
1 INTRODUCTION 

Corrosion is a widespread phenomenon in engineer-
ing structures. As an example, chloride-induced cor-
rosion triggers about 66% of all concrete-bridge dam-
ages in Germany (Schießl & Mayer, 2007), leading to 
large costs for maintenance and repair.  

Corrosion sensors are increasingly installed on 
bridge decks for improved planning of repair or re-
placement actions (Holst et al., 2011; Holst & 
Budelmann, 2012). To make better use of the infor-
mation obtained from such monitoring, it should be 
incorporated into a quantitative model of the struc-
tural integrity. This can be achieved effectively 
through a Bayesian updating of the corrosion model.  

This article introduces a method for Bayesian up-
dating of the reliability of concrete bridges that are 
subject to chloride-induced reinforcement corrosion, 
using results from corrosion sensors. The method 
uses a state-of-the-art deterioration model to charac-
terize the process of chloride ingress and corrosion 
initiation (Gehlen, 2000; Malioka, 2009). To model 
the corrosion process, a simple linear deterioration 
model is applied. 

Since the corrosion processes at different locations 
in a structure are correlated, measurement results at a 
location also contain information on nearby locations. 
To address this effect, the parameters of the corrosion 
model are represented by spatial random fields. Based 
on the spatial model, it is shown how monitoring re-
sults can be used to update the probability of corro-
sion at all locations in the structure.  

Furthermore, the effect of the corrosion monitor-
ing on the overall bridge reliability is quantified. To 
this end, the Bayesian update of the corrosion proba-
bility is combined with a simple bridge reliability 
model, which is obtained by a calibration to code re-
quirements.  

The proposed procedure is demonstrated by an ap-
plication to a highway bridge. Special focus is given 
to investigating the effect of assumptions on the spa-
tial correlation of corrosion on the updated corrosion 
probability and on the updated bridge reliability. 

2 DETERIORATION MODELING 

Chloride-induced corrosion can be subdivided into 
two phases: (a) the diffusion process of chloride ions 
into the concrete leading to corrosion initiation and 
(b) the corrosion of the reinforcement leading to a 
loss of steel cross section and bond. 

For corrosion initiation (a), a well-developed dete-
rioration model is available and applied in this study. 
For the propagation process (b), a simplified model is 
utilized, which describes the loss of cross section area 
of the reinforcement steel as a linear function of time.  

2.1 Modeling of the corrosion initiation process 

The ingress of chloride ions into the concrete surface 
is commonly described by Fick’s 2nd diffusion law 
(Gehlen, 2000). The chloride concentration 𝐶(𝑧, 𝑡) at 
time 𝑡 in depth 𝑧 is given by 
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𝐶(𝑧, 𝑡) = 𝐶S ⋅ (1 − erf (
𝑧

√4 𝐷 𝑡
)) , (1) 

in which 𝐷 denotes the uncertain diffusion coefficient 
and 𝐶S denotes the random surface chloride concen-
tration. erf(∙) is the Gauss error function. 

In contrast to the model assumption in Eq. (1), the 
diffusion constant 𝐷 is not constant in time and de-
pends on concrete properties as well as environmental 
influences. Appropriate models have been developed 
to describe the dependency of the diffusion coeffi-
cient 𝐷 on time, concrete properties, and curing time. 
Therein, the diffusion coefficient 𝐷(𝑡) is defined as: 
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𝑡
)

𝐴

, (2) 

where 𝐷0, 𝐵e, 𝐾t, 𝑇ref, 𝑇real, 𝑡0, and 𝐴 are factors to 
describe the dependency of the diffusion coefficient 
on environmental influences and concrete properties, 
and to adapt the in-labor conditions to the real envi-
ronment. Here, it is 𝐾t = 1. The uncertain parameters 
of the diffusion model are summarized in the vector 
𝐗 = [𝐶crit, 𝐶S, 𝐷0, 𝐴, 𝑊, 𝐵e, 𝑇real]

