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ABSTRACT: Risk protection measures against natural hazards are typically costly structures with a 
long lifespan. Their design should therefore take into account possible future changes in risk, e.g. due 
to socio-economic development and climate change. These future changes are uncertain, and one 
possibility for coping with these uncertainties is building adaptable risk protection systems, which 
allow later alterations with low cost. The challenge is to quantitatively evaluate how cost-effective such 
systems are. This paper proposes a formal quantitative measure of adaptability and it introduces a 
general decision model using Bayesian decision analysis for quantification and optimization of the risk 
protection systems taking into account their adaptability. The decision model is applied on a numerical 
example of risk-based optimization of flood protection measures under different scenarios of climate 
change. The numerical investigations show that for non-adaptable measures, a conservative design is 
recommendable, while for adaptable systems, the optimal initial capacity is lower because their 
potential future adjustments are not costly. Furthermore, the value of adaptability is evaluated, and it is 
found that building adaptable measures is not significantly more cost-effective. It is concluded that in 
most situations, a conservative design is preferable, as the additional risk reduction due to the 
conservative design is beneficial under all possible future scenarios. 

1. INTRODUCTION 
Risk mitigation measures, such as flood and 
landslide protection infrastructure, hazard 
zonation of built areas and hazard proofing of 
individual structures, reduce the probability and 
consequences of natural and man-made hazards. 
These measures often have a life-span of many 
decades. Their design and planning thus should 
take into account the possible future change in 
risk that is associated with uncertain future 
climate, socioeconomic development and 
societal preferences and needs (Mokrech et al., 
2012; Garré and Friis-Hansen, 2013).  

Research in developing methods for 
designing robust and/or adaptable risk mitigation 
measures and infrastructures is an active field 

(Vrijling et al., 2009; Voortman and Veendorp, 
2011; Hall et al., 2012; Georgakakos et al., 2012; 
Kasprzyk et al., 2013; Haasnoot et al., 2013).  In 
this paper, adaptability is understood as the 
ability of a system to be adjusted to new needs 
and requirements in the future without excessive 
costs.  

Adaptable systems can be associated with 
higher initial costs than classical non-adaptable 
systems. For example, adaptable dikes for flood 
protection require a reserved space (i.e. land 
buyout and building restrictions) along the dike 
to allow future extension and heightening of the 
dike (Vrijling et al., 2009). Likewise, building an 
adaptable sewage system may require higher 
initial investments to central elements of the 
system to ensure sufficient capacity for future 
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extensions. In the long term, building an 
adaptable system may be considerably cheaper 
than a conservative design for a worst-case 
scenario or for a wide range of possible 
scenarios.  

The challenge tackled in this paper is the 
quantitative evaluation of the cost-effectiveness 
of different risk mitigation measures, taking into 
account their (non-)adaptability. Classical static 
approaches for evaluating costs and benefits of 
alternatives do not take into account the future 
change in uncertainty and the value of 
adaptability thus cannot be quantified. First 
attempts to compare adaptable with non-
adaptable strategies in a quantitative way were 
made only recently (e.g. Woodward et al., 2014; 
Yzer et al., 2014).   

It is the aim of this paper to propose a 
formal quantitative measure of adaptability 
(Section 2) and to introduce a general decision 
framework for quantification and optimization of 
the systems taking into account their adaptability 
(Section 3). The proposed framework uses 
Bayesian decision analysis (BDA). BDA 
provides a flexible probabilistic framework for 
modeling a wide range of  decision problems in a 
rigorous way, without putting restrictions on the 
probabilistic models to be used; it has been 
widely used, e.g., in inspection planning for 
structures and infrastructure (Corotis et al., 2005; 
Straub and Faber, 2005) or in health risk 

management (Graham et al., 2002). In Section 4, 
an application of the proposed decision 
framework is demonstrated on the example of 
risk-based optimization for flood protection 
measures.  

