
1 INTRODUCTION 

Civil infrastructure systems are backbones of modern societies, yet in many regions of the world 
they are vulnerable to seismic hazards. The authors are currently working toward the develop-
ment of a probabilistic decision-support system for seismic infrastructure risk assessment and 
management using a Bayesian network (BN) formulation. Components of the BN framework for 
seismic risk assessment and management include: (1) a seismic demand model of ground motion 
intensity as a spatially distributed Gaussian random field accounting for finite fault rupture and 
directivity effects; (2) models of component performance; (3) models of system performance; 
and (4) the extension of the BN to include decision and utility nodes to aid pre- and post-
earthquake decision-making.  This paper focuses on the third component of the proposed 
framework, modeling of system performance, with particular emphasis on issues related to 
computational efficiency.  

A BN is a probabilistic graphical model that represents a set of random variables and their 
probabilistic dependencies.  The ease with which BNs facilitate information updating makes 
them ideally suited for the proposed application.  However, like all computational methods, BNs 
have limitations.  In particular, calculations in BNs can be highly demanding of computer mem-
ory.  Space constraints do not permit the inclusion of an introduction on BNs here. Comprehen-
sive coverage is available in textbooks (Jensen & Nielson 2007; Kjaerulff & Madsen 2008) and 
overviews are presented in many papers (e.g. Friis-Hansen 2004; Bayraktarli et al. 2006; D. 
Straub 2005; Bensi et al. 2010). 

2 MODELING SYSTEM PERFORMANCE VIA BAYESIAN NETWORK 

Consider a system of 𝑛 components.  Each component 𝑖 ∈ [1, 𝑛] has 𝑑𝑖  discrete component 
states. Therefore, the number of distinct configurations of the system is  𝑑𝑖

𝑛
𝑖=1 . Bensi et al. 
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(2009) refer to the BN formulation that corresponds to the joint consideration of all combina-
tions of component and system states as the naïve BN formulation. In this formulation, a single 
node 𝑆𝑠𝑦𝑠 , representing the state of the system, is defined as a child of all nodes representing the 
states of the components (a converging structure) as shown in Figure 1a.  For a system with 𝑛 
binary components and binary system state (Pr survive = 1 − Pr(failure)), node 𝑆𝑠𝑦𝑠  has a 
conditional probability table (CPT) of size 2𝑛 .  (The CPT provides the conditional probabilities 
of the states of a node for given states of its parent nodes.)  For systems with a large number of 
components, the size of the CPT in the naïve formulation quickly causes the BN to become 
computationally intractable. However, the naïve formulation is useful in applications where the 
number of components is small, e.g. in the reliability assessment of simple structural systems.  
Mahadevan et al. (2001) utilize a formulation as in Figure 1a with components representing lim-
it-state functions corresponding to failure modes of structural systems.  The number of limit-
state functions in their example is sufficiently small so that the size of the CPT associated with 
the system node is not prohibitively large.  However, for realistic infrastructural systems such an 
approach to modeling is impractical. 
 

  

Figure 1: (a) Naïve formulation; (b) MLS formulation; and (c) MCS formulation 

As an alternative to the naïve approach to modeling system performance, Bensi et al. (2009) 
offer four additional BN formulations. We first review two of the formulations presented in that 
paper, which are based on use of minimal link and cut sets.  Then, we adapt these two formula-
tions with the goal of minimizing computational demands.  We focus first on series and parallel 
systems followed by consideration of general systems. Due to page limitations, we limit the 
scope of this paper to systems with binary states. However, it is noted that the formulations pre-
sented here can be extended to systems with multi-state components.  

2.1 Modeling performance of series and parallel systems with binary component states 

A common approach to making systems analysis more methodical is through the use of mi-
nimal link sets and minimal cut sets.  A minimal link set (MLS) is a minimum set of compo-
nents whose joint survival constitutes survival of the system. The minimal link set BN formula-
tion introduces intermediate nodes between the component and system nodes which correspond 
to the MLSs. Torres-Toledano and Sucar (1998) use a MLS-based BN formulation for modeling 
system performance, though with less formality and generality than is described here.  Figure 1b 
shows an example of the MLS BN formulation. The binary states of the MLS nodes are defined 
such that each MLS node is in the survival state only if all its constituent components have sur-
vived; otherwise it is in the failure state.  The system node is in the survival state if any MLS 
node is in the survival state. With binary component and system states, the size of the CPT for 
each MLS is 2 to the power of the number of its constituent components, and the size of the sys-
tem node CPT is 2 to the power of the number of MLSs. As a result, when the number of MLSs 
is large, the size of the CPT associated with the system node 𝑆𝑠𝑦𝑠  becomes large.  A similar 
problem occurs for an MLS nodes when the number of its constituent components is large.    

