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Summary

As rapid urbanization and population growth have become global issues, changes in land
use induced by urban dynamics have critical consequences on landscape patterns and
urban environments. Simulating and predicting urban dynamics is helpful for improving
our understanding of the dynamic processes and potential future of the urban system,
especially for supporting the implementation of sustainable urban development strategies for
cities. Thus, modeling of urban dynamics has become an essential tool for decision-makers
to understand how urban growth works in overall dense environments and to assess the
sustainability of current urban forms.

Green spaces can mitigate the negative effects of urbanization and improve the overall quality
of life of urban residents, and have been increasingly considered as “green infrastructure”
and a fundamental part of sustainable urban development. The amount and the availability
of green spaces is influenced by urban dynamics and their spatial outcomes such as low
density development (“sprawl”), densification and monocentric vs. polycentric development.
Consequently, their spatial distribution is uneven inmost cities and urban regions.This uneven
distribution of green spaces has been regarded as an issue of environmental injustice. However,
the combined impacts of these different urban dynamics on green space have not yet been
systematically and quantitatively assessed. Therefore, this research emphasizes the impacts of
urban dynamics on green space in urban regions using a multiple scenario modeling approach.

First, an integrated urban growth model was tested to explain current urban growth for one of
the fastest and most dynamically growing urban regions in Germany, the region of Munich.
Second, multiple scenarios were developed with respect to the following three dimensions
that influence the processes of urban dynamics: housing demand (high, medium, or low),
urban spatial structure (monocentric or polycentric), and urban growth form (sprawl, compact
sprawl, or compact). The landscape pattern changes were characterized and quantified by
using a set of landscape metrics among which the redundancy was reduced by Principal
Component Analysis (PCA). Third, by using Per Capita Green Space (PCGS) and the Share
of the Population with Access to Green Spaces (SPAGS) as indicators, the availability of
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Summary

green spaces under corresponding scenarios and trade-offs between the two indicators were
analyzed at both the regional and sub-regional zone levels. Finally, the Gini coefficient was
applied as an indicator of green space equity, and its spatial relationship with socioeconomic
variables was explored. Additionally, the impacts of different urban dynamic scenarios on
green space equity were comparatively assessed at both levels.

Key findings indicate that, first, incorporating the spatial dependency into the model produced
great improvement and the Kappa indexes were higher when separately modeling the growth
of different settlement types, as the driving factors for settlement growth of different densities
might be dissimilar. Second, urban growth in all scenarios mainly led to the loss of open space,
but the specific land use transitions were different in sub-regional zones. The changes of the
patch complexity index and the landscape configuration index were mostly similar at both
levels. Yet, the landscape diversity index showed contrasting trends between the Urban Core
Zone and the other two zones (Peri-Urban and Rural), which is related to whether settlements
are the dominant land use in these zones or not. Third, a higher demand for housing placed
more pressure on green space availability and equity at both levels. Polycentric scenarios
were found to be less limiting than monocentric ones at the regional level. In addition,
the relationship between green space equity and socioeconomic variables was spatially
heterogeneous and locality-specific. When defining the most advisable urban growth form in
terms of green space availability and equity, the trade-offs between the indicators should be
considered.

The results also highlight that, without effective greening policies, different degrees of a decline
of green space availability and equity were observed in most of the selected scenarios, which
were related to the loss of green spaces caused by new construction during urban growth.
Moreover, therewas not a single growth form that performed best in all the different zones and,
thus, urban planning should consider the different impacts of urban dynamics on green spaces
and focus more on the development of planning strategies adapted to different sub-regional
zones. This novel and straightforward scenario modeling approach provides rare evidence of
the respective advantages and disadvantages of different urban dynamics with respect to green
spaces. In the urban planning perspective, it is a powerful tool that offers an opportunity for
planners and government authorities to gain a more precise understanding of the different
urban growth processes and their impacts on green spaces. This is not only crucial for this
region in the study but also of great significance for other urban regions that aim to achieve
successful green space planning.
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Zusammenfassung

Seitdem eine rasche Urbanisierung und eine rasante Zunahme der Weltbevölkerung
bedeutende globale Herausforderungen darstellen, haben Landnutzungsänderungen
verursacht durch urbane Dynamiken ernsthafte Auswirkungen auf Landnutzungsmuster
und städtische Räume. Die Simulation und das Vorhersagen urbaner Entwicklungen sind
von Bedeutung für ein verbessertes Verständnis der dynamischen Prozesse und die Zukunft
urbaner Systeme, und im Speziellen wesentlich für die Implementierung nachhaltiger
städtischer Entwicklungsstrategien. Somit ist das Modellieren urbaner Dynamiken zu
einem essentiellen Werkzeug für Entscheidungsträger geworden, da abgebildet werden
kann, wie Städtewachstum in dicht bebauten Gebieten funktioniert, und die Nachhaltigkeit
gegenwärtiger Nutzungsformen beurteilt werden kann.

Grünflächen können zu einer Abmilderung der negativen Urbanisierungseffekte beitragen
und generell die Lebensqualität der Stadtbewohner verbessern. Sie werden zunehmend
als „grüne Infrastrukturen“ betitelt und als fundamentaler Bestandteil einer nachhaltigen
Stadtentwicklung eingestuft. Das Ausmaß und die Zugänglichkeit von Grünflächen werden
beeinflusst von städtischen Dynamiken und ihren räumlichen Folgen, wie beispielsweise
der Zersiedlung, der Verdichtung und monozentrischen vs. polyzentrischen Entwicklungen.
Als Konsequenz ergibt sich eine ungleichmäßige Verteilung bzw. Zugänglichkeit zu diesen
Grünflächen in den meisten Städten und städtischen Regionen. Jenes Phänomen wird als
ungerecht wahrgenommen. Die kombinierten Auswirkungen dieser urbanen Dynamiken auf
die städtischen Grünflächen wurden jedoch bislang noch nicht systematisch und quantitativ
erfasst. Ziel dieser Untersuchung ist somit, die Auswirkungen dieser urbanen Dynamiken auf
die Grünflächen in urbanen Gebieten mit Hilfe multipler Szenarioanalysen (engl. multiple
scenario modeling) zu untersuchen.

Als erstes wurde ein integriertes urbanes Wachstumsmodell zur Erklärung gegenwärtigen
urbanen Wachstums für die Region München getestet – eine der am dynamischsten sich
entwickelnden städtischen Regionen in Deutschland. Zweitens wurden multiple Szenarien
für die folgenden drei Dimensionen entwickelt, welche urbane Dynamiken beeinflussen:

3
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Wohnungsnachfrage (hoch, mittel oder gering), urbane räumliche Struktur (mono- oder
polyzentrisch) und urbane Wachstumsmuster (Zersiedelung, kompakte Zersiedelung oder
kompakt). DieMuster der Landschaftsveränderungenwurden charakterisiert und quantifiziert
unter Anwendung eines Sets an Landschaftsmetriken, wobei Redundanzen mit Hilfe einer
Hauptkomponentenanalyse (engl. principal component analysis, PCA) reduziert wurden.
Drittens wurde unter der Verwendung der Grünfläche pro Einwohner (engl. per capita green
space, PCGS) und des Anteils an Bewohnern mit Zugang zu Grünflächen (engl. the share of
the population with access to green spaces, SPAGS) als zwei Indikatoren die Verfügbarkeit
von Grünflächen unter entsprechenden Szenarien und Trade-offs beider Indikatoren sowohl
auf der regionalen als auch auf der sub-regionalen Ebene analysiert. Zuletzt wurde der
Gini-Koeffizient als ein Gerechtigkeits-Indikator für Grünflächen angewendet und seine
räumliche Beziehung zu sozioökonomischen Variablen untersucht. Zusätzlich wurden die
Auswirkungen unterschiedlicher Szenarien urbaner Dynamik für einen gerechten Zugang zu
Grünflächen vergleichend auf beiden Ebenen analysiert.

Die wesentlichen Ergebnisse zeigen, dass zum einen die Inkorporation räumlicher
Abhängigkeiten zu einer beträchtlichen Verbesserung des Modells geführt hat und dass
die Kappa-Indizes im Falle einer separaten Modellierung des Wachstums unterschiedlicher
Siedlungstypen höher waren, da die Einflussfaktoren für das Wachstum von unterschiedlich
dicht besiedelten Gebieten variieren können. Zweitens hat urbanes Wachstum in allen
Szenarien hauptsächlich zu einem Verlust offener Flächen geführt, jedoch gab es Unterschiede
hinsichtlich der spezifischen Veränderungen in sub-regionalen Zonen. Die Änderungen der
Indizes bezüglich der Komplexität des Areals (engl. patch complexity index) und der
landschaftlichen Struktur (engl. landscape configuration index) waren weitestgehend gleich
auf beiden Ebenen. Allerdings zeigten sich beim landscape configuration index abweichende
Trends zwischen der städtischen Kernzone und den anderen beiden Zonen (peri-urban
und ländlich), abhängig von der Frage, ob Siedlungen in diesen Zonen der vorherrschende
Landnutzungstyp sind oder nicht. Drittens übte eine höhere Wohnungsnachfrage auf beiden
Ebenen mehr Druck auf das Vorhandensein von und den gerechten Zugang zu Grünflächen
aus. Auf regionaler Ebene stellten sich polyzentrische Szenarien als weniger begrenzend
im Vergleich zu monozentrischen heraus. Außerdem war die Beziehung zwischen dem
gerechten Zugang zu Grünflächen und sozioökonomischen Variablen räumlich heterogen
und ortspezifisch. Für eine Definition der empfehlenswertesten urbanen Wachstumsform
für das Vorhandensein und den gerechten Zugang zu Grünflächen sollten die Trade-offs
zwischen den Indikatoren berücksichtigt werden.

Die Ergebnisse zeigen auch, dass ohne effektive Begrünungsstrategien in den meisten
gewählten Szenarien das Vorhandensein und die gerechte Zugänglichkeit von Grünflächen
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Zusammenfassung

in unterschiedlichem Maße reduziert wurden, was mit dem Verlust an Grünflächen aufgrund
von Neuanlagen im Zuge des Städtewachstums zusammenhing. Darüber hinaus gab es keine
einzige Wuchsform, welche sich in allen Zonen als die beste herausstellte und somit sollten
bei urbanen Planungsprozessen die unterschiedlichen Auswirkungen urbaner Dynamiken
auf Grünflächen berücksichtigt werden und der Fokus stärker auf die Entwicklung von
Planungsstrategien angepasst auf unterschiedliche sub-regionale Zonen gelegt werden.
Dieser neuartige und direkte Modellierungsansatz ist ein seltener Beleg für die jeweiligen Vor-
und Nachteile unterschiedlicher urbaner Dynamiken in Bezug auf Grünflächen. Aus Sicht der
Stadtplanung bietet er ein leistungsfähiges Werkzeug, welches den Planern und staatlichen
Behörden die Möglichkeit gibt, ein präziseres Verständnis über die unterschiedlichen urbanen
Wachstumsprozesse und ihre Auswirkungen auf Grünflächen zu erlangen. Dies ist nicht nur
nutzbringend für das ausgewählte Studiengebiet, sondern auch von großer Bedeutung für
andere städtische Regionen, welche eine erfolgreiche Grünflächenplanung zum Ziel haben.
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Chapter 1

Introduction

1.1 Research Background and Objectives

Rapid urbanization and population growth become global issues that have been receiving
increasing attention. Nowadays, the world’s population is continuously growing by 1.10%
per year, yielding an additional 83 million people annually, and it is projected that the world
population will increase to 9.8 billion in 2050 (United Nations, 2017). Urbanization, which
refers to the process of increasing number of people move from rural to urban area, is perhaps
one of the most important human activities (Tian et al., 2005). As reported by United Nations
(2015), for the first time in history the global urban population exceeded the global rural
population in 2007. Urbanization is expected to continue globally over the next 35 years and,
consequently, one-third of the world’s population will reside in rural areas while two-thirds
in urban areas by 2050 (United Nations, 2015). The increasing tendencies of population and
urbanization result in complex processes of land use and land cover changes across local,
regional and global scales, which conversely have severe consequences for the environment
(Lauf et al., 2012; Liu and Yang, 2015).

The increasing interest in sustainability assessment for socio-ecological systems of urban
areas has shown that the dynamic process of urbanization has various fundamental impacts
on ecological systems at a wide range of scales (Gaube and Remesch, 2013; Sun et al., 2013).
Therefore, urbanization has been of great concern to researchers due to their significant
impacts on land use change and environmental decline. This includes, for example, the
loss of agricultural land and green spaces and increases in sealed surfaces (He et al., 2011;
Sabet Sarvestani et al., 2011; Xi et al., 2012), the heat island effect (Lee and French, 2009;
Yao et al., 2017), flood risk (Haase and Nuissl, 2007; Ohana-Levi et al., 2017; Sathish Kumar
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et al., 2013), landscape fragmentation and the loss of biodiversity (Dupras et al., 2016; Vimal
et al., 2012). Therefore, understanding the causes, processes and consequences of urban
growth is crucial for decision-makers to assess the negative impacts and support sustainable
urban development (Haase et al., 2012a; Han et al., 2009). For this purpose, urban dynamic
modeling approaches are very relevant, since they are capable of simulating historical urban
development and predicting the potential future urban dynamics. Urban dynamic modeling,
particularly when combined with narratives of future scenarios or development alternatives,
has become an attractive and practical approach for planning to assess and visualize future
urban development and the potential impacts of implementing different land use policies
(Tian and Qiao, 2014).

Although urban dynamics are complex processes with uncertainties (Barreira González et al.,
2015), they have been extensively monitored and modeled in a growing body of literature and
the following three influencing dimensions have frequently been discussed: housing demand,
urban spatial structure and urban growth form (Ewing and Hamidi, 2015; Garcia-López, 2012;
Haase et al., 2013). First, the housing demand, which is represented by the increased number
of households, can directly affect the extent of urban growth and new land consumption
around cities (Nuissl et al., 2009). Second, among various urban spatial structure models, the
polycentric model has been frequently suggested as a pre-requisite for a more sustainable and
balanced spatial pattern of urban development in contrast to the monocentric model (Meijers
and Romein, 2003). Third, different urban growth forms have been extensively debated in
literature, among which the main focus was placed on the controversy between “sprawl”,
i.e. fragmented urban development at low densities (Dupras et al., 2016), and “compact
growth” (Salvati and Gargiulo Morelli, 2014). However, different combinations of these three
dimensions have rarely been discussed in current literature and their combined impacts on
urban ecosystems remain unclear.

Green space plays an essential role in sustainable urban development, which can mitigate the
negative impacts of urbanization and positively contribute to life quality of urban residents
by providing various benefits to human well-being and supporting biodiversity (Chiesura,
2004; Jim, 2004). Given its well-acknowledged environmental and social services, green space
is nowadays more andmore regarded as ‘green infrastructure,’ which has equal importance for
cities and city regions as social and technical infrastructures (Pauleit et al., 2017). However, the
ecosystem services provided by green spaces are often overlooked and undervalued (Gill et al.,
2007), and the availability of green spaces has been extensively influenced by the dynamic
process of urban development (Zhao et al., 2013). Accordingly, a considerable loss of green
and open spaces can still be found in most urban areas due to the increasing pressure of
urbanization and densification processes (Fuller and Gaston, 2009; Lin et al., 2015; McDonald
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et al., 2010; Zhou and Wang, 2011), which makes efficient management and planning of green
spaces become a great challenge nowadays (Shan, 2014).Therefore, understanding the impacts
of different urban dynamics on green space availability is of great importance for guiding
future greening policies towards a sustainable urban development (Zhou and Wang, 2011).
However, most recent studies have focused only on the impacts of different urban growth
forms, either sprawling or compact growth, on the availability of urban green space (e.g., Lin
et al., 2015; Zhou and Wang, 2011), while a study that accounts for the potential combined
impacts of different dimensions of urban dynamics on green spaces is lacking in literature
to-date.

Green space is rarely evenly distributed across space within most cities, which has been
considered as an issue of environmental injustice (Kabisch and Haase, 2014; McConnachie
and Shackleton, 2010). It becomes another challenge for urban planners to provide residents
with adequate and equitable access to green spaces across the population (Dony et al., 2015;
Kabisch and Haase, 2014; Wolch et al., 2014). Hence, increasing attention has been paid on
assessing and understanding the current status of green space distribution and its variations
over different socioeconomic groups of urban residents to enhance the benefits of green space
for all residents (Li and Liu, 2016). However, a knowledge gap still exists in how green space
equity varies along spatial and socioeconomic gradients. In addition, current research tends
to focus on the assessment of the status quo or the historical changes of green space equity
and a fuller understanding of the impacts of different urban dynamics on green space equity
in a futures perspective is still missing (Wei, 2017).

The overall aim of this thesis is to contribute to closing these knowledge gaps by developing
and applying a multiple-scenario modeling approach to systematically and quantitatively
assess the potential impacts of different population and household dynamics on urban forms
and green spaces in the region of Munich, an urban area under high land pressure. The region
of Munich is one of the eighteen planning regions in Bavaria, Southern Germany, which is
composed of the city of Munich and 186 municipalities in eight administrative districts (in
German “Landkreise”). This region is selected as the study area due to; first, it is regarded
as one of the fastest growing regions in Europe and the regional population is projected
to continuously increase to almost 3.2 million by 2034 (Bavarian State Office for Statistics,
2015), which will consequently contribute to urban growth both near the city of Munich and
throughout the region. Second, due to the increasingly intensive interactions between urban
and rural areas and the continuous high pressure on open spaces caused by urban growth
in most large European cities and urban regions (Kain et al., 2016; Larondelle et al., 2016),
green space availability should be considered at the urban regional scale to better account for
the complexity of land development between the core city and the peri-urban surroundings.
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Third, although the regional urban spatial structure currently follows a monocentric model
with the city of Munich at its center (Goebel et al., 2007), this region has the potential of
polycentric development as the presence of several subcenters in the surrounding area (RPV,
2005).

Specifically, the following objectives are addressed in this study:

• Objective 1:

To examine the spatial pattern of historical settlement growth and to develop an
integrated urban growth model that accounts for the growth of different settlement
types,

• Objective 2:

To developmultiple urban dynamic scenarios and to assess the impacts of different urban
dynamic scenarios on landscape patterns at the regional and sub-regional levels,

• Objective 3:

To investigate how green space availability varies under different urban dynamic
scenarios and to identify the impacts of different urban dynamics on green space
availability at the regional and sub-regional levels,

• Objective 4:

To describe and quantify the pattern of green space equity and its spatial relation with
socioeconomic variables and to examine the impacts of different scenarios of urban
dynamics on green space equity at the regional and sub-regional levels.

1.2 Structure of the thesis

Besides the Literature Review and Conclusion, the thesis is structured into four major parts
according to the four above-mentioned research objectives (Figure 1.1). In Part I, the spatial
pattern of settlement growth is analyzed, and an integrated model is proposed and applied
to simulate the regional urban expansion and the development of different settlement types.
Multiple urban dynamic scenarios are developed and modeled in Part II, and the land use
and landscape pattern changes induced by different urban dynamic scenarios are characterized
and quantified. Parts III and IV build on the modeling results produced in Parts I and II.
In Part III, the impacts of different urban dynamic scenarios on green spaces availability are
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comparatively assessed by using two indicators at both the regional and sub-regional levels.
Part IV measures the green space equity for each municipality of the region to investigate
its relationship with socioeconomic variables across spatial and socioeconomic gradients. In
addition, the green space equity under different scenarios is compared to understand the
impacts of different urban dynamics on green space equity.

Objective 1 - PART I: 

Development of the Integrated Urban 

Growth Model 

Objective 2 - PART II: 

Multiple Urban Dynamic Scenarios and 

Landscape Changes 

Objective 3 - PART III: 

Impacts of Urban Dynamics on Green 

Space Availability 

Objective 4 - PART IV: 

Spatial Variation of Green Space Equity 

and the Impacts of Urban Dynamics

Overall objective of the thesis: 

The Impacts of Urban Dynamics on Green Space in the Munich Region 

Figure 1.1 Structure and overview of the four major parts of the thesis.
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Chapter 2

Literature Review and Analytical
Framework

This chapter begins with a literature review of the current state of art and research gaps
related to urban dynamic modeling, influencing dimensions of urban dynamics, green space
availability and equity under urban dynamics. It is followed by an overview of the analytical
framework that presents how relevant research gaps or questions are addressed in this study.

2.1 Urban Dynamic Modeling Approaches

2.1.1 Urban Growth Modeling

In recent decades, the significant technological progress of Remote Sensing (RS) and
Geographical Information Systems (GIS) have actively accelerated the advancement of
coupled urban socio-demographic and land use modeling techniques (Almeida et al., 2008;
Barredo et al., 2003; Loibl and Toetzer, 2003; Zheng et al., 2012). Among these modeling
techniques, the Cellular Automata (CA) has gained widespread applications in modeling
urban growth and land use changes since the 1990s (Barredo et al., 2003; Batty and Xie,
1994; Clarke et al., 1997; White and Engelen, 2000; Wu and Webster, 1998). The CA was
initially developed in the late 1940s and was first applied in geographical modeling by Tobler
(1979). The advantages of CA models are clearly to be found in its simplicity, flexibility,
intuitiveness, as well as the ability to model and express both spatial and temporal variations
in complex dynamic systems (Haase et al., 2012a; Santé et al., 2010). CA models simulate
dynamic processes based on the assumption that the change of land use state for each cell
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is according to the state of the cell itself and the development situation of its neighboring
cells in agreement with a set of transition rules (Sathish Kumar et al., 2013; Wu and Webster,
1998). However, the complexity of land cover (particularly the settlement areas of urban
regions) and the respective specific importance of the driving forces of urban growth makes
the conventional CA model not robust enough to produce plausible simulations of urban
growth (Aburas et al., 2016).

Hence, various kinds of quantitative models have been integrated with the conventional CA
model to achieve better modeling results, such as Analytic Hierarchy Process (AHP), Markov
Chain (MC), Logistic Regression (LR), Fuzzy Logit Model (FUZZY), Support Vector Machines
(SVM), Adaptive Genetic Algorithm (AGA), and so on (Aburas et al., 2016). Given the wide
range of available quantitative models, the decision on which one to use is important and
should consider the local characteristics of urban growth and the respective settlements
properties of the study area (Ku, 2016). Nonetheless, the MC model is commonly used over
other quantitative models because of its ability to aggregate very complex information into
a transition matrix and to consider land use changes over time (Aburas et al., 2016). The
assumption behind MC is that the probability distribution of future land use states is based
on the current state and the transition between the last two periods (Guan et al., 2011).
The combination of MC and CA model was often used to estimate the transitions between
different land use types and was regarded as one of the most convenient and efficient
modeling approaches due to the large number of already implemented MC-CA models (Guan
et al., 2011; Halmy et al., 2015; Mitsova et al., 2011; Zhang et al., 2011, etc.).

It is well known that the trajectories and patterns of urban growth in different parts of
the world have been propelled and determined by a set of driving factors (Abhishek et al.,
2017; Chen et al., 2016b; Li et al., 2013). Various factors driving urban growth have been
considered in literature, including socioeconomic, environmental, and neighborhood factors,
as well as urban spatial characteristics (Barredo et al., 2003; Li et al., 2018). First, frequently
considered socioeconomic factors include population density and land price. Population
density is regarded as a crucial driver of urban growth which has a positive impact on urban
growth (Jokar Arsanjani et al., 2013), whereas land price could be expected to have a negative
influence (Tian and Qiao, 2014). Second, it has been reported that urban expansion has been
influenced by a number of environmental factors such as slope, distance to water bodies and
distance to green spaces. Slope is usually considered to have a negative impact on urban
expansion (Braimoh and Onishi, 2007; Li et al., 2013). The influence of water bodies on urban
expansion could be either negative due to the risk of flooding (Abo-El-Wafa et al., 2017) or
positive by providing necessary water resources or a good environmental quality (Li et al.,
2015). Green spaces such as parks or woodlands may have a positive influence and thus
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attract urban developments (Jokar Arsanjani et al., 2013). Third, the neighborhood factor is
positively related to urban growth, indicating that urban growth tends to occur close to the
existing urban fabric (Cheng and Masser, 2003). Last, urban spatial characteristics such as
distance to city centers have found to have a negative impact on urban growth. For example,
Luo and Wei (2009) found that distance to major city centers had greater negative influence
than distance to subcenters in the city of Nanjing, China, which is in contrast to the findings
of Cheng and Masser (2003) who reported that the impacts of subcenters were stronger than
major centers in Wuhan City, China. Moreover, urban expansion was found to be guided
by transportation accessibility (Wu and Yeh, 1997) and a negative impact of the distance to
transportation networks on urban growth could be expected (Li et al., 2018). However, the
influences of different levels of transportation system (i.e., railways, highways, major roads
and local roads) might be distinct (Li et al., 2015).

However, the differential effects of driving factors of urban growth can still not be satisfactorily
identified in the conventional CA model (Balzter, 2000). To overcome this limitation, another
quantitative approach called Logistic Regression (LR) has frequently been combined with the
CA model that enables the possibility of including driving factors into the model. The LR is
a statistical approach for modeling the relationship between a categorical dependent variable
and one or more independent variables (Jokar Arsanjani et al., 2013; Li et al., 2017; Luo and
Wei, 2009; Vermeiren et al., 2012;Wu andWebster, 1998). It is regarded as a more objective way
to estimate the weight of each driving factor based on historical data rather than subjective
judgments based on researcher’s opinions (Ku, 2016). For instance, Hu and Lo (2007) used an
Ordinary Logistic Regression (OLR)model to estimate the relative importance of demographic,
econometric and biophysical driving factors, which was later used as the weights to generate
an urban growth probability map. Additionally, hybrid models which integrate both MC and
LR with CA have been developed in recent studies to improve the performance of MC-CA
or LR-CA models in simulating the spatial dynamics of urban growth (Han and Jia, 2017;
Jokar Arsanjani et al., 2013).

Moreover, the phenomenon of Spatial Autocorrelation (SAC) is known to widely exist in
land use data that tend to be spatially correlated with each other (Overmars et al., 2003). In
regressionmodels (particularlywhen incorporating quantitative approaches to include driving
factors of urban growth), SAC in dependent variablesmay lead to pseudoreplication and spatial
dependency in the residuals because the data are not independent. Accordingly, the overall
performance of the fitted model will be influenced (Ku, 2016; Naves et al., 2003).

