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Abstract: Ambient Assisted Living (AAL) systems aim to enable the elderly people to stay active
and live independently into older age by monitoring their behaviour, provide the needed assistance
and detect early signs of health status deterioration. Non-intrusive sensors are preferred by the
elderly to be used for the monitoring purposes. However, false positive or negative triggers of those
sensors could lead to a misleading interpretation of the status of the elderlies. This paper presents a
systematic literature review of the sensor failure detection and fault tolerance in AAL equipped with
non-intrusive, event-driven, binary sensors. The existing works are discussed, and the limitations and
research gaps are highlighted.
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1. Introduction

According to the World Health Organization, the world’s population percentage of people aged
over 60 is expected to double in the next decades to increase from 12% in 2015 to 22% in 2050.
This phenomenon, known as Ageing Population, can be already witnessed in high-income countries.
This demographic shift will induce new challenges to the countries, e.g., preparing the health care and
social systems to deal with higher capacities [1]. Focusing on healthy ageing is an essential investment
for facing that shift. Taking care of the elderlies would decrease the chance of further complications to
their health status. This can be achieved by providing care in nursing homes or hospitals. However, it is
costly and the costs increase greatly if the person needs specialized care due to immobilization or other
health problems.

A cost-effective alternative is using technology for independent living of the elderlies [2]. Ambient
assisted living (AAL) is defined as “the use of information and communication technologies (ICT) in a
person’s daily living and working environment to enable them to stay active longer, remain socially
connected and live independently into old age” [3]. AAL technologies can monitor the behavior of
elderly people at home and provide support whenever required, and hence, improve the quality of
life [4]. This would cast some burden away from the family members of the elderlies, decrease the
need for qualified caregivers and have a positive impact on the psychological status of the elderlies,
as they would live independently at their homes longer and safer [5].

Smart homes and ambient assisted living (AAL) terms were found to be interchangeably used in
scientific articles, however, AAL is a special form of a smart home. AAL tools range between health and
activity monitoring tools, wandering prevention tools, and cognitive orthotics tools [6]. The technology
of those tools are based on ambient intelligence, a paradigm that integrates technology in people’s
environment to help them in their everyday lives by learning and adaptively responding to their
behaviour [7]. Researchers are interested in investigating approaches to track the location and the
activities of the residents, prompting the residents, discovering the abnormal behavior, and predicting
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the future activities [8]. Integrating sensors in an unobtrusive intelligent way in the residents’ homes,
allow monitoring their activities of daily living (ADL) to track their health status, and to detect early
signs of diseases [9].

The sensors used to monitor and locate the resident can be classified into intrusive sensors
(e.g., camera, microphone) and non-intrusive sensors (e.g., motion detectors, pressure sensors).
In practice, the sensors installed in the inhabitant’s place of residence may produce wrong output,
e.g., false positives or negatives. A failure in one of the sensors of the AAL could lead to misleading
result in activity recognition, or in location tracking. This can have dramatic consequences to the health
of the inhabitant [10].

This survey paper aims to review the research work done in the sensor failure detection and fault
tolerance in the presence of sensor failures in AAL systems equipped with non-intrusive binary sensors.
The paper is organized as follows; Section 2 provides an overview of sensor failures, Section 3 presents
an overview of the typical publicly available datasets used in the reviewed works, Section 4 outlines
the methodology used to conduct the literature survey, Section 5 presents the research work found in
the survey, Section 6 discusses the reviewed works and Section 7 discusses the status of research and
highlights the gaps.

2. Background on Sensors Failures in Smart homes and AAL

A fault can be defined as an abnormal event that can cause an element or an item to fail while a
failure is the termination of the ability of an element to perform a function as required [11]. A fault may
or may not lead to failure.

For sensor networks in general, two perspectives for fault type classification in sensor networks
was proposed by [12]:

1. Data-centric viewpoint, which is based on the characteristics of sensor readings, e.g., stuck-at
and spike.

2. System-centric viewpoint, which describes faults causing the malfunction of sensor,
e.g., low battery and calibration.

The authors in [13] have presented another three perspectives for classifications:

1. Fault-tolerant distributed system viewpoint, that is based on the behaviour of the failed sensor,
e.g., crash and omission.

2. Duration viewpoint that classifies faults based on their duration e.g., permanent and intermittent.
3. Components viewpoint, e.g., functional and informational faults.

Several fault detection techniques have been developed for sensor networks. However,
the techniques were mainly designed for time-driven, continuous-valued and homogeneous sensors,
e.g., temperature sensors. Thus, those techniques are not suitable for the event-driven, binary and
heterogeneous nature of sensors that are needed for the ambient assisted living, e.g., motion detectors,
contact sensors, etc. [14].

In an AAL system, a sensor failure is considered to be a fault from the perspective of the whole
AAL system. There are two main categories of sensor failures in the AAL terminology:

• A fail-stop failure means that the sensor has stopped responding.
• A non-fail-stop failure indicates that the sensor is still responding, however, the reported values are

no longer representative of the measured variable, nor the occurring events in the surrounding
environment that are intended to be detected.

Sensor failures can also be classified as single-sensor failures and mutliple-sensor failures.
In research works considering single-sensor failures, it is assumed that only one sensor can fail
at a time [14].

In the field of AAL, Flöck has presented an overview of the binary sensors malfunctions
that were observed during practical AAL implementation, e.g., faulty activation of motion
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detectors by sunlight, bouncing of contact sensors, and switch-off delays of motion sensors [15].
Also, Rahal et al. have reasoned the false information sent by binary sensors to be either due to an
intrinsic error, e.g., the sensor’s error rate, or due to an external error, e.g., an air draft or a pet may
close the door triggering false events [16]. Different types of non-fail-stop failures have been stated in
the research papers. Examples of the non-fail-stop failures are:

• Moved-location failure, which occurs due to moving furniture that have sensors installed on it to a
different area or re-mounted in the wrong location.