The dual of the MLS formulation is the minimal cut set BN formulation. A minimal cut set 
(MCS) is a minimum set of components whose joint failure constitutes failure of the system.   In 
this formulation, the system node is a child of nodes representing MCSs, and each MCS node is 
a child of nodes representing the states of its constituent components.  Figure 1c shows a con-
ceptual BN employing the MCS formulation.  The system node is a series system of all the MCS 
nodes (i.e., the system node is in the failure state if at least one MCS node is in the failure state), 
whereas each MCS is a parallel system of its parent nodes (i.e. all constituent components must 
be in the failure state for the MCS node to be in the failure state). As with the MLS formulation, 
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the CPTs in this formulation become large as the number of MCSs increases and/or the number 
of components in an individual MCS becomes large. 

In general, BN structures with nodes arranged in chains are significantly more efficient than 
the converging configurations characterizing the naïve and MLS/MCS formulations described 
above.  Consider the two equivalent BN structures shown in Figure 2. The figure on the left 
shows a converging structure and the one on the right illustrates a chain structure.  Both BNs 
model systems whose component states are dependent on a common demand 𝐷.  A formal de-
scription of the construction of the BN in Figure 2b is presented later in this paper. Based on an 
investigation of growth in computational complexity for both structures, it is found that the con-
verging structure is associated with exponentially increasing memory demand, while the com-
plexity of the chain structure grows linearly. However, the converging structure is more efficient 
than the chain structure for systems with less than four components.   

 

Figure 2: Illustration of BNs with (a) converging structure; and (b) chain structure 

We next describe how system performance can be modeled with BNs having the chain topol-
ogy.  Define a survival path sequence (SPS) as a chain of events, corresponding to a MLS, in 
which the terminal event in the sequence indicates whether or not all the components in the 
MLS are in the survival state. Note that the term “sequence” does not have any time implica-
tions. A series system has one MLS and a parallel system has 𝑛 MLSs.  It follows that a series 
system has one SPS and a parallel system has 𝑛 SPSs.  A SPS is comprised of a chain of surviv-
al path events (SPEs), each of which describes the state of the sequence up to that event.  SPEs 
are represented in the BN by nodes labeled 𝐸𝑠,𝑖 , the subscript 𝑖 indicating that the particular SPE 
is associated with component 𝑖.  The state of 𝐸𝑠,𝑖  is defined as  

𝐸𝑠,𝑖 = 1 if 𝐸𝑠,Pa (𝑖) = 1 ∩ 𝐶𝑖 = 1 

= 0 otherwise 

(1) 

where 𝐸𝑠,Pa (𝑖) defines the state of the SPE node that is parent to 𝐸𝑠,𝑖 ; 𝐸𝑠,𝑖 = 1 indicates that the 
node (or any other node considered in this paper) is in the survival state and 𝐸𝑠,𝑖 = 0 indicates 
its failure. 𝐶𝑖  denotes the state of component 𝑖 with 𝐶𝑖 = 1 (𝐶𝑖 = 0) indicating the survival 
(failure) state.   Thus, for a series system, the BN formulation takes the form shown in Figure 
3a. The state of node 𝐸𝑠,1 is equal to the state of node 𝐶1. 𝐸𝑠,2 is in survival state only if 𝐸𝑠,1 is 
in survival state and 𝐶2 is in survival state. This pattern continues such that 𝐸𝑠,𝑛  is in the surviv-
al state only if both 𝐸𝑠,𝑛−1 and 𝐶𝑛  are in the survival state. Consequently, the state of 𝐸𝑠,𝑛  de-
scribes the state of the entire SPS (i.e. it indicates whether all components in the  MLS have sur-
vived) and, therefore, that of the system.    

