

An Introduction to Model Order Reduction: from linear to nonlinear dynamical systems

Maria Cruz Varona

Chair of Automatic Control

Department of Mechanical Engineering

Technical University of Munich

June 5th 2018

Brief personal introduction

Maria Cruz Varona M.Sc. Electrical Engineering University studies (10/08-03/14):

Electrical Engineering and Information Technology (KIT) Study model 8: "Information and Automation" Master thesis at IRS (group: "cooperative systems")

Research assistant (since 08/14):

Chair of Automatic Control (Prof. Dr.-Ing. habil. B. Lohmann) Technical University of Munich

maria.cruz@tum.de

www.rt.mw.tum.de

MORLAB

Research interests:

Systems theory, model order reduction, nonlinear dynamical systems, Krylov subspace methods

ТШП

Chair of Automatic Control

Chair of Automatic Control

Chair of Automatic Control – MORLab

Agenda

I. Motivation & Linear Model Order Reduction

- Modeling, Modeling Strategies
- Large-scale models, Sparsity
- Reduced order models, Applications
- Projective MOR, Linear MOR methods
- Numerical Examples, FEM & MOR software

II. Polynomial & Nonlinear Model Order Reduction

- Projective NLMOR, Overview NLMOR methods
- Polynomial Nonlinear Systems, Volterra series representation
- Nonlinear Systems, Proper Orthogonal Decomposition

III. Summary & Outlook

Motivation & Linear Model Order Reduction

Modeling of complex dynamical systems

 ∞ Der neue Audi A8 Audi Space Frame The new Audi A8 Audi Space Frame 3:00 pm

- Models described by ODEs: $\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t))$
- Models described by PDEs:

$$\frac{\partial T(z,t)}{\partial t} = \frac{\partial^2 T(z,t)}{\partial z^2} + u(z,t)$$

ТШ

Modeling – Strategies

0D modeling: lumped-parameter model

u	:	voltage	\Leftrightarrow	v :	velocity
i	•	current	\Leftrightarrow	F:	force
p	•	pressure	\Leftrightarrow	<i>e</i> :	effort
q	:	flow rate	\Leftrightarrow	f :	flow

1D, 2D, 3D modeling: distributed-parameter model

Data-driven modeling: identification of model using experimental data

Large-scale models from spatial discretization

Sparsity of matrices

Matrices coming from FEM/FVM discretization are generally *sparse*

Storage requirement: $A \in \mathbb{R}^{34722 \times 34722}$

- Sparse: ~33.2 MB
- Full / Dense: 9.0 GB required!

Goal of Model Order Reduction (MOR)

Large-scale full order model (FOM)

Reduced order model (ROM)

Applications of ROMs

Off-line applications:

- Efficient numerical simulation "solves in seconds vs. hours"
- Design optimization analysis for different parameters and "what if" scenarios
- Computer-aided failure mode and effects analysis (FMEA) validation

On-line applications:

- Parameter estimation, Uncertainty Quantification
- Real-time optimization and control
- Digital Twin, Predictive Maintenance

Physical domains:

mechanical, electrical, thermal, fluid, acoustics, electromagnetism, ...

Application areas:

CSD, CFD, FSI, EMBS, MEMS, crash simulation, vibroacoustics, civil & geo, biomedical, ...

Reduced Order Modeling – Strategies

Projective MOR

Assumption: Dynamical system does not transit all regions of the state-space equally often, but mainly stays and evolves in a subspace of lower dimension

Approximation of the state vector:

$$oldsymbol{x} = oldsymbol{V} oldsymbol{x}_{ ext{r}} + oldsymbol{e}\,, \quad oldsymbol{V} \in \mathbb{R}^{n imes n}$$

Petrov-Galerkin projection: $\Pi = EV(W^{T}EV)^{-1}W^{T}$

Linear MOR methods – Overview

1. Modal Reduction

- Preservation of dominant eigenmodes
- Frequently used in structural dynamics / second order systems
- 2. Truncated Balanced Realization / Balanced Truncation
 - Retention of state-space directions with highest energy transfer
 - Requires solution of Lyapunov equations, i.e. linear matrix equations (LMEs)
 - Applicable for medium-scale models: $n \approx 5000$
- 3. Rational Krylov subspaces
 - "Moment Matching": matching some Taylor-series coefficients of the transfer function
 - Requires solution of linear systems of equations (LSEs) applicable for $n \approx 10^6$
 - Also employed for: approximate solution of eigenvalue problems, LSEs, LMEs,...
- 4. Iterative Krylov algorithm IRKA
 - H2-optimal reduction
 - Adaptive choice of Krylov reduction parameters (e.g. shifts)

