page to finish loading. The frame rate, usually measured in FPS,
is used as a metric for animations such as scrolling and video play.
For example, animations should be handled within 16.7ms which
means that the target frame rate is 60 FPS. However, the beginning
of an animation may take up to 100ms. It is also notable that the
maximum web page loading time on mobiles is restricted to 5 s.
This latency only refers to the loading time that the browser needs
to make the page ready to use (foreground load). The background
scripts, associated with advertisements etc., which may still be exe-
cuted afterwards, are not bound by this constraint. This background
load is not visible to the user and the total loading time of a page can
be longer than the bound. RAIL is the desired behavior of Chrome,



ICS ’18, June 12–15, 2018, Beijing, China Nadja Peters et al.

Table 2: Summary of the RAIL model [21].

RAIL Step Latency (User) Actions
Response ,
Animation

< 16ms
User drags finger and app’s response
is bound to finger position, ongoing
page scroll/animation

Response ,
Animation

< 100ms User taps an icon/button, initiates
page scroll, animation begins

Idle – Background activities

Load < 5 s Page ready to use on mobiles (fore-
ground load only)

but the browser does not necessarily meet the target values defined
by this model. For our power management strategy, we take a cue
from the RAIL model to define corresponding browsing phases.

5.2 Definition of Browsing Phases
In this section, we introduce the phases that we have defined based
on web browsing activities and the characteristics of the HMP
architecture of our hardware platform.

5.2.1 Regular Browsing Phases. Naturally, web browsing con-
sists of a sequence of different and repetitive actions. The RAIL
model itself introduces phases such as response, animation, idle
and load. We have defined our own phases (→ phase) based on the
RAIL model and extended it where needed.

One of the most important browsing actions is loading a web
page (→ phase Load). As already mentioned, (foreground) load is
defined as the time it needs to build up the page until the user is
able to interact with it. The browser provides a state value that in-
dicates when this foreground load has finished. Background scripts
may still be processed afterwards. This may generate high work-
load that is not critical for the user perception. Consequently, if
the background scripts finish without any user interaction, this
results in a temporary waiting state (→ phase Load/Idle). When
all background actions have completed, the system enters a true
idle state (→ phase Idle). Normally, there is interaction between
the user and the web page, e.g., scrolling actions (→ phase Scroll).
As a result of scrolling or even during idling, new scripts within
the web page can be triggered, e.g., loading new Facebook posts.
This can cause network traffic and, as a consequence, additional
workload (→ phase Load/Intermediate). Further, the user can also
trigger video play (→ phase Video). Both, Scroll and Video phases
are derivatives of the RAIL mode animation.

5.2.2 Touch Events. One additional browsing phase results from
the RAIL mode response, the (→ phase Touch). Responsiveness
means that events triggered by the user are handled as fast as
possible. As mentioned in the previous sections, this will pose a
challenge if power gating the A15 shall be exploited to save energy,
because the time overhead until the A15 cores are active again
would hinder fast response to user input. This does not cause a
problem for governors that do not power gate the A15.We introduce
a workaround to ensure that the A15 is available on user interaction,
because we assume that the workload will rise significantly after a
touch event. Therefore, we detect touch events within the kernel
and power up the A15 to prevent additional delays caused by power
gating (see Section 6 for details).

6 PHASE-AWAREWEB BROWSER POWER
MANAGER

Now that we have defined a number of phases, we propose an
individual power management strategy for each of these phases. We
also describe the implementation of the proposed browser governor
within the Android OS.

6.1 Phase-aware Power Management Strategies
As depicted in Figure 5, our power management strategies are based
on the workload and the user requirements in each phase. In our
illustrative example, we have shown that the power consumption
of the A15 is considerably higher than the power consumption of
the A7. Hence, our main goal is to restrict the usage of the A15 and
lower the power consumption by applying DVFS and power gating
while maintaining a good user experience. We define the user re-
quirements based on the RAIL model. In the following, we describe
what type of power manager we have implemented in each phase
and why. Note that when we refer to workload, we mean the work-
load on one core of a particular CPU. A high workload implies that
one particular thread is the bottleneck of an application. Generally,
we have implemented our DVFS strategy following the principles of
the ondemand governor. This means that we increase the CPU fre-
quency if the workload exceeds a given threshold. We have defined
this threshold as 90%, as used in the interactive governor, while
it is 80 % for the ondemand governor. A lower load threshold will
lead to an under-utilization of the CPU. Hence, all governors set
a threshold of 80-90% and we follow the same practice. Moreover,
we immediately decrease the CPU frequency when the workload is
below the threshold. For brevity, we refer to this strategy as per-
forming DVFS in the following. Additionally, our governor turns on
and off the A15 by monitoring the phase and CPU workload, so that
the default scheduler can migrate high workload tasks to the A15
when it is available. A transition graph that depicts when and why
a phase change occurs is shown in Figure 6. Note that our governor
performs a strategy comparable to the ondemand governor, when
no browser workload is currently executing. However, this strategy
can be easily adapted due to a modular source code design.

