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Abstract
This thesis addresses three essays on production planning under uncertainty.
First, the focus is on a real-world capacity planning problem faced by a highly au-

tomated electronics manufacturer, where customer demand is highly volatile. Based on
aggregate production planning, a robust and computationally efficient mixed-integer linear
program is developed and applied in order to set capacity levels such that a cost-optimal
trade-off between flexibility instruments, subcontracting and inventories is achieved.

Second, this thesis considers the stochastic capacitated lot-sizing problem. An opti-
mal solution of this problem requires the integration of dynamic safety stock planning
into lot-sizing. Most of the literature and Advanced Planning Systems treat these prob-
lems separately and sequentially, even though they are closely interrelated. A new inte-
grated model with service level constraints in the form of a mixed-integer linear program
is proposed. The integrated model endogenously sets dynamic safety stocks over non-
equidistant lengths of replenishment lead-times. This integrated model is extended to
account for re-planning opportunities under rolling horizon planning. An experimental
study reveals that the integrated model provides more robust and appealing results than
the widely-used sequential approaches because it achieves identical service levels with
lower inventories. It is further found that, if there exists sufficient flexibility under rolling
horizon planning, the integrated model has to take re-planning opportunities into account
in order to avoid the build-up of excess safety stock.

Third, this thesis addresses a real-world stochastic general lot-sizing and scheduling
problem from the process industry where stochastic demand is serially correlated. Four
mixed-integer linear programs with an increasing degree of sophistication are proposed,
to deal with this complex problem. The first two represent a widely-used sequential
approach with exogenous safety stocks determined according to a rule-of-thumb or a
cost optimisation. The third one is an integrated model that minimises the total costs
by simultaneously determining lot-sizes, detailed scheduling and endogenous dynamic
safety stock. The fourth variant extends the integrated model to take serially-correlated
demand into account. The cost-saving potential of using these approaches is reported in
an increasing degree of sophistication based on a real-world dataset under rolling horizon
planning. It is found that fast solutions and quick wins in the form of cost-savings of up
to 10% can be obtained by using cost-optimised exogenous safety stocks instead of the
widely-used rule-of-thumb approach. Increasing the level of model sophistication by using
the newly proposed integrated models can lead to further substantial cost-savings of up
to 20% and provide more robust results than the widely-used sequential approaches.
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Chapter 1

Introduction

1.1 Motivation

Global sourcing, exploiting economies of scale and uncertainty in demand and supply
force many companies to build up inventories for raw materials, as well as semi-finished
and finished products throughout the supply chain. According to the 27th Annual State
of Logistics Report c©, the value of the inventories of firms in the USA was more than $2.5
trillion in 2015 (AT Kearney, 2016). The management of these tremendous inventories
opens up new opportunities and challenges when it comes to achieving and maintaining
competitive advantages in a highly uncertain business environment. The right decisions
must be made on the quantities, timing and location of the production and replenishment
throughout the supply chain. On the one hand, this is necessary in order to provide a high
customer service level, but on the other hand, the companies want to avoid unnecessary
and obsolete inventories.

A main characteristic of these environments is uncertainty, which is either caused by
the customer demand or by unreliable production or supply (Minner, 2000). Uncertainties
have increased as a result of the diversification of products and customer expectations,
shortening product life cycles and longer replenishment cycles due to global sourcing
(Silver et al., 2017).

The two most common approaches of addressing uncertainty are the establishment of
flexibility and the deployment of inventories as safety stocks. A flexible supply chain can
be obtained by incorporating information and communication technologies, new manufac-
turing technologies, capacity adjustments and contracting mechanisms (Bertrand, 2003).
While economies of scale and global sourcing can limit the degree of flexibility, safety

1



1.2. Problem Description 2

stocks become a vital element for maintaining the customer service level. From a hierar-
chical planning perspective (Schneeweiss, 2003), decisions regarding the type and degree
of flexibility are usually made on a strategic level. At the lower levels, i.e., in the medium
or short-terms, the question is how to optimally utilise the existing flexibility instruments.
At these levels, flexibility becomes fixed and limited, which means that the use of safety
stocks becomes more important for tackling uncertain demands in order to maintain the
desired customer service level.

There are some major pitfalls when it comes to the implementation of flexibility and
safety stocks. The impact of flexibility, in terms of capacity levels on safety stocks, is
usually ignored (Mapes, 1993). Moreover, safety stocks are traditionally decoupled from
decisions on quantities and the timing of production and replenishment, even though they
are closely interrelated with each other. In industrial practice, these simplified approaches
provide fast and easily-implementable solutions at the expense of sub-optimality in terms
of the utilisation of vital resources and inventories. Thus, overcoming those shortcomings
can substantially improve the customer service level and avoid unnecessary inventories.

To this end, this thesis focuses on (i) the impact of using different flexibility options
on the adjustment of capacity levels with respect to customer demand fluctuations, (ii)
simultaneous decision-making on safety stocks, the quantities and the timing of production
and replenishment and (iii) the impact of capacity levels on the safety stock requirement.

1.2 Problem Description

Recent developments in information and communication technology, along with products
with shortened life cycles and mass-customisation have made flexibility one of the most
important performance indicators in supply chains. The exploitation of the existing flex-
ibility results in the better and faster adjustment of internal resources when faced with
external fluctuations and changes.

The first problem addressed in this thesis relates to Aggregate Production Planning
(APP), which analyses the acquisition and allocation of internal resources with limited
capacities in order to fulfil customer demand in a finite planning horizon (Graves, 2011).
The planning horizon is usually medium to short-term and divided into discrete periods
with aggregated customer demands and internal resource capacities. APP usually takes
the workforce level, overtime scheduling, subcontracting and the inventory level into ac-
count and looks for the best trade-off between these factors in response to the customers’
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varying demand.
APP has received a lot of attention in the literature (see Chapter 2 for related litera-

ture). Our contribution is a practical application in the real-world case study of a highly
automated electronics manufacturer. Flexibility instruments, such as shift planning, over-
time account and maintenance planning, are incorporated separately or in combination
with each other. The robustness of the proposed modelling approach is important in
terms of the quality of the solutions and the required computational effort.

From a hierarchical planning point of view, APP provides capacity levels for key in-
ternal resources as inputs for generating more disaggregated plans. From a medium to
short-term perspective, the disaggregated plans provide the quantities and timing of pro-
duction and replenishment, which are the solution to the lot-sizing and scheduling prob-
lems. The lot-sizing and scheduling problems are observed in a wide variety of disciplines
and industrial sectors, including consumer products, electronics, pharmaceuticals, steel,
and the chemical industry. The approaches used for tackling them are vital components
of planning software, such as Manufacturing Resource Planning (MRP II) and Advanced
Planning Systems (APS).

The second problem addressed in this thesis focuses on a single-stage big bucket
Stochastic Capacitated Lot-Sizing Problem (S-CLSP). In this problem, (final) products of
an uncertain demand are produced directly from raw materials (without sub-assemblies)
on a single machine with limited capacity. The aim is to find cost-optimal decisions re-
garding when and how much of each product should be produced by taking the limited
capacity of the machine into account in order to satisfy uncertain demand with respect to
a prescribed target service-level. In S-CLSPs, the degree of flexibility in terms of capacity
levels is usually fixed and limited. In these problems, holding safety stocks is a vital tool
for protecting against uncertain demand.

The S-CLSPs are usually solved sequentially (see, e.g., de Kok and Fransoo, 2003).
In planning software, such as MRP II and APS, it is common to first solve a safety
stock planning problem in order to capture the demand uncertainty and to then solve a
deterministic lot-sizing (scheduling) problem that is decoupled from uncertainty but takes
safety stocks into account as a constraint. The main pitfall of such a sequential approach
is that it does not take the interrelation of the decisions on safety stocks or those on
quantities and timing of production and replenishment into account.

Safety stocks are placed to buffer against the demand uncertainty over replenishment
cycles. The replenishment cycle depends on the production plan, which is the timespan



1.2. Problem Description 4

between two consecutive production periods. As an example, the production plan for one
product over twelve time periods illustrated in Figure 1.1 is discussed in the following.
Production occurs in periods 1 and 6, marked in red. In the remaining periods, marked
in blue, this product is not produced. Therefore, the first replenishment cycle extends
over 5 periods. It starts at the beginning of period 1 and ends at the end of period
5. Thus, safety stock planned in period 1 must cover demand uncertainty over the 5
periods. If the next lot were to be produced as early as in period 4, instead of in period
6, the replenishment cycle would only be 3 periods. Thus, the production plan clearly
impacts the safety stock requirement. On the other hand, the safety stock quantities need
to be produced at some point. Therefore, the safety stock requirement also affects the
production planning problem. Both are interrelated.

Figure 1.1: Interrelation of safety stocks and lot-sizes.

Despite this major shortcoming, the main advantage of the sequential approaches is
that they reduce the complexity of using an integrated model that addresses both problems
simultaneously. Schneeweiss (2003) refers to this type of decomposition as a constructional
distributed decision making system where a complex operations research problem is di-
vided into more manageable sub-problems. Using separate approaches to determine safety
stocks (a higher level) and to produce plans (a lower level) reduces the complexity of the
original problem.

A simultaneous consideration of both problems has recently attracted increasing at-
tention. The existing literature makes considerable contributions to the S-CLSPs (see
Chapter 2 for related literature). However, the main aspects of these problems are rarely
discussed concurrently: The existing literature either neglects capacitated cases, assumes
exogenous replenishment cycles, or focuses on production times and disregards production
quantities. From a modelling perspective, an endogenous determination of replenishment
cycles has not been fully solved. The existing literature mainly uses a complete enumer-
ation of every possible length of replenishment cycles, which restricts them to small-size
and, particularly, to discrete problems.

Moreover, in practice, the production plans are predominantly implemented under
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rolling horizon planning. This means that, based on a demand forecast, first, a finite
planning horizon problem is solved. The production plan of some initial periods is imple-
mented. The planning horizon is rolled forward and, at the same time, demand forecast
is updated as more information is gained over time and the system status is updated as
the actual demand is realised. The main advantage of a rolling horizon planning approach
is that it provides re-planning opportunities for the solution during periods that are not
immediately implemented. In other words, based on the realised demand and updated
demand forecast, there are opportunities to adjust the original plan (re-plan) over the
course of the following (rolled) planning. Another shortcoming of the integrated models
found in the literature is that they ignore the re-planning opportunities which exist under
rolling horizon planning. This calls for a careful and fair investigation on whether using
such an integrated model instead of a sequential approach can really pay off under rolling
horizon planning. After all, solving integrated approaches requires more computational
efforts than solving the sequential approaches.

Nevertheless, an optimal solution for stochastic lot-sizing problems under rolling hori-
zon planning can be obtained by using a Stochastic Dynamic Program (SDP) (Mula
et al., 2006). However, the SDPs suffer from the curse of dimensionality. Consequently,
this method is of only limited use in practice since the industrial lot-sizing (scheduling)
models usually have large problem sizes and various production constraints with real-world
settings (Jans and Degraeve, 2008). For solving these types of problems, Mixed-Integer
Linear Programs (MILPs) are usually applied. For practical purposes, it is desirable to
find a way to consider the re-planning flexibility in an MILP.