                               

Figure 3: BN using SPEs to define performance of (a) a series system and (b) a parallel system 

A parallel system has a SPS corresponding to each component.  The resulting BN formulation 
is shown in Figure 3b.  The system node indicates system survival if any node 𝐸𝑠,𝑖  is in the sur-
vival state.  Like the naïve formulation, the exponential growth in the size of the CPT associated 
with node 𝑆𝑠𝑦𝑠  renders the BN intractable when the number of components in the system is 
large.   
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Define a failure path sequence (FPS) as a chain of events, corresponding to a MCS, in which 
the terminal event in the sequence indicates whether or not all components in the MCS are in the 
failure state.  For a parallel system, there is only one MCS and thus one FPS. For a series system 
with 𝑛 components, there are 𝑛 FPSs, one corresponding to each component.  A FPS is com-
prised of a chain of failure path events (FPEs), each of which gives the state of the sequence up 
to that event.  Let 𝐸𝑓,𝑖  be the FPE associated with component 𝑖.  The state of 𝐸𝑓,𝑖  is expressed as 

𝐸𝑓,𝑖 = 0 if 𝐸𝑓,Pa (𝑖) = 0 ∩ 𝐶𝑖 = 0 

= 1 otherwise 
(2) 

where 𝐸𝑓,Pa (𝑖) defines the state of the FPE node that is parent to 𝐸𝑓,𝑖 . Thus, for a parallel system, 
the BN formulation takes the chain form shown in Figure 4a. The Boolean logic used to con-
struct the CPTs in this BN is dual of that used for SPSs, i.e. 𝐸𝑓,𝑖  is in the failure state only if the 
parent FPE is in the failure state and 𝐶𝑖  is also in the failure state.  For a series system, the BN 
formulation using FPSs is shown in Figure 4b. The size of the CPT associated with 𝑆𝑠𝑦𝑠  is 2𝑛  
and there is no computational advantage to this approach over the naïve formulation for series 
systems. These findings suggest that a combination of SPS and FPS formulations can be used to 
efficiently model general systems. This approach is described in the next section.  

 

Figure 4: BN using FPEs to define (a) a parallel system and (b) a series system  

2.2 Modeling performance of general systems with binary component states 

A MLS is a series system of its constituent components.  Therefore, based on the above dis-
cussion, one can construct a SPS to describe each MLS.  Consider the example  system in Figure 
5a, which has four MLSs: 𝑀𝐿𝑆1={1,7,8}, 𝑀𝐿𝑆2 ={2,7,8}, 𝑀𝐿𝑆3 ={3,7,8} and 
𝑀𝐿𝑆4 ={4,5,6,7,8}. In Figure 5b each MLS is modeled as an individual SPS.  The SPEs, 𝐸𝑠,𝑖

𝑗
, in 

each SPS are indexed by a subscript corresponding to the associated component 𝑖 and a super-
script corresponding to SPS/MLS number 𝑗. The dependence between the SPEs corresponding 
to the same component is modeled through a common parent node. The system node is in the 
survival state if the terminal node of any SPS is in the survival state. For reference, the BN for-
mulation in which the MLSs are arranged in chain structures is named efficient MLS BN formu-
lation.  Similar logic leads to the creation of an efficient MCS BN formulation, whereby strings 
of FPSs are constructed corresponding to each MCS.  The dependence between SPEs or FPEs 
sharing a component increases the computational demand when performing inference in the BN.  
By coalescing common SPEs/FPEs that appear in multiple SPSs/FPSs, the number of nodes and 
links in the BN, and hence the computational demand, are reduced.  In the example system, 
components 7 and 8 appear in all SPSs.  We take advantage of this observation and introduce 
only one “instance” of the SPEs associated with these components. The resulting BN is shown 
in Figure 6a. The states of SPE nodes having multiple SPEs as parents (e.g. node 𝐸𝑠,7 in Figure 
6a) are specified using the Boolean relation 

𝐸𝑠,𝑖 = 1 if    ∪ {𝐸𝑠,Pa  𝑖 = 1} ∩ 𝐶𝑖 = 1 

= 0 otherwise  
(3) 
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Figure 5: (a) Example system; (b) Efficient MLS formulations for system in (a) with distinct SPSs   

 

Figure 6: Efficient MLS formulations for the example system with coalesced SPEs associated with 

components 7 and 8 using (a) a converging structure (b) a chain structure  

A notational change has been introduced in Figure 6a: the superscript associated with each 
SPE node, which previously indicated the MLS number, now represents the instance of the SPE, 
i.e. if multiple SPEs are associated with the same component, then they are recognized as differ-
ent instances of the SPE and are distinguished through the superscript.  Because, for this system, 
each component is associated with only one SPE, all superscripts in Figure 6a are 1.  