2. ADAPTABILITY OF RISK MITIGATION 
SYSTEMS 

A measure of adaptability should express how 
costly it is to adjust the capacity 𝑙 of a system at 
a future time 𝑡, relative to the initial investment 
at time 𝑡!. The capacity can be, e.g., the height of 
a flood protection dike in [m], the total area of a 
hazard zone in [km2], or the capacity of sewage 
system in [m3/day]. The capacity can be a scalar 
or vector value and can be defined on a 
continuous or discrete scale.  

We propose to define the adaptability 𝑎 of a 
system as a function of its original capacity 𝑙!" 
and the adjusted capacity 𝑙!": 

𝑎 𝑙!" , 𝑙!" = !! !!" !!! !!",!!"   
!! !!"

                         (1) 

where 𝑐! 𝑙  is the cost of building the system to 
capacity 𝑙 initially, i.e. when the system is first 
implemented; 𝑐! 𝑙!" , 𝑙!"  is the cost of a future 
adjustment of the system capacity from 𝑙!"  to 
𝑙!". For most systems, the adaptability 𝑎 takes a 
value between 0 and 1, where 0 corresponds to a 
non-adaptable system and 1 to a fully adaptable 

 
Figure 1: Illustration of the costs for fully adaptable vs. non-adaptable measures: (a) initial costs when the 
system is first implemented, (b) adjustment costs for adjustment of the system to new needs in the future.  
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system1. For systems with zero adaptability, the 
cost of increasing the capacity to 𝑙!" is identical 
to an entirely new measure with this capacity. 
For measures with adaptability 1 (fully adaptable 
measures), the cost of increasing the protection 
to 𝑙!"  equals the difference in cost between 
building to 𝑙!"  initially and building to 𝑙!" 
initially, i.e. no additional costs are incurred by 
building in two steps.  

For systems with a fixed value 𝑎 , it is 
possible to express the costs of adjusting the 
capacity from 𝑙!"  to 𝑙!"  as a function of 
adaptability based on Eq. (1): 

𝑐! 𝑙!" , 𝑙!"   ,𝑎 = 𝑐! 𝑙!" − 𝑎 ∙ 𝑐! 𝑙!"  (2) 

Initial and adjustment costs for different 
degrees of adaptability are illustrated in Figure 1, 
assuming that the capacity can only be increased, 
i.e. 𝑙!" < 𝑙!".  

3. BAYESIAN DECISION MODEL FOR 
ADAPTABLE SYSTEMS 
A Bayesian decision model is proposed for 

evaluation and optimization of infrastructure and 
risk mitigation measures, taking into account 
their adaptability. A scheme of the decision 
framework is shown in Figure 2. For ease of 
presentation, we restrict ourselves to uncertainty 
in future demand, and do not consider 
uncertainty in exposure to the hazard. 
 

 
Figure 2: Scheme of the decision framework.  

                                                
1 Adaptability can be negative when adjusting the 

system to capacity 𝑙!" is more expensive than building to 
this level initially, this can occur when the original system 
must be fully replaced and additional removal costs are 
thus invoked.  

The capacity 𝑙  of the system is selected 
based on a probabilistic prediction of future 
demand 𝜣 . The optimal capacity is the one 
minimizing the Net Present Value (NPV) of 
costs 𝑐 over the entire planning period. Potential 
benefits 𝑏, and risk 𝑟, i.e. expected damage, can 
be included as well, as will be demonstrated later 
in Sec. 3.3.In the future, observations 𝒁 will be 
made and new (improved) prediction models 
may become available. These will be used to 
update the prediction of the demand. If the new 
information indicates a change in the demand, an 
adjustment of the system capacity may be 
optimal. The cost of such an adjustment depend 
on the adaptability of the system 𝑎, which is 
included as a parameter in the model. It 
influences the costs of both the initial 
implementation and of future adjustments. The 
adaptability is here considered as constant for the 
entire life time of the system; it is considered to 
be an inherent feature of the system.  

