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Various numerical methods for the simulation of ion-transport in concentrated binary electrolyte solutions can be found in the
literature, whereas the corresponding transport parameters are rarely discussed. In this contribution, a polarization cell consisting
of two electrodes separated by a porous separator is proposed to determine the concentration dependent binary diffusion coefficient
of non-aqueous electrolyte solutions. Therefore, two different electrochemical methods are extended so that they can be applied to
electrolyte solutions in a porous medium. Additionally, the different methods are compared with each other by means of numerical
simulations. The proposed experimental setup is used to determine the concentration dependent binary diffusion coefficient of an
exemplary electrolyte, lithium perchlorate dissolved in a mixture of ethylene carbonate and diethyl carbonate, and the data are
compared to those available in the literature. It will be shown that the most reliable method to determine concentration dependent
binary diffusion coefficients are long-term relaxation experiments in a two-electrode cell using a porous separator.
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Advanced numerical simulation tools are important for the under-
standing of existing battery systems as well as the development and
the optimization of future battery systems. For such numerical simu-
lations, accuracy and reliability are key issues and depend on appro-
priate physical models, boundary conditions, and, most importantly,
accurately determined physico-chemical parameters. For instance, the
mathematical model for binary electrolyte solutions presented by
Newman and Thomas-Alyea1 is based on four different concentra-
tion dependent transport parameters, namely the conductivity κ(c),
the binary diffusion coefficient D±(c), the transference number t+(c),
and the thermodynamic factor or the mean molar activity coefficient
f±(c); in addition, for modeling porous battery electrodes, the con-
centration independent so-called tortuosity factor τ to describe the
effective ionic conductivity in porous electrodes with a given mor-
phology is required.2 While the conductivity κ(c) can be measured
using turn-key conductivity sensors, the determination of the other
three concentration dependent parameters is more elaborate. Experi-
mental methods for the determination of the transference number and
the thermodynamic factor are discussed, e.g., in Ehrl et al.3 and Lan-
desfeind et al.,4 while the determination of a complete set of transport
parameters can also be found in the literature.5,6 An overview of the
most popular experimental techniques for the determination of bi-
nary diffusion coefficients in lithium based electrolytes is given in the
following.

In Castiglione et al.,7 Sethurajan et al.8 and Capiglia et al.,9 pulsed-
field gradient Nuclear Magnetic Resonance (NMR) is used to deter-
mine the self-diffusion coefficients of ions in an electrolyte solution,
which describes the mobility of ionic species in the absence of an
electrochemical potential gradient.10 In Castiglione et al.,7 the self-
diffusion coefficients of all ions in an electrolyte composed of LiTFSI
(lithium bis(trifluoromethanesulfonyl)imide) dissolved in the ionic
liquid PYR14TFSI (N,N-dimethyl pyrrolidinium) at a molar ratio of
1:9 were determined, whereas Capiglia et al.9 investigated LiPF6,
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LiBF4, and LiN(C2F5SO2)2 in ethylene carbonate (EC) ethyl-methyl
carbonate (EMC) solvent mixture (EC:EMC at 2:8 v:v). A theoretical
discussion of the experimental method is given in Price.11 For this
method, the major difficulty is to relate the ionic self-diffusion coeffi-
cients determined by NMR to the binary diffusion coefficients which
are generally required for numerical simulations. Another method,
based on Moiré patterns, was used to determine the binary diffu-
sion coefficient D±(c) of LiClO4 in PC (propylene carbonate).12 This
technique is based on the optical observation of the time-dependent
relaxation of the concentration profile after two electrolyte solutions
with different concentrations are brought into contact. Nishida et al.
used the same technique to determine D±(c) for LiPF6, LITFSI, and
LiBF4 in PC.13 The binary diffusion coefficient can also be determined
from limiting current measurements with a micro disc electrode, as
was shown by Xu and Farrington14 for 0.1 M LiClO4 in PC, but this
method does not allow to measure the concentration dependence of
D±(c) and can only provide an average value between the chosen
salt concentration and zero (the concentration at the surface of the
electrode at the limiting current).

The most popular method for the determination of the concen-
tration dependent binary diffusion coefficient D±(c) is the so-called
restricted diffusion method introduced by Harned and French, which
is based on the observation of the long-term relaxation behavior fol-
lowing an initially induced concentration profile.15 The applicability
of the method for concentrated electrolyte solutions was demonstrated
by Newman and Chapman for potassium chloride in water.16 The re-
laxation process can be observed by different methods. In Stewart and
Newman, an optical device was used to record the relaxation of the
LiPF6 concentration profile in an EC diethylcarbonate (DEC) solvent
mixture (EC:DEC at 1:1 w:w).17 Limiting factors of this method are
the spatial resolution of the optical measurement and the complexity
of the required analysis equipment. Alternatively, the relaxation of an
initially induced concentration profile can be observed indirectly via
the measured potential.6,18–23 In Hiller et al.,18 the concentration and
temperature dependent binary diffusion coefficients of LiTFSI and Li-
BOB (lithium bis(oxalato) borate) in polyethylene oxide (PEO) based
polymer electrolytes were determined by analyzing the long-term
potential relaxation following an initial current pulse in a restricted
diffusion experiment. In addition, the binary diffusion coefficients
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were also calculated based on the short-term relaxation behavior of
steady-state concentration profiles. Unfortunately, the binary diffusion
coefficients determined by the two methods differed significantly (by
up to a factor of 6). Based on different relaxation experiments, the bi-
nary diffusion coefficient of LiClO4 in PC electrolyte solution soaked
into a glass wool filter was determined by a numerical optimization
method by Georén and Lindbergh.24 Their approach was based on
a physical model including solvent effects, as introduced by Georén
and Lindbergh24 and Doyle,25 whereby convective effects were ne-
glected and the tortuosity of the glass wool filter was determined
using the Bruggeman relation (the latter may introduce significant er-
rors, as was demonstrated recently by Landesfeind et al.2). A similar
approach based on a more elaborate optimization framework was used
by Nyman et al.19 and Lundgren et al.26 for LiPF6 in EC:EMC (3:7
w:w) and in EC:DEC (1:1 w:w), respectively. In both publications,
solvent effects and convective transport due to the motion of ions are
included in the physical model used for the numerical optimization
and, in addition, the effective ionic conductivity of the used glass
microfiber filters was determined experimentally. Recently, the influ-
ence of solvent effects on the determination of transport parameters
was investigated numerically by Liu and Monroe.27 Note that the ex-
perimental studies listed in this paragraph6,19,24,26 obtained the binary
diffusion coefficients by fitting the complete set of transport parame-
ters to their numerical model (i.e., D±(c), t+(c), and f±(c)) or rely on
other transport parameters, which undoubtedly will compromise the
accuracy achievable for each one of the parameters.