• Obstructed-view failure that occurs due to covering the sensors or its dislodgement that may result
from regular use, cleaning, other non-residents, etc. [17,18].

A set of guidelines and principles for the deployment of large-scale residential sensing systems
was proposed in [19], summarizing the experience gained from installing over 1200 sensors in over
20 homes to monitor human activity. The main failure modes were examined to identify the longest
acceptable time interval of inactivity for each sensor. For each periodic sensor, the interval is set
to 5 times the sampling period, while for event-driven sensors, it is set to 36 h. The root cause of
failure is identified based on the set of simultaneous sensor failures, where the considered causes of
failure are wireless link loss, dead battery, disconnected plug, sensor sub-system down, internet-down,
power outage, and gateway down. The described failure detection and classification approach was
applied on four deployments for seven months. The analysis of the results showed that sensors are
2.3 times more likely to fail due to being unplugged than to dead battery and that wireless link loss is a
less cause of failure than the other sources of sensor down time. Failure of an entire sensor sub-system
appeared to be the most common cause of failure. This performed failure analysis enabled the authors
to present guidelines that could avoid some of the pitfalls and failures observed in the deployments.
However, a fault detection and diagnosis system still need to be implemented to deal efficiently with
sensor failures.

The following is the terminology found in the surveyed literature for the evaluation of
various systems;

• true positives (TP) are the data points reported as positive when they actually are positive
• false positives (FP) are the data points reported as positive while they are actually negative
• false negatives (FN) are the data points reported as negative while they are actually positive
• true negatives (TN) are the data points are reported as negative while they are negative
• precision measures the percentage of true positives from the total points reported as positive

(TP/(TP + FP))
• recall measures the percentage of true positives from the actual positive points (TP/(TP + FN))
• accuracy measures the percentage of true positives and negatives from the data

((TP + TN)/(TP + TN + FP + FN))
• failure detection latency is the amount of time taken to detect a sensor failure after its occurrence.

Figure 1 elaborates the terminology with respect to sensor failure detection systems, where the
accuracy, precision and recall values are 85%, 72% and 88%, respectively. The accuracy would still be
relatively high if the system does not report as many sensor failures as before (lower TP and higher FN),
however, the precision and recall would significantly drop. Thus, only using the accuracy for evaluating
the system performance is insufficient. The precision indicates the ratio of the correctly reported sensor
failures to all the positively reported sensor failures, while the recall indicates the ratio of correctly
reported sensor failures to the positive sensor failures ground truth.
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Figure 1. Evaluation metrics terminology for sensor failure detection system

3. Datasets

This section presents an overview of the publicly available datasets that were used in a number
of the reviewed research works. Other publicly available datasets exist for ambient assisted living,
but they have not been used in research papers that focus on fault detection nor fault tolerance. It is
worth noting that to the best of our knowledge, all the public datasets do not include any labels of the
faulty sensors data.

3.1. Kasteren Datasets

Tim van Kasteren has collected benchmark datasets (called house A, B and C) [20] from three
single-resident apartments which were collected over 14, 23 and 19 days, respectively. Wireless sensors
that gives binary output were installed; reed switches for the doors and cupboards, pressure mats for
couches and beds, mercury contacts for drawers, passive infrared (PIR) sensors to detect motion
of resident in different areas of the apartments and float sensors for toilet flushing detection.
The number of sensors installed in the three apartments (A, B and C) are 14, 23 and 21, respectively.
During the collection of data, the resident performed his daily routine freely in an unscripted manner
(i.e., the resident was not told what to do or which activity to perform). Annotation of the start and end
of activities was performed by the resident using handwritten activity diary or a bluetooth headset [21].
The following data is recorded in the dataset files; start and end date/time of sensor activation, sensor
ID, start and end date/time of activity and activity label.

3.2. CASAS Datasets

The CASAS research group in Washington State University (WSU) has made 64 datasets publicly
available [22]. The recorded datasets were either collected from the WSU smart apartment equipped
with around 90 sensors, residential apartments that has a number of sensors that ranges between 30 to
50 sensors or SHib partner lab equipped with 25 sensors, for a duration ranging from hours to years,
for single- or two-resident apartments. Some of the experiments were scripted, e.g., adlnormal data and
adlinterweave data, and others were unscripted, e.g., aruba data and kyoto data. Examples of sensors
installed in the apartments are motion sensors, magnetic sensors, water flow sensors, item presence
sensor, stove burner sensor and temperature sensors. The following data is recorded in the datasets
files; data/time, sensor ID, sensor value/status. Some of the datasets have labels for the start and end
of the performed activities.

3.3. Placelab Datasets

Three datasets (PLIA1, PLIA2 and PLCouple1) were collected from Placelab living lab [23] (note
that the Placelab dataset website has been down for months). The living lab is an apartment where
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volunteers live during the data collection process. Two datasets were collected from single residents
for 4 h who were asked to perform a set of activities, and the third one was collected from a couple
who lived freely there performing their own daily routines for 10 weeks. The datasets were annotated
with the performed activities using video recordings. The apartment is equipped with around 400
sensors that range between reed switches, light sensors, motion detection sensors, water flow sensors,
temperature sensors, humidity sensors, electrical current flow sensors, gas sensors, etc. [24].

3.4. Tapia Datasets

Emmanuel Munguia Tapia has conducted experiments for two weeks in two single-resident
apartments (subject 1 and subject 2) equipped with 77 and 84 sensors, respectively. The sensors
are reed switches attached to the everyday objects, e.g., drawers, doors, containers, refrigerator, etc.
The residents carried out their daily activities without any scripts [25]. The following data is recorded
in the datasets; activity label, start and end date/time of activity, sensor ID, start and end date/time of
sensor activation.

4. Literature Survey Methodology

In order to conduct the literature survey, the title, abstract and keywords fields were searched in
Scopus, IEEExplore, Web of knowledge and ACM databases for the following combination of terms;
(“fault detection” OR “sensor failure”) AND (“smart home” OR “ambient assisted living”). Scopus and
Web of knowledge databases produced the largest number of relevant articles.