T. Probabilistic mod-
els for these parameters can be found in DuraCrete 
(1999). 

Corrosion occurs when the chloride concentration 
at the reinforcement reaches a critical level 𝐶crit. For 
a reinforcement in depth 𝑧, the time to corrosion ini-
tation can now be computed by combining Eqs. (1) 
and (2) and solving for 𝑡, resulting in  

𝑇init(𝐗, 𝑧𝑖) 

= (𝐷0 𝐾𝑒 𝑡0
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where 

𝐾𝑒 = exp (𝐵e ⋅ (
1

𝑇ref

−
1

𝑇real

)) . (4) 

2.2 Spatial modeling of the corrosion initiation 

The corrosion processes at different locations in a 
structure are correlated, due to common environmen-
tal influences and spatial dependences of concrete 
properties. To represent this correlation, the uncertain 
model parameters 𝐗 are modeled through spatial ran-
dom fields. Random-field modeling of reinforcement 
corrosion in RC structures has been considered in 
several studies (Hergenröder, 1992; Stewart & 
Mullard, 2007; Malioka, 2009). However, up to now 
only limited information on the spatial correlation 
among the corrosion parameters is available. 

To model the spatial distribution of corrosion, the 
concrete surface is discretized in elements of size 
0.5m × 0.5m, as depicted in Figure 1.  

 

 

Figure 1: Spatially discretized concrete surface. 

 
In this study, the spatial covariance of each spa-

tially distributed parameter 𝑋𝑘 ∈ 𝐗 is modeled 
through a monotonically decreasing correlation func-
tion  

𝜌𝑖𝑗 = (1 − 𝑐) ⋅ exp (−
𝑑ij

𝑙𝑋
) + 𝑐 , (5) 

where 𝑑ij is the distance between two locations 𝑖 and 
𝑗 on the concrete surface (Figure 1), 𝑙𝑋 is the correla-
tion length, and 𝑐 is a constant describing the depend-
ency for infinitely distant locations. The covariance 
function is defined as Cov[𝑋𝑘𝑎, 𝑋𝑘𝑏] = 𝜎𝑋𝑘

2 𝜌𝑖𝑗, where 
𝜎𝑋𝑘

 is the standard deviation of the model random 
variable 𝑋𝑘. Figure 2 illustrates the correlation func-
tion 𝜌𝑖𝑗 for three investigated correlation models. 
 

 

Figure 2: The correlation function in Eq. (5) for different param-
eter values (A: 𝑐 = 0, 𝑙 = 2 m; B: 𝑐 = 0, 𝑙 = 5 m; C: 𝑐 = 0.2, 
𝑙 = 5 m). 

2.3 Modeling of the corrosion propagation 

The corrosion propagation phase is here described 
through a simplified linear model. The remaining area 
of steel cross section 𝐴(𝑡) is written as 

 



𝐴(𝑡)

= {

𝐴0 , 𝑡 < 𝑇init

𝐴0 (1 +
𝑇init

𝑇P

) −
𝐴0

𝑇P

⋅ 𝑡 , 𝑇init ≤ 𝑡 ≤ 𝑇init + 𝑇P

0 , 𝑡 > 𝑇init + 𝑇P

  
(6) 

where 𝐴0 is the original cross section area, 𝑇init is 
the time to corrosion initiation, (see Eq. (3)), and 𝑇P 
is the propagation time. The model is illustrated in  
Figure 3. 

 

 

 

Figure 3: The corrosion propagation model. 

3 RELIABILITY ESTIMATION 

To compute the reliability of the bridge conditional 
on the remaining cross section area 𝐴(𝑡), a simple 
model is proposed in the following, which is based on 
the relevant code requirements. 

