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Abstract: The Supervisory Control Theory was introduced in 1987 by Ramadge and Wonham
(1987), and industrial applications are still scarce. This paper outlines an automatic code
generation framework to construct the control logic for a programmable logic controller (PLC)
from a symbolic, modular supervisor. The modeling and supervisor generation is performed
with Supremica (Malik et al. (2017)), and the supervisor is implemented with the IEC 61131-
3 programming language Structured Text. This framework is used to teach model-based
approaches and SCT to mechanical engineering students.
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1. INTRODUCTION

There are multiple approaches to generate PLC code from
supervisors created according to the Supervisory Control
Theory (SCT). Notable recent examples include Leal et al.
(2012), Junior and Leal (2012) and Vieira et al. (2017).
Most commonly, Ladder Diagram is used to implement
monolithic or modular supervisors. Monolithic supervisors
suffer from state space explosion as the models grow.
Modular supervisors require on-the-fly synchronization of
the plant and specification models.

This paper introduces a framework to automatically gen-
erate PLC code (Structured Text, IEC 61131-3 (IEC
(2014))) from a symbolic, modular supervisor, which is
synchronized during the execution.

This framework is used in teaching model-based ap-
proaches and the SCT to mechanical engineering stu-
dents. The modeling and supervisor generation is per-
formed with Supremica (Malik et al. (2017)), and the
Soft-PLC executing the automatically generated code can
be executed in parallel on the same machine. The Soft
PLCs are connected to a didactic platform consisting of
14 modules with a total of 130 Boolean inputs and 150
Boolean outputs, which will be explained in more detail
in Section 5. Supremica allows the generation of guards
that restrict the plant and specification models in the
same way a monolithic supervisor would without having to
synchronize the models. With all tools integrated in one
platform, the students can conveniently switch between
modeling and testing their systems.

Common issues encountered in the implementation of su-
pervisory controllers are examined in Section 2. The main
contribution of this paper is the automatically-generated
Structured Text implementation of a supervisory con-
troller, presented in Section 3. How the previously men-
tioned issues are solved in this implementation is discussed
in Section 4.

2. BACKGROUND

The Supervisory Control Theory (SCT) was initially pub-
lished by Ramadge and Wonham (1987). It is a method
to automatically synthesize a supervisor from a set of
plant and specification models. The SCT recognizes two
types of events: controllable and uncontrollable events (in
this paper marked by ! and ?, respectively). In theory,
both types are spontaneously generated by the plant, but
the supervisor can only disable the controllable events to
prevent violation of the specification.

2.1 Implementation of Supervisory Controllers

The industrial implementation of supervisory controllers
is an active field of research. Zaytoon and Riera (2017)
give a recent overview of the synthesis and implementation
of logical controllers and common implementation issues.
This section presents a subset of these problems.

Event generation Whereas SCT is solely event-based,
industrial PLC systems are operating with signals. Con-
sequently, the signals have to be converted to events. A
common approach is to detect the rising and falling edges
of the signal. This requires a PLC cycle fast enough to
capture all edges.

Avalanche effect The event-triggered transitions are
used to calculate the new active state set. Every event
should only be evaluated once in a cycle and not trigger
an avalanche where multiple states are skipped in the same
execution (Fabian and Hellgren (1998)).

Interleave insensitivity In event-based theory, two events
cannot occur at the same time and thus all events can
be evaluated in the order they arrive in. In practice,
because events are typically generated cyclically based on
the input signals, this order cannot be reliably captured,
as multiple events can be generated in between two scan



cycles of the controller (Zaytoon and Riera (2017)). Fabian
and Hellgren (1998) define ”interleave insensitivity” as
the requirement that after any interleaving of two plant-
generated strings, the supervisor should generate the same
event.

Choice of controllable events In theory, the plant sponta-
neously generates controllable events for the supervisor to
enable or disable. In reality, the plant does not generate
events on its own, but the controller has to decide. Al-
though the supervisor is nonblocking by design, this prop-
erty cannot necessarily be guaranteed for any controller
generated from this supervisor, because the controller
might only allow a (blocking) subset of the supervisor.

A minimally restrictive specification leaves the choice to
the controller (Fabian and Hellgren (1998)). If the con-
troller only implements a subset of the supervisor, the
supervisor has to be designed in a way that any controller
taken from this supervisor will be nonblocking (Dietrich
et al. (2002)). If the controller does not limit the supervi-
sor, it has to include methods to decide between multiple
available controllable events and guarantee fairness.