Two situations may arise: (1) The 
adaptability is given and the aim is to optimize 
the initial capacity of the system taking into 
account the system adaptability, i.e. the costs 
associated with possible future adjustments of 
the system. (2) The aim is to optimize both the 
adaptability and the initial capacity of the 
system. Such a situation arises when one can 
select from a number of systems with different 
adaptabilities or when the adaptability of the 
system can be influenced.  

As illustrated in Figure 3, the time axis is 
discretized into 𝑁 time steps (e.g. years) denoted 
as 𝑖 = 1,… .𝑁.  In Figure 3, the decisions are 
made at the end of each time step (i.e. every 
year), but in many applications this is often not 
the case. The time of making the initial decision 
is thus denoted as 𝑡! and future decisions about 
possible adjustments of the capacity are made at 
discrete time instances 𝑡! , 𝑡!! ,… 𝑡!.  

3.1. Modeling of demand 
The demand is modeled as a stochastic process. 
The definition and the modeling of demand are 
dependent on the type of system to be optimized. 
The demand can, e.g., correspond to the 

Prediction of 
future demand

Observations, 
new models 

Decision on 
system capacity

Decision on
adaptability Costs
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maximum annual discharge in case of designing 
a flood protection dike or to the maximum 
annual hourly rainfall in case of designing a 
rainwater sewage system.  

Let 𝛩!  denote the demand in the 𝑖th time 
step with corresponding marginal prior 
Probability Density Function (PDF) 𝑓!!(𝜃!). We 
restrict ourselves to a Markov model of the 
demand, as is illustrated in Figure 3, hence it is 
necessary to define the conditional PDF 
𝑓!!|!!!!(𝜃!|𝜃!!!)  of demand 𝛩!  in the 𝑖 th time 
step given a demand 𝜃!!! in the previous time 
step.  

 

 
Figure 3: Decision process in time, illustrated as an 
influence diagram. 

 
In many real applications, direct modeling 

of the demand as a Markov process is not 
possible. However, even non-Markovian 
processes can be transformed to Markovian ones 
through augmentation of the state space with 
additional variables (Rachelson et al., 2008). 
This can allow using existing algorithms for 
solving partially observable Markov decision 
processes POMDP (Lovejoy, 1991; Ellis et al., 
1995) for evaluating the proposed model.     

3.2. Observations and updating of demand  
Direct or indirect observations of the system 
demand are made throughout the life-time of the 
system. When designing measures against 
natural hazards, the random process {𝚯}  is 
typically only indirectly or partially observable. 
For example rainfall measurements, even if the 
measurement error is negligible, can only reduce 

but not eliminate the uncertainty on the 
parameters describing the rainfall extreme value 
statistics.  

Let 𝑍!  denote the observation(s) in the 𝑖th 
time step and 𝑓!!|!!(𝑧!|𝜃!) the conditional PDF of 
making an observation 𝑧! for given true demand 
𝜃!. The observations can be used to update the 
prediction about the true state of the demand in 
time step 𝑖 using Bayes’ rule:  

𝑓!!|!!,..!! 𝜃!|𝑧!,… , 𝑧! ∝ 

∝ 𝑓!!|!! 𝑧! 𝜃!   𝑓!!|!!!! 𝜃!|𝜃!!! ∙ 

∙ 𝑓!!!!|!!,..!!!! 𝜃!!!|𝑧!,… , 𝑧!!! 𝑑𝜃!!! (3) 

3.3. Benefits, costs and risk 
The decisions on the system capacity together 
with the system demand {𝛩}  determine the 
benefits (expected gains) and risks (expected 
losses) throughout the lifetime of the system. Let 
𝑏(𝛩! , 𝑙!) denote the benefits and 𝑟(𝛩! , 𝑙!) the risk 
in the 𝑖th time step. They are functions of the 
demand 𝛩! in the 𝑖th time step and the capacity 
𝑙! , which was selected at the last preceding 
decision time 𝑡! < 𝑖. In Figure 3, the benefits and 
risk in 𝑖th time step are denoted as 𝑏! and 𝑟!. 𝑐! is 
the cost of implementing capacity 𝑙! at time 𝑡!. 