The final problem addressed in this thesis is a real-world Stochastic General Lot-sizing
and Scheduling Problem (S-GLSP) from the process industry. This problem refers to the
stochastic version of a simultaneous big-bucket and small-bucket lot-sizing and scheduling
problem where customer demand is uncertain and serially correlated over a planning
horizon. The deterministic counterpart of this problem, known as the General Lot-sizing
and Scheduling Problem (GLSP) (Fleischmann and Meyr, 1997), integrates short-term
detailed scheduling into lot-sizing. This is the most general setting and the other lot-
sizing and/or scheduling problems are usually seen as special cases of this version. In
the stochastic version of this problem, dynamic safety stocks, lot-sizing and scheduling
are determined simultaneously. Specifically, lot-sizes are determined on a macro level
with discrete and equidistant periods, scheduling is done on a micro level and based
on continuous and non-equidistant periods and dynamic safety stocks are endogenously
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placed on a micro level over continuous non-integer replenishment cycles. Despite its high
practical relevance, the S-GLSP has not yet been addressed in the literature.

This thesis contributes to the huge body of existing literature on the stochastic lot-
sizing (and scheduling) problems by answering the following main research questions:

(i) Using an MILP, how can dynamic safety stocks be endogenously determined over
non-equidistant (continuous) lengths of replenishment cycles in the S-CLSP and the
S-GLSP?

(ii) What is the impact of the capacity level on the performance of sequential and
integrated modelling approaches under rolling horizon planning?

(iii) Using an MILP, how can serially-correlated demand be taken into account in order
to endogenously adjust the dynamic safety stock levels and what is the implication
of doing so?

(iv) What are the cost-saving potentials if practitioners increase the planning maturity
level by using more sophisticated modelling approaches to address a complex real-
world S-GLSP?

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 presents the related
literature on the APP and the stochastic lot-sizing problem. Chapter 3 explores the
flexibility instruments used for adjusting capacity levels in order for them to correspond
with demand fluctuations in a real-world case study of a highly automated electronics
manufacturer. This problem assumes a multi-item, multi-facility, multi-stage capacity
planning problem with parallel machines. Three flexibility instruments are introduced:
Shift planning, overtime account and flexible maintenance. In the context of APP, an
MILP is developed and applied. It sets capacity levels while a cost optimal trade-off
between flexibility instruments and inventories is obtained. An extensive numerical study
based on a real-world dataset is conducted to evaluate the robustness of the modelling
approach, as well as the cost-saving potential of the available flexibility instruments. The
computational performance of the modelling approach is validated by two commercial
and non-commercial MILP solvers. The numerical study reveals that the most substantial
cost-saving can be obtained through shift planning. The combination of all these flexibility
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instruments is crucial to manufacturers who face high demand variabilities, especially
when production capacity is limited. This chapter is based on Tavaghof-Gigloo et al.
(2016).

Chapter 4 addresses the single-stage big-bucket Stochastic Capacitated Lot-Sizing
Problem (S-CLSP). The planning horizon is finite with equidistant discrete time periods.
Customer demand is a random, non-stationary and an independent variable during the
planning horizon, with a known probability distribution and a given mean and variance
per product and per period. Customer demand is backlogged if it is not met by the end of
a period. There is a linear inventory holding cost for keeping one unit of a product at the
warehouse. The production capacity of the machine is limited. To produce a product, the
machine must be set up with the required setup time. This problem is described by using
an SDP. Then, three MILPs are presented to address this problem: First, a sequential
approach that assumes a deterministic capacitated lot-sizing problem with predetermined
safety stocks is studied. Secondly, an integrated model where dynamic safety stocks and
lot-sizes are simultaneously determined is introduced. This approach is based on a chance-
constrained program and incorporates a fill-rate service level. If capacity is limited, soft
service level constraints are introduced to avoid infeasibility.

Thirdly, an integrated model that takes re-planning opportunities, which exist in a
rolling horizon approach, into account is proposed. In an experimental study, various main
input factors are defined in order to compare the cost-saving potentials of the modelling
approaches in respect to the realised identical customer service level. The experimental
study reveals that using the integrated model instead of the sequential approach can
only be justified if flexibility is strictly limited under rolling horizon planning. If sufficient
safety capacities exist, using an integrated model only pays off if re-planning opportunities
are further taken into account in a rolling horizon approach. This chapter is based on
Tavaghof-Gigloo and Minner (2019).

Chapter 5 studies a real-world Stochastic General Lot-sizing and Scheduling Problem
(S-GLSP) from the process industry. The main assumptions and constraints are the
existence of sequence-dependent setup times and costs, minimum production quantities
and times, inventory and production capacity constraints and back-ordering of unfulfilled
demand, where demand is further serially-correlated over the planning horizon. With an
increasing degree of sophistication, four MILPs are introduced in order to deal with this
complex problem; (i) a sequential approach with simple rule-of-thumb exogenous safety
stocks, (ii) a sequential approach with cost-optimised exogenous safety stocks, (iii) an
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integrated model based on a cost-minimisation method and (iv) an integrated model that
further takes the serially-correlated demand into account. Since even the deterministic
counterpart of this problem is hard to solve, a period-based decomposition approach is
introduced in order to obtain promising results in a reasonable amount of time. Based on
a real-world dataset and sensitivity analyses, the cost-saving potentials of the integrated
approaches are compared to less sophisticated sequential approaches. The results show
that, in the sequential approaches, fast solutions and quick cost-savings of up to 10%
can be achieved by replacing the widely-used rule-of-thumb approach for the exogenous
safety stocks with the cost-optimised ones. Increasing sophistication in terms of planning
by our industrial partner in order to use the proposed integrated approaches can unlock
further substantial cost-saving potentials of up to 20% and provide more robust results
than the widely-used sequential approaches. This chapter is based on Tavaghof-Gigloo
et al. (2019).



Chapter 2

Literature Review

This chapter is structured as follows. Section 2.1 presents the related literature on Aggre-
gate Production Planning (APP). Section 2.2 and 2.3 present prior works on stochastic
lot-sizing problems. In Section 2.2, we focus on the mathematical modelling approaches
proposed in the literature for stochastic lot-sizing problems. In Section 2.3, we review the
recent literature on the planning approaches for stochastic lot-sizing problems.

2.1 Aggregate Production Planning

An early extensive literature review on the APP has been given by Nam and Logendran
(1992). Silva et al. (2000) study an APP model where the workforce level can be adjusted
at the beginning of the planning horizon and remains unchanged afterwards. Lagodimos
and Mihiotis (2006) study shift planning with overtime accounts. Their results show
that an effective use of overtime leads to workforce reductions and improved utilisation.
Da Silva et al. (2006) develop a multi-criteria Mixed-Integer Linear Program (MILP), i.e.,
maximising profit, minimising late orders, minimising changes of the workforce level, by
taking constraints of production, inventory and workforce into account. They embed the
developed model into a decision support system for practical usage.

Othman et al. (2012) present a multi-objective non-linear programming model to de-
termine the workforce level and overtime hours. Ramezanian et al. (2012) introduce an
MILP for a two-stage APP problem and apply a genetic algorithm and tabu search to
solve the problem. Askar and Zimmermann (2007) and Askar et al. (2007) address a ca-
pacity adaptation and staff planning problem on a single assembly line in the automotive
industry by taking cycle time, shift planning, work regulations and line balancing into ac-

9
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count. They propose a solution approach based on dynamic programming and show that
some real world problems can be solved efficiently. Sillekens (2008) and Sillekens et al.
(2011) introduce an MILP of the problem studied by Askar and Zimmermann (2007) and
extend it to include buffers between shops. Walter et al. (2011) evaluate volume flexibility
instruments by using a three-step method that consists of a preliminary analysis where
the effective flexibility instruments are identified. They also introduce an optimisation
model and design-of-experiments techniques for evaluating the flexibility instruments.
Hemig et al. (2014) discuss an integrated production and staff planning problem for het-
erogeneous, parallel assembly lines in the automotive industry, also proposing a dynamic
programming solution approach. Merzifonluoğlu et al. (2007) develop a class of produc-
tion planning models that integrates subcontracting and overtime options. They provide
effective solution methods by using polyhedral properties and dynamic programming tech-
niques.

Another area of research relevant to this topic is the integration of maintenance plan-
ning into the APP. Typically, production planning and maintenance planning are con-
sidered separately. While production planning models try to balance the total costs of
production and inventory, maintenance planning models usually aim at balancing the
costs and benefits of maintenance in order to ensure a reliable production system. Occa-
sionally, the two goals contradict each other (Aghezzaf et al., 2007). Hence, only a few
papers address the integration of maintenance and APP. Weinstein and Chung (1999)
propose a three-stage model for evaluating the maintenance policies of an organisation
by integrating the model into APP. First, they generate an aggregate production plan.
Then, a master production schedule that minimises the deviations from the specified
first-stage aggregate production goals is developed. Finally, they use work centre loading
requirements to simulate equipment failures during the planning horizon.

Aghezzaf et al. (2007) discuss a joint production and maintenance planning model for
a production system, including random failures for finding an integrated lot-sizing and
preventive maintenance strategy. Najid et al. (2011) consider a joint production and
maintenance problem and present an MILP that takes demand shortages and reliability
of the production line into account. Their model can be solved to optimality for small
problems. Allaoui et al. (2011) propose two-level planning to hierarchically integrate
production and maintenance planning. They integrate preventive maintenance into the
APP and corrective maintenance into the detailed planning. Alaoui-Selsouli et al. (2012)
incorporate a Lagrangian relaxation heuristic for solving a joint production planning and
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maintenance problem. Arts and Flapper (2015) introduce an MILP for an aggregate
planning of rotable overhaul and supply chain operations to determine aggregate workforce
levels, turn-around-stock levels of modules and overhaul and replacement quantities per
period.

2.2 Modelling Approaches for the Stochastic Lot-Sizing
Problem

There is a vast body of literature on the modelling and solution approaches of the deter-
ministic lot-sizing problems. Extensive reviews are given by, e.g., Karimi et al. (2003),
Jans and Degraeve (2008), Jans and Degraeve (2007) and Copil et al. (2017). In this
study, only the major related works that consider stochastic demand are presented.

The literature on the stochastic lot-sizing problems can be classified into the big-bucket
and small-bucket stochastic lot-sizing problem. In a big-bucket problem, the length of
production periods is long enough to produce multiple products in one period. In a
small-bucket problem, only one product is produced in every period.

Taking the big-bucket stochastic lot-sizing problems into account, Silver (1978) intro-
duces a chance-constrained program to address a single-product Stochastic Uncapacitated
Lot-Sizing Problem (S-ULSP). He proposes a three-stage heuristic solution approach that
sequentially determines reorder points, production cycles and lot-sizes. Askin (1981) uses
a two-stage heuristic approach with a simultaneous determination of production cycles
and lot-sizes for the same problem. Bookbinder and Tan (1988) introduce three main
uncertainty strategies for lot-sizing problems in the presence of uncertain demand: Static-
dynamic uncertainty, static uncertainty and dynamic uncertainty.

Under static-dynamic uncertainty, only the production times are determined by a spec-
ification of the target inventory levels in the production periods. Accordingly, production
quantities are determined as the actual demand is observed over time. Based on this
strategy, Tarim and Kingsman (2004) introduce an MILP for the S-ULSP that incorpo-
rates the simultaneous determination of the production periods and the order-up-to-levels
under α-service level constraints. Tempelmeier (2007) extends this model by including
negative inventory levels. Moreover, Rossi et al. (2015) propose the use of MILP models
to determine the order-up-to-levels for the single-product S-ULSP under various service
levels and a shortage-cost model by introducing a linearisation technique that determines
the upper and lower bounds of the first-order loss function.