The search was then extended on Scopus and Web of knowledge to include more combinations
of the keywords shown in Table 1, so that the combination is as follows; ((Group A AND Group C)
OR Group D) AND Group B. Only the papers concerned with non-intrusive ambient binary sensors
were included in the survey. The obtained articles were cross-referenced, and a total of 30 papers were
selected for the review. It was observed that these 30 papers were all published between 2008 and 2017.

Table 1. Search keywords.

Group A Group B Group C Group D

“sensor*1” “smart home” “fault detection” “sensor* error”
“ambient assisted living” “failure detection” “sensor* failure*”

“AAL” "fault toleran*” “sensor* fault*”
“location tracking” “fault identification” “sensor reliab*”

“actvity recognition” “failure identification” “faulty sensor*”
“activity monitoring” “fault diagnosis” “*reliable sensor”
“activity detection” “FDI" “uncertain sensor”
“home* based care” “fault isolation” “sensor diagnos*”

“indoor localization” “fault prevention” “sensor node fail*”
“fault prediction” “fail* sensor*”
“fault recover*” “anomal*” AND “binary sensor*”

“self-check*”
“self-heal*”

“dependable”
“failure management”

The main focus of the research works can be mainly categorized as works concerned with:

• sensor failure detection in AAL
• fault-tolerant ADL recognition
• fault-tolerant abnormal behavior detection

1 * replaces any number of characters, i.e., sensor* will search for sensor, sensors, sensory, etc.
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• fault-tolerant indoor localization system/location tracking
• maintenance scheduling/management
• fault detection and diagnosis framework for AAL

The reviewed papers classification is shown in Table 2. These papers are presented and analyzed
in detail in the next section.

Table 2. Main focus of the research works.

Focus Research Work

Sensor failure detection [10,14,17,18,26–36]
Maintenance scheduling/management [14,27,30]
Fault-tolerant ADL recognition [14,27,30,37–45]
Fault-tolerant abnormal behavior detection [37]
Fault-tolerant indoor localization system/location tracking [16,46,47]

5. Literature Survey Results

This section provides a state-of-the-art review for the sensor failure detection systems and fault
tolerance methods in the presence of sensor failures in AAL systems equipped with non-intrusive, binary,
event-driven sensors. The research works are categorized according to the function of the proposed
systems as well as the approach that their methods are based on: correlation-based fault detection,
model-based fault detection, fault-tolerant location tracking, fault-tolerant activity recognition or fault
detection and diagnosis framework for AAL, respectively. A glossary of the technical terms can be
found at the end of this paper.

5.1. Correlation-Based Fault Detection

The following research papers proposed sensor failure detection systems based on either
sensor-appliance, sensor-sensor or sensor-activity correlations.

FailureSense [17] was presented by Munir and Stankovic to detect fail-stop and non-fail stop
mutliple-sensor failures. It is based on exploiting the correlation between the trigger of motion
sensors and the activation/deactivation of electrical appliances. The correlation is represented by the
smallest interval of sensor firing after and before a turn on/off event within 5 minutes, denoted by
IA and IB, respectively. The distribution of IA and IB is modelled by Gaussian mixture model
(GMM), whose parameters are estimated from the training data using the Expectation Maximization
(EM) algorithm. Online failure detection takes place by monitoring the sensor appliance behaviour
represented by IA and IB. A failure is reported when a deviation occurs in the distribution beyond
predefined thresholds for each sensor-appliance pair. The thresholds are computed using the training
dataset. Evaluation was performed on three real-home datasets with around two thirds of the dataset
used for training and one third for testing. Fail-stop failure was simulated by removing all the readings
of a sensor after its randomly assumed day of failure. For the obstructed-view failure, simulation took
place for two of the homes by randomly removing a 10-day period during which sensor view is
considered to be obstructed, and for the third home, physical obstruction of the view of 5 motion
sensors was done during the data collection phase. Simulation of the moved-location failure was
done by replacing the readings of failed sensor with the readings recorded by the sensor at the
newly moved location. The evaluation metrics used are the precision and recall of failure detection,
where they represent the percentage of the true failure alerts from the total observed failure alerts,
and the percentage of the true failure alerts from the sensor failures, respectively. Experiments of the
fail-stop, obstructed-view and moved-location failures produced approximately 82.8%, 90.5% and
86.8% average precision, with an average recall of 92.86%, 84.4% and 89%, respectively. The effect of
increasing the number of sensors that experience fail-stop failures on the percentage of failure detection
has been also examined, showing an average of 86.6% sensor failure detection. On the other hand,
a limitation of the proposed approach is that the average median failure detection latency is 22.08 h.
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Ye, Stevenson and Dobson presented a technique to detect missing data in event-driven sensors
based on temporal correlation and time-series analysis [26]. Temporal correlation relationship is
defined to indicate if two sensors fire within a preset time interval. A missing data is reported when
one of two highly correlated sensors fires without the other. For each sensor, the next firing time is
predicted using non-linear time analysis technique, and if it does not fire at the predicted time, then it
is considered as missing data. Evaluation is carried on Kasteren dataset (house A) [20], in which
randomly chosen sensors events were removed from the testing data, using precision and recall
metrics for each of the temporal correlation and time series approaches independently, then combined.
The effect of changing predefined parameters of the algorithm on the performance was also examined.
Moreover, the relation of increasing the error rate percentage (percentage of data removed) in the
testing set on precision and recall was plotted along with increasing the percentage of training set.
The results on the examined dataset has shown that the performance of using the temporal correlations
for detecting missing events is better than using the time-series analysis. Also, it was observed from
the results that using both temporal correlation and time-series analysis simultaneously for failure
detection had a very low impact on the performance improvement. Using temporal correlation with
data split by half for training and testing sets, the precision was nearly 70% and the recall decreased
from around 80% to 40% with increasing the error rate from 10% to 90%. Increasing the training data
to 90%, has made the precision to nearly be around 78% and the recall to decrease from 85% to 75%.
The authors stated that the proposed approaches could not be sufficiently evaluated on the chosen
dataset, as it has few sensors and is collected over a short duration.