Although, as discussed above, there are various experimental meth-
ods for the determination of binary diffusion coefficients already avail-
able in the literature, these methods require either a conversion of self-
diffusion coefficients into binary diffusion coefficients, an additional
spectroscopic technique to independently monitor concentration vs.
time, or a global fit involving all concentration dependent physico-
chemical transport parameters. For this reason, we believe, the sim-
plicity of the here proposed experimental setup to determine D±(c) as
a function of salt concentration, requiring no optimization framework
and/or provision of additional parameters other than the tortuosity,
which can be measured accurately in independent experiments,2 con-
stitutes a valuable alternative method, particularly in view of its here
demonstrated accuracy and reproducibility. In the Theoretical back-
ground section, a comprehensive introduction to the volume averaged
ion-transport equations for porous media is given, which is the theoret-
ical basis for the determination of the concentration dependent binary
diffusion coefficient. In the Experimental section, the experimental
procedures as well as the used materials and devices are introduced.
The analytical framework for the determination of binary diffusion
coefficients are summarized in the section Mathematical derivation.
In the latter two sections, the experimental and the theoretical dif-
ferences between a cell setup with and without porous materials are
highlighted. Validity and accuracy of the introduced techniques are
analyzed and compared in the section Numerical validation. Because
theoretically expected transients are more obvious in simulated ex-
periments, this section aids the interpretation of experimental data.
Finally, in the Results and discussion section, the concentration de-
pendent binary diffusion coefficient of LiClO4 in EC:DEC (1:1 w:w)
obtained from our measurements is given and compared with data in
the literature.

Theoretical Background

Many experimental methods for the determination of ion-transport
parameters are based on analytical solutions of the component mass
conservation law. For a cell consisting of a porous medium filled with
an electrolyte solution, the more general case of the volume averaged
mass conservation law has to be considered

ε
∂c

∂t
− ∇ ·

( ε

τ
D± (c) ∇c

)
+ ∇ ·

(
t+ (c)

z+ν+F
ī
)

= 0 [1]

as introduced, e.g., in Newman and Thomas-Alyea.1 Here, the volu-
metric intrinsic phase average of the concentration is denoted by c,

the charge number of the positive ionic species by z+, the stoichiomet-
ric coefficient of the cation by ν+, and the volumetric phase average
of the current density by ī (as usual, time is denoted by t and F
denotes the faraday constant (96485 As/mol)). The terms volumetric
intrinsic phase average and volumetric phase average result from the
volume averaging approach used for the mathematical description of
the porous medium. In this approach, the microscopic relations are av-
eraged over a representative element volume to yield the macroscopic
transport equations. In case of the volumetric intrinsic phase average,
the averaging is performed only over the electrolyte phase within the
representative element volume, whereas both the volume of the elec-
trolyte and the solid phase within the representative element volume
have to be considered in case of the volumetric phase average. The
volumetric intrinsic phase average multiplied by the porosity thus cor-
responds to the volumetric phase average. The interested reader is re-
ferred to Bear and Bachmat28 or Landstorfer and Jacob29 for a detailed
derivation of these macroscopic equations. The transport parameters
used in the mass conservation law are the concentration dependent
binary diffusion coefficient D±(c) and the transference number t+(c).
The porosity ε and the tortuosity τ are parameters related to the mor-
phology of the porous medium and are frequently used to obtain the
so-called effective binary diffusion coefficient D±,eff = ε τ−1 D±.

The conservation of current is given by

∇ · ī = 0 [2]

with
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Here, � stands for the volumetric intrinsic phase average of the electric
potential with respect to a lithium reference electrode. In addition, the
concentration dependent conductivity κ(c) and the thermodynamic
factor [1 + ∂ ln f±(c)/∂ ln c] are necessary to describe the current
flow. The coefficient ν = ν+ + ν− is based on the stoichiometry
coefficients ν+ and ν− resulting from the dissociation of a binary salt
in its components (e.g., ν = 2 for the typical 1:1 salts used in lithium
ion batteries). The gas constant is denoted by R (8.314 J/(mol K)) and
the temperature by T (in units of Kelvin).

In combination with Eq. 2, Eq. 1 can be simplified to a one-
dimensional scalar transport equation

∂c

∂t
− 1

τ
D± (c0)

∂2c

∂x2
= 0 [4]

with the volumetric phase average of the flux density N̄ as the corre-
sponding boundary condition

N̄ = − ε

τ
D± (c0)

∂c

∂x
+ t+ (c0)

z+ν+F
ī [5]

if the following assumptions are valid:

1. The experimental setup resembles an ideal geometrical configu-
ration, as is for example satisfied for a setup consisting of two par-
allel and aligned flat electrodes separated by an electrolyte layer
and completely enclosed by insulators. In this case, concentration
and potential gradients are exclusively orientated in x-direction
(i.e., normal to the electrodes). As a result, ion-transport in the
electrolyte solution can be described by a one-dimensional par-
tial differential equation. In reality, this ideal configuration can
be approximated by a two electrode cell with a large radius to
distance ratio.

2. The assumption of a zero order approximation for the concentra-
tion dependent binary diffusion coefficient D±(c)|co±δc = D±(c0)
and the transference number t+(c)|co±δc = t+(c0) has to be valid.
This assumption is fulfilled if the binary diffusion coefficient
and the transference number are concentration independent or
if the concentration variations δc around an initial concentration
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c0 are small. The same condition is required for the remain-
ing ion-transport parameters, namely the conductivity and the
thermodynamic factor. Typical concentration dependent transport
parameters of various binary electrolyte solutions usually fulfill
this assumption, as is demonstrated in the section Numerical val-
idation.

3. The porosity ε and the tortuosity τ are constant with respect to
time and space.

At the boundaries, the relation between the current density and the
flux density ī = z+ ν+ F N̄ can be used to reformulate Eq. 5.

ī = −z+ν+F
ε

τ
D± (c0)

1 − t+ (c0)

∂c

∂x
[6]

A more detailed derivation of these equations is given, e.g., by
Newman and Thomas-Alyea1 or by Ehrl.30

The partial differential equation given in Eq. 4 can be solved ana-
lytically for different types of Boundary Conditions (BCs) and Initial
Conditions (ICs). As a result, an expression for the concentration dif-
ference �c = cA − cC between the Anode (A) and the Cathode (C)
can be obtained, which for a given set of BCs/ICs correlates �c with
the concentration dependent binary diffusion coefficient and transfer-
ence number, with the chosen salt bulk concentration, and the elec-
trode morphology related porosity and tortuosity, in the general form
Ref. 1

�c = cA − cC = f (D± (c0) , t+ (c0) , ε, τ, c0) [7]

If the concentration difference �c for a specific set of BCs/ICs and
the corresponding functional description of Eq. 7 with the remaining
parameters are known, it is possible to calculate the binary diffusion
coefficient D±(c). The functional description to calculate the binary
diffusion coefficient from Eq. 7 with different experimental proce-
dures is presented in the following. For polarization experiments, we
further define the x-axis of the one-dimensional coordinate system to
point from the electrochemical cathode with xC = 0 toward the elec-
trochemical anode with xA = l, as a result of which, the concentration
gradient will always be positive during the polarization experiment
and the subsequent relaxation phase if Li+ ions are the only reacting
species in the system (i.e., the anode concentration cA ≥ the cathode
concentration cC).