Modal Reduction

Goal: Preserve dominant eigenmodes of the system

Procedure:

Modal transformation: Bring system into modal coordinates through state-transformation

 \mathbf{I}_r

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

2) Truncation:
$$A_{\rm r} = \Lambda_1, \ B_{\rm r} = \hat{B}_1, \ C_{\rm r} = \hat{C}_1, \ E_{\rm r} =$$

Practical implementation:

Entire modal transformation of FOM is expensive!

→ Only a few eigenvalues and left and right eigenvectors are computed via eigs

Truncated Balanced Realization (TBR)

Goal: Preserve state-space directions with highest enery transfer

Controllability and Observability Gramians:

Energy interpretation:

 $A P E^{\mathsf{T}} + E P A^{\mathsf{T}} + B B^{\mathsf{T}} = 0 \qquad \min_{x(0)=0, x(\infty)=x_{e}} \int_{0}^{\infty} |u(t)|^{2} dt = x_{e}^{\mathsf{T}} P^{-1} x_{e}$ $A^{\mathsf{T}} Q E + E^{\mathsf{T}} Q A + C^{\mathsf{T}} C = 0 \qquad ||y(t)||_{2}^{2} = x_{0}^{\mathsf{T}} Q x_{0}$

Procedure:

Balancing step: Compute balanced realization, where $\mathbf{P} = \mathbf{E}^{\mathsf{T}} \mathbf{Q} \mathbf{E} = \mathbf{\Sigma} = \text{diag}(\sigma_1, \dots, \sigma_n)$ Relative decay of HSV $P = RR^{\mathsf{T}}, \quad Q = SS^{\mathsf{T}}$ 10^{0} $oldsymbol{S}^{\mathsf{T}}oldsymbol{E}oldsymbol{R} = egin{bmatrix} oldsymbol{U}_1 & oldsymbol{U}_2 \end{bmatrix} egin{bmatrix} oldsymbol{\Sigma}_1 & & \ & oldsymbol{\Sigma}_2 \end{bmatrix} egin{bmatrix} oldsymbol{N}_1^{\mathsf{T}} \ & oldsymbol{N}_2^{\mathsf{T}} \end{bmatrix}$ σ_i/σ_1 Truncation step: $\sigma_i \gg \sigma_j$, $i = 1, \ldots, r$, $j = r + 1, \ldots, n$ $\|\boldsymbol{G}(s) - \boldsymbol{G}_{\mathrm{r}}(s)\|_{\mathcal{H}_{\infty}} \leq$ $\boldsymbol{W}^{\mathsf{T}} = \boldsymbol{\Sigma}_{1}^{-1/2} \boldsymbol{U}_{1}^{\mathsf{T}} \boldsymbol{S}^{\mathsf{T}}, \qquad \boldsymbol{V} = \boldsymbol{R} \boldsymbol{N}_{1} \boldsymbol{\Sigma}_{1}^{-1/2}$ **S**sMOR 10⁻²⁰ 150 200 250 50 100

Rational Interpolation by Krylov subspace methods

Moments of a transfer function

 $G(s) = C(sE - A)^{-1}B$ $= G(\Delta s + \sigma) = \sum_{i=0}^{\infty} M_i(\sigma) (s - \sigma)^i$

- σ : interpolation point (shift)
- $oldsymbol{M}_i(\sigma)$: i-th moment around σ

(Multi)-Moment Matching by Rational Krylov (RK) subspaces

Bases for input and output Krylov-subspaces:

Moments from full and reduced order model around certain shifts match!