Generally, there are two possible strategies to address the SAC when modeling urban growth.
The first one is to retain only the cells that are not autocorrelated using resampling approaches
(Aguayo et al., 2007; Hu and Lo, 2007; Liao et al., 2016; Mustafa et al., 2018; Poelmans and
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Van Rompaey, 2010). However, this would lead to the loss of information at the fine scale and
thus affect the model’s performance (Overmars et al., 2003). The second statistically sound
approach is the application of a spatial model such as the Autologistic Regression (ALR) in
which the SAC issue can be addressed by introducing an autocovariate variable into the model
(Augustin et al., 1996). For decades, the ALR model has been widely applied in ecological
research, especially in modeling plant species distributions (Dormann et al., 2007; Kissling
and Carl, 2008; Wu and Huffer, 1997). However, few studies have integrated the ALR model
into land use and in particular urban growth modeling (Jiang et al., 2015; Liu et al., 2015).
Therefore, further studies are required to explore whether the integration of this model leads
to better performance than other urban growth models and to establish whether it could be
widely applied across geographical regions that have different driving factors.

Additionally, for the vast majority of urban growth models, the focus of interest is simply
the changes of a single land use type (state) of developed land or settlements, in which case
the minutiae of different settlement types (with different house and population densities for
example) are thus far not represented in these models (Aburas et al., 2017; Barreira González
et al., 2015; Wang et al., 2012). This kind of simplification might give rise to a number of
serious problems. For example, the intensity of urban growth cannot be precisely measured
because the population densities of various settlement types are not accounted for, and thus
housing demand and/or supply are wrongly estimated (Heris, 2017). Also, the developmental
preferences of 1-person, 2-person, and larger family households differ according to different
settlement types, indicating that the driving factors might be distinct for the growth of each
settlement type (Haase et al., 2010; Mustafa et al., 2018). However, few studies have considered
the dynamics of the different settlement types (Lauf et al., 2012; Mustafa et al., 2018; Robinson
et al., 2012; Zhang et al., 2011). Moreover, the importance and improvement of separately
modeling different settlement types in urban growth models have rarely been discussed.

2.1.2 Urban Shrinkage Modeling

Although rapid urbanization currently dominates the scientific debate because they lead
to significant changes in land use and environmental deterioration, it is noteworthy that
urban shrinkage is another path of urban development which is spreading widely across the
world (Haase et al., 2012a; Oswalt and Rieniets, 2006). As reported by Kabisch et al. (2006),
urban growth has been replaced by the phase of shrinkage sine 1945 in many countries
(as shown in Figure 2.1). In addition to population loss caused by aging population and
population migration, the emergence of urban shrinkage may also be related to the interplay
of macro-processes, such as the developments in economic, demographic or settlement
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systems, environmental hazards and changes in political or administrative systems, operating
at a local level (Haase et al., 2014).

Figure 2.1 Shrinking cities with more than 100 000 inhabitants between 1950 and 2000 (Source:
Office Oswalt and Rieniets, 2006).

Several of the most visible byproducts of urban shrinkage are vacant residential estates or
industrial buildings, vacant land due to demolition and leaving spaces unused (Haase et al.,
2012a), which offer an opportunity for the development and extension of green and open
spaces that can improve environmental quality (Hollander et al., 2009) and provide recreational
facilities for the residents (Haase et al., 2012a). Therefore, greening strategies are frequently
discussed recently as one solution in planning literature that addresses the challenges brought
about by urban shrinkage and brownfield management (Florentin, 2010; Frazier and Bagchi-
Sen, 2015; Rall and Haase, 2011; Riley et al., 2017; Schilling and Logan, 2008).

For better understanding the temporal and spatial dynamics of urban shrinkage and its either
positive or negative environmental impacts, quantitative studies, particularly more appreciate
modeling approaches, are required to support sustainable urban management. However, the
number of such applications is rare for urban shrinkage (Haase et al., 2012a). Only a few urban
shrinking models have been developed recently due to a lack of empirical evidence except
from rare examples and challenges for modelers in developing new approaches, indicator
sets, and rule systems (Kabisch et al., 2006). For example, Haase et al. (2012a) simulated the
urban shrinkage and its impacts on land use change in Leipzig using a loosely coupled System
Dynamic-CAmodel and anAgent BasedModel (ABM). Also, Lee andNewman (2017) predicted
the urban decline in Chicago, USA with the land transformation model, an Artificial Neural
Network (ANN) based land use change model, using vacant land as a proxy. However, due to
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lacking empirical evidence of urban shrinkage in the study region, common urban shrinkage
models were not suitable (Lauf et al., 2012) and a specific model should be developed to address
urban shrinking scenarios.

2.1.3 Scenario Based Urban Dynamic Modeling

Proposition and implementation of effective planning strategies for sustainable urban
development require advanced understandings of the dynamic processes and possible
future of urban systems (Haase et al., 2012a; Han et al., 2009). One way of investigating
the potential future urban contexts is simulating and predicting urban dynamics. However,
exclusively extrapolating from the historical trends of urban dynamics into the future may
not provide sufficient information for planners to obtain an adequate view of the future
scenarios that are possible. In particular, the changing of urban land use patterns is a complex
process with uncertainties that are related to political and administrative decision-making
processes, unforeseen economic circumstances or the emergence of new influential factors
(Barreira González et al., 2015). Scenario simulation is a powerful tool for planning that
addresses this uncertainty by providing plausible, descriptive narratives or pathways to the
future, specifically when supported by visual outputs such as maps (Cowling et al., 2008;
Larondelle et al., 2016). Such approach provides good information on future in which today’s
decisions might be played out (Verburg et al., 2006).

In combination with urban dynamic models and narratives of future scenarios or development
alternatives, scenario-based modeling has become an attractive and practical approach for
assessing and visualizing future urban contexts and contributing to the decision-making
process to minimize and mitigate the harmful impacts (Sakieh et al., 2015). When applying this
approach, it is important to keep in mind that scenarios need to be effectively translated into
modeling language and must logically represent the uncertainties associated with probable
futures. At the same time, engaging local and regional stakeholders in the process of scenario
development plays an important role. Based on their local expertise, they could help to create,
maintain and progressively improve the relevance, consistency, and usefulness of scenarios
as planning tools (Reed et al., 2013).

There is a wide range of qualitative and quantitative participatory methods that have been
used to engage stakeholders in scenarios development, for example, future workshops,
multi-criteria evaluation, cooperative discourse, and so forth (Reed et al., 2013). However,
the outcomes of scenario studies would be significantly affected by the choice of the
involved stakeholders and the results might be biased without systematic and representative
stakeholder selection (Prell et al., 2009). It has also been highlighted that the engagement of
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stakeholders should take place at the beginning of the scenario development process (Reed
et al., 2013).

2.2 Urban Dynamics and Change of Landscape Patterns

2.2.1 Influencing Dimensions of Urban Dynamics

Urban dynamics have been extensively monitored and modeled in a growing body of
literature (Barreira González et al., 2015; Berberoğlu et al., 2016; Luo and Wei, 2009; Sun
et al., 2013; Tian et al., 2005). The primary purpose of these studies is to assess the potential
environmental, social and economic impacts of urban dynamics, and thus aiming to find
alternative approaches towards achieving more sustainable, and most importantly green,
future development. Among these studies, three dimensions that influence the regional
dynamics of an urban system have frequently been discussed: housing demand, urban spatial
structure and urban growth form (Ewing and Hamidi, 2015; Garcia-López, 2012; Haase et al.,
2013).

Housing Demand

One of the most critical driving forces of global environmental change is population growth,
which has direct impacts on the consumption of natural resources and goods (Haase et al.,
2013). Although urban growth is driven by many factors, including cultural, economic, social
and demographic ones, in most cases the need to accommodate more residents is regarded as
themain driver (Broitman and Koomen, 2015; Hennig et al., 2015). Typically, higher population
growth rates are expected to lead to higher rates of urban growth (Seto et al., 2011). Apart
from population growth, other processes that are related to demographic changes have also
significant impacts on urban growth (Haase et al., 2013). For instance, it has also been reported
that evenwhen population sizes are stable or declining, a larger number of householdswill also
intensify land consumption for housing, resulting in urban growth (Haase et al., 2013; Liu et al.,
2003). Haase et al. (2013) further revealed that per capita living space is an invisible variable
that also independently has an impact on land consumption for housing, and concluded that
smaller households (1 or 2 person), on average, consume more urban land area per capita than
larger ones. It is also indicated that the increasing per capita living space is mainly related
to positive income development. Therefore, the housing demand, which is represented by
the increased number of households rather than population growth, can directly affect the
extent of urban growth and new land consumption around cities (Nuissl et al., 2009). The
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housing demand has a variety of ecological and environmental impacts and influences on the
subsequent policies of land use, which is also reversely influenced by planning policies (Lee
et al., 2016). Accordingly, it is of particular interest to urban and land use planners. However,
the effects of household dynamics on green space, particularly the combined impacts with
other influencing dimensions of urban dynamics, have not yet been explored.

Urban Spatial Structure

Although the term “Spatial Structure” has been defined by geographers in a number of ways,
in all cases, it is viewed as “an abstract or generalized description of the distribution of
phenomena in geographic space” (Horton and Reynolds, 1971). In the case of urban dynamics
study, the formation of urban spatial structure can be viewed as a dynamic process during
which urban activities are distributed through the development process into urban forms
(Wu and Yeh, 1999). Among various urban spatial structure models, the polycentric model,
which refers to urban systems with multiple functionally networked centers of residence,
employment and services, has frequently been debated in planning as an alternative to
the monocentric model, which is dominated by a central city (Meijers and Romein, 2003).
Polycentricity has become a popular concept in spatial policies at a variety of spatial scales,
which is acknowledged to be a pre-requisite for a possibly sustainable and balanced spatial
pattern of urban development (Meijers and Romein, 2003; Salvati and De Rosa, 2014). For
example, the concept of polycentric urban systems is one of the key principles of the European
Spatial Development Perspective (ESDP), as it is considered to be more sustainable, more
equitable and more capable of reducing the negative impacts of urban dispersion than the
monocentric urban system (EEA, 2006; Shaw and Sykes, 2004). In fact, urban development
over the past few decades has progressively moved from the standard monocentric pattern
towards the polycentric pattern in most urban regions (Salvati and De Rosa, 2014). The
emergence of polycentric development has been observed in both southern Europe (Garcia-
López, 2012; Salvati, 2013) and developing countries (Schneider et al., 2015; Todes, 2012). Even
though, the debate on the polycentric urban structure is continued and strongly intertwined
with a broader discussion about whether cities should be seen as mere morphological entities
with clear and detectable borders or as functional urban regions incorporating large areas
around the central city (Vasanen, 2012). In addition, the impacts of the two urban spatial
structure models have been studied in literature, including the consumption of land and
energy (Salvati and Carlucci, 2014; Yin et al., 2015), air quality (Lefebre et al., 2007), landscape
fragmentation (Liu and Wang, 2016), economic productivity (Li and Liu, 2018) and so on.
However, their impacts on green space have rarely been investigated (Schneider et al., 2015).
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Urban Growth Form

Different urban growth forms have been extensively debated in literature, among which the
main focus was placed on the controversy between “sprawl” and “compact growth” that
representing the two main schemes by which cities all over the world have evolved (Salvati
and GargiuloMorelli, 2014). According to Ewing (1997), sprawl was defined as forms of growth
including leapfrog or scattered development, commercial strip development, or large expanses
of low-density or single-use development. However, urban sprawl has been criticized as
unsustainable for a number of reasons, including the non-efficient use of resources, e.g.,
land and energy (Haaland and van den Bosch, 2015), landscape fragmentation and losses of
biodiversity (Dupras et al., 2016; Sushinsky et al., 2013; Troupin and Carmel, 2016), related
environmental problems, such as increasing greenhouse gas emissions, urban water runoff,
the urban heat island effect and urban air pollution (Haase and Nuissl, 2007; La Greca et al.,
2011; Lee and French, 2009; Martins, 2012), and, last but not least, increasing social inequality
(Frenkel and Israel, 2017). In addressing these issues, the concept of compact growth or the
compact city, which is characterized by a high density and mixed-use urban development
(Milder, 2012), has been extensively discussed as an alternative form to counteract these
negative effects of urban sprawl and excessive land use. Nevertheless, compact growth also
has its disadvantages, such as feelings of overcrowding, increasing levels of air pollution
and heat stress, and traffic noise and traffic jams, resulting in a lower quality of life and
a considerable lack of urban green and open spaces in increasingly dense urban areas and
central city districts (Chen et al., 2008; Haaland and van den Bosch, 2015; Pauleit et al.,
2005; Shi et al., 2016). So far, the debates on different urban growth forms and associated
environmental impacts are mainly driven by theoretical reasoning, and the first necessary
step would be the validation and comparison of different theories through empirical studies
(Milder, 2012).

2.2.2 Assessment of Landscape Changes

One of the key topics of landscape ecology is to establish the correlation between spatial
patterns and ecological processes (Wu and Hobbs, 2002), of which the first step is to quantify
landscape patterns (Hulshoff, 1995). Quantifying the landscape pattern accurately in a region
is essential for land use planning and resource management (Liu et al., 2016) that has attracted
substantial attention from landscape ecologists (Turner, 2005). The features and changes of
landscape patterns could be assessed by the combined use of land use maps and landscape
metrics (Fan andMyint, 2014). Landscape metrics are algorithms that can be straightforwardly
and quickly computed to quantify the spatial characteristics of landscape elements at different
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levels (patch, class, and landscape) using categorical land use maps (Weber et al., 2014b). They
have become common tools in landscape pattern monitoring, assessment and planning since
the 1990s (Peng et al., 2010), which can provide objective descriptions of different aspects of
landscape structure and patterns (Plexida et al., 2014).

In recent years, the concept of ecosystem services has gained increasing attention, and
landscapes are found to have many essential functions that provide various “goods and
services” (Bolliger and Kienast, 2010; de Groot, 2006). The use of landscape metrics provides
a possible approach to account for the landscape structures and related ecosystem services,
which can give valuable information to improve the assessment of the ecological functioning
(Frank et al., 2012). It is argued by Syrbe and Walz (2012) that landscape metrics can be used
as measures of biodiversity and related ecosystem services. For example, landscape metrics
have been successfully used as indicators for assessing landscape patterns and their impacts
on biodiversity (Gimona et al., 2009), pollen distribution (Viaud et al., 2008), aesthetic value
(Dramstad et al., 2006), and water quality (Uuemaa et al., 2005). Moreover, landscape metrics
have also been broadly used in urban ecosystem studies to investigate, for instance, different
urban structures (Liu and Yang, 2015), the process of urbanization (Yu and Ng, 2007), patterns
of urban green space (Zhou and Wang, 2011), as well as urban environmental issues regarding
urban air quality (Weber et al., 2014a), traffic-induced noise (Weber et al., 2014b), and urban
surface temperature (Liu and Weng, 2008; Weber et al., 2014c).

However, it has been reported that many landscape metrics may be empirically redundant
(Cushman et al., 2008). This is mainly because some of these metrics measure multiple aspects
of landscape structure that might overlap with each other. Another possible reason is that
the different structural aspects of the landscape under investigation are correlated. Therefore,
there is still a need for further analysis on reducing such redundancy and selecting appropriate
and effective landscape metrics for specific landscape studies.

2.3 Green Space Availability under Urban Dynamics

2.3.1 Functions of Green Spaces

As defined byWu and Jackson (2017), green spaces refer to “land partly or completely covered
with grass, trees, shrubs or other vegetation (e.g., parks, forests, green roofs, and community
gardens)”. Green spaces play a crucial role in the global ecosystem and particularly in the urban
ecosystems where they are considered as a remedy to urban environmental problems (Xu
et al., 2016). By supporting biodiversity and providing various ecosystem services, green spaces
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can mitigate the negative impacts of urbanization and improve the quality of life of urban
residents, which are seen as a fundamental part of sustainable urban development (Chiesura,
2004; Jim, 2004). The environmental and social services of green spaces that contribute to the
quality of life have been well acknowledged by a number of research studies (Kabisch and
Haase, 2014). Vital environmental services provided by green spaces include, among others,
air purification (Jim and Chen, 2008; Tallis et al., 2011), temperature mitigation (Gill et al.,
2007; Rahman et al., 2017; Sun and Chen, 2017), noise reduction (Margaritis and Kang, 2017),
carbon storage (Strohbach and Haase, 2012), flood regulation (Gittleman et al., 2017; Zölch
et al., 2017; Zhang et al., 2015), and biodiversity conservation (Nielsen et al., 2014). Meanwhile,
the valuable social services involve the provision of recreational service (He et al., 2016), mental
and physical health improvement (Coppel and Wüstemann, 2017; Maas et al., 2006), fostering
the social interaction and integration by offering meeting places for local residents (Bijker and
Sijtsma, 2017; Peschardt et al., 2012), potentially improving the population’s sense of safety
(Branas et al., 2011; Kuo et al., 1998), and alike. Because of the vital services it can provide,
green space is also increasingly considered as ‘green infrastructure,’ which is just as important
for cities and city regions as social and technical infrastructure (Pauleit et al., 2017).

However, the ecosystem services provided by green spaces are often overlooked and
undervalued, and thus a considerable loss of green and open spaces can still be found in
most urban areas due to the increasing pressure of urbanization and densification processes
(Gill et al., 2007). In view of this situation, on the one hand, targeted or threshold values
for green space provision had been developed in Europe, at national and subnational levels
(Wüstemann et al., 2016). For example, the targeted values of the per capita provision of
public green space vary between 6 and 15 𝑚2 among different German cities (Deutscher Rat
für Landespflege, 2006). In addition to the amount of provision, the accessibility of green
space, which is often defined as distance or proximity from residents’ home to green space
(Koppen et al., 2014), is another key factor that influences the frequent use of green space
and improves the well-being among its users (Barbosa et al., 2007; Gupta et al., 2016). It is
regarded to be particularly critical for the recreational use of green space (Handley et al.,
2003). Therefore, it is suggested by Handley et al. (2003) that a minimum of 2 ℎ𝑎 natural green
space should be accessible within 300 𝑚 distances for all residents in the UK. On the other
hand, some studies and policies aim to improve the green infrastructure’s multifunctionality
which can perform multiple environmental, social and economic functions and provide
multiple ecosystem services on the same spatial area (European Commission, 2012; Hansen
et al., 2017a; Hansen and Pauleit, 2014; Meerow and Newell, 2017). For example, different
ways of connecting green spaces, biodiversity, people and the green economy were identified,
developed and tested in the GREEN SURGE project that is funded by the European Union’s
Seventh Framework Programme (Hansen et al., 2015, 2017b).
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2.3.2 Impacts of Urban Dynamics on Green Space Availability

The dynamic process of urban development has extensive influences on the availability of
green spaces (Zhao et al., 2013). As urban growth forms are the central concepts in today’s
debate regarding urban dynamics, the majority of recent studies have only focused on the
impacts of different urban growth forms on the availability and distribution of urban green
space. For instance, McDonald et al. (2010) examined the loss of open space (including
agricultural land, forest, grassland and additional more natural land-cover) between 1990
and 2000 for all 274 metropolitan areas in the US, and indicated that 1.4 million hectares
of open space were lost due to urban expansion. Another study conducted in the Chinese
city of Kunming by Zhou and Wang (2011) also found that rapid expansion of built-up areas
caused a considerable loss of green spaces and a more fragmented landscape, especially in the
city’s outer belt. On the other hand, several other studies have indicated that compact urban
growth could lead to a general loss of urban green spaces in residential areas as well. Fuller
and Gaston (2009) reported that green space coverage declined mildly as population density
increased, and compact cities showed very low per capita green space across 386 cities in
Europe. Similar results were also found in another study by Lin et al. (2015), who explored
the potential loss of green spaces with urban densification in Sydney and highlighted that the
area of green spaces, including public parkland and residential tree cover, decreased as urban
areas become more densely populated.

Although it is reported by Tan et al. (2013) and Zhao et al. (2013) that public green space
increased during urban growth in some instances, which is mainly related to the overall
increase in the total city area and to the implementation of greening policies. Without
effective greening policies, it is very likely that urban sprawl will pose enormous threats to
green spaces in the countryside, while compact growth will lead to a reduction of urban green
spaces within urban areas (Nuissl et al., 2009). In other words, some green spaces are always
lost during urban growth, no matter which growth form has been adopted (Zhao et al., 2013).
However, relevant studies have so far mainly focused on either sprawling or compact growth,
while comparative studies that consider the impact of both urban growth forms on green
space availability are rare. A few studies have compared the consequences of compact and
sprawling development on landscape pattern, landscape connectivity and biodiversity (Park
et al., 2014; Sushinsky et al., 2013; Troupin and Carmel, 2016), rather than the availability of
green spaces. Moreover, previous studies have mainly been carried out at the city level, and
lack a systematic analysis of the impacts of different development trends and urban dynamics
on the availability of green spaces at the regional level.
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2.4 Green Space Equity under Urban Dynamics

2.4.1 Definition of Green Space Equity

At present, efficiently managing and planning green spaces face great challenges in the
case of increasing pressure that related to rapid urbanization, diversification of the society,
and up-and-coming city densification (Shan, 2014). Given the link between green spaces
and the welfare benefits for residents, endeavoring to provide residents with adequate and
equitable access to green spaces across the population has been increasingly recognized
as an important issue for urban planners, which is also due to growing concerns related
to environmental justice (Dony et al., 2015; Kabisch and Haase, 2014; Wolch et al., 2014).
Traditionally, the primary focus of environmental justice refers to the distribution of toxic-
emitting facilities, waste dumps, and other environmental hazards that are disproportionately
located near socially disadvantaged groups, while recent studies have expanded the scope of
this conception by including issues such as equitable access to green spaces and other natural
resources (Boone et al., 2009; Davis et al., 2012; Jennings et al., 2012). However, the green
spaces are rarely evenly distributed across space within most cities, which correspondingly
results in the disproportionate provision of green spaces to different subsets of urban
population (Kabisch and Haase, 2014; Li and Liu, 2016; McConnachie and Shackleton, 2010).
For example, Wüstemann et al. (2017) identified inequalities in green space provision across
major German cities that related to income, age, education and children in the household.
Also, You (2016) reported that the provision of public green spaces declined with district
disadvantage degrees and the accessibility for socioeconomically disadvantaged districts were
more restricted in Shenzhen, China.

To enhance the benefits of green spaces for urban residents, relevant researches on green
space equity and its variations over space has been drawing increasing attention from
scholars and governors (Li and Liu, 2016). An increasing amount of literature has been
contributing to the research on green space equity. The majority of these studies have mainly
focused on associating the spatial disparities of green space provision or accessibility with
different social groups based on socioeconomic status (Barbosa et al., 2007; Kimpton, 2017),
racial/ethnic or religious characteristics (Comber et al., 2008), migration background (Schüle
et al., 2017), age (Shen et al., 2017), (dis)ability (Byrne et al., 2009; You, 2016), population
density (Xiao et al., 2017) and other axes of difference. For example, Li and Liu (2016) analyzed
the relationships between neighborhood socioeconomic disadvantage and public green space
availability and accessibility at the district level in Shanghai, China and highlighted that
the abundance and accessibility were lower in districts with higher levels of neighborhood
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socioeconomic disadvantage. Similar findings have also been reported by a number of other
case studies (Dai, 2011; McConnachie and Shackleton, 2010; Pham et al., 2012; Schüle et al.,
2017; Shanahan et al., 2014; You, 2016). Significant positive relationships have been reported
between population density and the provision or accessibility of urban green spaces (Chen
and Hu, 2015; Ngom et al., 2016). Moreover, it has also been highlighted that areas with
larger proportions of elderly or deprived (unemployed) population tend to have more access
to public green spaces (Barbosa et al., 2007; Xiao et al., 2017). However, contrasting findings
have been reported by Shen et al. (2017), who disclosed that low public green space access
were found in sub-districts with high level of aged or unemployed population in a case study
in Shanghai, China.

The other strand of literature identifies, characterizes and compares the degree of green space
equity among different resident groups within a city (Kabisch and Haase, 2014) or different
cities at the national level (Wüstemann et al., 2017) by employing equality indicators. Among
a number of existing indices which measure an unequal distribution, the Gini coefficient has
gained a broad application in different fields. The Gini coefficient is prevalent in economics to
measure inequality of income distribution (Molero-Simarro, 2017), which has also been applied
to assess inequality of sustainable urban development (Li et al., 2009), biodiversity (Barr et al.,
2011), carbon dioxide emissions (Chen et al., 2016a), and also in the context of green space
provision. For example, Kabisch and Haase (2014) and Xing et al. (2018) explored the inequality
of green space distribution for different resident groups by applying the Gini coefficient in the
cities of Berlin, Germany andWuhan, China, respectively. In addition, Yao et al. (2014) analyzed
the inequality of urban green space distribution across the urban area in Beijing, China, while
Wüstemann et al. (2017) compared the inequalities in green space provision across German
major cities. Compared to other studies which focus on the spatial disparities of green space
provision (Kimpton, 2017; Li and Liu, 2016), applying the Gini coefficient is a simple way to
get an overview of the overall degree of inequality (Kabisch and Haase, 2014), particularly
when attempting to associate the spatial inequality with other socioeconomic variables in a
quantitative way. However, the complexity of how the green space equity varies along spatial
or socioeconomic gradient has been somehow limited (Wei, 2017). Thus, a knowledge gap still
exists regarding the spatial relationship between the green space equity of different spatial
units (e.g., districts or municipalities) and their socioeconomic characteristics.

2.4.2 Impact of Urban Dynamic Process on Green Space Equity

The recent research tends to focus on the assessment of the status quo or the historical changes
of green space equity. For example, Wei (2017) comparatively evaluated the park accessibility
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across the 41 sub-districts in Hangzhou, China of the years 2000 and 2010, and highlighted
that significant spatial inequality in terms of park access was found among socioeconomic
groups. The overall accessibility of parks had improved from 2000 to 2010, yet changes in
spatial inequalities of park access had not been detected.