In this study, the concentration difference �c is determined in-
directly by utilizing its correlation with the measured cell potential
U = �� + η, where the potential difference between anode and
cathode �� = �A −�C is the volumetric intrinsic phase average of
the electric potential and η is the kinetic overpotential of the anodic
and cathodic charge transfer reactions. To do so, Eq. 3 has to be re-
duced to its one-dimensional form as was demonstrated above for the
ion-transport equation. This dimensional reduction is also only valid
if the same conditions as for the ion-transport equation are fulfilled,
especially the small concentration variation �c between anode and
cathode. In the absence of current flow (i.e., ī = 0) across the elec-
trodes, the kinetic overpotential η term is zero and the integration of
Eq. 3 along a one-dimensional path directed from the cathode to the
anode gives

U = �� = ν

z+ν+

RT

F

[
1 + ∂ ln f± (c0)

∂ ln c

]
(1 − t+ (c0)) ln

cA

cC
[8]

where the thermodynamic factor (TDF) is assumed to be constant for
small concentration variations around the bulk concentration c0, as
was already assumed above for the binary diffusion coefficient and
the transference number. In order to use the cell potential as a measure
for the concentration difference �c, it is necessary to introduce an
additional linearization for the term ln cA/cC . If the concentration
difference �c = cA −cC is small compared to the initial concentration
c0 (�c << c0), the logarithmic term in Eq. 8 can be approximated by

ln
cA

cC
≈ �c

c0
[9]

Figure 1. Schematic of two-electrode cell with symmetrical lithium elec-
trodes and larger diameter, aligned separators, which was used for pulse ex-
periments in the determination of binary diffusion coefficients.

as was shown, e.g., by Bruce and Vincent.31 Under these conditions,
the cell potential in the absence of current flow (s. Eq. 7) will be di-
rectly proportional to the concentration difference �c between anode
and cathode

U = �� ∝ �c [10]

This is one of the central aspects for the electrochemically based
determination of transport parameters. The same method was also
applied in, e.g., Ma et al.,23 Zugmann et al.,32 or Valøen et al.6

Experimental

Mixtures of ethylene carbonate (EC, 50% by weight, Sigma
Aldrich, anhydrous, 99%) and diethyl carbonate (DEC, 50% by
weight, Sigma Aldrich, anhydrous, >99%) were used as solvents
for self-prepared electrolytes containing lithium perchlorate (LiClO4,
Sigma Aldrich, 99.99%) salt, mixed in an argon filled and tempera-
ture controlled glove box (MBraun, 25◦C ± 1◦C, water content <0.1
ppm, Ar 5.0, Westfalen, 99.999% Vol). LiClO4 concentrations ranged
from 0.01 to 2 M. Metallic lithium (Rockwood Lithium, 0.45 mm
thickness, high purity) was used as counter electrode (CE) and work-
ing electrode (WE). The binary diffusion coefficient was determined
by polarization experiments in a two electrode setup as shown in
Figure 1.

All cell parts were cleaned by boiling them in a mixture of ethanol
and water (Millipore, Elix, 15 M �), thoroughly rinsing them with
water, followed by overnight drying at 70◦C in a heating oven before
bringing them into the glove box. Twenty circular layers of Celgard
2500 separator (porosity 55%, thickness 25 μm) with a diameter of
20 mm were placed between the two lithium electrodes with a diam-
eter of 17 mm. A larger separator size ensured that no stray currents
could flow around the porous separators through the bulk of the elec-
trolyte. The electrode distance is determined by the thickness of the
separators, which are incompressible in the pressure range induced
by the mechanical spring (≈0.1 MPa). Due to the chosen setup, the
geometrical distance between the electrodes (l) can be adjusted accu-
rately to small values such as l = 20 · 25 μm = 0.5 mm. As a result,
a large radius to distance ratio was obtained, minimizing the influence
of the edge effects of the electric field and thereby fulfilling the re-
quirement of a one-dimensional concentration and potential gradient.
It is emphasized that convective effects are also suppressed using this
setup with a porous separator, which is supported by experimental
data: after positive and negative polarizations of the two electrodes
(aligned perpendicularly to the gravitational field), identical potential
relaxation transients were observed, proving that convective trans-
port can be neglected. After the cells were sealed with PTFE gaskets,
measurements were conducted in a climate chamber outside the glove
box. A Biologic VMP3 potentiostat/galvanostat was used for the elec-
trochemical measurements and cell impedances were measured in a
frequency range from 200 kHz to 1 Hz.

Experimental procedure used in polarization cells.—Potentio-
static steady-state and galvanostatic pulse polarization experiments
were conducted using the two electrode symmetrical lithium cell
shown in Figure 1. While after a long potentiostatic steady-state po-
larization a linear concentration profile is established between the
electrodes (lower panels in Figure 2), the short galvanic pulse po-
larization procedure is designed such that the concentrations change
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Figure 2. Schematic of the current/voltage profiles during the galvanostatic
pulse polarization experiments (GPP; s. upper left panel) and of the poten-
tiostatic steady-state polarization (SSPP; s. lower panel), together with the
respective concentration profiles present at the current interruption time TI.

only in the vicinity of the electrodes (s. upper panel in Figure 2).
Measurements for each salt concentration were repeated at least two
times in order to check for reproducibility.

In each cell, a 6 h rest period was followed by several galvanos-
tatic pulse polarization (GPP) experiments with various polarization
currents Ip and times TI, whereby a pulse with a positive current flow
was always followed by an identical pulse with a reversed current
flow. After each individual polarization, an OCV (open circuit volt-
age) phase of at least 3 h was applied in order to ensure a complete
relaxation of the concentration profile. In theory, the polarization time
in a galvanostatic pulse experiment has no impact on the long-term
relaxation behavior of the concentration profile. Due to the relax-
ation process, the requirement for small concentration differences
between anode and cathode are automatically fulfilled for long times.
However, due to the finite accuracy of the measurement equipment
(100–200 μV noise with the VMP3 potentiostat/galvanostat), too short
polarization times with correspondingly small logarithmic cell po-
tential variations make a determination impractical. Following these
galvanostatic pulse experiments, a steady state potentiostatic polar-
ization (SSPP) experiment was conducted. For these experiments, the
polarization phase was terminated manually for each cell once the
current I (t) remained stable for at least 2 minutes, resulting in poten-
tiostatic polarization times on the order of 15 to 60 minutes. The high
frequency resistance of the cell was measured before and at the end of
each pulse experiment to evaluate the stability of the electrolyte and
was found to vary less than 3% over the course of the experiments
for the nominal electrolyte concentrations of 0.5 M to 2 M. Only for
the smallest electrolyte concentration of 0.01 M, the high frequency
resistance was found to decrease by 10% from the beginning to the
end of the experiment (∼24 h). This decrease in the high frequency
resistance implies an increase of the electrolyte conductivity, which
must be due to an increase in ion concentration caused by SEI forma-
tion. Since the conductivity scales linearly with concentration at such
low concentrations, the effective electrolyte concentration should be
ca. 11 mM compared to the nominal concentration of 10 mM, which
is a reasonably small error, particularly since the equations for the
determination of the binary diffusion coefficient are not a function
of the salt concentration (shown later on by Eq. 14 and Eq. 17).
Table I summarizes the applied galvanostatic pulse and steady-state
potentiostatic polarization parameters. The polarization currents in
galvanostatic experiments and the potentials in potentiostatic exper-
iments were selected such that the current density would always be

Table I. Summary of the applied galvanostatic pulse polarization
(GPP) steps and the subsequent steady-state potentiostatic
polarization (SSPP) for different LiClO4 concentrations in
EC:DEC (1:1 w:w), used to determine the binary diffusion
coefficient in the two-electrode cell setup shown in Figure 1.