\mathcal{H}_2 -optimal model order reduction

Goal: Find ROM that minimizes the \mathcal{H}_2 -error

$$\|G - G_{\mathbf{r}}\|_{\mathcal{H}_{2}} = \min_{\dim(\widetilde{G}_{\mathbf{r}})=r} \left\|G - \widetilde{G}_{\mathbf{r}}\right\|_{\mathcal{H}_{2}}$$

H2-norm:
$$\|G(s)\|_{\mathcal{H}_2}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(\mathrm{i}\omega)|^2 \mathrm{d}\omega$$

Algorithm 1 Iterative Rational Krylov Algorithm (SISO)Input: $\Sigma := (E, A, b, c^{\mathsf{T}}), \sigma_i, \text{ tol}$ Output: locally \mathcal{H}_2 -optimal ROM $\Sigma_r^{opt}, \sigma_i^{opt}$ 1: while (relative change of $\sigma_i > \text{tol}$) do2: $\Sigma_r \leftarrow \operatorname{RK}(\Sigma, \sigma_i)$ 3: $\Lambda_r = \lambda(A_r, E_r)$ 4: $\sigma_i \leftarrow -\overline{\lambda}_{r,i}$ 5: end while6: $\Sigma_r^{opt} \leftarrow \Sigma_r, \sigma_i^{opt} \leftarrow \sigma_i$ $\sim \operatorname{Return optimal ROM and shifts}$

IRKA achieves multipoint moment matching at optimal shifts!

Necessary optimality conditions:

$$G(-\overline{\lambda}_{\mathbf{r},i}) = G_{\mathbf{r}}(-\overline{\lambda}_{\mathbf{r},i})$$

$$G'(-\overline{\lambda}_{\mathbf{r},i}) = G'_{\mathbf{r}}(-\overline{\lambda}_{\mathbf{r},i})$$

$$i = 1, \dots, r$$

$$\mathsf{Im}\{\cdot\}$$

$$\mathsf{Im}\{\cdot\}$$

$$\mathsf{K}$$

$$\mathsf{Re}\{\cdot\}$$

$$\mathsf{Re}\{\cdot\}$$

Comparison: BT vs. Krylov subspace methods

Balanced Truncation (BT)

- + stability preservation
- + automatable
- + error bound (a priori)
- computing-intensive
- storage-intensive
- n < 5000

Subject of research

- Numerically efficient solution of largescale Lyapunov equations
- \Rightarrow Krylov-based Low-Rank Approximation
 - ADI (Alternating Directions Implicit)
 - RKSM (Rational Krylov Subspace Method)

Rational Krylov (RK) subspaces

- + numerically efficient
- + n ≈ 10⁶
- + H_2 -optimal (IRKA)
- + many degrees of freedom
- many degrees of freedom
- stability gen. not preserved
- no error bounds

Subject of research

- Adaptive choice of reduction parameters
 - Reduced order
 - Interpolation data (shifts, etc.)
- Stability preservation
- Numerically efficient computation of rigorous error bounds

Numerical comparison

fom: n = 1006, r = 20

	red. time [s]	$\frac{\ G - G_{\mathbf{r}}\ _{\mathcal{H}_2}}{\ G\ _{\mathcal{H}_2}}$	$\frac{\ G - G_{\mathbf{r}}\ _{\mathcal{H}_{\infty}}}{\ G\ _{\mathcal{H}_{\infty}}}$
modalMor (lr)	0.40	19.40e-02	4.16e-02
tbr	0.20	1.18e-09	5.78e-09
rk	0.09	81.47e-02	96.73e-02
irka	0.60	8.56e-08	5.80e-09

steel profile rail_1357: n = 1357, r = 20

	red. time [s]	$\frac{\ G - G_{\mathbf{r}}\ _{\mathcal{H}_2}}{\ G\ _{\mathcal{H}_2}}$	$\frac{\ G - G_{\mathbf{r}}\ _{\mathcal{H}_{\infty}}}{\ G\ _{\mathcal{H}_{\infty}}}$
modalMor (lr)	1.21	4.61e-02	3.76e-03
tbr	0.49	3.47e-05	2.65e-06
rk	0.10	1.34e-07	3.36e-07
irka	1.32	2.38e-12	9.61e-11

Toolboxes for sparse, large-scale models in 📣


```
c2d, lsim, eigs, connect,...
```


Powered by: M-M.E.S.S. toolbox [Saak, Köhler, Benner] for Lyapunov equations Available at <u>www.rt.mw.tum.de/?sssMOR</u> and <u>https://github.com/MORLab</u>. [Castagnotto/Cruz Varona/Jeschek/Lohmann '17]: **"sss & sssMOR: Analysis and** Reduction of Large-Scale Dynamic Systems in MATLAB", at-Automatisierungstechnik]

Main characteristics

- ✓ State-space models of very high order on a standard computer $(n ≈ 10^8)$
- Many Control System Toolbox functions, revisited to exploit sparsity
- Allows system analysis in frequency (bode, sigma, ...) and time domain (step, norm, lsim,...), as well as manipulations (connect, truncate, ...)
- Is compatible with the built-in syntax
- New functionality: eigs, residue, pzmap,...