2.2. Modelling Approaches for the Stochastic Lot-Sizing Problem 12

Under the static uncertainty strategy of Bookbinder and Tan (1988), the production
times and quantities for the entire planning horizon are determined at the beginning of
the planning horizon. Based on this strategy, Tempelmeier and Herpers (2011) address a
single-product S-ULSP under a cycle fill-rate (βc-service level). They present a solution
that is based on a modified shortest-path problem. Tempelmeier (2011) looks into a
stochastic version of a multi-product S-CLSP and proposes a heuristic solution approach
that combines column generation with the ABCβc heuristic introduced by Tempelmeier
and Herpers (2010). Helber et al. (2013) introduce a multi-product S-CLSP with a new
backorder-oriented service level (δ service level) with respect to the stockout duration.
Tempelmeier and Hilger (2015) modify this model by taking the cycle βc-service level into
account. They approximate the non-linear functions of the expected on-hand inventory
and the expected back-orders by using piece-wise linear functions. They solve the problem
with an adjusted fix-and-optimize heuristic.

Finally, under the dynamic uncertainty strategy of Bookbinder and Tan (1988), both
the production time and production quantities are determined in every period as demand
is realised. Bookbinder and Tan (1988) argue that this so-called wait and see strategy is
not usually desired in practice and can cause poor cost performance if the setup cost is
considerably higher than the inventory holding costs.

Other relevant contributions consider the modelling of production planning problems
with limited capacity and uncertain demand. In this stream, mainly non-linear inter-
dependency between resource utilisation, production lead-time and safety stocks is inves-
tigated. Orcun et al. (2009) present a chance-constrained program that can be used for
integrating production release planning and safety stocks by taking load-dependent pro-
duction lead-times with clearing functions into account. Ravindran et al. (2011) look into
a similar problem and introduce a tractable deterministic heuristic to solve the original
stochastic problem. While the model of Ravindran et al. (2011) treats the replenishment
cycle as an exogenous parameter, the use of clearing functions in conjunction with the
shortfall will yield a dynamic model. Albey et al. (2015) and Albey et al. (2016) inte-
grate the evolution of the forecasted demand into the production planning for stochastic
demand. They use a new version of the chance-constrained program that is based on
the shortfall approach of Glasserman (1997). As a result of the shortfall approach, they
present soft constraints for safety stocks.

A review on small-bucket stochastic lot-sizing, known as the stochastic economic lot-
scheduling problem, is given by Winands et al. (2011). Recent approaches for the param-
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eter optimisation in stochastic stationary environments are presented in Löhndorf and
Minner (2013) and Löhndorf et al. (2014).

The stochastic version of the simultaneous lot-sizing and scheduling problem that is
the focus of Chapter 5 has not yet been addressed in the literature. Its deterministic
counterpart, known as the GLSP has been investigated by Fleischmann and Meyr (1997),
Koçlar (2005) and Koçlar and Süral (2005). Floudas and Lin (2004) and Transchel et al.
(2011) studied the GLSP with continuous and non-equidistant micro periods. Copil et al.
(2017) provide a recent review on the simultaneous lot-sizing and scheduling problem.

The serially-correlated demand has not yet been addressed in the literature on common
stochastic lot-sizing problems. In the stochastic-demand inventory literature, the serially-
correlated demand case has been investigated by authors such as Ray (1980), Charnes
et al. (1995), Urban (2000) and Disney et al. (2015).

2.3 Planning Approaches for the Stochastic Lot-Sizing
Problem

Despite to the considerable contribution with respect to the modelling approaches for
stochastic lot-sizing, the literature on the evaluation of stochastic lot-sizing under rolling
horizon planning is limited. Bookbinder and H’ng (1986) and Bookbinder and Tan (1988)
investigate a single-product S-ULSP with non-stockout probability in a rolling horizon
approach. Bookbinder and Tan (1988) compare the performance of their approach with
that of Silver (1978). They observe that their approach leads to a lower total cost than
the approach of Silver (1978), which, however, often returns a better realised service level.
They further observe an over-achievement of the target service level under rolling horizon
planning. Meistering and Stadtler (2017) evaluate an S-CLSP. They first introduce an
approach that depends on the time-between-orders in order to place safety stocks. They
further introduce a rolling horizon setting to fix the cycle βc-service level at a given level
over an evaluation period by adjusting the target service level in each planning period.
They use fairly moderate capacity utilisation cases. Additional external capacity is still
required to avoid infeasibility. Moreover, they compare the performance of the different
rolling horizon settings with respect to the total cost. They find that their rolling horizon
setting can often provide the lowest total cost. However, similar to the observation of
Bookbinder and Tan (1988), Meistering and Stadtler (2017) also find that the higher
total cost of an approach usually corresponds to a higher realised service level.
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Lin and Uzsoy (2016) present a chance-constrained program for a single-product single-
stage production planning problem under the assumption that the length of the replen-
ishment cycles is an exogenous parameter. They introduce two different settings for the
chance-constraints to update the length of the exogenous replenishment cycle over time.
They compare the performance of their settings to a linear programming formulation by
Sridharan and Berry (1990) that does not take uncertain demand into account. They find
that their settings can reduce schedule instability while maintaining high service levels.
Albey et al. (2015) and Albey et al. (2016) develop chance-constrained programs for a
production planning problem with demand forecast evolution under rolling horizon plan-
ning. One of their main findings is that the advantage of using a more accurate forecasting
technique, such as forecast evolution, is more pronounced if there is excess capacity in the
system.



Chapter 3

Mixed-Integer Linear Programming
Formulation for Flexibility
Instruments in a Capacity Planning
Problem

In this chapter, we present an MILP for the Aggregate Production Planning (APP) prob-
lem of an electronics manufacturer. A multi-item, multi-facility, multi-stage capacity
planning problem over a finite planning horizon with deterministic demand is considered.
We include the flexibility instruments shift planning, overtime account and flexible mainte-
nance. We present an extensive computational study where the proposed model is applied
in a real-world case study and for randomly generated instances. Using a full factorial ex-
perimental design we evaluate the cost-saving potential of the flexibility instruments and
their combinations. The computational performance of the proposed model formulation
is investigated by applying different Mixed-Integer Programming (MIP) solvers.

3.1 Introduction

Nowadays, manufacturing companies have to cope with an increasing demand variation
due to shortening product life cycles and seasonality. Demand variation stipulates increas-
ing flexibility in the production environment. APP provides this flexibility by adapting
the internal resources to the demand variations. APP determines optimal levels of produc-
tion, inventory and workforce over a given finite planning horizon by taking restrictions

15
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on the demand fulfilment and production resources into account. Therefore, effective and
flexible production planning can be essential for the success of a manufacturer in highly
competitive manufacturing environments.

This topic was originally motivated by a highly automated electronics manufacturer
who produces multiple items at several facilities with different costs in multi-stage pro-
duction processes with parallel machines and capacity limitations over multiple periods
with time-varying future demand forecasts. The manufacturer faces significant demand
variations over the planning horizon. The main challenge is to optimise and balance re-
source utilisations on different production lines. To do so, we introduce a mathematical
model formulation that integrates three flexibility instruments into the APP: Flexible
shift planning, overtime account and flexible maintenance.

Flexible shift planning and overtime account are two important flexibility strategies
in the APP that help manufacturers to adapt supply capacities. Shift planning includes
several shift models, each associated with a predetermined shift cost calculated mainly
through the required workforce level. Hence, the manufacturer may benefit from flexible
shift planning by adapting the workforce level to demand variations. Switching between
shift models, however, requires an adaptation of the workforce level, which results in
extra cost. In this work, we do not explicitly consider detailed staff planning. Instead, we
use flexible shift planning to adapt working time and consequently the workforce level.
This aggregation of workforce planning into flexible shift planning makes sense in highly
automated manufacturing environments – like the company under study in this chapter
– where production characteristics such as the cycle times are not heavily influenced by
the workforce level.

In contrast to the typical working time account, which accumulates the differences
between the actual working hours and the working hours in the contracts, we introduce
an overtime account that captures the interrelation between regular working time and
overtime. This flexibility enables the manufacturer to compensate under-time hours with
overtime hours and to minimise the total overtime cost with respect to the regulations
and collective agreements.

Additionally, integrating flexible maintenance into the APP may also be beneficial for
the manufacturer, since it allows for optimal scheduling of interval-based maintenance
activities. This integration also minimises the interruption of the production activities
due to maintenance when production resources are highly utilised in peak times.

Our contribution is a practical application of a capacity planning model based on a



3.2. Problem Description 17

real-world problem in the highly automated electronics industry. To gain managerial in-
sights into the value of the different flexibility instruments in the APP, we implement a
full factorial experimental design by defining input factors like the available production
capacity, demand variation, shift cost and shift change cost. For practical purposes, we
analyse the computational performance of the proposed model, using both commercial
and non-commercial solvers. Specifically, we address the following research questions: (1)
What is the cost benefit of applying the flexibility instruments in a highly automated
manufacturing environment separately or in combination with each other? (2) How ro-
bust is the proposed mathematical model formulation in terms of solving the underlying
problem under different input factor levels using different MIP solvers?

The remainder of this chapter is structured as follows. Section 3.2 describes the problem
and the flexibility instruments. Section 3.3 provides the mathematical formulation of
the problem. Section 3.4 presents an extensive numerical study. Finally, Section 3.5
summarises the findings of this chapter.

3.2 Problem Description

We study a multi-item, multi-facility, multi-stage capacity planning problem with parallel
machines. Each item has a dynamic deterministic demand over a finite planning hori-
zon divided into discrete time periods. Demand must be fulfilled without any delay, i.e.,
backlogging is not permitted. If, due to production capacity restrictions, demand cannot
be fulfilled, it is outsourced (subcontracting) with a higher cost. Each item is produced
through a multi-stage production process in one or several production facilities. Each
production stage can include parallel workstations (or machines). Each machine has a
limited capacity and a minimum capacity utilisation restriction per period. Due to negli-
gible set-up times, production occurs without set-up costs. Further, the product-machine
assignment matrix is given. Finished products are stored in a centralised warehouse,
which has a limited storage capacity. Each finished product has a period-specific min-
imum inventory level over the planning horizon. The finished products are transported
from the facilities to this centralised warehouse. Transportation between the warehouse
and the facilities has been outsourced to a third party that provides ample transportation
capacity for an agreed fixed cost. Consequently, transportation and its cost is not included
by the APP. Figure 3.1 illustrates a simple example where six machines are distributed
over two facilities, two products are produced at two stage production processes and each
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Figure 3.1: Multi-item multi-facility capacity planning problem with parallel machines.

production stage includes a maximum of two parallel machines. The following flexibility
instruments are considered.

Shift planning

The production capacity is determined by working time, which is determined by the selec-
tion of a shift model. A shift model is defined by the number and length of shifts within a
time period and usually limited by external regulations and laws (Sillekens et al., 2011).
Each machine runs a certain shift model which can only be changed at the beginning
of a period in order to adapt capacity requirements. The cost of a shift model in the
APP is usually determined from the cost of workforce, which is generally not affected by
the production quantity but rather by the number and the length of a shift model. The
cost for increasing or decreasing the workforce level is included in the cost of changing
a shift model. For further details about flexible shift planning, we refer to Askar and
Zimmermann (2007).
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Overtime account

We introduce an overtime account per machine to store overtime hours along the planning
horizon. The maximum of overtime hours which can be stored in an overtime account per
period depends on the selected shift model. Overtime hours stored in the overtime account
are paid according to the cost of workforce in overtime. Furthermore, the overtime account
includes an upper and a lower boundary in compliance with regulations and collective
agreements. There is a surcharge cost, if overtime hours exceed the upper boundary. The
lower boundary specifies the maximum number of hours from the overtime account which
can be used to balance the under-times or vacation times during regular working time.

Flexible maintenance

A set of preventive maintenance activities is given for each machine. If a machine is under
maintenance, the production on the machine is interrupted, i.e., maintenance requires
100% of the machine’s capacity. Further, we assume that the maintenance activity must
be repeated after a fixed time interval. The main challenge is to schedule these activities
in such a way that they are optimally carried out during periods when machines are
underutilised.