The load on the bridge is characterized by 𝑀𝑆, the 
annual maximum bending moment in the middle of 
the bridge span. 𝑀𝑆 is assumed to be described by the 
Gumbel distribution with cumulative distribution 
function (CDF) 

𝐹𝑀𝑆
(𝑚𝑆) = exp (− exp (−

𝑚𝑆 − 𝜉

𝜂
))  , (7) 

whose distribution parameters 𝜂 and 𝜉 are obtained 
through calibration: The European standard DIN EN 
1990 (2010) requires a reliability index 𝛽 ≥ 4.7 for 
one year of exposition. On this basis, it is assumed 
that the bridge in its initial state (i.e. with cross sec-
tion area 𝐴0) has reliability 𝛽 = 4.7. Since the capac-
ity of the bridge in its initial state, 𝑚𝑅0, can be com-
puted, one obtains the following condition:  

1 − 𝐹𝑀𝑆
(𝑚𝑅0) = Pr(𝑀𝑆 ≥ 𝑚𝑅0) = Φ(−4.7)  . (8) 

Assuming a coefficient of variation (c.o.v.) of 0.3 
for 𝑀𝑆, the parameters 𝜂 and 𝜉 can be determined 
with the condition of Eq. (8). The probability of 
bridge failure with reduced reinforcement cross sec-
tion area 𝐴(𝑡) can now be estimated as 

Pr(𝐹|𝐴(𝑡) = 𝑎) = Pr(𝑀𝑆 ≥ 𝑚𝑅(𝑎))  , (9) 

where 𝑚𝑅(𝑎) is the bending capacity in mid-span 
with reinforcement cross section area 𝑎. Applying the 
rule of total probability, the failure probability of the 
bridge in year 𝑡 can be calculated as 

Pr(𝐹) = ∫ Pr(𝐹|𝐴(𝑡) = 𝑎) 𝑓𝐴(𝑡)(𝑎) d𝑎
𝐴0

0

, (10) 

where 𝑓𝐴(𝑡)(𝑎) is the probability density function 
(PDF) of the steel cross section 𝐴(𝑡), computed 
through Eq. (6). 

4 RELIABILITY UPDATING AND MODELING 
OF CORROSION SENSORS 

4.1 Reliability updating 

Inspections or monitoring of the structure, where 
model parameters or the model output itself are meas-
ured, provide information on the deterioration pro-
cess. This information can be used to update the cor-
rosion probability and the reliability of the bridge. 
The inspection or monitoring outcome can be repre-
sented by an event 𝑍, described by a limit-state func-
tion ℎ(𝐱) (Straub, 2011). 

Corrosion sensors provide information on the 
event of corrosion initiation at the sensor locations 
(see Figure 4), and, indirectly, on corrosion initiation 
elsewhere in the structure. Let 𝐸𝑖(𝑡) be the event of 
corrosion initation at location 𝑖 at time 𝑡. To assess 
the effect of the monitoring outcome, the conditional 
probability of 𝐸𝑖(𝑡) given 𝑍 is computed as 

Pr(𝐸init|𝑍) =
Pr(𝐸𝑖(𝑡) ∩ 𝑍)

Pr(𝑍)
 

=
∫ Pr(𝐸𝑖(𝑡)|𝐱) Pr(𝑍|𝐱) 𝑓(𝐱)d𝐱

𝐗

∫ Pr(𝑍|𝐱)𝑓(𝐱) d𝐱
𝐗

 

(11) 

where Pr(𝑍|𝐱) = 𝐿(𝐱|𝑍) is the likelihood function. It 
quantifies the probability of a measurement or moni-
toring result for given values of 𝐱. The likelihood is 
central to the updating procedure and it will be devel-
oped for the corrosion-sensor monitoring in the fol-
lowing section.  

The procedure introduced in Eq. (11) is commonly 
referred to as Bayesian updating or information up-
dating, and has been applied in the context of struc-
tural reliability since the 1970s (Tang, 1973; Madsen, 
1987; Straub, 2011). Here the computational method 
for Bayesian updating developed in Straub (2011) is 
utilized. The implementation of the method to spatial 
updating of the corrosion probability is given in 
Fischer & Straub (2013).  