- Classical (modalMor, tbr, rk,...) and state-of-the-art (isrk, irka, cirka, cure,...) reduction methods
- Both highly-automatized
 sysr = irka(sys,n)

and highly-customizable

Opts.maxiter = 100
Opts.tol = 1e-6
Opts.stopcrit = `combAll'
Opts.verbose = true
sysr = irka(sys,n,Opts)

solveLse and lyapchol as core functions

ПΠ

S SS

ТЛП

FEM & MOR software

Commercial FEM software:

ANSYS, Abaqus, COMSOL Multiphysics, LS-DYNA, Nastran, ...

Open-source FEM software:

AMfe, CalculiX, FEniCS Project, FreeFEM++, JuliaFEM, KRATOS, OOFEM, OpenFOAM, ...

Open-source Pre-/Post-Processing tools:

Gmsh, ParaView, ...

Open-source MOR software:

pyMOR, sss, sssMOR, psssMOR, emgr, M.E.S.S., MOREMBS, MORE, RBmatlab, ...

The Open Source CFD Toolbox

ANSYS[®]

Polynomial & Nonlinear Model Order Reduction

 $\det(\boldsymbol{E}) \neq$

Projective MOR for Nonlinear Systems

Given a large-scale nonlinear control system of the form

$$\begin{bmatrix} \mathbf{E} \, \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u) \\ y = h(\mathbf{x}) \end{bmatrix} \qquad \qquad \mathbf{x}(t) \in \mathbb{R}^n$$

with $f(x, u) : \mathbb{R}^n \times \mathbb{R}^1 \to \mathbb{R}^n$ and $h(x) : \mathbb{R}^n \to \mathbb{R}^1$

Simulation, design, control and optimization cannot be done efficiently!

with $\boldsymbol{f}_{\mathrm{r}}(\boldsymbol{x}_{\mathrm{r}}, u) : \mathbb{R}^{r} \times \mathbb{R}^{1} \to \mathbb{R}^{r}$ and $h(\boldsymbol{x}_{\mathrm{r}}) : \mathbb{R}^{r} \to \mathbb{R}^{1}$

Challenges of Nonlinear MOR

Nonlinear systems can exhibit complex behaviours

- Strong nonlinearities
- Multiple equilibrium points
- Limit cycles
- Chaotic behaviours

Input-output behaviour of nonlinear systems **cannot** be described with transfer functions, the state-transition matrix or the convolution integral (only possible for special cases)

Choice of the reduced order basis

- Projection basis should comprise most dominant directions of the state-space
- Different existing approaches:
 - Simulation-based methods
 - System-theoretic techniques

Expensive evaluation of $m{f}(m{V}m{x}_{ m r})$

- Vector of nonlinearities **f** still has to be evaluated in full dimension
- Approximation of **f** by so-called hyperreduction techniques:
 → EIM, DEIM, GNAT, ECSW...

Nonlinear MOR methods – Overview

Polynomial nonlinear systems

Reduction of bilinear systems

$$E\dot{x} = Ax + Nxu + bu$$

 $y = c^{\mathsf{T}}x$

- ✓ Transfer of system-theoretic concepts
- Generalization of linear MOR methods:
 - Balanced truncation
 - Krylov / H₂-optimal approach

Reduction of quadratic-bilinear systems $E\dot{x} = Ax + H(x \otimes x) + Nxu + bu$ $y = c^{\mathsf{T}}x$

- ✓ Reduction methods for MIMO models
- Input-awareness:
 - signal generators
 - eigenfunctions