As underlined in the literature, the dynamic processes of urban development have extensive
influence on green space availability and distribution (Dallimer et al., 2011; Qian et al., 2015;
Zhao et al., 2013). Consequently, green space equity will also be affected by the process of
urban dynamics. However, the process analysis which provides a fuller understanding of the
impacts of urban dynamics on green space equity is still rare (Wei, 2017). Particularly, it offers
a useful tool to assess the impacts of proposed policies or planning strategies on green space
equity when associated with different scenarios. As a recent global phenomenon, the ongoing
urbanization presents a challenge to urban planning which, in turn, offers great opportunities
for sustainable urban management to incorporate the improvement of life quality through
equitable provision of green spaces (Kabisch and Haase, 2014). In practice, the causes of
the unequal distribution of green spaces may differ from place to place, but optimizing the
provision and accessibility and reducing the spatial and social inequality should be primary
goals of green space planning (Wei, 2017). Bearing this in mind, understanding the impacts
of different urban dynamics on green space equity enables the assessment of current policies
and offers useful reference and guidance for green space planning. It is also crucial for
policymakers and planners in providing appropriate services, supports and opportunities for
local residents (Wei, 2017).

2.5 Overview of the Analytical Framework

Based on the literature review, relevant research gaps or questions and the methods that are
used to address them are shown in Figure 2.2. In Part I, the spatial modeling approach was
developed. For this purpose, the Spatial Autocorrelation (SAC) in the pattern of settlement
growth was examined by Moran’s I coefficient and the Local Indicators of Spatial Association
(LISA) analysis. Autologistic Regression (ALR) was incorporated in the model to correct the
impact of the SAC. Moreover, the growth of both high- and low-density settlements was
modeled separately. Multiple scenarios that account for different influencing dimensions of
urban dynamics were developed through a focus group meeting with stakeholders in Part
II. Then, a set of landscape metrics were employed to comparatively quantify the modeled
landscape patterns under different scenarios, before which the redundancy among these
landscape metrics was tested and reduced. Part III explored how green space availability
varies across different scenarios using regression analysis. In addition, the impacts of different
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urban dynamic scenarios on green space availability were comparatively assessed at both the
regional and sub-regional levels by using two indicators. In Part IV, the pattern of green
space equity at the municipal level was characterized by the Gini coefficient and its spatial
relationship with socioeconomic variables was investigated using a Geographically Weighted
Regression (GWR). Meanwhile, the impacts of different urban dynamic scenarios on green
space equity were comparatively studied at both levels.

PART II: Multiple Urban Dynamic Scenarios and Landscape Changes 

PART I:  Development of the Integrated Urban Growth Model

Methods

 Moran’s I and LISA analysis 

 Autologistic regression 

 High- and Low-density settlement growth were 
modeled separately 

Research gaps/questions                                                  

 Spatial pattern of settlement growth 

 Incorporating the SAC into the modeling process 

 Modeling growth of different settlement types

 

Research gaps/questions                                                  

 Development of multiple urban dynamic scenarios

 Landscape changes under different scenarios 

 Redundancy among landscape metrics

Methods

 Focus group meeting with stakeholders 

 Comparative analysis using landscape metrics 

 Principle component analysis 

PART IV: Spatial Variation of Green Space Equity (GSE) and the Impacts of Urban Dynamics

Research gaps/questions                                                  

 The pattern of GSE at the municipality level

 Spatial relation between GSE and socioeconomic 
variables 

 Impacts of urban dynamics on GSE at sub- and 
regional levels

Methods

 Distribution of the municipal Gini coefficient 

 Factor analysis of socioeconomic variables and 
Geographically weighted regression

 Comparative analysis using the Gini coefficient 
at both levels

PART III: Impacts of Urban Dynamics on Green Space Availability (GSA)

Research gaps/questions                                                  

 How GSA varies across different urban dynamics

 Impacts of urban dynamics on regional GSA

 Impacts of urban dynamics on GSA at sub-regional 
level

Methods

 Regression analysis 

 Comparative analysis using two GSA 
indicators at both levels

Figure 2.2 Overview of the analytical framework of the thesis.
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Methods

3.1 Study Area and Workflow

The study area is located in Bavaria, Southern Germany, between 47°49′–48°37′N and
10°45′–12°16′E (Figure 3.1). According to the Bavarian state development scheme, the
region of Munich (also called Planning Region 14), composed of the city of Munich and 186
municipalities in eight administrative districts (in German “Landkreise”), is one of the 18
planning regions in Bavaria. It extends over 5,500 𝑘𝑚2 and is home to around 2.85 million
inhabitants by the end of 2015 (Bavarian State Office for Statistics). This region is regarded
as one of the fastest growing and most economically competitive regions in Europe. As the
major city of this region and the capital of the Bavarian state, the city of Munich is the third
largest, and one of the most populous, cities in Germany, with approximately 1.45 million
residents in 2015 and an average population density of approximately 4,668 inhabitants per
𝑘𝑚2 (Bavarian State Office for Statistics, 2015).
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Figure 3.1 Location of the region of Munich.

The region ofMunich has been experiencing steady population growthwith an average annual
population growth rate of approximately 1.0% over the past decade. As a result, a series of
problems have emerged, including the loss of natural resources, intensification of land use, and
threats to the quality of life (Schaller and Mattos, 2010). However, this trend can be expected
to continue, as it is projected by the Bavarian State Office for Statistics that the population
will continuously increase, to almost 3.2 million by 2034. This will inevitably contribute to
urban growth not only near the city of Munich but also throughout the region. Accordingly,
the problems that caused by population and urban growth might be exacerbated in the future
unless active and effective urban planning and management strategies being developed and
implemented. Therefore, a comprehensive study of urban dynamics in the whole region is
important for decision-makers and planners to mitigate its negative impacts on both humans
and ecosystems. In addition to urban growth, other possible urban development pathways
such as urban shrinkage that generates a number of vacant lands and brownfields were also
involved by introducing multiple urban dynamic scenarios.

In this region, the present urban spatial structure clearly follows a monocentric model with
the city of Munich at its center (Goebel et al., 2007). The city of Munich is located in the center
of this region and is defined as the regional center in the regional plan (RPV, 2005). However,
this region has polycentric development potential due to the presence of several subcenters,
as shown in Figure 3.2, which are identified with high urban development potentials in the
regional plan.
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Figure 3.2 Land use and land cover map of 2013.

Regional land use and land cover data for the years 2003 and 2013 have been derived from
the Landscape Development Atlas of the Munich Region (LEK 14) and Digital Orthophotos
data (DOP) from Bavarian State Office for Digitizing, Broadband and Survey. A total number
of thirty land use classes were classified into vector maps based on visual interpretation of
the high-resolution aerial photography, which offers much more detailed information of the
distribution and changes of different land uses (Figure 3.2).The settlement areas were classified
into high-density settlements, such as multistory housing and multistory blocks, and low-
density settlements, such as row housing, single-family housing and detached houses. For
urban growthmodeling and further analysis, the original vector land use maps were converted
to the raster format with a grid size of 30𝑚 × 30𝑚 in ArcGIS 10.3.
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Figure 3.3 Spatial distribution of green spaces in 2013.

The regional distribution of green spaces of the year 2013 is shown in Figure 3.3. This study
focuses on four key land use categories that related to green spaces, including “parks and
green spaces”, “allotment gardens”, “cemeteries” and “forests”. Other land use categories
which could potentially serve as green spaces were excluded from analysis because of either
low recreational value (e.g., “arable land”, “grassland” and “wetland”) or low vegetation
coverage and a lack of public accessibility (e.g. “sports and leisure facilities”) (Kabisch et al.,
2016). In the Urban Core Zone, the main types of green space are large parks, as well as the
continuous greenbelt along the Isar River, which runs from south to north across the region.
It is evident from Figure 3.3 that more green spaces are available in the Peri-Urban and Rural
Zones. Compared to the northern part of this region, relatively more green spaces exist in
the southern part as the forests in the southern region are protected based on their special
environmental functions and for recreation. Protected green spaces, such as nature reserves,
natural monuments, protected landscape areas and elements, were excluded when modeling
urban growth. All datasets used in this study are listed in Table 3.1.
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Table 3.1 Summary of datasets used in this study.

Data Scale Reference
year/period

Source

Population number Municipality
level

2003–2013 Bavarian State Office for Statistics

Population projection Regional level 2014–2033
Household structure data Regional level 2003–2013
Residential building data Municipality

level
2003, 2013

Residential land price Municipality
level

2013 Planning Association of Greater Munich
(PV), Real estate market data (IMV
GmbH)

Land use maps Regional level 2003 Landscape Development Atlas of the
Munich Region (LEK 14)

Regional level 2013 Digital Orthophotos data (DOP) from
Bavarian State Office for Digitizing,
Broadband and Survey

Transportation network
map

Regional level 2004 Landscape Development Atlas of the
Munich Region (LEK 14)

Constraint maps (including
nature reserves map,
flooding risk map, habitat
maps, etc.)a

Regional level 2003, 2004,
2005

Landscape Development Atlas of the
Munich Region (LEK 14)

Digital elevation model Regional level 2003 The United States Geological Survey

a see Appendix A.

The systematic workflow of this study is shown in Figure 3.4. The integrated model that was
proposed in Part I incorporates three sub-models including the Autologistic Regression
(ALR), Markov Chain (MC), and Cellular Automata (CA). Various model evaluation methods
were used to assess the performance of the integrated model. In Part II, the multiple
urban dynamic scenarios were first developed in consideration of the three dimensions
that influence the processes of urban dynamics, including housing demand, urban spatial
structure, and urban growth form. Then, the land use changes under different scenarios were
modeled and the landscape patterns were characterized and quantified by a set of landscape
metrics. In addition, the redundancy among those landscape metrics was tested and reduced
using the Principal Component Analysis (PCA). Part III assessed the impacts of different
urban dynamic scenarios on green space availability by using two indicators. In Part IV,
the Gini coefficient was employed to evaluate the spatial equity of green space distribution.
Factor analysis was utilized to reduce the redundancy of the socioeconomic variables and
to facilitate the interpretation of the resulting factors. In addition, the spatial relationship
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between green space equity and socioeconomic factors was explored using a Geographically
Weighted Regression (GWR). More details are given in the following sub-sections.

PART IIPART I

Multiple urban dynamic scenarios

Integrated urban 
growth model

Land use map 
2003 

Atuologistic 
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Urban growth 
map

Moran’s I and 
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Land use map 
2013 
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factors

Constraint 
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PART II

Landscape metrics
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Indicators / Parameters Main results

Figure 3.4 Overview of the systematic workflow of this study.
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3.2 Development of the Integrated Urban Growth Model
(Part I)

The focus of this part is modeling the urban growth that is mainly dominated by the settlement
growth for housing and infrastructure. Therefore, the original land-use maps were further
reclassified into high-density settlements (such as multistory housing and multistory blocks),
low-density settlements (such as row housing, single-family housing and detached houses),
and non-settlements. Then, the reclassified vector land use maps were converted to the raster
format with a grid size of 30𝑚 × 30𝑚. In this part, the Spatial Autocorrelation (SAC) in the
pattern of historical settlement growth was assessed and a set of potential driving factors of
urban growth were collected. To correct the impact of the SAC, an integrated urban growth
model was built by incorporating the Autologistic Regression (ALR) with an Markov Chain
(MC) based Cellular Automata (CA) model. The modeling accuracy was evaluated by two
different approaches. The spatial analysis processes were conducted in ArcGIS 10.3.

3.2.1 Assessing Spatial Autocorrelation

Two techniques were employed for detecting the SAC in the pattern of settlement growth
and the residuals of regression models. The first one is the global Moran’s I coefficient, which
is very commonly used as a global parameter for the assessment of SAC. Second, the Local
Indicators of Spatial Association (LISA) analysis can provide more detailed insights into spatial
dependency with the neighboring samples (Anselin, 1995; Moran, 1948). The value of Moran’s
I varies from -1.0 and 1.0. Positive autocorrelation in the data leads to positive values and
negative autocorrelation results in negative values. As suggested by Glazier et al. (2004), the
absolute value of Moran’s I more than 0.2 indicates that significant SAC occurred. In addition
to the original data, SAC can also be found in the residuals of a regression model (Overmars
et al., 2003). In this study, the SAC in the patterns of settlement growth was analyzed by the
global Moran’s I at various lag distances, while both indicators (the global Moran’s I and the
LISA) were used to measure the SAC in the residuals of regression models.

3.2.2 Collecting Potential Driving Factors

Before constructing the model, factors that might impact the process of settlement growth
were collected according to the local characteristics of the study area, the nature of the models,
and the purpose of the research (Ku, 2016). A number of 17 potential driving factors of urban
growth were collected (Table 3.2) and resampled into 30𝑚 × 30𝑚 grid layers (as shown in
Appendix B). Following Barredo et al. (2003), these driving factors could be organized into
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four groups, including 1) Environmental factors, 2) Local-scale neighborhood factors, 3)
Spatial characteristic factors, and 4) Socioeconomic factors. All factors that generated as grid
maps were then converted into continuous explanatory variables to be used in the regression
analysis.

Table 3.2 List of driving factors used in this study.

Driving factors Abbreviation Description

Environmental factors

Slope SLP Slope in degrees
Distance to water DisWT Euclidean distance in Meters
Distance to green spacesa DisGS Same as above

Local-scale neighborhood factors

Neighborhood NBH Number of settlement cells in a 5 × 5 cell
neighborhood (i.e., the neighborhood size
normally used in the CA model)

Spatial characteristics factors

Distance to the S-bahn (suburban train)
station

DisSB Euclidean distance in Meters

Distance to the U-bahn (metro) station DisUB Same as above
Distance to the main center DisMC Same as above
Distance to the subcenters DisSC Same as above
Distance to the settlement centers DisSTC Same as above
Distance to the commercial area DisCA Same as above
Distance to the industrial area DisIA Same as above
Distance to the highway DisHW Same as above
Distance to the major road DisMR Same as above
Distance to the local road DisLR Same as above
Distance to the urban edge DisUE Same as above

Socioeconomic factors

Population densityb PPD Population per 𝑘𝑚2 for each Municipality
Residential land priceb RLP Euro per 𝑚2 of ground for each Municipality

a It includes the land use classes of ”parks and green spaces”, ”allotment gardens”, ”cemeteries” and ”forests”.
Other land use categories were excluded because of either low recreational value (e.g., ”arable land” and
”grassland”) or low vegetation coverage and a lack of public accessibility (such as ”sports and leisure
facilities”).

b collected at the municipal level and limited by data availability.

The multicollinearity of independent variables should be pre-tested in regression models.
Otherwise, it can inflate the variances of coefficient estimates and potentially lead to
misleading results regarding the effect of any individual predictor in the model (Dormann
et al., 2013). The Tolerance (TOL) and the Variance Inflation Factor (VIF) were calculated
among the independent variables to eliminate multicollinearity. According to Ozdemir (2011),
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variables with 𝑉 𝐼𝐹 > 10 and 𝑇𝑂𝐿 < 0.1 that indicate a severe multicollinearity were excluded
from the regression analysis.

3.2.3 Framework of the Integrated Models

Figure 3.5 shows the framework of the integrated models developed in this study. Land use
maps from 2003 and 2013 were overlaid to obtain an urban growth map that was then used as
the dependent variable in the Autologistic Regression (ALR) or Ordinary Logistic Regression
(OLR) model and as input data for the Markov Chain (MC) analysis. The regression produced
local transition probabilities (i.e., the probability value of a cell for being transformed into
settlements) where some areas were excluded due to the constraint map (i.e., land development
restriction). Then, it was combined with a transition probability matrix from MC (i.e., the
probability of each land use type changed into urban settlement) to generate a transition
probability map. Furthermore, by considering the transition area matrix (i.e., the number of
cells of each land use type that are expected to be changed into settlements over the study
period) from the MC, the Cellular Automata (CA) simulation was run to obtain a map of urban
growth prediction. For the purpose of testing the improvement caused by the ALR approach,
the ALR-MC-based CAmodel (the ALR-MC-CAmodel) was comparedwith another integrated
model based on the OLR (the OLR-MC-CA model). The detailed algorithm of each model in
the framework is explained at the following sections.

2003 land use map 2013 land use map

Constraint maps

Driving factors Urban growth map

Markov chain model
ARL or OLR 

regression model

Local transition 

probability

Transition 
probability 

matrix

Transition area 

matrix
Transition 

probability map

Cellular automata 

model

Simulated land 

use map

Input / Output data sets

Models

Intermediate results

Processes

Figure 3.5 Framework of the integrated models.
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Logistic and Autologistic Regression

In different urban growth or land use change models, the OLR has been quite commonly used
as an empirical approach to estimate the weights of the driving factors. In an OLR model, the
predicted dependent variable is calculated as the transition probability using the following
equation:

𝑙𝑜𝑔( 𝑝𝑖
1 − 𝑝𝑖

) = 𝛼 + 𝛽1𝑥1,𝑖 + ⋯ + 𝛽𝑛𝑥𝑛,𝑖 (Eq. 3.1)

where 𝑝𝑖 (ranged from 0 to 1) is the transition probability of the dependent variable 𝑦𝑖 (𝑦𝑖 = 1
indicates the transition to settlements of grid cell 𝑖 and 𝑦𝑖 = 0, otherwise). 𝛼 is a constant to
be estimated and 𝛽 is a vector of the estimated coefficient for each independent variable 𝑥 .

Compared to OLR, the ALR model introduces an autocovariate variable as an independent
variable into the regression process to correct the impact of SAC (Augustin et al., 1996). The
model is defined as:

𝑙𝑜𝑔( 𝑝𝑖
1 − 𝑝𝑖

) = 𝛼 + 𝛽1𝑐𝑜𝑣1 + ⋯ + 𝛽𝑛𝑐𝑜𝑣𝑛 + 𝛽𝑛+1𝑎𝑢𝑡𝑜𝑐𝑜𝑣𝑖 (Eq. 3.2)

The autocovariate at grid cell 𝑖 is determined as follows:

𝑎𝑢𝑡𝑜𝑐𝑜𝑣𝑖 = ∑
𝑗∈𝑁𝑖

𝑤𝑖𝑗𝑦𝑖 (Eq. 3.3)

where 𝑁𝑖 is the defined neighborhood matrix for cell 𝑖, 𝑤𝑖𝑗 is the inverse of the Euclidean
distance between 𝑖 and its neighboor 𝑗 and 𝑦𝑗 is the presence or absence of the transition at
grid cell 𝑗.

However, because the observations 𝑦𝑗 are conditionally dependent on one another, an
analytical form of the maximum likelihood is intractable. Therefore, the Markov Chain Monte
Carlo (MCMC) method was applied for estimating the parameters of the ALR model (Huffer
and Wu, 1998). The processes of statistical analysis were performed in R (R Core Team, 2017),
and the MCMC estimation was performed in R using the MCMCpack package (Martin et al.,
2011).

Defining Neighborhood Matrix for ALR

According to the Eq. 3.3, the ALR model incorporates the spatial dependency into the
regression process by including an autocovariate variable that is determined by the
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neighborhood matrix 𝑁𝑖 . The definition of 𝑁𝑖 should consider the spatial lag to the extent that
the independent variable is strongly autocorrelated. Different from Ku (2016) who simply
applied the Euclidian distance weighted matrix to define the spatial dependency, I preferred
to use the approach of Naves et al. (2003) where a correlation coefficient 𝑐𝑟 was calculated to
describe the autocorrelation of the dependent variable 𝑦 with spatial lag 𝑟 (Figure 3.6). The
spatial lag that showed a strong correlation (𝑐𝑟 > 0.7) was defined as the neighborhood matrix
for calculating the autocovariate variable in the ALR (Aguayo et al., 2007; Naves et al., 2003).
The results show that the neighborhood matrices for all settlement growth, high-density
settlement growth and low-density settlement growth were 9 × 9 cells, 11 × 11 cells and 7 × 7
cells, respectively.
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Figure 3.6 Correlation of the dependent variable 𝑦 with spatial lags.

Markov Chain Model

TheMC is defined as a stochastic process that describes the elements of a system transforming
from one state to another at each time step (Balzter, 2000). In MCmodels, it is assumed that the
probability distribution of future land use state is based on the current state and the transition
between the last two periods (Guan et al., 2011). The output of the MC model is the transition
probability matrix that records the probability of transition from each land use class to others
in different temporal periods. It is described as follows:

𝑃 = (𝑝𝑖𝑗) =
⎡⎢⎢⎢
⎣

𝑝11 ⋯ 𝑝1𝑛
⋮ ⋱ ⋮

𝑝𝑛1 ⋯ 𝑝𝑛𝑛

⎤⎥⎥⎥
⎦

; 0 ≤ 𝑝𝑖𝑗 < 1;
𝑛
∑
𝑖=1

𝑝𝑖𝑗 = 1 (Eq. 3.4)
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where 𝑝𝑖𝑗 is the probability of land use 𝑖 changing to land use 𝑗 calculated for each grid cell
and 𝑛 is the number of land use classes. The transition area matrix that represents the land use
demands (𝐴𝑝𝑛) in the target year of simulation can be defined by multiplying the matrix with
the total area of each land use class (𝐴1 - 𝐴𝑛) (Ku, 2016), as shown in Eq. 3.5.

⎡⎢⎢⎢
⎣

𝑝11 ⋯ 𝑝1𝑛
⋮ ⋱ ⋮

𝑝𝑛1 ⋯ 𝑝𝑛𝑛

⎤⎥⎥⎥
⎦

⎡⎢⎢⎢
⎣

𝐴1
⋮
𝐴𝑛

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

𝐴𝑝1
⋮

𝐴𝑝𝑛

⎤⎥⎥⎥
⎦

(Eq. 3.5)

Cellular Automata Model

The CA models have been broadly applied to simulate urban growth patterns and land use
changes. Generally, CA models define the new state of land use for each cell according to the
state of the cell and the developmental situation of its neighboring cells in agreement with a
set of transition rules (Sathish Kumar et al., 2013; Wu and Webster, 1998). It is represented by:

𝑆𝑡+1𝑖𝑗 = 𝑓 (𝑆𝑡𝑖𝑗 , Ω𝑡𝑖𝑗 , 𝑇 𝑡) (Eq. 3.6)

where 𝑆𝑡+1𝑖𝑗 and 𝑆𝑡𝑖𝑗 are the states of the cell at location 𝑖𝑗 (i.e., latitude 𝑖 and longitude 𝑗) at
time 𝑡 + 1 and 𝑡 , respectively. Ω𝑡𝑖𝑗 is the development situation in the neighborhood space of
cells 𝑖𝑗, and 𝑇 𝑡 is a set of transition rules. Furthermore, in the case of the non-deterministic
CA, the state at time 𝑡 + 1 becomes:

𝑆𝑡+1𝑖𝑗 = 𝑓 (𝑃 𝑡𝑖𝑗𝑠 , 𝑇 𝑡) (Eq. 3.7)

where 𝑃 𝑡𝑖𝑗𝑠 is the probability of transition to the state 𝑠 for cell 𝑖𝑗.

Model Integration

In this study, the models were integrated by the following equation:

𝑃𝑖𝑗𝑘 = (𝑃𝑙)𝑖𝑗 ⋅ (𝑃𝑀𝐶)𝑖𝑗𝑘 ⋅ (
𝑚
∏
𝑟=1

𝐶𝑖𝑗𝑟 ) ⋅ (𝑃Ω)𝑖𝑗 (Eq. 3.8)

where 𝑃𝑖𝑗𝑘 is the transition probability of cell 𝑖𝑗 (i.e., latitude 𝑖 and longitude 𝑗) from land use 𝑘
to settlements. (𝑃𝑙)𝑖𝑗 is the local transition probability of cell 𝑖𝑗, which is determined through
a set of driving factors using regression models. (𝑃𝑀𝐶)𝑖𝑗𝑘 is the transition probability matrix
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calculated by MC analysis and represents the probability of land use 𝑘 changing to settlements
for cell 𝑖𝑗. 𝐶𝑖𝑗𝑟 is a list of constraint factors that take a binary value of 0 or 1 which represents
an absolute restriction or not. (𝑃Ω)𝑖𝑗 is the neighborhood effect for cell 𝑖𝑗 which is defined as
follows (Wu, 2002):

(𝑃Ω)𝑖𝑗 =
∑ 𝑐𝑜𝑛(𝑆𝑡𝑖𝑗 = 𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡)

𝑛 × 𝑛 − 1 (Eq. 3.9)

where 𝑐𝑜𝑛(𝑆𝑡𝑖𝑗 = 𝑆𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡) represents the number of settlement cells within the 𝑛 × 𝑛
neighborhood filter. Then, the CA model was performed at the last step by using the IDRISI
Selva software, and the neighborhood effect was determined through the default 5 × 5 cells
contiguity neighborhood filter (Eastman, 2012; Mitsova et al., 2011).

The allocation process of the integrated models followed some rules consisting of: (1) the total
land use demand during the simulation period (which is derived from the MC analysis) is
equally allocated to each simulation year (iteration), (2) the neighborhood effect of each cell
is calculated in each iteration to re-weight its transition probability score, (3) the allocation is
conducted by ranking the transition probability scores, and cells with a higher score have a
stronger potential to change, and (4) the simulation continues until the total land use demand
is met. Compared to existing urban growth models, the integrated modeling framework
developed in this study incorporates the driving factors of urban growth using the ALR,
which overcomes the impact of SAC that is widely detected in spatial land use data. In the
meantime, the transition probabilities of different land use types to settlements have also
been taken into consideration by using the MC model.

3.2.4 Evaluation of Model Performance

The performances of different models were comparatively assessed by two approaches: the
Kappa statistic and the Receiver Operating Characteristic (ROC) curve. First of all, the Kappa
statistic has been widely used to assess the classification accuracy of thematic land use maps,
and is considered suitable to evaluate the accuracy of simulation results (He et al., 2006). Two
Kappa indexes were adopted in this study to assess the similarity between the observed map
and simulated maps, including the Kappa index and the Fuzzy Kappa index (K fuzzy). First,
the Kappa index is calculated based on an error matrix through a cell-to-cell comparison. It is
regarded as more robust due to its ability to capture the possible agreement that occurred by
chance. Second, the K fuzzy index can assess the similar spatial patterns between categorical
maps within a certain vicinity of cells by accounting for both location and category fuzziness
(Hagen, 2003). In this study, the K fuzzy index was calculated based on a neighborhood with
a 4 cell radius and an exponential decay function with a halving distance of 2 cells using the
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Map Comparison Kit software (Visser and de Nijs, 2006).