Kodeswaran et al. aimed to propose a system called Idea, for monitoring the activities of daily
living while preserving a reduced maintenance overhead [27]. It is based on the assumption that there
are redundant heterogeneous sensors installed for detecting each activity. Maintenance is scheduled
according to the impact of a sensor failure on the performance of the system to detect ADL. The main
components of Idea are; ADL signature Extraction, ADL detection, Impact estimation, Sensor Failure
detection and Maintenance scheduling. Frequent itemset mining algorithm is used to form a rule-base
containing the frequently occurring subsets of sensors for each ADL, and then the most probable time
of day of occurrence and duration of activity are calculated from the training dataset. The critical
sensors are identified based on their impact on detecting the ADL, which depends on the redundancy
level per ADL using the training dataset. For critical event-driven sensors, a failure alert is flagged
if the time elapsed since the last detection of ADL exceeded a threshold. For non-critical sensors, a
rarity score is computed as the probability that sensor has not been triggered while certain ADL, that
should involve this sensor, has occurred. Experiments were conducted on Kasteren (house A, B and
C),Kasteren and CASAS datasets (aruba, twor9-10, twor2009, tworsmr and adlnormal),CASAS using
80% of the dataset for training. The accuracy of ADL detection was investigated in the presence of
fail-stop sensor failures, emulated by discarding all events of the failed sensor, and compared to Naive
Bayes classifier (NB) and Hidden Markov model (HMM) algorithms. The maintenance efficiency was
also evaluated in terms of the number of maintenance visits and per-home maintenance inter-arrival
times. Across all the datasets, the ADL detection accuracy is reduced in average by approximately
0.5%, 1% and 3% in the presence of 1, 3 and 7 failed sensors.

Dealing with sensor faults in smart homes using data-driven approach was proposed by
Monekosso and Remagnnino [28]. The proposed method aimed to detect sensor faults, mask it,
and differentiate between anomalous activities and sensor deviation by combining reconciliation with
failure detection techniques. The approach has two components; one component deals with random
measurement fluctuations using data reconciliation, while the other component deals with systematic
deviations due to sensor failures or anomalous activities. Models of sensors correlations are built
using historical data via principle component analysis (PCA) and canonical correlation analysis (CCA).
The models are refined continuously and can deal with heterogeneous sensors types to be used for
detecting sensor faults. Experiments were carried out using Kasteren dataset (house A),Kasteren.
Two case studies were implemented by injecting intermittent and permanent faults into the dataset.



Sensors 2018, xx, 1 8 of 19

A permanent fault was simulated on a sensor by removing its readings from the testing dataset after
the assumed failure point of time. A transient sensor fault was injected by corrupting random instances
of sensor readings with wrong values.

An approach for data-driven failure detection based on clustering was proposed by Ye, Stevenson
and Dobson. They address non-fail-stop sensor failures as a clustering-based outlier detection
problem [18,29]. DBSCAN clustering based outlier detection algorithm is used. The similarity between
binary sensor events is calculated using least common subsume (LCS) based on their semantic features;
time stamp, the object to which a sensor is attached, location and user. Data points are clustered
into groups and then the groups are sorted by their size in descending order. Shoulder-location
method is used to select the threshold under which a cluster is considered small. To each data point,
a cluster-based local outlier factor (CBLOF) is assigned which is a function in the size of the cluster
to which this point belongs, the similarity between the point and the closest large cluster, and the
historic faulty sensor behaviour. A point is considered as an outlier if its CBLOF is below a threshold
defined by the shoulder location method. The technique was evaluated on Placelab [23] (PLCouple1),
Kasteren [20] (house A and B) and CASAS [22] (adlinterweave) datasets with injecting random and
systematic anomalies. Random abnormal events were injected into the datasets by randomly creating
new sensors events within randomly selected time slots. While systematic abnormal events are injected
by selecting random sensors and creating an event for each of the selected sensors within each time
slot of the testing data. Plots of the precision and recall against the injection rate of abnormal events
were presented.

In another attempt, detection of sensor failures was tackled using classification. Kapitanova et
al. proposed simultaneous multi-classifier activity recognition technique (SMART) [14,30], which
uses top-down application level semantics to detect non-fail-stop single-sensor failures. Furthermore,
the research work addresses schedule maintenance according to failure severity and improvement
of activity recognition accuracy in the presence of failures. Multiple classifier instances are trained
offline by excluding each time a sensor out of the training set resembling a sensor failure, and one
time with all sensors present in the set. Online detection of a fault is achieved by assessing the relative
performance of the classifiers that has a missing sensor versus the one trained with all sensors, thus a
fault is detected and identified. Severity analysis is performed to evaluate the impact of sensor failure
on the accuracy of activity detection. As the level of sensor redundancy increases per activity, the
urgency of repairing a faulty sensor decreases. Fault-tolerance of the activity recognition is achieved
by updating the classifier ensemble with the classifiers that were previously trained to deal with a
particular sensor failure. The system was evaluated using CASAS [22] and Kasteren [20] (house A and
B) datasets considering only prepare breakfast, lunch and dinner activities. NB and HMM classifiers
were used. Stuck-at failures and misplacement failures were introduced manually to the datasets.
To simulate stuck-at failure, the value of the failed sensor is set to 1. For simulating misplacement
failure, the data of failed sensor is replaced with the sensor in its new location. The results showed
that this approach could decrease the number of maintenance dispatches by 55%, identifies non-fail
stop failures by 85% accuracy, and improve activity recognition accuracy in presence of sensor failures
by 15%.