Nonlinear systems

Reduction of nonlinear (parametric) systems

$$\begin{split} \boldsymbol{E} \dot{\boldsymbol{x}} &= \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) & \boldsymbol{E} \dot{\boldsymbol{x}} &= \boldsymbol{f}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x}) \, \boldsymbol{u} \\ y &= h(\boldsymbol{x}) & y &= \boldsymbol{c}^\mathsf{T} \boldsymbol{x} \end{split}$$

- ✓ Simulation-based:
 - POD, TPWL
 - Reduced Basis, Empirical Gramians
- Simulation-free / System-theoretic

Polynomial Nonlinear Systems

Polynomialization / Carleman linearization

Starting point: $E \dot{x} = f(x) + g(x) u$ $y = c^{\mathsf{T}} x$ Assumptions: • $x_{\mathsf{S}} = 0$ • $f(x_{\mathsf{S}}) = 0$ $E \dot{x} = A^{(1)} x + A^{(2)} (x \otimes x) + \dots + N^{(1)} x u + \dots + b u$ $y = c^{\mathsf{T}} x$ $x^{(1)} = x \in \mathbb{R}^{n}$ $A^{(2)} \in \mathbb{R}^{n \times n^{2}}$ $A^{(3)} \in \mathbb{R}^{n \times n^{3}}$ \vdots $x^{(3)} = x \otimes x \otimes x \in \mathbb{R}^{n^{3}}$ \vdots

Bilinear dynamical systems

- Result from direct modeling or Carleman (bi)linearization
- Linear in input and linear in state, but not jointly linear in both
- Interface between fully nonlinear and linear systems

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

34

Volterra series representation

 $\dot{\boldsymbol{x}}(t) = \boldsymbol{A} \boldsymbol{x}(t) + \boldsymbol{N} \boldsymbol{x}(t) \boldsymbol{u}(t) + \boldsymbol{b} \boldsymbol{u}(t), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0,$ $y(t) = \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x}(t).$

Picard fixed-point iteration (successive approximation)

Approximate solution of the bilinear system

$$\boldsymbol{x}_{1}(t) = \int_{\tau=0}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{b} u(\tau) \, \mathrm{d}\tau + e^{\boldsymbol{A}t} \boldsymbol{x}_{0} \,,$$
$$\boldsymbol{x}_{k}(t) = \int_{\tau=0}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{N} u(\tau) \boldsymbol{x}_{k-1}(\tau) \, \mathrm{d}\tau \,, \quad k \ge 2$$

Variational equations (subsystems)

Interpretation as a series of homogenous, cascaded subsystems:

$$\dot{x}_{1}(t) = A x_{1}(t) + b u(t), \qquad x_{1}(0) = x_{0},$$
$$\dot{x}_{k}(t) = A x_{k}(t) + N x_{k-1}(t) u(t), \quad x_{k}(0) = 0, \quad k \ge 2$$

Systems Theory for Volterra systems (1) [Rugh '81]

Input-Output behavior

$$(y(t) = \sum_{k=1}^{\infty} y_k(t)) \qquad y(t) = \sum_{k=1}^{\infty} \int_{\tau_1 = -\infty}^{\infty} \cdots \int_{\tau_k = -\infty}^{\infty} \underbrace{\mathbf{c}^{\mathsf{T}} \mathbf{e}^{\mathbf{A}\tau_k} \mathbf{N} \cdots \mathbf{N} \mathbf{e}^{\mathbf{A}\tau_2} \mathbf{N} \mathbf{e}^{\mathbf{A}\tau_1} \mathbf{b}}_{g_k(\tau_1, \dots, \tau_k)} \\ \times u(t - \tau_k) \cdots u(t - \tau_k - \dots - \tau_1) \, \mathrm{d}\tau_k \cdots \mathrm{d}\tau_1$$

Kernels

$$k = 1:$$
 $g_1(\tau_1) = \boldsymbol{c}^{\mathsf{T}} \mathrm{e}^{\boldsymbol{A} \tau_1} \boldsymbol{b}$

$$k = 2:$$
 $g_2(\tau_1, \tau_2) = \boldsymbol{c}^{\mathsf{T}} \mathrm{e}^{\boldsymbol{A} \tau_2} \boldsymbol{N} \mathrm{e}^{\boldsymbol{A} \tau_1} \boldsymbol{b}$

$$k = 3:$$
 $g_3(\tau_1, \tau_2, \tau_3) = \boldsymbol{c}^{\mathsf{T}} \mathrm{e}^{\boldsymbol{A}\tau_3} \boldsymbol{N} \mathrm{e}^{\boldsymbol{A}\tau_2} \boldsymbol{N} \mathrm{e}^{\boldsymbol{A}\tau_1} \boldsymbol{b}$

