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Abstract

Most transmembrane and exported proteins follow a similar pathway to reach their

destination. Bound to the signal recognition particle and guided to the membrane, the N-

termini of both protein types share similar characteristics, i.e. an α-helical hydrophobic

stretch. In case of an exported protein, this signal sequence gets cut off at the cleavage

site, while it remains a part of the mature protein as transmembrane segment if it is

inserted into the membrane resulting in a transmembrane protein.

Given the similarity of the N-terminus, separating exported from transmembrane pro-

teins only by their sequence is a difficult task. In order to facilitate the differentiation,

we hypothesized that spatial residue-residue contacts as a predicted structural features

could be beneficial for the separation. While we could validate our hypothesis, the

discriminative strength of this feature does not reach the performance of already es-

tablished methods for the prediction of signal peptides and their discrimination from

transmembrane protein domains.

In the process of testing our initial hypothesis we were able to develop a new contact

prediction method for α-helical transmembrane proteins. The method called MemConP,

combines the latest developments in co-evolution analysis with a machine learning ap-

proach. These co-evolution methods experienced remarkable progress over the recent

years through the application of novel co-variation algorithms which eliminate transitive

evolutionary connections between residues.

The downloadable standalone tool MemConP achieves a substantially improved ac-

curacy (precision: 56.0%, recall: 17.5%, MCC: 0.288) compared to the use of either

machine learning or co-evolution methods alone. The method also achieves 91.4% pre-

cision, 42.1% recall and a MCC of 0.490 in predicting helix-helix interactions based on

predicted contacts. The approach was trained and rigorously benchmarked by cross-

validation and independent testing on up-to-date non-redundant datasets of 90 and 30

experimental three dimensional structures, respectively.

A further investigation focused on the secretion of orthologous proteins. Related

sequences typically perform similar functions and should therefore also appear at the
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same location. To assess this conclusion, we examined the distribution of signal peptides

within the orthologous groups of Enterobacterales.

Parsimony analysis and sequence comparisons revealed a large number of signal pep-

tide gain and loss events, in which signal peptides emerge or disappear in the course

of evolution. Signal peptide losses prevail over gains, an effect which is especially

pronounced in the transition from the free-living or commensal to the endosymbiotic

lifestyle. The disproportionate decline in the number of signal peptide-containing pro-

teins in endosymbionts cannot be explained by the overall reduction of their genomes.

Signal peptides can be gained and lost either by acquisition/elimination of the cor-

responding N-terminal regions or by gradual accumulation of mutations. The gained

results lead inevitably to the conclusion that the evolutionary dynamics of signal pep-

tides in bacterial proteins represents a powerful mechanism of functional diversification.
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Zusammenfassung

Die meisten Transmembran- wie auch exportierten Proteine nutzen einen ähnlichen

Mechanismus um zu ihrem Zielort zu gelangen. Gebunden an das Signalerkennungspar-

tikel und damit zur Membran geführt, haben die N-Termini beider Arten von Proteinen

ähnliche Charakteristika, einen α-helikalen hydrophoben Abschnitt. Im Falle eines ex-

portierten Proteins, wird jene Signalsequenz an einer bestimmten Schnittstelle abge-

trennt. Sofern dieses Protein in die Membran eingebettet wird und somit als Trans-

membranprotein fungiert bleibt der N-Terminus jedoch als ein Teil des finalen Proteins

als erstens Transmembransegment erhalten..

In Anbetracht der Ähnlichkeit der N-Termini ist die Unterscheidung von exportierten

und Transmembranproteinen nur anhand ihrer Sequenz eine diffizile Aufgabe. Mit dem

Ziel die Differenzierung zu verbessern, stellten wir die Hypothese auf, dass räumliche

Kontakte zwischen Aminosäuren als ein vorhergesagtes strukturelles Merkmal bei der

Unterscheidung hilfreich sein könnten. Auch wenn sich unsere Theorie als richtig er-

wiesen hat, ist das Signal der Methode nicht ausgeprägt genug um bessere Ergebnisse

zu liefern als bereits etablierte Methoden zur Vorhersage von Signalsequenzen und ihre

Abgrenzung von Transmembranproteindomänen.

Bei der Auswertung unserer Hypothese ist es uns gelungen eine neue Kontaktvorher-

sagemethode für α-helikale Transmembranproteine zu entwickeln. Die Methode mit

dem Namen MemConp vereint die neuesten Entwicklungen der Koevolutionsanalyse mit

einem Ansatz des maschinellen Lernens. Die Methodik der Koevolutionsanalyse hat in

den letzten Jahren erhebliche Fortschritte erzielt. So wurden neue Algorithmen entwick-

elt welche transitive evolutionäre Korrelationen zwischen Aminosäuren eliminieren.

Das eigenständig lauffähige und öffentlich verfügbare Programm MemConP erreicht

eine erheblich höhere Genauigkeit (precision: 56.0%, recall: 17.5%, MCC: 0.288) ver-

glichen mit der Vorhersage alleinig durch maschinelles Lernen oder durch Koevolution-

smethoden. Darüber hinaus erreicht die Methode 91.4% precision, 42.1% recall und

einen MCC von 0.490 bei der Vorhersage von Helix-Helix Interaktionen basierend auf

vorhergesagten Kontakten. Die Methode wurde auf einem Datensatz von 90 und 30
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aktuellen, experimentell bestimmten dreidimensionalen Strukturen trainiert und mittels

Kreuzvalidierung bzw. unabhängiger Testung streng evaluiert.

Anschließend eruierten wir mögliche Unterschiede im Exportverhalten von orthologen

Proteinen. Verwandte Sequenzen haben typischerweise ähnliche Funktionen und sollten

somit auch dieselbe Lokalisierung aufweisen. Um diese Aussage zu überprüfen unter-

suchten wir die Verteilung von Signalsequenzen innerhalb orthologer Gruppen innerhalb

der Ordnung der Enterobacteriales.

Die Analyse der maximalen Sparsamkeit und Sequenzvergleiche brachten eine große

Anzahl von Ereignissen zum Vorschein, bei denen Signalsequenzen im Laufe der Evo-

lution hinzugewonnen werden oder verloren gehen. Signalsequenzverluste sind häufiger

als Zugewinne, ein Effekt der besonders ausgeprägt beim Wandel von einer freileben-

den oder kommensalen zu einer endosymbiontischen Lebensweise zu beobachten ist. Die

überproportionale Abnahme der Anzahl von Proteinen mit Signalsequenzen in Endosym-

bionten kann nicht mit der generellen Verkleinerung ihrer Genome begründet werden.

Signalsequenzen können entweder durch den Erwerb bzw. Verlust der entsprechen-

den N-terminalen Regionen oder durch die allmähliche Akkumulation von Mutationen

hinzugewonnen werden bzw. verloren gehen. Die gewonnenen Erkenntnisse führen un-

weigerlich zu der Annahme, dass die evolutionäre Dynamik von Signalsequenzen in bak-

teriellen Proteinen einen bedeutenden Mechanismus zur funktionellen Diversifikation

darstellt.
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1 Introduction

The following introduction is designed to provide information about the biological and

methodological background as well as its implications for the approaches used in the

published articles. Proteins are versatile macromolecules, playing a crucial role in almost

every process in the cell. Being synthesized in the cytoplasm based on their encoding in

the genomic DNA sequence, their final sphere of action does not have to be at this same

place. Two types of polypeptides which operate elsewhere, exported and transmembrane

proteins, are the focus of this thesis.

Both types of proteins contain a biological postal code encoded in their N-terminal

sequence determining their target localization. Certain similarities in their N-termini

lead to difficulties distinguishing them from each other just by their sequences.

The N-terminal sequence for exported proteins is called signal peptide. This intro-

duction will give an overview starting from the most important export pathway. It

continues with the current estimate of signal peptide annotations and gives insights into

their experimental and computational annotation.

The second part is dedicated to transmembrane proteins with focus on their spatial

structure. The experimental determination and the difficulties arising especially for this

class of proteins will be examined. A further section outlines structure prediction in

general, and the history of contact prediction approaches. These methods were first

employed on globular proteins and later applied to transmembrane proteins as well.

Finally, the challenging task of differentiating exported proteins containing a signal

peptide and transmembrane proteins having similar hydrophobic N-termini will be cov-

ered, including our unpublished results to solve the problem using structural contacts as

a separation criterion.

1.1 Signal peptides

1.1.1 The Sec pathway

The secretome denotes the entirety of molecules of any kind which are exported from a

cell via varying mechanisms. While this per definition also includes for example inorganic
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elements, in the field of bioinformatics the term in most cases refers to the export of

proteins.

Several pathways exist which enable proteins to be exported through the cytoplasmic

membrane. The most prominent one, which accounts for 96% of all secreted proteins in

Escherichia coli [1], is the Secretion (Sec)-pathway. In order to be recognized by this

secretion machinery, the protein is required to contain a N-terminal signal sequence, the

SP, which has an approximate length of 20 to 30 amino acids. These N-terminal peptides

have a tripartite structure consisting of a positively charged N-terminus for their correct

orientation during the process, a hydrophobic stretch to enter the membrane, and a

cleavage site which gets recognized by the signal peptidase I [2, 3].

Cytoplasmic proteins, i.e. proteins which are not secreted, fold during or immediately

after their synthesis. Non-cytoplasmic proteins are either embedded into the membrane

or secreted to the other side of the plasma membrane, to the periplasm, or even beyond

to the outer membrane. Most of the secreted proteins evade immediate folding in the

cytoplasm and are delivered to their final destination first where they then become

folded. However there is a minority of proteins that are exported in a folded state being

the exception of that rule [4].

Exported proteins face several challenges: (i) they must remain unfolded and soluble

until they reach their final destination, (ii) they must be distinguished from cytoplasmic

proteins, (iii) they need to be correctly guided to transmembrane channels, (iv) activate

their opening, (v) they need energy for the translocation process, (vi) they have to detach

from the transportation machinery to become released, (vii) and they have to fold in the

cell envelope.

The co-translational process of Sec dependent protein export starts with the recogni-

tion of unfolded pre-proteins that contain a SP during their translation. First targeted

by the signal recognition particle (SRP) and then bound to its membrane receptor FtsY,

the complex is transported to the transmembrane SecYEG channel [5]. An alternative,

post-translational export is aided by chaperones: the trigger factor [6], and SecB [7] bind

to the translated pre-protein on the ribosome in the cytoplasm and maintain its unfolded

state [8]. Pre-proteins are then targeted to the SecYEG-SecA translocase residing in the

membrane and translocated through SecYEG to the periplasm or into the plasma mem-

brane [8]. This process is powered by repeated cycles of ATP binding and hydrolysis

by SecA and the proton motive force [9]. The auxiliary components SecDF–YajC [10]

and YidC [5] enhance translocation efficiency. The signal peptidases finally cleaves the

signal peptide and the mature domain is released into the periplasm [11].
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While the Sec dependent secretion is the most common export mechanism, other

pathways for proteins to traverse the membrane exist. The Twin-arginine translocation

(Tat)-pathway for example is meant to extend the Sec-pathway because of its ability to

export already folded proteins [12]. Tat SPs have a similar tripartite structure compared

to Sec SPs with a charged N-terminus, a hydrophobic stretch and a cleavage site. How-

ever they contain an additional motif consisting of two Arginine residues preceded by

a polar residue and followed by two hydrophobic residues with a distance of one amino

acid.

Being known for several decades, the Sec and Tat pathways, in their co- as well

as post-translational version are thoroughly studied and cover most of the secretion

machinery. Nevertheless, so-called unconventional protein secretion (UPS) pathways

gained attention as they represent yet unknown export mechanisms which are complex

and do not rely on a SPs sequence [13].

1.1.2 Signal peptide content

Providing the facility to interact with the environment, for instance to respond on ex-

ternal stimuli, it is no surprise that protein secretion is a common phenomenon. The

first assessments in 2004 for Escherichia coli and in 1997 for Haemophilus influenzae

suggested exported proteins to represent 20% of the proteome [14, 15]. This number

underwent multiple corrections towards more conservative estimates. The most recent

studies still hypothesize that 10% of the proteins in Escherichia coli are secreted [16].

This decrease of approximately 50% is the result of improved prediction methods [17, 18],

such as SignalP (currently in the version 4.1). Improved models and an increased amount

of training data besides an enhanced ability to separate TMSs from SPs decreased the

number of false positive predictions. Additionally, the raise of more powerful experi-

mental methods, especially the use of proteomics data, allowed for more precise protein

annotations on a large scale, increasing the accuracy of the estimates even further [19, 20].

1.1.3 Experimental determination of signal peptides

The first SPs were identified by investigating each sequence separately. One of the

employed methods was Edman degradation, an approach which identifies the amino

acid sequence of a protein one residue at a time, starting from its N-terminus. By using

the fact that SPs are cleaved off and are, therefore, no longer present in the mature

protein, SPs can be identified by a comparison with the respective translated genomic

sequence.
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The basic knowledge about SPs like their tripartite structure, their typical length or

the composition of their cleavage site was accumulated by the first studies employing

this approach [2, 3].

While the concept of comparing the N-terminal sequence of a protein to the predicted

gene did essentially not change, follow up methods using mass-spectrometry allow the

high-throughput identification of SPs. In mass-spectrometry for proteomics, the protein

is digested into several peptides by the use of the peptidase Trypsin which cuts after

Arginine and Lysine. The first peptide of a given protein sequence which has a non-

tryptic N-terminus, i.e. a peptide whose preceding amino acid is neither Arginine nor

Lysine, is used to determine candidates for potentially secreted proteins. Similar to the

Edman degradation approach, a SP is present if this first non-tryptic peptide is located

within 15-50 amino acids of the potential protein start site which is either predicted

or experimentally determined. Therefore the region between the initial start codon or

Methionine and the first observed non-tryptic peptide is a potential SP.

In order to increase the reliability of the experimental approach, additional filtering

criteria are applied to ensure that certain SP characteristics are met. This includes the

potential SP’s length and other characteristics like the tripartite structure. This high-

throughput method was employed in several studies about different organisms which

include Human [21], Halobacterium salinarum and Natronomonas pharaonis [22], She-

wanella oneidensis [20], Yersinia [23], Aspergillus niger [24] and even whole communities

[25, 19], leading to a significant increase in SP annotations.

1.1.4 Prediction of signal peptides

Like in many fields of computational biology, the more experimental determined and

validated data is available, the more sophisticated prediction models can be implemented.

The first method for predicting SPs was based on a weight matrix and was able to

determine the existence of a SP and the position of the cleavage site [26]. This method

specifically used 161 eukaryotic and 36 prokaryotic non-homologous SPs with known

cleavage sites for the calculation of the weight matrix. This weight matrix represents a

profile and is built by comparing the actual frequency of a given amino acid at a specific

position in the SP to the background probability, i.e. the amino acid composition of

the whole protein sequence. The authors of this first SP prediction method claim a

prediction accuracy of 75-80% for both prokaryotic and eukaryotic proteins.

The next generation of SP prediction methods were already based on machine learning

algorithms leading to more powerful methods such as SignalP or Phobius, which are still

widely used [15, 14].
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Especially the SignalP series underwent ongoing improvements to increase sensitivity

and overall performance. The first version of SignalP (1.1) [15] employed six neural net-

works, two for Eukaryotes, two for Gram-positive and two for Gram-negative organisms.

For each type of organism, one neural network was used to predict the cleavage site,

and one classified the residues belonging to either the SP or the mature protein. A final

decision was made by averaging the output of the first neural network with the slope

of the second. The reported Matthews correlation coefficient (MCC) for the discrimina-

tion of a protein containing a SP or not ranged from 0.88 for Gram-negative to 0.97 for

Eukaryotes.

Version 2.0 of SignalP [27] switched from neural networks to hidden Markov models

(HMMs) directly modelling the n-, h- and c-region of a potential SP. While this approach

achieved similar performance to version 1.1, improvement of the model for the separation

between SPs and signal anchors (SAs) added further benefits to the method.

The follow up method, SignalP 3.0 [17] basically combined the HMM and neural

network approach, introduced new features and refined the model further, e.g. select-

ing more appropriate window sizes for the neural network. This version improved the

discrimination between proteins with and without SP further, while the main benefit

consisted of the more precise determination of the cleavage site position.

The latest and up-to date version, SignalP 4.1 [18] included TMPs in the dataset.

As TMSs at the beginning of a TMP show similar characteristics like the hydrophobic

α-helical stretch (see section 1.3), many false positives could be corrected.

The other most widely used method Phobius and its follow-up PolyPhobius [14, 28]

was primarily designed to predict TMP topology. Phobius employs a HMM which tries

to model the architecture of a TMP as accurate as possible. The N-terminus of a protein

can either be a short loop, a globular domain or a SP, successively followed by a number

of TMSs, short loops or additional globular domains. Not only the topology prediction

of this approach can be still classified as state of the art, but also the discrimination

of proteins with and without SP shows high precision. PolyPhobius which was only

released one year after the first version, included information from MSAs to increase the

prediction accuracy.

During the following years, several other software tools have been developed for pre-

diction of signal peptides [29, 30, 31, 32] and protein localization [33, 34, 35, 36, 37, 38].

1.1.5 Signal peptides and evolution

Besides their functional diversity, proteins can evolve aberrant functionality due to evo-

lutionary changes in the genomic sequence. Duplications, mutations, insertions or dele-
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tions are events that can alter the proteins behaviours to either a gain, loss or change in

their functionality.

More specifically gain-of-function mutations can lead either to an increased activity of

a protein or even to a complete new function. The development of a neomorphic allele,

i.e. an allele introducing a new function, in a tumor’s genes for example can lead to

an unanticipated phenotypic outcome. This raises the possibility that tumors with this

mutation may not respond to therapies designed to target the wildtype of the protein

[39].