5.2. Model-Based Fault Detection

The following researchers have used model-based fault detection based on localization systems.
An indoor human localization (IHL) system with fault detection focusing on hardware as well as
human-made single faults was presented by Veronese et al. [31]. The IHL system consists of three main
components; an RF-based localization subsystem, an off-the-shelf modular wireless home automation
subsystem and a fault detection subsystem. The types of sensors chosen for home automation were
contact sensors and passive infrared (PIR) sensors. A model-based fault detection approach was
applied based on the concept proposed by Isermann [48] which states that a fault can be detected
using the dependencies between different measured signals. The activation of the home automation
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sensors and its features were used to estimate the resident’s location. Also, the position of the resident
is estimated independently with the localization subsystem. The fault detection subsystem compares
the two estimated location areas and flag a fault whenever there is no intersection between the two
areas. Experimental work was done, where 19 fixed LAURA anchors and 7 Z-wave devices were fixed
across the rooms of the university building. Two fault scenarios were considered; forgotten worn
device and blinded PIR motion detector. The results showed that the faults could be detected using the
proposed approach. As a continuation of the work, multi-user simulation was conducted using three
virtual users trajectories, the faults could be detected in the presence of multiple users with specificity
and sensitivity above 90% [32].

Danancher proposed model-based location tracking of single as well as multiple inhabitants
in smart homes [10]. He treated the location tracking of inhabitants as a problem of discrete event
system modeling. Finite automata was used to model the observable motion of inhabitant, where each
state represents a zone in the apartment, each event represents the rising or falling edge of binary
sensor, and each transition is the observable location change. A case study was presented for an
apartment equipped with motion detectors and door barrier sensors. The impact of sensor faults on the
performance of location tracking was discussed. The applicability of three model-based fault detection
and isolation (FDI) approaches; diagnoser, template and residual approaches, were investigated for
fault-tolerant location tracking. An adaptation to the residual-based approach was applied to a case
study of tracking a single inhabitant. Three fault scenarios were considered; spurious activation of a
motion sensor, failure of power supply of door barrier sensor and a failure of motion detector sensor.
The approach could not detect nor isolate faulty sensors in the proposed faulty scenarios. The author
concluded that the industrial FDI approaches are not suitable for sensor faults in smart home and that
a new FDI approach designed specifically for smart homes should be developed.

Another discrete event system approach for location tracking was proposed by Wu et al. [49].
The motion of the resident is modeled using an automaton model and the observations of motion
events from sensor signals are described using the state tree of Graph theory. An Observer is then
used to estimate the location of the inhabitant. Dealing with transient sensor faults is performed
by adding a reset procedure to the state tree and the observer so that they return to the initial state
whenever blocking occurs due to missing or disordering of a sensor event. This ensures that the
location tracking returns to output correct estimation results after deviating due to the transient sensor
fault. However, false location estimation still occurs. A scenario of the motion of inhabitant in the
presence of a missing sensor event was presented.

Amri et al. have proposed fault detection approach for indoor localization based on
set-membership fault detection using the q-relaxed intersection method [36]. The random walk
model is used as the mobility model of the resident. The PIR sensor activation leads to the activation
of a box representing its coverage area. At one second time step, the measurement boxes are observed
and the predicted boxes are deduced using the mobility model. The q-intersection method deduces
the location zone of the resident using these boxes. Outlier detection takes place by comparing the
solution set obtained and the measurements. Experiments were conducted in a living lab equipped
with PIR sensors.

5.3. Fault-Tolerant Location Tracking

A fault-tolerant location tracking system was presented by Rahal, Pigot and Mabilleau, which aims
to localize single inhabitant using the already installed sensors in smart home [16]. The authors aimed
to provide a reliable location tracking system that can estimate the location of inhabitant accurately
despite the false trigger of sensors that may occur due to various factors. The adopted approach is
based on sensor fusion, in which particle filters approach is used to estimate the new inhabitant’s
location using the last known position and the last sensor event. To evaluate the system, experiments
were conducted in the DOMUS apartment, where non-intrusive unobtrusive sensors (infrared (IR)
presence sensors, tactile carpets, smart light switches, contact sensors and pressure detectors) are
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installed. A daily routine scenario was performed by 14 subjects, one subject each time, and the results
showed an accuracy in location tracking above 85%. The system performance was also investigated
with respect to the inhabitant’s profile, sensor configuration, inhabitant’s dynamics and in the presence
of noise. The results showed that the accuracy of the system is profile-independent. The accuracy
of localization when using only infrared sensors is similar to using all the sensors. However, the IR
sensors are more prone to false triggers, thus, the authors recommended the usage of at least one other
type with IR sensors. The system accuracy remained at 84% when 2.5% and 5% noise were applied to
the collected data.

A similar system was proposed by Ballardini et al. that is based on estimating the resident location
in the presence of false positive or false negative sensor readings via Bayes filtering [46]. The system
uses a probabilistic model of the sensors and a motion model of the inhabitant. The proposed approach
was tested on two noisy datasets that use PIR sensors (observed frequent false triggering of a motion
sensor when no person is moving and trigger of atrium’s motion sensor when motion occurs in the
dining room), producing 5% and 9% error rates in localization.

A fuzzy set-based approach for localization tolerating sensor failures was proposed by
Ahvar et al. [47]. The approach relies on using several functionally redundant sensors at specific
nodes. The system is composed of sensor nodes and context broker based on the fuzzy set theory.
The apartment is divided into zones and equipped with various types of ambient sensors. The sensors
send context information, then the membership values for each zone is computed. The highest value
indicates the user location. A case study was presented and simulated using the DPWsim simulator
with different sensor error rates. However, the system was not verified using a real dataset.