It is noted that node 𝐸𝑠,7 in Figure 6a has more than 3 parents. Earlier, it was indicated that 
chain structures are more efficient than converging structures when the number of parents is 
greater than 3.  Thus, the BN in Figure 6a is further modified by replacing the parallel SPE 
nodes associated with components 1, 2, 3, and 6 with nodes arranged in a chain, resulting in the 
BN in Figure 6b, with CPTs defined using the relation   

𝐸𝑠,𝑖 = 1 if     𝐶𝑖 = 1  ∩  ∪ {𝐸𝑠,𝑃𝑎 𝑖 ′ = 1}  ∪ {𝐸𝑠,𝑃𝑎 𝑖 ′′ = 1} 

= 0   otherwise 
(4) 

where 𝐸𝑠,𝑃𝑎 𝑖 ′  are the SPE nodes that are parent to 𝐸𝑠,𝑖  before the addition of the chain modifi-
cation and which remain parents after it; 𝐸𝑠,𝑃𝑎 𝑖 ′′  are the SPE nodes that become parents to  𝐸𝑠,𝑖  
after the chain structure is added (identified by dashed links in Figure 6b). 

 Thus far, the SPEs in a SPS (FPEs in FPSs) corresponding to a particular MLS (MCS) have 
been arranged in an arbitrary order.  However, for complex systems, the arrangement of the 
SPEs in the SPSs may strongly influence our ability to coalesce SPEs in multiple SPSs (and ana-
logously for FPEs in FPSs).  The order in which SPEs appear can be optimized such that SPEs 
in as many SPSs as possible are coalesced. As mentioned earlier, this reduces the number of 
nodes and links in the BN.  This optimization problem is described next.  For brevity, only the 
formulation employing SPSs is presented; a dual formulation applies to FPSs and, in fact, the 
example at the end of this paper will use MCSs/FPSs.  
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Let 𝐿 𝑖𝑚 , 𝑗𝑛 = 1 indicate the existence of a directed link from 𝐸𝑠,𝑖
𝑚  to 𝐸𝑠,𝑗

𝑛  in the efficient 
MLS BN formulation and 𝐿 𝑖𝑚 , 𝑗𝑛 = 0 indicate its absence, where 𝑖 and 𝑗 are component in-
dices and 𝑚 and 𝑛 are indices denoting the instances of these SPE nodes in the BN.  Similarly, 
let 𝐶𝑖

𝑚 = 1 indicate a directed link between the node representing component 𝑖 and node 𝐸𝑠,𝑖
𝑚  

and  𝑆𝑖
𝑚 = 1 indicate a directed link between 𝐸𝑠,𝑖

𝑚  and the system node (with 𝐶𝑖
𝑚 = 0 and 

𝑆𝑖
𝑚 = 0 respectively denoting their absences). 𝐿 𝑖𝑚 , 𝑗𝑛 , 𝐶𝑖

𝑚  and 𝑆𝑖
𝑚  are the decision variables 

in the optimization problem.  Formulation of the optimization problem assumes the use of only 
SPE nodes and a converging structure at the system node. To further increase computational ef-
ficiency of the resulting BN, the converging structure at any node with more than 3 SPE nodes 
as parents is replaced by a chain structure in the manner described in Figure 6b.  

The objective of the optimization problem is to minimize the number of links in the BN, i.e. 

min      𝐿 𝑖𝑚 , 𝑗𝑛 

𝑁𝐼

𝑛=1
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𝑚
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+   𝑆𝑖
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  (5) 

where 𝑁𝐶  is the number of components in the system and 𝑁𝐼 is the maximum number of in-
stances of any SPE.  It is desirable that 𝑁𝐼 be as small as possible, but its value is not known 
prior to solving the optimization problem.  Thus, an iterative procedure is used to find the smal-
lest 𝑁𝐼 value under which the optimization problem is feasible.  The existence of links between 
the component and SPE nodes as well as between the SPE nodes and the system node are con-
trolled by the arrangement of SPE nodes in the BN.  Specifically, 𝐶𝑖

𝑚 = 1 if node 𝐸𝑠,𝑖
𝑚  exists in 

the BN, which occurs if the decision variables indicate a link going into or out of node 𝐸𝑠,𝑖
𝑚 .  (A 

node without links going into or out of it can be removed from the BN.) Mathematically, this 
constraint is written as  