Salt Concentration GPP SSPP

2 min, ± 50 μA
0.01 M 4 min, ± 50 μA 20 mV, ∼ 60 min

3 min, ± 75 μA

6 min, ± 500 μA
16 min, ± 500 μA 50 mV, ∼ 15 min
12 min, ± 750 μA

0.5 M, 1 M
1.5 M, 2 M

below 0.3 mA/cm2, as this assures the absence of lithium dendrite
formation.33

Mathematical Derivation

In this contribution, two different methods for the electrochemical
determination of the binary diffusion coefficient from the potential
relaxation after polarization are considered. In the first method, the
observed long-term relaxation behavior of the cell potential after a
galvanostatic pulse (GPP) or a steady-state potentiostatic polariza-
tion experiment (SSPP) is analyzed. The second method is based
on the analysis of the short-term relaxation behavior of the cell po-
tential following a steady-state potentiostatic polarization. The first
method is frequently used in the literature to determine the binary
diffusion coefficient of polymer electrolytes and non-aqueous elec-
trolyte solutions.6,18–23 However, when this method is applied to the
evaluation of liquid electrolytes, most of the used experimental setups
do not fulfill the ideal geometrical configuration which is required for
simplification of Eq. 4. Additionally, convective effects influencing
the ion transport equations in the polarization cell are not suppressed
at all by these experimental setups, especially on long time scales.
With regards to eliminating convective contributions to ion transport,
the here proposed cell setup using porous separators is clearly superior
(s. explanation in the Experimental section), but when using porous
separators, the classical equations have to be adapted according to
the volume averaged ion-transport equations, as will be shown in the
following.

Analysis of the long-term relaxation behavior.—When using the
long-term relaxation behavior for the determination of the diffusion
coefficient, the two-electrode cell can be polarized by galvanostatic
pulses or by potentiostatic steady-state polarization. For this method,
the concentration profile c(TI) established at the interruption time TI

is considered as the initial concentration profile. The relaxation of the
concentration profile (i.e., for I = 0) can be observed via the relaxation
of the cell potential U (t). Originally, the method was developed for
dilute electrolytes by Harned and French.15 The theoretical verifica-
tion for concentrated solutions is given in Newman and Chapman.16 It
is important to realize that in both publications only bulk electrolyte
solutions, i.e., without a porous separator are considered, so that they
are not valid for experiments with porous separators. However, Eq. 4
can be simply rescaled to have the same form as Eq. 1 used by New-
man and Chapman,16 if we define a partial effective binary diffusion
coefficient D∗

±,eff (c0) ≡ τ−1 · D±(c0):

∂c

∂t
− D∗

±, eff (c0)
∂2c

∂x2
= 0 [11]

With this modification, the time dependent concentration at each
electrode can now be determined by Eq. 2 in Newman and Chapman,16

from which �c(t) can be obtained by taking the difference between
cA(t) and cC(t) (i.e., evaluating Eq. 2 in Newman and Chapman16 for
cathode location xC = 0 and the anode location xA = l; note that
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x ≡ y and l ≡ a in Reference 16):

�c (t) = cA (t) − cC (t) = 2C1 exp

(
−π2 D∗

±,eff (c0)

l2
t

)
+ 2C3

× exp

(
−9π2 D∗

±,eff

l2
t

)
+ 2

∞∑
n=3

C(2n−1)

× exp

(
− (2n − 1)2π2 D∗

±,eff (c0)

l2
t

)
[12]

It is important to note that the here used partial effective binary
diffusion coefficient (D∗

±,eff (c0) ≡ τ−1 · D±(c0) ) must be distin-
guished from the commonly used effective binary diffusion coeffi-
cient (D±,eff (c0) ≡ ε · τ−1 · D± (c0) = ε · D∗

±,eff (c0)), which was
defined in the Theoretical background section. In the derivation of
Newman and Chapman,16 a variable binary diffusion coefficient and
convective effects as a result of a varying solution volume were also
considered, resulting in a similar relationship as that of Eq. 12. Based
on these results, the authors conclude that the variation in solution
volume does not play a major role for small concentration variations.
Convective effects as a result of natural or forced convection are
not investigated in the latter publication, although the experimental
setup uses a liquid electrolyte without porous separator, so that the
absence of natural convection cannot necessarily be assumed. The
different initial conditions resulting from the galvanostatic pulse and
the steady-state potentiostatic polarization experiments do only have
an influence on the prefactor Cn , but not on the exponential terms. A
detailed derivation of this formula is given in Ehrl.30

For large times, i.e., t → ∞, the first term of the analytical solution
(Eq. 12) is dominating, yielding a linear relationship of the logarithmic
concentration difference ln �c(t) with respect to time t

ln �c (t) = ln (2C1) − π2 D∗
±,eff (c0)

l2
· t ∝ ln U (t) [13]

Since the concentration difference �c and the measured cell po-
tential U are directly proportional (Eq. 10), the linear behavior can
also be observed for the cell potential U (indicated at the right-hand-
side of Eq. 13). Thus, when plotting ln U (t) vs. t, the slope of the
line as t → ∞ (denoted as m ln) corresponds to π2 · D∗

±,eff (c0)/l2 (s.
Eq. 13), so that the partial effective binary diffusion coefficient can be
calculated from the linear slope m ln:

D∗
±,eff (c0) = l2

π2
· m ln [14]

Advantageous in this approach is the fact that the initially im-
posed concentration difference by the galvanostatic pulse or the po-
tentiostatic hold decreases with increasing time, which supports the
requirement for small concentration variations introduced in the The-
oretical background section.

Analysis of the short-term relaxation behavior.—In this second
method, a linear concentration profile c(TI) from a preceding poten-
tiostatic steady-state polarization is considered as an initial concentra-
tion profile established at the time TI when the current is interrupted,
which can be approximated by a linear function for small concentra-
tion variations. It should be noted, however, that whether the linear
concentration profile is obtained galvanostatically or potentiostatically
is irrelevant. For the short-term relaxation from a steady-state concen-
tration profile, the time dependent concentration difference �c(t) is
given by the relation

�c (t) = �c (TI) ·
(

1 −
√

16 · D∗
±,eff (c0)

π · l2
· t

)
[15]

showing that the short-term relaxation process is linear with respect
to

√
t . Eq. 15 is derived by solving the partial differential equation

given by Eq. 4, using a linear concentration profile as initial condition
and no-flux conditions at both electrodes, which can be done by a

Laplace transformation as shown, e.g., by Ehrl.30 The same equation
was presented by Hiller et al.18 for a polymer electrolyte, the only
difference being that in their equation D∗

±,eff (c0) in Eq. 15 is replaced
by D±,eff (c0), as there is no porous matrix/separator. For small con-
centration variations, Eq. 15 can also be expressed with Eq. 8 and Eq.
9 in terms of the cell potential

U (t) = U (TI) − U (TI)

√
16D∗

±,eff (c0)

l
√

π

√
t = U (TI) − msqrt

√
t

[16]
where msqrt denotes the slope of a plot of cell potential U versus

√
t .

As a result, the partial effective binary diffusion coefficient D∗
±,eff can

be determined by

D∗
±,eff (c0) = π · l2

16
·
(

msqrt

U (TI)

)2

[17]

Here, the cell potential U (TI) denotes the potential measured di-
rectly after current interruption.

For both methods, the tortuosity τ of the porous separator
is required to determine the ultimately desired binary diffusion
coefficient D±(c0), which can be determined, e.g., by the method
proposed in Landesfeind et al.2 Alternatively, the effective binary dif-
fusion coefficient D±,eff (c0) = ε · τ−1 · D±(c0) = ε · D∗

±,eff for a
specific porous medium/separator can be calculated from the deter-
mined value of D∗

±,eff , if its porosity is known. In general, careful
observation of the voltage versus time behavior always gives a good
indication with regards to the quality of the experimental data, also if
transport parameters are determined by a numerical fitting approach.