The more common loss-of-function mutations either reduce the activity of a gene or

completely prohibit functionality. Patients with Sickel cell disease for example have

hemoglobin which clumps up leading to a reduced capability of transporting oxygen

[40], i.e. the protein loses the functionality to transport oxygen properly.

Protein studies have revealed results which stay in contrast to the central dogma of

molecular biology, postulating the determination of protein function by its structure.

That means two proteins which have the same structural fold, can exhibit different

functions, exemplary shown in [41]. Their analysis showed that a sequence identity of

45% almost guarantees structural similarity, while 85% sequence identity are necessary

to transfer the proper function. Even orthologous proteins which have highly similar

amino acid sequences, do not always own the same function [42, 43] and they can differ

for example in their binding specificity [44] or their interaction sites [45]. In addition to

changes in the amino acid sequence itself, other protein characteristics which influence

the protein’s function, like phosphorylation sites or protein domains, can be altered

during the course of evolution.

Literature research revealed further findings of changes in protein function, focusing on

binding dynamics and protein-protein or protein-ligand interactions. Functional changes

induced by alterations of cellular targeting signals, e.g. SPs, on the other hand were only

examined by a few studies mainly limited to sequence diversity of these peptides [46].

Two examples are the amino acid composition of Mitochondrial matrix targeting signals

which has constraints inflicted by the N-terminal sequence of the mature protein [47]

and the prediction of localization signals using the sequence divergence as a significant

feature [48].

Functional change is often necessary for the adaption to new environmental condi-

tions linked to the lifestyle of an organism. Hence, a different secretion profile would

be expected between pathogenic and non-pathogenic species. This assumption was con-

firmed by showing that the major difference between pathogenic and non-pathogenic

Listeria species, manifests itself strongest in the secretome, as the pathogenic species
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showed more exported virulence factors [49]. A more recent study found that within

Gram-negative bacteria, intracellular pathogens had the smallest secretomes. Trying to

generalize a universal connection between pathogenicity and the secretome size however

failed as the secretomes of certain bacteria did not fit into this pattern [50]. The same

study reported a positive correlation between the percentage of secreted proteins and

the number of genes in the gram-negative, but not in the gram-positive organisms.

1.1.6 Gain and loss of signal peptides

As described in chapter 3, we further investigated the evolutionary events connected

to SPs on the basis of bacteria belonging to the Enterobacterales order. We show that

homologous proteins which are assumed to carry out the same function are not always

exported to the same location. In addition, we could prove that SPs can be lost or

gained during the course of evolution and give insights about the mechanism leading to

these events. Finally, we reveal a connection between these events and the lifestyle of

Enterobacterales bacteria [51].

1.2 Transmembrane proteins

Every cell is surrounded by at least one membrane, a lipid bilayer, which separates the

cell’s interior from the exterior environment. To enable the cell to communicate with

its exterior, e.g. reacting to external signals, export its content, or import necessary

molecules an interface through the membrane is needed. Therefore, a type of protein

called TMPs exists, serving to connect the inside (intracellular space) to the outside

(extracellular space) of the cell. TMPs possess TMSs which contain mostly hydrophobic

amino acids, span the the entire membrane and often form an α-helical structure. The

hydrophobic nature of the TMSs stabilizes the position as well as the structure of the

TMP by hydrophobic interactions with the lipid bilayer.

TMPs can be classified according to the localization of their N- and C-terminal do-

mains and the number of TMSs. Bitopic or single-pass TMPs cross the membrane only

once while polytopic or multi-pass TMPs cross the membrane multiple times. Depend-

ing on the mechanism which inserts the protein into the membrane, these two types can

be further separated into proteins with either their N- or their C-terminal at the outside

of the membrane.

Being integrated in the membrane, TMPs play several roles for the cells’ functions and

their interaction or communication with their surrounding. Transporters for example

facilitate the exchange of molecules between the two sides of the membrane. Carrier
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proteins actively support the process of translocation with glucose transporters being one

example for this class [52]. TMPs are able to form channels which serve as control guards

for molecule streams at the membrane. Molecules are allowed to cross the membrane by

the channels conformational change, e.g. voltage-gated sodium channels [53]. Another

form of transporter is a pore which is an open channel without control function. A

prominent example for a pore are the aquaporins, enabling water to flow into and out

of the cell [54].

Receptors like G protein-coupled receptors (GPCRs) [55], with an example shown

in Figure 1.1, as another class of TMPs can interact with substrates like hormones,

neurotransmitters, cytokines, growth factors, cell adhesion molecules or nutrients at the

extracellular side of the membrane. This leads to conformational changes of the TMP

including its intracellular domain. This conformational change activates a cascade of

further processes at the cell’s interior.

Another important class consists of those TMPs which provide enzymatic activity,

e.g. the methane monooxygenase [56].

1.2.1 Insertion of membrane proteins into the membrane

Similar to exported proteins, the SRP plays a key role to recognize and guide the TMP

to the membrane. Exemplary in E. coli, the SRP attaches to the site where the polypep-

tide exits the ribosome and binds to the N-terminal hydrophobic segment of the newly

synthesized protein [57]. This complex interacts with the SRP receptor FtsY at the

membrane and gets attached to the SecYEG translocon. After proper attachment, two

GTPs get hydrolyzed, one from the SRP and one from the FtsY GTPase domain, which

leads to a release of the synthesized protein into the translocon. SecYEG contains a

lateral gate from which the transmembrane segments of the protein get inserted into the

membrane consecutively [58].

1.2.2 The sequence structure gap

The protein sequence-structure gap [59] describes the discrepancy between the number

of available protein sequences and the number of available experimentally solved three-

dimensional protein structures. UniProt contained about 10 thousand sequences back in

1990, a number which rose to 116 million sequences today in 2018 which is a 11600-fold

increase [60]. The number of structures in the PDB increased only 280 fold from 500 to

140 thousand at the same time. This effect is even more pronounced for TMPs although

they represent almost 30% of the human proteome. While 0.121% (140 thousand out
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Figure 1.1: Visualization of the PDB entry 1gzm, the structure of bovine rhodopsin, a G-protein
coupled receptor. The dotted planes indicate the membrane boundaries, while black
lines show amino acid pairs which Cα atoms have a distance less than 8Å.

of 116 million) of the known UniProt sequences have a corresponding structure in the

PDB, this holds true for only 0.01% (2200 [61, 62] out of 23 million) of the known TMP

sequences.

Figure 1.2 shows the yearly increase in the number of structures and sequences since

1985. An additional tendency is clearly visible from the same figure: The number

of added Swiss-Prot annotated entries went lower since 2007. This saturation could

indicate that only redundant sequences are added to the UniProt while the reviewed

entries (Swiss-Prot) converge more and more with the real world sequence space.
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Figure 1.2: Number of sequences and structures added pear year. The sequences were derived
from UniProt and Swiss-Prot, whereas proteins were annotated as TMPs if they
contained a TM region in the subcellular localization section. The structures were
derived from the PDB and the OPM. While the points represent the actual dat-
apoints, the lines show the linear fit in order to make the tendencies visible more
clearly.

1.2.3 Experimental determination of transmembrane protein structures

Knowing that TMPs account for about 30% of the human proteome the reason for the

discrepancy between the number of solved structures for TMPs and globular proteins

cannot be explained by lacking interest. Instead the experimental determination of TMP

structures is the factor influencing these numbers. Two commonly used methods for the

determination of protein structures are NMR spectroscopy and X-ray crystallography.

NMR structures are derived using constraints resulting from NMR spectra. These con-

straints aim primarily on inter-atomic distances [63]. The result of this approach is

an ensemble of multiple possible structures, also called models. Multiple models have

the benefit of showing potential disordered regions or at least regions of high mobility.

Another benefit of NMR spectroscopy is that the molecule to be studied can be left

in its natural solution. Disadvantages of the method include a limited molecule size of

the subject and, on average, less precise structures than the most common method, the

X-ray crystallography [64].

X-ray crystallography, is the favoured method, at least according to the number of

structures deposited in the PDB, where 86% of the entries are experimentally determined

by this approach. To solve the structure, the molecule has to be crystallized. This pre-

requisite is also one of the biggest drawbacks of the method especially for membrane
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proteins, proteins with natively disordered regions or for transient complexes as it is

difficult to crystallize them in their native structure. In order to overcome these issues,

the molecules are often altered by introducing disulfide bonds to stabilize the structure.

The electron-density map resulting from the X-ray assay is used as a template for the

atomic coordinates derived from the protein sequence resulting in the final solved struc-

ture. Another drawback aside from the need of crystallization is that the crystallized

structure is held in a rigid state, therefore removing most of the mobility information

from the molecule [64].

In their work about the purification of TMPs from Saccharomyces cerevisiae for X-ray

crystallography [65] the difficulties of crystallizing TMPs are discussed:

First, it is difficult to overexpress TMPs compared to soluble proteins and they gen-

erally show lower abundance. The second reason is the use of detergents which are

necessary to remove the TMP from the membrane. These detergents can denature the

proteins just as much as the removal of the protein from its natural environment, the

membrane. Therefore, it is often necessary to create stabilized versions of these proteins

by introducing mutations, e.g. to force the formation of disulfide bonds. In addition, the

association of the TMPs with the detergent creates large complexes, which are difficult

to crystallize and to be of use for x-ray crystallography.

1.2.4 Protein structure prediction

The lack of solved structures can be partly compensated by predicting them. The most

successful approaches for protein structure prediction belong to the class of homology

modelling methods. For a query sequence of unknown structure to be predicted by

homology modelling, there is one prerequisite: there has to be a homologous protein

of known structure high sequence similarity to the query. The homolog’s structure

serves as a template for the modelling process. These methods typically involve several

steps beginning with the search of a suitable template structure in a database, and

mapping the query sequence on to that template sequence. Afterwards, the backbone

is generated by transferring the query onto the template coordinates. The next steps

include the modelling of loops which are often more flexible regions of the protein and

side chains of the amino acids. These two can be either facilitated in a knowledge-based

way, e.g. rotamere libraries in the case of side chain orientations, or by energy functions.

The model is finally optimized based on energetic measures and the validation of the

model according to certain criteria. A well known and widely used method conducting

homology modelling is SWISS-MODEL [66].
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In more difficult cases, where no well-defined template covering the whole query se-

quence can be found, fragment based methods serve as a more versatile approach for

structure prediction. Fragment based methods involving similar processes as homology

modelling and can be seen as a subclass thereof. The difference is, that these methods

do not rely on a single template. I-TASSER, for example, threads the query through a

representative PDB structure library. The found fragments are extracted from regions

aligned before and reassembled to full-length models. Similar to homology modelling,

the unaligned regions are built by ab initio modelling [67].

Ab initio protein structure prediction methods are applied if no suitable template can

be found at all. This approach can already be a part of homology modelling or fragment

based methods at the stage of loop modelling. Ab initio methods rely exclusively on the

amino acid sequence of the query and do at most use very small fragments of known

structures. Although the mechanics of protein folding are by far not fully understood,

ab initio methods like ROSETTA [68] try to simulate the physical forces acting on the

protein chain to find a conformation with the lowest free energy possible. Taking into

account all degrees of freedom of the folding process, the possible number of confor-

mations is virtually uncountable, at least for a protein with a significant length. This

limitation makes the computation unfeasible at least for routine use [69].

Correlating with the significant rise in performance of residue-residue contact predic-

tion methods which is introduced in the next sections, another type of structure predic-

tion approaches became more successful: the contact-guided structure prediction. By

using predicted contacts as restraints during the ab initio modelling process, the number

of possible conformations can be reduced significantly. The recently published method

CONFOLD2 [70] uses various subsets of input contacts and employs a soft square en-

ergy function which takes into account these restraints to explore the reduced number

of conformations.

1.2.5 Early residue-residue contact prediction methods

One of the most useful restraints for protein structure prediction are residue-residue

contacts as they reduce the search space for the lowest energy structure. Especially

their feature to infer contacts from sequence makes them useful for ab initio structure

prediction methods where no template is available.

The foundation for residue-residue contacts prediction was laid by investigating the

known structure of the Tobamovirus coat protein and the corresponding MSA which

consisted of seven family members [71]. By searching for residue pairs with identical

conservation patterns, the authors found those pairs to be amino acids which are spatially
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1.2 Transmembrane proteins

close in the structure. Shortly after, the hypothesis of such correlated mutations was

verified by the same authors in three other families: serine proteases, cysteine proteases

and haemoglobins [72]. In this follow-up study, the determination of structural contacts

from sequence was hindered by larger alignments where the strict criterion of identical

conservation patterns could no longer be applied.

Not surprisingly, these findings were used in the opposite direction by using MSAs to

find correlated mutations, and infer amino acids which are spatially close [73]. In this

first approach, substitution matrices were derived for each MSA column and a residue-

residue contact was predicted if the correlation criteria were fulfilled. Tested on 11

protein families, the prediction accuracy of the highest scoring pairs ranged from 37% to

68%. Although still in is infancy and a low accuracy for the restriction to only the most

confident predictions, the method’s performance was already from 1.4 to 5-fold higher

than a random prediction.

When MSAs with more sequences were available, further improvements could be

achieved by changing the type of MSA representation or correlation calculation. Statis-

tical coupling analysis (SCA), introduced in 1999 [74], compared the co-evolution of two

residues not only in the whole MSA, but also in several subsets. A follow-up method

refined this approach [75]. Another co-evolution measure, mutual information, did not

change the MSA but used an approach known from information theory to search for

co-evolving residues in proteins [76].

Further significant improvements in terms of accuracy could not be achieved by varying

either the MSA representation nor the co-evolution measure. Especially the number of

false positive predictions limited the usefulness of these methods, as residue contacts are

not the only reason for the occurrence of correlated mutations.

Therefore, subsequent approaches tried to incorporate other features derived from

sequences and MSAs, including sequence conservation, sequence separation along the

chain, alignment stability, family size, residue-specific contact occupancy, the formation

of contact networks and phylogenetic information by simple linear combination [77].

With the rise of computational power, a multitude of machine learning methods arrived

in the field of sequence based predictions. The approaches started to substitute the

easy linear combination with machine learning methods such as neural networks. In

addition, other features such as the predicted secondary structure or solvent accessibility

were paired with correlated mutations and other values derived from the MSA by using

machine learning to increase the prediction accuracy of residue contacts [78].
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1.2.6 Residue contacts in transmembrane proteins

Invariably all these methods were designed to predict residue contacts in soluble proteins.

Because TMPs account for approximately 20-30% of all proteins in the human genome

[79], the reason for this circumstance cannot be found in this class of macromolecules

being of too little interest. With the combination of general co-evolution methods and

machine learning trained on specific sequences resulting in the highest performance, the

first approach would have been to apply the same methods to TMPs.

As the machine learning models were trained on globular proteins, they also learned

the characteristics specific for this protein class. TMPs, however, have unique charac-

teristics which distinguish them from globular proteins. First and foremost, the α-helical

stretches which span across the membrane and the lipids surrounding them. These he-

lices possess a significantly more hydrophobic amino acid composition to anchor the

TMP in the lipid bilayer by residue-lipid interactions. For that reason, it is not sur-

prising that residue contact prediction methods developed for globular proteins perform

poorly on TMPs [80].

The insufficient amount of solved TMP structures these days made it difficult to

properly develop and evaluate a specialized method for predicting residue contacts in

TMPs. As explained in section 1.2.3, these proteins are embedded in the membrane

and the issues solving their structures experimentally emerge from the fact that they

denature if removed from their natural environment, i.e. the membrane.

The study from 2007 [80] was the first large-scale analysis of co-evolving residues

in membrane proteins. In addition to benchmarking different prediction methods, an

application of residue contacts for the prediction of interacting helices was analysed.

While the prediction accuracies did not exceed 10% with any of the tested methods,

almost 49% of all predicted contacts were found to be within one helical turn of an

actual contact. By employing a meta approach, i.e. combining the tested prediction

algorithms, the authors were able to increase the accuracy to 53%. Finally, interacting

helices could be predicted at a specificity of 83% and sensitivity of 42%.

TMHcon, a method specifically for TM residue contacts was published two years later

[81]. TMHcon is a neural network based method combining several co-evolution measures

with features derived from sequence. These features include the evolutionary profile

calculated from the MSA, the position of the residues in the TMS, the orientations of

the sidechains, the protein length and its number of TMSs. It was trained and evaluated

on 62 non-redundant protein chains and achieved a more than 2-fold increase in accuracy

compared to co-evolution methods alone as well as approaches using information derived

from globular proteins.
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1.2.7 Latest developments in co-evolution analysis

In the meantime, not only the number of TMP structures increased from 800 in 2009

to 2200 in 2017 (see section 1.2.2) but also a huge improvement could be made in

calculating residue co-evolution. Because the earlier approaches described in section 1.2.5

only considered two positions in a MSA, they all were facing the problem of transitive

connections. In detail, two residues A and B look like they are co-evolving, but in reality

residue A as well as residue B are co-evolving with a third residue C, but not with each

other. Recent methods solve this problem including all information available in the MSA

by building a statistical model which tries to explain the measured co-evolution between

all residue pairs at the same time.

Two pioneer approaches based on these novel ideas were developed: Firstly mean-

field direct coupling analysis (mfDCA), implemented as EVFold [82] which was directly

applied to predicting structures using the derived contacts as structural constraints.

The second method is based on the estimation of a sparse inverse covariance matrix, as

used in PSICOV [83]. Both methods were reimplemented reducing their runtime while

maintaining their predictive performance in FreeContact [84].

Along the discovery of the first co-evolution methods, improved approaches to pre-

dict residue contacts in soluble proteins building on these developments have been re-

leased. They employ either enhanced algorithms (CCMpred, [85]), or combine several

co-evolution methods (PconsC2 [86], MetaPSICOV [87]).