User Input

Appl. Phase

Network

SoC Charact.

CPU Workload

Browser
Power

Manager

Power
Gating

DVFS

Figure 5: Browser governor information flow.

Idle

Touch Video/ScrollLoad

Load/Id. Load/In.

B
U

N

B

B

B/WL

B
Figure 6: Phase state transition diagram of the browser gov-
ernor. The transitions are based on user inputs (U), browser
state changes (B), network traffic (N) or CPUworkload (WL).



Phase-Aware Web Browser Power Management on HMP Platforms ICS ’18, June 12–15, 2018, Beijing, China

Idle: There is neither interaction from the user nor any network
activity. We minimize the A7 frequency and turn off the A15.

Load/Intermediate: This is an idle state that deals with in-
creased workload based on network activity. Increased network
activity can be triggered by scrolling or animations. For example,
scrolling down the Facebook page can trigger the download of new
contents that need to be displayed, even when the scroll action is
over. To deal with such scenarios, we turn on the A15 and allow
the governor to perform DVFS for the A7 based on the workload.

Load: The load state is forwarded from the browser to the gover-
nor. We know that the load action is highly resource demanding. To
guarantee the best user experience, we ramp the frequency of both
CPUs up to the maximum when this phase is entered. Afterwards,
the frequency of both CPUs is adjusted by performing DVFS.

Load/Idle: Load/Idle can only be entered when the browser
reports that the actual Load phase is over. This phase becomes
active if the workload remains high, although the load itself has
finished. This may be due to background scripts. In this phase,
we manage the frequency of the A7 by performing DVFS and fix
the A15 frequency to its minimum possible value to save energy.
By keeping the A15 active, we do not create a bottleneck in case
the user starts interacting with the browser. The phase changes to
Idle when the workload of both the A7 and the A15 falls below a
minimum threshold of 200 % (25 % on each core). This value has
been determined empirically and may be fine-tuned.

Touch: This phase was introduced to increase the responsive-
ness of the browser during phase transitions from Idle to interactive
phases such as Scroll or Load. It is needed because powering up
the A15 comes with a time penalty. Without the Touch phase, the
browser governor would wait for the browser to process the touch
event and calculate the next phase, e.g., Load. The regular touch
propagation path in our setup is shown in Figure 7 on the left. It
works for the default governors because they only need to ramp up
the frequency based on the workload as explained in Section 4.3.
However, the browser governor power gates the A15, which adds
significant wakeup overhead to the touch event response time.

To solve the above issue, we power up the A15 at touch start
and go back to Idle after a timeout of δ = 1.5 s if no other phase
change has occurred in the meantime. The same philosophy as used
by the interactive governor is applied here: There is likely to be
large workload and tight response time constraints after a touch
event. We have determined this timeout parameter δ as follows.
First, we have measured that the A15 needs on average of 9ms for
startup and 127ms for power down. In the extreme case that the
A15 needs to power back up immediately after a shutdown com-
mand was issued, there is a delay of 136ms. Note that the timing
overhead is the critical aspect why power gating is not practiced by
the Android default governors. However, turning the A15 off and
immediately back on again does not make a significant difference in
energy consumption. We have defined the startup time as the time
between calling the cpu_up() function for a CPU and its registra-
tion within the cpufreq module. Equivalently, we have defined the
power down time as the time between a call to cpu_down() and its
de-registration within the cpufreq module. Second, we have mea-
sured the load time for different δ = {1.0, 1.5, 2.0} s. While there
was a significant performance degradation for δ = 1.0 s, there was
no performance improvement for δ = 2.0 s compared to δ = 1.5 s.

Figure 7: Regular touch event propagation (left) and browser
governor (right) within the Android OS.