3.3 Model Formulation

We introduce the model formulation based on the conventional definition of production
and inventory quantities as decision variables. The complete notation is summarised in
Table 3.1.

The objective function (3.1) minimises total holding costs, subcontracting costs, fixed
costs of the shift model, direct costs of the workforce in overtime and the costs of the
workforce from the overtime account.

min C =∑
t∈T

∑
i∈I

hi · yti︸ ︷︷ ︸
holding cost

+
∑
t∈T

∑
i∈I

cosi · zti︸ ︷︷ ︸
subcontracting

+
∑
t∈T

∑
s∈S

∑
l∈L

cfstsl · ϕtsl︸ ︷︷ ︸
fixed cost of shift model

+

∑
t∈T

∑
l∈L

cfcl · δtl︸ ︷︷ ︸
cost of changing shift model

+
∑
t∈T

∑
l∈L

ζ−tl · kl︸ ︷︷ ︸
direct cost of workforce in overtime

+
∑
t∈T

∑
l∈L

ξtl · kl · rl︸ ︷︷ ︸ .
cost of workforce from overtime account

(3.1)
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Table 3.1: Notation.

Sets:
I set of products, I = {1, ..., Imax}
T set of time periods, T = {1, ..., Tmax}
L set of workstations, L = {1, ..., Lmax}
S set of shift models, S = {1, ..., Smax}
F set of facilities, F = {1, ..., Fmax}
Hl set of maintenance activities at workstation l ∈ L, Hl = {1, ...,Hmax

l }
Gi set of production stages for product i ∈ I, Gi = {1, ..., Gmaxi }
Lig set of workstations per product i ∈ I available at production stage g ∈ Gi, Lig =

{1, ..., Lmaxig }
Lf set of workstations at facility f ∈ F , Lf = {1, ..., Lmaxf }
Il set of products per workstation l ∈ L, Il = {1, ..., Imaxl }
Parameters
KN
tsl available working time at workstation l on shift model s in period t

KO
tsl available overtime at workstation l on shift model s in period t

ail production capacity consumption per product i at workstation l
dti demand of product i in period t
mtl minimum production capacity utilisation at workstation l in period t (in %)
sti safety stock level of product i in period t
Wt storage capacity of finished goods in period t (in palettes)
hi storage cost of product i per unit per period
ei quantity of product i per palette
bi initial inventory level of product i at the beginning of the planning horizon
cosi subcontracting cost per unit of product i
cfstsl cost of running shift model s at workstation l in period t
cfcl cost of changing a shift model at workstation l
nlh production capacity consumption by maintenance activity h at workstation l
olh interval of maintenance activity h (in time periods) at workstation l
cfshl workforce per-hour cost of regular working time at workstation l, identical over all

workstations within each facility
kl workforce cost of overtime at workstation l
rl coefficient to calculate the supplement time to be paid for surcharges of overtime

at workstation l
pmvl maximum vacation time from the overtime account at workstation l
pmll maximum level of overtime account at workstation l
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Decision variables:
xtsil quantity of product i produced at workstation l on shift model s in time period t
zti quantity of product i subcontracted in period t
yti inventory of product i at the end of period t
ϕtsl indicator if workstation l runs on shift model s in period t (= 1), otherwise (= 0)
δtl indicator if there is a shift change at workstation l at the beginning of period t

(= 1), otherwise (= 0)
γtsl indicator if overtime is used at workstation l on shift model s in period t (= 1),

otherwise (= 0)
ζ+
tl unused production capacity of workstation l in period t (in hours)
ζ−tl used overtime hours at workstation l in period t
ηtl overtime account balance at workstation l at the end of period t
utslh indicator if maintenance activity h is carried out at workstation l with shift model

s in period t (= 1), otherwise (= 0)
θtl overtime reduction level to compensate vacation hours during regular working time

at workstation l in period t
ξtl exceeded amount from the upper boundary of the overtime account associated to

the workforce cost in overtime (in hours)

subject to

• Inventory balance equation.
Equations (3.2) specify that the inventory level of every product i at the end of
every period t is determined by subtracting demand of that period from the sum
of the initial inventory and the production in that period. Since we assume zero
Work In Process (WIP) inventory, the production quantity of each product in each
period is equal to the production quantities at all production stages. The production
quantity of an item at a production stage is ∑l∈Lig

∑
s∈S xtsil. The initial inventory

at the beginning of the planning horizon (y0i) is given by bi.

yti = yt−1i +
∑
l∈Lig

∑
s∈S

xtsil + zti − dti. ∀t ∈ T, i ∈ I, g ∈ Gi (3.2)

• Capacity constraints.
Constraints (3.3) impose production capacity restrictions. The available production
capacity of every workstation l in every period t with each shift model s is determined
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by subtracting the production capacity consumption of the maintenance activities
carried out in that period (utslh = 1) from the sum of the available production
capacity of the shift model and overtime.

∑
i∈Il

ail · xtsil ≤ KN
tsl · ϕtsl +KO

tsl · γtsl − nlh · utslh. ∀t ∈ T, s ∈ S, l ∈ L (3.3)

• Flexible maintenance constraints.
Constraints (3.4) ensure that the maintenance activity h must be carried out at least
once during the interval of oh over the planning horizon. Constraints (3.5) guarantee
that maintenance activities are done at workstations under an active shift model.

∑
t≤k≤t+olh

∑
s∈S

ukslh ≥ 1, ∀h ∈ Hl, t ∈ {1, ..., Tmax − olh} (3.4)

utslh ≤ ϕtsl. ∀t ∈ T, s ∈ S, l ∈ L, h ∈ Hl (3.5)

• Minimum production capacity utilisation constraints.
Constraints (3.6) impose a minimum production capacity utilisation for every work-
station l with shift model s in every period t.

∑
i∈Il

ail · xtsil ≥ KN
tsl · ϕtsl ·mtl. ∀t ∈ T, s ∈ S, l ∈ L (3.6)

• Shift planning constraints.
Constraints (3.7) ensure that overtime hours can only happen on active shift models.
Changes of shift models are determined by constraints (3.8) and (3.9), indicating
that only one shift model can run per workstation during one period. Constraints
(3.10) and (3.7) together ensure that subcontracting is only available when the
highest possible capacity is in use, i.e., a shift system with the highest capacity
(shift system Smax) plus the corresponding overtime.

γtsl ≤ ϕtsl, ∀t ∈ T, s ∈ S, l ∈ L (3.7)

δtl ≥ ϕtsl − ϕt−1sl (ϕ0sl = 0), ∀t ∈ T, s ∈ S, l ∈ L (3.8)∑
s∈S

ϕtsl = 1, ∀t ∈ T, l ∈ L (3.9)

zti ≤ γtSmaxl · dti. ∀t ∈ T, i ∈ I, l ∈ Li (3.10)
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• Linking of production stages.
Due to zero WIP inventory, constraints (3.11) ensure that production quantities of
an item at two consecutive production stages must be identical within each facility.
The term l ∈ Lig ∩ Lf indicates available machines at production stage g within
facility f to work on product i.

∑
s∈S

∑
l∈Lig∩Lf

xtsil =
∑
s∈S

∑
l∈Lig+1∩Lf

xtsil. ∀t ∈ T, i ∈ I, g ∈ Gi\Gmax
i , f ∈ F (3.11)

• Safety stock and storage constraints of finished goods.
Safety stock and storage capacity of finished goods are given in constraints (3.12)
and (3.13), respectively.

yti ≥ sti, ∀t ∈ T, i ∈ I (3.12)∑
i∈I

(yti/ei) ≤ Wt. ∀t ∈ T (3.13)

• Overtime account constraints.
Constraints (3.14) determine the unused production capacity under regular working
time (ζ+

tl ) and the overtime hours (ζ−tl ) on workstation l in period t. Equations (3.15)
determine the overtime account balance at the end of each period by adding overtime
hours to the overtime account balance from the previous period and subtracting
the reduction time (θtl) and paid overtime hours from the overtime account (ξtl).
Constraints (3.16) ensure that the reduction of the overtime account (θtl) in every
period t must be smaller than the unused production capacity in the regular working
time of that period. Constraints (3.17) impose an upper boundary (pmvtl ) for the
reduction of the overtime account in every period. Constraints (3.18) enforce an
upper boundary for the working time account balance. The zero working time
account balance at the end of the planning horizon (ηTmaxl = 0) ensures that all
overtime hours in the overtime account are paid at the end of the planning horizon.

ζ+
tl − ζ−tl =∑
s∈S

Ktsl · ϕtsl −
∑
i∈Il

∑
s∈S

atil · xtsil −
∑
s∈S

∑
h∈Hl

nlh · utslh, ∀t ∈ T, l ∈ L (3.14)
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ηtl = ηt−1l + ζ−tl − θtl − ξtl, (η0l = 0) ∀t ∈ T,∀l ∈ L (3.15)

θtl ≤ ζ+
tl , ∀t ∈ T, l ∈ L (3.16)

θtl ≤ pmvl , ∀t ∈ T, l ∈ L (3.17)

ηtl ≤ pmll . (ηTmaxl = 0) ∀t ∈ T\Tmax,∀l ∈ L (3.18)

• Non-negativity and binary decision variables.

xtsil ≥ 0, ∀t ∈ T, s ∈ S, i ∈ I, l ∈ Li (3.19)

zti, yti ≥ 0, ∀t ∈ T, i ∈ I (3.20)

θtl, ηtl, ξtl, ζ
+
tl , ζ

−
tl ≥ 0, ∀t ∈ T, l ∈ L (3.21)

utslh ∈ {0, 1}, ∀t ∈ T, s ∈ S, l ∈ L, h ∈ Hl (3.22)

δtl ∈ {0, 1}, ∀t ∈ T, l ∈ L (3.23)

ϕtsl, γtsl ∈ {0, 1}. ∀t ∈ T, s ∈ S, l ∈ L (3.24)

3.4 Computational Results

In this section we perform numerical analyses to quantify the cost benefits of the flexibility
instruments under different scenarios. Further, we are interested in the tractability of the
proposed model in terms of computational effort by commercial and non-commercial MIP
solvers. We first discuss results based on a real-world case study, and then present a full
factorial design based on randomly generated data to analyse different scenarios. For
confidential reasons, we disguised data in the case study.

3.4.1 Case Study

A high volume Electronics Manufacturing Services (EMS) company operates in two pro-
duction facilities (Fmax = 2). The planning horizon is 12 months (Tmax = 12). At the
aggregate level, the company produces six product groups (Imax = 6) on two-stage pro-
duction lines (Gmax = 2). Some production stages run with parallel machines. There are
ten workstations or machines (Lmax = 10) in total. The minimum capacity utilisation
of each machine is set to 30 percent of the available production capacity in every period
depending on the selected shift model. Each machine has flexibility to run on two differ-
ent shift models (Smax = 2). A shift lasts eight hours and the first shift model consists
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of three shifts per working day, whereas the second shift model consists of two shifts per
working day. The available regular working time of each shift model is determined based
on the working calendar. Available overtimes in the first and second shift models are 24
and 16 hours per week, respectively. The corresponding fixed cost of each shift model
is determined based on the required workforce level and per-hour cost of regular work-
ing time. The per-hour cost of regular working time or overtime in facility two is 20%
higher than in facility one. The cost of changing a shift model is specified by the cost
of changing the workforce level. There is one type of maintenance activity per machine
(Hmax

l = 1), which is carried out every three months (olh = 3). A complete summary on
the parameters of the case study is shown in Table 3.5 on page 30.

To evaluate the cost-saving potential of all flexibility instruments and their combina-
tions, we introduce eight different cases as summarised in Table 3.2. Case 8 represents
the model presented in Section 3.3 under full flexibility. In all other cases, we assume less
flexibility by fixing the variables and conditions of the flexibility instruments not included
in the respective case.