Numerical Validation

In the following, the analytical expressions for the determination of
the binary diffusion coefficient D±(c0) introduced in the Mathemati-
cal derivation section are analyzed by means of numerical simulations
using typical transport parameters for lithium ion battery electrolytes
and typical kinetic parameters for metallic lithium in order to eval-
uate their applicability for the experimental determination of binary
diffusion coefficients, i.e., in order to verify the assumptions made in
the Theoretical background section. All simulations are based on the
Equations 1–3 and were performed with an in-house finite element
research code. A detailed derivation of the used numerical methods is
given in Ehrl.30

All numerical simulations are based on a one-dimensional domain
representing a virtual electrode area A = 227 mm2 (corresponding
to the 17 mm diameter lithium electrodes used in this work). The
simulation and transport parameters are summarized in Table II. The
chosen parameters do not represent a specific material or electrolyte
but should be somehow realistic. The values given for the porosity
and the tortuosity are of the same order as for the Celgard 2500
separator characterized in Landesfeind et al.,2 whereas the functional
description of the transport parameters is guided by the transport
parameter of an electrolyte solution consisting of lithium perchlorate
LiClO4 dissolved in EC:DEC (1:1 w:w).3,4 In contrast to Landesfeind
et al.,4 the theoretically expected Debye-Hückel behavior is included
in the description of the thermodynamic factor to demonstrate that
even such a strong non-linearity at small concentrations does not
influence the proposed measurement method. The exchange current
density i0 in the Butler-Volmer equation is chosen to correspond to
a realistic value for the kinetic resistance of a porous electrode. The
remaining parameters of the Butler-Volmer equation are assumed.

Numerical analysis of the polarization experiments.—Using a
quasi-1D two-electrode cell (s. Figure 1), the binary diffusion coeffi-
cient D±(c0) in this study will be determined by three different meth-
ods, which were summarized in the Mathematical derivation section.
The binary diffusion coefficients D±|pulse

long−term and D±|steady−state
long−term refer

to the values calculated from the long-term relaxation behavior after a
pulse and a steady-state polarization experiment, respectively (in this
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Table II. Simulation parameters for the quasi one-dimensional
simulation using the finite element research code developed at the
Institute for Computational Mechanics at the Technical University
of Munich. The concentrations in the below given correlations are
given in units of mol/L.

Computational domain [mm]
cathode at xC = 0 and

anode at xA = 0.5

Virtual electrode area A [mm2] 227
Porosity ε [-] 0.55

Tortuosity τ [-] 2.6

Initial concentration c0 [M] 0.01 / 1.0 / 2.0

Binary diffusion coefficient D± [ mm2

s ] 2.84 · 10−4 exp(−0.45 · c)

Transference number t+ [-] 0.4 + 0.2 · c − 0.125 · c2

Thermodynamic factor [-] 1 − 1
2 · 3.95·√c

(1+63.05·√c)2 + 0.907 · c

Conductivity κ [ μS
mm ] 3400 ·c−4700·c 3

2 +2000 ·c2

1.0 + 0.2 ·c4

i = i0 ·
(

c
c0

)γ ·
[
exp

(
αA F
RT η

)
−exp

(
αC F
RT η

)]
i0 = 3 μA

mm2 , γ = 0, αA = αC = 0.5
Butler-Volmer equation/parameters

Table III. Analytical methods for the determination of the binary
diffusion coefficient D±(c0) from the three different types of
experiments.

D±|pulse
long−term, D±|steady−state

long−term
l2

π2 · τ · mln Eq. 14

D±|steady−state
short−term

π ·l2

16 · τ ·
(

msqrt
U (TI)

)2
Eq. 17

work, pulse polarization experiments were done galvanostatically and
steady-state polarization experiments were done potentiostatically).
In addition, the binary diffusion coefficient D±|steady−state

short−term refers to
values calculated from the short term relaxation behavior of a steady-
state polarization experiment (done potentiostatically in this work).
The relevant equations for determining these diffusion coefficients are
given in Table III.

Figure 3 and Figure 4 depict exemplarily simulated potential re-
laxations after a simulated galvanostatic pulse (GPP) and steady-state

Figure 3. Simulation of a galvanostatic pulse polarization experiment (GPP)
based on the parameters given in Table II and applying a polarization time
of 30 s, a polarization current density of ip = 0.8 mA/cm2 (corresponding
to a current of Ip = 1.82 mA ), and an initial electrolyte concentration of
c0 = 1 M.

Figure 4. Plot of the relaxation phase of a simulated steady-state potentiostatic
polarization experiment (SSPP) based on the parameters given in Table II, with
a polarization time of TI = 3300 s, a polarization potential of Up = 50 mV,
and an initial electrolyte concentration of c0 = 1 M.

potentiostatic polarization (SSPP), respectively. The black and the red
lines represent the numerical simulation results for the cell poten-
tial U and the current I , respectively. The green lines stand for the
simplified analytical solution presented in the section Mathematical
derivation and summarized in Table III. The insets in both figures
show the linear long-term relaxation of the logarithm of the cell po-
tential vs. time with the corresponding analytical solution (Eq. 13) and
the linear short-term relaxation of the cell potential with respect to the
square root of time with the corresponding analytical solution (Eq.
16). In both cases, the expected time behavior predicted by Eq. 13 and
Eq. 16 can be observed. The slope m ln obtained from the long-term
relaxation behavior is proportional to the partial effective binary dif-
fusion coefficient D∗

±,eff (c0) as shown in Eq. 14. Similarly, the slope
msqrt obtained from the short-term relaxation of the cell potential al-
lows to determine the partial effective binary diffusion coefficient as
shown in Eq. 17. In this case, however, in addition to the known
separator thickness l, the cell potential U (TI) immediately after cur-
rent interruption is necessary to calculate the partial effective binary
diffusion coefficient from Eq. 17. In theory, U (TI) is equal to the con-
centration overpotential resulting from the concentration difference
�c between anode and cathode. However, in actual experiments, the
cell potential U (TI) immediately after current interruption is usually
affected by additional parasitic contributions as a result of the current
interruption (SEI formation currents, capacitive currents), as shown
later in Figure 9 in the Results and discussion section. To overcome
this commonly encountered experimental problem, the linear relation
of the concentration difference �c (and thus of U) with respect to

√
t

(s. Eq. 15) can be used to extrapolate to the cell potential U (TI), which
would be solely due to the concentration overpotential immediately
after current interruption (i.e., at TI + δt). This is valid, if the relax-
ation process of the concentration difference �c (diffusion process)
proceeds on a slower time scale than the relaxation of potential para-
sitic processes as, e.g., capacitive effects. The extrapolation approach
for determination of the cell potential U (TI) at TI + δt is also demon-
strated in Figure 4, but as the numerical simulations do not include
parasitic effects, the extrapolated and the simulated value of U (TI) are
of course identical.

Validation of determination methods.—In Figure 5, the binary
diffusion coefficients determined by the different approximation equa-
tions (s. Table III) are depicted with respect to the concentration dif-
ference �c(TI) at the current interruption time, which is determined
from the simulation for a bulk salt concentration of c0 = 1 M. In case
of a pulse experiment, the concentration difference �c(TI) depends on
the polarization time and the applied polarization current Ip while in
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Figure 5. Binary diffusion coefficient D± with respect to the concentration
difference �c(TI) between anode and cathode obtained from the simulation at
the current interruption time for c0 = 1 M (TI = 300 s for pulse experiments,
see Table II for other simulation parameters).

case of a steady-state experiment it depends only on the polarization
potential Up.