Second, the ROC curve is, statistically speaking, a graphical plot that tests the ability of
a binary classifier system, such as the logistic regression and other binary classification
approaches (Pontius and Schneider, 2001). To compute the ROC curve, a series of pairs of
the sensitivity (proportion of true positives) and the specificity (proportion of false positives)
will be obtained when changing the probability threshold. The ROC curve is generated by
plotting the sensitivity against the specificity. The ROC statistic is represented by the Area
Under the Curve (AUC), with values ranging from 0.5 to 1. A higher value of AUC indicates a
better fit of the model, an AUC of 0.5 indicates a random model and an AUC of 1 indicates an
ideal model.

3.3 Multiple Urban Dynamic Scenarios and Landscape
Changes (Part II)

To develop the multiple urban dynamic scenarios, a focus group meeting was organized with
regional and local experts. For comparative analysis, eight representative scenarios were
selected and modeled. To characterize and quantify the landscape pattern changes induced
by different scenarios at both the regional and sub-regional levels, a set of landscape metrics
were used, among which redundancy was pre-tested and reduced.

3.3.1 Multiple Urban Dynamic Scenarios

Developing Multiple Urban Dynamic Scenarios

As highlighted in the literature review, the engagement of stakeholders in scenario
development can improve the relevance, consistency and usefulness of scenarios based
on their local expertise (Nilsson et al., 2014; Reed et al., 2013). Therefore, a focus group
meeting was held with experts who have in-depth knowledge of the regional and local
urban development in this region. A regional land use map and the pattern of historical
settlement growth were provided and the research objectives were introduced in the meeting
as necessary information for further discussion. To ensure the plausibility and accuracy of
the scenarios developed, the experts were engaged at the very beginning of the scenario
development process (Reed et al., 2013). Moreover, the experts were selected from both
regional and local planning associations and a research institution including the Planning
Association of Greater Munich (RPV) which is the key planning organization in the Munich
region, the Environmental Consultancy of Professor Schaller Umwelt Consult GmbH (PSU)
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which is a local environment and landscape planning company, and the Chair for Strategic
Landscape Planning and Management from the Technical University of Munich. All of them
have expertise in environment or landscape planning and very good knowledge in the urban
development of this region. The following two main topics were discussed in the focus group
meeting.

First, the delimitation of different sub-regional zones: As urban dynamics in different sub-
regional zones have different characteristics and disparate impacts on ecosystems and natural
resources (Haase et al., 2012b; Li et al., 2016), a total number of 186 municipalities of this region
were assigned to three zones (Urban Core Zone, Peri-Urban Zone and Rural Zone) based on
the experts’ knowledge and broad expertise in this region and their assessment of future urban
development in each municipality (as shown in Figure 3.2). In this study, the Urban Core Zone
refers to the city of Munich which is generally a higher-density built environment still under
great settlement pressure.The Peri-Urban Zone includes the surrounding municipalities; it has
a relatively lower population density but belongs to the functional urban area, which has a
great development potential. Moreover, the Rural Zone is comprised of municipalities in more
remote areas but within the rural-urban-region that are still accessible within a practical daily
commuting time (as previous studies on rural-urban linkages have also suggested (Nilsson
et al., 2014; Ravetz et al., 2013)).

Second, the development of realistic regional urban dynamics in terms of housing demand,
urban spatial structure, and urban growth form in the future: Based on the analysis of
historical change and the experts’ knowledge and expertise in this region, “realistic” future
urban dynamics were thoroughly discussed. The outcomes were adopted as baseline sub-
scenarios for housing demand, urban spatial structure, and urban growth form. For the
purpose of the comparative study, additional alternative sub-scenarios were developed based
on the baseline sub-scenarios. The detailed settings of each sub-scenario are shown in Table
3.3. Ultimately, a total of eighteen scenarios for various urban dynamics were generated by
combining different sub-scenarios (Figure 3.7).
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Table 3.3 Description and settings for sub-scenarios.

Sub-scenarios Description Detailed settings and information

Sub-scenarios for housing demand

High housing demand High population growth with high per capita living
space.

Compared with the projected average annual population growth rate, the
average annual growth rates of high and low population growth scenarios were
1.2 times higher and 0.8 times lower, respectively. The Per Capita Living Space
(PCLS) scenarios were proposed based on the proportions between smaller
households (one- or two-person households) and larger households (three

Medium housing
demand (Baseline)

Projected population growth with medium per capita
living space.

or more -person households) in the whole region. When assuming that the
average area of one apartment remains static, there is no doubt that a higher
proportion of smaller households will lead to a higher PCLS. Compared to their
average annual growth rates between 2003 and 2013, the growth rates of smaller
and larger households were 1.2 times higher and 0.8 times lower in high PCLS

Low housing demand Low population growth with low per capita living
space.

scenarios respectively, while the opposite trend was observed in the low PCLS
scenario. In the medium PCLS scenario, the growth of both smaller and larger
households followed their average annual growth rate between 2003 and 2013.a

Sub-scenarios for urban spatial structure

Monocentric (Baseline) Urban growth in this scenario will follow a monocentric
model. More economic activities and employment
opportunities will be developed in the Urban Core
Zone, which attracts people moving towards this area.
Consequently, the housing demand will be much higher
in the Urban Core Zone than the other two zones.

55% of the housing demand will be accomplished in the Urban Core Zone, with
30% in the Peri-Urban Zone and 15% in the Rural Zone.

Polycentric This scenario describes a contrasting situation, in
which the subcenters in the Peri-Urban and Rural
Zones will be developed with more economic activities
and more employment opportunities.

40% of the housing demand will be in the Urban Core Zone, with 40% in the
Peri-Urban Zone and 20% in the Rural Zone.
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Table 3.3 Description and settings for sub-scenarios (continued).

Sub-scenarios Description Detailed settings and information

Sub-scenarios for urban growth form

Sprawl (Baseline) This scenario describes a situation where the urban
fabric will continuously expand to non-urban land at
low densities.

According to distinct urban growth characteristics in different zones, urban
growth in the Urban Core Zone is proposed to be 20% low-density and 80%
high-density settlements. Concurrently, urban growth in the Peri-Urban Zone is
comprised by half low-density and half high-density settlements, in contrast to
80% low-density and 20% high-density in the Rural Zone.

Compact sprawl This scenario depicts a strategy in which the urban
fabric expands in a dense manner.

Urban growth in all three zones will be developed as high-density settlements.

Compact This scenario implies a strong urban densification
process.

All high-density residential buildings in each zone will add one more floor (2
apartments) to accommodate more residents. On the one hand, if the housing
demand is greater than the supply, by adding one more floor, new high-density
settlements will be developed to fill the gap. On the other hand, when the
housing demand is less than the supply, the corresponding number of
households will move from low-density to high-density settlements, and the
vacant low-density settlement areas, as a result of this transfer, will be converted
into green spaces to improve the living environment quality, which implies the
shrinkage of urban areas.

Note: Regional population projection data and regional household structure data were obtained from the Bavarian State Office for Statistics, and the housing demand
sub-scenarios were projected through the year 2033 (20 years from 2013).

a more details are shown in the Appendix C.
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Multiple urban dynamic scenarios

H-M-S H-M-CS H-M-C H-P-S H-P-CS H-P-C

M-M-S M-M-CS M-M-C M-P-S M-P-CS M-P-C

L-M-S L-M-CS L-M-C L-P-S L-P-CS L-P-C

Sub-scenarios for housing 

demand

Sub-scenarios for urban 

spatial structure

Sub-scenarios for urban 

growth form

 High housing demand

 Medium housing 

demand (Baseline)

 Low housing demand

 Sprawl (Baseline)

 Compact Sprawl

 Compact

 Monocentric 

(Baseline)

 Polycentric

Figure 3.7 Multiple urban dynamic scenarios generated by combining different sub-scenarios
(The multiple scenarios were generated by combing different sub-scenarios to embrace as much
urban dynamics alternatives as possible. The amount of different housing demand (High,
Medium, or Low) is allocated into each sub-regional zone based on alternative urban spatial
structure (Monocentric or Polycentric) with different urban growth forms (Sprawl, Compact
Sprawl, or Compact). All scenarios were named according to their combinations of sub-scenarios;
for example, the combination of high housing demand, monocentric structure, and sprawl growth
form scenario was abbreviated as H-M-S).

The land take per household for each scenario was calculated according to the following
equation:

𝐿𝑇𝑝𝐻𝑖𝑗 =
ΔResidential area𝑖𝑗

ΔHousehold number𝑖𝑗
(Eq. 3.10)

where 𝐿𝑇𝑝𝐻𝑖𝑗 refers to the land take per household in zone 𝑖 and settlement density 𝑗, with
𝑗 = 1 indicating low-density settlements and 𝑗 = 2 indicating high-density settlements.
ΔResidential area𝑖𝑗 refers to the change in settlement area between 2003 and 2013 in zone 𝑖
and settlement density 𝑗, and ΔHousehold number𝑖𝑗 refers to the change in household number
in zone 𝑖 and settlement density 𝑗 over the same time period. The area of land converted into
settlements in all scenarios is shown in Figure 3.8.
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Figure 3.8 Area of land converted into settlements in each scenario projected through the year
2033 (*indicates urban shrinking scenario).

Selecting Scenarios for Comparison

As analyzing all 18 scenarios would make the analysis too broad and too complex, credible
results could also be achieved by choosing a smaller number of scenarios that were
considered particularly relevant to address the research objectives. Eight scenarios were
selected for further comparative analysis in this study. The selection process is performed
in two steps. First, landscape fragmentation and correspondingly the loss of biodiversity are
two most important negative impacts of urban sprawl. Therefore, the connectance index
of green-blue infrastructure (including green spaces and water bodies), which measures
the overall connectivity of green-blue infrastructure, and the total settlement area were
calculated for each scenario as indicators, and then four extreme cases were subsequently
selected, including H-M-CS, H-P-S, L-P-C, and L-M-C (Figure 3.9). The connectance index
is defined by the percentage of functional joinings between patches of the same patch type,
which measures the overall connectivity of green-blue infrastructure in this study, and was
calculated using FRAGSTATS software (McGarigal et al., 2012). Second, for the purpose of
examining the impacts of different urban dynamics on green space availability, scenarios
should be compared separately by keeping two of the three sub-scenarios the same while
varying the remaining ones. For instance, H-P-S, M-P-S, and L-P-S, which have the same
urban spatial structure and growth form, were selected to compare the impacts of the three
housing demand sub-scenarios. Accordingly, another four scenarios were selected, including
H-M-C, H-M-S, M-P-S, and L-P-S. In total, eight scenarios were selected, as shown in Figure
3.9.
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Figure 3.9 Scenarios that were selected for comparison (marked in black, *indicates urban
shrinking scenario).

3.3.2 Urban Dynamic Modeling

The integrated urban growth model (the ALR-MC-CA model) that was developed in Part I
was used to model the urban growth for each selected scenario. However, urban growth does
not always follow a fixed model and it is unreasonable to use the same set of rules when a
study area is large (He et al., 2015). Therefore, urban growth in different sub-regional zones
wasmodeled independently.The relativeweights of the driving factors of urban growth in each
sub-regional zone evaluated by theAutologistic Regression (ALR) are summarized inAppendix
D. The transition probabilities of different land use types to high- and low-density settlements
were considered by using the Markov Chain (MC) model (see Appendix E). Protected green
spaces, such as nature reserves, natural monuments, protected landscape areas and elements,
were excluded whenmodeling urban growth (see Appendix A).The final transition probability
maps for all sub-regional zones are presented in Appendix F. In the end, urban growths in
different sub-regional zones were spatially allocated based on their final transition probability
maps, respectively, by the customized Cellular Automata (CA) model.

It is noteworthy that urban shrinkage is another path of urban development that is occurring
widely throughout the world (Haase et al., 2012a). In this study, compact growth scenarios
may result in urban shrinkage. Several of the most visible byproducts of urban shrinkage are
vacant residential or industrial buildings, vacant land due to demolition and unused spaces,
which offer an opportunity for the development and extension of green and open spaces that
can improve environmental quality (Hollander et al., 2009) and provide recreational facilities
for residents (Haase et al., 2012a). Accordingly, as described in the scenario settings, vacant
land as the result of urban shrinkage is converted into green spaces in the shrinking scenarios.
Based on findings from previous studies (Kabisch et al., 2016; Lauf et al., 2014), the availability
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of nearby green spaces is considered to be more beneficial for all age-groups of residents,
especially in terms of daily short-term recreational services. Therefore, the maximum distance
to green spaces was set at 300 meters, and the minimum size of the green spaces was set
at 2 ℎ𝑎 (Handley et al., 2003; Kabisch et al., 2016; Lauf et al., 2014). As outlined previously,
due to the lack of empirical evidence of urban shrinkage in the study region, common urban
shrinkage models were not suitable (Lauf et al., 2012). Therefore, in the case of this study, an
optimization model was built in the GAMS software environment to maximize the benefits
of the newly developed green spaces for residents (see Pribadi and Xu, 2017, for a detailed
explanation of the model). There are two basic rules in this model. First, the new green spaces,
with a minimum size of 2 ℎ𝑎 (as above), were developed within low-density settlement patches
that had no access to green spaces (no green space larger than 2 ℎ𝑎 available within 300 𝑚).
Second, the beneficial areas, settlement areas within 300𝑚 from these new green spaces, were
maximized.

3.3.3 Assessing the Landscape Pattern Changes

Calculation of Landscape Metrics

The landscape pattern changes were analyzed with landscape-level metrics to investigate and
explore landscape-scale variables (Inkoom et al., 2018). Landscape metrics have been found
to be capable of characterizing and quantifying urban land patterns and adding insights to
the process of urban dynamics by a large number of studies (Buyantuyev and Wu, 2007;
Buyantuyev et al., 2010; Dietzel et al., 2005; Inkoom et al., 2018; Liu and Yang, 2015; Liu
et al., 2016; Yu and Ng, 2007). For this study, twenty-four widely used landscape metrics
were employed and computed at the landscape level to characterize the changes of landscape
patterns under different urban dynamic scenarios. All metrics were calculated in FRAGSTATS
4.2 (McGarigal et al., 2012) and detailed descriptions are listed in Table 3.4. These 24 landscape
metrics can be categorized into three groups: patch complexity (LPI, TE, ED, LSI, AREA_MN,
AREA_AM, PAFRAC, SHAPE_MN, and FRAC_MN), configuration (CONTAG, IJI, PLADj, AI,
DIVISION, SPLIT, and MESH), and diversity (PR, PRD, SHDI, SIDI, MSIDI, SHEI, SIEI and
MSIEI).
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Table 3.4 List of landscape metrics used in this study representing three aspects (patch complexity, configuration, and diversity) of spatial heterogeneity.

Landscape metrics Abbreviation Description (McGarigal and Marks, 1995; Wu et al., 2002)

Patch complexity (area, edge and shape metrics)
Largest Patch Index LPI The percentage of total landscape area comprised by the largest patch
Total Edge TE The sum of the lengths (𝑚) of all edge segments in the landscape
Edge Density ED The sum of the lengths (𝑚) of all edge segments in the landscape, divided by the total landscape area (𝑚2)
Landscape Shape Index LSI A standardized measure of total edge or edge density that adjusts for the size of the landscape. It measures the

shape complexity of the entire landscape
Mean Patch Size AREA_MN The sum, across all patches in the landscape, of the area (𝑚2) of each patch, divided by the total number of

patches
Area-Weighted Mean Patch Size AREA_AM The sum, across all patches in the landscape, of the area (𝑚2) of each patch multiplied by the proportional

abundance of the patch
Perimeter-Area Fractal Dimension PAFRAC The fractal dimension of the whole landscape which equals 2 divided by the slope of regression line between

the logarithm of patch area (𝑚2) and the logarithm of patch perimeter (𝑚)
Mean Patch Shape Index SHAPE_MN The sum, across all patches in the landscape, of the patch-level shape index, divided by the total number of

patches. Shape index equals patch perimeter (𝑚) divided by the square root of patch area (𝑚2)
Mean Fractal Dimension Index FRAC_MN The patch-level fractal dimension averaged over all patches in the landscape. Patch fractal dimension index

equals 2 times the logarithm of patch perimeter (𝑚) divided by the logarithm of patch area (𝑚2)
Configuration (aggregation metrics)

Contagion CONTAG Measures the extent to which patches are spatially aggregated by computing the probability that two randomly
selected adjacent pixels belong to the same patch type

Interspersion and Juxtaposition
Index

IJI Measures the distribution of adjacencies among unique patch types

Percentage of Like Adjacencies PLADj Measures the degree of aggregation of patch types by considering only dispersion and not interspersion
Aggregation Index AI The area weighted mean class-level aggregation index which equals the number of like adjacencies divided by

the maximum possible number of like adjacencies involving the corresponding class
Landscape Division Index DIVISION The probability that two randomly chosen pixels in the landscape are not situated in the same patch
Splitting Index SPLIT The effective mesh number
Effective Mesh Size MESH The size of the patches when the landscape is subdivided into S patches, where S is the value of the splitting

index
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Table 3.4 List of landscape metrics used in this study representing three aspects (patch complexity, configuration, and diversity) of spatial heterogeneity
(continued).

Landscape metrics Abbreviation Description (McGarigal and Marks, 1995; Wu et al., 2002)

Diversity (diversity metrics)
Patch Richness PR The number of different patch types in the landscape
Patch Richness Density PRD The number of different patch types divided by total landscape area (𝑚2)
Shannon’s Diversity Index SHDI The proportional abundance of each patch type
Simpson’s Diversity Index SIDI The probability that any 2 pixels selected at random would be different patch types
Modified Simpson’s Diversity
Index

MSIDI Eliminates the intuitive interpretation of Simpson’s index as a probability

Shannon’s Evenness Index SHEI The observed SHDI divided by the maximum SHDI for that number of patch types. It measures the degree of
evenness as the complement of dominance

Simpson’s Evenness Index SIEI The observed SIDI divided by the maximum SIDI for that number of patch types. It measures the degree of
evenness as the complement of dominance

Modified Simpson’s Evenness
Index

MSIEI The observed modified MSIDI divided by the maximum MSIDI for that number of patch types. It measures the
degree of evenness as the complement of dominance
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Statistical Analysis for Data Reduction

First, following Plexida et al. (2014) and Inkoom et al. (2018), the Shapiro-Wilk test and the
𝐹 -test were used to test for data normality and variance homogeneity. As some of the metrics
were non-normally distributed among different scenarios, the Spearman’s rank correlation
coefficient was calculated for each metric group in a pair-wise way to explore the redundancy
and multicollinearity among these metrics.

Then, following Cushman et al. (2008), a Principal Component Analysis (PCA) with varimax
rotation was applied to each metric group to identify the core components that explained the
landscape variability in the dataset. In light of the work of Li and Liu (2016), components with
eigenvalues larger than 1 and metrics with loadings greater than 0.75 were retained for further
analysis.

Finally, to further reduce the level of redundancy, the retained metrics from each metric group
were integrated into a new landscape index by using the following equation (Li and Liu, 2016;
Su et al., 2017).

Landscape Index =
𝑛
∑
𝑖=1

𝐸𝑖 × (
𝑘
∑
𝑗=1

𝐿𝑗 × 𝑥𝑗) (Eq. 3.11)

where 𝐸𝑖 refers to the eigenvalue of component 𝑖; 𝐿𝑗 refers to the loading score of landscape
metric 𝑗; 𝑥𝑗 is the standardized value of landscape metric 𝑗.

3.4 Impacts ofUrbanDynamics onGreen SpaceAvailability
(Part III)

To assess the impacts of urban dynamics on the availability of green spaces, different scenarios
were comparatively analyzed by using two indicators that offer different information in terms
of green space availability at both the regional and sub-regional levels.

3.4.1 Definition of Green Spaces Availability

According to Kabisch et al. (2016), the understanding of green space availability is the amount
of green area in a certain defined distance to where people live. In this study, first of all, green
spaces are defined as land uses of “parks and green spaces”, “allotment gardens”, “cemeteries”
and “forests”. Other land use classes, such as “arable land”, “grassland” and “wetland”, that
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could potentially serve as green spaces were excluded from analysis due to their relatively low
recreational value (Kabisch et al., 2016). The “sports and leisure facilities” class (e.g., football
stadiums, tennis courts, golf courses) was also excluded because of low vegetation coverage
and a lack of public accessibility. Second, asmentioned in the section 3.3.2, this study putsmore
focus on the availability of nearby green spaces that are more beneficial for all age-groups of
residents in terms of daily short-term recreational services (Kabisch et al., 2016; Lauf et al.,
2014), in which case the maximum distance to green spaces was set at 300 meters and the
minimum size of the green spaces was set at 2 ℎ𝑎 (Handley et al., 2003; Kabisch et al., 2016;
Lauf et al., 2014).

3.4.2 Indicators for Green Space Availability

Different indicators have been used in Europe, at national and subnational levels, to assess the
provision of green spaces (Wüstemann et al., 2016). For example, targeted values of the per
capita provision of public green space, ranging from 6 to 15 𝑚2, are used in urban planning
in German cities (Deutscher Rat für Landespflege, 2006). However, this indicator does not
provide information regarding the spatial distribution and the accessibility of green spaces
for residents (de la Barrera et al., 2016). Therefore, the European Environment Agency (EEA)
defines that, in Europe, people should have access to green space within 15 min walking
distance (Stanners and Bourdeau, 1995), which indicates the overall accessibility of green
spaces. As another example, it is recommended by Natural England, a non-departmental public
body, that all residents should have access to natural green spaces of a minimum size of 2 ℎ𝑎
within 300 𝑚 distances in the UK (Handley et al., 2003).

Thereby, two indicators were employed in this study, Per Capita Green Space (abbreviated
hereafter as PCGS) and the Share of the Population with Access to Green Spaces (abbreviated
hereafter as SPAGS). Different approaches have been used to measure the spatial accessibility
of green space, among which buffer analysis and network analysis in the GIS environment
are the two most frequently used ones (Koppen et al., 2014). Buffer analysis measures the
linear distance without considering the actual routes, while network analysis is based on
transportation networks which requires highly detailed data (Gupta et al., 2016). In this study,
the buffer analysis was applied due to a lack of detailed road network data for the entire region.
Both indicators were calculated according to the following steps (Figure 3.10): first, all green
spaces with a minimum size of 2 ℎ𝑎were selected.Then, a buffer analysis was performed using
ArcGIS 10.3 to create 300 𝑚 rings around the selected green spaces and all settlement areas.
Finally, the area of the green spaces (≥ 2 ℎ𝑎) within 300𝑚 distances from the settlement areas
and the population within 300 𝑚 distances from green spaces (≥ 2 ℎ𝑎) were calculated and
divided by the total population, respectively, as PCGS (≥ 2 ℎ𝑎 and within 300𝑚 distances) and
SPAGS (≥ 2 ℎ𝑎 and within 300 𝑚 distances).
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Figure 3.10 Processes of the spatial calculation in ArcGIS.

3.5 Spatial Variation of Green Space Equity and the
Impacts of Urban Dynamics (Part IV)

To investigate the spatial equity of green space distribution, the Gini coefficient was adopted as
the indicator and its spatial relationshipwith socioeconomic variables was explored.Moreover,
to reveal the impacts of different urban dynamics, the green space equity under different
scenarios were compared at both the regional and sub-regional levels.

3.5.1 Measuring the Green Space Equity

The Gini coefficient, which was developed as a measure of the inequality among values of
a frequency distribution, was employed to measure the spatial inequality in green space
distribution across the population for all municipalities. Although it is prevalent in economics
and has been applied in measuring the income inequality of residents, the Gini coefficient
has also been proved as an efficient indicator to assess sustainable urban development (Li

52



Methods

et al., 2009) and the green space provision as well (Kabisch and Haase, 2014; Wüstemann
et al., 2017). The Gini coefficient ranges from 0 and 1, with 0 representing perfect equality of
potential access to the same amount of green space and 1 indicating perfect inequality. It can
be expressed as:

𝐺𝐶 = 1 −
𝑛
∑
𝑖=1

𝑃/𝑃𝑖 (𝐵𝑖−1 + 𝐵𝑖) (Eq. 3.12)

where 𝑃𝑖 is the population number of grid cell 𝑖 and 𝑃 is the total population of themunicipality.
𝐵 is the cumulative share of green space in a 300 𝑚 buffer around grid cell 𝑖. The higher a
municipality’s Gini coefficient means the more unequal the green space distribution among
its residents.

For calculating the Gini coefficient, the study region was intersected with a 100𝑚 × 100𝑚
grid file, and grid cells with their centroids located in each municipality were selected.
The population number within each grid cell and the amount of green space within a 300
𝑚 buffer around the centroid of the grid cell were calculated. The population densities of
both high-density and low-density settlements were calculated based on the population
and household census data from the Bavarian State Office for Statistics. First, the average
number of people living in one household and the household numbers of high-density and
low-density settlements were calculated, based on which the population living in high-density
and low-density settlement area were computed. Then, the population density was calculated
by dividing the population number by the settlement area for high-density and low-density
settlements respectively. Grid cells with less than two residents were excluded from the
further calculation. The Gini coefficient was calculated for the whole region, sub-regional
zones (Urban Core, Peri-Urban and Rural Zones) and municipalities, respectively.

3.5.2 Collecting Socioeconomic Variables

To explore the relationship between the green space equity and socioeconomic factors across
different municipalities, eight socioeconomic variables were selected including the percentage
of old people above 65, percentage of children and teenagers below 18, percentage of people
in long-term unemployment, per capita living space, population density, per capita municipal
revenue, per capita income and average housing price. Basic descriptive statistics of these
variables are shown in Table 3.5.
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Table 3.5 Descriptive statistics of the socioeconomic variables.

Variable Minimum Maximum Mean
Std.

Deviation

Percentage of old people above 65 (%) 9.58 26.79 17.80 3.48
Percentage of children and teenagers below 18 (%) 14.85 23.07 19.02 1.44
Percentage of people in long-term unemployment (%)a 0.00 0.81 0.26 0.14
Per capita living space (𝑚2/𝑖𝑛ℎ.) 36.76 63.94 47.11 4.10
Population density (n/ℎ𝑎) 17.32 112.27 36.19 17.08
Per capita municipal revenue (Euro/𝑖𝑛ℎ.) 1401.55 30655.59 2995.71 2939.82
Per capita income (Euro/𝑖𝑛ℎ.) 35076.70 142887.16 48173.96 14000.13
Average housing price (Euro/𝑚2) 7.22 1385.89 325.08 247.24

Note: 𝑛 = 183. Average housing price was calculated as the average value from the year 2010 to 2016 due to
data availability. All other data are from the year 2013.

a Long-term unemployed persons are those whowere registered as unemployed with the employment agencies
for a year or more.