Scroll: The Scroll phase power management is based on the
scroll speed and the frame rate. Both are passed from the browser
to the governor. In general, we have observed that scrolling is not a
costly operation. This is due to the division of the browser rendering
engine into the main renderer thread and the compositor, as we
have described in Section 3.2. As suggested by the RAIL model, we
target an FPS value of 60.

The power management strategy is based on monitoring the
frame rate and the workload. We have chosen to work with work-
load and frame rate ranges to avoid an oscillation of the CPU fre-
quency. Hence, we are effectively targeting a value of 55 ± 5 FPS.
If the workload is above 90% and the frame rate below 50, we in-
crease the frequency. If the workload is below 80% and the frame
rate above 55, we decrease the frequency. The A15 is turned on if
the A7 cannot meet the FPS requirements by itself. Note that we
usually enter the Scroll phase from the Touch phase. Hence, the A15
is initially turned on.

Video: We enter the Video phase based on browser information.
As the browser does not provide the current video target frame
rate, we target 30 FPS. This is a commonly used setting on video
platforms such as YouTube. Otherwise, the power management
strategy is the same as for the Scroll phase. We are aware that there
exist videos with a higher FPS rate. However, we have postponed
such detection strategies to future work.

6.2 Power Manager Implementation
In this section, we describe the implementation details of the pro-
posed power manager. We explain the software changes that we
made to the Linux kernel in the Android OS and the browser.

Kernel modifications:We have implemented the phase-aware
power manager as a CPU frequency governor, an own module
residing in the cpufreq domain of the Linux kernel. The system
structure is shown in Figure 7 on the right. Within the governor, we
expose a so-called ioctl device to the system, which can be accessed
by the browser to pass information to the governor (frame rate,
etc.). Such information is used to control the frequency of the CPUs,
as well as the power state of the A15 within the implementation of
the previously described power management strategies.

As already mentioned in the previous section, we have also im-
plemented an additional kernel module that forwards user input
information directly from the corresponding touch driver to our
governor. This shortcut is depicted in Figure 7 on the right. One may
note that such modules already exist in other Android systems [40].
Unfortunately, this was not the case in our platform at the time



ICS ’18, June 12–15, 2018, Beijing, China Nadja Peters et al.

of writing. Hence, we have implemented our own module that
propagates the start of touch events directly from the touch screen
driver to our governor. To minimize modifications of existing dri-
vers, we have instrumented so-called kernel notifier chains. Using
this method, any module (in our case the governor) can register
itself to be notified whenever a particular event happens. The noti-
fication process can be triggered by any other module, for example
by different touch screen drivers. We make use of this shortcut to
alleviate the overhead caused by power gating the A15.

Browser modifications: In order to deliver phase information
to the kernel governor, we also had to modify the Chrome browser
appropriately. While the kernel governor provides the ioctl device
itself, the browser passes data to the governor by writing to this
device. The ioctl device can be accessed by standard file writing
operations. The challenging part on the browser side was to actually
find the right information within the browser source code. The
information that we pass to the governor is the load state, frame
rate, scrolling speed and video information.

7 EXPERIMENTAL RESULTS
In this section, we present our experimental setup and the resulting
energy savings for the different web browsing phases. We show that
a significant amount of energy can be saved –whichwould translate
into a longer battery life – by exploiting the phase information of
the browser for power management. Note that we have extracted
the frame rate and the loading times for the measurements using the
Chrome trace tool. The web pages were chosen partly from Alexa
Top 50 web pages [1] and the Google Telemetry test suite [19].

7.1 Idle Phase
To measure the energy consumption during the Idle phase, we
waited for the Load/Idle phase to complete and then measured the
power consumed over a period of 10 seconds. The results obtained
are shown in Figure 8. Each bar has three sections corresponding
to the power consumed by A7 (bottom), A15 (middle) and the GPU
(top). In Figure 8 and some of the next figures, the GPU power
consumption is barely visible. As the system is idling, the results for
different web pages are very similar. Some pages – Amazon, CNN
and BBC – exhibit a slightly higher energy consumption. This is due
to workload caused by animations. The maximum energy savings
using our proposed browser governor are 57.4 % (CNN) compared
to the interactive and 54.2 % (Amazon) compared to the ondemand
governor. The mean savings are 52.0 % and 51.5 %, respectively.
Figure 8 clearly shows, that the high savings result from the power
down of the A15. These results emphasize the importance of the
power gating strategies that we adopted. These strategies result in
large energy savings and consequently increase the battery life time
of the mobile device. Note that we would not be able to apply such
aggressive power saving techniques if we were not aware of the
current browsing phase. Therefore, these results clearly highlight
the effect of sharing the phase information for power management.