   𝐿 𝑖𝑚 , 𝑗𝑛 + 𝐿 𝑗𝑛 , 𝑖𝑚  ≥ 1
𝑁𝐼
𝑛=1

𝑁𝐶
𝑗=1  ⇒ 𝐶𝑖

𝑚 = 1  (6) 

Techniques are available for modeling “if-then” and “k-out-of-n” (which are needed later) 
constraints in numerical optimization (Sarker & Newton 2008). The decision variable 𝑆𝑖

𝑚 = 1 if 
node 𝐸𝑠,𝑖

𝑚  is a terminal node in a SPS, i.e. 𝐸𝑠,𝑖
𝑚  exists and has no other SPE node as a child.  Ma-

thematically, this is written as 

   𝐿 𝑗𝑛 , 𝑖𝑚  ≥ 1
𝑁𝐼
𝑛=1

𝑁𝐶
𝑗=1  ∩    𝐿 𝑖𝑚 , 𝑗𝑛 = 0

𝑁𝐼
𝑛=1

𝑁𝐶
𝑗=1  ⇒ 𝑆𝑖

𝑚 = 1  (7) 

There are two constraints governing the arrangement of the SPE nodes in the BN: (1) each 
MLS must be represented by a SPS; and (2) no SPS may exist that is not strictly a MLS.  If the 
first constraint is violated, then one or more MLSs are excluded resulting in overestimation of 
the system failure probability.  If the second constraint is violated, then the BN will include one 
or more fictitious MLSs and thus underestimate the system failure probability. 

The first constraint requires that each MLS be represented as a SPS, i.e. at least one permuta-
tion of the SPEs associated with the components in each MLS must be connected as a chain.  
Define 𝑀𝐿𝑆𝑖  to be the set of components contained in the 𝑖th  MLS and let 𝑁𝑀𝐿𝑆,𝑖  be the number 
of components in  𝑀𝐿𝑆𝑖 .  For the system in Figure 5a: 𝑁𝑀𝐶𝑆,1 = 𝑁𝑀𝐶𝑆,2 = 𝑁𝑀𝐶𝑆,3 = 3 and 
𝑁𝑀𝐶𝑆,4 = 5. Let 𝑃𝑖  be the set of permutations, without replacement, of the components in 𝑀𝐿𝑆𝑖  
and define  𝑝𝑖

𝛼 = {𝑝𝑖,1
𝛼 , 𝑝𝑖,2

𝛼 , … , 𝑝𝑖,𝑁𝑀𝐶𝑆 ,𝑖

𝛼 } as the 𝛼th  permutation contained in the set 𝑃𝑖 . As an 
example, for the system in Figure 5a, 𝑃1 =  𝑝1

1 =  8,7,1 , 𝑝1
2 =  8,1,7 , 𝑝1

3 =  7,8,1 , 𝑝1
4 =

 7,1,8 , 𝑝1
5 =  1,7,8 , 𝑝1

6 =  1,8,7  . 
Next, let 𝑄𝑖  be the set of permutations with replacement of 𝑁𝑀𝐶𝑆,𝑖  draws from the index set 

 1,… , 𝑁𝐼 .  Define 𝑞𝑖
𝛽

= {𝑞𝑖,1
𝛽

, 𝑞𝑖,2
𝛽

, … , 𝑞𝑖,𝑁𝑀𝐿𝑆 ,𝑖

𝛽
} as the set of instance indices ordered according 

to the 𝛽𝑡ℎ  member of 𝑄𝑖 .  Using the same example and assuming  𝑁𝐼 = 2, we have 𝑄1 = {𝑞1
1 =

 1,1,1 , 𝑞1
2 =  1,1,2 ,  𝑞1

3 =  1,2,1 ,  𝑞1
4 =  1,2,2 ,  𝑞1

5 =  2,1,1 ,  𝑞1
6 =  2,1,2 ,  𝑞1

7 = (2,2,1),  
 𝑞1

8 =  2,2,2 }. Note that  𝑃𝑖  has 𝑁𝑀𝐿𝑆,𝑖! members, while 𝑄𝑖  has 𝑁𝐼

𝑁𝑀𝐿𝑆 ,𝑖  members.    
Define a set 𝑟𝑖

𝛼 ,𝛽
= [𝑟𝑖,1

 𝛼,𝛽 
, 𝑟𝑖,2

 𝛼,𝛽 
, … , 𝑟𝑖,𝑁𝑀𝐿𝑆 ,𝑖

 𝛼,𝛽 
] which combines the elements of 𝑝𝑖

𝛼  and 𝑞𝑖
𝛽

.  
Specifically, 𝑟𝑖

𝛼,𝛽
 includes the set 𝑝𝑖

𝛼  with superscripts given by the set 𝑞𝑖
𝛽

.  For the example 
system, 𝑟1

1,1 = {81, 71 , 11}, 𝑟1
1,2 = {81 , 71 , 12},  𝑟1

2,4 = {81, 12 , 72}, etc. Overall, for this specific 
MLS, there are 3! ∗ 23 = 48 possible ways to arrange the component numbers given by 𝑝𝑖