Then, to reduce the redundancy of the variables and to facilitate the interpretation of the
resulting factors, the factor analysis was conducted (Shen et al., 2017; Yao et al., 2013).
The Kaiser-Meyer-Olkin (KMO) test was pre-performed to check the appropriateness of
the factorial analysis. Principal component analysis and varimax rotation were used as the
methods for factor extraction and maximizing the correlation between factors and measured
variables. Municipalities with only forest or lake as well as the two municipalities of which
the Gini coefficients equal to zero due to the absence of green spaces (≥ 2 ℎ𝑎) within 300 𝑚
from settlements were excluded from analysis.

3.5.3 Spatial Correlation Analysis

It is known from literature that the provision of green spaces is mostly unevenly distributed
over space and tends to be spatially heterogeneous (Kabisch and Haase, 2014). In this
case, simple statistical methods such as global Ordinary Least Squares (OLS) regression
may not be applicable, particularly to large-scale analyses. Firstly, the homoscedasticity
assumption of OLS may be violated (Gao and Li, 2011; Li and Liu, 2016). Secondly, the OLS
can only produce space-constant global relationships that only reflect the average conditions
(Fotheringham and Brunsdon, 1999; Li and Liu, 2016; Su et al., 2012). Therefore, a spatial
statistic approach, Geographically Weighted Regression (GWR), was applied to detect the
varying local relationships between the Gini coefficient and socioeconomic factors across
different parts of the region. GWR has been widely applied as a regional level analytical
approach to characterize the spatially non-stationary relationship in the field of urban
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planning and land use studies (Gao and Li, 2011; Lee and Schuett, 2014; Li and Liu, 2016;
Nilsson, 2014; Su et al., 2014; Yu, 2006). The general equation of GWR model can be expressed
as Eq. 3.13.

𝑦𝑖 = 𝛽0(𝜇𝑖 , 𝑣𝑖) +
𝑛
∑
𝑘=1

𝛽𝑘(𝜇𝑖 , 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖 (Eq. 3.13)

where 𝑦𝑖 is the independent variable at the location 𝑖, 𝛽0(𝜇𝑖 , 𝑣𝑖) is the intercept at the location
𝑖, 𝛽𝑘(𝜇𝑖 , 𝑣𝑖) represents the local regression coefficient for the independent variable 𝑥𝑘 at the
location 𝑖, and (𝜇𝑖 , 𝑣𝑖) denotes the Cartesian coordinate of the 𝑖th point, commonly indicating
the centroid of the spatial unit. The parameters in GWR are estimated by weighting all
observation around the point 𝑖 through the following equation:

̂𝛽(𝜇𝑖 , 𝑣𝑖) = (𝑋𝑇𝑊(𝜇𝑖 , 𝑣𝑖)𝑋)−1𝑋𝑇𝑊(𝜇𝑖 , 𝑣𝑖)𝑦𝑖 (Eq. 3.14)

where ̂𝛽(𝜇𝑖 , 𝑣𝑖) represents the estimate of the coefficient value at the location 𝑖 and 𝑊(𝜇𝑖 , 𝑣𝑖)
is an 𝑛 by 𝑛 weighting matrix for all observed data around the point 𝑖. In GWR model, it is
assumed that observations close to point 𝑖 have more influence on local parameter estimation
at location 𝑖 and therefore are weighted more than farther ones. Hence, the weight of an
observation is valued according to its spatial proximity to point 𝑖 based on the distance-decay
weighting function, also called the kernel function, which follows the Gaussian curve
(Brunsdon et al., 1996).

To keep the number of neighbors constant, the adaptive bi-square function was employed as
the weighting function (Pribadi and Pauleit, 2016), which can be written as:

𝑊𝑖𝑗 = {
[1 − (𝑑2𝑖𝑗/𝑑2)]2 𝑑𝑖𝑗 < 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(Eq. 3.15)

where 𝑊𝑖𝑗 denotes the weight value for observation 𝑗 in the neighborhood of observation 𝑖,
𝑑𝑖𝑗 is the Euclidian distance between the observations 𝑖 and 𝑗, 𝑑 is an adaptive bandwidth that
is defined as the distance from the observation 𝑖 to the 𝑘th nearest neighbor. At the meantime,
the golden section searchmethodwas adopted with theminimum value of Akaike Information
Criterion (AIC) as the selection criteria to search for the optimal bandwidth size automatically.
TheGWR analysis was conducted using ArcGIS 10.3 and GWR4 software developed by Nakaya
(2016).
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Results

4.1 Development of the Integrated Urban Growth Model
(Part I)

In the following paragraphs, the Spatial Autocorrelation (SAC) that existed among the pattern
of the historical settlement growth as well as the modeling improvement by incorporating
the spatial dependency into the model and by separately modeling the growths of different
settlement types are reported.

4.1.1 Spatial Autocorrelation of Regional Settlement Growth

From 2003 to 2013, the area of settlements has increased by 3.93% (17.33 𝑘𝑚2) in the Munich
region. The spatial distribution of the settlement growth during this study period is shown
in Figure 4.1. As seen, the spatial pattern of the settlement growth has been quite scattered
throughout the region, and the area of the settlement growth only accounted for a rather
small proportion (about 0.31%) of the total area.

56



Results

a b

a

b

Legend
Growth of low-density settlements
Growth of high-density settlements ±

Figure 4.1 Spatial distribution of the settlement growth between 2003 and 2013.

To characterize the SAC of the settlement growth,Moran’s I analysis was carried out at various
lag distances (Figure 4.2). The results show that a strong positive SAC existed among the
distribution of the settlement growth within a certain lag distance and gradually decreased
while the lag distance increased. It indicated that a regression model that could explain the
spatial dependency would be helpful in understanding the spatial pattern of the settlement
growth and yield more credible modeling results.
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Figure 4.2 Moran’s I values for the distributions of different settlement growth.
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4.1.2 Model Improvement by Incorporating the SpatialAutocorrelation

Table 4.1 shows the results (coefficients and standard errors) of the Ordinary Logistic
Regression (OLR) and the Autologistic Regression (ALR) for all settlement growth. The
negative coefficients indicate that the settlement growth and the driving factors have an
opposing relationship, whereas the positive coefficients indicate that the settlement growth
is reinforced by these factors. Not surprisingly, a significant positive correlation was found
between the autocovariate variable and the settlement growth, which could be attributed to
the strong positive SAC in the spatial pattern of the settlement growth. In addition to the
autocovariate variable, the numbers of significant variables were fourteen and thirteen in
the OLR and the ALR respectively. Population density (PPD) and distance to the main center
(DisMC) were not significant in both regressions. Compared to the OLR, four kinds of results
came up when incorporating the autocovariate variable in the ALR. First, some variables
were eliminated, including the slope (SLP), distance to the settlement centers (DisSTC) and
distance to the commercial area (DisCA). Second, two variables, distance to the S-bahn station
(DisSB) and distance to the industrial area (DisIA), became significant in the ALR. Third, the
coefficients of the common variables in OLR and ALR were modified. Some of them that
were much more significant in the OLR became less significant in the ALR. Fourth, some
coefficients show opposite signs (positive or negative) between the OLR and ALR, including
distance to water (DisWT), distance to green spaces (DisGS), distance to U-bahn station
(DisUB), distance to sub-center (DisSC), distance to highway (DisHW), distance to major road
(DisMR) and residential land price (RLP). Overall, both models exhibit very different results
and thereby the choice of the right model is a crucial decision.

58



Results

Table 4.1 Regression coefficients (B) and standard errors (S.E.) of the OLR and the ALR for all
settlement growth.

Variable
Ordinary logistic regression Autologistic regression

B S.E. B S.E.

Constant -2.66E+00*** 4.37E-02 -5.68E+00*** 7.23E-02
Slope -8.26E-02*** 3.94E-03 — —

Distance to water -3.96E-05*** 3.57E-06 1.47E-05** 5.44E-06
Distance to green spaces -6.84E-04*** 1.61E-05 1.48E-04*** 1.90E-05
Neighborhood 1.02E-01*** 1.80E-03 2.12E-01*** 2.98E-03
Distance to the S-bahn (suburban train)
station

— — -6.99E-06* 3.50E-06

Distance to the U-bahn (metro) station 7.33E-06*** 1.03E-06 -3.78E-06● 2.11E-06
Distance to the main center — — — —

Distance to the subcenters 1.99E-05*** 1.78E-06 -6.27E-06* 2.81E-06
Distance to the settlement centers 5.70E-05*** 2.55E-06 — —

Distance to the commercial area -3.68E-05*** 3.46E-06 — —

Distance to the industrial area — — 2.42E-05* 1.28E-05
Distance to the highway -6.96E-06*** 1.99E-06 8.50E-06** 3.10E-06
Distance to the major road -2.10E-04*** 1.99E-05 1.21E-04*** 3.10E-05
Distance to the local road -9.25E-03*** 1.76E-04 -3.54E-03*** 3.10E-04
Distance to the urban edge -7.68E-03*** 1.21E-04 -1.40E-02*** 3.33E-04
Population density — — — —

Residential land price 2.13E-04*** 3.28E-05 -3.04E-04*** 6.26E-05
Autocov 9.25E-01*** 5.17E-03

Note: Significant codes: ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05, ●: 𝑝 < 0.1, —: not significant.

The SAC in the residuals of both models were assessed using the Local Indicators of Spatial
Association (LISA) analysis to test the improvement of the ALR compared to the OLR. It is
clear from Figure 4.3 that more clusters (which indicate different kinds of SAC) existed in
the residuals of the OLR-MC-CA model than the ALR-MC-CA model. In addition, the global
Moran’s I index of the residuals in the OLR-MC-CA model was 0.2415, which implied a high
positive SAC according to Glazier et al. (2004) and was much higher than that in the ALR-MC-
CA model (0.0358).
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Figure 4.3 Local indicators of spatial association (LISA) cluster maps of residuals in the
OLR-MC-CA and the ALR-MC-CA models. The High-High and Low-Low mean cells of high and
low values are surrounded by cells with high and low values, respectively, which indicates
positive SAC. The High-Low and Low-High mean cells of high and low values are surrounded by
cells with low and high values, which indicates negative SAC. The level of significance was set as
𝑝 < 0.05.

The result of the Receiver Operating Characteristic (ROC) curve analysis, which describes how
strongly the settlement growth is aggregated around areas with higher transition probability
(Han and Jia, 2017), shows that the ALR-MC-CAmodel (with anAUC value of 0.998) performed
better than the OLR-MC-CAmodel (with an AUC value of 0.962) (Figure 4.4). Figure 4.5 shows
the simulated errors of settlement cells by the two models. There are two types of errors in
the falsely simulated settlement cells. The first one is non-settlement cells that converted into
settlements but were incorrectly simulated as non-settlement cells. Another type of error is
that non-settlement cells that did not convert into settlements were wrongly simulated as
settlement cells. In general, although the distributions of the falsely simulated cells of both
models were somewhat similar to each other, the number of falsely simulated cells by the ALR-
MC-CA model was less than that by the OLR-MC-CA model. Moreover, the Kappa indexes
were calculated for both models by comparing the simulated settlement growth with real
growth (Table 4.2). The ALR-MC-CA model had considerably higher values of Kappa and K
fuzzy than the OLR-MC-CAmodel, indicating that the simulation accuracy of the ALR-MC-CA
model was much higher than the other one.
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Figure 4.4 ROC curve and values of AUC for the OLR-MC-CA and the ALR-MC-CA models.

a b

ALR-MC-CA
Truly simulated settlement cells
Falsely simulated settlement cells
Non-settlement cells

OLR-MC-CA
Truly simulated settlement cells
Falsely simulated settlement cells
Non-settlement cells

a b

a

b

a

b
± ±

Figure 4.5 Simulated errors of settlement growth by the OLR-MC-CA model and the
ALR-MC-CA model (a: city center of Munich, b: peripheral area with subcenter).

Table 4.2 Kappa and K fuzzy values for simulation result of both models.

Index OLR-MC-CA ALR-MC-CA

Kappa 0.1820 0.6050
K fuzzy 0.3298 0.7642
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4.1.3 Separately Modeling High- and Low-density Settlement Growth

The coefficients (B) and standard errors (S.E.) of the ALR for the growths of different
settlement types are shown in Table 4.3. A total of thirteen variables were significant in
the regression for high-density settlement growth, while there were only nine significant
variables for low-density settlement growth. Four variables were not significant in both
regressions, including the slope (SLP), distance to the S-bahn station (DisSB), distance to the
main center (DisMC), and distance to the commercial area (DisCA). The distance to water
(DisWT), distance to the subcenters (DisSC), distance to the settlement centers (DisSTC),
distance to the industrial area (DisIA) and residential land price (RLP) were significant for
high-density settlement growth but were insignificant for low-density settlement growth,
whilst the distance to the U-bahn station (DisUB) was only significant for low-density
settlement growth. In addition, among the common variables that were included in both
regressions, distance to the local road (DisLR) and distance to the urban edge (DisUE) had
the same correlation with both high-density and low-density settlement growth. However,
on the one hand, distance to the green spaces (DisGS), distance to the highway (DisHW)
and distance to the major road (DisMR), which had positive correlations with low-density
settlement growth, were negatively correlated with high-density settlement growth. This
implied that the development of high-density settlements would be close to green spaces,
highways and major roads. On the other hand, population density (PPD) had a positive
correlation with high-density settlement growth but a negative correlation with low-density
settlement growth, indicating that high-density settlements would be developed in areas with
high population density and the development of low-density settlements was the opposite.
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Table 4.3 Regression coefficients (B) and standard errors (S.E.) of the ALR for high-density and
low-density settlement growth.

Variable
High-density settlements Low-density settlements

B S.E. B S.E.

Constant -5.71E+00*** 1.43E-01 -5.53E+00*** 7.34E-02
Slope — — — —

Distance to water 5.87E-05*** 1.13E-05 — —

Distance to green spaces -5.47E-04*** 5.27E-05 2.09E-04*** 1.95E-05
Neighborhood 2.10E-01*** 5.65E-03 1.93E-01*** 3.71E-03
Distance to the S-bahn (suburban train)
station

— — — —

Distance to the U-bahn (metro) station — — -8.33E-06*** 1.60E-06
Distance to the main center — — — —

Distance to the subcenters -2.92E-05*** 5.70E-06 — —

Distance to the settlement centers -4.68E-05*** 8.70E-06 — —

Distance to the commercial area — — — —

Distance to the industrial area 9.77E-05*** 2.54E-05 — —

Distance to the highway -3.11E-05*** 6.60E-06 1.45E-05*** 3.36E-06
Distance to the major road -2.86E-04*** 7.96E-05 1.29E-04*** 3.50E-05
Distance to the local road -2.69E-03*** 6.15E-04 -2.68E-03*** 3.70E-04
Distance to the urban edge -1.33E-02*** 5.28E-04 -2.18E-02*** 6.33E-04
Population density 2.83E-04*** 5.92E-05 -1.47E-04*** 2.04E-05
Residential land price -1.81E-03*** 2.15E-04 — —

Autocov 1.10E+00*** 1.05E-02 1.13E+00*** 7.16E-03

Note: Significant codes: ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05, ●: 𝑝 < 0.1, —: not significant.

Figure 4.6 represents the observed and simulated distributions of high-density and low-
density settlements for the year 2013 by the ALR-MC-CA. It is apparent that the distribution
of settlement areas in both maps shared a high similarity, and the differences were not quite
evident. This is because the settlement growth only accounted for a very small proportion
of the total settlement area during the study period. The simulated errors of high-density
and low-density settlement growth by the ALR-MC-CA model are shown in Figure 4.7.
Compared to the simulated error of all settlement growth by the same model (see Figure 4.5),
it is apparent that the falsely simulated settlement cells decreased when separately modeling
high-density and low-density settlement growth. The values of Area Under the Curve (AUC),
Kappa and K fuzzy that were used to assess the model performance are summarized in
Table 4.4. The AUC values for high-density and low-density settlement growth were both
higher than that of all settlement growth. Meanwhile, modeling high-density and low-density
settlement growth separately showed higher values of all Kappa indexes than integratively
modeling all settlement growth.
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Observed map for 2013
High-density settlements
Low-density settlements
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Simulated map for 2013 by ALR-MC-CA
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Figure 4.6 High-density and low-density settlements distributions in observed map and
simulated map by ALR-MC-CA for the year 2013 (a: city center of Munich, b: peripheral area with
subcenter).
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Figure 4.7 Simulated error of high-density and low-density settlement growth by the
ALR-MC-CA model (a: city center of Munich, b: peripheral area with subcenter).
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Table 4.4 Values of AUC, Kappa and K fuzzy for modeling all settlement growth integratively
and the growth of different settlement types separately by the ALR-MC-CA model.

AUC Kappa K fuzzy

Modeling all settlement growth by ALR-MC-CA

All settlements 0.9980 0.6050 0.7642
Modeling high-density and low-density settlement growth by ALR-MC-CA

High-density settlements 0.9994 0.6741 0.8023
Low-density settlements 0.9982 0.6350 0.8028
Overall — 0.6524 0.8046

4.2 Multiple Urban Dynamic Scenarios and Landscape
Changes (Part II)

The following paragraphs show the results of historical land use change as a result of urban
expansion, and the regional and sub-regional land use and landscape pattern changes under
different urban dynamic scenarios.

4.2.1 Urban Expansion between 2003 and 2013

A land use transition matrix for the period of 2003-2013 is shown in Table 4.5. In the entire
region, the area of settlements has increased from 44,138 ℎ𝑎 to 45,871 ℎ𝑎 between the year
2003 and 2013, of which the growth of high-density settlements accounted for 33.19%, while
low-density settlement growth accounted for 66.81%. With an average annual growth rate of
0.39%, the area of settlements accounted for 8.33% of the total area of this region in 2013.
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Table 4.5 Land-use transition matrix for the period of 2003-2013 in ha.

Land use classes / Abbr. AG AL CA CS F G HS IA LP LS MA N PA PGS Q RSRT RCBA R SMRC SLF UL SD W Sum 2003

Allotment gardens 927 / / / / / / / / / / / / / / / / / / / / / / 927

Arable land 11 207841 148 134 41 420 127 418 / 381 / 5 13 60 507 / 132 47 41 184 5 48 / 210561

Commercial area / / 2130 10 / / / / / / / / / / / / / / / / / / / 2140

Construction sites / 6 75 12 / 38 138 44 11 74 / / / 39 / / 25 14 13 61 7 / / 559

Forest / 6 / / 142286 102 / 98 / 8 / / / / 89 / 12 10 / 8 / / / 142620

Grassland / 10844 113 54 201 85857 235 291 / 670 / / 16 21 156 / 23 14 22 120 / 7 / 98643

High-density settlements / / / 16 / / 9909 / / / / / / / / / / / / / / / / 9925

Industrial area / / / 27 / 8 38 5655 / 5 / / / / / / / / / / / / / 5733

Lakes and ponds / / / / / / / / 12746 / / / / / / / / / / / / / / 12746

Low-density settlements / / / / / / / / / 34206 / / / / / / / / / / / / / 34206

Military area / / / 12 / / / / / / 1061 / / / / / / / / / / / / 1074

Nurseries / / / / / / / / / / / 518 / / / / / / / / / / / 518

Parking areas / / / 11 / / / / / / / / 252 / / / / / / / / / / 264

Parks and green spaces / / / / / / 21 / / 20 / / / 6090 / / / / / / / / / 6132

Quarries / 130 / / 29 179 / 16 / / / / / / 2321 / / / / 6 15 / / 2696

Railway station, railway
tracks

/ / / / / / / / / / / / / / / 616 / / / 7 / / / 623

Road connection and
buffer areas

/ / / / / / / / / / / / / / / / 604 / / / / / / 604

Roads / / / / / / / / / / / / / / / / / 1512 / / / / / 1512

Schools, museums and
research centers

/ / / 24 / / / / / / / / / / / / / / 1485 / / / / 1509

Sport and leisure facilities / / / 6 / / 8 6 / 6 / / / / / / / / / 4426 / / / 4452

Unused land / 39 45 / 16 / / 9 / / / / / / / / / / / / 1519 / / 1629

Supply and disposal / / / / / / / / / / / / / / / / / / / / / 413 / 413

Wetlands / 11 / / / / / / / / / / / / / / / / / / / / 3091 3102

Sum 2013 938 218877 2511 306 142572 86604 10477 6537 12757 35370 1061 523 281 6210 3074 616 796 1598 1561 4811 1547 468 3091 542585

Note: Land uses of Airfields, Cemeteries, Power stations, Fish Farming, Harbors, Railways, and Rivers are excluded in this table due to either no land-use transition or the transitions are quantitatively low and rare
(e.g. Airfields converted into Arable land).
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At the sub-regional level, almost half of the area of settlement growth was located in the Rural
Zone (49.13%), followed by the Peri-Urban Zone (35.71%) and the Urban Core Zone (15.16%)
(Figure 4.8). Although the areas of settlement growth only accounted for a relatively small
proportion in the Urban Core and Peri-Urban Zones, it is worth noting that approximately 65%
and 25%, respectively, of the regional population growth took place in these two zones during
the same period (Bavarian State Office for Statistics, 2015). This is because the population
density of these two zones was much higher than that of the Rural Zone.This finding confirms
that the form of settlement growth in this region is mainly sprawl during the study period.
Figure 4.8 also shows that 60.22% of the area of low-density settlement growth occurred in
the Rural Zone while only 6.8% occurred in the Urban Core Zone. Regarding the area of high-
density settlement growth, 41.19% occurred in the Peri-Urban Zone, followed by the Urban
Core Zone (31.98%), and the Rural Zone (26.83%).

15.16% 35.71% 49.13%

31.98% 41.19% 26.83%

6.8% 32.98% 60.22%

All

HD

LD

0% 25% 50% 75% 100%

Urban Core Zone Peri−Urban Zone Rural Zone

Figure 4.8 Percentage distribution of the area of settlement growth in different sub-regional
zones (All: all settlements, LD: low-density settlements, and HD: high-density settlements).

The patterns of land use conversions at both levels as a result of settlement growth are
illustrated in Figure 4.9. At the regional level, the growth of high-density settlements was
mainly driven by conversions from the land use classes of grassland (40.38%), construction
sites (23.65%) and arable land (21.78%). Also at the regional level, the growth of low-density
settlements predominantly led to losses of grassland (57.05%) and arable land (32.49%).
However, different patterns can be found in different sub-regional zones. Apart from
grassland, the main land use classes contributing to high-density settlement growth differed
between different zones. For example, the loss of parks and green spaces in the Urban
Core Zone was mainly caused by the growth of high-density settlements, which differs
from the other two zones (Figure 4.10). Meanwhile, the growth of low-density settlements
came primarily from the conversion of grassland and arable land in all three zones, except
for construction sites, which were the third leading contributor in the Peri-Urban Zone.
The latter finding indicates that significant conversion from arable land and grassland to
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low-density settlements had already started before the study period and had been ongoing in
the Peri-Urban Zone.

Figure 4.9 Patterns of land use conversion caused by settlement growth in the entire region
and sub-regional zones (UCZ: Urban Core Zone, PUZ: Peri-Urban Zone, and RZ: Rural Zone. Only
land use transitions accounted for more than 1% are shown).
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Examples of high-density settlements growth

Examples of low-density settlements growth

2003 2013

2003 2013

Figure 4.10 Examples of the growth of different settlement types between 2003 and 2013 in the
Urban Core Zone (High-density settlement growths were more close to the city center and led to
a significant loss of green spaces, while the growths of low-density settlements were mainly
converted from arable land and grassland).

4.2.2 Urban Expansion under Different Scenarios

The spatial distribution of settlement growth under different scenarios is presented in Figure
4.11. As can be seen, the patterns of settlement growth in all scenarios were quite scattered
throughout the entire region, which follows the historical urban growth pattern during the
past decade (as shown in Figure 4.1, section 4.1.1).
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H-M-C H-M-CS

Legend
No growth Growth of high-density settlements Growth of low-density settlements Growth of new green spaces

±

0 20 40 60 8010
km

H-M-S H-P-S

L-M-C* L-P-C*

L-P-S M-P-S

Figure 4.11 The spatial distribution of settlement growth in the eight selected scenarios (In the
L-C-M and L-C-P scenarios, there were new green spaces generated due to urban shrinkage. The
zoom-in window shows the settlement growth in the Munich urban core zone in details).
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Figure 4.12 illustrates the land use transitions of the eight selected scenarios at both the
regional and sub-regional levels. At the regional level, the settlement growth was, in most of
the scenarios, mainly conversions from grassland, arable land, and parks and green spaces.
The negative values in the L-M-C and L-P-C scenarios were due to the development of new
green spaces because of urban shrinkage. At the sub-regional level, first, more land use
classes that mainly contributed to the settlement growth were found in the Urban Core Zone
than in the other two zones. Second, in the Urban Core Zone, the losses of parks and green
spaces were much higher than the losses of other land uses in most scenarios (except for the
two shrinking cases) especially in the compact growth (H-M-C) and compact sprawl growth
(H-M-CS) scenarios. In comparison, the settlement growth in the other two zones mainly led
to the loss of arable land and grassland. However, the losses of arable land were higher than
the losses of grassland in the Peri-Urban Zone, whereas the opposite was true in the Rural
Zone.