4.2 Probabilistic modeling of corrosion sensors  

One option for monitoring of reinforcement corrosion 
in concrete structures is to install corrosion sensors, 



which are mounted to the reinforcement. These cor-
rosion sensors provide time-continuous information 
on the chloride concentration at two levels 𝑧𝑖 below 
the concrete surface (Figure 4). 

The corrosion sensors consist of two steel wires 
installed at depths 𝑧𝑖 from the concrete surface. These 
wires are connected to an electrical device that 
measures the wire’s electrical resistance. This re-
sistance changes when the wire corrodes. Since the 
wires are made of the same material as the reinforce-
ment, it is assumed that they start to corrode at the 
same chloride concentration 𝐶crit as the reinforce-
ment. When the measured electrical resistance indi-
cates corrosion, a signal is triggered. The corrosion 
signal should first occur at the wire that is closer to 
the concrete surface because the chloride concentra-
tion decreases with increasing distance from the con-
crete cover (Figure 4). 

 

 
 

Figure 4: The corrosion sensor and the point in time of corrosion 
initiation at depths 𝑧1 and 𝑧2 of the corrosion-sensor wires. 

 
Measurement devices are subject to measurement 

errors, generally induced by imprecise testing meth-
ods and human malfunction (Thöns, 2011). Here, 
measurement errors are due to dissimilarities in the 
wire and reinforcement steel, inexact voltage meas-
urement, or imprecise vertical positioning of the sen-
sors on the reinforcement. This is accounted for by 
considering a normally distributed measurement error 
𝜖m on the time of corrosion initiation at the sensor 
wires. 

The time of corrosion initiation at the sensor-wire 
positions is found by solving Eq. (1) for 𝑇 inserting 
the levels 𝑧𝑖 of the corrosion-sensor wires instead of 
𝑧; the solution is presented in Eq. (3).  

Be 𝑇init(𝐗, 𝑧𝑘𝑖) the predicted point in time of cor-
rosion initiation at depth 𝑧𝑖 at location 𝑘 on the con-
crete surface and 𝑇m,k𝑖 the time when the alarm is re-
leased at that location. The relationship between 𝑇m,k𝑖 
and 𝑇init(𝐗, 𝑧𝑘𝑖) is 

𝑇init(𝐗, 𝑧𝑘𝑖) = 𝑇m,k𝑖 − 𝜖m . (12) 

It follows that 𝜖m = 𝑇m,k𝑖 − 𝑇init(𝐗, 𝑧𝑘𝑖) and the Like-
lihood function at location 𝑘 at depth 𝑧𝑖 is given by 

𝐿𝑘𝑖(𝐱|𝑇m,𝑘𝑖) = 𝑓𝜖m
(𝑇m,𝑘𝑖 − 𝑇init(𝐗, 𝑧𝑘𝑖)) . (13) 

It is assumed that measurement errors 𝜖m of the sen-
sor alerts are statistically independent of each other 
and of the basic random variables 𝐗. Therefore, the 
likelihood for one sensor 𝑘, 𝐿𝑘(𝐱| ∩𝑖 𝑇m,𝑘𝑖), is ob-
tained by multiplying the likelihood functions in Eq. 
(13) over the two depths of the sensor wires 𝑧𝑖. 

If several corrosion sensors are installed, the total 
Likelihood function is given by the product of the 
Likelihood functions of all wires in all sensors as 

𝐿 (𝐱 | ⋂ 𝑇m,𝑘𝑖

all 𝑘,𝑖

) 

= ∏ ∏ 𝑓𝜖m
(𝑇m,k𝑖 − 𝑇init(𝐗, 𝑧𝑘𝑖))

all 𝑖all 𝑘

 . 

(14) 

 The Bayesian update of the corrosion probability 
conditional on the sensor alerts is performed jointly 
for all elements of the discretized concrete surface, 
For detailed description of the updating procedure, 
we refer to Straub (2011) and Fischer & Straub 
(2013). 