Table 3.2: Flexibility instruments in cases.

Shift planning Overtime account Maintenance
(3.7)-(3.10) (3.14)-(3.18) (3.4)-(3.5)

Case 1 - - -
Case 2

√
- -

Case 3 -
√

-
Case 4 - -

√

Case 5
√ √

-
Case 6

√
-

√

Case 7 -
√ √

Case 8
√ √ √

Case 1 represents the inflexible case with a fixed shift model, fixed overtime hours
and a predetermined maintenance plan. The constraints kept from Section 3.3 in Case 1
are: Inventory balance constraints (3.2), production capacity constraints (3.3), minimum
capacity utilization constraints (3.6), multi-stage production constraints (3.11), safety
stock and storage of finished goods constraints (3.12) and (3.13), and non-negativity
constraints (3.19)–(3.20). All other constraints are not activated in Case 1. An overview
on the constraints activated in the model if a particular flexibility instrument is considered
is shown in Table 1.

If flexible shift planning is not included in the model (Cases 1, 3, 4 and 7), we assume
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that each machine uses the first shift model (three shifts system). If overtime account
is not considered in the model (Cases 1, 2, 4 and 6), we assume that available overtime
hours are fixed in each period. When overtime hours are used, then the fixed cost of the
whole overtime hours will occur in that period, which is determined by multiplying the
overtime hours of the first shift model (KO

t1l) with the workforce cost of overtime (ktl) plus
the surcharge cost (rtl ·KO

t1l · ktl) given in (3.25):

cfot1l = KO
t1l · ktl + rtl ·KO

t1l · ktl. ∀t ∈ T, l ∈ L (3.25)

In cases where flexible maintenance is not included in the model (Cases 1, 2, 3 and
5), we assume that maintenance activities are predetermined and carried out in the first
period and repeated every three periods. Therefore, the last term in constraints (3.3), i.e.,
nlh · utslh, uses predetermined values for these cases. Finally, we assumed that in all eight
cases, the minimum capacity utilisation is not affected by the maintenance activities.

Cost analysis of the flexibility instruments

The optimal values of the objective functions for the defined cases are summarised in Table
3.3. Introducing the flexibility instrument shift planning to the inflexible model results in
significant cost savings. In this case, workstations can run on an inexpensive shift model
whenever they are underutilised. By introducing the overtime account in Case 3, the
total production cost only slightly reduces, as the fixed shift model (three shift system)
does not require temporary adaptations of working time, because the production capacity
levels are sufficient over all periods. Flexible maintenance without shift planning also
rarely reduces total production costs. Summarising, the flexibility instruments overtime
account and flexible maintenance only lead to significant savings if combined with shift
planning.

Computational performance of the proposed models

We test the computational performance of the proposed model using the MIP solver FICO
Xpress Optimizer 64-bit v27.01.02 and the open-source solver Cbc 2.7.7 with Google OR-
tool1. All computations were executed on a 64-bit platform with an Intel Core(TM) i7-
4770 3.40 GHz Processor with 32 GB RAM. The run time limit was set to 3600 seconds
and the optimality gap to 0.00%. A summary of the computational results is given in

1Available at https://code.google.com/p/or-tools/ (accessed May 31, 2018)
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Table 3.3: Total production cost improvement (in %) due to flexibility instruments of the
case study.

Optimal value Cost savings
of obj. function to case 1

(euro) (%)
Case 1: Inflexible model 3,661,905 -
Case 2: Shift planning 3,138,980 14.28
Case 3: Overtime 3,661,350 0.02
Case 4: Maintenance 3,657,050 0.13
Case 5: Shift planning & Overtime 3,080,410 15.88
Case 6: Shift planning & Maintenance 3,071,120 16.13
Case 7: Overtime & Maintenance 3,657,050 0.13
Case 8: Shift planning & Overtime & Maintenance 3,036,960 17.07

Table 3.4 reporting the runtime, number of branch and bound nodes, and number of
simplex iterations. The run time to solve the MILP varies significantly between the cases.
In more detail, the introduction of flexible shift planning to the inflexible model (Case 2)
or a combination of flexible shift planning with other flexibility instruments increases the
number of simplex iterations executed in the Linear Program (LP) relaxation, the number
of branch and bound nodes searched to reach the optimal solution and consequently the
computation times due to the introduction of binary variables of flexible shift planning.
Case 6, where flexible shift planning and maintenance are combined, results in the highest
runtime, number of branch and bound nodes and simplex iterations. Moreover, adding
the overtime account (Case 8) reduces the run time, number of branch and bound nodes
and simplex iterations. Comparing the performance of Xpress with Cbc, we observe, as
expected, that Xpress outperforms Cbc. However, the computational performance is still
satisfactory with Cbc for this real problem instance.

3.4.2 Results for Randomly Generated Instances

In order to quantify the cost-savings of the flexibility instruments and the computational
performance of the proposed mathematical formulation in different scenarios, we conduct
a numerical study based on randomly generated input parameters.

Random instance generator

Taking the input parameters from the case study discussed in the previous section into
account, the random instances are generated and drawn mainly by varying the values
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Table 3.4: Computational performance of the proposed models of case study.

Xpress Cbc
Time Gap Nodes Iterations Time Gap Nodes Iterations

Case (sec) (%) (sec) (%)
1 0.00 0.00 1 208 0.00 0.00 1 1
2 5.76 0.00 16635 46020 171 0.00 24201 819996
3 0.00 0.00 1 227 0.00 0.00 1 1
4 0.02 0.00 1 387 0.00 0.00 1 1
5 1.17 0.00 479 12601 17 0.00 979 93820
6 18.89 0.00 57907 152429 440 0.00 58901 2824227
7 0.00 0.00 1 251 0.00 0.00 1 1
8 4.90 0.00 2599 45457 139 0.00 5569 742716

of the following four input parameters: Available regular working times, demand, labour
cost and shift change cost. Based on the data set of the case study, the input parameters
are either fixed to or varied or drawn from a discrete uniform distribution UD(a, b) on the
interval [a, b] and from a normal distribution N(µ, σ) with mean µ and standard deviation
σ, respectively. An overview of the main sets and input parameters of the case study and
how and in which interval the instances are generated is given in Table 3.5.

For all generated instances we fix the sizes of the numbers of products, time periods,
workstations, shift models, maintenance activities, production stages and the distribution
of the workstations over the facilities according to the case study values.

We introduce three capacity scenarios. In the first scenario, we assume a high produc-
tion capacity level by increasing the original working times of the case study by 25%. In
the second scenario, we assume a medium production capacity level and keep production
capacity unchanged and in the third capacity scenario, we assume a low production ca-
pacity level by decreasing the original working times by 25%. The corresponding available
overtimes are changed in the same way.

For each category of the generated instances with high, medium and low production
capacity levels, we define two demand variation scenarios with low and high demand
variation levels. Demand of a product is generated based on the normal distribution with
a mean value of the mean demand of the product over the planning horizon from the
data-set of the case study and coefficient of variations (CV ) of 0.1 for the low demand
variation level and 0.4 for the high demand variation level.

For each production capacity and demand level, we define the three scenarios of low,
medium and high shift cost levels. As the per-hour cost of regular working time differs
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between facilities, we assume values of 25, 50 and 100 for the per-hour cost of working time
for the low, medium and high shift cost levels, respectively, in facility one. Consequently,
we assume values of 30, 60 and 120 for the per-hour cost of working time for the low,
medium, and high shift cost levels, respectively, in facility two.

For every combination of production capacity, demand and shift cost level, we define
the three scenarios of low, medium and high cost levels of changing a shift model. In
the low shift changing cost level, the cost of changing the shift model is assumed to be
zero. In the case of the medium shift changing cost level, in accordance with the original
data-set, we assume that the shift changing cost is equal to half of the average cost of
the cheapest shift model over the planning horizon (indicated by cfs,avel ). Finally, in the
high shift changing cost setting, we assume that the shift changing cost is equal to the
average cost of the cheapest shift model over the planning horizon. Since the cost of the
workforce for overtime is dependent on the per-hour cost of regular working time, it is
also updated accordingly.

Initial inventory depends on the average demand per product i over T (davei ) and is
generated randomly from UD(davei , 2 · davei ). The safety stock level is calculated as 25%
of the sum of the demand in the next two periods. For the final two periods, we consider
the demand of the final period Tmax. All other parameter values remain unchanged.

Cost analysis and computational performance

We randomly generate seven instances for each combination of the four varying parameters
in a total of 378 (= 3∗2∗3∗3) test instances. Every generated instance is used for testing
the defined cases by solving them with Xpress and Cbc. In accordance with Section 3.4.1,
the run time limit was set to 3600 seconds and the optimality gap to 0.00%.

Table 3.6 shows the average cost reductions, the corresponding standard deviations,
and the minimum and maximum values of the cost reductions (in %) for Cases 2 to 8
in comparison to Case 1 over all instances within each defined scenario. We observe
significant cost reductions under flexible shift planning (Cases 2, 5, 6 and 8), especially
if production capacity levels are high, shift cost levels are high and shift change costs are
low. Under flexible shift planning, expensive and inexpensive shift models can be adapted
based on required capacities, which decreases the total cost substantially. However, the
cost reduction due to the overtime account and the flexible maintenance (Cases 3, 4 and
7) is very low in the mentioned scenarios.

For the scenario with low production capacity levels, however, we see that a combina-
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Table 3.5: Overview of sets and parameters of case study and randomly generated in-
stances.

Set Case study Generated instances
/Parameter Ranges [min,max] Ranges [min,max]
Sets
I {1, ..., 6} {1, ..., 6}
T {1, ..., 12} {1, ..., 12}
L {1, ..., 10} {1, ..., 10}
S {1, 2} {1, 2}
H {1} {1}
G {1, 2} {1, 2}
Shift system
KN

tsl l ∈ L1, s = 1 : [402, 514], s = 2 :
[250, 338]

low: 80%, medium: 100%, high :120% of original
KN

tsl

l ∈ L2, s = 1 : [330, 516], s = 2 :
[202, 340]

ail [0.207, 0.545] [0.207, 0.545]
cfsh

l
,kl l ∈ L1 : [50] l ∈ L1 : low: 25, medium: 50, high: 100

l ∈ L2 : [60] l ∈ L2 : low: 30, medium: 60, high: 120
cfs

tsl
s = 1 : [24765, 120805] cfsh

tl
·KN

tsl

s = 2 : [16510, 80537]

cfc
l

[
c

fs,ave
1l

2 ,
c

fs,ave
1l

2 ] high: cfs,ave
1l

, medium: 1
2 c

fs,ave
1l

, low: 0
Overtime
Ko

tsl l ∈ L1, s = 1 : [72, 120], s = 2 : [48, 80] low:80%, medium:100%, high: 120% of original
Ko

tsl

Ko
tsl l ∈ L2, s = 1 : [72, 120], s = 2 : [48, 80]

pmv
l [120, 120] [120, 120]
pml

l [120, 120] [120, 120]
rl [1.5, 1.5] [1.5, 1.5]
cfo

tsl
(1 + rtl) ·Ko

tsl · ktl (1 + rtl) ·Ko
tsl · ktl

Inventory
bi [5000, 133205] UD(dave

i , 2 · dave
i )

sti [15000, 80000] dt+1i+dt+2i

4 (t+ 1 ≥ Tmax → dT maxi)
ei [480, 672] [480, 672]
Wt [1800, 1800] [1800, 1800]
hi [0.12, 0.28] [0.12, 0.28]

Maintenance
nlh [48, 48] [48, 48]
olh [3, 3] [3, 3]

Demand and others
dti [6000, 180920] N(dave

i , CV ·dave
i ): low CV = 0.1, high CV = 0.4

mtl [0.3, 0.3] [0.3, 0.3]
cos

i [Tmax · max{hj |j ∈ I}, Tmax ·
max{hj |j ∈ I}]

[Tmax ·max{hj |j ∈ I}, Tmax ·max{hj |j ∈ I}]

tion of all three flexibility instruments (Case 8) becomes more important. On average, the
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cost saving increases by nearly 4% in Case 8 compared to Case 2 in the low production
capacity scenario. In contrast to this, the average cost saving potential from Case 2 to
Case 8 is 0.76% in the scenario with high production capacity levels. The cost reductions
due to overtime account and flexible maintenance increase as production capacity levels
decrease. This highlights the importance of integrating all three flexibility instruments
into the production planning process, especially when production capacity is limited. If
the variation in demand increases, the cost reduction under flexible shift planning mostly
decreases. A high variability in demand generally implies frequent shift changes which
increasing cost, hence, decreases the cost reduction compared to the situation with low
demand variation. However, overtime account and flexible maintenance lead to higher
cost reductions in case of higher demand variations by capturing demand fluctuations to
avoid frequent shift changes.