7.2 Load Phase
Here, we measured the time and the energy from activating a link to
a web page until this page has finished the foreground load. The link
was activated by tapping on the screen with a finger. By designing

0

1

2

3

4

5

Id
le

 E
ne

rg
y 

[J
]

A7 (bottom), A15 (center), GPU (top)

interactive ondemand browser

Figure 8: Idle phase energy consumption divided by con-
sumers (A7, A15, GPU) for different governors.

0

2

4

6

8

L
oa

d 
T

im
e 

[s
]

interactive ondemand browser

0

5

10

15

20

L
oa

d 
E

ne
rg

y 
[J

] Energy: A7 (bottom), A15 (center), GPU (top)

Figure 9: Load phase energy consumption (bottom) divided
by consumers A7, A15 and GPU and load time (top).

the experiment in such a fashion, we also evaluate the effect of the
Touch phase. Using our setup, we can extract the start time of the
touch event directly from the kernel. The end of the foreground load
is provided by the browser. The results are presented in Figure 9.
The browser governor achieves significant energy savings for the
Load phase – at maximum 36.3 % over the ondemand (YouTube) and
42.5 % over the interactive governor (Amazon). The mean savings
achieved by our governor over the ondemand is 25.3 % and over
the interactive governor is 33.4 %. On average, the loading time
increased by 0.4 s (8.1 %) over the ondemand and by 1.1 s (28.2 %)
over the interactive governor. There are two reasons for this: First,
we perform a more aggressive DVFS strategy compared to the
interactive governor. Second, the internal browser load state is
activated considerably late. As a result, our Load phase power
management technique becomes active later than the workload
based techniques in the Android default governors. This problem
can not be completely alleviated by the Touch phase. However,
the Touch phase certainly reduces the loading time in our case and
without it the delay would have been much longer. We consider this
additional overhead acceptable since it is not always perceptible
and the energy savings are considerable.

7.3 Load/Idle Phase
The Load/Idle phasemarks the time that a web page needs to process
potential background scripts after the foreground load has finished.
This phase is derived solely from the CPU workload, and there is no
explicit indicator from the browser. Hence, we analyzed the CPU



Phase-Aware Web Browser Power Management on HMP Platforms ICS ’18, June 12–15, 2018, Beijing, China

0

20

40

60

80

100

R
el

. L
oa

d 
Id

le
 E

ne
rg

y 
[%

] A7 (bottom), A15 (center), GPU (top)
interactive ondemand browser

Figure 10: Normalized (see Section 7.3) background load en-
ergy consumption. The energy for eBay is zero.

workload to estimate the Load/Idle phase energy for the different
governors. We defined the end of this phase as the time when
the A15 workload has been zero for more than 2 s. The results
are shown in Figure 10. As the absolute background load heavily
varies across web pages, for each web page, we have normalized
the energy consumption with respect to the governor for which the
energy consumption is the maximum and plotted these normalized
values. For example, for YouTube, the energy consumption with
the interactive governor is the highest, and hence, it is at 100, while
for BBC the ondemand is at 100. On average, the proposed browser
governor saves 44.4 % and 50.5 % energy over the ondemand and
the interactive governors, respectively. Note that some pages do not
trigger any background scripts at all, e.g., eBay. As in the Idle phase,
this test emphasizes the benefits of a phase-aware power manager.
Again, we are able to demonstrate that there exists a large potential
for energy savings with negligible impact on user-perceived QoS.

7.4 Video Phase
We played nine different videos from the YouTube platform for one
minute each to evaluate the energy consumption of the video phase.
We chose three videos showing slowlymoving contents such as slide
shows or barely moving contents. Further, we chose three videos
with medium moving contents such as talk shows or animated
movies. Last, we chose three videos containing fast action scenes.
The energy consumption and the achieved frame rates are shown
in Figure 11. As mentioned in Section 6.1, we target 30 FPS in this
phase. The mean frame rate achieved by the interactive governor

0

20

40

60

V
id

eo
 E

ne
rg

y 
[J

] Energy: A7 (bottom), A15 (center), GPU (top)