Figure 4.12 Land use changes in the eight selected scenarios at the regional level and in
different sub-regional zones (Only land uses with transitions that account for more than 5% of the
total changes in at least one scenario are shown. a): Region, b): Urban Core Zone, c): Peri-Urban
Zone, and d): Rural Zone).
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4.2.3 Elimination of Redundancy among Landscape Metrics

The results of the metric correlation assessment indicate that most of the metric pairs were
significantly correlated for all three metric groups (Figure 4.13). Since the landscape metrics
exhibited varying levels of redundancy and multicollinearity, each metric group was subjected
to the Principal Component Analysis (PCA) to eliminate or reduce the multicollinearity and
redundancy among the final predictor variables (Vanderhaeghe et al., 2012; Yao et al., 2013).The
results demonstrate that, for each metric group, only one principal component was extracted
with an eigenvalue larger than 1, and at least 82% of the total variance was explained (Table
4.6). Seven metrics were found with loadings greater than 0.75 for the patch complexity group,
while only two and five metrics were identified for the configuration group and the diversity
group, respectively. Consequently, three new landscape indexes were formulated according to
Eq. 3.11 as follows:

Patch Complexity Index = 7.42 × (0.95 × 𝑃𝑃𝐴𝐹𝑅𝐴𝐶 + 0.93 × 𝑃𝐹𝑅𝐴𝐶_𝑀𝑁
+ 0.92 × 𝑃𝑆𝐻𝐴𝑃𝐸_𝑀𝑁 + 0.88 × 𝑃𝐿𝑆𝐼 + 0.86 × 𝑃𝑇𝐸
+ 0.86 × 𝑃𝐿𝑃𝐼 + 0.85 × 𝑃𝐴𝑅𝐸𝐴_𝐴𝑀 )

(Eq. 4.1)

Configuration Index = 6.02 × (0.96 × 𝑃𝐴𝐼 + 0.93 × 𝑃𝑃𝐿𝐴𝐷𝑗) (Eq. 4.2)

Diversity Index = 7.90 × (0.78 × 𝑃𝑆𝐻𝐷𝐼 + 0.78 × 𝑃𝑆𝐼𝐷𝐼 + 0.78 × 𝑃𝑆𝐼𝐸𝐼
+ 0.77 × 𝑃𝑆𝐻𝐸𝐼 + 0.76 × 𝑃𝑀𝑆𝐼𝐷𝐼 )

(Eq. 4.3)

where 𝑃 indicates the standardized value of the corresponding landscape metric.
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Figure 4.13 Matrixes of Spearman correlation coefficients for a) patch complexity metrics, b)
configuration metrics, and c) diversity metrics (blue: positive correlation, red: negative
correlation, and white: not significant).
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Table 4.6 Results of varimax rotated PCA for the three groups of landscape metrics.

Patch complexity Configuration Diversity

Component 1 Loadings Component 1 Loadings Component 1 Loadings

Perimeter-Area Fractal Dimension 0.95 Aggregation Index 0.96 Shannon’s Diversity Index 0.78
Mean Fractal Dimension Index 0.93 Percentage of Like Adjacencies 0.93 Simpson’s Diversity Index 0.78
Mean Patch Shape Index 0.92 Splitting Index -0.74 Simpson’s Evenness Index 0.78
Landscape Shape Index 0.88 Contagion 0.73 Shannon’s Evenness Index 0.77
Total Edge 0.86 Effective Mesh Size 0.19 Modified Simpson’s Diversity Index 0.76
Largest Patch Index 0.86 Interspersion and Juxtaposition Index -0.47 Modified Simpson’s Evenness Index 0.75
AreaWeighted Mean Patch Size 0.85 Landscape Division Index -0.61 Patch Richness -0.63
Edge Density -0.16 Patch Richness Density 0.63
Mean Patch Size 0.65

% Cumulative variance explained 82.45 % Cumulative variance explained 85.96 % Cumulative variance explained 98.76
Eigenvalue 7.42 Eigenvalue 6.02 Eigenvalue 7.90

Note: Shaded values denote loadings greater than 0.75 and only components with eigenvalue more than 1 are shown in the table.
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4.2.4 Changes of Landscape Patterns among Scenarios

Figure 4.14 compares the landscape pattern changes under different urban dynamic sub-
scenarios at the regional level while keeping the other two sub-scenarios the same. Based
on the descriptions of the landscape metrics (see Table 3.4) and their loadings within each
principal component (Table 4.6), higher patch complexity index values indicate that the area,
edge, and shape of the patches in the landscape of corresponding scenarios are more complex
and irregular. The configuration index measures the degree of aggregation of the entire
landscape including all land use classes; that is, the higher the value, the more aggregated the
entire landscape. Moreover, the diversity index is a measure of landscape composition, which
is influenced by the richness and evenness of the landscape. The value of the diversity index
increases as the number of different patch types increases and the distribution of the area
among patch types becomes more even (McGarigal and Marks, 1995).

It appears that contrasting trends can be found between the patch complexity index and the
other two indexes (Figure 4.14). First, scenarios with different levels of housing demand but
the same urban spatial structure and urban growth form (H-P-S, M-P-S, and L-P-S) were
compared with each other. A higher housing demand scenario reduced the patch complexity
but improved the aggregation and diversity of the landscape. Second, H-M-S and L-M-C were
compared with H-P-S and L-P-C, respectively, to evaluate the differences between scenarios
with different urban spatial structures. The monocentric scenarios led to higher levels of
patch complexity but lower levels of landscape aggregation and diversity than the polycentric
ones. Furthermore, the differences between scenarios with different urban growth forms
were identified by comparing H-M-C, H-M-CS, and H-M-S. The compact growth scenario
(H-M-C) had the highest patch complexity index value, followed by the compact sprawl
scenario (H-M-CS) and sprawl scenario (H-M-S). However, the opposite results were found
for the configuration and diversity indexes.
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Figure 4.14 Values of the three landscape indexes under scenarios at the regional level with
different levels of housing demand, spatial structure, and growth forms (*indicates urban
shrinking scenario).

For each landscape index, significant differences were found between the mean values of the
eight scenarios in different sub-regional zones (Figure 4.15). Moving from the Urban Core
Zone outwards, the patch complexity index increased along the urban-rural gradient, while the
landscape diversity index declined. In addition, the mean value of the landscape configuration
index was the highest in the Peri-Urban Zone, followed by the Rural Zone and the Urban Core
Zone.
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Figure 4.15 The mean values for each index of the eight scenarios in different sub-regional
zones (UCZ: Urban Core Zone, PUZ: Peri-Urban Zone, and RZ: Rural Zone). The nonparametric
Kruskal-Wallis test followed by post hoc Mann-Whitney U tests was used. Results represent mean
± SD (𝑛 = 8), and ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05.

Figure 4.16 presents the changes of each landscape index under different scenarios in different
sub-regional zones. First, the changes of the patch complexity index in all zones were largely
similar to those at the regional level (Figure 4.16a). More specifically, the patch complexity
index declined when increasing the housing demand. Additionally, the compact growth
scenario had the highest patch complexity index value while the sprawl growth scenario
had the lowest value. The only difference is that the patch complexity index value of the
polycentric scenarios was higher than for the monocentric scenarios in the Urban Core
Zone, which was contrary to the changes in the other two zones and the region. Second,
for the configuration index, most of the changes in different zones were in line with the
regional changes as well (Figure 4.16b). Similar to the patch complexity index, the changes
among different spatial structure scenarios in the Urban Core Zone contrasted with those
of the other two zones and the region. Third, the changes of the diversity index were more
complicated compared to those of the other two indexes (Figure 4.16c). The diversity index
increased in the Peri-Urban and Rural Zones when increasing the housing demand, which is
in line with the regional change, whereas it declined in the Urban Core Zone. The landscapes
of polycentric scenarios were more diverse than those of the monocentric scenarios in most
cases, except for the two shrinking scenarios (L-M-C and L-P-C) in the Rural Zone. As for
different urban growth form scenarios, the landscape diversity index of the compact growth
scenario was the highest in the Urban Core Zone followed by the compact sprawl and sprawl
growth scenarios. However, the trends were reversed in the other two zones.
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Figure 4.16 Values of the a) patch complexity index, b) configuration index, and c) diversity
index under different scenarios in different sub-regional zones (UCZ: Urban Core Zone, PUZ:
Peri-Urban Zone, and RZ: Rural Zone, *indicates urban shrinking scenario).
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4.3 Impacts ofUrbanDynamics onGreen SpaceAvailability
(Part III)

In this part, the overall changes of green space availability under different urban dynamic
scenarios are firstly reported. Then, the impacts of different urban dynamics on green space
availability are revealed at both the regional and sub-regional levels.

4.3.1 Green Space Availability under Different Scenarios

Anumber of, predominantly inner-urban, green spaces have been andmost likelywill continue
to be lost during urban growth, no matter which growth form is adopted. It was apparent in
this study that green space declined as a result of urban growth in six out of eight scenarios,
with the exceptions of L-M-C and L-P-C, which follow a process of shrinkage resulting in new
green spaces (Figure 4.17).
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Figure 4.17 Changes in green space areas by 2033 in each scenario relative to 2013 (*indicates
urban shrinking scenario).
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The percentage changes of Per Capita Green Space (PCGS) and the Share of the Population
with Access to Green Spaces (SPAGS) for each scenario compared to the year 2013 are shown in
Figure 4.18. In most cases, both indicators showed negative percentage change values, which
implies decreases compared to 2013. As mentioned above, the shrinkage-driven L-M-C and
L-P-C were two exceptions wherein SPAGS increased due to the development of new green
spaces. Overall, L-P-C was the scenario that showed the lowest decrease in PCGS and the
highest increase of SPAGS.

Figure 4.18 Percentage changes in PCGS and SPAGS between each scenario and 2013
(*indicates urban shrinking scenario).

The correlations between the two main indicators, PCGS and SPAGS, and other variables,
including settlement area, population density, and area of green spaces, were investigated in
this study (Figure 4.19). Settlement area was found not to be significantly correlated to PCGS
but to be negatively correlated to SPAGS (𝑝 < 0.05), which implies that scenarios with smaller
settlement areas do not indeed lead to higher PCGS but automatically result in a higher SPAGS.
With regard to population density, there was no significant correlation with either PCGS or
SPAGS. Furthermore, significant positive relationships were identified between the area of
green spaces and both indicators. In other words, scenarios with a larger area of green spaces
usually had higher values of PCGS and SPAGS as well. Generally speaking, PCGS was mainly
correlated to the area of green spaces, while both the area of green spaces and settlement area
had significant correlations with SPAGS.
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Figure 4.19 Linear regression between the two indicators and settlement area, population
density, as well as area of green spaces (dots represent the eight scenarios).

4.3.2 Impacts ofUrbanDynamics onRegionalGreen SpaceAvailability

Figure 4.20 compares the impacts of different urban dynamic sub-scenarios on green space
availability. For clarity, changes in green spaces within 300 𝑚 distances from settlements and
population numbers with access to green spaces compared to 2013 are displayed in Figure
4.21. First, it is evident from the results that both indicators declinedwhen the housing demand
increased (Figure 4.20a). Despite the fact that a higher housing demand scenario led to a higher
net increase in green spaces within 300 𝑚 distances from settlements (Figure 4.21a), the value
of PCGS was lower, due to the larger population size it included. At the same time, scenarios
with higher housing demand resulted in greater net decreases in the total population number
with access to green spaces (Figure 4.21b), thereby resulting in lower values of SPAGS.
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Figure 4.20 Values of PCGS and SPAGS in scenarios with a) different housing demands, b) & c)
different spatial structures, and d) different growth forms (*indicates urban shrinking scenario).
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Figure 4.21 Gains, losses and net changes in a) green spaces within 300 𝑚 distances from
settlements and b) population numbers with access to green spaces for all scenarios compared to
2013 (HD: different housing demand scenarios, SS: different spatial structure scenarios, GF:
different growth form scenarios, *indicates urban shrinking scenario). Note: The gains in green
spaces within 300 𝑚 distances from settlements were mainly due to new settlements developed
closer to (within 300 𝑚 in this study) green spaces that used to be more than 300 𝑚 from
settlement areas, and the losses primarily stemmed from green spaces within 300 𝑚 that were
converted into settlements. For populations with access to green spaces, new settlements
developed within 300 𝑚 distances from green spaces, as well as the increase in population density
or new green spaces constructed in shrinking cases, contributed to the gains, while the losses
were due to new settlements developed in areas far from green spaces (more than 300 𝑚),
increases in population density in settlement areas without access to green spaces, or the loss of
green spaces.

Second, it can be concluded from Figure 4.20b&c that the polycentric scenarios (H-P-S and L-P-
C) demonstrate both higher PCGS and SPAGS values compared to the monocentric scenarios
(H-M-S and L-M-C). According to Figure 4.21, a greater net increase in green spaces within 300
𝑚 distances from settlements and a smaller net decrease in population numbers with access to
green spaces were found in H-P-S compared to H-M-S. It indicates that a polycentric structure
will substantially increase the area of green spaceswithin 300𝑚 distances from settlements and
reduce the loss of population with access to green spaces. In addition, as there were shrinking
cases and new green spaces developed in L-M-C and L-P-C, both green spaces within 300 𝑚
distances from settlements and population numberswith access to green spaceswere increased
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in these two scenarios. However, the increases were higher in L-P-C than in L-M-C.

Third, growth in the form of “sprawl” (H-M-S) showed the highest value of PCGS, and
“compact” growth (H-M-C) showed the highest value of SPAGS; in contrast, “compact sprawl”
growth (H-M-CS) showed the lowest values for both indicators (Figure 4.20d). As shown in
Figure 4.21a, green spaces within 300𝑚 distances from settlements increased in H-M-S, while
decreases were observed in the other two scenarios (the decrease was greater in H-M-CS).
Interestingly, the loss of green spaces in H-M-CS was even greater than that in H-M-S.
According to the difference between “compact sprawl” and “sprawl” in this study, it appears
very likely that the development of high-density settlements would result in even more
green spaces being encroached than the development of low-density settlements in the study
region. Therefore, H-M-S had the highest value of PCGS, while H-M-CS had the lowest value
among these three scenarios (Figure 4.20d). Regarding the population number with access
to green spaces, H-M-C showed the lowest net decrease and, accordingly, the highest value
of SPAGS. In contrast, H-M-CS had the largest net decrease and the lowest value of SPAGS
(Figure 4.21b, Figure 4.20d).

4.3.3 Impacts of Urban Dynamics in Sub-regional Zones

As shown in Figure 4.22, significant differences were found for both indicators among the
mean values of the eight scenarios in different sub-regional zones. While moving outwards
from the Urban Core Zone, the values of PCGS increased in all scenarios due to the presence
of more forest areas in the Peri-Urban and Rural Zones (see Figure 3.3). However, the values
of SPAGS declined along the urban-rural gradient in seven of eight scenarios, as there were
less green spaces (≥ 2 ℎ𝑎) available within 300 𝑚 distances from homes, with the exception of
L-M-C, in which new green spaces developed in the Rural Zone.
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Figure 4.22 Boxplot of the mean values of a) PCGS and b) SPAGS of the eight scenarios in
different zones (UCZ: Urban Core Zone, PUZ: Peri-Urban Zone, RZ: Rural Zone). The
nonparametric Kruskal-Wallis test followed by post hoc Mann-Whitney U tests was used (𝑛 = 8,
and ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05).

Figure 4.23a compares the changes in PCGS and SPAGS among different housing demand
sub-scenarios in each zone. In line with the regional change, both indicators declined as the
housing demand increased in all three zones. When comparing scenarios with different urban
spatial structures, the changes in both indicators were always in agreement with each other in
the same zone (Figure 4.23b&c). However, contrasting trends were found between the Urban
Core Zone and the other two zones. According to the scenario settings, monocentric scenarios
allocated more housing demand in the Urban Core Zone and less in the other two zones
compared to polycentric scenarios. As both indicators declined while the housing demand
increased in all three zones, thereby the values of both indicators in monocentric scenarios
were lower in the Urban Core Zone but higher in the other two zones than polycentric
scenarios (Figure 4.23b&c).
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Figure 4.23 PCGS and SPAGS values under scenarios with a) different housing demands, b) &
c) different urban spatial structures, and d) different urban growth forms in different sub-regional
zones (*indicates urban shrinking scenario).

The changes of both indicators among scenarios with different urban growth forms were
distinct in different zones (Figure 4.23d). In the Urban Core Zone, H-M-C had the highest
values of both PCGS and SPAGS, due to the smallest net decrease of green spaces within 300
𝑚 of settlements and the net increase in population with access to green spaces (Figure 4.24),
whereas H-M-CS had the lowest values. In the Peri-Urban Zone, H-M-C had the lowest value
of PCGS but the highest value of SPAGS, because of the net decrease of green spaces within
300𝑚 from settlements and the smallest net decrease in the population number with access to
green spaces, respectively. In contrast, H-M-CS had the highest value of PCGS but the lowest
value of SPAGS. In the Rural Zone, H-M-C had the lowest value of PCGS but the highest value
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of SPAGS, which is similar to the Peri-Urban Zone. However, in contrast to H-M-CS in the
Peri-Urban Zone, H-M-S had the highest value of PCGS but the lowest value of SPAGS in the
Rural Zone. Generally, “compact” growth (H-M-C) was most likely to be the best option in the
Urban Core Zone in terms of both indicators; however, defining the optimal approach for the
other two zones must consider the relative trade-offs between the two indicators.
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Figure 4.24 Gains, losses and net changes of a) green spaces within 300 𝑚 distances from
settlements and b) population numbers with access to green spaces relative to 2013 among
scenarios with different urban growth forms in the three zones (UCZ: Urban Core Zone, PUZ:
Peri-Urban Zone, RZ: Rural Zone, *indicates urban shrinking scenario).

4.4 Spatial Variation of Green Space Equity and the
Impacts of Urban Dynamics (Part IV)

This section presents the spatial correlation between green space equity and socioeconomic
factors as well as the impacts of different urban dynamic scenarios on green space equity at
both levels.
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4.4.1 Spatial Correlation betweenGreen Space Equity and Socioeconomic
Factors

Figure 4.25 shows the distribution of the Gini coefficient of the year 2013. Lower Gini
coefficient values were found in the central and southern municipalities of the region,
indicating that green spaces were more equally distributed in these areas. Municipalities in
their surrounding areas showed higher values of the Gini coefficient, in particular in the
northwest and central-east parts of this region.

Legend
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0.5948 - 0.7202
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0.8194 - 0.9073
0.9074 - 0.9904
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0 20 4010 km
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Figure 4.25 Distribution of Gini coefficient of the year 2013.

The Kaiser-Meyer-Olkin (KMO) test was found to be 0.655, signifying that a factor analysis is
appropriate. Three rotated factors were extracted with eigenvalues greater than 1 and 79.74%
of the total variance in the original data explained. The results of factor analysis are shown
in Table 4.7. Factor 1 accounted for 28.63% of the variance with high positive loadings on the
percentage of old people above 65 and the percentage of people in long-term unemployment
while high negative loading on the percentage of children and teenagers below 18, which can
be identified as the “Demographic factor”. Factor 2 is defined as “Social-spatial factor” which
explained 25.86% of the variance with high positive loading on per capita living space and high
negative loading on population density. Explaining 25.25% of the variance, Factor 3 is termed
“Economic factor” as it had high positive loadings on the variables of per capita municipal
revenue, per capita income and average housing price.
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Table 4.7 Rotated Component Matrix of Factor Analysis.

Variables Factor 1 Factor 2 Factor 3

Percentage of old people above 65 (%) 0.850 0.215 0.291
Percentage of children and teenagers below 18 (%) -0.736 0.251 0.165
Percentage of people in long-term unemployment (%) 0.703 -0.432 0.110
Per capita living space (𝑚2/𝑖𝑛ℎ.) -0.012 0.934 0.181
Population density (n/ℎ𝑎) 0.418 -0.828 0.250
Per capita municipal revenue (Euro/𝑖𝑛ℎ.) -0.192 -0.083 0.799
Per capita income (Euro/𝑖𝑛ℎ.) 0.257 0.416 0.794
Average housing price (Euro/𝑚2) 0.504 -0.190 0.729

Note: The mainly loaded variables are shaded for each factor. The total variance explained is 79.74%.

The Geographically Weighted Regression (GWR) was used to explore the spatial relationship
between the Gini coefficient and the three factors across all municipalities. Compared to
the global regression, the GWR model showed a better performance. It provided a smaller
AIC value (-294.73) and a higher 𝑅2 value (0.41) than the global regression (-280.19 and 0.26
respectively). Moreover, the results of ANOVA (Analysis of Variance) also implied that the
GWR model had significantly improved the performance of the global regression model
(Table 4.8).

Table 4.8 GWR ANOVA of the relationship between the Gini coefficient and socioeconomic
variables.

Source Sum of Square Degree of Freedom Mean Square F-value p-value

Global Residuals 2.194 179.000
GWR Improvement 0.466 20.598 0.023
GWR Residuals 1.728 158.402 0.011 2.073749 0.000000

Note: Global regression: AIC = −280.19, 𝑅2 = 0.26; GWR: AIC = −294.73, 𝑅2 = 0.41.

Figure 4.26 shows the distribution of significant parameter estimates of the GWR model.
First, the demographic factor had a significant negative correlation with the Gini coefficient
across the municipalities in the middle, west and northwest parts of the region. As mentioned
previously, this factor had high positive loadings on the percentage of old people above 65
and percentage of people in long-term unemployment, and a high negative loading on the
percentage of children and teenagers below 18. Therefore, the percentage of old people above
65 and percentage of people in long-term unemployment had negative correlations while
the percentage of children and teenagers below 18 showed a positive correlation with the
Gini coefficient in these areas. Second, a significant positive correlation was found across the
southeast municipalities between the Gini coefficient and the social-spatial factor which had
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a high positive loading on per capita living space and a high negative loading on population
density. Accordingly, it indicates that per capita living space had a positive correlation with the
Gini coefficient while population density had a negative one. Third, the economic factor was
found to have a significant negative correlation with the Gini coefficient in the southwest half
of the region. This factor had high positive loadings on the variables of per capita municipal
revenue, per capita income and average housing price, thereby all these three variables were
negatively correlated with the Gini coefficient across the southwest municipalities.
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Figure 4.26 Distribution of significant coefficients based on 𝑡-test at 𝛼 = 0.05.

4.4.2 Impacts of Urban Dynamics on Regional Green Space Equity

As shown in Figure 4.27, most of the scenarios showed higher values of the Gini coefficient
compared to the year 2013, with the exceptions of L-P-C and L-M-C, which have new green
space developed as the result of urban shrinkage. A higher value of the Gini coefficient
indicates the more uneven spatial distribution of green spaces.
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Figure 4.27 The values of Gini coefficient for eight scenarios (The horizontal line indicates the
value of Gini coefficient in the year 2013 and *indicates urban shrinking scenarios).

The impacts of different sub-scenarios of urban dynamics on green space equity are compared
in Figure 4.28. A lower housing demand scenario led to a lower value of the Gini coefficient,
indicating that green spaces were more equally distributed across the region. Polycentric
scenarios showed lower values of the Gini coefficient than monocentric ones. Moreover, the
compact growth scenario (H-M-C) performed the best with the lowest Gini coefficient among
the other two urban growth form sub-scenarios (H-M-CS and H-M-S).
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Figure 4.28 Values of Gini coefficient in scenarios with different housing demand, different
urban spatial structure and different urban growth form at the regional level (*indicates urban
shrinking scenarios).
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4.4.3 Impacts of Urban Dynamics on Green Space Equity in Sub-
regional Zones

Figure 4.29 compares the mean values of the Gini coefficient of the eight selected scenarios in
different sub-regional zones and shows that the differences were significant. Moving outwards
from the Urban Core Zone, the mean values of the Gini coefficient showed an increasing trend
along this urban-rural gradient in most of the scenarios. Exceptions were found to be the two
shrinking scenarios in which new green spaces have developed.
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Figure 4.29 Boxplot of the mean values of the Gini coefficient of the eight selected scenarios
along different sub-regional zones (UCZ: Urban Core Zone, PUZ: Peri-Urban Zone, and RZ: Rural
Zone). The nonparametric Kruskal-Wallis test followed by post hoc Mann-Whitney U tests was
used (𝑛 = 8, and ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05). The scenario names of outliers are labeled.

Figure 4.30 represents the impacts of different urban dynamic scenarios on the green space
equity in different sub-regional zones. In line with the change at the regional level, the Gini
coefficient rose with increasing housing demand in all three zones. Lower values of the Gini
coefficient were found under the polycentric scenarios in the Urban Core Zone while the other
two zones showed contrasting results. Among scenarios with different urban growth forms,
the “compact” growth form (H-M-C) showed the lowest value of the Gini coefficient in all three
zones. However, it is noteworthy that the compact sprawl growth scenario had the highest
values of the Gini coefficient in the Urban Core and Peri-Urban Zones, whereas the sprawl
scenario obtained the highest value in the Rural Zone, thus indicating the worst situation in
terms of green space equity.
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Figure 4.30 Values of the Gini coefficient under scenarios with different housing demand,
different urban spatial structure and different urban growth form in different sub-regional zones
(UCZ: Urban Core Zone, PUZ: Peri-Urban Zone, and RZ: Rural Zone, *indicates urban shrinking
scenarios).
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Chapter 5

Discussion

Globally, persistent population growth and urbanization put increasing pressure on ecological
systems on a wide range of scales, which leads to severe environmental consequences (Gaube
and Remesch, 2013; Lauf et al., 2012; Liu and Yang, 2015; Sun et al., 2013). By providing various
ecosystem services, green spaces play a crucial role in the global ecosystem. Particularly
in urban ecosystems, green spaces are considered to be a remedy to urban environmental
problems (Xu et al., 2016). In recent years, the increasing interest in sustainability science has
sharpened the focus on sustainable urban development, of which green spaces are regarded
as a fundamental part (Jim, 2004). Therefore, this empirical study aims to contribute to the
advancement of knowledge about the impacts of different urban dynamics on green spaces.
The study was conducted in the region of the fast-growing Bavarian capital city of Munich,
an urban area with intense land pressure, based on a multiple-scenario modeling approach.

In this chapter, the advantages of incorporating the spatial dependency into the model and
modeling the growths of different settlement types separately are discussed first (Part
I). Then, the main characteristics of the historical urban growth and the landscape pattern
changes under multiple urban dynamic scenarios are explored (Part II). Next, the impacts of
different urban dynamics on green space availability at both levels and the trade-offs between
the two green space availability indicators are discussed (Part III). Further, the spatial
correlation between green space equity and socioeconomic factors as well as the impacts of
different urban dynamics on green space equity are investigated (Part IV). Finally, general
limitations of this study are discussed.
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5.1 Development of the Integrated Urban Growth Model
(Part I)

By combining urban growth driving factors using the Autologistic Regression (ALR) and the
transition probability matrix from the Markov Chain (MC), an integrated urban growth model
was proposed in this study based on the Cellular Automata (CA) approach. Several reasons
contribute to the robust and reliable results that are provided by thismodel. First, urban growth
is a complex dynamic system that is influenced by a series of driving factors, including human
decisions and some degree of stochasticity (Barredo et al., 2003). From a practical point of
view, incorporating driving factors into urban growth modeling is of great importance and
its ability to improve modeling accuracy has been proved in previous studies (Aburas et al.,
2017; Han and Jia, 2017; Lauf et al., 2012; Luo andWei, 2009). Second, it is also known from the
literature that the transition probabilities of different land use classes to urban land use differ
(Guan et al., 2011; Halmy et al., 2015; Mitsova et al., 2011). The simulation accuracy could be
effectively improved by coupling the CA models with the transition probabilities of each land
use type through the transition probability matrix that is provided by the MC (Guan et al.,
2011).