Table 3.7 presents a summary of the computational efficiency when solving the proposed
mathematical formulation with Xpress and with Cbc. Taking the solver Xpress into
account, we observe that all instances in Cases 1, 3, and 7 are solved to optimality within
the given run time limit. The average runtime increases by using the solver Cbc. However,
Cbc is also able to solve most of the instances to optimality. For the sake of completeness,
Table 3.8 presents the detailed runtime performance of Cbc relative to Xpress (runtime
Cbc)/(runtime Xpress). The runtime of Cbc relative to Xpress increases, especially when
capacity levels are low.

3.5 Conclusions

In this chapter, we introduced an MILP for a multi-item multi-facility multi-stage capac-
ity planning problem with parallel machines by taking the flexibility instruments shift
planning, overtime account and flexible maintenance into consideration. To analyse the
impact of such factors as available production capacity, demand variation, shift cost and
shift change cost on the cost-saving potential of the flexibility instruments, computational
results both for a real-world case study and randomly generated test instances were pro-
vided. Our computational experiments gave insights into the value of integrating the
flexibility instruments into the APP individually and in combination with each other,
which helps us with understanding the interaction effects of the flexibility instruments
and their respective effectiveness. We observed that the integration of flexible shift plan-
ning into production capacity planning has the most substantial effect on the total cost
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Table 3.7: Summary of computational performance: Instances solved to optimality, avg.
runtime of instances solved to optimality and avg. optimality gap of instances not solved
to optimality within 1 hour.

Xpress Cbc
Optimality AvgTime AvgGap Optimality AvgTime AvgGap

Case (%) (sec) (%) (%) (sec) (%)
1 100 0.38 0.00 99.61 17.45 0.01
2 91.29 111.98 0.23 60.95 431.44 0.14
3 100 0.02 0.00 99.74 0.05 0.00
4 99.74 11.77 0.12 62.27 233.49 0.01
5 97.63 28.60 0.11 79.42 248.18 0.06
6 75.46 190.20 0.18 32.45 1,153.19 0.23
7 100 0.03 0.00 86.28 0.10 0.00
8 92.88 58.69 0.07 66.23 338.30 0.07

reduction. However, if the production capacity is very limited, the implementations of the
overtime account and flexible maintenance also result in considerable cost reductions. We
found that a combination of all flexibility instruments are crucial for manufacturers that
face high demand variabilities, especially when the available production capacity levels
are low.

The numerical experiments illustrated the computational efficiency of the proposed
model and its applicability for similar real-world capacity planning problems. In terms of
the computational performance, the solver Cbc was generally able to solve the problem
instances in an acceptable time and with an acceptable optimality gap although outper-
formed by the solver Xpress. Hence, the proposed production planning model can serve
as an effective decision support for real problem instances in order to balance available
capacities over a mid-term planning horizon.
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Table 3.8: Runtime of Cbc relative to Xpress.

Shift shift Cases
Capa. Demand chan. cost cost 1 2 3 4 5 6 7 8
high low low low 2.60 18.16 2.99 2.12 46.59 41.12 4.00 28.96

med. 2.95 3.59 2.94 2.83 6.32 6.46 3.53 16.21
high 2.37 4.34 2.83 2.29 6.12 6.43 4.56 8.22

med. low 3.34 23.25 6.08 3.75 34.68 13.08 4.00 10.49
med. 3.10 4.68 2.71 2.48 7.30 8.71 4.23 9.55
high 2.47 4.45 2.58 2.64 6.19 6.38 3.45 6.59

high low 2.41 14.47 3.13 2.62 18.93 18.00 3.73 20.53
med. 2.47 4.59 3.17 2.46 5.98 8.04 3.26 7.34
high 4.06 7.32 5.03 3.25 7.69 9.15 4.84 8.23

med. low low 3.10 28.47 3.75 3.20 75.75 30.27 4.62 32.53
med. 2.93 13.95 3.84 3.40 7.31 15.23 4.54 11.78
high 2.94 6.11 3.52 3.44 8.49 8.89 4.02 7.41

med. low 3.84 26.13 3.52 4.04 32.61 47.54 5.70 43.39
med. 4.99 19.35 5.81 5.52 16.58 15.98 6.80 17.53
high 2.78 8.81 3.17 2.80 6.80 11.84 4.27 10.93

high low 5.81 33.74 3.37 5.48 27.49 25.54 3.97 21.66
med. 3.52 6.48 3.29 4.80 12.03 10.48 3.94 12.62
high 5.32 6.83 4.71 4.08 9.51 10.18 5.51 8.31

med. low low low 4.93 2.41 2.48 3.59 21.73 1.00 3.29 5.77
med. 5.01 47.50 3.74 3.79 12.78 24.75 5.30 19.74
high 3.65 17.84 4.11 4.62 13.88 14.20 4.09 20.63

med. low 3.49 1.27 1.04 0.94 20.82 1.00 2.95 1.16
med. 7.37 39.48 6.64 6.17 22.96 37.90 7.99 32.94
high 7.35 18.01 5.44 5.25 12.15 13.69 6.22 30.30

high low 4.09 0.93 0.74 0.48 3.76 1.00 4.88 0.99
med. 5.48 21.00 5.01 4.17 16.80 22.76 5.08 17.96
high 5.96 24.27 6.03 5.45 13.98 11.99 5.70 26.32

med. low low 18.85 16.04 5.10 5.71 93.28 1.29 4.51 26.47
med. 12.77 41.01 5.19 5.64 18.07 43.39 5.65 26.98
high 2.53 19.85 3.30 2.10 11.87 21.83 3.26 11.00

med. low 4.39 8.33 3.24 2.95 60.79 2.09 3.04 17.00
med. 4.10 31.54 3.71 2.39 17.14 26.78 3.64 21.27
high 5.05 11.83 3.61 3.66 6.86 18.72 3.20 12.69
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Table 3.8: Runtime of Cbc relative to Xpress.

Shift shift Cases
Capa. Demand chan. cost cost 1 2 3 4 5 6 7 8
med. med. high low 3.57 18.92 3.75 4.46 40.36 7.67 4.90 18.80

med. 4.37 16.62 3.08 3.00 14.62 18.77 3.66 15.85
high 3.69 9.45 2.95 3.78 12.05 17.24 4.13 15.69

low low low low 38.90 15.91 3.37 68.02 91.42 1.61 2.29 143.65
med. 17.94 8.04 4.59 65.50 13.93 3.71 3.55 11.47
high 14.85 3.29 4.33 60.44 8.90 10.21 4.24 14.18

med. low 26.83 5.54 4.78 19.65 19.47 1.08 2.98 37.30
med. 20.51 9.14 4.22 79.05 13.68 5.01 3.18 22.49
high 68.78 8.03 5.50 81.48 11.80 7.99 4.32 9.43

high low 38.99 9.27 4.63 44.49 36.02 1.00 4.71 46.42
med. 46.24 8.74 6.54 146.8613.78 3.97 4.76 28.15
high 48.83 12.55 6.47 124.1011.37 9.22 5.69 13.31

med. low low 11.28 9.80 5.88 166.4622.91 23.05 9.39 27.64
med. 5.92 75.13 3.59 20.30 8.06 23.05 3.21 8.86
high 23.93 20.38 3.81 31.00 9.38 18.29 5.37 5.70

med. low 18.03 3.63 3.63 37.76 47.60 2.85 6.99 18.01
med. 12.94 11.57 3.98 105.4612.46 12.45 6.13 15.42
high 64.52 9.60 5.09 48.33 10.83 11.45 7.66 8.88

high low 10.16 17.57 4.91 44.04 20.75 2.82 8.38 45.76
med. 12.52 22.31 4.90 52.50 12.21 16.04 6.61 18.50
high 20.33 11.02 5.78 29.11 8.49 17.07 7.20 8.92



Chapter 4

Planning Approaches for Stochastic
Capacitated Lot-Sizing with Service
Level Constraints

In this chapter, we investigate a stochastic capacitated lot-sizing problem. An optimal
solution of this problem requires the integration of dynamic safety stock planning into
lot-sizing. We first present a stochastic dynamic program. Then, we introduce a new
integrated mixed-integer linear program with service-level constraints. The integrated
model endogenously sets dynamic safety stocks over non-equidistant lengths of replenish-
ment cycles. Since there is limited capacity, soft service-level constraints are introduced
to guarantee a feasible solution. The integrated model is extended to also account for
re-planning opportunities under rolling horizon planning. In the experimental study, we
compare the performance of the integrated model to the stochastic dynamic program and
the widely-used sequential approaches. We observe that, if available capacity increases,
the integrated model closes the gap to the theoretical lower bound that has been obtained
from the stochastic dynamic program. We find that, if capacity is limited, the integrated
model outperforms the sequential approaches because it yields identical service levels with
lower inventories. However, we show that, if there is sufficient flexibility (capacity) under
rolling horizon planning, the integrated model must also take re-planning opportunities
into account in order to avoid the build-up of excess safety stock.

36
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4.1 Introduction

Stochastic capacitated lot-sizing finds cost-optimal decisions regarding when and how
much of a product must be produced in order to satisfy uncertain demand in the presence
of limited capacity. This problem can be found in a wide variety of disciplines and
industrial sectors and plays a key role in Manufacturing Resource Planning (MRP II)
and Advanced Planning Systems (APS).

One of the main characteristics of stochastic capacitated lot-sizing is demand uncer-
tainty. A common way of dealing with demand uncertainty is to hold safety stocks by
solving a safety stock planning problem. Lot-sizing and safety stock planning problems
are usually solved sequentially (see, e.g., de Kok and Fransoo, 2003). When using planning
software, such as MRP II and APS, it is common to first solve a safety stock planning
problem in order to capture the uncertainty by using exogenous safety stocks and then
solve a deterministic lot-sizing problem that takes exogenous safety stocks into account
as a constraint.

The main pitfall of such a sequential approach is that it does not take the connection
between the decisions on safety stocks and lot-sizing into account. To be more precise,
safety stocks are placed to buffer against the demand uncertainty over replenishment
cycles. The replenishment cycle depends on the production plan, which is the timespan
between two consecutive production periods. The production plan clearly impacts the
safety stock requirement. On the other hand, the safety stock requirement also affects the
production planning problem, because the safety stock quantities need to be produced at
some point. Therefore, the two problems are closely interrelated.

Despite this major shortcoming, the main advantage of the sequential approaches is
that they reduce the complexity caused by the use of an integrated model that addresses
both problems simultaneously, known as the stochastic lot-sizing problems. Schneeweiss
(2003) refers to this type of decomposition as a constructional distributed decision making
system where a complex operations research problem (here, stochastic lot-sizing problem)
is divided into more manageable sub-problems. The use of separate approaches to de-
termine safety stocks (a higher level) and to produce plans (a lower level) reduces the
complexity of the original stochastic lot-sizing problem.