1

1.5

2

V
id

eo
 E

n.
/F

r. 
[J

] interactive ondemand browser

25

30

35

V
id

eo
 F

P
S

Figure 11: Video phase energy consumption over 60 s (bot-
tom), frame rate (center), and energy per frame (top).

is 33.5, while the ondemand and the browser governors achieve
32.2 and 31.2 FPS, respectively. Although the frame rates across
the different governors vary only slightly, the browser governor
does a better job with power management as can be seen from
the A15 power consumption (bottom plot in Figure 11). It saves
up to a maximum of 26.4 % energy over ondemand and up to 35 %
over the interactive governor among all the 9 evaluated videos. The
mean savings applying the browser governor are 19.2 % over the
ondemand and 29.0 % over the interactive governor. For fairness
across achieved FPS, we provide the energy per frame value (top of
Figure 11), which is constantly lower for our governor. This value
expresses how much energy was spent on calculating one frame.
The browser governor consumes 16.6 % less energy per frame than
the ondemand and 23.6 % less than the interactive governor.

7.5 Scroll Phase
To evaluate the Scroll phase of the browser governor, we have
recorded one long scroll gesture using the reran [16] tool and re-
played it for all the web pages under test. As mentioned in Sec-
tion 6.1, the Touch phase usually precedes the Scroll phase. This is
not true when we simulate the gesture with reran, because reran
does not trigger the touch driver. To work around this issue, we
turned on the A15 before the test was performed. The total test
duration was 2.6 s. As for the Video phase, we have measured the
energy and the frame rate as performance indicators. The results
are shown in Figure 12. The mean frame rate achieved by the in-
teractive governor is 54.9, while the ondemand and the browser
governors achieve 51.6 and 52.5 FPS, respectively. On average, the
browser governor saves 25.1 %more energy over the interactive gov-
ernor and consumes approximately the same energy (0.22 % more)
as the ondemand governor. Our governor sometimes consumes
more energy because it explicitly targets an FPS value between 50
and 60, while the ondemand governor is oblivious to FPS. However,
our aggressive power management utilizing A15 power gating can
lead to non-optimal FPS results, as for example for Google+. We
plan to improve this in future work. Comparing the energy per
frame values, the browser governor outperforms the interactive
governor by 21 % and the ondemand governor by 1.7 % on average.

Sc
ro

ll
 F

P
S 

Sc
ro

ll
 E

ne
rg

y 
[J

]

Energy: A7 (bottom), A15 (center), GPU (top)

S
cr

ol
l E

n.
/F

r. 
[J

] interactive ondemand browser

0
0.5

1
1.5

2
2.5

30
40
50
60

0

0.01
0.02
0.03
0.04

Figure 12: Scroll phase energy consumption (bottom), frame
rate (center) and energy per frame (top).



ICS ’18, June 12–15, 2018, Beijing, China Nadja Peters et al.

While the browser governor sacrifices only 4.5 % performance (in
FPS) compared to the interactive and performs even slightly better
than the ondemand governor, the energy savings are significant.
This shows that the browser governor performs well not only for
different idle phases but also during interactive phases.

8 CONCLUDING REMARKS
In this paper, we introduced a phase-aware power manager for the
Chrome browser. Towards this, we defined multiple phases, which
differ in user performance requirements, and applied phase-specific
power management strategies accordingly. We implemented a new
governor that manages CPU frequencies and power states within
an HMP platform, the Odroid-XU3 board, based on the information
provided by the browser. We have shown that there exists a large
potential for CPU energy savings when a browser’s phase-specific
characteristics are accounted for power management. In particular,
up to 57.4%̇ energy can be saved in idle phases, and 35% in in-
teractive/animation phases without noticeable degradation in user
experience (albeit we did not conduct a user study, which is a future
plan). The results also show that the performance overhead of our
technique – mainly related to the power gating overhead associated
with A15 – is manageable. As future work, we plan to generalize this
power manager, such that it can be used by all Android applications.

Acknowledgments: This work was supported by Google Inc.

REFERENCES
[1] Alexa Internet, Inc. The top 500 sites on the web. http://www.alexa.com/topsites,

2016.
[2] Brave Software Inc. Brave. https://brave.com/, 2017.
[3] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Rethinking energyperformance

trade-off in mobile web page loading. GetMobile: Mobile Computing and Commu-
nications, 20(2), 2016.

[4] Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi. Deconstructing
the energy consumption of the mobile page load. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 1(1), 2017.

[5] M. Chan. cpufreq: interactive: New ’interactive’ governor. https://lwn.net/
Articles/662209/, 2015.