5.4. Fault-Tolerant Activity Recognition

In addition to the fault-tolerant activity recognition implemented by SMART system [14,30]
and Idea system [27], a framework of fault-tolerant activity recognition was addressed by
Hong et al. [38–40]. First, the effect of sensor failures on the accuracy of activity recognition was
investigated. Only binary sensors were considered for monitoring the ADL in smart homes. Sensor
evidence reasoning network was designed based on activity hierarchy of ontology for activities
recognition while tolerating uncertainty in the sensors’ measurements. The discounting values depend
on the manufacturer statics on the sensors. To validate the proposed approach, a case scenario was
presented. In addition, sensors data recordings were collected from smart laboratory environment
of a kitchen area for four weeks, and then, offline analysis was performed to verify the sensor data
with video recordings. The sensor data was fed to the evidential reasoning network that is based on
the Dempster-Shafer theory. The performance of activity recognition was assessed with respect to
the number and combinations of sensor failures. Mckeever et al. [41] have extended the evidence of
theory to incorporate temporal features and evaluated their proposed framework on Kasteren dataset
(house A), Kasteren. A limitation of the approach is that expert knowledge is needed for the sensor
mass functions and sensor quality. Also, knowledge from users is used to get information about the
temporal features of activities.

Liao et al. [42–44] have proposed an activity recognition framework that deals with uncertainty
in sensor measurements based on Dempster-Shafer theory of evidence while considering the effect of
historical information and activity patterns. This is implemented through a framework with a lattice
structure which has a context layer that includes combinations of sensors derived from the historical
data of inhabitant. Two types of uncertainty sources were considered; sensor hardware and context
uncertainty due to the variability in human activities. A case study was presented in addition to
applying the proposed approach to a publicly available dataset (Tapia dataset, subject 1) [25] collected
from an apartment equipped with binary sensors. The performance was evaluated using precision,
recall and F-measure metrics for activity recognition.

A Weighted Dempster-Shafer theory was presented by Javadi, Moshiri and Yazdi [45], where a
weight for each sensor is assigned based on the historical data and activity patterns of the resident.
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In the training phase, 10 models are built for each sensor and then in the testing phase, a weight for
each sensor is calculated based on the membership degree of each sensor signal to the sensor’s models.
The proposed method is applied to a dataset (Tapia dataset, subject 1) [25] and evaluated through the
accuracy detection rate of toileting activity. A drawback in the experiments is that, sensor faults were
not injected to the dataset.

Abnormal behaviour recognition in the presence of sensor failures/uncertainties was addressed
by Marhic et al., it is based on the evidential approach using transferable belief model (TBM) [37].
It’s assumed that there are three or more heterogeneous redundant sensors per each monitored activity.
The system consists of Sensor FDI and the Abnormal behaviour detection modules. The Sensor FDI
analyses the conflict between the heterogeneous redundant sensors using sensor fusion calculated by
the Smet’s operator and two experts. Abnormal behaviour is then detected by comparing the normal
behaviour of inhabitant represented by the Markov chain model (MCM) and the detected/predicted
behaviour within the TBM framework. Experiments were conducted on datasets collected from
performing sitting, lying and standing activities with various single sensor failures, during which
pressure sensor, omni-directional vision sensor and an accelerometer were used. The authors showed
the ability of the system to detect abnormal behaviour in presence of sensor failures (unplugging
sensor for a period of time) and highlighted some limitations that could be addressed in the future.

Methods for fault tolerance in Ambient Assisted Living were suggested by Ahvar et al. [50].
Data from binary sensors, e.g., movement sensors, may be corrected using a model of the inhabitant
behaviour. While fault tolerance for analog data from sensors, e.g., temperature sensors, may be
implemented using sensor fusion. However, the system was not verified against faults in a case study.

5.5. Fault Detection and Diagnosis Framework for AAL

A fault detection and diagnosis framework for Ambient Intelligent systems was presented by
Mohamed, Jacquet and Bellik [33,34], however, it is concerned only with the tasks performed by the
systems through the actuators. The approach is based on modeling the physical phenomena that is
supposed to occur in the environment due to the activation of a particular actuator. The system then
automatically create links between actuators and sensors at run-time using the models. It predicts the
expected sensor reading due to the activation of an actuator and compares it with the actual sensor
reading to detect if a fault has occurred. Simulations were performed to illustrate the operation of the
system and show the ability of the system to discover new components at run-time. The basic idea of
the diagnoser model was presented without details.

A self-diagnosis framework was proposed by Oliveira et. al [35], where a Bayesian network
construction algorithm is used to create a Bayesian network for each scenario that is supposed to
be fulfilled by the AAL system to assist the user. The algorithm takes as inputs the rules file that
specifies the causal relations between variables, and the scenario description file that specifies the
required assistance and the home description. Conditional probability distribution is calculated for
each child node. The real values are then compared with the predicted ones and a fault is flagged if
the readings are different. Using the causality relations and conditional rules, a diagnostic is reached.
A case study was investigated to show the ability of the proposed framework to detect and diagnose
faults. However, like the previous system [34], the framework would only work fine for the tasks that
involve a sensor-actuator feedback.

6. Discussion

6.1. Correlation-Based Fault Detection Systems

Next, we discuss the pros and cons of the correlation-based fault detection approaches.
FailureSense [17] has good average precision and recall for the examined fail-stop, obstructed-view

and moved-location failures. Also, the experiments show consistent performance for failure detection
with increasing the number of sensors that had fail-stop failures. However, the method does not work
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well if the failed sensor is not associated with any electrical appliance. In addition, its average failure
detection latency is not suitable for emergency situations. Another limitation of the system is that, it
is based on the assumption that the resident has to be physically beside the appliance to turn it on.
In addition, the system performance depends on the behaviour of residents (i.e., the residents turn
on/off electrical appliances remotely or their behaviour pattern in using electrical appliances).

Using temporal correlations and/or time-series analysis in [26] only relies on sensors firing to
detect missing sensor events. The temporal correlation method achieves better results than using
time-series analysis. However, the average precision and recall on the examined dataset with random
non-fail-stop failures are not as good when increasing the error rate percentage , except when the
training data was increased to 90% split rate. This makes the performance of the proposed method still
questionable and needs to be evaluated on other larger datasets.