𝛼  and 
the subscripts given by 𝑞𝑖

𝛽
.  

For convenience, define the sum 𝑋𝑖
(𝛼,𝛽)

=  𝐿[𝑟𝑖,𝑙
 𝛼,𝛽 

, 𝑟𝑖,𝑙+1
 𝛼,𝛽 

]
𝑁𝑀𝐿𝑆 ,𝑖−1

𝑙=1 , where 𝑟𝑖,𝑙
(𝛼,𝛽)

 is the 𝑙th  
element of 𝑟𝑖

(𝛼,𝛽)
.   𝑋𝑖

 𝛼,𝛽 
= 𝑁𝑀𝐿𝑆,𝑖 − 1 only if the SPEs corresponding to the components in 



𝑀𝐿𝑆𝑖  form a SPS in the order specified by 𝑝𝑖
𝛼  and with instance indices assigned by 𝑞𝑖

𝛽
.  For a 

required SPS to exist in the BN, 𝑋𝑖
 𝛼,𝛽 

= 𝑁𝑀𝐿𝑆,𝑖 − 1 for at least one component/instance index 
ordering from the set 𝑟𝑖

 𝛼,𝛽 
.  The constraint is written as 

max
𝛼,𝛽

𝑋𝑖
(𝛼,𝛽)

≥ 𝑁𝑀𝐿𝑆,𝑖 − 1         ∀𝑖 , 𝛼 = 1, … , 𝑁𝑀𝐿𝑆,𝑖!, 𝛽 = 1, . . , 𝑁𝐼

𝑁𝑀𝐶𝑆 ,𝑖  (8) 

The second constraint requires that no SPS exist in the BN which does not correspond to a 
MLS.  Consider the BN shown in Figure 7a.  Let the shaded nodes (𝐸𝑠,1

1 → 𝐸𝑠,2
1 → 𝐸𝑠,3

1 → 𝐸𝑠,4
1 ) 

represent a particular permutation of components/instance indices 𝑟𝑖
(𝛼,𝛽)

= {11 , 21 , 31 , 41} re-
sulting in a valid SPS.  Constraint (2) must prohibit a SPE 𝐸𝑠,𝑗

𝑛 , for any 𝑛, from “branching-off” 
the SPS at any point (i.e. being a child of any node in the chain) unless the component 𝑗 exists in 
a MLS with all preceding components in the sequence.   For example, in Figure 7a, 𝐸𝑠,𝑗

𝑛  cannot 
exist as a child of 𝐸𝑠,3

1  unless components 1,2,3, and 𝑗 all exist together in a MLS.  If compo-
nents 1,2,3, and 𝑗 do not exist in a MLS, then the false survival path shown by nodes with 
dashed edges is introduced into the BN.  The associated constraint is written as 

 𝑋𝑖
 𝛼,𝛽 

= 𝑁𝑀𝐿𝑆,𝑖 − 1,∀𝑖, 𝛼, 𝛽 ⇒ 

𝐿  𝑟𝑖,𝑙
 𝛼,𝛽 

, 𝑗𝑛 = 0, ∀𝑗:  𝑝𝑖,1
 𝛼 

, … , 𝑝𝑖,𝑙
 𝛼 

, 𝑗 ∉ 𝑀𝐿𝑆𝑚 , ∀𝑛, ∀𝑚, ∀𝑙 
(9) 

 

Figure 7: BN used to illustrate constraint (2)  

Furthermore, the constraint must prohibit SPE 𝐸𝑠,𝑗
𝑛 , for any 𝑛, from being a parent to any 

node in a valid SPS, unless component 𝑖  exists in a MLS with all subsequent components in the 
sequence.  For example, in Figure 7b, 𝐸𝑠,𝑗

𝑛  cannot be a parent of 𝐸2,1 unless components 2,3,4, 
and 𝑗 all exist together in a MLS.  The second constraint takes the form 