1.2.8 MemConP

As will be described in chapter 2, we created a follow-up method to TMHcon incorporat-

ing the latest developments in co-evolutionary analysis. Paired with random forest as a

machine learning method which has proven to be successfully applicable to many recent

problems, we were able to create a method to predict residue-residue contacts and helix

interactions in TMPs with state of the art prediction performance. While we applied our

method only to the problem of distinguishing SPs from TMSs, we believe that our tool

can be supply contacts as restraints for structure prediction increasing their accuracy

and decreasing their runtime by reducing the number of conformations which have to be

explored [88].
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1.3 Distinguishing signal peptides from transmembrane

segments using residue contacts

One of the difficulties SP predictors have to overcome is the differentiation between

SPs or SAs and TMSs at the N-terminus of the sequence. This is due to the fact that

both, the h-region of SPs as well as TMSs, are composed of hydrophobic residues and

form a α-helical structure. Of course, the reverse is true: tools developed to predict

TMSs, have to ensure not to confound SPs, SAs and TMSs. While for the SP prediction

only N-terminal TMSs can lead to mistakes, TMSs can be similar to numerous other

structures crossing or penetrating the membrane: amphipathic helices, and re-entrant

helices, i.e. helices which enter and exit the membrane on the same side which is common

in many ion channel families, or, if the tool is specific to α-helical proteins, β-sheets.

Depending on the aim of the prediction, one possibility is to use both kind of tools, e.g.

SignalP to prefilter for proteins containing a SP, followed by a topology predictor on

the remaining sequence. Furthermore, approaches incorporating both prediction targets

exist. Phobius, an example mentioned before [14], predicts SPs as well as the TM

topology using a HMM-based approach. The successor to Phobius, named Polyphobius,

even includes evolutionary information using a MSA [28]. There are more specialized

tools, e.g. methods such as TMLOOP [89], TOP-MOD [90] and OCTOPUS [91] which

have attempted to identify re-entrant regions.

Although TMSs and SPs have a hydrophobic stretch, TMSs are generally longer. In

addition, TMSs do not have cleavage sites, but as the cleavage-site pattern itself is

somehow variable it is not always a sufficient feature to separate SPs from TMSs. In

consequence, trying to annotate all SP in a genome computationally results in a lot of

false positive predictions.

This issue is where the improvement of SP prediction methods took place, e.g. SignalP

3.0 included submodels for different types of sequences: one for SPs, one for SAs and

one for other proteins. Another approach to overcome these issues is the joint prediction

of SPs and TMSs as done by Phobius or PolyPhobius mentioned earlier.

1.3.1 Residue-residue contacts as a criterion

Before, we introduced the difficulties when separating SPs from TMSs and the develop-

ments in the field of co-evolutionary measures in section 1.2.7. With these two aspects

in mind, we hypothesized that there are less contacts between the hydrophobic stretch

found in SPs and remaining TMSs than between any two TMSs. If that hypothesis holds,

the prediction of residue-residue contacts in TMPs would be beneficial for the process of
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protein annotation. Because the latest contact predictor aimed towards TMPs, TMH-

con, was released in 2009, we decided to implement an updated method MemConP as

described in chapter 2.

While we were not able to validate the hypothesis to publish it, the following approach

and results still give valuable insights.

1.3.2 Data acquisition

The initial dataset consisted of 5209 human protein entries downloaded from the UniProt

database [60] including their TMS as well as their SP annotations. These entries were

reviewed, i.e. part of the Swiss-Prot database, and had at least one TMS. The initial

dataset was filtered so that every TMS had to have valid start/end positions and each

protein had to contain either at least two TMSs or one TMS and a SP to be able to

calculate contacts between two helices. From the 4109 sequences being valid according to

these criteria, 2430 formed the final dataset after redundancy reduction to 40% sequence

identity using CD-HIT [92].

1.3.3 Co-evolution measures and residue contact prediction methods

We calculated 14 scores from four sources to distinguish between TMSs and SPs. Two

SP prediction methods, SignalP and Phobius, served as state of the art methods for the

task at hand. SignalP outputs a Dscore between zero and one, where a higher Dscore

represents a higher probability for the protein to contain a SP. Phobius, on the other

hand, only predicts the presence or the absence of a SPs, which was converted into a

binary variable being either one or zero, respectively.

The other two sources were EVfold [82], or rather the Freecontact implementation [84],

and our developed tool MemConP [88]. Freecontact calculates two values for each pair

of residues, the mutual information (MI) [76] representing one of the early co-evolution

measures, and a evolutionary coupling (EC)-value being a state of the art co-evolution

measure. Our tool, MemConP, predicts a contact score for each pair of TM residues and

a helix-helix interaction score for each pair of TMSs. To predict contacts between a SP

and the remaining TMSs, the SP was annotated as TMS to be processed by MemConP.

Three methods were applied to convert these scores into a prediction, whether the

first helix is a SP or a TMS. To express the strength s of a potential interaction between

two helices i and j using measure or method m, the scores of each possible residue pair

between these two helices were accumulated:
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si,j =

ki∑
a=1

lj∑
b=1

m(a, b)

where a and b are residues in the TMSs i and j, respectively and ki and ji the respective

lengths of these TMSs.

For the remaining scores, MI, EC-value, the MemConP contact scores and the Mem-

ConP helix-helix interaction score, the strength between two TMSs was used in three

ways. The strength between the first and the second TMSs, where the first TMS can

be a SP. The second is the average strength between the first and all other TMSs. The

third is the maximum strength between the first and any other TMS.

1.3.4 Distributions of interaction strengths

Figure 1.3 shows the distribution of the 14 different scores separated by proteins with

and without SP. The visually clearest separation takes place with the two reference

tools SignalP and Phobius where a low score indicates the absence of a SP. This result

is expected as these two methods were trained to separate these two types of proteins.

Independent of the score calculation, MI is able to separate proteins with SP from

proteins without SP. The same is true for the EC-values, although not as significantly as

with the MI scores. Our tool, which is tailored towards the prediction of residue-residue

contacts and helix interactions in TMPs and has proven by rigorous benchmarking to be

successful at that task, does not perform well when predicting with the aim to separate

proteins with and without SP. While the helix interaction scores perform well in many

cases, i.e. predicting a lower interaction score between SPs and TMS, the contact

scores are quite similar between the two classes, or even favour the opposite from our

expectation. An explanation is that some of the features, such as the number of TMSs,

the position of the residue or the index of the TMS create false signals. The score

distributions, for example, indicate that the predictor learned that the first and the

second TMS in a TMP interact in most cases. As it has not been presented with SPs

during training, the predictor transfers this observation to proteins with SP as well.

The visually best separation is achieved by using the average contact strength of the

first TMS with the other TMSs, although SPs are predicted to have higher contact

scores which is not expected.
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1.3 Distinguishing signal peptides from transmembrane segments using residue contacts

Figure 1.3: Score distributions for the first helix which is either a TMS or a SP using different
co-evolution measures and contact prediction method scores.

1.3.5 Performance using interaction strengths as a signal peptide predictor

In order to measure the predictive performance of a score or method and quantify the

visual inspection, the average precision (AP) was used. The AP summarizes a precision-

recall curve as the weighted mean of precisions achieved at each threshold, with the

increase in recall from the previous threshold used as the weight:

AP =
∑
n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the nth threshold
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Table 1.1 shows the AP for the different scores and methods. Because we expect to

have less contacts between a SP and a TMS, the prediction scores of MemConP, the

MI and the EC-values had to be inverted such that a high value indicates a SP. These

inverted scores are indicated with ”(rev.)” in the table. The quantified results confirm

the visual inspection as the best separation between SP and TMS is achieved by SignalP

with an AP of 0.95 followed by Phobius with an AP of 0.82. While not clearly visible

in Figure 1.3, MI excels the EC-values by 10%, with the scores achieving APs of 0.78

and 0.71, respectively. Regarding MemConP, only the helix interaction scores give a

meaningful result, situated between MI and the EC-values with an AP of 0.73. The

contact scores predicted by MemConP on the other hand as well achieve a AP of 0.70,

but only when not using the scores in their reversed form as we had expected. This

means that the contact scores of MemConP are able to separate SPs from TMSs with

an acceptable precision, but only under the assumption that SPs have more contacts or

a higher contact strength to the remaining TMSs.

In sum, it is obvious that the already available tools Phobius and, especially, SignalP

do very well on the task. We were surprised, however, that MI performs way better

than the EC-values and that only the MemConP helix interaction but not the contact

scores follow our assumption of lower scores between SPs and TMSs than the other way

around.
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Table 1.1: Sorted threshold independent average precision using different co-evolution measures
and contact prediction method scores to predict whether the first helix of a TMP is
a TMS or a SP. (rev.) signifies that the score has been multiplied with -1 and thus
been reversed, i.e. a low score predicts a SP.

Score Average precision

SignalP 0.95
Phobius 0.82
(rev.) Mutual information scores maximum 0.78
(rev.) Mutual information scores 1st and 2nd h... 0.77
(rev.) MemConP helix score maximum 0.73
(rev.) EVfold scores maximum 0.71
(rev.) Mutual information scores average 0.70
MemConP contact scores average 0.70
(rev.) EVfold scores 1st and 2nd helix 0.70
(rev.) MemConP helix score 1st and 2nd helix 0.67
MemConP contact scores 1st and 2nd helix 0.64
MemConP contact scores maximum 0.64
(rev.) MemConP helix score average 0.56
(rev.) EVfold scores average 0.53
EVfold scores average 0.42
(rev.) Phobius 0.37
EVfold scores 1st and 2nd helix 0.30
EVfold scores maximum 0.30
(rev.) MemConP contact scores maximum 0.30
(rev.) MemConP contact scores 1st and 2nd helix 0.29
Mutual information scores average 0.29
MemConP helix score average 0.28
Mutual information scores maximum 0.27
Mutual information scores 1st and 2nd helix 0.27
(rev.) MemConP contact scores average 0.27
MemConP helix score 1st and 2nd helix 0.26
MemConP helix score maximum 0.25
(rev.) SignalP 0.24
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2 Accurate prediction of helix interactions

and residue contacts in membrane

proteins

The aim of this work was to create a sequence based classifier which is able to predict

intramolecular residue-residue contacts between amino acids residing in the transmem-

brane segments of membrane proteins as well as inter-helical contacts.

The data, i.e. the protein chains and the TMS definitions, were downloaded from

the PDBTM database. To show the impact of a larger dataset size, we first reused one

dataset for cross-validation and one for independent testing derived from earlier publi-

cations, while the final cross-validation and independent testing was done on our own

recent rigorously redundancy reduced dataset. The mentioned redundancy reduction

procedure not only involved the number of identical residues between two proteins, but

also the TM-score, a measure of structural similarity, and Protein Families (PFAM)

families/clans.

To separate the residue pairs into two classes, contacting and non-contacting residues,

two definitions were used to ensure future comparability. In the first definition, two

residues are in contact if any of their atoms are closer than 5.5Å, while the second

definition asks for the Cα atoms to be closer than 8Å.

The random forest algorithm was used as the machine learning method of choice, as

it is easy to train and not prone to overfitting. The protein sequence was converted to

several features, which are either global, such as the amino acid composition, local e.g.

the evolutionary profile derived from the MSAs and several physico-chemical amino acid

properties, or pairwise like the co-evolutionary measure calculated by EVFold/Freecon-

tact.

As a result, we were able to improve the accuracy significantly compared to other

contact prediction methods. Including we were able to quantify the impact of each of

our included improvements, i.e. the use of the most recent co-evolutionary methods,

the increased amount of training data and the application of the newest database search

methods.
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By converting the residue contacts into helix interaction, we provide a tool which gives

important insights into the topology for TMPs where no structure is known yet.

Peter Hönigschmid planned and conducted the experiment and wrote the manuscript.

Dmitrij Frishman supervised and planned the project and wrote the manuscript.

2.1 Introduction

Protein sequence-structure gap [59], already quite dramatic for globular proteins, is even

more pronounced for membrane proteins, with merely two thousand atomic structures

available [61, 62] for over one million amino acid sequences containing at least one pre-

dicted TM region [60]. The bulk of this huge discrepancy stems from the challenge to

crystallize membrane proteins, as they are likely to lose their original structure when

removed from their natural lipid environment due to their strongly hydrophobic surfaces,

flexibility, and lack of stability [93]. The low number of known 3D structures also limits

our ability to increase the structural coverage of membrane proteins by template-based

structure prediction methods. On the other hand, sequence-based methods to predict

the topology of TMPs, while highly accurate and useful, are unable to shed light on

their spatial architecture.

Perhaps the only sequence-based approach able to provide information about the

spatial arrangement of polypeptide chains and, in particular, useful constraints for 3D

structure modeling, involves predicting contacts between amino acid residues. Prediction

methods of the first generation exploited the idea of compensatory residue substitutions

as an indication of a residue contact and utilized statistical methods of varying degree of

sophistication to identify correlated mutations between pairs of positions in a multiple

alignment (reviewed in [80]). More recent methods additionally applied machine learning

algorithms to extract information about potential contacts form multidimensional data,

such as evolutionary profiles, physico-chemical properties of amino acids, and other

sequence specific features [78]. However, all these methods, without exception, were

designed to predict residue contacts in soluble proteins.

For a very long time sparseness of structural data precluded the application of contact

prediction techniques to TMPs. Not surprisingly, methods trained on globular proteins

produce extremely poor results when applied to membrane protein sequences due to their

very specific biophysical properties, most notably the fact that their exterior is much

more hydrophobic than the interior due to the interaction with the lipid environment.

In 2009 we developed the first contact predictor (TMHcon) specifically geared towards

α-helical membrane proteins, which employed a neural network trained on sequence
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features and correlation measures, which dramatically outperformed earlier methods

used for globular proteins in terms of precision and recall [81].

Since the release of TMHcon the number of experimentally determined three-dimensional

structures of TMPs that can be used for training prediction algorithms increased sig-

nificantly, from a mere 160 high resolution structures (non-redundant at 40% sequence

identity) in 2009 to over 330 today. Concomitantly, the recent availability of more sensi-

tive database search methods, such as HHblits [94], allows to create better evolutionary

sequence profiles by detecting more homologous sequences to be included in the MSA.

Finally, and most importantly, there has been a quantum leap in our ability to detect

compensatory mutations, which are indicative of structural contacts. While earlier meth-

ods assessed residue co-variation between each pair of positions in a MSA individually

using simple correlation measures, such as mutual information, recent methods rely on

global statistical models. These models attempt to infer causative correlations from the

entire alignment and are thus able to distinguish between direct structural contacts and

transitive connections between residues. The two pioneer approaches based on these

novel ideas are mean-field direct coupling analysis (mfDCA), implemented as EVFold

[82], and the estimation of a sparse inverse covariance matrix, as used in PSICOV [83].

For both methods an accelerated implementation called Freecontact [84] is available.

Recently improved methods to predict residue contacts in soluble proteins have been

released, which either employ enhanced algorithms (CCMpred, [95]), or combine several

co-evolution methods (PconsC2 [86]), MetaPSICOV [87]).

Here we introduce a novel computational method, MemConP (Membrane Contact

Prediction), which is specifically geared towards predicting residue contacts and helix

interactions in TMPs. The tool takes advantage of the recent surge in the number of 3D

structures, more sensitive sequence analysis techniques, and vastly improved approaches

to residue co-variation. It employs the random forest classification algorithm, which

utilizes a large number of decision trees, each trained on a randomly chosen subset of

training data and features. The resulting ensemble of classifiers determines the outcome

by a majority voting. The random forest approach is used to combine several sequence-

derived (evolutionary profiles, amino acid properties) and structure-derived (predicted

TM topology) features with the mfdca approach offered by Freecontact. We also in-

troduce a new highly non-redundant dataset for training machine learning methods on

TMPs, as well as a new independent test dataset, which can serve for performance com-

parison with future methods. We compare the performance of MemConP with several

recent predictive techniques, which employ residue co-evolution.
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2.2 Materials and Methods

2.2.1 Definition of transmembrane segments, residue contacts, and helix

interactions

For comparison of our method with other techniques we used the definition of TM regions

obtained from the PDBTM database [61]. PDBTM definitions were also utilized for

benchmarking of contact predictions. For benchmarking the quality of helix interaction

predictions we rely both on PDBTM as well as on TM topology predictions produced by

PolyPhobius [28]. To make our method comparable to the already existing and future

ones (including our own previous work [81], we used the definition of residue contacts

based on the Euclidean distance between any two atoms of less than 5.5Å. A pair of

helices was defined to be interacting if there was at least one residue contact between

them. Another common contact definition is the distance between the Cβ atoms of

two residues of less than 8Å. Performance measures for this alternative definition are

reported the Appendix (Tables A.1 and A.2).

2.2.2 Datasets

We used four datasets to train and benchmark the predictor: OldTrain, OldTest, New-

Train and NewTest. The first two datasets, OldTrain and OldTest, were used by all recent

TM helix contact prediction methods and thus served as comparison datasets. OldTrain

(introduced by [81]) originally consisted of 62 redundancy reduced X-ray structures of

TM proteins extracted from PDBTM, Topology Data Bank of Transmembrane Proteins

(TOPDB) [61], and OPM [96], with a resolution better than 3.5Åand possessing at least

three TMSs. We omitted the entry 2a79 from this dataset, as the corresponding topology

data was deleted from PDBTM. OldTest was introduced by [97] and contains 21 TMPs,

of which none has a sequence identity above 40% to any other protein in this dataset, nor

to those in OldTrain. To create the NewTrain and NewTest datasets, used to train and

test our final predictor, atomic coordinates and the annotation of membrane-spanning

regions were extracted from the PDBTM database. PDBTM contains 3D structure in-

formation of experimentally solved TMP structures, including atomic coordinates and

the annotation of TM regions generated by TMDET [98]. We used the ”Redundant

Alpha” dataset of June 2015 from PDBTM containing 7374 protein chains as the initial

dataset of TMPs. In order to produce a training dataset which is not biased towards an

overrepresented family of proteins, and a test dataset which is totally independent from

the training data, the initial dataset had to be redundancy reduced. Unfortunately, all

existing approaches are aimed towards redundancy reduction of globular proteins. These
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methods take into account global or local sequence similarity using a substitution matrix

which is designed for globular proteins and not optimized for highly hydrophobic TMSs.