Inexact synchronization The cyclical execution of the
PLC results in a delay between the physical system and
the controller. The inputs are scanned in the beginning of
the cycle, and a change can only be detected in the next
cycle. Typical cycle times range between 1 ms and 100 ms.

The supervisor should be well-posed with respect to time
delay (Li and Wonham (1987)). This can be checked be-
forehand by introducing the concept of ”delay insensitiv-
ity”, which states that any delay in reading a response
must be tolerated by the controllers (Balemi (1992)). This
definition only assumes delays of length one.

State space explosion The problem of large state spaces
in supervisory controllers is amplified in the implementa-
tion on a PLC equipped with less memory and computing
power than common workstations. In addition, the exe-
cution has to be performed with strict timing constraints.
Miremadi et al. (2011) propose an approach of representing
the supervisor as a set of guards that can be introduced
into the plant and specification models instead of synchro-
nizing a monolithic supervisor. The models must then be
synchronized during the execution.

3. ST-CODE IMPLEMENTATION

In the implementation presented in this paper, the Struc-
tured Text code according to the IEC 61131-3 (IEC (2014))
is separated into multiple files. Two main types of files
have to be distinguished: Global variable lists (GVL) and
Programming Organization Units (POU) (Table 1).

Table 1. List of GVL’s and POU’s

GVL POU

input signals MAIN

output signals reset

user var errormode

localcontroller

virtualsensor

synthcontrol

The GVLs hold the global variables accessible by the differ-
ent POUs. input signals and output signals are linked
to the physical inputs and outputs of the plant. user var
are user-defined global variables shared with multiple POUs,
such as local controllers and virtual sensors. The POUs can
be programmed with the languages according to the IEC
61131-3 (IEC (2014)). Each POU has its own local variable
declaration.

The MAIN POU is executed cyclically. It schedules the ex-
ecution of the other POUs. In this implementation, MAIN
switches between the reset phase, when the plant is initial-
ized, and the control phase, where the control logic from
all other POUs is executed.

The reset POU is a manually implemented function to
move the physical plant into an initial state. This could
be implemented in the SCT models, but it unnecessarily
inflates the models in the beginning of the modeling
process. By using the reset function, the initial states
for the controller can be assumed to be known. This
simplifies the synchronization of the physical plant and
the controller.

localcontroller and virtualsensor contain user-defined
functions to implement behaviors that cannot be expressed
easily with the set of controllable and uncontrollable events
alone, or would require the introduction of timed models.
Local controllers are triggered with a controllable event,
but once it is enabled the supervisor cannot interrupt
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Fig. 1. Flowchart of the SCT controller (synthcontrol)



the actions performed by the local controller. They can
administer low-level tasks, legacy code and automatic con-
trol functions. Virtual sensors are uncontrollable events
triggered by manually implemented functions. Most com-
monly, virtual sensors signal when a timer or a local
controller has finished.

synthcontrol (Figure 1) holds the modular control im-
plementation and is the topic of the next sections.

3.1 Variable Declaration

There are seven types of local variables to be declared:
uncontrollable events, controllable events, sensor variables,
virtual sensors, states, transitions, and a set of system
variables. The input and output signals are stored in the
respective GVLs.

Uncontrollable and controllable events are declared as
rising and falling edges according to the SCT model. They
carry the prefix ’RE’ and ’FE’, respectively. The sensor
variables are evaluated to detect the rising and falling
edges. For every input in the input signals GVL, two
local variables hold the current and previous value. Virtual
sensors follow the same principle, although only the rising
edge, denoted by the prefix ’VS’, is detected.

States and transitions are implemented as binary vari-
ables. To unambiguously distinguish each state, they are
declared as a concatenation of an ’X’, the model name, and
the state name. This is a compromise between readability
during debugging and compactness. Transitions consist
of a ’T’, the model name and a counter. In contrast to
the states, transitions are not as relevant for debugging,
because they are only active for less than one cycle ( <
100 ms).

3.2 Edge Detection

The plant and specification models are event-based while
the PLC is running a signal-based cyclical execution.
Therefore, the events have to be extracted from the signals.

After the inputs are made available on the input signals
GVL, the new values are compared to the previous values
to detect rising and falling edges. These events are stored
in local variables and used during the execution.