[6] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smart-
phone energy drain in the wild: Analysis and implications. In ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, 2015.

[7] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer. Memento mori: Dynamic
allocation-site-based optimizations. SIGPLAN Not., 50(11), 2015.

[8] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy types. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2012.

[9] S. K. Datta, C. Bonnet, and N. Nikaein. Android power management: Current and
future trends. In The First IEEEWorkshop on Enabling Technologies for Smartphone
and Internet of Things (ETSIoT), 2012.

[10] U. Degenbaev, J. Eisinger, M. Ernst, R. McIlroy, and H. Payer. Idle time garbage
collection scheduling. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2016.

[11] B. Dietrich and S. Chakraborty. Managing power for closed-source android os
games by lightweight graphics instrumentation. In Annual Workshop on Network
and Systems Support for Games (NetGames), Nov 2012.

[12] B. Dietrich and S. Chakraborty. Forget the battery, let’s play games! In IEEE
Symposium on Embedded Systems for Real-time Multimedia (ESTIMedia), 2014.

[13] B. Dietrich and S. Chakraborty. Lightweight graphics instrumentation for game
state-specific power management in Android. Multimedia Systems, 20(5), 2014.

[14] J. Flinn andM. Satyanarayanan. Energy-aware adaptation for mobile applications.
In ACM Symposium on Operating Systems Principles (SOSP), 1999.

[15] T. Garsiel. How browsers work. http://taligarsiel.com/
Projects/howbrowserswork1.htm, 2009.

[16] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and touch-
sensitive record and replay for android. In 35th International Conference on
Software Engineering (ICSE), 2013.

[17] Google Inc. Nexus 5X. https://www.google.com/nexus/5x/, 2015.

[18] Google Inc. There’s an app for that...the browser, 2015.
[19] Google Inc. Catapult. https://chromium.googlesource.com/catapult/, 2017.
[20] Google Inc. Chrome. https://www.google.com/intl/en/chrome/browser/desktop/

index.html, 2017.
[21] Google Inc. The RAIL Performance Model. https://developers.google.com/web/

tools/chrome-devtools/profile/evaluate-performance/rail, 2018.
[22] S. K. Gudla, J. K. Sahoo, A. Singh, J. Bose, and N. Ahamed. Framework to improve

the web application launch time. In IEEE International Conference on Mobile
Services (MS), 2016.

[23] Hardkernel co., Ltd. Odroid-XU3. http://www.hardkernel.com, 2015.
[24] Y. Huang, S. Chakraborty, and Y.Wang. Using offline bitstream analysis for power-

aware video decoding in portable devices. In ACM International Conference on
Multimedia (MM), 2005.

[25] E. Kim, Y. Ko, and S. Ha. An adaptive frames per second-based CPU-GPU
cooperative dynamic voltage and frequency scaling governing technique for
mobile games. J. Low Power Electronics, 12(4):309–322, 2016.

[26] A. Knox and P. Seeling. Mobile web page characteristics: Delivery and stabil-
ity considerations. In IEEE Consumer Communications Networking Conference
(CCNC), 2017.

[27] P. Kulkarni and P. Jaini. Android phone performance enhancement by energy
efficient web browser. In Global Conference on Communication Technologies
(GCCT), 2015.

[28] W. Y. Liang and P. T. Lai. Design and implementation of a critical speed-based
dvfs mechanism for the android operating system. In International Conference on
Embedded and Multimedia Computing, 2010.

[29] M. Meeker. KPCB Internet Trends. http://www.kpcb.com/blog/2015-internet-
trends, 2015.

[30] M. Martins and R. Fonseca. Application modes: A narrow interface for end-user
power management in mobile devices. InWorkshop on Mobile Computing Systems
and Applications (HotMobile), 2013.

[31] NetMarketShare. Browser Market Share. https://netmarketshare.com, 2018.
[32] J. Nielsen. Usability Engineerings. Morgan Kaufmann, 1993.
[33] V. Pallipadi and A. Starikovskiy. The ondemand governor. In Linux Symposium,

2006.
[34] A. Pathania, A. E. Irimiea, A. Prakash, and T.Mitra. Power-performancemodelling

of mobile gaming workloads on heterogeneous MPSoCs. In Annual Design
Automation Conference (DAC), 2015.

[35] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer, and D. Clifford. Web
browser workload characterization for power management on hmp platforms.
In International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2016.