We therefore applied a very rigorous procedure to reduce redundancy both within and

between our training and test datasets, incorporating structural similarity and PFAM

family/clan membership [99] in addition to sequence similarity. Specifically, we calcu-

lated the length-independent measure of structural similarity, the so called TM-score,

using the TMalign method [100]. The PFAM family/clan membership was added as

an additional criterion to eliminate similarity between multi-domain proteins as well as

to address those cases where even structural similarity comparison fails. Two proteins

were declared similar if they i) either shared a sequence identity of more than 35%, ii)

or displayed a TM-score above 0.5, which, according to the authors, implies that they

share the same fold, iii) or belonged to the same PFAM family or clan. To minimize

the bias towards a specific type of TMPs we grouped all proteins in this initial dataset

according to the number of TMSs they possess. Subsequently protein chains were drawn

from each of these groups, one at a time, and added to the NewTest dataset. At the

same time, the sequences in the same group, which were similar to the drawn protein,

were removed from the initial dataset. Upon achieving a certain pre-defined size of the

NewTest dataset, Ntest, the procedure was continued and the drawn proteins added

to the NewTrain dataset until the initial dataset was depleted, automatically yielding

a certain size of the NewTrain dataset, Ntrain. By applying the described procedure

we sought to ensure the lack of similarity both within or between the newly created

datasets. To achieve a uniform increase in the size of the newly created datasets (New-

Train/NewTest) relative to the old ones (OldTrain/OldTest), we chose Ntest to be 30,

resulting in Ntrain of 90, which is a 1.5-fold increase. We additionally required i) struc-

ture resolution to be better or equal to 3.5Å(with preference given to higher resolution

structures for proteins identical in sequence), ii) protein chains to contain at least three

TM helices (as we are interested in inter-helical interactions), and iii) sequences to not

contain any unknown residues. The increase of performance due to using NewTrain over

OldTrain for training was assessed on the newly derived independent dataset NewTest.

We tried to keep the redundancy between the OldTrain and NewTest datasets to a min-

imum. This was achieved by first sorting the proteins in the initial dataset in ascending

order according to the highest TM-score they display to any protein contained in the

OldTrain dataset. Proteins most dissimilar to any protein in OldTrain were drawn first

during the redundancy reduction procedure and added to NewTest first. As a result, 21

of the 30 proteins in NewTest have a TM-score smaller than 0.5 to any protein in the

OldTrain dataset. We identified residues making contacts with each other (according
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to the definition described above) and situated on different TMSs, which resulted in an

approximate contacting to non-contacting residue pair ratio of 1:50 and interacting/non-

interacting helix pair ratio of 1:1.

2.2.3 Database search and multiple sequence alignments

The evolutionary background of protein sequences was retrieved using HHblits [94]. The

search results of HHblits are represented as multiple alignments, which served as input

for assessing residue co-evolution (see below) and for calculating evolutionary profiles

for each protein sequence. HHblits was used with the latest Uniprot20 database from

June 2015 and the parameters ”-Z 999999999 -B 999999999 -maxfilt 999999999 -id 99

-diff inf” to maximize alignment size.

2.2.4 Evaluation measures

To benchmark the predictive performance of our method and make it comparable to

other techniques, several evaluation measures were used:

• precision (P), also called accuracy or positive predictive value

P =
TP

TP + FP

• recall (R), often referred to as sensitivity or coverage

R =
TP

TP + FN

• F-score (Fβ), a weighted average of precision and recall

Fβ = (1 + β2)
Precision ∗Recall

(β2 ∗ Precision) +Recall

We chose the weight factor βin order to favor precision over recall, as we are

interested in a rather small amount of high quality contacts. Throughout this text

we refer to this measure as F0.25 score.

• MCC

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
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In these formulas true positives (TPs) are the residue pairs which are correctly pre-

dicted to be in contact, true negatives (TNs) are the correctly predicted non-contacting

residue pairs, false positives (FPs) are falsely predicted contacting residues, and false

negatives (FNs) are residues pairs that are falsely predicted not to be in contact. For

the residue-residue contact prediction, the performance values are the average over these

measures for each protein, while the performance measures for helix-helix interactions are

given for the total number of interacting helices. For a threshold independent assessment

of the performance precision-recall plots were generated by sorting all the prediction re-

sults according to either their random forest output value (RFscore: between 0 and 1)

or their L/x best predictions and plotting the precision against the recall using the pre-

dicted value as threshold at each of the points shown in the plot. While the threshold

independent evaluation provides insight into the method’s overall performance, a fixed

threshold for the random forest output has to be applied while using the final predictor.

Therefore, we probed the entire RFscore range in order to find the threshold resulting

in the highest F0.25 score averaged over all proteins. Because some of the sequences

in the dataset contain only residue pairs with a low RFscore, we required only 90% of

the proteins to have a RFscore at that threshold to account for these exceptions. The

cutoff derived from these two criteria is denoted RFscoreF0.25 in the text. We also deter-

mined the number of top predictions according to the F0.25 measure, i.e. we optimized

the fraction x of the L/x top predictions, and the corresponding threshold is denoted

L/xF0.25 .

2.2.5 Random forest parameters, training and output

The classifier of choice for the predictor is a random forest, as implemented in the R [101]

package randomForest [102]. This supervised machine learning method is an ensemble

classifier that employs ntree decision trees. For each tree, a subset of training samples

is created by drawing as many samples out of the complete dataset as it contains data

points. As this sampling is done with replacement, it results in an approximate usage of

two thirds of the complete training data for each tree. Each tree is trained using
√
M

input features, where M is the total number of input features available. The output

of the random forest is a value between 0 and 1, representing the fraction of decision

trees voting for the residue pair to be in contact. Thus, two residues are predicted as

contacting if more than 50% of the votes indicate a contact. A significant benefit of

the random forest approach is that due to its mechanism of decision finding it is not

necessary to normalize the data. To get a realistic assessment of the trained predictor,

we performed a 10-fold cross-validation on the OldTrain/NewTrain datasets (containing
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61 and 90 proteins, respectively) by randomly splitting the data into 10 bins and using

9 bins for training and the remaining one for testing. This process was repeated 10

times, such that each protein was used for testing the performance only once. Applying

the trained random forest model to a data sample results in an output value (RFscore)

between 0 and 1, representing the fraction of trees voting for a contacting residue pair.

Output values closer to 0 and 1 correspond to more confident predictions. As the residue

contact data shows a huge class imbalance of 1:50, with non-contacting residue pairs

being far more abundant than contacting pairs, the random forest, like any other machine

learning method, tends to favor the overrepresented class. To deal with this problem we

tried out different balancing methods, but the best performance was achieved by using

i) only residue pairs between interacting helices ii) performing under sampling for the

majority class with the ratio of 1:5 separately for each tree and iii) choosing the threshold

based either on the RFscore or a certain number of top predictions, as explained in the

Evaluation measures section. We determined the thresholds separately for the residue-

residue contact prediction and the helix interactions on the cross-validation data, which

might lead to an optimistic assessment on the training data, while the evaluation on the

independent test data is not biased.

2.2.6 Input features

Below we list the input features used to train the method described in this work, Mem-

ConP.

Amino acid composition was represented as a vector of length 20 containing the

fractions of each amino acid in the sequence alignment of interest.

Number of α-helical TMSs.

Evolutionary profile. Evolutionary profiles are represented by vectors of the length

20, each position referring to one of the 20 amino acids. The log likelihood mi,j to find

amino acid i at position j in the multiple alignment is calculated for each amino acid

as mi,j = log(pi,j)/pi), where pi,j is the relative frequency of amino acid i at column j

in the MSA retrieved by HHblits, and pi is the relative frequency of amino acid i in the

whole alignment. mi,j was normalized using the sigmoid function 1/(1 + exp(−mi,j))).

Segment specific evolutionary profile (SSEP). This feature describes the evo-

lutionary profile of a TMS as a vector of length 20. It is calculated similar to the

evolutionary profile, with the difference that instead of pi,j being calculated on a per-

residue basis, here pi,j reflects the relative amino acid frequency of all columns within a

TMS.
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Relative position. Three values were used to describe the position of the contacting

residues in the protein: the position in the protein as such, normalized by the length

of the protein, the distance from the N-boundary of the TMS the residues are located

in divided by its length, and the sequential number of the TMS divided by the total

number of TMSs in the protein.

Transmembrane segment length. The absolute length of the TMS harboring a

given amino acid residue.

Amino acid properties. Vectors of length 13 containing five numeric (charge, hy-

drophobicity, pI, volume and mass) and eight discrete (hydrophobic, aliphatic, aromatic,

polar, negative, positive, small, Cβ-branched) characteristics of amino acids. The data

was obtained from the AAindex database [103]. For each property the log likelihood was

calculated by dividing the average value in each alignment column by the average in the

whole alignment. The result was normalized using the sigmoid function. To obtain a

log likelihood for the discrete characteristics, they were transformed into a numeric rep-

resentation, e.g. the ”small” property was assigned the values of 1, 2, and 3 for ”normal

sized”, ”small”, and ”tiny”, respectively.

Segment specific properties. A vector of length 13 containing the same amino

acid characteristics as the ”Amino acid properties” feature. The log likelihood, however,

is calculated by taking the average value over all alignment columns in the TMS instead

of a per-residue basis, and dividing it by the average in the entire alignment.

Predicted helix orientation. Amino acid residues located in a TMS are partitioned

into groups representing seven possible helical surface patches. Each of these faces

(f ∈ [1, 7]) contains the residues f + i, f + i + 3 and f + i + 4, with i being every

seventh residue of the TMS. Each face is assigned a LIPid-facing Surface (LIPS) score

[104] calculated by the alignment entropy and the average lipophilicity of the residues it

contains. For each residue the feature consists of four values: the rank of the surface the

residue is located in, the LIPS score of this face, residue lipophilicity and its entropy.

Evolutionary coupling values. EVFold [82] is a method to assess evolutionary

co-variation between two contacting residues in a protein, which outputs a so-called

EC-value. This number provides a quantitative measure of co-evolution between two

residue positions in a multiple alignment. While simple approaches such as mutual

information only consider the two alignment columns in question, the advantage of

EVFold is that it considers the entire alignment by calculating a statistical model that

fits best the properties of the alignment. Freecontact [84] is a reimplementation of

the EVFold algorithm in C (which was originally written in Matlab), optimized for

computational speed. In this study we used the raw EC-values from Freecontact in
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EVFold mode with all default parameters. MSAs produced by HHblits were used as

input for the Freecontact method.

We utilized three different variations of EC-values, dependent on which residue pairs

were considered:

Local EC-values. The EC-values between the current residue and its 8 neighboring

residues (4 at each side).

Pair EC-values. The 25 EC-values between residue pairs, which are located on

different TM helices and are presumed to face each other. These are the two central

residues at positions i and j, and possible combinations of residue positions i ± a and

j ± b, with (a, b) ∈ (0, 0), (0, 1), (0, 3), (0, 4), (1, 0), (3, 0), (3, 4), (4, 0), (4, 3), (4, 4).

Residue separation in the primary structure. Five features were used to rep-

resent the sequence separation between two contacting residues. The first two are the

absolute and relative distances between the two residues. The other three are the dif-

ference of the TMSs index numbers (absolute and relative, normalized by the number

of TMSs), and whether this difference is an odd or even number. The latter feature

indicates how the two TMSs are oriented with respect each other (assuming that the

topology is correct), i.e. an odd number means that the N-terminus of the first TMS is

located on the same side of the membrane as the C-terminus of the other one.

2.2.7 Global, context-dependent, segment-specific and position-specific

features

Protein features listed above can be subdivided into four categories: i) global features,

which includes amino acid composition and the number of TM helices, ii) context-

dependent features, which includes the relative position of the residue, the TMS length,

and the residue separation in the primary structure, iii) segment-specific features, namely

SSEP and segment specific properties, and iv) position-specific features - all other fea-

tures, namely the evolutionary profile, amino acid properties, predicted helix orientation,

and EC-values, where we used a window approach to incorporate relevant information

about the adjacent residues. To achieve this, the input vectors from each of the residues

inside this window were concatenated.

2.2.8 From residue-residue contacts to helix interactions

The performance of our method is given using the RFscoreF0.25 and L/xF0.25 random

forest threshold and the well-established benchmark of top L/x predictions from a ranked

list, where L is the total number of residues residing in TMSs and x is a number used to
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obtain a fraction of this amount. We used the L/5 and L best predictions to make our

results comparable with other methods, while the final method’s predictions are solely

based on the RFscoreF0.25 random forest output threshold, which gives information about

the certainty of the prediction.

We classified two helices as interacting if there exists at least one predicted residue

contact between them. Here, too, we used the L/5 and L best predictions of residue

pairs for comparison of MemConP with other methods. The set of helix interactions

observed in known 3D structures was generated using the same approach, by classifying

two helices as interacting if at least one residue pair was in contact according to the

contact definition.

2.2.9 Feature importance

The randomForest package offers two possibilities to evaluate the importance of different

features. The first measure reflects the average decrease of accuracy (or increase of error

rate) when permuting the feature values of the predictor variable in question. The

second measure used is the total decrease in node impurity measured by the Gini index,

which is a value describing how well a variable serves for separating the two classes. It is

defined by 1−
∑m

i=1 gi, with gi being the fraction of samples of the two classes (contact

and non-contact) in the data at this node of the tree. We used the Gini index and

the decrease of accuracy for the evaluation of feature importance on the final classifier

trained on NewTrain. To assess the specific impact of the Freecontact method on the

prediction performance, we also trained a random forest with all features except for the

EC-values.

2.2.10 Performance values for other methods

We compared the performance of MemConP with several previously published tech-

niques. We were not able to test MemBrain [105], reportedly the best performing method

based on PSICOV [83] predictions, as it uses its own TMS definition and does not al-

low to submit user specified TM topology of a protein. We therefore use performance

values provided in the respective publication. The precision and recall for PSICOV,

Freecontact/EVFold, CCMpred [95], PconsC2 [86], MetaPSICOV [87], and MemConP

were calculated using the topology given by PDBTM, which also made it possible to

assess the predictive performance for the NewTrain and NewTest datasets. Except

for Freecontact, all other methods failed to return a prediction for every target within

24 hours. Missing predictions were left out for the benchmark results of each specific
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method, probably leading to a performance overestimation. PconsC2 was completely

omitted from the precision-recall plots as it was not able to return predictions for about

30% of the proteins, involving many cases for which the other methods performed below

their average and thus can be considered as difficult targets for prediction.

2.3 Results and discussion

2.3.1 Model training

The random forest classifier makes use of several parameters for the training process,

which are the number of sampled features, the number of training examples used for

each tree, and the total number of trees in the ensemble ntree. In addition, it is possible

to change the window size for each feature. As an exhaustive grid search over all these

parameters would have been computationally prohibitive, we tried out a range of param-

eter combinations empirically. Except for ntree, the optimal values of the parameters

controlling the random forest itself turned out to be their default values, as described in

the Materials and Methods section. While the number of trees set to the default value

of 500 already gave good results in terms of the error rate of the classifier, an increase of

ntree to 2000, our final choice for this parameter, further improved the performance of

the decision ensemble and stabilized it by introducing additional training sample/feature

combinations, as every tree is built only by using a subset of them. The optimal window

size for position-specific features (see Materials and Methods) was determined to be 9.

2.3.2 Variable importance

As described in the Methods section variable importance gives information about how

much a feature contributes to the discrimination of the two classes by estimating the

loss of accuracy when randomly permuting the feature values of the variable in question

or the total increase in node impurity measured by the Gini index. Although these

measures provide only a rough estimate, they give a useful overview over the ranking of

individual features (Table 2.1).

Based on these criteria we found the absolute residue distance to be the most impor-

tant MemConP feature apart from co-evolution, as evidenced by an average decrease of

accuracy (Accdec) of 5.4% and a decrease in node impurity (Ginidec) of 88.8. This can

be explained by the fact that residues located in different TMSs, which are connected

only by a short loop, have a high probability to be in contact. As Freecontact itself per-

forms very well (see below), it is not surprising that its output value (reflecting contact
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propensity between a pair of residues) constitutes the most important feature, (Accdec:

2.4%, Ginidec: 149.3). Interestingly, EC-values calculated by Freecontact for residue

pairs situated four positions down and upstream from the central residue pair (i.e. in

the positions which form hydrogen bonds with the central residue and are located on the

same face of the helix, resulting in four possible pairs), are assigned a high importance

(Ginidec of 47.7 to 86.5, Accdec of 2.7 to 3.3). For comparison, the averages over all

features regarding Accdec and Ginidec values are 2.2% and 33.1 respectively.

Table 2.1: Variable importance for features or groups of features (bold face). For the features
using a window or feature groups, the values are averaged.