3.3 Uncontrollable Transition Loop

The Uncontrollable Transition Loop (red block in Fig-
ure 1) evaluates one uncontrollable event after another.
In the first step the synchronization of the plant models
is checked. If the event is not expected in one of the in-
dividual models having it in their alphabet, the controller
transitions into the error mode and will not escape until
it is restarted, as the plant models are inconsistent with
the behavior just observed. At this point the event could as
well be ignored and discarded, but because the plant model
was just proven to be faulty, the safety and synchrony of
the application cannot be guaranteed.

This implementation of synchronization only checks if the
next event is currently enabled, whereas a full synchro-
nization would have to check all N currently fireable, un-
controllable events in all N! configurations. If both events

?E1 ?E2

Fig. 2. Order of two uncontrollable events

off on

?RE ls

?FE ls

Fig. 3. Example transition and state model (? for uncon-
trollable events, ! for controllable events)

E1 and E2 from Figure 2 are fireable, whether or not the
error mode is triggered depends on the evaluation order.

If the error mode is not triggered, the available transitions
in the active state set are calculated, the new active state
set is calculated, and the transitions are reset. An example
model and the resulting transition and state calculations
are depicted in Figure 3 and Listing 1.

Listing 1. Transition and active state calculation for RE ls

TRE ls := Xoff ;
Xoff := TFE ls OR ( Xoff ANDNOT TRE ls ) ;
Xon := TRE ls OR (Xon ANDNOT TFE ls ) ;
TRE ls := 0 ;

The evaluation order in the uncontrollable transition loop
cannot be modified by the user. Ideally, the cycle time is
fast enough to capture only one uncontrollable event every
cycle. Since this cannot be guaranteed for arbitrary events,
the user has to ensure the order of uncontrollable events
that can appear in close proximity does not invalidate the
controller.

3.4 Controllable Transition Loop

After the uncontrollable events are handled, the controller
can evaluate the available control actions. The Controllable
Transition Loop (blue block in Figure 1) is similar to the
Uncontrollable Transition Loop, but with some additions.
There are two types of guards: guards to synchronize the
plant and specification models, and guards generated by
the symbolic supervisor. Instead of triggering an error
mode, the event is simply disabled in this cycle.

The evaluation order of the controllable events cannot be
influenced by the user. The implementation will choose
the first fireable controllable event it encounters, and
every event will only be evaluated once in the PLC-cycle.
Afterwards, the fireable transitions and the new active
state set are calculated. Finally, the controllable events
are converted back to signals.

New uncontrollable events will not be recognized during
this loop. Initially, it was considered to limit the execution
to only allow a single controllable action in every cycle.
As a result, the reaction time would increase substantially
when multiple controllable events are available, and thus
the decision was made to allow every controllable event to
be taken in every cycle.



4. DISCUSSION

This section illustrates how the issues described in Section
2 are solved or at least limited, and what issues remain.

4.1 Event Generation

In this implementation, events are generated as rising and
falling edges of the input signals. A sufficiently fast cycle
time guarantees all edges can be detected. The optimal
cycle time for the plant is between 10ms and 40ms.

If the cycle time is too long (e.g. above 60ms), a rising
and falling edge may be skipped, whereas a short cycle
time will cause the detection of the bouncing behavior of
some sensors (e.g. light sensors). This could be solved by
filtering critical sensors.

4.2 Avalanche Effect

Two types of avalanche effects can be distinguished. First,
a single event should not fire consecutive transitions. This
is dealt with by separating the calculation of transitions
and states. For every event, the available transitions are
only calculated once in a PLC cycle, whereas the state
space is recalculated repeatedly.

Second, ideally, multiple controllable events should not be
taken without the opportunity to receive an uncontrollable
event. Consequently, the inputs would have to be scanned
again after a controllable action has been taken. If many
controllable events are enabled, only allowing one in every
cycle means it will take many cycles until all of them
are taken. Furthermore, this increases the relevance of the
evaluation order.

In this implementation, every controllable event can be
taken in every PLC cycle. The maximum time between
the detection and reaction to an input event is one cy-
cle. As a result, it is possible to skip an uncontrollable
transition between two controllable actions. This should
be accounted for in the models.

4.3 Interleave insensitivity

In this implementation the models are not tested to
be interleave insensitive. The online synchronization will
catch all unexpected strings and transition into the error
mode if necessary. Depending on the evaluation order of
the uncontrollable events, the controller can select different
controllable events to be executed. The user should take
the cycle-based nature of the controller into account, and
built the plant and specification models accordingly.

4.4 Choice of controllable events

Whereas the supervisor is supposed to be maximally per-
missive, the controller has to deterministically choose be-
tween the enabled controllable events. This choice algo-
rithm has to be implemented in the controller.