In certain decision problems, benefits or risk 
can be disregarded. For example, in risk-based 
optimization of flood mitigation systems, other 
benefits than the risk reduction itself are 
typically not taken into account (Špačková and 
Straub, 2014). If legal requirements necessitate 
that risk mitigation measures are designed for a 
certain return period of the hazard (e.g. for a 
100-year flood), the optimization reduces to a 
minimization of costs (Špačková et al., 2014; 
Dittes et al., 2014). 

3.4. Optimal capacity 
The optimal capacity 𝑙!,!"#  at time 𝑡! , for 
𝑗 = 0, 𝐼, 𝐼𝐼,… ,𝑀, can be found by maximizing 
the difference between expected benefits and 
expected costs plus risk for the remaining life 
time of the system. The objective function is: 

time
t0 tI

Decisions and 
their implications

True state
of future demand

a

l0

i=1 i=3

r1

c0

b1

Observations 
of future demand Z1

tII

lI
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cI

b2
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θ1 θ2

lII

cII



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 5 

max!! 𝐵!!! 𝑙! − 𝑐! 𝑙! , 𝑙!!!,𝑎 − 𝑅!!! 𝑙! +

Ω!!! 𝑙! ,𝑎       (4) 

where 𝑐! 𝑙! , 𝑙!!!,𝑎  is the NPV of the costs 
of increasing the capacity from 𝑙!!!  to 𝑙!  for 
given adaptability 𝑎 . 𝐵!!! 𝑙!  and 𝑅!!!(𝑙!)  are 
the NPVs of benefits and risk in time interval 
𝑗 + 1 (i.e. the time until the next decision) for 
given capacity 𝑙!: 

𝐵!!! 𝑙! = 𝑓!!!|!!,…,!!!(𝜃!!|𝑧!,… , 𝑧!!) ∙

𝑏 𝜃! , 𝑙! 𝑓!!|!!! 𝜃!|𝜃!! d𝜃!
!!!!
!!!!!!

    d𝜃!!            (5)  

and 

𝑅!!! 𝑙! = 𝑓!!!|!!,…,!!! 𝜃!! 𝑧!,… , 𝑧!! ∙

𝑟 𝜃! , 𝑙! 𝑓!!|!!! 𝜃!|𝜃!! d𝜃!
!!!!
!!!!!!

  d𝜃!!            (6) 

where 𝑏(𝜃! , 𝑙!) and 𝑟(𝜃! , 𝑙!) are the benefits 
and risk in the 𝑖th year for given capacity 𝑙! and  
demand 𝛩! . 𝑓!!|!!! 𝜃!|𝜃!!  is the conditional 
probability of demand 𝛩!  for given 𝛩!!  and  
𝑓!!!|!!,…,!!!(𝜃!!|𝑧!,… , 𝑧!!)  is the PDF of the 
demand 𝛩!!  given observations 𝑍!,… ,𝑍!! 
calculated using Eq. 3.  

Ω!!! 𝑙! ,𝑎  is the expected value of benefits 
minus risk and costs in the time period after the 
next decision 𝑙!!!, for given capacity 𝑙!: 

Ω!!! 𝑙! ,𝑎 = 𝐵!!! 𝑙!!!,!"# − 𝑅!!! 𝑙!!!,!"# −
𝑐! 𝑙!!!,!"# , 𝑙! ,𝑎 + Ω!!! 𝑙!!!,!"# ,𝑎            (7) 

where 𝐵!!! 𝑙!!!,!"#  and  𝑅!!!(𝑙!!!,!"#) are 
the NPVs of benefits and risk, respectively, in 
time interval 𝑗 + 2  for the optimal capacity 
selected at time 𝑡!!!, calculated analogously to 
Eqs. 5 and 6. 𝑐! 𝑙!!!,!"# , 𝑙! ,𝑎  is the NPV of the 
costs of increasing the capacity from 𝑙! to 𝑙!!!,!"# 
for given adaptability 𝑎.  Ω!!! 𝑙!!!,!"# ,𝑎  is the 
expected value of benefits minus risk and costs 
in the time period after the decision at time 𝑡!!! 
for given capacity 𝑙!!!,!"#  selected at time at 

time 𝑡!!!  and adaptability 𝑎 , calculated 
analogously to Eq. 7. 