Feature Accdec Ginidec Feature Accdec Ginidec

Amino acid composition 2.2 17.3 Evolutionary profile 1.8 20.5

Local EC-values 2.5 24.1 Segment specific properties 2.1 21.2

Pair EC-values 2.6 59.8 Aliphatic 2.4 21.8

4, 4 3.1 149.3 Aromatic 2.0 19.2

0, 0 2.4 149.3 C -branched 2.2 21.9

4, 0 3.3 86.5 Charge 1.7 20.9

0, 4 3.1 86.3 Hydrophobicdiscrete 2.0 21.9

0, -4 2.9 51.7 Hydrophobicitycontinuous 2.6 21.3

4, -4 3.3 48.3 Mass 2.4 21.9

-4, 0 2.7 47.7 Negative 1.9 20.9

-4, 4 3.2 45.0 pI 2.0 20.6

-4, -4 2.4 34.8 Polar 2.2 22.6

Predicted helix orientation 1.6 19.3 Positive 2.2 19.9

Entropy 1.8 22.6 Small 1.7 21.3

LIPS score of helix face 1.8 22.9 Volume 2.3 21.1

Rank of helix face 1.0 10.6 SSEP 2.2 20.6

LIPS score of residue 1.7 21.2 Number of TMSs 1.7 9.4

Amino acid properties 2.1 24.1 Relative position 1.86 24.17

Aliphatic 2.1 23.2 Relative residue position 2.5 29.9

Aromatic 2.3 22.6 Rel. N-boundary distance 1.3 25.9

C -branched 2.1 24.8 Rel. TMS number 1.8 16.8

Charge 2.3 23.6 TMS length 1.1 16.4

Hydrophobicdiscrete 2.0 24.5 Residue separation 3.4 46.5

Hydrophobicitycontinuous 2.0 23.5 Abs. residue distance 5.4 88.8

Mass 2.0 26.4 Abs. TMS distance 3.0 34.7

Negative 1.9 23.8 (Anti)parallel TMSs 1.9 11.4

pI 2.2 24.2 Rel. residue distance 3.7 63.56

Polar 1.8 23.6 Rel. TMS distance 3.12 34.16

Positive 2.2 22.9

Small 2.0 25.1

Volume 2.1 25.0

2.3.3 Evaluation of residue contact prediction and comparison to existing

methods on established datasets

To compare MemConP to other recent methods we used the same training and test

datasets OldTrain and OldTest for evaluating PSICOV, Freecontact/EVFold, CCMpred,

PconsC2, MetaPSICOV and MemBrain. According to the L/5 criterion the precision and

recall values of MemConP are 72.5% and 12.3%, respectively, on the OldTrain dataset

(Table 2.2), a 10.5%/2.1% increase compared to the claimed values of MemBrain, the

reportedly best performing method for TMPs. Using the RFscoreF0.25 threshold instead

of the L/5 criterion, MemConP performs with a more than 2.5-fold increased recall
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value (31.1%) compared to MemBrain, at the cost of only a slight decrease in preci-

sion (72.4%). MCC for the RFscoreF0.25 threshold is also much better (0.435) compared

to 0.284 for the L/5 threshold. Similar results were obtained for the OldTest dataset

(Table 2.2), for which the increase in precision compared to MemBrain is even higher

(81.2% to 64.1%), while the gain in recall is relatively small (10.4% to 8.3%). Using the

RFscoreF0.25 threshold, the MCC increases to 0.446 on this dataset, significantly outper-

forming all other methods. The difference in performance between Freecontact (EVFold)

and PSICOV is clearly in favor of Freecontact, which is conceivably one of the reasons

for MemConP performing better than MemBrain on OldTrain and OldTest. The other

methods designed for soluble proteins, namely CCMpred, PconsC2 and MetaPSICOV,

perform remarkably well on the TM specific data, outperforming PSICOV and Freecon-

tact and even MemBrain in most dataset/measure combinations. Unfortunately, some

of the predictions could not be made by these methods, e.g. PconsC2 gave no result for

10 proteins from the OldTrain dataset, even after 24 hours of runtime.

All recent methods perform better using OldTest over OldTrain, which indicates that

the contacts in these proteins are easier to predict. We tried to correlate Freecontact’s

predictive performance with several characteristics of the query proteins such as the

relative/absolute number of sequences in the input alignment, number of TMSs and

their lengths or the alignment entropy, but were not able to find the reason why these

proteins seem to be so much easier to predict.

Table 2.2: Residue-residue contact prediction performance comparison. The ’-’-column indi-
cates the number of proteins for which no prediction was returned within 24 hours
of runtime. These proteins were not considered when measuring the performance
of the respective methods. Bold values indicate the highest performance for a
given measure/dataset combination. Despite the large amount of missing predic-
tions PconsC2’s performance is shown for completeness, but is greyed out.

Method Threshold P R F0.25 MCC - P R F0.25 MCC -

OldTrain OldTest

PSICOV L/5 42.8 6.6 31.7 0.157 60 58.0 7.9 41.6 0.206 21

Freecontact L/5 58.1 9.7 43.4 0.222 61 70.4 9.3 50.0 0.247 21

CCMpred L/5 64.5 10.8 48.1 0.248 60 77.8 10.3 55.3 0.275 21

PconsC2 L/5 56.8 9.2 42.5 0.216 51 80.7 9.8 56.2 0.275 15

MetaPSICOV L/5 64.8 11.5 48.7 0.254 58 76.2 9.9 54.0 0.267 20

MemBrain L/5 62.0 10.2 - - - 64.1 8.3 - - -

MemConP L/5 72.5 12.3 54.5 0.284 61 81.2 10.4 57.3 0.284 21

PSICOV L 22.7 17.5 22.1 0.174 60 30.1 19.8 29.1 0.227 21

Freecontact L 34.0 26.4 33.2 0.276 61 41.1 26.6 39.6 0.314 21

CCMpred L 35.8 28.0 34.9 0.291 60 45.5 29.5 43.9 0.350 21

PconsC2 L 36.3 27.9 35.5 0.295 51 50.4 30.1 48.3 0.375 15

MetaPSICOV L 41.2 32.7 40.2 0.341 58 51.0 32.4 49.1 0.392 20

MemConP L 52.5 42.0 51.3 0.444 61 59.8 37.6 57.5 0.460 21

MemConP L/xF0.25 65.2 25.0 58.5 0.384 61 72.7 21.4 63.2 0.384 21

MemConP RFscoreF0.25 72.4 31.1 61.2 0.435 55 74.5 33.2 61.4 0.446 21

NewTrain NewTest

PSICOV L/5 46.0 7.0 33.9 0.169 87 42.3 5.9 30.0 0.147 30

Freecontact L/5 57.3 8.7 42.2 0.213 90 54.1 8.1 38.9 0.196 30

CCMpred L/5 65.4 11.0 48.2 0.247 86 61.3 9.4 44.2 0.226 29

36



2.3 Results and discussion

PconsC2 L/5 60.6 9.1 44.6 0.224 73 64.7 9.7 47.1 0.238 20

MetaPSICOV L/5 62.4 9.5 46.1 0.233 87 58.7 8.1 41.7 0.207 30

MemConP L/5 70.9 10.9 52.4 0.268 90 65.6 9.7 47.0 0.239 30

PSICOV L 24.4 17.9 23.8 0.188 87 21.3 14.6 20.5 0.155 30

Freecontact L 32.1 24.8 31.2 0.257 90 29.2 20.9 28.1 0.224 30

CCMpred L 35.8 27.1 34.8 0.286 86 31.9 22.7 30.8 0.246 29

PconsC2 L 36.8 26.7 35.8 0.293 73 37.4 26.3 36.2 0.292 20

MetaPSICOV L 39.5 28.9 38.4 0.318 87 36.8 24.6 35.4 0.280 30

MemConP L 48.3 37.2 47.0 0.400 90 41.0 28.7 39.5 0.320 30

MemConP L/xF0.25 64.7 18.5 55.6 0.333 90 57.8 15.6 48.5 0.284 30

MemConP RFscoreF0.25 63.6 25.7 53.8 0.369 89 56.0 17.5 45.7 0.288 29

2.3.4 Benchmarking the residue contact predictor trained on latest data

The use of improved methods, such as HHblits and Freecontact, combined with a newer

dataset containing 30% more TMP chains resulted in an improved generalization power

of the model. On the NewTrain dataset precision and recall of MemConP reach 63.6%

and 25.7%, respectively, using the RFscoreF0.25 threshold, and 70.9%/10.9% using the

L/5 criterion (Table 2.2).

The random forest trained on the NewTrain dataset with 90 proteins, which is the final

released predictor, achieves results on NewTest (P/R/MCC: 65.6%/9.7%/0.239), using

the RFscoreF0.25 threshold, the performance reaches 56.0% precision, 17.5% recall and a

MCC of 0.317. In general, a good indicator to check whether the model is overtrained

or generalizes well is to compare the performance between the cross-validation and the

independent test data (NewTrain and NewTest). An overtrained model would perform

worse on independent data, provided that these data are non-redundant. Whilst there

is indeed a drop in MCC values between the NewTrain and NewTest datasets (0.268

vs. 0.239), this is also true for the methods not employing any training. We speculate

that this drop in performance is due to the rigorous redundancy reduction procedure

employed to create the NewTest dataset (see Methods), which resulted in a higher frac-

tion of difficult prediction targets. It should also be noted that Freecontact substantially

outperforms PSICOV, which makes it a better choice as input for our method (Table

2.2). Again, among the more recent contact prediction tools, CCMpred and MetaPSI-

COV perform fairly well on the latest datasets. Based on the list of predictions sorted by

the random forest output values the trained classifier was capable of sustaining higher

precision values than the other methods over the whole recall range for the L/x best

predictions (Figure 2.1). The problem of missing predictions is still evident especially

for PconsC2, which was not able to process one third of the NewTest dataset. These 10

missing cases were some of the most difficult prediction targets for the other methods

as well, which is also discussed briefly below. Therefore PconsC2 was not included in

Figure 2.1, as it would give a distorted view of its real life performance.
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Figure 2.1: Precision-recall curve created by sorting all predictions of residue contacts according
to their score, which is either the output value of the random forest (RFscore) for
MemConP or the top L/x predictions for MemConP and the other methods for each
protein, and averaging over them. The shapes show the performance at different
thresholds (RFscoreF0.25 , L/xF0.25 , L/5 and L). The black line indicates the range
of positions, where at least one positive MemConP prediction per protein is present
for more than 90% but not for all of the proteins in the dataset, while data points on
the grey line do not meet the 90% criterion. Protein/method combinations where
no prediction could be made were not included in performance calculation.

A particular combination of the precision and recall values should be selected by the

users depending on the task in hand. For example, a user who intends to perform

costly mutagenesis experiments on contacting residues, might want to use only a few of

the most reliable predictions while accepting to miss most of the true positives. On the

other hand, for those users interested in investigating the abundance of possible contacts

between different pairs of helices obtaining as many true positives as possible will be the

top priority, even at the expense of higher false positive rate.

2.3.5 Impact of updated training data

To assess the benefit of the updated datasets and employing the random forest, we

trained the random forest as a stand-alone method without using any co-evolution in-

formation (i.e. without the EC-values, denoted NoEC ) on OldTrain or NewTrain and
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2.3 Results and discussion

then tested it on NewTest. Although we tried to keep the NewTest dataset independent

from OldTrain, only 21 out of the 30 NewTest proteins have TM-score below 0.5 when

compared to OldTrain. Only these 21 proteins were used for this analysis.

Interestingly, MemConPOldTrain/NoEC, the basic predictor trained on OldTrain without

the Freecontact feature, still performs remarkably well with 27.9% precision, 5.5% recall

and a MCC of 0.111 (Figure 2.2), especially when compared to earlier methods, which

only incorporated basic co-evolution measures such as mutual information. TMHcon, for

example, has the reported precision/recall values of 14.8%/3.9%. Upon switching from

OldTrain to NewTrain while still not using any co-evolution information, there is an

increase in performance to a precision and recall of 32.0% and 5.1% respectively, which

implies an improved generalization power of the model trained on the NewTrain dataset

containing 30% more proteins. For comparison, PSICOV, which is a second generation

co-evolution method not employing any training, achieves 36.3% precision and 5.9%

recall on these 21 proteins. As expected, incorporation of co-evolution results in the

most significant improvement, raising precision/recall using OldTrain to 57.7%/10.2%

and using NewTrain to 60.3% and 10.4% respectively.

Figure 2.2: Precision-recall curve for the 15 protein chains in the NewTest dataset, which ex-
hibit no similarity to any proteins in OldTrain and NewTrain. The plot shows the
performance of the random forest models using each of the two training datasets
(OldTrain/NewTrain) with or without employing co-evolution as an input feature
(EC/NoEC).
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2 Accurate prediction of helix interactions and residue contacts in membrane proteins

2.3.6 Dependence of the performance on the number of transmembrane

segments and alignment size

We assessed the performance of all methods depending on two properties: the size

of the alignment and the number of TMSs. As seen in Figure 2.3, there is no clear

correlation between the alignment size and the prediction performance. All methods

perform above their average between 7 and 11 or more than 61 thousand sequences

and suffer a performance drop between 13 and 18 thousand sequences. MemConP, for

example, has an average L/5 precision of 65.6%, but achieves 100% in the alignment size

range of 10-11 thousand proteins, while for 17-18 thousand aligned proteins its accuracy

is only slightly above 45%. However, both of these alignment size ranges contain only one

prediction target, and are thus not statistically representative. In general, all alignment

size intervals up to 7-8 thousand proteins contain more than two proteins, while larger

alignments correspond to one or two prediction targets. Notably, while most methods

follow a similar trend for each alignment size, MemConP sets itself apart for alignment

sizes of 4 to 6 thousand aligned proteins. A more detailed view of the relation between

alignment size and the prediction performance without the aggregation of individual

prediction results can be found in Figure 2.4.

Similar to the alignment size, there is no obvious general trend in the dependence

of performance values on the number of TMSs (Figure 2.5). Precision does increase

slightly with the increasing number of TMSs, but this is presumably due to the use

of the L/5 measure: while the number of possible interactions increases exponentially

upon adding each TMS, the length L only increases linearly. Especially for proteins

containing 3 to 6 TMSs, all methods perform worse than for proteins with 7 TMSs or

more. MemConP follows this trend in that it performs above its average L/5 precision

(65.6%) in all cases with more than 4 TMSs, except for the proteins with 16 TMSs. The

figure also exposes PconsC2 problems with more difficult prediction targets, as in most

cases where it seems to beat the other methods (e.g. for 5, 9, 12 TMSs), it is missing

some predictions (smaller sizes of points in Figure 2.5 corresponding to fewer prediction

targets). Another interesting feature of the NewTest dataset made apparent by Figure

2.5 is that prediction targets are relatively evenly distributed over TMS bins, with most

of the bins containing two test examples.

2.3.7 Evaluation of helix-helix interaction prediction

MemConP identifies interacting helices in TMPs by considering the highest scoring pairs

of contacting residues. Unlike the residue contacts, the performance for helix interac-
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2.3 Results and discussion

Figure 2.3: Dependence of precision on the number of sequences in the alignment for all pre-
diction methods. The diameter of the points indicates the number of proteins with
alignments in the respective alignment size range. Small displacements of points
were introduced in order to better distinguish them from each other.

Figure 2.4: Dependence of precision on the number of sequences in the alignment for all pre-
diction methods. Small displacements of points were introduced in order to better
distinguish them from each other.
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2 Accurate prediction of helix interactions and residue contacts in membrane proteins

Figure 2.5: Dependence of precision on the number of TMSs in proteins for all prediction
methods. The diameter of the points indicates the number of proteins with the
respective number of TMSs. Small displacements of points were introduced in
order to better distinguish them from each other.

tions is highly dependent on the chosen threshold and benchmark measure (Table 2.3).

MemConP achieves 98.8% precision and 49.4% recall on OldTest using the L/5 best

predictions. PSICOV, on the other hand, also performs well using the same thresh-

old (precision: 81.2%, recall: 64.7%), but achieving only a precision of 58.4% when

using the L best predictions, a value that would be expected from a random predic-

tor. All other benchmarked methods show comparable performance, mostly gaining a

higher recall compared to MemConP at the cost of slightly decreased precision. Using

the RFscoreF0.25 threshold, MemConP is even able to achieve 100% precision at 43.3%

recall. MemConP is clearly superior to all other contact prediction methods on the

NewTest dataset. In terms of helix interaction prediction MemConP shows a compara-

ble performance with CCMpred and Freecontact. Its ranks first in terms of L and L/5

precision (92.2% and 72.6%, respectively) at the cost of a decreased recall (43.3% and

75.3%, respectively). In particular, CCMpred achieves a higher recall (L/5: 52.8%, L:

80.6%) and slightly lower but comparable precision (L/5: 91.7%, L: 65.6%) when pre-

dicting helix interactions. But since the method stays behind MemConP for predicting

residue contacts, it can be assumed that the high ranking predicted residue contacts
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2.3 Results and discussion

are more evenly distributed among the interacting helix pairs. Figure 2.6 confirms this

assumption, with the precision-recall curve of CCMpred being slightly above MemConP.

PSICOV has the highest recall (83.9%) accompanied by a rather low precision (55.6%)

compared to the other methods. Aside from MemConP and CCMpred, Freecontact

achieves comparable performance predicting helix interactions, while MetaPSICOV lags

slightly behind these three tools. Just like in the case of residue contact prediction,

PconsC2 could not be benchmarked properly on helix interactions because of missing

predictions.

Table 2.3: Comparison of helix-helix interaction prediction methods. Bold values indicate the
highest performance for a given measure/dataset combination. Despite the large
amount of missing predictions PconsC2’s performance is shown for completeness,
but is greyed out.