There are two ways of solving the indeterminism of the
supervisor: Choosing the order of events dynamically each
cycle (round-robin, random, ...), or adapting the supervi-
sor in a way that every possible controller selected from the

supervisor has the required properties. Leal et al. (2012)
implement a random decision when multiple possible con-
trollable events are encountered and thus obtain a fair, but
indeterministic, controller.

In this implementation, the controller evaluates the fire-
able controllable events in a static order, i.e. the order is
deterministic every cycle. It is thus possible to get stuck
in a live-lock if this is part of the supervisor. On the other
hand, this ensures that the controller will always react
the same given a set of inputs. The synthesized supervisor
should not contain infinite paths that do not lead to an
accepted state.

4.5 Inexact synchronization

The issue of inexact synchronization is inherent to all con-
trol applications. It is physically impossible to prevent the
arrival of new uncontrollable events during the execution
cycle of the PLC. Balemi (1992) presents a definition to
check for ”delay insensitivity” when only a single control-
lable event is taken every cycle. When multiple events are
enabled every cycle, the solution is more complicated, as
more paths have to be considered.

Delay insensitivity is a property of the supervisor. The
controller in this implementation can take multiple con-
trollable events in one cycle and thus poses stricter re-
quirements on the supervisor. Without a framework to test
delay insensitivity of the supervisor for multiple events, it
is a good rule of thumb to not pose unrealistic expectations
on the specification models, i.e. the order of events that
can happen in close proximity should not invalidate the
control action taken.

4.6 State space explosion

In the previous solution (Jordan et al. (2017)), where
a monolithic supervisory controller was generated using
an existing Matlab script, the computational limit was
quickly reached because of the synthesis algorithm.

After the switch to Supremica and a Structured Text
implementation the synthesis was no longer the bottle-
neck, and large monolithic supervisors could be synthe-
sized quickly. The ST implementation of the monolithic
supervisor constituted the new limit, as the number of lines
of code grew linearly with the number of transitions. The
supervisor was thus limited to a couple thousand states,
before the large files crashed the Soft PLC environment.

Switching to a symbolic modular synthesis algorithm al-
lows the implementation of large supervisors. A medium-
sized module with 10 inputs and 20 outputs can be im-
plemented with 20 plant and 20 specification models, re-
sulting in a modular supervisor with 1012 states. Since
this is implemented modularly, the ST code has only
2000 lines, and the typical execution time was estimated
experimentally to be below 500 µs. This execution time
can vary with the number of available controllable and
uncontrollable transitions.

4.7 Model Synchronization

Because of the modular implementation, the synchroniza-
tion has to be performed on the fly by checking if the



event is disabled in the active state set, i.e. evaluating a
set of Boolean guards generated from the states restricting
this event. For the controllable events, the synchronization
determines whether this event will be taken or not. If
an uncontrollable event is detected in a state where the
synchronization disables it, the controller exits to the error
mode where it will stay until the plant is restarted.

5. CASE STUDY

The framework presented in this paper is used to teach
SCT to student groups. A didactic platform is separated
into subsystems and each group is in charge of implement-
ing the controller for their subsystem. This course is based
on a previously held course described by Jordan et al.
(2017). Since then the physical plant remained unchanged,
but the control architecture has been renewed.

Fig. 4. Didactic Platform

5.1 Didactic Platform

The didactic platform (Figure 4) consists of two separable
parts. The first part is a combination of assembly lines
serviced by two 2-axis portal cranes. The portal cranes
transport workpieces between different stations, while the
assembly lines move the workpieces with conveyor belts
and use a variety of tools on them.

The second part revolves around two 3-axis portal cranes
with overlapping domains, transporting workpieces be-
tween two assembly lines, a welding robot, and a storage.

Modularization of the platform The two parts are further
divided into subsystems to simplify the modeling and to
allow students to work independently. Each subsystem
with 10 to 40 Boolean inputs and outputs is controlled by
a remote input/output module, connected via EtherCAT
to a Laptop running a Beckhoff TwinCAT Soft PLC.

Subsystem interaction The subsystems have interfaces
where workpieces are transported from one subsystem
to another. These interfaces require the cooperation of
multiple student groups and thus cause the most difficul-
ties. This high-level control is implemented by two global
controllers, interacting with the subsystems through elec-
trically connected inputs and outputs. The communication
protocols usually require a subsystem to request clearance
from the global controller.

5.2 Modeling Procedure

Each controller is synthesized based on a set of plant and
specification models. They are implemented in Supremica
(Malik et al. (2017)) and the symbolic, modular supervisor
is generated with the built-in functions.

