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I. Motivation & Linear Model Order Reduction

• Modeling, Modeling Strategies

• Large-scale models, Sparsity

• Reduced order models, Applications

• Projective MOR, Linear MOR methods

• Numerical Examples, FEM & MOR software

II. Polynomial & Nonlinear Model Order Reduction

• Projective NLMOR, Overview NLMOR methods

• Polynomial Nonlinear Systems, Volterra series representation

• Nonlinear Systems, Proper Orthogonal Decomposition

III. Summary & Outlook
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• Models described by ODEs:

• Models described by PDEs:

8

Modeling of complex dynamical systems
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0D modeling: lumped-parameter model
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Modeling – Strategies

1D, 2D, 3D modeling: distributed-parameter model

:  velocity

:  force

:  voltage

:  current

:  pressure

:  flow rate

:  effort

:  flow

Data-driven modeling: identification of model using experimental data
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Spatial discretization using:

• Finite-Difference-Method (FDM)

• Finite-Element-Method (FEM)

• Finite-Volume-Method (FVM)
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Large-scale models from spatial discretization

High dimension complicates:

• numerical simulation

• design optimization

• estimation, prediction & control
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Matrices coming from FEM/FVM discretization are generally sparse
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Sparsity of matrices

gyroscope power system Bauru steel profile rail_79841

Storage requirement:

• Sparse: ~33.2 MB

• Full / Dense: 9.0 GB required!
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Large-scale full order model (FOM)

12

Goal of Model Order Reduction (MOR)

MOR

Reduced order model (ROM)

good approximation

preservation of properties

numerically efficient
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Off-line applications:

• Efficient numerical simulation – “solves in seconds vs. hours”

• Design optimization – analysis for different parameters and “what if” scenarios

• Computer-aided failure mode and effects analysis (FMEA) – validation

On-line applications:

• Parameter estimation, Uncertainty Quantification

• Real-time optimization and control

• Digital Twin, Predictive Maintenance

Physical domains:

mechanical, electrical, thermal, fluid, acoustics, electromagnetism, …

Application areas:

CSD, CFD, FSI, EMBS, MEMS, crash simulation, vibroacoustics, civil & geo, biomedical, …

13

Applications of ROMs
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Reduced Order Modeling – Strategies

Coarse mesh:

Fine mesh & Projection-based MOR:

0D modeling: lumped-parameter / simplified model
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Projective MOR

Petrov-Galerkin projection:

Assumption: Dynamical system does not transit all 

regions of the state-space equally often, but mainly

stays and evolves in a subspace of lower dimension

Approximation of the state vector:

How to choose V and W?
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1. Modal Reduction

• Preservation of dominant eigenmodes

• Frequently used in structural dynamics / second order systems

2. Truncated Balanced Realization / Balanced Truncation

• Retention of state-space directions with highest energy transfer

• Requires solution of Lyapunov equations, i.e. linear matrix equations (LMEs)

• Applicable for medium-scale models:

3. Rational Krylov subspaces

• “Moment Matching”: matching some Taylor-series coefficients of the transfer function

• Requires solution of linear systems of equations (LSEs) – applicable for

• Also employed for: approximate solution of eigenvalue problems, LSEs, LMEs,…

4. Iterative Krylov algorithm IRKA

• H2-optimal reduction

• Adaptive choice of Krylov reduction parameters (e.g. shifts)

16

Linear MOR methods – Overview
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Goal: Preserve dominant eigenmodes of the system
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Modal Reduction

Procedure:

1 Modal transformation: Bring system into modal coordinates through state-transformation

2 Truncation: 

Practical implementation:

Entire modal transformation of FOM is expensive!

 Only a few eigenvalues and left and right

eigenvectors are computed via eigs
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Goal: Preserve state-space directions with highest enery transfer
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Truncated Balanced Realization (TBR)

Controllability and Observability Gramians:

Procedure:

Energy interpretation:

1 Balancing step: Compute balanced realization, where

2 Truncation step:
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Moments of a transfer function
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Rational Interpolation by Krylov subspace methods

: interpolation point (shift)

: i-th moment around

Bases for input and output Krylov-subspaces: 

Moments from full and reduced order model around certain shifts match!
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Goal: Find ROM that minimizes the -error
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-optimal model order reduction

Necessary optimality conditions:

IRKA achieves multipoint moment matching at optimal shifts!