Transfer functions

$$k = 1:$$
 $G_1(s_1) = c^{\mathsf{T}}(s_1\mathbf{I} - \mathbf{A})^{-1}b$

$$k = 2:$$
 $G_2(s_1, s_2) = \boldsymbol{c}^{\mathsf{T}}(s_2\mathbf{I} - \boldsymbol{A})^{-1}\boldsymbol{N}(s_1\mathbf{I} - \boldsymbol{A})^{-1}\boldsymbol{b}$

k = 3:
$$G_3(s_1, s_2, s_3) = \mathbf{c}^{\mathsf{T}}(s_3\mathbf{I} - \mathbf{A})^{-1}\mathbf{N}(s_2\mathbf{I} - \mathbf{A})^{-1}\mathbf{N}(s_1\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$$

Systems Theory for Volterra systems (2) [Rugh '81] $\overline{p}_{k}(\tau_{1},...,\tau_{k})$ $P = \sum_{k=1}^{\infty} P_{k}, \quad Q = \sum_{k=1}^{\infty} Q_{k}, \qquad g_{k}(\tau_{1},...,\tau_{k}) = \underbrace{c^{\mathsf{T}}e^{\mathbf{A}\tau_{k}}\mathbf{N}\cdots\mathbf{N}e^{\mathbf{A}\tau_{2}}\mathbf{N}e^{\mathbf{A}\tau_{1}}\mathbf{b}}_{\overline{q}_{k}(\tau_{1},...,\tau_{k})^{\mathsf{T}}}$ $P_{k} = \int_{\tau_{1}=0}^{\infty} \cdots \int_{\tau_{k}=0}^{\infty} \overline{p}_{k}(\tau_{1},...,\tau_{k})\overline{p}_{k}(\tau_{1},...,\tau_{k})^{\mathsf{T}}d\tau_{1}\cdots d\tau_{k}$ $AP + PA^{\mathsf{T}} + NPN^{\mathsf{T}} + bb^{\mathsf{T}} = \mathbf{0}$ $A^{\mathsf{T}}Q + QA + N^{\mathsf{T}}QN + cc^{\mathsf{T}} = \mathbf{0}$

H2-norm

$$\|\zeta\|_{\mathcal{H}_2}^2 = \sum_{k=1}^{\infty} \int_{\tau_1=0}^{\infty} \cdots \int_{\tau_k=0}^{\infty} g_k(\tau_1,\ldots,\tau_k) g_k(\tau_1,\ldots,\tau_k)^{\mathsf{T}} \mathrm{d}\tau_1 \cdots \mathrm{d}\tau_k$$

$$= \sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{1}{(2\pi)^{k}} G_{k}(i\omega_{1}, \dots, i\omega_{k}) G_{k}(-i\omega_{1}, \dots, -i\omega_{k})^{\mathsf{T}} d\omega_{1} \cdots d\omega_{k}$$
$$= \boldsymbol{c}^{\mathsf{T}} \boldsymbol{P} \boldsymbol{c} = \boldsymbol{b}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{b}$$

This approach interpolates the weighted series at the interpolation points $\sigma_1, \ldots, \sigma_r$