Note that for the initial decision, i.e. for 
𝑗 = 0, the term 𝑐! 𝑙! , 𝑙!!!,𝑎  in Eq. 4 is replaced 
with the initial costs 𝑐! 𝑙! ,𝑎 . For the last 
decision, i.e. for 𝑗 = 𝑀, it is Ω!!! 𝑙! ,𝑎 = 0. 

This optimization problem can be solved 
recursively, starting from the last decision. The 
problem can be interpreted as a special case of a 
POMDP, where the state of nature 𝜃! does not 
depend on the actions taken. The optimal 
solution strategy in the general case is not 
presented here, for the sake of brevity. Instead, a 
numerical example is presented in the following, 
which is simple enough to not require a 
sophisticated solution strategy.  

4. NUMERICAL EXAMPLE 
The proposed model is applied to a hypothetical 
example of optimizing the capacity of flood 
defense under climate change uncertainty. We 
consider the implementation of a new flood 
defense at time 𝑡! = 0, whose capacity may be 
adjusted at time  𝑡! = 15  years. An influence 
diagram for the example decision problem is 
shown in Figure 4. The time is discretized into 
yearly time steps, the total planning horizon is 
100 years, therefore 𝑖 = 1,2, . . . ,100. The annual 
discount rate is 0.02. 

 

 
Figure 4: Influence diagram for the example decision 
problem.  
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The uncertainty in the future demand is modeled 
using two random variables: scenario 𝑆! and 
annual maximum rainfall 𝐷! . 𝑆!  is a discrete 
random variable representing the uncertainty in 
future climate. Three scenarios are considered: 
(A) no change in the future extreme 
precipitation, (B) moderate increase and (C) 
significant increase. Hence, scenario 𝑆! consists 
of three states and its transition probability 
matrix is the 3x3 unit matrix. All scenarios are a-
priori considered to be equally probable, 
Pr(𝑆! = 𝐴) = Pr(𝑆! = 𝐵) = Pr(𝑆! = 𝐶) = 1/3.  

𝐷! is the annual maximum hourly rainfall in 
[mm/hour] and is described by a Weibull 
distribution with mean 𝜇 𝑖  and standard 
deviation 𝜎(𝑖)  conditional on the climate 
scenario as shown in Table 1. The mean and 
st.dev. are assumed to be linearly increasing with 
time, the c.o.v. is equal to 2/3 and is assumed to 
be constant over time. 

For simplicity, the capacity of the flood 
protection system 𝑙 is expressed in the same units 
as demand, i.e. in mm of rainfall per hour. Such a 
modeling approach is representative for the 
design of a sewage system as a protection against 
flash floods. For optimization of classical flood 
protection measures against river floods, the 
rainfall would be translated to discharge or water 
level using hydrologic and hydraulic modeling.  

Table 1: Mean and st.dev. of annual maximum 
rainfall 𝐷! [mm/h] for different climate scenarios. 

Scenario S Mean  𝜇(𝑖) St.dev.𝜎(𝑖) 
(A) no change 15 10 

(B) moderate incr. 15+0.02*i 10+0.013*i 
(C) significant incr. 15+0.05*i 10+0.033*i 

 
Risk (expected damage) in the 𝑖th time step for 
given scenario 𝑆!  and for given capacity 𝑙! 
equals: 

𝑟(𝑆! , 𝑙!)   = 𝑒 ∙ 𝑉!!(𝑑)    ∙ 𝑓!!|!!(𝑑)𝑑𝑑 (8) 

where 𝑒 = 6×10!  Euro is exposure, 
𝑓!!|!!(𝑑)  is the conditional Weibull PDF of 
annual maximum rainfall (demand) for given 
scenario and 𝑉!!(𝑑) is the vulnerability for given 
capacity of the protection system 𝑙!: 

𝑉!!(𝑑) =
  0  𝑓𝑜𝑟  𝑑 ≤ 𝑙!   