[36] A. Pilon. Smartphone battery survey: Battery life considered important. https:
//aytm.com/blogmarket-pulse-research/smartphone-battery-survey/, 2016.

[37] Qualcomm Technologies, Inc. Qualcomm® SnapdragonTM 808. https://www.
qualcomm.com/products/snapdragon/processors/808, 2015.

[38] B. Raman and S. Chakraborty. Application-specific workload shaping in
multimedia-enabled personal mobile devices. ACM Trans. Embedded Comput.
Syst., 7(2):10:1–10:22, 2008.

[39] Samsung Electronics Co., Ltd. Mobile Processor Exynos 9 Series
(8895). http://www.samsung.com/semiconductor/minisite/Exynos/Solution/
MobileProcessor/Exynos_9_Series_8895.html, 2017.

[40] The Linux Foundation. CPU boost.
[41] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who killed my

battery?: Analyzing mobile browser energy consumption. In 21st International
Conference on World Wide Web (WWW), 2012.

[42] A. Wei. 10 nm process rollout marching right along. http://www.techinsights.
com/about-techinsights/overview/blog/10nm-rollout-marching-right-along/,
2017.

[43] J. Yu, H. Han, H. Zhu, Y. Chen, J. Yang, Y. Zhu, G. Xue, and M. Li. Sensing human-
screen interaction for energy-efficient frame rate adaptation on smartphones.
IEEE Transactions on Mobile Computing, 14(8), 2015.

[44] B. Zhao, W. Hu, Q. Zheng, and G. Cao. Energy-aware web browsing on smart-
phones. IEEE Transactions on Parallel and Distributed Systems, 26(3), 2015.

[45] Y. Zhu, M. Halpern, and V. Reddi. Event-based scheduling for energy-efficient
qos (eqos) in mobile web applications. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[46] Y. Zhu, M. Halpern, and V. J. Reddi. The role of the cpu in energy-efficient mobile
web browsing. IEEE Micro, 35(1), 2015.

[47] Y. Zhu and V. Reddi. High-performance and energy-efficient mobile web browsing
on big/little systems. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2013.

[48] Y. Zhu, A. Srikanth, J. Leng, and V. J. Reddi. Exploiting webpage characteristics
for energy-efficient mobile web browsing. IEEE Computer Architecture Letters,
13(1), 2014.

http://www.alexa.com/topsites
https://brave.com/
https://lwn.net/Articles/662209/
https://lwn.net/Articles/662209/
https://www.google.com/nexus/5x/
https://chromium.googlesource.com/catapult/
https://www.google.com/intl/en/chrome/browser/desktop/index.html
https://www.google.com/intl/en/chrome/browser/desktop/index.html
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail
http://www.hardkernel.com
https://netmarketshare.com
https://aytm.com/blogmarket-pulse-research/smartphone-battery-survey/
https://aytm.com/blogmarket-pulse-research/smartphone-battery-survey/
https://www.qualcomm.com/products/snapdragon/processors/808
https://www.qualcomm.com/products/snapdragon/processors/808
http://www.samsung.com/semiconductor/minisite/Exynos/Solution/MobileProcessor/Exynos_9_Series_8895.html
http://www.samsung.com/semiconductor/minisite/Exynos/Solution/MobileProcessor/Exynos_9_Series_8895.html
http://www.techinsights.com/about-techinsights/overview/blog/10nm-rollout-marching-right-along/
http://www.techinsights.com/about-techinsights/overview/blog/10nm-rollout-marching-right-along/

	Abstract
	1 Introduction
	2 Related Work
	3 Web Browsing Characteristics
	3.1 Web Page Representation in a Browser
	3.2 Browser Implementation Details

	4 Android Power Management for HMP Architectures
	4.1 Android System Design
	4.2 Odroid-XU3 HMP Platform
	4.3 Power Management for HMP Platforms
	4.4 Android Power Management Limitations

	5 Web Browsing Phases
	5.1 User-Centric Performance Model RAIL
	5.2 Definition of Browsing Phases

	6 Phase-Aware Web Browser Power Manager
	6.1 Phase-aware Power Management Strategies
	6.2 Power Manager Implementation

	7 Experimental Results
	7.1 Idle Phase
	7.2 Load Phase
	7.3 Load/Idle Phase
	7.4 Video Phase
	7.5 Scroll Phase

	8 Concluding Remarks
	References

