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Background and Motivation

� Main objective of a reliability analysis is to estimate the failure
probability (PF ) of a system. By transforming the random vari-
able space to an equivalent space of standard normal random
variables, PF can be defined as follows:

PF =

∫
Rn
I(g(u) ≤ 0) · ϕn(u) du

ϕn(u) is the n-dimensional standard normal probability density
function and g(u) is the limit state function whose negative val-
ues define failure of the system (Figure 1). The indicator func-
tion I(g(u) ≤ 0) gives 1 for g(u) ≤ 0 and 0 else.
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Figure 1: Reliability problem in two-dimensional standard normal space.

� Importance sampling (IS) introduces an alternative sampling
density h(u) in the problem formulation:

PF =

∫
Rn
I(g(u) ≤ 0) · h(u) · ϕn(u)

h(u)
du

With ns samples generated from h(u), the IS estimate of PF is:

P̂F =
1

ns

ns∑
i=1

I(g(ui) ≤ 0) · ϕn(ui)

h(ui)

� An optimal IS density p∗(u) can be defined as:

p∗(u) =
I(g(u) ≤ 0) · ϕn(u)∫

Rn I(g(u) ≤ 0) · ϕn(u) du

Since this expression requires knowledge of PF , it is practically
not applicable, but knowledge of the type of p∗(u) can be used
to identify a near-optimal IS density.

� The cross entropy (CE) method tries to find a near-optimal IS
density through minimizing the Kullback-Leibler (KL) divergence
between p∗(u) and a parametric family of distributions h(u;v),
with v denoting the parameter vector:

arg minv D(p∗(u), h(u;v))

= arg maxv

∫
Rn
I(g(u) ≤ 0) · ϕn(u) · ln (h(u;v)) du
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Figure 2: Intermediate failure levels of the step-wise CE approach.

� In each step, an intermediate failure domain is defined (Fig-
ure 2), such that ρ ·ns, ρ ∈ ]0, 1[ of the ns generated samples fall
into the failure domain. The parameter update is done through
minimizing the KL divergence between the optimal IS density of
the intermediate failure domain and h(u;v).

� PROBLEM 1: The well-known distribution families are only
suitable for certain types of problems (e.g. low/high dimen-
sions, component/system reliability).

� PROBLEM 2: Only ρ · ns samples are taken into account for
the parameter update in the CE method.

A flexible mixture model

� Transformation of the n-dimensional standard normal space to
polar coordinates:

U = R · A

R: Radius, follows the χ-distribution with n degrees of freedom
A: Unit directional vector, follows the uniform distribution on the
n-dimensional unit hypersphere

� In high dimensions, the probability mass of the standard normal
distribution concentrates around an ’important ring’, with radius
Rimp =

√
n.

� The von Mises-Fisher (vMF) distribution: A directional prob-
ability distribution on the n-dimensional hypersphere. Its param-
eters are the mean direction and the concentration parameter,
which describes the concentration around the mean direction.
→ Distribution of A

� The Nakagami distribution: A generalization of the χ-
distribution.
→ Distribution of R

� A mixture model of several of these combined distributions
(vMFNM) is generated for problems with multimodal failure.
→ Flexible mixture model to solve different problem set-
tings in low and high dimensions.

Modified cross entropy method

� Approximation of the indicator function by the following expres-
sion:

I(g(u) ≤ 0) ≈ Φ

(
−g(u)

σ

)
This holds only if σ is chosen small enough. Φ is the standard
normal cumulative distribution function.

� Approximate the indicator function in the optimal IS density se-
quentially by estimating the parameter σl in step l such that the
coefficient of variation of the sample weights Wl(u) adhere to a
target value. The weights are defined as:

Wl(x) = Φ

(
−g(u)

σl

)
· ϕn(u)

hl−1(u)

� The initial sampling density is chosen as the standard normal
density in polar coordinates.

� Fit the parameters of the vMFNM for the next step with the ns
available samples by an iterative expectation-maximization al-
gorithm which minimizes an IS estimate of the Kullback-Leibler
divergence.
→ All ns available samples are taken into account for the pa-
rameter update.

� The algorithm exits when a substantial number of samples is
located in the failure domain. The failure probability is then esti-
mated via IS, with the density estimated at the final step as the
IS density.

Numerical example

� Series system consisting of two linear limit state functions in the
n-dimensional standard normal space:

g(x) = min

 β − 1√
n

∑n
i=1 xi

β + 1√
n

∑n
i=1 xi


� PF = 2 · Φ(−β) independent of the dimension n

(β = 3.5 : PF = 4.66 · 10−4)
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Figure 3: Optimal IS density for the example problem in two dimensions
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Figure 4: 1000 samples of the near-optimal IS density obtained with a vMFNM
with two components. Parameters estimated with ns = 1000 per level.

� The vMFNM with two components successfully detects the two
failure domains (Figures 3, 4).

� The modified CE method performs better than the standard CE
method in terms of bias and coefficient of variation of the esti-
mate (Figures 5, 6).

� The modified CE method using vMFNM performs well in low to
moderately high dimensions. In high dimensions, the number
of samples per level has to be increased.
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Figure 5: Relative bias of the estimated failure probability as a function of in-
creasing dimensions; Comparison of standard CE method with ns = 1000 per
level, modified CE method with ns = 1000 per level and modified CE method
with ns = 2000 per level.
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Figure 6: Coefficient of variation of the estimated failure probability as a
function of increasing dimensions; Comparison of standard CE method with
ns = 1000 per level, modified CE method with ns = 1000 per level and modified
CE method with ns = 2000 per level.