5.1.1 Incorporating the Spatial Dependency into Urban Growth
Modeling

A significant positive Spatial Autocorrelation (SAC) was found in the spatial pattern of
settlement growth, indicating that the Ordinary Logistic Regression (OLR) that assumes
the data to be statistically independent was unable to capture all spatial dependency in the
data (Overmars et al., 2003). By introducing an autocovariate variable, the ALR incorporates
the SAC into the regression process and consequently obtained a higher AUC (Area Under
the Curve) compared to the OLR. It resulted in great improvement in model accuracy that
was illustrated by the significant increases in the Kappa indexes. It is worth noting that the
Kappa indexes of the OLR-MC-CA model were quite low, which might be attributed to the
short simulation period and the small amount of observed net change in the reference map
(García et al., 2012; Lauf et al., 2012; Pontius et al., 2008). Therefore, the incorporation of the
ALR in urban growth models shows a great potential in regions where the growth pattern is
spatially autocorrelated, in particular when the actual growth accounts for a scattered and
small proportion of the total area. Moreover, a significant SAC was found in the residuals of
the OLR-MC-CA model, while there was a lower SAC in the residuals of the ALR-MC-CA
model, indicating that the explanatory power of the later model was much improved. This
improvement is because an extra part of variance is explained by the autocovariate variable
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that takes into account the SAC within a neighborhood matrix (de Frutos et al., 2007; Hubbell
et al., 2001; Wu et al., 2009). In the case of this study, the neighborhood matrices were defined
based on the analysis of the autocorrelation of the dependent variable with different spatial
lags (Naves et al., 2003). As the value of global Moran’s I in the model residuals being close
to zero (0.0358), it is shown to be a promising approach for determining the neighborhood
matrix of the ALR.

In this study, certain differences were found between the OLR and ALR, including the
significant variables, the sign of the coefficients and their significance levels (Table 4.1).
The ALR shows a better result both with regards to quantitative model evaluation and the
agreement with observed settlement development during this time in Munich. The new
settlements that have developed in the past decade have tended to move away from bodies of
water (DistWT) to get closer to public transportation such as the U-bahn (DisUB) and S-Bahn
(DisSB) stations. Furthermore, they tend to locate in areas with a lower land price (RLP) but
that are relatively far from urban green spaces (DisGS). All of these tendencies have been
fully reflected in the ALR result.

The results also show that, when ignoring the SAC in regression models, more variables were
included to explain the variation and their significance were overestimated due to the inflation
of the Type I error, which is in line with other studies (Hubbell et al., 2001; Jiang et al., 2015;
Lennon, 2000; Overmars et al., 2003;Wu et al., 2009). It should also be noted that the magnitude
of estimated coefficients had been adjusted owing to the incorporation of the SAC. In good
agreement with Wu et al. (2009), for most of the variables that were included in both the
OLR and ALR, the absolute values of the estimated coefficients in the OLR were higher than
those in ALR. This indicates that the precision of the coefficients estimated in the OLR would
be affected by the SAC in the model’s residuals. Thus, before using the OLR to identify the
drivers in land use change and urban growth models, the SAC should be carefully examined
(Jiang et al., 2015; Wu et al., 2009).

5.1.2 Incorporating Settlements Type Segregation into Urban Growth
Modeling

As a significant positive SACwas found in the spatial patterns of low-density and high-density
settlement growth (see Figure 4.2), the growth of both settlement types was modeled by the
ALR-MC-CA model. The results showed that separately modeling the growth of different
settlement types obtained higher model accuracy than integratively modeling all settlement
growth, as indicated by the higher values of AUC and the Kappa indexes (Table 4.4). When
separately modeling different types of settlement growth, both the overall Kappa and the
respective Kappa indexes for high-density and low-density settlement growth were higher
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than that of integratively modeling all settlement growth together. This can be explained with
the fact that the development paradigms and developers preferences are distinct for different
types of settlement growth (Haase et al., 2010; Mustafa et al., 2018). In addition, high-density
settlement growth showed higher values of the AUC and the Kappa index than low-density
settlement growth, indicating that the model had a better explanatory power in modeling
compact and high-density settlement types than modeling more scattered, less compact low-
density settlements. This is in agreement with Lauf et al. (2012) who found that compact
structures are generally more readily reproducible in spatial models.

As the growth patterns of both high-density and low-density settlements were strongly
autocorrelated, it is not surprising to find that the autocovariate variables were significant
in both ALR regressions. Compared to the growth of low-density settlements, high-density
settlement growth depended on more variables (see Table 4.3). This suggests that the
growth pattern of high-density settlements was driven by more factors. Meanwhile,
apparent differences of included variables and their coefficients were found between the
two regressions. First, some variables were only significant with either high-density or
low-density settlement growth. For example, the distance to water (DisWT) variable had a
significant positive impact on high-density settlement growth, indicating that high-density
settlements have mostly developed further away from water bodies (Li et al., 2018), but no
significant relationship was found for low-density settlement growth. This is probably due
to the main types of water bodies being the lakes in the south part of this region which
traditionally have been an area where affluent people settle in the form of low-density
settlements. As another example, unlike the low-density settlements, the development of
high-density settlements was close to the subcenters (DisSC) and settlement centers (DisSTC)
as populated areas have higher demand on the provision of public services. This is in line
with Mustafa et al. (2018) who reported that the high-density built-up areas were found in
the major built-up cores surrounded by lower density built-up areas. Second, variables that
were similarly significant in both regressions might have contradictory impacts. For instance,
the development of high-density settlements tends to be close to all road networks, while
low-density settlements also tend to develop close to local roads but away from highways
and major roads which is in line with Li et al. (2015). Furthermore, the distance to green
spaces (DisGS) had a negative correlation with high-density settlement growth which is in
accordance with Jokar Arsanjani et al. (2013) who revealed that green spaces have a positive
influence and thus attract general urban development whereas a positive correlation was
found between the distance to green spaces (DisGS) and low-density settlement growth. A
possible explanation would be that more public green spaces are required or being developed
to improve the environmental quality of high-settlement areas, while more private green
cover is available in low-density settlement areas such as private gardens (Lin et al., 2015).
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5.2 Multiple Urban Dynamic Scenarios and Landscape
Changes (Part II)

5.2.1 Main Characteristics of Urban Expansion

During the past decade, although almost 90% of the regional population growth took place in
the Urban Core and Peri-Urban Zones, the area of settlement growth in these two zones only
accounted for 50.87% of the total area of settlement growth. The factors that may contribute
to this situation include the relatively larger housing size and the correspondingly lower
population density, as well as the lower land price in the Rural Zone. The latter reason would
also partially explain why most of the high-density settlements were developed in the Urban
Core and Peri-Urban Zones while the majority of the low-density settlements were developed
in the Rural Zone. At the regional level, both the high-density and low-density settlement
growth mainly led to the losses of grassland, arable land, construction sites, and parks and
green spaces. This finding is in line with McDonald et al. (2010), who observed considerable
losses of open space due to urban expansion between 1990 and 2000 for all 274 metropolitan
areas in the United States. At the sub-regional level, the number of land use classes that were
converted by settlement growth in the Rural Zone was much less than in the other two zones,
indicating that the land use changes caused by urbanization were less intensive in the rural
area (Yu and Ng, 2007). Interestingly, unlike in the other two zones, the loss of parks and green
spaces in the Urban Core Zone was mainly caused by the growth of high-density settlements
(as shown in Figure 4.10). This is because, as discussed in the last section, the development of
high-density settlements was closer to city centers, where the availability of other open spaces
was very limited.

The spatial patterns of settlement growth under all urban dynamic scenarios were very
dispersedly distributed across the region, which follows the pattern of historical growth.
At the regional level, the settlement growth in most scenarios continuously led to losses
of grassland, arable land, and parks and green spaces, except for the two urban shrinking
scenarios that saw new green spaces developed. However, the patterns of land use transitions
differed between different sub-regional zones. The losses of parks and green spaces were
considerably higher than the losses of other land use categories in the Urban Core Zone
which has already been highly urbanized and has limited open spaces (i.e., grassland and
arable land) available. In the Peri-Urban and Rural Zones, the growth of settlement areas
mainly led to conversions of arable land and grassland, and the losses of parks and green
spaces only accounted for a small proportion. However, in contrast to the Rural Zone, the
losses of arable land were higher than those of grassland in the Peri-Urban Zone, which could
be attributed to the fact that the Peri-Urban Zone had already been going through the process
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of suburbanization and the grassland close to urban areas had already been mostly converted.
These findings confirm that the patterns of urban dynamics and their impacts on ecosystems
and natural resources are disparate in different sub-regional zones along the urban-rural
gradient (Haase et al., 2012b; Li et al., 2016).

5.2.2 Changes in Landscape Patterns under Multiple Scenarios

Most of the landscape metrics from each metric group demonstrated strong pair-wise
correlations in this study. First, this is because some of them may be empirically redundant
as they fundamentally measure the same aspect of the landscape structure (Cushman et al.,
2008). Second, this study only focused on land use changes induced by urban growth,
which actually took up a small proportion of the whole study area, and correspondingly the
landscape patterns under different urban dynamic scenarios were somewhat correlated. The
Principal Component Analysis (PCA) has been demonstrated to be a practical approach to
reduce the redundancy among landscape metrics (Inkoom et al., 2018; Plexida et al., 2014).
By avoiding the redundancy that existed among the initially selected multiple landscape
metrics, the three new landscape indexes developed in this study were found to be incapable
of quantifying, or at least comparatively assessing, the landscape pattern changes efficiently.

Landscapemetrics have been successfully used as indicators for assessing landscape functions.
As reviewed by Uuemaa et al. (2013), patch complexity metrics have been used to assess the
animal diversity and pollen distribution (Gimona et al., 2009; Viaud et al., 2008). Landscape
configuration metrics are found to be correlated to urban heat islands, amphibian habitat
selection, and landscape aesthetics (Dramstad et al., 2006; Hoss et al., 2010; Liu and Weng,
2008). Moreover, landscape diversity metrics can be used for assessing bird diversity, water
quality, and landscape aesthetics (Uuemaa et al., 2005; Wrbka et al., 2008). However, landscape
metrics were employed in this study to characterize and quantify the changes in landscape
patterns under different scenarios, which could improve our understandings of the impacts of
urban dynamics on landscape pattern changes and potentially provide valuable information
to the design of sustainable planning strategies (Inkoom et al., 2018).

The changes of the patch complexity and configuration indexes in different sub-regional zones
were largely similar to their trends at the regional level. The difference was found in the Urban
Core Zone where the patch complexity was lower and the landscape was more aggregated in
the monocentric scenarios than in the polycentric ones. This is because more housing demand
(55%) was allocated to this zone in the monocentric scenarios than the polycentric ones (40%),
while the patch complexity was lower and the landscape was more aggregated when the
housing demandwas higher. Regarding the diversity index, in line with the regional change, its
value increased in the Peri-Urban and Rural Zones when increasing the housing demand. The
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reason for this is that the settlement area only accounted for a small proportion of these two
zones, and increasing the settlement area improved the richness of patch types and led to the
more even distribution of the area among different patch types. However, the diversity index
value declined in the Urban Core Zone as the settlement area became the dominant land use,
and increasing the settlement area reduced both the richness of patch types and the evenness
of the distribution of the area among different patch types. This could also help to explain why
the landscape diversity index of the polycentric scenarios was higher in the Urban Core Zone
even though relatively less housing demand (40%) was allocated in this zone. The landscape
diversity index of the compact growth scenario was the highest in the Urban Core Zone as a
result of the area of settlement growth being the smallest under this scenario. Nevertheless,
the trends were reversed in the other two zones because the settlements were no longer the
dominant land use.

5.3 Impacts ofUrbanDynamics onGreen SpaceAvailability
(Part III)

As known from literature, the process of urban dynamics has significant influences on the
availability of green spaces (Zhao et al., 2013). However, the majority of current studies of
green space availability have been performed at the city level (de la Barrera et al., 2016;
Kabisch et al., 2016; Richards et al., 2017), while neglecting the zoning within urban regions as
well as the influence of urban spatial patterns beyond the city level (Haase, 2016). Nowadays,
the interactions between urban and rural areas become increasingly intensive and the
urban growth in a majority of large European cities and urban regions continuously puts
high pressure on open spaces (Kain et al., 2016; Larondelle et al., 2016). Thus, green space
availability should be considered at the urban regional scale in order to better account for the
complexity of land development between the core city and peri-urban surroundings. In this
study, a broad analysis of regional green space availability under different urban dynamics
was performed based on a multiple-scenario modeling approach.

5.3.1 Green Space Availability among Scenarios at the Regional Level

In six out of the eight selected scenarios, the reductions in green spaces were found as a
consequence of urban growth and land take. This is in agreement with Zhao et al. (2013)
who emphasized that some green spaces are always encroached due to urban expansion
regardless of which growth form or configuration of the city is adopted. Exceptions were
found in two shrinking scenarios in which new green spaces were developed. As we know
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from shrinking cities, the shrinkage and space availability do not necessarily indicate a
creation or enhancement of urban green space per se. Yet, the pressure on land is lower and
a larger number of brownfields leads more frequently to considerations of greening vacant
land (Haase et al., 2012a; Wolff et al., 2017), at least for interim use (Nassauer and Raskin,
2014; Rall and Haase, 2011). Both indicators in this study, Per Capita Green Space (PCGS)
and the Share of the Population with Access to Green Spaces (SPAGS), decreased in most
scenarios, which also illustrated the decline of green space availability under growth pressure.
Despite the increase of SPAGS in the two shrinking scenarios as a result of new green space
construction, PCGS still declined due to the considerable increase in the population density
caused by “compact” growth. This latter finding shows how densification within the living
space (splitting large flats into smaller ones) or increasing the height of houses in preferred
living areas impacts the availability and accessibility of public green spaces in cities. A
densification as such also indicates reduced green space within the housing areas and will,
overall, diminish urban green space in residential areas, which is in line with Lin et al. (2015).

The results of regression analysis showed that the settlement area was not significantly
correlated to PCGS which might be due to the fact that a larger settlement area does not
necessarily lead to a bigger population size as the urban growth forms are dissimilar.
However, it was negatively correlated to SPAGS (𝑝 < 0.05) which suggested that access to
green spaces declines as cities grow as reported by Fuller and Gaston (2009) and as argued
in the section before. In good agreement with prior research by Kabisch and Haase (2013),
no significant correlation was found between population density and either PCGS or SPAGS.
Contrastingly, significant positive relationships were identified between the green space
area and both indicators; namely, scenarios with a higher amount of green spaces could be
expected to have higher values of both PCGS and SPAGS, which implied the great importance
of maintaining existing (large) green spaces that should be adopted in planning policies
(Kabisch et al., 2016; Lin et al., 2015).

The results also showed that the availability of regional green spaces varied according to
different urban dynamic scenarios. When urban spatial structures and growth forms remained
the same, it is apparent that a higher housing demand posed more pressure on green space
availability (cf. Westerink et al., 2013). Although higher housing demand led to higher net
increases in green spaces within 300 𝑚 distances from settlements (Figure 4.21a), which
was related to the physical expansion of urban areas that incorporated more existing green
spaces from the surrounding areas (Kabisch et al., 2016), the values of both PCGS and SPAGS
were lower in the higher housing demand scenarios due to the larger population sizes they
included. Compared to the monocentric scenario, the polycentric scenario could help to
disperse the housing pressure from the inner city to the subcenters in peri-urban surroundings
or rural areas, where more green spaces (including forests) are available and the prevailing
population density is comparatively low. Although the polycentric urban structure may lead
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to more fragmentation and isolation of green spaces in the Peri-Urban and Rural Zones than
the monocentric structure (Liu and Wang, 2016), it resulted in greater regional green space
availability in this study. For different urban growth forms, “compact” growth showed the
highest SPAGS due to the largest gain and smallest loss of populations with access to green
spaces, and therefore the smallest net decrease compared to the other two alternative growth
forms. This is very much in line with the findings of Westerink et al. (2013), who advocated
the more sustainable compact growth compared to sprawling peri-urbanization. However,
it is notable that “sprawling” growth was more favorable in terms of PCGS, which showed
the highest value as a result of the net increase in green spaces within 300 𝑚 distances from
settlements. It could also be attributed to the fact that the incorporated area of green spaces
by urban expansion was larger than the concurrent loss. This comparative study provides
rare evidence of the respective advantages and disadvantages of different growth forms with
respect to green space availability and accessibility, which contributes to the current debate
on different urban growth forms that mainly focused on “sprawl” and “compact growth”
(Ewing, 1997; Haase, 2016; Milder, 2012; Westerink et al., 2013).

5.3.2 Green SpaceAvailability among Scenarios in Sub-regional Zones

When comparing the growth effects in sub-regional zones, it showed that PCGS increased
when moving from the Urban Core Zone outwards in all scenarios, whereas SPAGS decreased
along this urban-rural gradient, except for L-M-C because it had new green spaces developed
in the Rural Zone. The higher values of PCGS in the Peri-Urban and Rural Zones were
attributed to more green spaces and lower population numbers. Even so, the lower values of
SPAGS in almost all scenarios highlighted the fact that the spatial inequality and injustice of
green space provision was more critical in these zones. Previous reports have suggested that
spatial inequality and injustice might be correlated with the dissimilarities in neighborhood
socioeconomic conditions as well as ecological prerequisites among different sub-regional
zones (de la Barrera et al., 2016; Kabisch and Haase, 2014; Kabisch et al., 2016; Lin et al., 2015).

The housing demand was found to have the same impact on green space availability in all
zones. That is, both indicators declined while the housing demand was increasing, which
is in accordance with the impacts at the regional scale. In addition, polycentric scenarios
tended to have a better performance in the Urban Core Zone, with both indicators exhibiting
higher values than in any monocentric scenario. This is because less of the housing demand
(40%) was allocated to this zone in polycentric scenarios than in the monocentric ones (55%).
Correspondingly, as more housing demand was allocated to the Peri-Urban and Rural Zones
compared to the monocentric scenarios, the values of both indicators were lower in the
polycentric scenarios in these two zones.
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Compared to the other two urban growth form scenarios, the compact growth scenario showed
higher values of SPAGS in all three zones. In each zone, “compact” growth increased the
population density in areas that had already been settled, leading to the highest net increases
or the lowest net decreases of population numbers with access to green spaces (Figure 4.24b).
However, the values of PCGS showed that different zones had their own most sustainable
growth forms. In the Urban Core Zone, “compact” growth showed the highest PCGS value
due to the smallest net decrease of green spaces within 300 𝑚 from settlements. As argued
in the previous section, the physical expansion of urban areas could incorporate new green
spaces. However, the incorporation did not compensate for the loss in this zone, which was
already highly urbanized (Pauleit and Duhme, 2000) and for which most of the green spaces
were already quite close to the settlement areas (Figure 3.3). In the Peri-Urban Zone, “compact
sprawl” growth led to the highest net increase of green spaces within 300 𝑚 distances from
settlements and therefore the highest value of PCGS. This value was even higher than that of
“sprawl” growth. A possible explanation for this is that high-density settlements were closer
to green spaces than low-density settlements in this zone. Interestingly, in the Rural Zone,
the highest value of PCGS was found with “sprawl” growth due to the increased availability of
green spaces in the surrounding areas. Moreover, incorporation of green spaces into the urban
fabric exceeded losses elsewhere in this zone . However, the SPAGS value was the lowest with
“sprawl” growth in this zone. Therefore, it can be noted that there is not one preferred urban
type of growth form for all zones. Even in the same zone, except for the Urban Core Zone
in which “compact” growth obtained the highest values of both indicators, different urban
growth alternatives showed relative advantages depending on which indicator was used for
the assessment. This finding has important implications for both urban and regional planners
to understand the spatially heterogeneous impact of urbanization on green space availability.
It also implies that targeted planning strategies should be proposed for different sub-regional
zones by addressing their specific spatial characteristics, such as the population density and
the provision of green spaces (Li et al., 2016).

5.3.3 Trade-offs between the Two Green Space Availability Indicators

The results also highlighted that the changes in the two indicators were not consistent with
each other within each scenario, and certain trade-offs were suggested, especially in the
following two aspects. First, PCGS increased in all scenarios when moving from the Urban
Core Zone outwards to the Rural Zone, whereas SPAGS decreased along the urban-rural
gradient in seven of eight scenarios. Second, with regard to urban growth form scenarios, a
scenario with a higher value of PCGS usually yielded a lower value of SPAGS and vice versa
in most cases at both the regional and sub-regional zone scale. High values of PCGS did not
necessarily lead to high values of SPAGS, indicating an uneven distribution of green spaces

103



Discussion

across the urban area, i.e., spatial inequality is present (de la Barrera et al., 2016; Kabisch and
Haase, 2014; Lin et al., 2015).

Per capita green space does not provide information concerning the spatial distribution and
the accessibility, or the quality of green spaces, which influences the ecosystem services they
deliver (Badiu et al., 2016; de la Barrera et al., 2016). Therefore, adopting it as an indicator
to assess green space availability has been controversial. However, due to its simplicity and
intuitiveness, this indicator is still widely used and various target values have been provided
for better and more straightforward management of urban green spaces. In German cities,
the targets related to per capita green space vary from 6 to 15 𝑚2 per resident (Deutscher
Rat für Landespflege, 2006). In this study, in addition to Per Capita Green Space (PCGS),
the Share of the Population with Access to Green Spaces (SPAGS) was employed as an
additional complementary indicator, which reflects the overall accessibility of green spaces
for all residents in an area. To address the trade-offs between the two indicators, it can be
suggested that once the value of PCGS is above the target value or in an acceptable range in
which no target values are given, promoting the overall accessibility to green spaces should
be considered a priority to improve the spatial justice of green space provision (Kabisch and
Haase, 2014). For example, although “compact” growth led to relatively lower values of PCGS
at the regional level, it may be still more advisable to adopt this strategy, as the value of
SPAGS was the highest and the PCGS value was still at a high level.

5.4 Spatial Variation of Green Space Equity and the
Impacts of Urban Dynamics (Part IV)

5.4.1 Correlations with Socioeconomic Variables

As discussed previously, green space studies should be conducted at the urban regional
scale to better understand the complexity of land development between the urban cores and
peri-urban surroundings, due to urban areas continue to develop into urban regions and
open spaces are under high pressure by urban growth (Kain et al., 2016; Larondelle et al.,
2016). By employing the Gini coefficient as an indicator, the spatial variation of green space
equity across the region was analyzed. The findings revealed that green spaces were more
equally distributed in municipalities of the central and southern parts of the region than
the surrounding ones, particularly than those in the northwest and central-east parts of this
region. A possible explanation is that more green spaces (e.g. the woodlands in the south
of Munich) are protected in those areas due to their special environmental functions and
recreational uses (see Figure 3.3) which consequently contribute to the spatial equity of green
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space distribution and, accordingly, attract more affluent people living there (Buettner et al.,
2013). In turn, municipalities with a better socioeconomic condition may be dedicated to the
protection and maintenance of green spaces as other studies suggested that socioeconomic
advantages are more likely associated with better availability and accessibility to green spaces
(Kabisch and Haase, 2014; Pauleit et al., 2005; Schüle et al., 2017; Wüstemann et al., 2017). This
pattern clearly reflects the divergence between the affluent south part and the less affluent
north part of this region. The northwest part is of less relevance as it is sparsely populated,
while the east part should be of more concern for green planning as it is rapidly developing.

The result of Geographically Weighted Regression (GWR) analysis showed that the
relationships between green space equity and socioeconomic variables were not always
consistently significant across space and the coefficients reflect great spatial heterogeneity
indicating the relationships are locality-specific (Li and Liu, 2016). First, the significant
correlation of the demographic factor with green space equity across the municipalities in the
middle, west and northwest parts of the region accords with previous findings that areas with
larger percentages of an elderly population tend to have more access to and more equitable
distribution of parks and green spaces, whereas areas with higher shares of a younger
population tend to have less (Kabisch and Haase, 2014; Xiao et al., 2017; Xing et al., 2018). In
addition, a negative correlation was found between the percentage of people in long-term
unemployment and the Gini coefficient. These findings are in line with Xiao et al. (2017)
who found that the proportion of aged or deprived (unemployed) residents was significantly
higher in neighborhoods that were more accessible to public green spaces, whereas Shen et al.
(2017) reported that sub-districts with larger proportions of aged or unemployed population
show worse public green space access in Shanghai, China. In the case of this study, on the
one hand, there is a trend that retired people with limited financial resources and individuals
with lowest income level move outwards from urban centers to reduce the housing costs and
have a good quality environment (Zhao et al., 2017). On the other hand, young families also
tend to move from city centers to peri-urban areas where the housing price is lower, but they
prioritise theirs needs for access to work places, schools, etc. over the access to green spaces
(Ravetz et al., 2013).

Second, the social-spatial factor was found to be significantly correlated with the Gini
coefficient in the southeast part of the region. As a higher population density will most
probably lead to a lower value of per capita living space, contrasting correlations were
found between the Gini coefficient and these two variables. This result suggested that, in the
southeast part of the region, municipalities with higher population density were associated
with more equitable green space distribution. Chen and Hu (2015) and Xiao et al. (2017)
reported that areas with higher population densities were correlated with better green space
provision and accessibility, respectively. Third, the negative correlations of the economic
factor (including per capita municipal revenue, per capita income and average housing price)
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with the Gini coefficient in the southwest half of the region is consistent with previous
researches that economically disadvantaged neighborhoods suffered from disparities in green
space distribution (Li and Liu, 2016; Pauleit et al., 2005; Pham et al., 2012; Schüle et al., 2017;
Wüstemann et al., 2017; You, 2016).