 𝑋𝑖
 𝛼,𝛽 

= 𝑁𝑀𝐿𝑆,𝑖 − 1,∀𝑖, 𝛼, 𝛽 ⇒ 

𝐿  𝑗𝑛 , 𝑟𝑖,𝑙
 𝛼,𝛽 

 = 0      ∀𝑗:  𝑗, 𝑝𝑖,𝑙
 𝛼 

, … , 𝑝𝑖,𝑁𝑀𝐿𝑆 ,𝑖

 𝛼 
 ∉ 𝑀𝐿𝑆𝑚 , ∀𝑛, ∀𝑚, ∀𝑙 

(10) 

The combination of these two requirements along with the objective function (the minimiza-
tion of which ensures links that are not necessary for constructing the required SPSs are not in 
the BN) prohibits invalid SPSs in the BN.  Combining (9) and (10) results in the constraint  

 𝑋𝑖
 𝛼,𝛽 

= 𝑁𝑀𝐿𝑆,𝑖 − 1,∀𝑖, 𝛼, 𝛽 ⇒ 

    𝐿  𝑟𝑖,𝑙
 𝛼,𝛽 

, 𝑗𝑛  +
∀𝑗 :  𝑝𝑖,1

 𝛼 
,…,𝑝𝑖,𝑙

 𝛼 
,𝑗  ∉𝑀𝐿𝑆𝑚

𝑁𝑀𝐿𝑆 ,𝑖

𝑙=1
𝑁𝐼
𝑛=1

𝑁𝑀𝐿𝑆
𝑚=1

    𝐿  𝑗𝑛 , 𝑟𝑖,𝑙
 𝛼,𝛽 

 = 0
∀𝑗 :  𝑗 ,𝑝𝑖,𝑙

 𝛼 
,…,𝑝𝑖,𝑁𝑀𝐿𝑆 ,𝑖

 𝛼 
 ∉𝑀𝐿𝑆𝑚

𝑁𝑀𝐿𝑆 ,𝑖

𝑙=1
𝑁𝐼
𝑛=1

𝑁𝑀𝐿𝑆
𝑚=1   

(11) 

The integer optimization problem described above requires consideration of permutations of 
components.  Consequently, it becomes difficult to solve this problem in practice for large sys-
tems.  To overcome this problem, several heuristics have been developed to reduce the size of 
the optimization problem that must be considered. Specifically, groups of components are con-
sidered as single “super-components,” thus reducing the number of components, and measures 
are taken to eliminate unnecessary permutations of component indices. These heuristics will be 
described in an extended version of this paper. 

To briefly illustrate the computational advantages of using the proposed efficient BN formu-
lation, consider the structural system in Figure 8a consisting of 10 labeled components which 
can fail. The system has 11 MCSs:  1,2 ,  3,4 ,  1,3,10 ,  1,4,10 ,  2,3,10 ,  2,4,10 ,  5 ,  6 , 
 7 ,  8 , and {9}.  The BN obtained using the optimization algorithm (including the use of heu-
ristics) is shown in Figure 8b. An example of a heuristic adaption is observed when the single 
component MCSs are arranged as a series system using SPE nodes on the left of Figure 8b. Be-
cause this BN uses a mixture of FPE and SPE nodes, the relations between nodes require mod-
ifications of the equations given above. The total clique table size associated with this BN ob-
tained using the optimization scheme is 164.  The total clique table size of the MLS BN 

Es,1
1

Es,j
n

Es,2
1 Es,3

1 Es,4
1

Es,1
1 Es,2

1 Es,3
1

Es,j
n

Es,4
1(a) (b)



formulation with the converging structure is 5,140.   Thus, the optimized BN is over an order of 
magnitude computationally more efficient. 

 

Figure 8: (a) Example structural system; (b) system performance BN 

3 CONCLUSIONS 

This paper develops efficient BN formulations for modeling the performance of general systems 
for which the MLSs or MCSs are known. We show that BNs with nodes in chain structures are 
more efficient than when nodes are arranged in converging topologies. We demonstrate how 
BNs with nodes arranged in chain structures are constructed for series and parallel systems.  
This idea is then extended to develop similar topologies for general systems.  Finally, a binary 
integer optimization program is developed with the goal of automatically constructing the BN 
such that the number of links is minimized. An example highlights the advantage gained from 
the efficient BN formulation.  
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