The results presented in Figure 5 confirm that all three evalua-
tion methods listed in Table III are reasonably accurate up to relative
concentration differences �c/c0 of ≈ 20% at the current interruption
time. For the long-term relaxation behavior, the concentration differ-
ence �c(TI) at the current interruption time does not influence the
quality of the obtained binary diffusion coefficient, since at the evalu-
ated long times after the current interrupt, the concentration difference
�c is small enough to fulfil the requirement of small concentration
variations, even though this is not satisfied for short times after the
current interrupt. As already mentioned earlier, this is an obvious ad-
vantage of the analysis of the long-time relaxation behavior over that
of the short-time relaxation behavior. These findings are also valid for
all the other bulk concentrations c0 investigated in this study, as shown
in Table IV. It may be noted here, that evaluation of the long-term
relaxation behavior requires the suppression of convective effects,
which is generally valid for polymer electrolytes, but in case of liq-
uid electrolytes is only really possible when using a porous matrix
(separator) containing the electrolyte rather than a pure electrolyte
phase.

Compared to the long-term relaxation behavior, the results of the
short-term relaxation are clearly influenced by the concentration dif-
ference �c(TI) at the current interruption time, since high values
of �c(TI) violate the requirement of small concentration variations
(s. Theoretical background section). Additionally, the error for the

Figure 6. Relaxation behavior of the relative cell potential U (t)/U (TI) with
respect to

√
t for different polarization potentials U0 and for c0 = 1 M. The

data are fitted in the range from t = 1 s to t = 10 s (see Table II for simulation
parameters).

determined binary diffusion coefficient D±|steady−state
short−term increases for

increasing bulk concentration c0, since the absolute concentration
difference �c(TI ) at current interruption is larger for a high salt con-
centration. The effect of the concentration difference �c(TI) on the
linearity of the cell potential U (t) vs.

√
t is shown in Figure 6 for

c0 = 1 M.
As already indicated in Figure 5, a concentration variation of up

to 20% with respect to the salt concentration c0 does not significantly
influence the linearity of the cell potential U (t) vs.

√
t behavior. For a

higher relative concentration difference, a deviation of the linear be-
havior can be observed in Figure 6 (s. blue dash-dotted line). However,
the differences between the linear and a non-linear behavior of the rel-
ative potential with time is quite small, which may make it difficult
to distinguish between high and low quality results, especially in real
experiments with limited signal to noise ratio. Two different effects
are the reason for this deviation. First, the concentration dependence
of the thermodynamic factor and the transference number t+(c) as
well as the linearization of the natural logarithm in Eq. 9 violate the
assumed proportionality between the concentrations difference �c(t)
and the cell potential U (t). Additionally, the concentration dependent
binary diffusion coefficient D±(c) and transference number t+(c) in
the ion transport equation violate the condition of constant transport
parameters. This would be the only theoretical inaccuracy in case of a
spectroscopic evaluation of the concentrations at cathode and anode.
In case of the numerical simulation, the binary diffusion coefficient

Table IV. Exemplary influence of the relative concentration difference �c(TI)/c0 at the current interruption time on the determination of the
binary diffusion coefficient D± from the equations listed in Table III. The relative errors are given in parenthesis.

c0 [M] D±(c0) (s. Table II) ×10−6 [cm2/s] �c(TI)/c0 ≈ 5% �c(TI)/c0 ≈ 20% �c(TI)/c0 > 60%

D±|pulse
long−term − 2.787 (0%) 2.787 (0%)

0.01 2.787 D±|steady−state
long−term − 2.787 (0%) 2.787 (0%)

D±|steady−state
short−term − 2.791 (0.1%) 3.106 (11%)

D±|pulse
long−term 1.785 (0%) 1.785 (0%) 1.785 (0%)

1 1.785 D±|steady−state
long−term 1.785 (0%) 1.785 (0%) 1.785 (0%)

D±|steady−state
short−term 1.786 (0.1%) 1.794 (0.5%) 2.176 (21%)

D±|pulse
long−term 1.139 (0.1%) 1.139 (0.1%) 1.139 (0.1%)

2 1.138 D±|steady−state
long−term 1.138 (0%) 1.138 (0%) 1.138 (0%)

D±|steady−state
short−term 1.141 (0.3%) 1.163 (2.1%) 1.973 (73%)
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D±|steady−state
short−term can also be determined directly from the relaxing con-

centration difference �c(t) rather than from the cell potential U (t).
The advantage of this approach is that potential non-linearities in-
troduced by the concentration dependent thermodynamic factor and
transference number as well as by the linearization of the natural
logarithm are not included. As a result, the error in the binary diffu-
sion coefficient D±|steady−state

short−term reduces, e.g., from 21% (s. Table IV)
to 7% for a simulation of a 1 M electrolyte solution and for the high-
est polarization potential Up = 400 mV. These values are a good
indication of the errors introduced by the indirect observation of the
concentration difference �c(t) by the cell potential U (t). Besides this
exemplarily estimation, a more elaborate quantification of the errors
is quite complex, since the error is strongly influenced by the concen-
tration dependence of the transport parameters which are not known
a priori.

In addition to choosing a polarization potential in SSPP experi-
ments, the polarization time is an additional experimental parameter,
since a steady-state concentration profile is strictly required. If the
relaxation process starts from a non-linear concentration profile, a
similar non-linear behavior of the relative cell potential with respect
to the square root of time as shown in Figure 6 can also be observed. In
consequence, the method based on the short-term relaxation behavior
requires a true linear concentration profile at the current interruption
time.

As a result of these considerations, the methods based on the long-
term relaxation behavior of the potential are more reliable (reflected
by the smaller errors shown in Table IV), since the results are not at all
influenced by the initially established concentration profile. Addition-
ally, the requirement of small concentration variations is automatically
fulfilled for the methods based on the long-term relaxation behavior.
Besides, both methods observing the long-term relaxation behavior
depend only on a single parameter (viz., mln in Eq. 14), whereas it
is necessary to determine the slope and the cell potential at current
interruption time for the method based on the short-term relaxation
behavior (viz., msqrt and U(T1) in Eq. 17). The effect of experimen-
tal uncertainties in these two parameters is furthermore magnified,
since they appear in quadratic form in Eq. 17. Last but not least, the
long-term linearity of the logarithmic potential is more distinct than
the short-term linearity of the potential with respect to the square
root of time, whereby it is critical to suppress convective effects at
long times (s. above). This is of particular importance for experimen-
tally determined data, which include experimental noise (the latter, of
course, does not affect the numerical simulation of the experiments).
Potential influences of experimental artefacts on the quality of the
determination methods are discussed in detail in the next section.