0.01 ∙ 𝑑  𝑓𝑜𝑟  𝑙! < 𝑑 < 100
1  𝑓𝑜𝑟  𝑑 ≥ 100

 (9) 

Three different levels of adaptability are 
considered: full adaptability 𝑎 = 1, intermediate 
adaptability 𝑎 = 0.5 and zero adaptability 𝑎 = 0. 
The initial and adjustment costs for the different 
capacities are shown in Figure 5, they are 
defined as follows: 

𝑐! 𝑙!,𝑎 = 𝛾(𝑎) ∙ 𝑏 ∙ 𝑙!   (10) 

 
Figure 5: Costs of flood protection systems with different adaptabilities 𝑎 as a function of the capacity of the 
system: (a) initial costs 𝑐!(𝑙!, 𝑎) at time 𝑡! = 0, (b) adjustment costs 𝑐!(𝑙! , 𝑙!, 𝑎) at time 𝑡! = 15 years 
assuming that the original capacity selected at time 𝑡! is 𝑙! = 30 mm/h.   
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𝑐! 𝑙! , 𝑙!,𝑎 = 𝛾(𝑎) ∙ 𝑏 ∙ 𝑙! − 𝑎 𝑙!  (11) 

where 𝑏 = 2×10!  Euro and 𝛾(𝑎)  is a 
coefficient representing the price of the 
adaptability, it is: 𝛾 0 = 1 , 𝛾 0.5 = 1.2  and 
𝛾 1 = 1.5. 

Observations of annual maximum rainfall 
will be made before the next decision at time 
𝑡! = 15  years, they are denoted as 𝑧!,… , 𝑧!" . 
The error in measurement of the annual 
maximum rainfall is considered to be negligible. 
The observations will be used to update the 
probability of scenarios 𝑆!: 

Pr(𝑆!|𝑧!,… 𝑧!") ∝ 𝐿(𝑆!|𝑧!,… 𝑧!") ∙ Pr  (𝑆!) (12) 
wherein the likelihood of the observations is 

𝐿 𝑆! 𝑧!,… 𝑧!" = 𝑓!!|!!(𝑧!)
!!!"
!!!   (13) 

Based on the updated probability of scenarios, 
the future decision on possible adjustment of the 
capacity of the flood protection system will be 
made at time 𝑡! = 15  years. The benefits are 
assumed to be constant with capacity 𝑙 and the 
objective function can thus be formulated as the 
minimization of the sum of risk and costs. The 
optimal capacity 𝑙!,!"#  for given adaptability 𝑎, 
observations 𝑧,… , 𝑧!", and an existing capacity 
𝑙!, is obtained by (compare with Eq. 4): 

min!!(𝑐! 𝑙! , 𝑙!,𝑎 + 𝑅!!(𝑙!))           (14) 

where 𝑐! 𝑙! , 𝑙!" ,𝑎  are the costs of increasing the 
capacity from 𝑙!  to 𝑙!  for given 𝑎 , calculated 
using Eq. 11, and 𝑅!!(𝑙!) is the NPV of future 
risk for given capacity 𝑙! (compare with Eq. 6): 

𝑅!! 𝑙! = Pr 𝑆! = 𝑘|𝑧!,… 𝑧!"!!!
!!!   

∙ 𝑟(𝐷! , 𝑆! = 𝑘, 𝑙!)!!!""
!!!"           (15) 

where 𝑟(𝐷! , 𝑆! = 𝑘, 𝑙!) is the risk in the 𝑖th year 
computed using Eq. 8. 