Considering specific socioeconomic factors throughout the region is required to build spatially-
specific greening strategies that effectively safeguard green spaces equally accessible by all
residents (Li and Liu, 2016). Regarding the results, greening strategies should put emphasis
on increasing the green space provision for municipalities with economic disadvantages
and a high percentage of a young population in the middle, west and northwest parts of
the region, while improving equitable access to green spaces is important for municipalities
with low population density and greater per capita living spaces in the southeast. When
promoting such strategies, priority should be given to municipalities with a higher level of
green space inequality as well as a bigger population size to enhance the benefits for more
residents. Although it might be argued that more industry and commerce would be required
for municipalities with economic disadvantages to boost their economic growth, a balanced
development among economic growth, environmental quality, and social equity is required
to achieve the goal of sustainability (Chen and Hu, 2015). Therefore, improving the green
space availability and equity should also be considered in the process of promoting economic
development (Chen and Wang, 2013).

GWR is a powerful tool for exploring the spatial non-stationary and scale-dependent
phenomena across space and the behavior of variables at a local level (Ivajnšič et al., 2014;
Jaimes et al., 2010). In this study, it provides more information on the spatial variability of the
green space equity in correlation to socioeconomic gradients, which shows great potential for
better green space planning in a policy context. From the results, the Gini coefficient is shown
to be a robust indicator that assesses the spatial equity of green space distribution. It would be
of great interest to include this indicator in the Eurostat Urban Audit Database (EUROSTAT,
2004), a project that aims to collect comparable statistics and indicators of socioeconomic,
environmental, and other aspects for European cities, to provide more comprehensive
information on urban green spaces in addition to green space availability and accessibility.

5.4.2 Impacts of Urban Dynamics on Green Space Equity at the
Regional Scale

Nowadays, it has become a challenge for cities or urban regions that are undergoing rapid
urbanization to provide sufficient and equitable green spaces to all residents with limited
land resources. In particular, for the cities and urban regions at the stage of socioeconomic
inequalities, improving the green space equity might be more desirable in promoting life
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quality through equitable provision of green spaces (Kabisch and Haase, 2014). Compared
to the status of 2013, the green space equities became worse in six out of the eight scenarios
as a consequence of the loss of green spaces caused by urban expansion no matter which
growth form or configuration the city adopted (Zhao et al., 2013). Two exceptions were found
in the shrinking scenarios, in which new green spaces were developed for the purpose of
improving green space provision in areas with limited access to green spaces. In practical
terms, urban shrinkage does not necessarily mean a creation or enhancement of urban green
space 𝑝𝑒𝑟𝑠𝑒, but the lower pressure on land resource and the emergence of a great number
of brownfields provide an opportunity for the consideration of greening vacant land (Haase
et al., 2012a; Wolff et al., 2017) or for interim use (Nassauer and Raskin, 2014; Rall and Haase,
2011). It is noteworthy that urban shrinkage is another path of urban development which is
spreading widely across the world (Haase et al., 2012a; Oswalt and Rieniets, 2006). Although
the results of this case study are mainly for urban growth, the multiple scenario modeling
approach could also be applied in other geographic regions that undergo different pathways
of urban development, such as urban shrinkage or regrowth.

Compared among different sub-scenarios at the regional level, it is apparent that a higher
housing demand led to a more inequitable green space distribution when urban spatial
structures and growth forms remained the same. This is due to the fact that a higher housing
demand poses more pressure on green spaces (cf. Westerink et al., 2013). The green space
distributions were more equal in the polycentric scenarios than the monocentric ones, as
the housing pressure in the polycentric scenarios were dispersed from the inner city to the
subcenters in peri-urban surroundings or rural areas where more green spaces are available.
With regard to different urban growth forms, the compact growth scenario was the most
favorable one in terms of green space equity. As discussed in the previous section, “compact”
growth has less pressure on green spaces by increasing population density in areas that had
already been settled. This finding supports the advocates of compact growth who regard it as
a more sustainable way compared to a sprawling peri-urbanization (Westerink et al., 2013).
Considering the other two growth forms, “sprawl” performed better than “compact sprawl”,
which might be owing to the reason that the greater physical expansion of urban area in the
sprawl scenario more strongly reduces the distance to green spaces from the surrounding
areas (Kabisch et al., 2016).

5.4.3 Impacts of Urban Dynamics on Green Space Equity in Sub-
regional Zones

Although more green spaces are available in the outer zones, the distribution of green spaces
became more and more inequitable when moving outwards from the Urban Core Zone to the
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Rural Zone in almost all scenarios, except for L-M-C that had new green spaces developed
in the Rural Zone. This trend is found to be consistent with the declining tendency of the
population density along this urban-rural gradient as Xiao et al. (2017) revealed that low
population density areas are correlated with less accessibility to public green spaces. Although
it is also reported that more private green cover (such as private gardens) are available in the
low population density areas (Lin et al., 2015), providing more accessible public green spaces
should be considered during the future urban development in these areas.

In all three zones, increasing the housing demand led to the decline of green space equity,
which is in accordance with the change at the regional scale. Polycentric scenarios had less
housing demand (40%) allocated in the Urban Core Zone than monocentric scenarios (55%),
and vice versa in the other two zones. As a higher housing demand led to a more inequitable
green space distribution, accordingly, polycentric scenarios tended to have a higher green
space equity than monocentric ones in the Urban Core Zone whilst it is lower in the other
two zones. Among different urban growth form scenarios, “compact” growth was found to be
the best option considering green space equity in all sub-regional zones and “sprawl” was
better than “compact sprawl” in the Urban Core and Peri-Urban Zones. This is consistent
with the findings at the regional level. The only difference is that “compact sprawl” led to
higher green space equity than “sprawl” in the Rural Zone, because of high-density settlements
were observed to be closer to green spaces than low-density settlements and there are much
more green spaces available in the Rural Zone. As different sub-regional zones have different
spatial characteristics, the findings presented here disclose the spatially heterogeneous impact
of urbanization on green space equity across different sub-regional zones and highlight the
necessity of proposing targeted planning strategies that are adapted to these zones (Haase
et al., 2012b; Li et al., 2016).

5.5 General Discussion: Limitations and Prospects

The multiple (combined) scenario modeling approach used in this study can provide
information concerning the advantages and disadvantages of different urban dynamics
with respect to green space availability and equity, which could also be applied in other
geographical regions. However, some limitations of and future improvements to the present
study are noteworthy.

Limitations Regarding the Data Set

The regional land use and land cover data used in this study were derived from high-resolution
aerial photography, which offers detailed information of the distribution and changes of
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different land uses at very fine scale. However, due to the limitation of computing power,
the original vector maps were converted into 30𝑚 × 30𝑚 raster maps, during which process
the loss of information is inevitable. In addition, when calculating the Gini coefficient, as no
more precise population density data available, reassigning the population to residential grids
based on the area and overall proportion between high-density and low-density settlements
may introduce a certain error to the calculation of green space equity. Moreover, although
landscape metrics have been successfully used as indicators for assessing landscape functions,
the effectiveness of using these metrics to assess changes of landscape functions in the region
is not investigated due to a lack of related data and out of the focus of the present study.

Uncertainties of the Scenario Modeling Approach

A number of limitations and uncertainties were included in this approach, which is
unavoidable for any simulation approach (Haase and Schwarz, 2009; Schwarz et al., 2010). As
highlighted by Haase and Schwarz (2009) in their review of human-nature interaction models,
there is a range of comprehensive urban land use change models but no unique approach
to representing urban landscapes and human-nature interactions. Clear limitations of this
approach included the restricted number of driver variables (population number, number of
households, housing space needs, see Schwarz et al., 2010), the coarse representation of the
housing spaces per capita (3 classes) (see Lauf et al., 2012) and the aggregated ways of looking
at the rural-urban gradient (zoning) as well as the degree of compactness of an urban region.
Undoubtedly, more detailed classifications of urban-rural zones, spatial patterns and growth
forms could have been used; however, whether these would have changed the variance of
the results is not clear, although they might have modified the results or added more options
and patterns. Second, as highlighted in the literature review, the outcomes of scenario studies
might be biased without systematic and representative stakeholder selection (Prell et al., 2009).
When engaging more stakeholders, the uncertainty and variation of the developed scenarios
could be increased, however, the significant time necessary to achieve all their aims has
been noted by a number of studies (e.g., Kowalski et al., 2009; Reed et al., 2013). Accordingly,
as the focus of this study is the urban dynamics at the urban-region scale, the experts that
engaged in the scenario development were invited from the key planning associations in
this region who have in-depth knowledge of the regional urban development. Third, lacking
a third land use map, the predicting accuracy of the urban growth model has not been
validated. However, the focus of this study was to systematically and quantitatively assess
the potential effects of different population and household dynamics on the urban forms and
its green spaces in the study region, rather than predicting the future urban growth pattern.
Last, the simulation approach itself is straightforward and includes spatial autocorrelation
as the main source of error for a pixel-based Markov-Chain-probability model. It definitely
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excludes more complex land-use-change-driver feedbacks, so a redistribution of households
after initial allocation by incorporating a satisfaction proxy with the housing situation and a
respective feedback loop from households to land (use) may have improved the analysis (see
again Haase and Schwarz, 2009). However, the limited number of influential parameters in
the whole modeling approach permits a high transferability and traceability of the model and
a straightforward sensitivity test for the utilized variables. Still, further improvement can be
made by incorporating macro-level driving factors of urban growth into the model, such as
the effect of government policy, economic growth, technological changes, and global climate
changes.

Limitations Regarding the Assessment of Green Spaces

First, this study defines green spaces based on the classification scheme of the land use and
land cover data and concentrates on four important green space categories which have higher
values of recreational services, including “parks and green spaces”, “allotment gardens”,
“cemeteries” and “forests”. It should be noted that some extensively managed grasslands (for
example, the Fröttmaninger Heide in this region) may also have considerable recreational
values. However, such areas are not easy to distinguish from other grasslands in the land use
maps. Second, due to a lack of detailed road network data, the linear distance was calculated
as a proxy of accessibility of green space. Although this approach has been used by many
researchers to generate serviceable areas around facilities and green spaces (Barbosa et al.,
2007; Gupta et al., 2016; Wüstemann et al., 2017), more accurate results might be achieved
with more detailed data on the access point of green spaces and traffic networks such as
footpaths, cycling paths, and so forth. Moreover, this study focuses on the nearby green
spaces which are considered as more important to the daily short-term recreational services
as the beneficiaries are often the residents who live in a vicinity of green spaces (Kabisch and
Haase, 2014). However, there is evidence that local residents would not extensively utilize
the green spaces if they are viewed as unsafe and farther green spaces with relatively large
areas may still be frequently visited in a car-oriented culture (Diez Roux et al., 2007; Wen
et al., 2013). In this context, one should note that changing the definition or the accessible
distance of green spaces may lead to dissimilar results. Third, due to a lack of data, the quality
of green spaces which can also vary across the socioeconomic gradient and influences the
attractiveness and utilization of green spaces (Schüle et al., 2017) has not been considered in
this study. Last, the indicators (PCGS, SPAGS, and the Gini coefficient) were used in this study
to assess the green space availability and equity, while other parameters would need to be
considered for a fuller assessment, e.g. of the impacts of urban dynamics on ecological quality
and biocultural diversity (Elands et al., 2018; Vierikko et al., 2016). For instance, although the
polycentric urban structure resulted in greater regional green space availability and equity
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in this study, it may lead to more fragmentation and isolation of green spaces which might
have negative impacts on habitat suitability (e.g., for bigger mammals, bees or birds) than the
monocentric structure (Liu and Wang, 2016).
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Chapter 6

Conclusions

The integrated model that was developed and applied in this study achieved good accuracy in
modeling the urban growth in the region of Munich, an urban area with high land pressure in
Germany. Incorporating the spatial dependency into the model showed great improvement
compared to the Ordinary Logistic Regression (OLR) model. There is a great potential for
applying this model to other geographical regions where the urban growth pattern is spatially
autocorrelated, especially when the actual growth is scattered and proportionally small. The
Kappa indexes were higher when separately modeling the different settlement growth than
an encompassing modeling all settlement growth because the driving factors of different
settlement growth might be dissimilar and the minutiae of different settlement growth could
be better represented.

Multiple urban dynamic scenarios were developed to assess the changes in landscape patterns
caused by urban expansion and their impacts on green spaces. Urban growth in all scenarios
demonstrated quite scattered spatial patterns across the region and mainly led to the loss of
open spaces including land use categories of grassland, arable land, and parks and green spaces.
However, the specific patterns of land use transition differed in different sub-regional zones
along the urban-rural gradient. Using the three landscape indexes developed in this study to
quantify or at least comparatively assess the changes of landscape pattern was found to be an
appropriate and effective method that eliminated the redundancy and confusion that existed
among the initially selected multiple landscape metrics. At the regional level, a higher housing
demand scenario reduced the patch complexity but improved the aggregation and diversity of
the landscape. The monocentric scenarios led to higher levels of patch complexity but lower
levels of landscape aggregation and diversity than the polycentric ones. The compact growth
scenario had a higher patch complexity index value and lower aggregation and diversity index
values than did the other two growth form scenarios. At the sub-regional level, the changes of
the patch complexity and configuration indexes were largely similar to their regional changes.
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In addition, the changes of landscape diversity index showed adverse trends between theUrban
Core Zone and the other two zones, which is attributed to whether urban settlement was the
dominant land use in these zones or not. Understandings of the impacts of urban dynamics
on landscape pattern changes might potentially provide valuable information for the design
of sustainable planning strategies. However, due to a lack of related data, the effectiveness of
using these metrics to assess changes of landscape functions in the region is out of the focus
of the present study and could be a direction for future work.

The availability of nearby green spaces with high values of daily recreational services under
diverse and diverging urban dynamic scenarios was assessed using two complementary
indicators at both the regional and sub-regional level. In addition, the Gini coefficient
was used to evaluate the green space equity since it has been considered as an issue of
environmental justice. Furthermore, the analysis of the spatial correlation between green
space equity and socioeconomic factors allows us to shed new light on the variances of green
space equity across spatial and socioeconomic gradients at the urban regional level. To my
best knowledge, this is a first time study that identifies the spatial variability of green space
equity and its locality-specific relationships with socioeconomic variables across the urban
region and explores the impacts of different urban dynamics on green space availability and
equity to provide policymakers and planners with a useful reference and guidance for more
effective green planning strategies.

This study clearly revealed that, without effective greening policies, different degrees of
decline in green space availability and equity were observed in most of the selected scenarios,
which were related to the loss of green spaces caused by new construction during urban
growth, although scenarios that showed shrinkage dynamics did result in new green space
development. From the comparative analysis, it is apparent that a higher housing demand
posed more pressure on the green space availability and equity at both levels. Moreover,
the polycentric urban spatial structure was found to be less limiting in terms of green space
availability and equity than the monocentric structure at the regional level. However, to
define the most advisable urban growth form, one must consider the trade-offs between
the indicators. For example, at the regional level, “compact” growth showed the highest
proportion of people with access to green spaces and the most equitable distribution of green
spaces, whereas the per capita value of green spaces was the highest under “sprawl” growth.
The results also indicated that it may difficult to find a single growth form that performs
best in all different zones, and thus, an optimization-oriented approach would fail. Therefore,
urban planning and greening policies should consider the physical and socioeconomic
heterogeneity across space, and focus more on the development of planning strategies
adapted to different sub-regional zones.

In the case of this study, it would be more advisable to adopt polycentric urban spatial
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structure and “compact” growth form in the Munich region in terms of green space
availability and equity. Moreover, increasing the green space provision should be considered
for municipalities with economic disadvantages and a high percentage of a young population
in the middle, west and northwest parts of the region, while improving equitable access to
green spaces is essential for municipalities with low population density and greater per capita
living spaces in the southeast. When promoting such greening strategies, priority should
be given to municipalities with a higher level of green space inequality as well as a bigger
population size to enhance the benefits for more residents.

The indicators applied in this study, particularly their combination, provided general
information on green space availability and equity, especially in the cases of comparative
studies, by using only a small set of input data. This novel and straightforward scenario
approach allows us to shed new light on the respective advantages and disadvantages of
different urban dynamics with respect to green space availability and equity. Different
analytical approaches have been applied in this study that aims to fill current research gaps
related to urban dynamic modeling, influencing dimensions of urban dynamics, green space
availability and equity under urban dynamics. To the best knowledge of the author, this is a
first time study that explores the combined impacts of different urban dynamic influencing
factors on green space availability and equity at both the regional and sub-regional levels and
identifies the spatial variability of green space equity and its locality-specific relationships
with socioeconomic variables across an urban region. In addition, this multiple scenario
modeling approach offers certain flexibility and is capable of adapting to different urban
contexts simply by modifying the parameter settings of the scenarios and the modeling tools.

From the urban planning point of view, the multiple-scenario modeling framework presented
in this study could be used as a powerful tool that offers an opportunity for planners and
governmental authorities to have a more precise understanding of the urban dynamic process
and their impacts on green spaces that might occur in an urban region similar to the one tested.
Thus, further planning and developmental scenarios can be developed to assess the potential
costs, benefits, and risks of corresponding planning strategies. Future works would be focused
on incorporating the assessment of green space quality and of ecosystem services to deepen
and extend our understandings of the impacts of urban dynamics on the green spaces, such as
the attractiveness of different green space types. Moreover, such large-scale study would need
to be complemented by qualitative ones that look in-depth into land use changes to better
understand their impacts on green space availability and equity at fine scales, which would be
another direction for future work.
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Appendix A: Constraint maps
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±

Figure A1 The constraint map that used in urban growth modeling (including nature reserves
map, flooding risk map, habitat maps, etc.).
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Appendix B: Potential driving factors of urban growth
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Figure B1 Maps of the potential driving factors of urban growth.
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Figure B1 Maps of the potential driving factors of urban growth (continued).
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Appendix C: Development of the housing demand sub-
scenarios

The Per Capita Living Space (PCLS) scenarios were proposed based on the proportions
between smaller households (one- or two-person households) and larger households (three or
more -person households) in the whole region. When assuming that the average area of one
apartment remains static, there is no doubt that a higher proportion of smaller households
will lead to a higher PCLS. Compared to their average annual growth rates between 2003
and 2013, the growth rates of smaller and larger households were 1.2 times higher and 0.8
times lower in high PCLS scenarios respectively, while the opposite trend was observed in
the low PCLS scenario. In the medium PCLS scenario, the growth of both smaller and larger
households followed their average annual growth rate between 2003 and 2013.

Regional population projection and regional household structure data were utilized for
developing housing demand scenarios. Regional population projection data was used as the
trend line (projected) scenario of population growth. Compared with the projected average
annual population growth rate, the average annual growth rates of high and low population
growth scenarios were 1.2 times higher and 0.8 times lower, respectively. (Figure C1).
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Figure C1 Scenarios of high, projected, and low population growth.

Then, the regional household structure data was utilized for calculating different scenarios of
PCLS.They were proposed based on the proportions between smaller households (one- or two-
person households) and larger households (three or more -person households) in the whole
regionWhen assuming that the average area of one apartment remains static, there is no doubt
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that a higher proportion of smaller households will lead to a higher PCLS. Compared to their
average annual growth rates between 2003 and 2013, the growth rates of smaller and larger
households were 1.2 times higher and 0.8 times lower in high PCLS scenarios respectively,
while the opposite trendwas observed in the low PCLS scenario. In themedium PCLS scenario,
the growth of both smaller and larger households followed their average annual growth rate
between 2003 and 2013 (Figure C2).
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Figure C2 Proportions of smaller and larger households under low, medium, and high Per
Capita Living Space scenarios.

At the end, three housing demand scenarios (High, Medium and Low) were developed by
combing different scenarios of population growth and PCLS. The high housing demand
scenario implies high population growth with high PCLS, while medium and low housing
demand scenarios mean projected population growth with medium PCLS and low population
growth with PCLS, correspondingly (Figure C3).
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Figure C3 Housing demand scenarios in millions of new households in the year 2033.
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Appendix D: The weights of the driving factors for each sub-regional zone

Table D1 Regression coefficients (B) and standard errors (S.E.) of the ALR for high-density settlement growth in each sub-regional zone

Variable
Urban Core Zone Peri-Urban Zone Rural Zone

B S.E. B S.E. B S.E.

Constant -3.19E+00*** 8.26E-01 -4.75E+00*** 3.81E-01 -5.10E+00*** 2.80E-01
Slope 1.77E-01** 6.19E-02 — — -4.60E-02* 1.85E-02
Distance to water 7.65E-04*** 5.66E-05 1.92E-04*** 3.11E-05 — —

Distance to green spaces -1.33E-02*** 9.63E-04 -1.23E-03*** 1.64E-04 -4.47E-04*** 6.55E-05
Neighborhood 2.53E-01*** 2.04E-02 2.04E-01*** 9.02E-03 2.15E-01*** 9.63E-03
Distance to the S-bahn (suburban train) station -7.69E-04*** 1.19E-04 -5.03E-05● 2.73E-05 — —

Distance to the U-bahn (metro) station -1.41E-03*** 1.94E-04 -4.45E-05** 1.70E-05 — —

Distance to the main center -1.35E-04* 5.47E-05 3.13E-05* 1.40E-05 -1.77E-05*** 4.35E-06
Distance to the subcenters -1.79E-04*** 3.21E-05 -3.90E-05** 1.22E-05 — —

Distance to the settlement centers — — — — — —

Distance to the commercial area 1.68E-03*** 1.81E-04 — — -3.57E-05** 1.27E-05
Distance to the industrial area 1.13E-03*** 1.72E-04 1.17E-04● 6.32E-05 — —

Distance to the highway — — — — -3.60E-05*** 9.02E-06
Distance to the major road -1.66E-03*** 2.26E-04 -7.88E-04*** 1.49E-04 — —

Distance to the local road -1.04E-02*** 2.17E-03 -5.39E-03*** 9.55E-04 — —

Distance to the urban edge -1.07E-02*** 1.08E-03 -1.04E-02*** 7.20E-04 -2.21E-02*** 1.81E-03
Population density — — — — — —

Residential land price — — -3.44E-03*** 3.64E-04 -3.27E-03*** 3.49E-04
Autocov 6.87E-01*** 2.27E-02 9.41E-01*** 1.49E-02 1.65E+00*** 2.26E-02

Note: Significant codes: ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05, ●: 𝑝 < 0.1,—: not significant.
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Table D2 Regression coefficients (B) and standard errors (S.E.) of the ALR for low-density settlement growth in each sub-regional zone

Variable
Urban Core Zone Peri-Urban Zone Rural Zone

B S.E. B S.E. B S.E.

Constant -3.04E+00* 1.29E+00 -7.44E+00*** 2.70E-01 -4.76E+00*** 1.29E-01
Slope — — — — — —

Distance to water 2.18E-04** 7.92E-05 — — — —

Distance to green spaces -2.51E-03*** 6.43E-04 2.00E-04*** 4.54E-05 1.77E-04*** 2.22E-05
Neighborhood 2.85E-01*** 1.93E-02 2.26E-01*** 6.93E-03 1.72E-01*** 4.55E-03
Distance to the S-bahn (suburban train) station — — -5.27E-05** 1.84E-05 — —

Distance to the U-bahn (metro) station — — — — — —

Distance to the main center -2.40E-04*** 6.30E-05 3.13E-05*** 7.16E-06 -1.33E-05*** 2.03E-06
Distance to the subcenters -1.17E-04*** 3.49E-05 2.35E-05*** 6.36E-06 — —

Distance to the settlement centers -9.23E-05● 5.01E-05 3.94E-05*** 1.00E-05 — —

Distance to the commercial area — — 1.49E-04*** 2.41E-05 — —

Distance to the industrial area — — — — — —

Distance to the highway 2.93E-04** 9.19E-05 -2.32E-05* 1.17E-05 1.07E-05** 3.65E-06
Distance to the major road — — — — 1.20E-04** 4.23E-05
Distance to the local road -7.02E-03** 2.54E-03 — — -3.88E-03*** 4.85E-04
Distance to the urban edge -1.52E-02*** 3.49E-03 -1.92E-02*** 1.01E-03 -2.38E-02*** 8.33E-04
Population density — — — — — —

Residential land price — — — — -4.23E-04** 1.52E-04
Autocov 8.09E-01*** 2.66E-02 1.12E+00*** 1.31E-02 1.13E+00*** 8.86E-03

Note: Significant codes: ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05, ●: 𝑝 < 0.1,—: not significant.
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Appendix E: The transition probabilities of different land
use types

Table E1 Normalized values of the transition probabilities of different land use types to high-
and low-density settlements in different sub-regional zones

Land use classes
High-density settlements Low-density settlements

UCZ PUZ RZ UCZ PUZ RZ

Allotment gardens 0 0.0020 0 0 0.0012 0
Cemeteries 0 0 0 0 0 0
Parks and green spaces 0.3695 0.0459 0.0312 0.0201 0.0487 0.0310
Low-density settlements 0 0 0 0 0 0
High-density settlements 0 0 0 0 0 0
Industrial area 1.0000 0 0 0.0050 0 0.0172
Commercial area 0 0 0 0 0 0
Schools, museums and research centers 0 0 0 0 0 0
Grassland 0.7559 0.9173 1.0000 0.7575 1.0000 1.0000
Arable land 0.3953 1.0000 0.4661 1.0000 0.9808 0.5944
Nurseries 0.0011 0.0133 0.0010 0.0063 0.0047 0.0006
Forest 0 0.0077 0.0035 0 0.0269 0.0148
Sport and leisure facilities 0.1982 0.0158 0 0 0.0360 0.0029
Quarries 0.0011 0.0026 0.0010 0.0013 0.0030 0.0014
Supply and disposal 0.0437 0 0 0.1005 0 0
Power stations 0 0 0 0 0 0
Lakes and ponds 0 0 0 0 0 0
Rivers 0 0 0 0 0 0
Harbors 0 0 0 0 0 0
Fish Farming 0 0 0 0 0 0
Wetlands 0 0 0 0 0 0
Military area 0 0 0 0 0 0
Unused land 0 0.0005 0 0 0.0003 0
Railway station, railway tracks 0 0 0 0 0 0
Railways 0 0 0 0 0 0
Road connection and buffer areas 0 0 0 0 0 0
Roads 0 0 0 0 0 0
Parking areas 0.0280 0.0179 0.0010 0.0955 0 0.0006
Construction sites 0.4065 0.1918 0.0797 0.0151 0.1037 0.0435
Airfields 0 0 0 0 0 0

Note: UCZ: Urban Core Zone, PUZ: Peri-Urban Zone, RZ: Rural Zone.
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Appendix F: Final transition probability maps
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Figure F1 Final transition probability maps of high-density and low-density settlement growth
for each zone.
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