?RE ls

?FE ls

(a) Lightsensor

!RE B1

!FE B1

(b) Conveyor Belt

Fig. 5. Example plant models

Plant models Plant models describe the behavior of
the physical plant by restricting the language to what
is physically possible. These models can be of varying
detail. A common restriction for sensors and actuators
is, for example, that rising and falling edges must occur
alternatingly. Figure 5 displays a set of plant models for a
light sensor (ls) and a conveyor belt (B1).

?RE ls1

!RE B1

?FE ls1

!FE B1

(a)

?RE ls1

?FE ls1

!RE B1

?FE ls1

?RE ls1

!FE B1

(b)

Fig. 6. Possible conveyor belt specifications

Specification models The specification models restrict
the capabilities of the plant to fit the requirements of
the user. For example, a requirement might be that after
an uncontrollable event occurs, an action is performed.
Figure 6 displays two different specifications for a common
cyclical execution: After a rising edge is detected, a belt is
started. When the falling edge occurs, the belt is stopped.
The plant models in Figure 5 can be used for this example.

When the students are modeling their first specifications,
they usually model them similarly to the specification in
Figure 6a and thus run into controllability issues because
of disabled uncontrollable events. The specification in
Figure 6b avoids these issues and recovers controllability.
On the other hand, it might not be desirable to allow the
removal of a piece before the belt is started. In this case,
the plant model has to be modified to further restrict the
occurrence of RE ls1 and FE ls1.

Correctly modeling the plant behavior on the first try is
hard. There has to be a balance between permissiveness,
detail and solution independence. A very unrestrictive and
solution-independent plant model will allow unrealistic
event combinations and impede specification design. Plant
models with too much detail will favor a specific solution
and may conflict with the real behavior.

Local controllers and virtual sensors Local controllers
are used to control outputs that should not be interrupted
by the supervisor. When a combination of controllable
actions should be executed in a predefined order and with
strict timing constraints, the synthesized controller can not
be trusted to take the right decisions. In this case, local
controllers allow the implementation of arbitrary functions
that are enabled as a controllable event. In addition,



local controllers could also be used to call legacy code or
automatic control functions.

Listing 2. Local controller implementation
IF LC M1 THEN

ton M1 (IN:=TRUE, PT := T#1000MS) ;
output .M1 := TRUE;

END IF
ton M1 (IN:= t i m e r l s 2 3 .IN ) ;
IF ton M1 .Q = TRUETHEN

ton M1 (IN := FALSE) ;
output .M1 := FALSE;
VS M1done := TRUE;

END IF

Listing 2 depicts an example where the output M1 should
be active for one second. After this time, an uncontrollable
virtual sensor event is emitted to notify the supervisor
about the finished task.

Listing 3. Virtual sensor implementation
IF FE ls THEN

ton vs (IN:=TRUE, PT := T#1000MS) ;
END IF
ton vs (IN:= ton vs .IN ) ;
IF ton vs .Q = TRUETHEN

ton vs (IN := FALSE) ;
v i r t u a l s e n s o r . VS ls := TRUE;

END IF

Virtual sensors allow the user to emit uncontrollable
events at predefined conditions. The conditions can be
arbitrarily defined, a common implementation is depicted
in Listing 3. In this case, the virtual sensor is emitted one
second after the occurrence of FE ls.

6. CONCLUSION

This paper has outlined a framework to control a physical
plant using PLC code automatically generated from a
symbolic, modular supervisor. It is used, coupled with
a didactic plant, as a teaching platform to introduce
students to model-based approaches and SCT. During
this course the implementation proved to be reliable,
and the integration of modeling and execution on the
same platform enables fast and frequent modifications.
In contrast to the previously-used implementation, larger
supervisors and more complex systems can be considered.

There are still two major issues for the implementation of
supervisory controllers on PLC:

• PLCs are signal-based, whereas the SCT is event-
based. Events must be generated from signals and
afterwards converted back to signals. This introduces
a delay between plant and controller.

• The SCT assumes controllable events to be sponta-
neously generated. In practice, the controller has to
implement a choice algorithm and guarantee fairness
and/or determinism.

In the future, this framework will be extended and po-
tentially adapted for an industrial-sized problem. An in-

teresting extension would be to adopt a signal-interpreted
approach, as introduced by Fouquet and Provost (2017).

The Python executable for the automatic code generation
can be found on the chair website: www.ses.mw.tum.de .
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