Projection matrices for Volterra series interpolation

$$\boldsymbol{v}_{i} = \sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}=1}^{r} \eta_{l_{1},\dots,l_{k-1},i} (\boldsymbol{\sigma}_{i}\boldsymbol{E}-\boldsymbol{A})^{-1} \boldsymbol{N} (\boldsymbol{\sigma}_{l_{k-1}}\boldsymbol{E}-\boldsymbol{A})^{-1} \boldsymbol{N} \cdots \boldsymbol{N} (\boldsymbol{\sigma}_{l_{1}}\boldsymbol{E}-\boldsymbol{A})^{-1} \boldsymbol{b}$$
$$\boldsymbol{w}_{i} = \sum_{k=1}^{\infty} \sum_{l_{1}=1}^{r} \cdots \sum_{l_{k-1}=1}^{r} \vartheta_{l_{1},\dots,l_{k-1},i} (\boldsymbol{\mu}_{l_{1}}\boldsymbol{E}-\boldsymbol{A})^{-\mathsf{T}} \boldsymbol{N}^{\mathsf{T}} (\boldsymbol{\mu}_{l_{2}}\boldsymbol{E}-\boldsymbol{A})^{-\mathsf{T}} \boldsymbol{N}^{\mathsf{T}} \cdots \boldsymbol{N}^{\mathsf{T}} (\boldsymbol{\mu}_{i}\boldsymbol{E}-\boldsymbol{A})^{-\mathsf{T}} \boldsymbol{c}$$

Proper Orthogonal Decomposition (POD)

Starting point: $E \dot{x} = f(x, u)$

 $oldsymbol{y} = oldsymbol{h}(oldsymbol{x})$

- 1. Choose suitable training input signals $u_1(t), u_2(t), \ldots, u_t(t)$
- 2. Take snapshots from simulated full order state trajectories

$$\mathbf{X}_{(n,n_{\rm s})} = \begin{bmatrix} \mathbf{x}^{\mathbf{u}_1}(t_1), \, \mathbf{x}^{\mathbf{u}_1}(t_2), \, \cdots, \, \mathbf{x}^{\mathbf{u}_1}(t_N) \, \, \mathbf{x}^{\mathbf{u}_2}(t_1), \, \mathbf{x}^{\mathbf{u}_2}(t_2), \, \cdots \end{bmatrix}$$

3. Perform singular value decomposition (SVD) of snapshot matrix X

$$oldsymbol{X} \;=\; oldsymbol{M}_{(n,n)} \; oldsymbol{\Sigma}_{(n,n_{
m s})} \; oldsymbol{N}^{\sf T}_{(n_{
m s},n_{
m s})} \;pprox\; oldsymbol{M}_{
m r} \; oldsymbol{\Sigma}_{
m r} \; oldsymbol{N}_{
m r}^{\sf T}_{(n,n)} \ oldsymbol{(n,n)} \; oldsymbol{(n,n)}$$

4. Reduced order basis: $m{V} = m{M}_{ ext{r}} \in \mathbb{R}^{n imes r}$

Advantages:

r

- Straightforward data-driven method
- ✓ Choice of reduced order from singular values / error bound for approx. error
- ✓ Optimal in least squares sense:

$$\min_{\mathrm{ank}(\boldsymbol{X}_{\mathrm{r}})=r} ||\boldsymbol{X}-\boldsymbol{X}_{\mathrm{r}}||_2$$

Disadvantages:

- Simulation of full order model for different input signals required
- SVD of large snapshot matrix required
- Training input dependency

Summary & Outlook

Take-Home Messages:

- Modeling via FEM/FVM is becoming more and more important!
- Applicable for several physical domains and many technical applications!
- Model Order Reduction is indispensable to reduce the computational effort
- Reduction is done via projection
- Linear MOR is well developed
- Generalization of system-theoretic concepts and MOR methods to polynomial systems
- POD is still the most employed nonlinear MOR method
- Simulation-free / Sytem-theoretic nonlinear MOR techniques are aimed

Ongoing work:

- Polynomial nonlinear systems
- Simulation-free / System-theoretic NLMOR

Thank you for your attention!

ТШТ

References

[Antoulas '05]	Approximation of Large-Scale Dynamical Systems. SIAM.
[Astolfi '10]	Model reduction by moment matching for linear and nonlinear systems. IEEE TAC.
[Beattie/Gugercin '17]	Model reduction by rational interpolation. Model Reduction and Algorithms: Theory and Applications. SIAM.
[Chaturantabut et al. '10]	Nonlinear model reduction via discrete emperical interpolation. SIAM Journal on Scientific Computing.
[Flagg/Gugercin '15]	Multipoint Volterra series interpolation and H2 optimal model reduction of bilinear systems, SIAM Journal on Matrix
[Isidori '95]	Nonlinear Control Systems. Springer, Third edition.
[Rugh '81]	Nonlinear system theory. The Volterra/Wiener Approach. The Johns Hopkins University Press