Finally, the optimal capacity 𝑙!,!"# at time 𝑡! 
for given adaptability 𝑎  can be found by 
(compare with Eq. 4): 

min!! 𝑐! 𝑙!,𝑎 + 𝑅! 𝑙! + Ω! 𝑙!,𝑎           (16) 

where 𝑐! 𝑙!,𝑎  are the costs of building to the 
capacity 𝑙! initially for given 𝑎, calculated using 

Eq. 10. 𝑅! 𝑙!  is the NPV of risk in the interval 
(𝑡!, 𝑡!) for given capacity 𝑙! (compare with Eq. 
6: 

𝑅! 𝑙! = Pr 𝑆! = 𝑘!!!
!!! ∙ 𝑟(𝐷! , 𝑆! =!!!"

!!!
𝑘, 𝑙!)     (17) 

and Ω! 𝑙!,𝑎  is the expected value of the sum of 
risk and costs from time interval 𝐼𝐼 after the next 
decision is made (compare with Eq. 7): 

Ω! 𝑙!,𝑎 = 𝑅!! 𝑙!,!"# + 𝑐! 𝑙!,!"# , 𝑙!,𝑎        (18) 

To calculate the expected value of risk and costs 
over the future observations 𝑍!,… ,𝑍!" in Eq. 18, 
Monte Carlo simulation is applied.  

5. RESULTS AND DISCUSSION  
Table 2 shows the updated probability of 
scenarios using the 15 years of maximum rainfall 
observations following Eq. 12. It indicates that 
since the scenarios are not substantially different 
(the trends in mean and st.dev. are quite low), 
updating of their probability with only 15 years 
of annual maximum rainfall observations is not 
very informative.  

 
Table 2: Mean updated probabilities of scenarios 
𝑃𝑟  (𝑆!|𝑍!,… 𝑍!"), given that a certain scenario is the 
true one.  

True scenario: A B C 
𝑃𝑟  (𝑆! = 𝐴|𝑍!,… 𝑍!") 0.3357 0.3339 0.3304 
𝑃𝑟  (𝑆! = 𝐵|𝑍!,… 𝑍!") 0.3337 0.3334 0.3329 
𝑃𝑟  (𝑆! = 𝐶|𝑍!,… 𝑍!") 0.3306 0.3326 0.3367 

 
Figure 6 shows the results of the optimization of 
the initial capacity 𝑙!  for all three evaluated 
adaptabilities, assuming that the adaptive 
measures have higher initial costs than non-
adaptive ones, i.e. 𝛾 0 = 1 , 𝛾 0.5 = 1.2  and 
𝛾 1 = 1.5 (see Eq. 10 and Figure 5). For a non-
adaptable flood protection system with 𝑎 = 0, a 
higher capacity 𝑙!,!"# = 50 mm/h (corresponding 
to a 200-year rainfall event based on the current 
state of the climate) is optimal because the future 
changes are costly and it thus makes sense to 
make a conservative design. For a fully adaptable 
system with 𝑎 = 1, a lower capacity 𝑙!,!"# = 45 
mm/h (corresponding to a 100-year rainfall event 
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based on the current state of the climate) is 
optimal because the capacity can be adjusted in 
the future with relatively low costs (see Figure 
5b). From the sum of expected costs and risks of 
the optimal solutions that are indicated with the 
solid line and black dots in Figure 6, it can be 
concluded for this example that adaptability is 
costly and that it is more economical to select 
non-adaptable systems together with a 
conservative design (higher initial capacity) of 
the flood protection system.  

 

 
Figure 6: Results of the optimization in Eq. 16 for 
different adaptabilities. 𝑙!,!"# is the optimal initial 
capacity in mm/h and 𝑝!"# is the exceedance 
probability of the capacity based on the current PDF 
of maximum annual rainfall. 

 
Figure 7 shows alternative results of the 

optimization when assuming that the initial costs 
of adaptable and non-adaptable measures are 
identical, i.e. where 𝛾 0 = 𝛾 0.5 = 𝛾 1 = 1 
(see Eqs. 10-11). In this case, it is obviously 
more advantageous to choose a fully adaptable 
flood protection system, the sum of expected 
costs and risks corresponding to the optimum is 
lowest in the case of 𝑎 = 1 . However, the 
difference in sum of risk and cost for the three 
alternatives is low, indicating that the 
adaptability is not worth has little value.  