The stochastic lot-sizing problem has recently attracted increasing attention. The exist-
ing literature makes considerable contributions by proposing the use of integrated models
to address this problem (see Sections 2.2 and 2.3 for related literature). As an integrated
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model, a chance-constrained program (mainly followed by a deterministic equivalent for-
mulation with service-level constraints) is usually proposed in order to place dynamic
safety stocks over replenishment cycles. In chance-constrained programs, constraints can
be violated with a prescribed probability (Charnes and Cooper, 1959). More specifically,
target inventory levels at the beginning of replenishment cycles are determined based on
a certain probability that stochastic demand is satisfied.

So far, however, the main aspects of a stochastic lot-sizing problem have rarely been
addressed in an integrated model concurrently: The existing literature either neglects ca-
pacitated cases, assumes exogenous replenishment cycles, or focuses on production times
and disregards production quantities. From a modelling perspective, an endogenous de-
termination of replenishment cycles has not yet been fully solved. The existing literature
mainly uses a complete enumeration of every possible length of replenishment cycles.
Moreover, in the context of limited production capacity, the common hard service-level
constraints are not realistic assumptions, as they can lead to infeasibility if the inventory
level is insufficient (Albey et al., 2015).

In practice, dynamic lot-sizing is predominantly implemented under a rolling horizon
approach. This means that, based on a forecasted demand, a finite planning horizon
problem is initially solved. The production plan is implemented during a number of initial
periods. The planning horizon is rolled forward and, at the same time, forecasted demand
is updated as more information is gained over time and the system status is updated as
the actual demand is realised. The main advantage of a rolling horizon approach is that
it provides re-planning opportunities for the solution of periods that have not yet been
implemented. In other words, based on the realised demand and updated forecasted
demand, there are opportunities to adjust the original plan (re-plan) over the course of
the following (rolled) planning. Another shortcoming of the integrated models we found
in the literature is that they ignore the re-planning opportunities that exist under rolling
horizon planning.

Both the sequential and the integrated approaches are decision generators for prescrib-
ing lot-sizes and safety stocks (Schneeweiss, 2003). Thus, the problem of lot-sizing with
uncertain demand under rolling horizon planning can be more appropriately addressed by
using a stochastic dynamic program (see, e.g., Mula et al. (2006)). A Stochastic Dynamic
Program (SDP) enables us to anticipate the value of the re-planning opportunities that
exist during the next stages (periods) as early as during the current stage (period). How-
ever, the SDPs usually suffer from the curse of dimensionality. In particular, industrial
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lot-sizing models often have large problem sizes and various production constraints with
real-world settings (Jans and Degraeve, 2008), all of which makes it very difficult to solve
them optimally by using a stochastic dynamic program.

Compared to an SDP, using a chance-constrained program can substantially reduce
the size and complexity of the integrated model, but this is at the expense of neglect-
ing the future re-planning opportunities. Thus, integrating re-planning options into the
chance-constrained programs can transform them into more realistic ways of addressing
the underlying stochastic optimisation problem.

To this end, we introduce the following three Mixed-Integer Linear Programs (MILPs),
each of which addresses the underlying stochastic optimisation problem with its own
degree of comprehensiveness and complexity.

(i) Sequential approach.

We develop an MILP to address the deterministic counterpart of the original prob-
lem where random demand is replaced by forecasted demand and assumed to be
deterministic. Demand uncertainty is captured by using a simple method for calcu-
lating exogenous safety stocks.

(ii) Integrated model.

The integrated model enables the endogenous placement of dynamic safety stocks
during replenishment cycles. This model is presented as a new MILP based on a
chance-constrained program.

(iii) Integrated model with re-planning opportunities.

The aforementioned integrated model does not take the possibility of re-planning
as it is found under a rolling horizon approach into account. In order to address
this issue within an MILP, we introduce a simple heuristic and include it in the
integrated model.

We summarise the contributions of our work as follows:

• We propose a new MILP that endogenously determines the length of the replenish-
ment cycles observed in different types of stochastic capacitated lot-sizing problems.
Our general approach enables the use of different methods for endogenously placing
dynamic safety stocks, e.g., the use of service-level constraints. We further intro-
duce soft service-level constraints to prevent infeasibility brought on by the capacity
restrictions in case of an insufficient inventory.
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• In order to interpolate the non-linear order-up-to-levels (target inventory levels)
in the underlying MILP, we propose a bivariate linearisation technique with an
improved triangulation method.

• We develop a new procedure to evaluate the total costs of the MILPs with respect to
an identical realised service-level under rolling horizon planning. Our experimental
investigation shows that, in the presence of limited capacity, re-planning opportuni-
ties under rolling horizon planning are restricted, and hence placement of dynamic
safety stocks is beneficial. However, if capacity is not binding, demand uncertainty
beyond the re-planning periods (the time that elapses between the starting points of
the two consecutive rolling schedules) can be accommodated through additional pro-
duction, which reduces the need for dynamic safety stocks. This is how a sequential
approach with exogenous safety stock calculations can outperform the integrated
model with excess dynamic safety stocks. We propose a simple approach that antic-
ipates the upcoming re-planning opportunities under rolling horizon planning. The
heuristic reduces the order-up-to-levels with respect to the available safety capacity.
The new version of the integrated model outperforms the sequential approach.

• Based on small test instances, we evaluate the absolute performance of the proposed
integrated model by means of a stochastic dynamic program. We observe that the
integrated model can get nearer to the theoretical lower bound if the available
capacity increases.

This chapter is structured as follows: Section 4.2 describes the Stochastic Capacitated
Lot-Sizing Problem (S-CLSP). Section 4.3 presents an SDP. Section 4.4 introduces three
MILPs, i.e., a sequential approach, an integrated model with service level-constraints,
and a re-planning-opportunity adjusted integrated model. Section 4.5 presents the exper-
imental design and the numerical results. Conclusions and further research are presented
in the final section.

4.2 Problem Description

We assume a lot-sizing problem where final products with random demand are produced
directly from raw materials by a single machine with limited capacity. We find cost-
optimal decisions regarding when and how much of a product is produced in order to
satisfy random demand under a prescribed target cycle service-level. We use the following
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general notation style. A set is indicated by a capital letter in a calligraphic font, e.g.,
T = {1, 2, .., |T |}. Random variables are denoted with the use of a hat notation, e.g.,
d̂tp. Decision variables are indicated by letters in bold font. The vector of the elements
of a decision variable or a parameter is created by dropping one or more indices, e.g.,
Yt = (Ytp)∀p∈P indicates the vector Yt over all products in every period t ∈ T .

Consider a finite planning horizon with |T | equidistant and discrete time periods. We
have |P| products and every product p ∈ P = {1, 2, ..., |P|} has a demand d̂tp in every
period t, which is an exogenous, non-stationary and mutually independent random vari-
able that follows a continuous demand distribution with mean dtp and standard deviation
σtp. A production order can be issued for product p at time t and become immediately
available within that period after a fixed setup time (zp). The production capacity needed
for producing a unit of product p is kp and the total available production capacity at time
t is denoted by Kt. There can be a minimum production quantity (qmin

p ) whenever we
produce product p. We allow production orders with lower quantities than qmin

p , but the
per unit shortfall is penalised with a cost coefficient cminq

p . Every product p can have an
initial inventory at the beginning of the planning horizon (y0p). The left-over inventory
is carried to the following periods and a linear inventory holding cost (chp) is incurred per
period and per unit of product p. Table 4.1 presents the notation.

We set the setup costs to zero and assume that setup times represent setup costs. As
discussed by Kang et al. (2014), while the formulation of lot sizing problems with setup
costs is traditional, it gets complicated when it comes to estimating the setup costs in a
logical manner. Setup costs will depend on the opportunity cost of the capacity reserved
for setups, which is not known until an optimal solution to the problem has been found.
Since we do not take setup costs into account, we use minimum production quantities
to obtain lot-sizes. In practice, these constraints are fairly common (Jans and Degraeve,
2008).

The unsatisfied demand is backordered. We limit the amount of the backorder quan-
tities through the use of a target cycle fill-rate (βc-service level). The cycle fill-rate is
defined as the fraction of demand during the replenishment cycle that is met immediately
from stock and production (see, e.g., Tempelmeier, 2011). The replenishment cycle is the
time that elapses between two consecutive production periods. Without loss of generality,
we assume that t is a production period and let τt denote the first production period after
period t (with τ|T | = |T |+1). The timespan between the start of period t and the end of
period τt − 1 describes a replenishment cycle. With the βc-service level, we ensure that
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Table 4.1: Notation.

Sets
P = {1, ..., |P|} set of products
T = {1, ..., |T |} set of periods

Parameters
d̂tp random demand of product p in period t
dtp mean (forecasted) demand of product p in period t
σtp standard deviation of demand of product p in period t
τt production period following period t
chp inventory holding cost of product p per unit and per period
cblp backorder penalty cost for product p per unit and per period
cminq
p penalty cost for per unit shortfall of the min. production level of

product p
zp setup time for product p
Kt capacity(time) available in period t
kp capacity consumption(time) to produce one unit of product p
y0p initial inventory of product p at the beginning of a planning horizon
qmin
p minimum production quantity for product p
βc target cycle fill-rate

the ratio of the cumulative demand during a replenishment cycle that cannot be satisfied
immediately is less than 1− βc.

4.3 Stochastic Dynamic Program

Let St = (Ytp, Btp, Dtp)∀p∈P denote the state of the system at time t, where Ytp indicates
the inventory level for product p, and Btp and Dtp denote the cumulative backordered
quantity and the cumulative demand of product p during the current replenishment cycle
up to time t. At every state St, we decide whether or not to place an order with a
magnitude of qt ∈ Q?t , where Q?t indicates the feasible action space. The decision qt ∈ Q?t
at state St is determined by using a policy function Qπ

t (St) ∀π ∈ Π, where Π indicates the
set of all possible policies. The function Qπ

t (St) produces a feasible decision qt by using
policy π at state St.
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The model of the system dynamics is represented by St+1 = SM(St,qt, d̂t+1), where
SM(.) refers to the transition function. SM(.) implies that, if we are at state St and
then make decision qt, the random demand d̂t+1, which is observed during time t + 1,
will transfer the state of the system to St+1. More specifically, the transition function of
each state variable of the system is presented as follows. The inventory level is given by
Yt+1 = Yt + qt − d̂t+1. The transition function of the cumulative demand is written as
Dt+1 = 1{qt=0} ·Dt + d̂t+1, where 1{true} = 1 and otherwise = 0. The transition function
of the cumulative backordered quantities can be mathematically introduced as follows.

Bt+1 = 1{qt>0} ·
[
d̂t+1 − [Yt + qt]+

]+
+ 1{qt=0} ·

(
Bt +

[
d̂t+1 − [Yt]+

]+)
, (4.1)

where [x]+ = max(x, 0). The first term determines the new backorder quantities that
occur in the first period of the replenishment cycle after production. The second term
sums up the backorder quantities that newly occur in all periods after the first period
within the replenishment cycle.

The feasible action space for the vector qt is tightened according to the limited capacity
and the target cycle fill-rate as follows.

• Limited capacity.

The production quantity of product p at time t (qtp) is limited by the available
production capacity. Mathematically,

kp · qtp ≤ Kt −
∑

p′∈P|p′ 6=p

(
kp′ · qtp′ + 1qtp′>0 · zp′

)
. (4.2)

This implies that the feasible region for qtp will depend on Kt, kp, zp and the
production quantities of other products qtp′ with p′ 6= p.