Method Threshold P R F0.25 MCC P R F0.25 MCC

OldTrain OldTest

PSICOV L/5 81.4 66.4 80.4 0.532 81.2 64.7 80.0 0.515

Freecontact L/5 87.5 63.5 85.6 0.577 95.3 60.2 92.1 0.619

CCMpred L/5 90.0 60.4 87.5 0.579 94.0 61.4 91.2 0.618

PconsC2 L/5 89.4 59.0 86.8 0.555 96.2 57.3 92.5 0.608

MetaPSICOV L/5 88.7 50.6 84.9 0.493 91.8 50.3 87.6 0.519

MemBrain L/5 90.1 56.2 - 0.555 87.9 56.3 - 0.526

MemConP L/5 94.9 49.5 90.0 0.542 98.8 49.4 93.3 0.567

PSICOV L 57.0 91.9 58.3 0.320 58.4 93.7 59.7 0.360

Freecontact L 66.0 88.4 67.0 0.480 71.0 84.4 71.7 0.520

CCMpred L 67.7 88.2 68.6 0.508 70.4 86.2 71.2 0.524

PconsC2 L 73.0 81.2 73.4 0.517 75.4 83.2 75.9 0.579

MetaPSICOV L 74.0 82.1 74.4 0.544 71.6 80.8 72.1 0.502

MemConP L 77.5 81.6 77.7 0.596 79.8 80.5 79.9 0.609

MemConP L/xF0.25 94.5 53.0 90.3 0.564 98.9 52.4 94.0 0.591

MemConP RFscoreF0.25 98.4 44.3 91.8 0.529 100.0 43.4 92.9 0.530

NewTrain NewTest

PSICOV L/5 81.2 62.7 79.9 0.524 81.5 56.1 79.3 0.509

Freecontact L/5 89.8 54.8 86.6 0.551 90.1 52.6 86.4 0.555

CCMpred L/5 89.6 55.9 86.6 0.556 91.7 52.8 87.9 0.568

PconsC2 L/5 92.3 51.1 88.1 0.536 95.0 47.8 89.8 0.536

MetaPSICOV L/5 88.2 48.7 84.2 0.496 88.2 40.8 82.5 0.459

MemConP L/5 91.4 46.5 86.5 0.505 92.2 43.3 86.5 0.504

PSICOV L 56.1 90.0 57.4 0.338 55.6 83.9 56.7 0.361

Freecontact L 67.4 78.6 67.9 0.465 67.8 77.0 68.3 0.499

CCMpred L 65.8 81.0 66.6 0.455 65.6 80.6 66.3 0.491

PconsC2 L 76.9 76.7 76.9 0.559 80.9 72.1 80.3 0.578

MetaPSICOV L 70.1 76.5 70.5 0.490 72.6 72.5 72.6 0.526

MemConP L 71.6 78.7 71.9 0.522 72.6 75.3 72.8 0.544

MemConP L/xF0.25 91.0 49.9 86.8 0.526 90.6 46.3 85.8 0.514

MemConP RFscoreF0.25 94.6 44.5 88.7 0.514 91.4 42.1 85.5 0.490

An example of a helix interaction prediction and its dependence on the chosen helix

interaction threshold is given in Figure 2.7A. In total, 10 out of 14 contacting helices are

predicted correctly using the RFscoreF0.25 threshold, despite the low number of true pos-

itive contact predictions for some of the helix pairs. Notably, there is neither a predicted

residue contact, nor a predicted helix interaction between helix 2 (light green) and helices

5, 6 and 7 (cyan, yellow and dark green), which appear to actually interact with helix

2 based on the structure 4pgr chain A. In order to investigate possible reasons for this
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2 Accurate prediction of helix interactions and residue contacts in membrane proteins

Figure 2.6: Comparison of precision-recall curves created by sorting all predictions of helix
interactions according to their score, which is either the output value of the random
forest (RFscore) for MemConP or the top L/x predictions for MemConP and the
other methods for each protein, and averaging over them. The shapes show the
performance at different thresholds (RFscoreF0.25 , L/xF0.25 , L/5 and L).

false negative prediction we superimposed 4pgr with another PDB entry for the same

sequence - 4pgs chain A (Figure 2.8). Both structures match perfectly except for the

second helix, which does not make any contacts to helices 5, 6 and 7 according to 4pgs.

The position of helix 2 thus appears to be ambiguous, possibly due to either crystalliza-

tion artifacts or to or to functionally relevant conformational mobility. Comparison of

helix interaction graphs shown in Figure 2.7A makes apparent the advantage of using

the RFscoreF0.25 threshold. Compared to the RFscoreF0.25 threshold, with its 10 true

positive and one false positive prediction, using the L best predictions as the threshold

generates four false positive interactions, while using the more stringent L/5 threshold

misses four true positives interactions. The second example (Figure 2.7B) highlights the

advantages and drawbacks of different thresholds as well. Even using the RFscoreF0.25

threshold, which is geared towards high precision, two false positive interactions between

helices 2/7 and 2/9 are produced whereas using the L/5 highest scoring predictions only

results in one of these false positives (2/7). In this specific case, however, this interaction
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would in fact be a true inter-molecular interaction if contacts between all subunits of

the structure, which is a homotrimer, were investigated.

Figure 2.7: Visualization of contacts and helix-helix interactions predicted by MemConP at
different thresholds by helix interaction graphs (left), ribbon models of structures
(center), and contact maps (right) for the Bacillus subtilis pH-sensitive calcium leak
channel YetJ (4pgr, chain A) (A) and for the ammonium transport protein AmtB
from Escherichia coli (1xqf, chain A) (B). In the helix interaction graphs, black
edges depict the observed contacts as extracted from the PDBTM database. Green
edges correspond to true interactions which were also predicted by our method,
while red lines indicate false positives, i.e. interactions predicted by MemConP,
which are not observed in the experimental structure. α-helices, represented as
circles on the helix interaction graphs, are encoded by the same color as in the
structure image. On the contact maps, black dots are the observed contacts as
extracted from the structure. Colored dots are contacts predicted by MemConP
according to different thresholds: top L predictions (green, upper right triangle), top
L/5 predictions (red, upper right triangle), RFscoreF0.25 threshold (various colors,
lower left triangle). The dots representing the predicted contacts at the adjusted
threshold are drawn in the same color as lines in the structure image connecting
residues predicted to interact. For example. the orange dots in the lower left
triangle (A) between helices 6 and 7 are clearly visible between the corresponding
helices (colored in yellow and dark green) in the structure image.

Similar to the residue contact prediction, threshold plots can be used to estimate the

trustworthiness of a particular prediction by assessing performance measures at different

thresholds (Figure 2.6).

45



2 Accurate prediction of helix interactions and residue contacts in membrane proteins

Figure 2.8: Superposition of two alternative structures for the Bacillus subtilis pH-sensitive
calcium leak channel YetJ. The structures match perfectly except for the localiza-
tion of the second TMS colored in light green (4pgr, chain A) and orange (4pgs,
chain A), which explains the missing contact predictions between the second and
the other three helices colored in cyan, yellow and dark green.

2.3.8 Prediction of helix interaction patterns using sequence derived

2D-topology

The positions of TMSs used for benchmarking of our methods were derived from known

3D structures. In real use cases these structures are not known and thus the TMSs have

to be predicted from sequence. We used for this purpose PolyPhobius, a highly rated

[106] hidden Markov model-based topology prediction method using multiply aligned

sequences as the sole input. Because the true TM topology is dependent on its defi-

nition and may therefore vary across different structure databases by several residues,

we mapped each predicted TMS to the one derived from structure using the segment

overlap (SOV) approach [107]. SOV between a predicted and a true TMS was calculated

as

SOV (predicted, true) =
overlap(predicted, true)

max(predictedlast, truelast)−min(predictedfirst, truefirst) + 1
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where overlap is the number of shared, i.e. correctly predicted TM residues, and

first/last are the start and end positions of the true/predicted TMS. For a successful

mapping, we required the SOV to be at least 0.5. Out of the 30 proteins from NewTest

only 6 could be mapped completely, i.e. each of the predicted TMSs had a corresponding

structure-derived segment with a SOV greater or equal than 0.5, which means that there

were no additional or missing segments. Taking only these 6 proteins into account,

the performance using the predicted topology is close to the performance using the

structure derived segments with a precision of 95.3%, a recall of 48.2% and a MCC of

0.570. For the 24 proteins having wrong predicted topology, unmapped TMSs can either

result in false positive helix interactions, in case an unmapped segment is predicted

to interact with another helix, or in a true negative interaction. Conversely, a 3D-

structure derived TMS involved in an interaction, but missed by prediction, would result

in a false negative interaction. Although 80% of the topologies were not predicted

correctly, the performance drop is very low (P: 75.8%, R: 32.2%, MCC: 0.359), which

demonstrates that MemConP is capable of producing accurate predictions based on

amino acid sequence information.

2.4 Conclusions

We have developed a novel method for predicting intramolecular interactions in mem-

brane proteins. MemConP predicts individual residue-residue contacts and helix inter-

actions using correlated mutations and sequence features. The method heavily relies

on the recent co-evolution algorithms, which eliminate transitive evolutionary connec-

tions between residues. Figure 2.9 summarizes the key methodological developments in

predicting intramolecular interactions in membrane proteins, by showing how the im-

provements in three areas - training data, machine learning and co-evolution methods -

impact prediction performance. While contact prediction methods for soluble proteins

were established in mid-90s and have matured by now, the first approaches achieving

a comparable performance for membrane proteins appeared more than a decade later.

HelixCorr [80] was a predictor based on the combination of several first generation co-

evolution methods. The follow-up method TMHcon [81] additionally exploited a neural

network-based machine learning approach. In this work we demonstrate that a base-

line machine-learning predictor, which utilizes a highly sensitive database search method

(HHBlits), surpasses these early methods on the same training dataset, even though it

does not consider residue co-evolution. However, it still lags behind the modern co-

evolution methods, such as Freecontact [84], which employ global statistical models to
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infer residue coupling in the entire sequence alignment. On a much more diverse training

dataset the random forest classifier edges closer to the more recent methods. Our final

method, which combines machine learning with the co-evolution signal as an additional

input feature, outperforms all currently available methods by a wide margin.

Figure 2.9: Illustration showing the progress of co-evolution methods, training data, machine
learning and their combinations in relation to the corresponding benefits in residue
contact and helix interaction prediction performance. For each combination an
example method is given. Shapes (crosses, triangles, squares, circles) indicate the
particular type of the co-evolution method applied. Colors depict machine learning
approaches utilized, from earlier methods based on neural networks to more recent
random forest models. The size of the symbol indicates the dataset used for training
the classifier.

Building on this unmatched performance in predicting individual residue contacts, we

predicted helix interactions as well. In contrast to all previous studies we conducted

benchmarking of MemConP not only on TM helix positions obtained from crystal struc-

tures, but also on TM topologies predicted from sequence, which would be the normal

use case for this sequence-based method. Although less than a third of our test cases

had the correctly predicted topology, the quality of helix interaction predictions did not
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noticeably deteriorate compared with using 3D structure-derived helix positions. Our

approach can thus be used to obtain valuable insights into TMP folds from sequence

alone.
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3 Evolutionary interplay between symbiotic

relationships and patterns of signal

peptide gain and loss

In this publication, we investigated orthologous groups of proteins from the Enterobac-

terales order to find cases of SP gain and loss events, i.e. if orthologous proteins with

different SP assignments exist, and how they evolved.

Therefore, we prepared a dataset deriving COGs from the OMA and scanned the

proteins for SPs using a combination of three prediction methods, SignalP, Phobius

and TatP in order to receive a high quality dataset in terms of reliability of the SP

assignments.

To be able to distinguish between SP gain and loss events and to bring these events

into the evolutionary context, we calculated a phylogenetic tree for each orthologous

group and did a standard parsimony analysis, i.e. reconstructed the ancestral states,

using the Fitch method. An additional parsimony analysis was conducted after a gene

start correction procedure, applied to reduce the number of false positive events.

As a result, we found out that 1.9% of all investigated COGs contain both, proteins

with and without SPs, and, therefore, must have undergone either a SP gain or loss

event. The two subsequent conducted parsimony analyses showed that SP loss events

happen more often than gain events. In addition, we found the tendency of gains to be

more ancient while loss events seemed to have happened more recently.

Looking into the mechanics behind the events showed mainly two possible patterns.

The first is the complete deletion or insertion of the SP, the second is the mutation of

amino acids while retaining the full length of the N-terminal sequence.

Finally, we tried to relate the lifestyle of the bacteria from the Enterobacterales or-

der to their SP content. As a result, we were able to show that in some COGs the

SP assignments were enough to discriminate between endosymbionts and free-living or

commensal bacteria. Additionally, we found out that SP loss events correlate with a

change of lifestyle as these events are often accompanied by a transition towards an

endosymbiotic lifestyle.
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Peter Hönigschmid conducted the whole experiment and wrote the manuscript. The

original project was initiated by Nadya Bykova, Dmitry Ivankov and Dmitrij Frishman.

René Schneider did some preliminary analyses during his Bachelor thesis. Dmitrij Fr-

ishman supervised and planned the project and wrote the manuscript.

3.1 Introduction

Protein function is not set in stone – it can undergo both gradual and drastic changes

due to a variety of evolutionary events, including mutations, insertions, deletions, and

duplications. Early on it was noted that proteins sharing the same structural fold can

have vastly divergent functional roles [41]. Although functional equivalence of orthologs

is often assumed, recent assessments indicate a rather low degree of functional simi-

larity between pairs of orthologous genes [42], even when they share very high overall

sequence identity [43]. Specific aspects of proteins function may vary between orthologs

significantly, including enzymatic specificity [44] and protein interaction sites [45]. Local

molecular determinants of protein function, such as phosphorylation sites, as well as

entire protein domains, can be gained and lost in the course of evolution.

While the evolutionary dynamics of enzymatic and binding activities has been ex-

tensively studied, functional shifts associated with the evolution of cellular targeting

signals have received much less attention, and most of the work done so far focused on

the sequence diversity of eukaryotic SPs, mitochondrial targeting signals, and chloro-

plast transit peptides [47, 48, 46]. In particular, differences in the evolutionary rates

between intra- and extracellular proteins have been reported for mammals and yeast

[108, 109], and shown to depend on tissue-specific gene expression [110]. In bacteria, the

majority of the secreted proteins (96% in Escherichia coli [1]) are translocated across

the cytoplasmic membrane in a Sec-pathway-dependent manner and possess cleavable

SPs – short sequence segments of 20-30 amino acids in length, which act as targeting sig-

nals [3]. SPs exhibit a tripartite structure, consisting of a positively charged N-terminal

region, a central hydrophobic region, and a polar C-terminal region, which contains a

three-residue cleavage motif recognized by the signal peptidase I [111]. The limits of

sequence variation within SPs have been extensively studied [112] and a large number

of non-conventional taxon-specific sequences have been identified by proteogenomic ex-

periments [113]. However, all these studies were primarily aimed at understanding the

minimal sequence requirements of the signal recognition machinery and did not consider

evolutionary effects associated with elimination or acquisition of SPs.
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Given the importance of SPs for protein sorting and localization it is no wonder

that they constitute an important element of protein and genome annotation. Early

analyses of completely sequenced genomes suggested that around 20% of proteins are

secreted in a typical bacterium, such as Haemophilus influenzae [15] or Escherichia coli

[14]. More recently these estimates have been revised due to both improved accuracy

of bioinformatics predictions [18] and the availability of proteogenomics data [20, 19],

and for the best studied bacterium Escherichia coli they currently converge to 10%

of proteins possessing a SP [16]. The size and the composition of the secretome are

highly informative for understanding organism’s physiology. An important driving force

for functional divergence in bacteria is constituted by environmental variation and the

ensuing changes of lifestyle. In general, pathogenic and non-pathogenic species would be

expected to secrete different proteins [49], but a recent study [50] failed to establish any

connection between pathogenicity and the secretome size. A positive correlation between

the percentage of secreted proteins and the number of genes in the gram-negative, but

not in the gram-positive organisms, was reported.

Here we present a comparative secretome analysis of Enterobacterales, focusing not

only on the relative number of secreted proteins, but also on the conservation of their

ability to be secreted in relation to the bacterial lifestyle. In order to conduct this anal-

ysis, we integrated evolutionary trees of orthologous protein groups with SP predictions

and functional annotation. Parsimony analysis and sequence comparisons revealed a

large number of SP gain and loss events, in which SPs emerge or disappear amongst

orthologous proteins in the course of evolution. We also attempted to shed light on

the molecular mechanism leading to these events and their relationship to the symbiotic

lifestyle of an organism. Our results indicate that SP losses prevail over gains, an effect

which is especially pronounced in the transition from the free-living or commensal to the

endosymbiotic lifestyle. The disproportionate decline in the number of SP-containing

proteins in endosymbionts cannot be explained by the overall reduction of their genomes

[114]. SPs can be gained and lost either by acquisition/elimination of the corresponding

N-terminal regions or by gradual accumulation of mutations.

3.2 Materials and Methods

3.2.1 Genomes, orthologous clusters, and Gene Ontology terms

The Enterobacterales order is a large and diverse group of gram-negative bacteria within

the class Gammaproteobacteria. Its taxonomic tree has been recently updated and re-

fined [115]. This group, to which the best studied model organism Escherichia coli also
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belongs, contains bacteria occupying a variety of habitats and involved in diverse kinds

of symbiotic relationships. The taxonomic identifiers of these organisms were extracted

from the National Center for Biotechnology Information (NCBI) taxonomy database

[116] in November 2016. The corresponding genomes were downloaded either from the

European Nucleotide Archive (ENA) [117] or the EnsemblGenome database [118]. En-

terobacterales COGs with associated GO-terms [119, 120] were retrieved from the OMA

orthology database in June 2016 [121]. The resulting dataset contains 626680 proteins

from 153 distinct species, of which 557556 proteins are mapped onto 24837 orthologous

clusters.

3.2.2 Evolutionary trees

Evolutionary trees for all clusters were built with PhyML 3.0 [122] using MSA of clus-

ter members as input. MSAs were computed by Clustal Omega [123] with the default

parameters. As PhyML only produces unrooted trees, which do not provide any infor-

mation about the direction of evolution, we rooted the tree using the midpoint rooting

method, which takes the longest distance between two leafs in the tree, and inserts the

root at the exact midpoint between them. Since at least three proteins are required to

calculate an evolutionary tree, clusters with one or two members were not considered.