Why is the benefit of adaptability low? One 
possible reason in the investigated example is 
that the effect of learning from the observations 
is low (Table 2), therefore the decision maker 

clearly has little incentives to adapt the system. 
To investigate this effect, we evaluate the 
example assuming unrealistically strong trends 
for scenarios B and C, as presented in Table 3 
(compare with the original model from Table 1). 
In Table 4, the updated probability of scenarios 
using the 15 years of maximum rainfall 
observations is shown. With more pronounced 
differences among the scenarios, more can be 
learned in the first 15 years compared to the 
previous case (compare with Table 2 ). 

 

 
Figure 7: Alternative results of the optimization in 
Eq. 16  for different adaptabilities assuming that the 
adaptability has zero costs, i.e. 𝛾 0 = 𝛾 0.5 =
𝛾 1 = 1. 
 
Table 3: Mean and st.dev. of annual maximum 
rainfall 𝐷! [mm/h] for different climate scenarios – 
unrealistically high increase of  rainfall extremes. 

Scenario S Mean  𝜇(𝑖) St.dev. 𝜎(𝑖) 
(A) no change 15 10 

(B) moderate incr. 15+0.1*i 10+0.067*i 
(C) significant incr. 15+0.2*i 10+0.133*i 

 
Table 4:Mean updated probabilities of scenarios 
𝑃𝑟  (𝑆!|𝑍!,… 𝑍!"), given that a certain scenario is the 
true one – assuming an inflated trend in rainfall 
extremes following Table 3. 

True scenario: A B C 
𝑃𝑟  (𝑆! = 𝐴|𝑍!,… 𝑍!") 0.3697 0.3353 0.2981 
𝑃𝑟  (𝑆! = 𝐵|𝑍!,… 𝑍!") 0.3330 0.3342 0.3326 
𝑃𝑟  (𝑆! = 𝐶|𝑍!,… 𝑍!") 0.2973 0.3305 0.3693 
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The results of optimization of the initial capacity 
𝑙! assuming the increase of rainfall extremes as 
shown in Table 3 and assuming that the 
adaptability has zero costs, i.e. that 𝛾 0 =
𝛾 0.5 = 𝛾 1 = 1,  are presented in Figure 8. 
 

 
Figure 8: Alternative results of the optimization in 
Eq. 16 for different adaptabilities assuming that the 
adaptability has zero costs, i.e. 𝛾 0 = 𝛾 0.5 =
𝛾 1 = 1, and assuming artificially enhanced 
differences among scenarios following Table 3. 
 

In spite of the increased learning effect 
(Table 3), the value of the adaptability is low. A 
conservative design in case of non-adaptable (or 
partly-adaptable) measures is associated with 
similar sum of lifetime costs and risk as 
implementing an adaptable system (similarly to 
the results in Figure 7). The reason for the low 
value of adaptability is the fact that the amount 
saved when implementing an adaptable system is 
countervailed by the reduction of risk in case of 
the conservative design of a non-adabtable 
system.  

6. CONCLUDING REMARKS 
A quantitative decision model for optimization 
of risk mitigation measures taking into account 
their adaptability has been introduced, together 
with a formal measure of adaptability. The model 
is using Bayesian decision analysis and allows to 
probabilistically model the uncertainty in future 
risk (or hazard).  

Application of the model is demonstrated on 
a hypothetical example of risk-based 
optimization of flood protection under three 
different scenarios of climate development and 
related changes in precipitation extremes. The 
numerical example demonstrates the 
optimization of the initial capacity of the flood 
risk protection as a function of the adaptability. 
In the example, the value of adaptability is found 
to be low, because the future costs saved when 
implementing an adaptable system are 
countervailed with the additional risk reduction 
in case of conservative design of non-adaptable 
systems.  
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