H2-norm:
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Balanced Truncation (BT)
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Comparison: BT vs. Krylov subspace methods

Rational Krylov (RK) subspaces

+ stability preservation

+ automatable

+ error bound (a priori)

+ numerically efficient

+ n ≈ 106

+ H2 -optimal (IRKA)

+ many degrees of freedom

 computing-intensive

 storage-intensive

 n < 5000

 many degrees of freedom

 stability gen. not preserved

 no error bounds

 Numerically efficient solution of large-

scale Lyapunov equations

Krylov-based Low-Rank Approximation

• ADI (Alternating Directions Implicit)

• RKSM (Rational Krylov Subspace

Method)

 Adaptive choice of reduction parameters

• Reduced order

• Interpolation data (shifts, etc.)

 Stability preservation

 Numerically efficient computation of

rigorous error bounds

Subject of research Subject of research
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fom:

Numerical comparison

red. 

time [s]

modalMor

(lr)
0.40 19.40e-02 4.16e-02

tbr 0.20 1.18e-09 5.78e-09

rk 0.09 81.47e-02 96.73e-02

irka 0.60 8.56e-08 5.80e-09

red. 

time [s]

modalMor

(lr)
1.21 4.61e-02 3.76e-03

tbr 0.49 3.47e-05 2.65e-06

rk 0.10 1.34e-07 3.36e-07

irka 1.32 2.38e-12 9.61e-11

steel profile rail_1357:
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Powered by: M-M.E.S.S. toolbox [Saak, Köhler, Benner] for Lyapunov equations

Available at www.rt.mw.tum.de/?sssMOR and https://github.com/MORLab.

[Castagnotto/Cruz Varona/Jeschek/Lohmann ’17]: „sss & sssMOR: Analysis and

Reduction of Large-Scale Dynamic Systems in MATLAB“, at-Automatisierungstechnik] 23

Toolboxes for sparse, large-scale models in 

sys = sss(A,B,C,D,E); sysr = tbr(sys,r)

sysr = rk(sys,s0)

sysr = irka(sys,s0)

sysr = cure(sys)

sysr = cirka(sys,s0)

bode(sys), sigma(sys)

step(sys), impulse(sys)

norm(sys,2), norm(sys,inf)

c2d, lsim, eigs, connect,…

…

http://www.rt.mw.tum.de/?sssMOR
https://github.com/MORLab
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Main characteristics

State-space models of very high order              

on a standard computer

Many Control System Toolbox functions, 

revisited to exploit sparsity 

Allows system analysis in 
frequency (bode, sigma, …) and 

time domain (step,norm,lsim,…), as 

well as manipulations
(connect,truncate,…)

Is compatible with the built-in syntax

New functionality: eigs, residue, 

pzmap,…

Classical (modalMor, tbr, rk,…) and 

state-of-the-art (isrk, irka, cirka, 

cure,…) reduction methods

Both highly-automatized
sysr = irka(sys,n)

and highly-customizable
Opts.maxiter = 100

Opts.tol = 1e-6

Opts.stopcrit = ‘combAll’

Opts.verbose = true

sysr = irka(sys,n,Opts)

solveLse and lyapchol as core 

functions
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Comprehensive

documentation with

examples and references

sssMOR App

graphical user interface

completely free

and open source

(contributions welcome)
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Commercial FEM software:

ANSYS, Abaqus, COMSOL Multiphysics, 

LS-DYNA, Nastran, …

Open-source FEM software: 

AMfe, CalculiX, FEniCS Project, FreeFEM++, 

JuliaFEM, KRATOS, OOFEM, OpenFOAM, …

Open-source Pre-/Post-Processing tools:

Gmsh, ParaView, …

Open-source MOR software:

pyMOR, sss, sssMOR, psssMOR, emgr, 

M.E.S.S., MOREMBS, MORE, RBmatlab, …

28

FEM & MOR software



Polynomial & Nonlinear Model Order Reduction
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Given a large-scale nonlinear control system of the form

30

Projective MOR for Nonlinear Systems

with                                         and 

with                                           and

Reduced order model (ROM)

MOR

Simulation, design, control and optimization cannot be done efficiently!