Results and Discussion

In the following, the proposed methods are used to determine the
partial effective binary diffusion coefficient D∗

±,eff of an exemplary
electrolyte (LiClO4 in EC:DEC, 1:1 w:w). The tortuosity of the here
used Celgard 2500 separator (τ = 2.5) which is necessary for the
calculation of the binary diffusion coefficient D±(c0), is taken from
Landesfeind et al.,2 where it was determined from single separator
layers. Because the experimental setup utilizes twenty layers of sep-
arators, it is necessary to prove the independence of the tortuosity
from the number of separator layers, i.e., that the separator/separator
interface does not alter the overall tortuosity of a stack of separators.
Calculation of the tortuosity from the high frequency resistance mea-
sured before each pulse experiment (20 Ohm) of a cell filled with
20 layers of the Celgard 2500 separator (porosity 55%, active area
2.27 cm2) and the 0.5 M electrolyte (conductivity 5.3 mS/cm) yields
a tortuosity of 2.65, which is in good agreement with the value for
an individual layer of the separator of 2.5. Because also contact resis-
tances caused by, e.g., the spring in the experimental setup contribute
to the high frequency resistance, we use the single layer tortuosity
of 2.5 in the following analysis. As introduced in the Mathematical
derivation section, the binary diffusion coefficient can be determined

Figure 7. Experimental SSPP data (corrected for the long time offset poten-
tial) of the time relaxation of the natural logarithm of the potential (U in mV)
after steady-state polarization (for polarization potentials and times see Table I),
showing data for 0.01 M, 0.5 M, 1.5 M and 2.0 M LiClO4 in EC:DEC (1:1
w:w) obtained in the two-electrode cell described in Figure 1. The binary dif-
fusion coefficient is determined by the linear line fits (dashed black lines) via
D±|steady−state

long−term (see Eq. 14).

based on the long-term relaxation of the cell potential U (t) after a
pulse (D±|pulse

long−term, s. Table III) or after a steady-state polarization

experiment (D±|steady−state
long−term , s. Table III) as well as based on the short-

term relaxation of U (t) after a steady-state polarization experiment
(D±|steady−state

short−term , s. Table III). Figure 7 exemplarily shows the relaxation
of the logarithm of the potential ln U (t) versus time t after a steady-
state polarization experiment in a 0.01 M, 0.5 M, 1.5 M, and 2.0 M
LiClO4 electrolyte. While the cell potential U (t) relaxes to a constant
value at long times, it never relaxes exactly to zero, ending at a sta-
ble open circuit potential between −0.5 mV and +0.5 mV. This final
value was found to be random in magnitude and sign and is attributed
to changes of the lithium metal electrode surface state due to SEI for-
mation (initiated during lithium deposition on one of the electrodes
in each pulse) and roughness variation. In consequence, all relaxation
curves are fitted with a free offset potential UOffset, since the linear
behavior of the open circuit potential ln U (t) with respect to time t
can be only observed if the open circuit potential U (t) approaches
zero for long times. After offset correction, the linear behavior of
ln(U) vs. t can be observed consistently over times ranging from 5 to
25 minutes (marked by vertical dashed lines in Fig. 7), which allows
for a quantification of the binary diffusion coefficient according to
Eq. 14.

The apparent increase in noise for long times is due to the logarith-
mic scale, ultimately showing the digital resolution of the potentiostat.
In this study, the noise level of the potential measurement was ±100
μV. Applying the same analysis method, the binary diffusion co-
efficient can also be obtained from the long-term relaxation of the
cell potential U (t) after a pulse experiment (D±|pulse

long−term method, s.
Eq. 14) which is not shown explicitly.

The short-term relaxation of the cell potential U (t) with respect to√
t after a steady-state polarization is the basis for the determination

of the binary diffusion coefficient according to Eq. 17 (D±|steady−state
short−term

method). Exemplary current transients during steady-state polariza-
tion experiments with an applied potential of 50 mV, i.e., the current
normalized by its initial value (I/I0) vs. time are shown in Figure 8.
In case of a 0.01 M, 0.5 M, and 2.0 M electrolyte (blue, red, and cyan
lines in Figure 8), a reasonably stable current plateau was reached
at the time when the current was interrupted (i.e., when switching to
OCV). On the other hand, in the measurement with the 1.5 M elec-
trolyte (green line in Figure 8), the current starts to increase after its
initial decay, which is caused by the formation of high surface area
lithium and an associated decrease in the charge transfer resistance for
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Figure 8. Exemplary steady state polarization current transients for 0.01 M,
0.5 M, 1.5 M, and 2.0 M LiClO4 in EC:DEC (1:1 w:w) at constant polariza-
tion of 50 mV in the two-electrode cell shown in Figure 1. The gaps in the
curves toward the end of the potentiostatic polarization procedure are due to
impedance measurements which were conducted during that time.

lithium dissolution/plating. In this case, a linear concentration profile
at current interruption cannot be guaranteed anymore as discussed in
the following.

Figure 9 depicts the corresponding OCV decays after the poten-
tiostatic polarization phases shown in Figure 8. For the experiments
with 0.5 M and 2 M LiClO4 (red and light blue curves) which exhib-
ited a steady-state current (s. Figure 8), a potential relaxation phase
where U (t) is linear vs.

√
t can be clearly discerned (between 25

and 225 s/400 s, i.e., between ca. 5/
√

s and 15/
√

s / 20/
√

s) and is
indicated by the dashed black lines in Figure 9. While the U (t) vs.√

t behavior depicted in Figure 9 resembles its theoretically predicted
response for

√
t-values exceeding ≈ 3 s−0.5 (compare Figure 9 with

Figure 6), the experimental data deviate dramatically at
√

t-values
below ≈ 3 /

√
s, where the potential does not follow the predicted

proportionality between U(T1) and
√

t . This behavior is commonly
observed32 and introduces two uncertainties in the evaluation of the
diffusion coefficient based on Eq. 17: i) an ambiguity in defining the
time frame over which the linear fit should be applied, which would
be very straightforward if the response were to follow its theoretically
predicted behavior (s. Figure 6); ii) the determination of the required

Figure 9. Short-term potential relaxation after the potentiostatic polarization
experiments (SSPP) shown in Fig. 8. (0.01 M, 0.5 M, 1.5 M and 2.0 M LiClO4
in EC:DEC (1:1 w:w)). The black dashed lines are a linear fit according to Eq.
16 in order to determine D±|steady−state

short−term .

Figure 10. Concentration dependent binary diffusion coefficient D± of
LiClO4 in EC:DEC (1:1 w:w) measured in the two-electrode Li-Li cell
shown in Figure 1. The error bars represent the standard deviations from
at least two different cells; the relationships to determine D± are summarized
in Table III.

initial potential just after current interruption (U(T1) in Eq. 17) is by
no means straightforward and the value of U(T1) must be estimated
by back-extrapolation of the linear segment to

√
t= 0, which would

be the expected voltage response in the absences of parasitic currents
(s. Figure 6). This deviation of the experimental short-time response
from the theoretical short-term response (i.e., below

√
t-values of ≈

3 /
√

s) is likely due to parasitic currents caused by the reformation of
the SEI, particularly on the lithium electrode on which lithium plating
occurred during potentiostatic polarization. Similar transients have
been recorded by Odziemkowski when metallic lithium was cut while
emerged in an electrolyte solution.34 In summary, determination of
the binary diffusion coefficient D± from short-term relaxation exper-
iments is clearly more difficult and error prone than from long-term
relaxation experiments.

In the case where no steady-state current is obtained during po-
tentiostatic polarization (s. data for 1.5 M LiClO4; green line in
Figure 8), the conditions for an analysis of the short-term relaxation
behavior are actually not fulfilled (i.e., it cannot be assumed that a
steady-state linear concentration profile has been obtained). Never-
theless, the observed potential relaxation still displays a fairly linear
segment (s. green line in Figure 9), so that one might be tempted to
apply Eq. 17 to extract a binary diffusion coefficient. This would be
clearly invalid, so that binary diffusion coefficients should only be de-
termined from short-term relaxation experiments after having assured
that a steady-state current was indeed obtained during polarization.
In consequence, as the latter requirement is not met for the 1.5 M
LiClO4 experiment, our below summary of the concentration depen-
dent binary diffusion coefficients of LiClO4 in EC:DEC (1:1 w:w)
obtained by the three different analysis methods used in this study (s.
Table III) does not include any values for the short-term relaxation
experiment for the 1.5 M LiClO4 electrolyte. The same argumentation
holds for the 0.01 M concentration due to ambiguous linear regions
during polarization in Figure 8 (s. blue line) and relaxation (s. blue
line in Figure 9).