The approach of the Idea system [27] is designed to suit homes equipped with functionally
redundant sensors per activity of daily living. Otherwise, it will not work as expected. In this work,
only fail-stop failures were considered. The reduction in the ADL detection accuracy in the presence
of sensor failures is relatively low. Thus, an efficient fault tolerant activity recognition seems to be
promising using the proposed approach. However, the effect of monitoring multiple ADLs to detect
sensor failures on the failure latency detection and the effect of rarity threshold on the false positive
alerts were the only assessments used for the sensor failure detection subsystem. Those assessments
are not enough to be able to see the efficiency of the sensor failure detection. Also, non-fail-stop failures
need to be considered in the experiments. In our opinion, detecting failures using time elapsed is not
an efficient solution and using the rarity score assumes that the system has not misclassified the activity.
Similarly, the detection of sensor failures using the proposed approach in [28] was not thoroughly
evaluated. The experiments were only concerned with the ability of the system to detect and isolate a
faulty sensor, without any quantitative evaluation of the performance. Another drawback is that the
injected faults in the experiments were applied on only a single sensor.

The advantage of using clustering approach as in [18,29], is that no training phase is required.
However, the proposed method aims to detect false sensor triggers, but it can not detect missing
sensor data. Another limitation is that the failure detection takes place in a post-processing step
on the collected data. Also, the false positive trigger is less likely to be detected if it is associated
with a sensor that has similar features to other correctly working sensors. Using multiple classifier
instances [14,30] produced promising results for sensor failure detection and fault-tolerant activity
recognition. However, the disadvantage of this approach is that the training effort is large and it
increases proportionally with the number of installed sensors, thus the system is non-scalable.

6.2. Model-Based Fault Detection Systems

The reviewed model-based fault detection systems do not seem to provide better results than
the correlation-based fault detection systems. The approaches mainly rely on checking if the sensor
trigger is consistent with the predicted location of the resident. The method proposed in [31] that
uses RF-based localization system in addition to the environmental binary sensors installed at home,
can not identify if the fault source is the localization system or the installed sensors. In another research
work [10], applying residual-based fault detection to the location tracking finite automata model of an
inhabitant could not detect nor isolate the faulty sensors. Only preventing the transient sensor faults
from blocking the discrete event location tracking model was proposed in [49], however, it was not
even capable of tolerating those faults. In [36], comparing the motion sensors triggers with the random
walk mobility model is not reliable, since this mobility model can produce unrealistic patterns as it
does not keep track of the past locations and speed.

6.3. Fault-Tolerant Location Tracking Systems

The fault-tolerant location tracking systems reviewed are based on attempting to estimate the
location of the resident under uncertainty of sensors whether through sensor fusion [16,46] or fuzzy
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theory [47]. The results seem promising, however, the systems need to be investigated more thoroughly
in real-time experiments.

6.4. Fault-Tolerant Activity Recognition Systems

In addition to the SMART [14,30] and Idea [27] systems discussed before for proposing sensor
failure detection and fault-tolerant activity recognition, fault-tolerant activity recognition based on
recognizing activities under sensors uncertainty were reviewed. The works that used the evidence
theory [37–45] have the disadvantage of requiring lots of expert knowledge.

6.5. Fault Detection and Diagnosis Framework

The reviewed fault detection and diagnosis frameworks [33–35] were designed to only suit AAL
systems involved with sensor-actuator feedback.

7. Conclusions

In the last 10 years, an increasing interest in tackling sensor failures/faults in AAL has been
observed. However, there is still much to be done in this area to offer a dependable system for the users.

Tables 3 and 4 summarize the work reviewed in Section 5. For each research work; the contributed
system, its method, algorithm(s), experiments conducted and performance metrics used are listed in
this table.

The overall general limitations of the existing works can be categorized as follows:
Limitations regarding the approaches:

• Most of the existing works have developed their approaches considering only single failures.
However, it may happen that more than one sensor fail simultaneously.

• The majority of the developed algorithms use parameters or thresholds that need to be chosen by
an expert rather than being deduced automatically.

• Differentiating between failed sensors and anomalies in human behaviour is still a challenge that
needs to be addressed.

Limitations regarding the datasets:

• The public datasets used for the training and testing phases are limited to short duration,
low sensor node redundancy and single resident apartments.

• Also, the data in the publicly available datasets was originally collected for activity detection
with labelled activities, thus, failures or anomalies were not labelled. Instead, sensor failures
were manually injected and simulated by the researchers, which may not be representative of
real-home sensor failures rate and percentage.

Limitations regarding the experimental methodology:

• It is difficult to compare between the efficiency of the presented approaches because not all
the authors use the same evaluation criteria and same testing data. Thus, there is a need for
standardized evaluation criteria.

• Beside the accuracy, precision and recall, the sensor failure detection latency is an important
criterion to be considered.

• Real-time online evaluation of the algorithms was not carried out, instead the data collected from
previous experiments or datasets were fed to the algorithms.

• The proposed approaches should additionally be evaluated on data collected from elderlies with
physical and/or cognitive deficiencies.

As illustrated by the number and importance of the limitations of the existing works,
fault-tolerance in AAL is still in its early phase. Thus, intensive research work is still needed
to tackle them. The research topics to be addressed can be grouped in the three following
research questions:
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• Can novel machine learning techniques tackle the problem of sensor failure detection in AAL
without the need for expert knowledge?

• Should the research priority be directed towards enhancing the accuracy of binary sensors or
instead towards dealing with the faulty sensors data through fault-tolerant systems?

• Would differentiating between behaviour anomalies of residents and sensor anomalies
be possible?

As a conclusion, as highlighted by this systematic literature review, methods for fault-tolerant
Ambient Assisted Living are still in their infancy stage. Also, intensive research works would be
needed to ensure the development and implementation of a robust sensor fault detection and diagnosis
system for Ambient Assisted Living in a near future.
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Table 3. Summary of the reviewed work in Sections 5.1 and 5.2.