Goal:
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Nonlinear systems can exhibit complex behaviours

• Strong nonlinearities

• Multiple equilibrium points

• Limit cycles

• Chaotic behaviours

Input-output behaviour of nonlinear systems cannot be described with transfer functions, 

the state-transition matrix or the convolution integral (only possible for special cases)

31

Challenges of Nonlinear MOR

Choice of the reduced order basis

• Projection basis should comprise most

dominant directions of the state-space

• Different existing approaches:

 Simulation-based methods

 System-theoretic techniques

Expensive evaluation of

• Vector of nonlinearities f still has to be

evaluated in full dimension

• Approximation of f by so-called hyper-

reduction techniques: 

 EIM, DEIM, GNAT, ECSW…
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Nonlinear MOR methods – Overview

Reduction of nonlinear (parametric) systems

Simulation-based: 

 POD, TPWL

 Reduced Basis, Empirical Gramians

 Simulation-free / System-theoretic

Polynomial nonlinear systems

Nonlinear systems

Transfer of system-theoretic concepts

Generalization of linear MOR methods:

 Balanced truncation

 Krylov /      -optimal approach

Reduction methods for MIMO models

 Input-awareness:

 signal generators

 eigenfunctions

Reduction of bilinear systems Reduction of quadratic-bilinear systems
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Polynomialization / Carleman linearization
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Polynomial Nonlinear Systems

Bilinear dynamical systems

• Result from direct modeling or Carleman (bi)linearization

• Linear in input and linear in state, but not jointly linear in both

• Interface between fully nonlinear and linear systems

Starting point:
P

o
w

e
r 

s
e

ri
e

s Assumptions:

• X

• k
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Picard fixed-point iteration (successive approximation)

Approximate solution of the bilinear system
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Volterra series representation

Variational equations (subsystems)

Interpretation as a series of homogenous, cascaded subsystems:
+

[Rugh ’81]
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Input-Output behavior

35

Systems Theory for Volterra systems (1)

Transfer functions

Kernels

+

[Rugh ’81]
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Systems Theory for Volterra systems (2)

Gramians

H2-norm

[Rugh ’81]
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Multipoint Volterra Series Interpolation

Goal: Enforcing multipoint interpolation 

of the underlying Volterra series 

+

Moment matching

Multipoint Volterra series interpolation

Set of interpolation points:

[Flagg/Gugercin ’15]

This approach interpolates the weighted series at the interpolation points

Projection matrices for Volterra series interpolation
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Starting point:

38

Proper Orthogonal Decomposition (POD)

1. Choose suitable training input signals

2. Take snapshots from simulated full order state trajectories

3. Perform singular value decomposition (SVD) of snapshot matrix

4. Reduced order basis: 

Advantages:

Straightforward data-driven method

Choice of reduced order from singular 

values / error bound for approx. error

Optimal in least squares sense:

Disadvantages:

Simulation of full order model for different 

input signals required

SVD of large snapshot matrix required

Training input dependency
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Take-Home Messages:

• Modeling via FEM/FVM is becoming more and more important!

• Applicable for several physical domains and many technical applications!

• Model Order Reduction is indispensable to reduce the computational effort

• Reduction is done via projection

• Linear MOR is well developed

• Generalization of system-theoretic concepts and MOR methods to polynomial systems

• POD is still the most employed nonlinear MOR method

• Simulation-free / Sytem-theoretic nonlinear MOR techniques are aimed

39

Summary & Outlook

Ongoing work:

• Polynomial nonlinear systems

• Simulation-free / System-theoretic NLMOR



Thank you for your attention!
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