5 APPLICATION EXAMPLE 

The method is applied to a representative German 
highway bridge that was built in 1967 from pre-
stressed concrete. The bridge was constructed as a 
pre-stressed box girder, continuously spanned over 
two fields with a total length of 65.3 m and a width of 
18.5 m. The bridge is subject to high traffic loads and 
concentrated chloride attacks due to the disposal of 
deicing salt, which is one of the harshest triggers of 
the chloride corrosion. The case study is hypothetical 
insofar as no corrosion sensors were installed on this 
bridge, and the effect of the assumed monitoring out-
comes on the reliability of the bridge is thus com-
puted for illustration purposes only. For the calcula-
tions reported in this paper, the bottom plate over one 
field of the bridge is considered. The dimensions of 
the plate are 5m × 30m. 

5.1 Modeling of corrosion initiation and 
propagation 

The prior estimate of the corrosion probability is 
found using the model parameters introduced in Sec. 
2 and quantified in Table 1 (DuraCrete, 1999). The 
results are shown in Figure 5. The prior calculation 
indicates a corrosion probability of 64% after 45 
years in service.  

 



 

Figure 5: The prior corrosion probability using the model pa-
rameters in Table 1. 

 

Table 1: Model parameters for the corrosion models introduced 
in Sec. 2 (e.g. DuraCrete, 1999; Malioka, 2009). 

RVs 𝐗 Dimension Distribution Mean and standard dev. 

𝐶S [M.-%]* LogNormal 𝜇 = 2,7; 𝜎 = 1,23 

𝐶crit [M.-%]* Beta (∈ [0; 2]) 𝜇 = 0,6; 𝜎 = 0,15 

𝑊 [mm] LogNormal 𝜇 = 40;  𝜎 = 12 

𝐷0 [10-12 m²/s] Normal 𝜇 = 498,3; 𝜎 = 99,7 

𝐴 [–] Beta (∈ [0;1]) 𝜇 = 0,3;  𝜎 = 0,12 

𝑇Ref [K] Deterministic 𝑇Ref = 293 

𝑇Real [K] Normal 𝜇 = 282;  𝜎 = 3 

𝐵e [K] Normal 𝜇 = 4800;  𝜎 = 700 

𝑇𝑃 [a] LogNormal 𝜇 = 20; 𝜎 = 6  

* The dimension [M.-%] is mass-percent of cement. 

 
The spatial correlation of the parameters 𝐶S, 𝑊, 

𝐷0, 𝐶crit, and 𝑇P is modeled with the correlation model 
of Eq. (5); the parameter 𝐴 is assumed to be fully cor-
related.  Unless otherwise stated, correlation model B 
of Figure 2 is used in the case study. 

5.2 Modeling of the corrosion-sensor monitoring 

Three corrosion sensors are assumed to be installed at 
the locations shown in Figure 6.  
 

 

Figure 6: Locations S1, S2, and S3 of the corrosion sensors on 
the concrete surface. 

 

The sensor measurement results are provided in 
Table 2. 
 

Table 2: Positions and alert times of the corrosion sensors. 

Position (𝑥𝑘 , 𝑦𝑘) [m] Time of alert, 𝑡𝑘(𝑧𝑖) [a] 

S1: (5, 2) [3, 10] 

S2: (15,4) [1.2, 3.7] 

S3: (22, 3) [0.5, 3] 

 

A normally distributed error 𝜖m of the sensor meas-
urement is assumed, with zero mean and 𝜎𝜖m

= 2 
years. 

5.3 Corrosion probability conditional on the sensor 
alerts 

The corrosion probability conditional on the sensor 
signals is calculated combining Eqs. (14) and (11); its 
spatial distribution of the corrosion probability in 
year 45 is shown in Figure 7. 

 

 

Figure 7: Corrosion probability over the concrete surface after 
45 years in service, conditional on the corrosion-sensor moni-
toring results. The probability is in the range between 75% and 
99%. 

 
The corrosion probability in year 45 conditional on 

the sensor alerts varies from 75% to 99%; with a spa-
tial mean of 82%, the corrosion probability is higher 
than the prior estimate of 64%. The locations of the 
corrosion sensors and their influence on the spatial 
update are clearly visible in Figure 7. 