3.2.3 Signal peptide data

SPs were identified in the Enterobacterales gene products based on three data sources

with a different degree of confidence. First, SPs were predicted by the latest and most

accurate version of the SignalP (SignalP 4.1 [18]) software with all default parameters

using the gram-negative model. In addition, SPs were predicted by Phobius [14, 28],

which, in contrast to SignalP, returns discrete predictions rather than scores.

As we focus on Sec-mediated protein secretion, we used TatP [124] to remove COGs

containing proteins utilizing the Tat pathway.

Results of these three methods were combined to derive a consensus prediction with

four possible outcomes: i) Tat SP predicted by TatP (leads to rejection of the entire

COG), ii) Sec SP reliably predicted (positive SignalP and Phobius predictions) iii) ab-

sence of a Sec SP reliably predicted (negative predictions by both SignalP and Phobius),

iv) discordant Sec SP assignments by SignalP and Phobius (protein gets discarded).

In order to find COGs with contradicting SP assignments, i.e. those clusters where SP

gain and loss events happened, they were subdivided into positive, negative, or mixed

clusters containing only positive, only negative, or both positive and negative predictions.
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3.2.4 Assignment of symbiont status to bacteria

We manually annotated organisms according to their lifestyle as either symbiotic or

free-living bacteria. The symbionts were further sub-divided into either endosymbionts

or commensals. In the former relationship both partners benefit from the interactions,

while in the latter relationship only one partner gains benefits, while the other is affected

neither in a positive nor in a negative way. Out of the 153 genomes, 33 (21.6%) were

classified as symbionts - 12 of them as commensals and 21 as endosymbionts.

3.2.5 Evolutionary model and parsimony analysis

We seek to identify SP gain and loss events in the evolutionary history of Enterobacterales

orthologous families. The input data for this analysis are constituted by the evolutionary

tree of the extant protein sequences in each family and the predicted SP states of the

exterior nodes (leafs). The latter can be expressed as a presence/absence dichotomy.

SP states for the internal nodes are reconstructed using the parsimony method by Fitch

[125], which essentially assigns the SP states such that the number of state transitions

in the tree is minimal. Given the tree, the inferred states at the internal nodes and the

states at the leaf nodes, where a negative state (0) and a positive state (1) indicate the

absence and the presence of a SP, respectively, a gain event corresponds to the transition

from a negative state to a positive state at some branch of the tree, while the loss event

corresponds to the opposite transition.

We conducted this standard parsimony analysis for all protein families with contra-

dicting SP assignments between individual family members (’mixed’ families). Only

discrete SP data (i.e. presence or absence) were considered to infer ancestral states.

Tentative SP loss events resulting from the first round of parsimonious reconstruction

were verified by comparative genomics and used to conduct a gene start correction pro-

cedure, as described in the next section. Subsequently a second parsimony analysis was

conducted to infer the final SP states for all internal nodes of the trees and to estimate

the effect of the start correction procedure.

Along with the second parsimony analysis for SPs, the Fitch algorithm was also ap-

plied to the symbiont states. The leaf nodes (organisms) were assigned either state 2

if the organism lives in a commensal relationship, state 1 if it lives in an endosymbi-

otic relationship, or state 0 if it is a free-living bacterium. After inferring the ancestral

states using the Fitch algorithm, transition events between all three states along the

evolutionary tree were derived.
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3.2.6 Gene start correction

Based on the results of the initial parsimony analysis we investigated the possibility of

spurious gain or loss events caused by incorrect gene starts. All trees containing leaves

(extant proteins) with contradicting SP assignments, i.e. the mixed clusters, were tra-

versed. In case a leaf was predicted not contain a SP both by SignalP and Phobius, a set

of proteins with alternative start positions (considering the ATG, GTG, and TTG start

codons) was constructed for this specific protein. The size of the sequence neighborhood

scanned up- and downstream for an alternative gene start was determined based on the

MSAs calculated in the first round of the parsimony analysis as follows. The position

of the first residue in the MSA of each protein without a SP prediction was compared

against all first residue positions of proteins with SPs. The maxima of these distances in

both directions, up- as well as downstream (plus another 30 residues in each direction)

were used as search space. Subsequently SignalP, Phobius and TatP predictions were

made for the N-termini of these new proteins. A start position was chosen dependent on

the prediction outcomes in the following order of priority: i) positive TatP prediction,

resulting in the deletion of the entire COG, ii) reliable positive or negative prediction

(agreement between SignalP and Phobius), iii) disagreement between SignalP or Pho-

bius, resulting in the deletion of the protein, or iv) gene start left unchanged, i.e. the

reliable negative prediction remains valid. In cases where multiple gene starts lead to a

reliable positive prediction, the one with the highest SignalP prediction score was chosen.

3.2.7 Functional annotation of protein groups

To calculate the enrichment of GO terms in the positive, negative, and mixed groups,

GO annotations assigned to each individual protein were supplemented with their par-

ent terms according to the GO tree. Searching for enriched terms was then achieved by

applying a one-sided Fisher’s exact test to each term in each group using the occurrence

frequency of the term in all groups as a background model. A similar analysis was per-

formed solely on the proteins in the mixed groups in order to understand the functional

implications associated with the gain and loss of SPs.

3.2.8 Assignment of taxonomic positions to signal peptide gain and loss

events

For each event reconstructed on the evolutionary tree by the method described above we

first determined all children leafs of the node where the event happened, and the species,

genus, family and order of each of the corresponding organisms. We then identified the
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minimal common taxonomy rank for this resulting group of genomes using the NCBI

taxonomy tree. As a result, the taxonomic rank of that event could be determined.

3.2.9 Discrimination score

For each COG g a discrimination score d(a, b, g) was calculated as

d(a, b, g) =
asp − asp
asp + asp

− bsp − bsp
bsp + bsp

where a and b are two lifestyles to be compared, i.e. free-living bacteria, commensals

or endosymbionts, while asp and asp are the numbers of proteins associated with the

lifestyle a and bsp and bsp are the numbers of proteins associated with the lifestyle b

with and without SP in COG g. The result ranges from -2 to 2, where more negative

values mean that in this group bacteria of type a tend to have fewer SPs than bacteria

of type b, while a more positive value means the opposite. In addition, the closer the

result is to the two extrema -2 and 2, the more discriminating the possession of a SP is

for separating lifestyles a and b in a particular group g, while values close to zero can be

considered as indecisive.

3.3 Results and discussion

3.3.1 Signal peptides in the Enterobacterales order

We conducted a comprehensive analysis of Enterobacterales secretomes based on bioin-

formatics predictions. Out of 626680 gene products encoded in 153 Enterobacterales

genomes derived from the OMA orthology database, 52902 (8.4%) were identified as

containing reliable SPs based on the intersection of positive SignalP, positive Phobius

and negative TatP predictions, respectively, while 518174 (82.7%) proteins were deter-

mined to be reliable negatives. The remaining 55604 (8.9%) cases consist of 52050 (8.3%)

discordant predictions (51787 predicted positive only by Phobius, 263 only by SignalP),

and 3554 (0.6%) Tat SPs predicted by TatP. The average percentage of proteins with

SPs per genome in our data is 7.7±2.6%; the percentage scales roughly linearly with

the genome size, increasing from 0.2% in Riesia pediculicola USDA over 10.1% in the

Escherichia coli K12/MC4100/BW2952 to 10.7% in a yet unclassified Enterobacteri-

aceae bacterium (Figure 3.1A). The Escherichia coli annotation is thus in line with our

previous estimate (10%) of the secretome size for this genome [16].
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Figure 3.1: Number of proteins in a genome vs. the percentage of proteins that possess a SP
(A) using the full dataset, and (B) after mapping of the proteins to COGs. In
addition to the raw values, the two-dimensional density and a linear fit (dashed
lines) for each lifestyle is shown.

3.3.2 Occurrence of signal peptides in Enterobacterales clusters of

orthologous groups

In total, 557556 of the 626680 proteins (89.0%) belong to 24837 COGs with at least three

members. On average 88.6±8.7% of proteins in the species considered are covered by

COGs - from 52.9% in Hamiltonella defensa subsp. Acyrthosiphon pisum 5AT to 99.5%

in Buchnera aphidicola subsp. Acyrthosiphon pisum Tuc7. The average COG coverage

of small genomes, consisting of less than 1000 genes, tends to be similar (86.3±11.2%)

to that of large genomes with more than 3000 genes (89.2±7.8%) (Figure 3.2) (p =

0.5, Kolmogorov-Smirnov test). The former correspond to endosymbiotic genomes that

are thought to retain only the most functionally important and evolutionary conserved

genes. The size of the clusters is 22.4 on average and ranges from three (4767 clusters

or 19.2%), which is the smallest possible size, to 153 (7 clusters or 0.03%), which is a

cluster containing a protein from every organism (Figure 3.3).

After removal of 1893 COGs which either contained a positive TatP prediction or

did not satisfy the minimum number of three members after the removal of discordant

SP predictions, 498690 of the initial 626680 proteins (79.6%) were left in the dataset

and mapped to a COG. The percentage of these COG proteins possessing a SP does not

significantly differ from the percentage of SP containing proteins in the entire proteomes.

The total amount of proteins assigned as having a SP is 47139 (9.5%), with 8.6±2.8%
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Figure 3.2: Number of proteins in a genome vs. the percentage of proteins that are members
of a COG. In addition to the raw values, the two-dimensional density and a linear
fit (dashed lines) for each lifestyle is shown.

on average per genome. Also, the dependence on the genome size is essentially the same

(Figure 3.1B).

We subdivided the remaining 22944 COGs according to the SP assignments present

in a cluster as described in the Materials and Methods section. This resulted in 20363

negative clusters (88.8%), containing only proteins without SPs, 1507 positive clusters

(6.6%), containing only proteins with SPs, and 1074 mixed clusters (4.7%), containing

proteins both with and without SPs (see Table 3.1). The mixed clusters can be assumed

to contain those proteins that changed their cellular localization at least once in their

evolutionary history, but could also result from wrong gene start annotation or wrong

SP assignments.

Since we are primarily interested in gain and loss of SPs, mixed clusters were further

examined in order to estimate the scale of annotation errors and determine the biological

significance of evolutionary events.

59



3 Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss

Figure 3.3: Distribution of cluster sizes. Histogram bins containing clusters that are smaller
and larger than the average cluster size are colored red and green, respectively.

Table 3.1: Statistics on clusters and events for the two rounds of parsimony analysis before and
after the gene start correction procedure.

Parsimony Clusters
round Negative Positive Mixed Total

1 20363 (88.8%) 1507 (6.6%) 1074 (4.7%) 22944
2 20363 (89.0%) 2087 (9.1%) 440 (1.9%) 22890

Parsimony Events
round Gain Loss Uncertain Total

1 325 (13.5%) 1235 (51.2%) 852 (35.3%) 2412
2 83 (11.6%) 288 (40.2%) 346 (48.3%) 717

3.3.3 Parsimony analysis and gene start correction

We conducted a first round of the parsimony analysis of the SP assignments for the

’mixed’ COG clusters as described in the Materials and Methods section, i.e. using the

Fitch algorithm. In total 2412 events were revealed, including 325 gains (13.5%), 1235

losses (51.2%), and 852 uncertain events (35.3%) where the state could not be resolved by

parsimony (Table 3.1). SP losses thus prevailed over gains significantly (almost 4-fold).
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Following the first round of the parsimony analysis we attempted to improve gene

start annotation in order to minimize the number of false SP events. Each protein

without an assigned SP was tested for a potential false negative prediction by shifting

its gene start over a certain range determined by the SP containing proteins in the

same group (see Materials and Methods). After the gene start correction, the MSAs

and the trees were recalculated using the updated sequences. Altogether, the correction

procedure affected 3005 proteins from 147 species, with the most affected genomes being

Cronobacter turicensis DSM 18703/LMG 23827/z3032 (127 corrections) and Klebsiella

pneumoniae subsp. pneumoniae ATCC 700721/MGH 78578 (54 corrections). In most

cases gene starts underwent relatively small changes of their positions (Figure 3.4), with

the average value of the absolute shift of +1.2 amino acids and the median value of +9;

there were fewer corrections towards upstream gene start positions (1450) then towards

downstream positions (1555).

Figure 3.4: Distribution of gene start corrections, i.e. the number of residues by which the
protein sequence was extended (negative values) or truncated (positive values).

The gene start correction procedure led to changed SP assignments for a number of

proteins from ’negative’ to ’positive’, the removal of proteins in which the correction

revealed discordant predictions, and the deletion of certain mixed clusters due to either

positive TatP predictions or fewer than three remaining proteins in the COG. Overall,

only 29.7% of the events were kept compared to the first round of parsimony analysis,
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while 41.0% of mixed clusters remained (Table 3.1). Based on these new assignments we

conducted a second round of parsimony analysis on the remaining 440 mixed clusters,

which revealed 83 gain (11.6%), 288 loss (40.2%), and 346 uncertain events (48.3%) out

of 717 events in total (Table 3.1). Therefore, out of the 1235 loss events from the first

round of parsimony analysis, 947 events were recognized as false positives and 242 gain

events were also eliminated. The ratio between gains and losses decreased only slightly,

still being almost 4-fold. The percentage of SPs in our final data after mapping to COGs,

removal of Tat signal containing groups and gene start correction is 48817 out of 497338

proteins (9.8%), with an average of 8.9±2.9% per genome (Figure 3.5).

Figure 3.5: Number of proteins in a genome vs. the percentage of proteins that possess a SP
after mapping of proteins to COGs, and after the gene start correction procedure.
In addition to the raw values, the two-dimensional density and a linear fit (dashed
lines) for each lifestyle are shown.

3.3.4 Sequence similarity of secreted and non-secreted proteins

In order to find out whether the gain and loss patterns of SPs correlate with the evolu-

tionary distance we compared amino acid sequences of the proteins in the mixed groups.

All possible pairwise sequence alignments were extracted from the MSA of each group

and the pairwise sequence identity was calculated by dividing the number of identical

residues by the length of the shorter sequence. We plotted the distributions of sequence
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identities for sequence pairs in which both, none or only one sequence had a SP (Figure

3.6). As expected, the mean of sequence identities for the pairs in which either no or

both proteins possess a SP (80.9%, 80.6%) is higher than for the pairs where only one

protein gets secreted (64.8%), because in the latter case a smaller number of almost

identical sequences occurs. If only protein pairs with a sequence identity below 95% are

considered, the three groups have much closer means (both have SPs: 71.5%, none has

SP: 73.4%, one has SP: 59.9%).

Figure 3.6: Comparison of sequence identity distributions between pairs of proteins where either
both proteins have a SP, or both have none, or only one protein has a SP.

3.3.5 Evolutionary mechanisms leading to gain and loss of signal peptides

How are SPs gained and lost, at the molecular level? To answer this question, we ana-

lyzed the alignments of extant proteins that descended from their last common ancestor

before the gain or loss event, such that some of them contain SPs while others do not.

Note that only the latest events in the evolutionary sense were taken into account, e.g.

if a gain event was later on reversed by a loss event, only the loss event was considered.

For each alignment associated with a gain or loss event we calculated the length ratio lr

between SPs and the N-termini devoid of SPs, as shown in Figure 3.7A. The distribu-

tion of lr values (Figure 3.8A) points to the existence of two categories of events. The
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first category, covering 145 loss and 34 gain events, is characterized by lr values close

to zero, reflecting a full deletion or insertion of an entire SP. An example of such a loss

event can be found in the ”Pectinesterase” OMA-group 189619. Pectin methylesterases,

found in plant pathogens, play a major role in the first step of soft rot infections. They

help to degrade pectin in the plant cell wall, destabilizing it and leading to cell necrosis

and tissue maceration. Different plant pathogens have a different inventory of these

secreted proteins [126]. Figure 3.7B shows the alignment of the SP-containing pectin

methylesterases (pemB) from two Dickeya (former Erwinia) species and four pemB or-

thologs from other Pectobacteria, which lack a SP. Beyond the N-terminal part of the

alignment the proteins are highly similar. It should be noted that pemA, another pectin

methylesterase, does contain a SP in all of these six organisms. The observation that

pemB is not exported in all pectin degrading bacteria is in line with an earlier experi-

mental study, which showed that pemB is exported in some but not all Dickeya strains

[127]. We therefore speculate that, although pemB is encoded in all of the Dickeya

genomes, its activity may vary dependent on whether or not a SP is present.

Figure 3.7: (A) The four possible cases for SP gain and loss events. In proteins devoid of SPs the
N-teminal sequence can be completely eliminated (case 1), shortened (case 2), have
the same length (case 3), or be extended (case 4). Cases one and three are by far
the most prevalent ones. (B/C) The first 60 positions in the MSAs of the proteins
involved in a SP gain event in ”Pectinesterase” OMA group containing two Dickeya
and four Pectobacteria (UniProt identifiers: C6CL61, Q47474 (reviewed), C6DIG6,
Q6DAZ5, D0KDA3, P55743 (reviewed)) (B) and the gain event in the ”putative
Invasin” group containing three Erwinia species (UniProt identifiers: E3DHH7,
D4I2A7, unknown) (C). Rectangles indicate SPs, with cleavage sites in lowercase
letters.

We tested the hypothesis that complete deletions and insertions could be caused by

transposable elements, but no such elements in proximity to the N-termini of the proteins

in the mixed clusters were found by ISEScan [128].