Source Contribution Method Algorithm
Experiments

Performance Metrics
Data Failure Type

[17] sensor fault detection sensor-appliance
correlations GMM & EM custom datasets

injecting fail-stop and non-fail-stop
(obstructed-view and moved-location)
failures

precision, recall &
failure detection
latency

[26] sensor fault detection sensors correlations mutual information and non-linear
time series analysis techniques

public dataset (Kasteren,
house A)

injecting non-fail-stop failures
(removing random sensors events) precision & recall

[27]

sensor fault detection,
fault-tolerant activity
recognition &
maintenance scheduling

sensor-activity
correlations

frequent itemset mining algorithm
& rarity score calculation

publicly available datasets
(Kasteren; house A, B & C, and
CASAS; aruba, twor9-10,
twor2009, tworsmr &
adlnormal)

injecting fail-stop failures

sensor failure false
alert rate, failure
latency detection
& reduction in ADL
detection accuracy in
presence of failures

[28] sensor fault detection
and masking sensors correlations PCA& CCA publicly available dataset

(Kasteren, house A)
injecting permanent and intermittent
faults (i.e., fail-stop and non-fail-stop) ability to detect faults

[18,29] sensor fault detection clustering-based outlier
detection DBSCAN clustering algorithm

publicly available datasets
(Placelab, PLCouple1, and
Kasteren; house A and B, and
CASAS, adlinterweave)

injecting random and systematic false
positive sensor triggers (non-fail-stop) precision & recall

[14,30]

sensor fault detection,
fault-tolerant activity
recognition &
maintenance scheduling

simultaneous use of
multiple classifiers

NB, HMM, hidden semi-Markov
model (HSMM) & decision trees

publicly available datasets
(Kasteren, house A and B, and
CASAS (N.S.))

injecting non-fail-stop failures
(stuck-at and moved-location)

failure detection
accuracy & failure
latency detection

[31,32]
indoor localization
system with fault
detection

model-based fault
detection using RF-based
localization & home
automation subsystems

estimating the location using the
activation of home automation
sensors and the RF-based
localization subsystem

custom dataset collected with blinded PIR sensor and
forgotten worn device senstivity & specifity

[10] location tracking with
sensor fault detection

model-based fault
detection using a model
of the observed motion
of the inhabitant

finite automata & residual
calculation scenario of motion of inhabitant in the presence of fail-stop and

non-fail-stop failures ability to detect faults

[49] location tracking dealing
with transient faults

state estimation with
reset procedure

automaton model & state tree of
graph theory scenario of motion of inhabitant scenario of the presence of missing

sensor event (non-fail-stop)

location estimation in
presence of transient
sensor faults
(non-fail-stop)

[36] localization system with
sensor fault detection

model-based fault
detection using the
random walk model of
inhabitant

set-membership fault detection
using the q-relaxed intersection
method

custom data collected from
Living lab not specified ability to detect faults

(outliers)
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Table 4. Summary of the reviewed work in Sections 5.3–5.5.

Source Contribution Method Algorithm
Experiments

Performance Metrics
Data Failure Type

[16] fault-tolerant
localization system

state estimation based on
sensor fusion particle filters approach custom data collected injecting random sensor noise

(non-fail-stop)
localization accuracy &
mean belief

[46] fault-tolerant
localization system state estimation bayes filtering custom dataset data collected in presence of noise localization error rate

[47] fault-tolerant
localization system

fuzzy-based approach using
various types of ambient
binary sensors

fuzzy-set theory
scenario and simulation of
motion of inhabitant on
DPWsim simulator

in the presence of sensor node
failure fail-stop and non-fail-stop localization accuracy

[38–40]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

sensor evidence reasoning
network & dempster-shafer
theory

scenario and custom data
collected

injecting different combinations of
sensor failures belief in activity inference

[41]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

temporal evidence theory
& dempster-shafer theory

publicly available dataset
(Kasteren, house A) no faults injected activity recognition

precision, recall & F-measure

[42–44]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

evidential lattice structure
considering historical
information and activity
patterns & dempster-shafer
theory

scenario and publicly
available dataset (Tapia,
subject 1)

no faults injected

activity recognition
precision, recall and
F-measure of activity
recognition

[45]
fault-tolerant activity
recognition
framework

evidential approach for
reasoning under uncertainty

weighted dempster-shafer
theory & fast fourier
transform

publicly available dataset
(Tapia, subject 1) no faults injected activity recognition accuracy

[37]
fault-tolerant
abnormal behaviour
detection

evidential approach for
reasoning under uncertainty in
the presence of heterogeneous
redundancy per activity

sensor fusion based on
Smet’s operator, experts,
TBM & MCM

custom data collected with inducing
non-fail-stop sensor failure

ability to detect abnormal
behaviour and/or failed
sensor

[33,34]
fault detection and
diagnosis framework
for AAL

modeling the physical
phenomena that is supposed to
be detected by sensor due to
the activation of an actuator

not applicable simulating a scenario in
presence of sensor failure not specified ability to detect system fault

[35] self-diagnosis
framework for AAL

Bayesian network for each
scenario that is supposed to be
fulfilled by the AAL system to
assist the user

bayesian network
construction algorithm

scenario of inhabitant in the
presence of sensor failure fail-stop ability to detect system fault
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Abbreviations

The following abbreviations are used in this manuscript:

AAL Ambient assited living
ICT Information and communication technologies
ADL Activities of daily living
GMM Gaussian mixture model
EM Expectation maximization
NB Naive Bayes
HMM Hidden Markov model
PCA Principle component analysis
CCA Canonical correlation analysis
DBSCAN Density-based spatial clustering of applications with noise
LCS Least common subsume
CBLOF Cluster-based local outlier factor
SMART Simultaneous multi-classifier activity recognition technique
IHL Indoor human localization
PIR Passive infrared
FDI Fault detection and isolation
IR Infrared
TBM Transferable belief model
MCM Markov chain model
HSMM hidden semi-markov model
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