The first alert signal would be expected after about 
one year according to a first-order approximation of 
the initiation time following Eq. (3). Since the first 
alert was already triggered after 0.5 years, the poste-
rior corrosion probability is higher than the prior es-
timate. 

5.4 Corrosion probability at different points in time 

To assess the effect of the corrosion sensor measure-
ments at different points in time, the corrosion prob-
ability is evaluated for 𝑡 = {15, 45, 70} years, condi-
tional on the sensor alerts, respectively (Figure 8).  

 

 

Figure 8: Estimated corrosion probability for the points in time 
𝑡 = {15, 45, 70} years, conditional on the sensor signals. 

 



A comparison of the unconditional and conditional 
mean corrosion probability as a function of time is 
given in Figure 9. As expected, the mean of corrosion 
probability over the whole surface increases with 
time. Due to the early triggered sensor alerts, the 
mean of the corrosion probability conditional on the 
sensor signals is higher than the unconditional one.  

 

 

Figure 9: Comparison of the prior corrosion probability and the 
spatial mean of the corrosion probability conditional on the sen-
sor alerts over the whole concrete surface. 

5.5 Bridge reliability  

The resistance of the bridge is computed determinis-
tically as a function of the available reinforcement 
cross section 𝐴(𝑡). The pre-stressing steel has a char-
acteristic yielding stress of 1250 N/mm2 and fracture 
strength of 1400 N/mm2, and has a cross-section area 
of 1.4 × 10

3
 mm2. The available reinforcement cross 

section is determined as 𝐴0 = 52.1 cm2. The result-
ing initial bending-moment resistance is 𝑚𝑅 =
6.344 MNm. The annual maximum bending moment 
due to traffic loads is given by the Gumbel model in-
troduced in Sec. 3 with parameters 𝜂 = 3.68 MNm 
and 𝜉 = 1.36 MNm. 

Figure 10 shows the failure probability of the 
bridge for a given amount of available reinforcement 
cross section 𝐴(𝑡) and corresponding bending re-
sistance. The bending resistance at 𝐴(𝑡) = 0 is the 
one provided by the pre-stressing steel, which is here 
assumed to not deteriorate. 

In the mid-span cross section of the bridge, the bot-
tom plate is discretized into 10 elements. The rein-
forcement is assumed to be equally distributed to 
these elements, i.e. the initial steel cross section in 
each element is 5.2 cm2. 

 

 

Figure 10: Failure probability Pr(𝐹|𝑚𝑅) conditional on availa-
ble bending resistance on logarithmic scale. 

 
Figure 11 shows the failure probability of the 

bridge as a function of time. Since the sensor alerts 
were triggered early, the failure probability condi-
tional on the measurement results are higher than the 
ones based on the prior corrosion probability. Note 
that the corrosion probability in mid-span is influ-
enced mostly by sensor S2. 

Figure 11 also demonstrates the effect of the cor-
relation model. In the unconditional case, the ob-
served differences are due to the fact that the system 
is a redundant system. Increased statistical depend-
ence among deterioration reduces the effective redun-
dancy and, therefore, leads to higher probability of 
failure (correlation model C). 

 Interestingly, the effect of the correlation model is 
similar for the results conditional on monitoring out-
comes. This indicates that the influence of the corre-
lation model on the spatial effect of the monitoring is 
limited. However, further investigations are required 
before a final conclusion can be drawn. 

 

 

Figure 11: Failure probability of the bridge unconditional and 
conditional on the sensor-monitoring results. 

6 CONCLUSIONS  

This article presented a Bayesian updating procedure 
for updating the probabilistic corrosion model and the 
reliability estimate of a bridge with corrosion sensor 
monitoring results. The procedure accounts for the 



spatial correlation of the corrosion process in the 
structure. The procedure was demonstrated by an ap-
plication to a highway bridge. Thereby, the effect of 
the spatial correlation model was investigated and 
found to have limited influence, even though the spa-
tial influence is visible.  
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