In the second category, covering 25 loss and 20 gain events, proteins with and with-

out SPs possess N-terminal amino acid sequences of comparable length. The events are

therefore caused by amino acid substitutions, with lr values close to one. In most of the
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Figure 3.8: Comparison of SP sequences and the aligned N-terminal sequences without a SP.
(A) Sequence length ratio. (B) Percentage of identical residues for those cases
where the length ratio is between 0.9 and 1.1, i.e. where both sequences have a
comparable length.

cases the N-terminal regions maintain an even higher sequence identity than the average

of 52.7% (Figure 3.8B). For example, the gain event alignment of the ”putative Invasin”

(OMA-group: 83250) (Figure 3.7C) contains three similar N-terminal sequences, but

only one of them possesses a SP. From the six mutations contributing to the difference

between the N-termini with and without SPs, four mutations strengthen the tripartite

structure of a common SP: i) replacement of threonine by lysine at position four intro-

duces an additional positively charged amino acid, ii) replacement of glycine by alanine

at position 22 extends the hydrophobic stretch, and iii) two further mutations affect the

cleavage site by changing its sequence from TLA to AMA and thus make it more similar

to the canonical AxA motif.

While the conducted analysis of the mechanism included only the latest events, we

were also able to identify 11 mixed clusters where preceding events were reversed. In

seven cases, earlier loss events were inverted by a later gain event (”putative lipopro-

tein”, ”hemolysin activator protein”, ”RND efflux system outer membrane lipoprotein

NodT”, ”Fimbrial biogenesis outer membrane usher protein”, ”Biofilm PGA synthesis

protein pgaA” and two ”Putative uncharacterized proteins”), while in two groups a

reversal in the opposite direction occurred (”acetyl-coA acetyltransferase” and ”secre-

tion monitor”). In the remaining two COGs, the SP was lost, regained and lost again

(”cytochrome b562” and ”Soluble lytic murein transglycosylase and related regulatory

proteins some contain LysM/invasin domain”).
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Our findings indicate that loss events are due to insertions/deletions almost seven

times more often than due to mutations. For gain events, this ratio is only 1.5-fold.

Indeed, a shift of the gene start will likely delete a SP, while a functional SP is not likely

to be gained by randomly prepending amino acids to the protein N-terminus. Intuitively,

the deletion or mutation of the cleavage site would be the most economical way to disable

a SP, but our data do not support this assumption. We calculated sequence identities

between the cleavage sites and the remaining N-terminal sequences for protein pairs

with and without SP having lr values close to one. The Spearman’s rank correlation

coefficient between these two sequence identity values is 0.39 for gain and loss events

together (p = 0.008), 0.49 for loss events (p = 0.013), but only 0.22 for gain events (p =

0.346), which indicates that the mutation rate in the cleavage sites does not differ from

other positions within the SP sequence (see also Figure 3.9).

Figure 3.9: Identity between SP sequences and the aligned N-terminal sequences without a SP
according to the sequence identity at the cleavage site and the remaining positions
separated by gain and loss events.

3.3.6 Functional classification

We investigated the functional distribution and the localization of the positive/negative

and mixed groups based on GO annotations (GO-terms) from three domains: biological

process (BP), molecular function (MF), and cellular component (CC). In general, the

distribution of GO terms in the mixed clusters is clearly more similar to the one of the

positive than in the negative clusters (Figure 3.10). COG functions tend to reflect their

SP content, with positive and mixed clusters containing significantly more GO terms as-
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sociated with exported proteins, while the negative clusters are mostly associated with

intracellular processes, functions and components. For example, processes involving

DNA or RNA, which are localized within the cell, such as ”nucleobase-containing com-

pound metabolic process” (GO:0006139) in the BP category and ”nucleotide binding” in

the MF category, are prevalent in the negative group. On the other hand, ”Cell adhesion”

(GO:0007155), a process which occurs outside of the cell, is almost exclusively found in

the positive and mixed groups. The CC categories ”outer membrane” (GO:0019867)

and ”pilus” (GO:0009289) are over-represented in the positive and mixed groups, while

”intracellular” (GO:0005622) and ”cytoplasm” (GO:0006737) are more often found in

the negative groups. While the terms in the mixed groups are often similar to those in

the positive groups, there are some exceptions, e.g. the ”aminoglycan metabolic process”

(GO:0006022) from the BP category is prevalent in the mixed groups (in about 7.6% of

its proteins), while almost absent in the other two groups (0.8% of the proteins in the

negative groups, and 2.1% of the proteins in the positive groups).

Figure 3.10: Percentage of proteins having a specific enriched GO-term for the mixed (first
row), negative (second row) and positive (third row) groups. The columns match
the three ontologies, biological process, cellular component and molecular function.
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3.3.7 Taxonomy distribution of events

For each event we identified the minimal common taxonomic rank of the descendants

of the node where it happened. Gain events preferentially occurred at the order level

(32.5%), and somewhat less frequently at the family (28.9%), genus (22.9%) and order

level (15.7%), while loss events occurred mostly at the species level (33.7%) (Table 3.2).

The number of uncertain events increases with the level of the taxonomic rank, from

10.4% at the species level to 60.1% at the order level, mainly because the assignment of

a definite SP state gets more difficult towards the root of the tree.

Table 3.2: Taxonomic rank of SP gain, loss and uncertain events.

Event Species Genus Family Order Total

Gain 13 (15.7%) 19 (22.9%) 24 (28.9%) 27 (32.5%) 83
Loss 97 (33.7%) 45 (15.6%) 93 (32.3%) 53 (18.4%) 288
Uncertain 36 (10.4%) 18 (5.2%) 84 (24.3%) 208 (60.1%) 346

3.3.8 Symbiotic relationships and the loss of signal peptides

We investigated the inter-relationships between SPs, genome sizes, and bacterial lifestyle

at two levels: the fraction of SP containing proteins as a function of genome size (Figure

3.5), and the correlation of SP gain/loss events with the transition from a free-living

organism to a commensal organism or an endosymbiont and vice versa. It should be

noted that these analyses were conducted on our final dataset, i.e. only with proteins

which could be mapped to a COG and have a reliably assigned SP status after the gene

start correction, which led to a slightly reduced number of proteins per genome.

In our dataset, the 120 free-living bacteria contain on average 3596 proteins, com-

pared to 3730 proteins in the 12 commensals and 1066 proteins in the 21 endosymbionts.

For reference, the average numbers of proteins in the complete genomes of free-living

bacteria, commensals and endosymbionts were 4511, 4481 and 1500, respectively. The

Kolmogorov-Smirnov test shows that the protein size distributions between free-living

bacteria and commensals are similar (p = 0.12), while both of them differ significantly

from the endosymbiont distribution (p = 1.3e-10 and p = 1.2e-5). The same is true for

the percentage of proteins containing SPs, with the average numbers being 9.5% for the

free-living bacteria, 10.0% for the commensals and 2.8% for the endosymbionts. Again,

the distributions are significantly different when comparing free-living bacteria or com-

mensals against endosymbionts (p = 5.8e-11 and p = 3.8e-6), while being similar between

the latter two (p = 0.18). The same holds true according to the two sample Cramér-von
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Mises test calculated for the multivariate distributions of protein sizes and fractions of

SPs between the three classes (p-values close to zero between free-living/commensal and

endosymbionts; p = 0.26 for free-living and commensals).

Symbionts tend to have reduced genomes as a consequence of losing genes whose

functions are delegated to the host organism. As a result of genomic shrinkage, a larger

proportion of the remaining genes is involved the basic cellular functions, such as replica-

tion, transcription, and translation, while many less essential functions, including those

associated with amino acid synthesis or other metabolic processes, which can be pro-

vided by the partner or host may be lost [114]. We calculated a discrimination score

d(a, b, g) for each COG g (see Materials and Methods) to evaluate whether or not the

possession of a SP is a sufficiently discriminative characteristic for telling apart en-

dosymbionts (endos), commensals (coms), and free-living bacteria (fls). Out of the 440

mixed groups, 182 contained at least one free-living bacterium and at least one endosym-

biont, 104 at least one commensal and at least one endosymbiont, and 221 contained at

least one free-living bacterium and at least one commensal. According to the two-tailed

Fisher’s exact test discrimination between endosymbionts and free-living bacterial was

significant in seven groups, of which the following six yielded d(fl, endo, g) scores above

zero (Figure 3.11), indicating an association of the SP-less proteins with endosymbionts:

”flagellar biosynthetic protein flip”, ”endonuclease I”, ”mechanosensitive ion channel”,

”D-alanyl-D-alanine carboxypeptidase”, ”ErfK/YbiS/YcfS/YnhG family protein”, and

”N-acetylmuramoyl-l-alanine amidase”. We found only one COG ( ”Spore coat U domain

protein”) with a significant discrimination and a d(fl, endo, g) below zero, indicating that

SPs preferentially occur in the proteins from symbiotic bacteria rather than in free-living

organisms. In three out of the 104 COGs containing both endosymbionts and commen-

sals the SP state was significantly associated with the lifestyle. We found two groups

with d(com, endo, g) above zero (”putative transferase” and ”mechanosensitive ion chan-

nel”), as well as one below zero (”tonB-system energizer ExbB”). Comparing the groups

containing free-living and commensals, there were also three significant groups, two with

a d(fl, com, g) above zero (”Putative uncharacterized protein”, ”peptidase M15D vanX

D-ala-D-ala dipeptidase”) and one below zero (”putative transferase”). The Spearman’s

rank correlation coefficient of 0.74 between all d(fl, endo, g) and d(com, endo, g) scores

is highly significant (p = 2.2e-16), reflecting resemblance in genome size and SP content

of free-living bacteria and commensals. The overall distribution of significant d(a, b, g)

scores (Figure 3.11) indicated that SPs are a discriminating feature between endosym-

bionts and free-living bacteria or commensals.
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Figure 3.11: Density plot of discrimination scores between different lifestyles of bacteria.

We analyzed the GO annotations of the individual proteins with or without SPs in the

mixed clusters (Figure 3.12). With regard to CC non-secreted proteins are preferably

tagged as ”cytoplasm” (GO:0005737), while the secreted ones are annotated with ”mem-

brane” (GO:0016020) which includes ”outer membrane” (GO:0019867), ”periplasmic

space” (GO:0042597) and similar terms. In the MF and BP categories proteins contain-

ing a SP are involved in ”channel activity” (GO:0015267) and ”transport” (GO:0006810),

while those without a SP take part in ”nucleotide binding” (GO:0000166) and ”car-

boxylic acid biosynthetic process” (GO:0046394).

While the previous analysis was conducted for all bacteria in our dataset, we addition-

ally compared GO-term annotations of proteins with and without a SP for each lifestyle

separately and found that functional assignments generally do not correlate with the

lifestyle, with few exceptions. Some GO-terms are more (MF: ”nucleotide binding”)

or less (CC: ”membrane”) frequently associated with endosymbionts compared to free-

living bacteria and commensals (Figure 3.12).

Assuming that some species may have changed their lifestyle in the course of evolution,

we conducted an additional parsimony analysis using the endosymbiont/commensal/free-

living annotations together with the SP events (Table 3.3). The proportions of gain/loss

events are similar for all transitions to any lifestyles, e.g. 1.1% of the transitions to
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3.3 Results and discussion

Figure 3.12: Percentage of proteins without SP subtracted from the percentage of proteins
with SP in the mixed clusters having a specific enriched GO-term and belonging
to organisms with a certain lifestyle.

endosymbionts are accompanied by a loss event but only 0.4% by gain events. However,

dependent on the nature of a transition there is a noticeable difference in the number

cases where SP assignments remain negative: this applies to 28.7% of the transitions to

endosymbionts, but only to 19.8% and 15.6% of the transitions to free-living bacteria

and commensals, respectively. We speculate that in many such cases the loss of the SP

might not have happened simultaneously with the transition to a specific lifestyle, but

rather before or after it. Qualitatively, this apparent difference seems to strengthen our

conjecture, but it fails to reach statistical significance as the number of such events is

quite low compared to the total number of events in our analysis.

Table 3.3: Contingency table of SP gain and loss events and their correlation with changes of
bacterial lifestyles.

Event Transition to Transition to Transition to Uncertain Total number of
free-living bacterium endosymbiont commensal transition SP events

Gain 76 (0.4%) 2 (0.4%) 2 (0.1%) 3 (0.9%) 83
Loss 263 (1.3%) 5 (1.1%) 14 (0.9%) 6 (1.7%) 288
Uncertain 268 (1.3%) 15 (3.3%) 5 (0.3%) 58 (16.9%) 346
Keep SP 15581 (77.2%) 298 (66.4%) 1312 (83.0%) 227 (66.2%) 17418
Stay without SP 4006 (19.8%) 129 (28.7%) 247 (15.6%) 49 (14.3%) 4431
Total number 20194 (100%) 449 (100%) 1580 (100%) 343 (100%)
of transition events
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3 Evolutionary interplay between symbiotic relationships and patterns of signal peptide gain and loss

3.4 Conclusions

Computational prediction of SPs is an indispensable step in bacterial genome annotation,

but their evolutionary dynamics has not been comprehensively studied. We investigated

the gain and loss patterns of SPs between orthologous proteins from Enterobacterales and

found that 1.9% of COGs contain proteins both with and without SPs. Reconstruction

of ancestral SP states by parsimony analysis in such mixed groups clearly indicates

that SPs get lost more often in the course of evolution than they are gained. We also

show that SP gains tend to be more ancient events, predominantly occurring at the

family and probably at the order level, although a high number of uncertain events

at this latter level makes it impossible to draw definitive conclusions. At the same

time, SP losses might be more recent events as we found most of them at the species

level. Gain and loss events occur by either a complete insertion or deletion of the entire

SP sequence or by retaining the N-terminal sequence and mutating residues to enable

or disable the SPs functionality. The prevalent loss of SPs is accompanied by genome

reduction, with smaller genomes of endosymbiotic bacteria containing a lower percentage

of SPs than free-living and commensal bacteria. In some enterobacterial COGs the

presence or absence of a SP alone is sufficient to discriminate between endosymbionts,

on the one hand, and free-living bacteria or commensals, on the other hand. Finally,

we demonstrate that SP loss events preferentially occur in the course of transition from

free-living bacteria/commensals to endosymbionts.
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A Appendix

A.1 Additional tables

Table A.1: Residue-residue contact prediction performance comparison. The ’-’-column in-
dicates the number of proteins for which no prediction was returned within 24
hours of runtime. These proteins were not considered when measuring the perfor-
mance of the respective methods. Bold values indicate the highest performance for
a given measure/dataset combination. Despite the large amount of missing predic-
tions PconsC2’s performance is shown for completeness, but is greyed out.

Method Threshold P R F0.25 MCC - P R F0.25 MCC -

NewTrain NewTest

PSICOV L/5 44.07 7.08 32.7 0.165 87 40.29 6.08 28.96 0.144 30

Freecontact L/5 54.94 8.69 40.72 0.207 90 50.87 8 36.81 0.188 30

CCMpred L/5 62.89 11 46.56 0.241 86 56.89 8.89 41.13 0.211 29

PconsC2 L/5 58.19 9.15 43.07 0.219 73 61.88 9.97 45.48 0.235 20

MetaPSICOV L/5 64.07 10.01 47.46 0.243 87 60.42 8.93 43.48 0.22 30

MemConP L/5 71.61 11.5 53.38 0.276 90 66.26 10.49 47.85 0.247 30

PSICOV L/1 23.35 17.66 22.73 0.181 87 20.5 14.86 19.8 0.153 30

Freecontact L/1 31.19 24.92 30.38 0.253 90 28.12 21.39 27.17 0.22 30

CCMpred L/1 34.85 27.32 33.92 0.283 86 30.31 22.66 29.31 0.238 29

PconsC2 L/1 36.36 27.07 35.38 0.292 73 36.66 27.9 35.57 0.297 20

MetaPSICOV L/1 40.02 29.91 38.94 0.326 87 36.64 25.4 35.31 0.284 30

MemConP L/1 47.05 37.48 45.87 0.395 90 40.81 29.83 39.37 0.324 30

MemConP L/xF0.25 65.85 16.03 54.5 0.312 90 59.65 14.11 48.14 0.272 30

MemConP RFscoreF0.25 65.85 23.41 53.83 0.357 87 63.53 15.96 48.12 0.289 29

Table A.2: Comparison of helix-helix interaction prediction methods. Bold values indicate the
highest performance for a given measure/dataset combination.

Method Threshold P R F0.25 MCC P R F0.25 MCC

NewTrain NewTest

PSICOV L/5 78.36 64.64 77.39 0.528 77.83 57.78 76.27 0.508

Freecontact L/5 88.44 57.75 85.76 0.575 87.5 55.1 84.57 0.567

CCMpred L/5 88.04 58.67 85.52 0.577 88.69 54.92 85.59 0.573

PconsC2 L/5 90.98 53.42 87.36 0.555 92.22 50 87.86 0.546

MetaPSICOV L/5 86.28 50.91 82.9 0.511 86.02 42.93 81.23 0.474

MemConP L/5 88.95 49.55 84.98 0.522 89.21 44.36 84.2 0.505

PSICOV L/1 53.13 91.12 54.46 0.339 51.43 83.72 52.62 0.336

Freecontact L/1 64.91 81.05 65.68 0.48 64.62 79.07 65.32 0.502

CCMpred L/1 63.09 82.92 63.99 0.463 61.46 81.25 62.35 0.471

PconsC2 L/1 74.11 78.37 74.35 0.559 76.49 73.49 76.31 0.565

MetaPSICOV L/1 67.51 78.68 68.08 0.499 69.6 74.96 69.9 0.534

MemConP L/1 67.48 81.71 68.18 0.518 68.3 77.46 68.78 0.535

MemConP L/xF0.25 91.45 43.89 85.97 0.501 91.88 38.46 84.94 0.479

MemConP RFscoreF0.25 91.79 44.05 86.29 0.504 90.15 42.58 84.59 0.498
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