Binary diffusion coefficients determined for a LiClO4 in EC:DEC
(1:1 w:w) electrolyte at five concentrations using the methods
summarized in Table III and plotted in Figure 10 show a good
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correlation between the three methods. The shown values are the
mean values obtained from all pulses for all cells at a given con-
centration, and the error bars indicate their corresponding standard
deviation. As already discussed in the Numerical validation section,
the most reliable approach for determining the binary diffusion co-
efficient are the long-term relaxation methods (s. Eq. 14). Amongst
these, the pulse polarization experiments (D±|pulse

long−term) have some

advantage over steady-state polarization experiments (D±|steady−state
long−term ):

the much shorter polarization time for pulse experiments allows for
higher polarization currents which result in larger potentials during
relaxation, thus leading to a better signal to noise ratio and allow-
ing for a longer time range over which Eq. 14 can be fitted. For the
methodology based on the short-term relaxation after a steady-state
polarization (D±|steady−state

short−term ), the generally observed parasitic currents
from SEI formation and the formation of high surface area lithium can
lead to a non-constant concentration profile and render the method
less reliable, in addition to the risk of analyzing data from con-
ditions where the imposed concentration gradients were too large
(s. Table IV).

Figure 10 also includes an exponential fit for the concentration de-
pendence of the binary diffusion coefficient based on the D±|pulse

long−term
values, yielding

D± (c) = 2.36 · 10−6 exp (−0.375 c)

[
cm2

s

]
[18]

where the LiClO4 salt concentration c is given in units of mol/l. A de-
crease in the binary diffusion coefficient D±(c) as observed in Figure
10 is expected theoretically. Upon increasing the salt concentration,
ion-ion interactions become more prominent, leading to an increase
of the viscosity of the electrolyte and thereby reducing the ionic mo-
bilities. In addition, the binary diffusion coefficient D± determined
by the described experimental method also includes additional fac-
tors such as the ratio between the total salt concentration and the
solvent concentration, the thermodynamic factor, and potential vol-
umetric effects as discussed, e.g., by Nyman et al.19 or Georén and
Lindbergh.24 However, it is not necessary to separate these different
effects from each other in order to use the determined binary diffu-
sion coefficient in numerical simulations with a consistent physical
model.

As discussed in the Introduction section, binary diffusion coeffi-
cients are reported based on rotating disc measurements,14 numerical
fitting procedures,19,24,26 relaxations experiments with optical obser-
vation of the concentration gradient17 as well as based on analysis
of the Moiré pattern.12 Similar trends are described by all publica-
tions, namely showing a decrease of the binary diffusion coefficient
for increasing salt concentrations. Lundgren et al.,26 Nyman et al.,19

and Valøen et al.6 get a very similar strong concentration dependence
ranging from 5.5 ·10−6 cm2/s at infinite dilution to 0.5 ·10−6 cm2/s at
2 M salt concentrations for LiPF6 dissolved in similar electrolyte so-
lutions (s. red dotted and dashed lines in Figure 11). Although Stewart
and Newman also investigated a similar electrolyte solution (LiPF6 in
EC:DEC 1:1 w:w), they reported a disproportionally strong concen-
tration dependence, based on concentration gradient measurements
with an optical cell17 (s. solid red line in Figure 11). Using a numer-
ical fitting method, Georén and Lindbergh24 and Nishikawa et al.12

determine the binary diffusion coefficient of LiClO4 in PC (s. blue
dashed and blue line with asterisks in Figure 11). Particularly at low
concentrations, their results compare well with our binary diffusion
coefficients (s. blue solid line in Figure 11). Xu and Farrington14 ob-
tained an average diffusion coefficient between 0 and 0.1 M LiClO4

in PC using the rotating disc method (s. blue square in Figure 11).
While generally larger diffusion coefficients are reported for LiPF6

compared to LiClO4 based electrolytes, similar ranges are obtained
for each type, with our measurements being in good agreement with
binary diffusion coefficients reported for similar electrolytes in the
literature.

Figure 11. Literature comparison of binary diffusion coefficients for LiClO4
(blue lines/symbols) and LiPF6 (red lines/symbols) in electrolytes with dif-
ferent solvents with the LiClO4 electrolyte investigated in this work (LiClO4
in EC:DEC 1:1 w:w). The literature data are: Stewart and Newman17 (LiPF6
in EC:DEC 1:1 w:w, RT), Nyman et al.19 (LiPF6 in EC:EMC, 3:7 w:w, 25
± 1◦C), Lundgren et al.26 (LiPF6 in EC:DEC, 1:1 w:w, 25 ± 1◦C), Valøen
et al.6 (LiPF6 in PC:EC:DMC, 10:27:63 v:v:v, 21◦C), Georén and Lindbergh24

(LiClO4 in PC, RT), Xu and Farrington14 (LiClO4 in PC, 25◦C), Nishikawa et
al.12 (LiClO4 in PC, 25◦C).

Conclusions

In this work, the concentration dependent binary diffusion coeffi-
cient is determined from the short-term and the long-term relaxation
behavior after a pulse or a steady-state polarization experiment in
a new two-electrode cell design using lithium metal electrodes. In
contrast to similar experimental procedures available in the literature,
the distance between the lithium electrodes is kept small to ensure a
large radius to distance ratio and thus reduces the influence of a non-
homogenous electric field at the electrode edge. A small electrode
distance is realized by 20 layers of polypropylene separators which
effectively suppress convective effects which occur in experimental
setups where a free electrolyte without porous matrix (separator) is
used. For this new approach of using porous separators instead of free
electrolyte, it was necessary to extend the analytical methods available
in the literature to include the effect of the porous medium.

The accuracy of the various evaluation approaches was examined
by numerical simulations, and experimental artefacts were examined
by comparing simulations with the various experimental approaches
using an exemplary electrolyte (0.01 to 2 M LiClO4 in EC:DEC 1:1
w:w). The experimentally determined binary diffusion coefficients
were in good agreement with those reported in the literature for simi-
lar electrolytes. Our analysis clearly shows that the most reliable and
straightforward method for determining binary diffusion coefficients
using a two-electrode cell is based on the long-term relaxation behav-
ior after a galvanostatic polarization pulse using a porous separator
which effectively suppresses convective effects.
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Symbol Name Unit

κ conductivity mS/cm

D± binary diffusion coefficient cm2/s

t+ transference number of lithium ion -

f± mean molar activity coefficient -

volumetric intrinsic phase average of the
concentrationc mmol/cm3

l distance between electrodes μm

ε porosity -

t time s

τ tortuosity -

zi ionic charge (neg./pos. for anions/cations) -

νi stoichiometry factor -

spatial vector of the volumetric phase average of
the current densityī A/cm2

ī volumetric phase average of the current density A/cm2

D±,eff effective binary diffusion coefficient cm2/s

volumetric intrinsic phase average of the electric
potential wrt. to a lithium electrodeφ V

U cell potential V

D∗
±,eff partial effective binary diffusion coefficient cm2/s

mi slopes of linear trends various

A electrode area cm2

Ii current mA

Ri resistance �

τ∗ artificial time -

List of Symbols
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