• Target cycle fill-rate.

Following the definition of the βc-service level, we ensure that the ratio between the
cumulative backorder quantities and the cumulative demand at time t must be less
than 1− βc. Mathematically, we can write

Bt

Dt

≤ 1− βc. (4.3)

Note that this definition is equivalent to the definition of the cycle fill-rate under
stationary cases, where the expected backorder quantities in every cycle relates to



4.3. Stochastic Dynamic Program 44

the average replenishment quantity (Silver and Bischak, 2011, Tempelmeier, 2011).
The feasible space action will further depend on Bt, Dt and the βc-service level.

The following cost function quantifies the inventory holding cost and the cost for any
shortfall of the minimum production quantity at state St.

Ct(St,qt) =
∑
p∈P

(
chp · [Y ]+tp + cminq

p · [qmin
p − qtp]+

)
. (4.4)

Note that constraints (4.2) and (4.3) may contradict each other. In other words, we
may not have sufficient capacity to obtain the prescribed cycle fill-rate. Thus, constraints
in (4.2) and (4.3) may lead to an infeasible action space.

Similar to what Powell (2014) proposed, the optimal policy for the optimisation prob-
lem can be characterised by solving the following Bellmann equation.

Q?
t (St) = argmin

qt∈Q?
t

C(St,qt) + E


|T |∑

t′=t+1
C(St′ , Qπ

t′(St′))
∣∣∣St

 , (4.5)

where St+1 = SM(St,qt, d̂t+1) and qt = Qπ
t (St) ∈ Q?t ∀π ∈ Π.

Equation (4.5) implies that an optimal policy must be designed in such a way that it
generates feasible decisions of qt that minimise the total cost of the current state (the first
term) and the expected total cost of all the following stages (the second term). However,
in a stochastic dynamic program, the service level constraints (4.3) can complicate the
solution of equation (4.5). An alternative way of solving the problem is to use a backorder-
penalty cost minimisation approach instead of a service level approach. In this case, the
cumulative backorder quantities in every state St are penalised in the cost function with
a per unit backorder penalty cost (cblp ). The state of the system is further reduced to
St = (Ytp, Btp)∀p∈P . Moreover, in the cost function (4.4), we further add a backorder
penalty cost term as follows.

Ct(St,qt) =
∑
p∈P

(
chp · Y +

tp + cblp ·Btp + cminq
p · [qmin

p − qtp]+
)
. (4.6)



4.4. Mixed-Integer Linear Programs 45

4.4 Mixed-Integer Linear Programs

4.4.1 Sequential Approach

The sequential approach divides the S-CLSP into a safety stock planning problem and
a deterministic Capacitated Lot-Sizing Problem (CLSP). First, a safety stock planning
problem is solved by applying a simple rule-of-thumb method in order to compute exoge-
nous safety stocks. For example, certain days of supply are usually guaranteed by the
use of a specific amount of the forecasted demand as safety stock. Then, a deterministic
CLSP, where the forecasted demand is assumed to be deterministic, is solved by taking
exogenous safety stocks as constraints.

The backlogged demand of product p at the end of each period is penalised with the per
unit penalty cost coefficient cblp in the objective function. Soft constraints are introduced
for the product-specific minimum production quantity level (qmin

p ), as well as for a final
inventory level at the end of the planning horizon (yfip ) and for the safety stock (yssttp ) at the
end of every period. These soft constraints ensure the feasibility of the production plans by
allowing shortfalls of qmin

p , yfip and yssttp if the capacity is not sufficient. The corresponding
shortfalls are penalised in the objective function with different cost coefficients. Note that
the final inventory level is used for preventing the truncated horizon effect. Table 4.2
presents the new notation for the sequential approach.

Table 4.2: Notation for the sequential approach.

Parameters
csstp penalty cost for a unit of shortfall of the safety stock level of product p per

period
cy

fi
p penalty cost for a unit of shortfall of the final inventory level of product p
yssttp exogenous safety stock level for product p at the end of period t
yfip final inventory level for product p at the end of a planning horizon
Decision variables
qtp production quantity of product p in period t
δtp setup indicator for product p in period t
y+
tp inventory on-hand for product p at the end of period t

y−tp backlogged quantity for product p at the end of period t
ζtp shortfall of minimum production quantity of product p in period t
ψtp shortfall of the exogenous safety stock level of product p in period t
ρp shortfall of the final inventory level of product p
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The MILP is given below.

min TC =
∑
p∈P

∑
t∈T

(
chp · y+

tp + cblp · y−tp + cminq
p · ζtp + csstp ·ψtp

)
+
∑
p∈P

cy
fi

p · ρp, (4.7)

subject to

y+
tp − y−tp = y0p +

∑
i∈T |i≤t

(qip − dip), ∀t ∈ T , p ∈ P (4.8)

∑
p∈P

(kp · qtp + zp · δtp) ≤ Kt, ∀t ∈ T (4.9)

kp · qtp ≤ Kt · δtp, ∀t ∈ T , p ∈ P (4.10)

qtp ≥ δtp · qmin
p − ζtp, ∀t ∈ T , p ∈ P (4.11)

y0p +
∑

i∈T |i≤t
(qip − dip) ≥ yssttp −ψtp, ∀t ∈ T |t < |T |, p ∈ P (4.12)

y+
|T |,p − y−|T |,p ≥ yfip − ρp, ∀p ∈ P (4.13)

y+
tp ≥ 0,y−tp ≥ 0, ∀t ∈ T , p ∈ P (4.14)

qtp ≥ 0, δtp ∈ {0, 1}, ζtp ≥ 0,ψtp ≥ 0, ∀t ∈ T , p ∈ P (4.15)

ρp ≥ 0. ∀p ∈ P (4.16)

The objective function (4.7) minimises the inventory holding costs, backlog penalty
costs and shortfall costs of the minimum production quantities and safety stocks, as
well as the final inventory level. The inventory balance equations are given in (4.8).
Constraints (4.9) limit the capacity. The setup indicator logic is presented in (4.10). The
soft constraints for the minimum production quantity, the safety stocks and the final
inventory levels are given in (4.11), (4.12) and (4.13), respectively. Note that, in the
final period |T |, we drop the soft safety stock constraints (4.12), because we use the
constraints on the final inventory (4.13). If the safety stock in the last period is higher
than the final inventory level, we set the final inventory level to the safety stock. The
binary and non-negative decision variables are given in (4.14), (4.15) and (4.16).

4.4.2 Integrated Model

We first introduce the chance-constrained program for the integrated model on which the
MILP is built.
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Chance-constrained program

Let T ? denote a set of all production periods over the planning horizon, i.e., T ? = {∀i ∈
T |∑p∈P qip > 0}. Moreover, let D̂tp ∀t ∈ T ? denote the random replenishment cycle
demand, which is determined as the cumulative random demand between t and τt − 1,
i.e., D̂tp = d̂tp + ... + d̂τt−1,p = ∑

i∈Rt
d̂ip, where Rt = {i ∈ T |t ≤ i < τt}. Note that the

time representation of index t is slightly different from the one defined in the stochastic
dynamic program in Section 4.3, specifically, demand in period t is d̂tp instead of d̂t+1,p.

We use ŷ−tp ≥ 0 to indicate the random backlogged quantity of product p at the end of
period t ∈ {0, 1, ..., |T |}, where ŷ−0p ≥ 0 shows the initial backlogged quantity. In order to
limit the amount of cumulative backorder quantities between t and τt − 1, we introduce
the following chance-constraint with respect to a target cycle fill-rate.

E
{

[ŷ−tp − [ŷ−t−1p − qtp]+]+ +∑τt−1
i=t+1[ŷ−ip − ŷ−i−1p]+

}
E
{
D̂tp

} ≤ 1− βc, ∀t ∈ T ?, p ∈ P (4.17)

where E denotes the expectation operator and [x]+ = max(x, 0). The first term in the
numerator determines backorders that happened in period t directly after the production
as the positive difference between the backlogged quantities at the end of period t and at
the beginning of period t directly after production. The second term in the numerator
sums up the new backorders that happened later than t within the current replenishment
cycle. The constraints (4.17) ensure that the ratio of the replenishment cycle demand
that is backordered must be limited to 1−βc. The complete chance-constrained program
can be written as follows.

min E{ ˆTC} = E

∑
p∈P

∑
t∈T

(
chp · ŷ+

tp + cminq
p · ζtp

)
+
∑
p∈P

cy
fi

p · ρp

 , (4.18)

subject to

ŷ+
tp − ŷ−tp = y0p +

∑
i∈T |i≤t

(qip − d̂ip), ∀t ∈ T , p ∈ P (4.19)

E
{

[ŷ−tp − (ŷ−t−1p − qtp)+]+ +∑τt−1
i=t+1(ŷ−ip − ŷ−i−1p)+

}
E
{
D̂tp

} ≤ 1− βc, ∀t ∈ T ?, p ∈ P (4.20)

ŷ+
|T |,p − ŷ−|T |,p ≥ yfip − ρp, ∀p ∈ P (4.21)
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qtp ≥ 0, δtp ∈ {0, 1}, ζtp ≥ 0, ∀t ∈ T , p ∈ P (4.22)

(4.9), (4.10), (4.11), (4.14), (4.16).

The objective function (4.18) minimises the expected total cost, including the random
inventory holding cost and costs of not meeting the minimum production quantity and
the final inventory level. Equations (4.19) indicate the random inventory level at the end
of every period t for p. The chance-constraints are given in (4.20). The soft constraints
for the random final inventory level are presented in (4.21). The other constraints, which
are identical to the MILP for the sequential approach, are: The upper bound on capacity
(4.9), the setup indicator logic (4.10), soft constraints on minimum production quantities
(4.11), and the binary and non-negative decision variable constraints (4.14), (4.16) and
(4.22).

Mixed-integer linear program

Let btp and mtp denote the mean and variance of the cumulative demand from t to τt−1,
i.e., D̂tp, respectively. Mathematically, btp = ∑τt−1

i=t dip and mtp = ∑τt−1
i=t σ2

ip. As has been
shown by Charnes and Cooper (1959), we can write the chance-constraint in (4.17) for
every t ∈ T ? as follows where btp = E{D̂tp}.

E

[ŷ−tp − (ŷ−t−1p − qtp)+]+ +
τt−1∑
i=t+1

(ŷ−ip − ŷ−i−1p)+

 ≤ (1− βc) · E
{
D̂tp

}
⇒

∫ ∞
yTL

tp

(x− yTL
tp )fp(x)dx ≤ (1− βc) · btp. (4.23)

In (4.23), yTL
tp indicates the target inventory level (order-up-to level) immediately after

production in period t and fp(.) denotes the continuous density function of D̂tp. In other
words, the order-up-to-level at the beginning of the replenishment cycle must be specified
in such a way that the amount of the cumulative backorder quantities until the end of
period τt − 1, which is determined by the first-order loss function

∫∞
yTL

tp
(x − yTL

tp )fp(x)dx,
is limited by the βc-service level, i.e., it is smaller than or equal to (1− βc) · btp.

By means of yTL
tp , we can transform the chance-constrained program into an MILP with

service-level constraints. By using service-level constraints, we ensure that the inventory
level at the beginning of a replenishment cycle is equal to or higher than the target
inventory level. Note that the service level constraints are only binding at the beginning
of a replenishment cycle. This is due to the fact that btp and mtp, and consequently yTL

tp ,
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have the highest values at the beginning of a replenishment cycle. Thus, we only apply
service-level constraints in production periods or at the beginning of the planning horizon
since those are the only times when a replenishment cycle can begin.

If the capacity is limited and the inventory at the beginning of replenishment cycles is
not sufficient, service-level constraints may prevent us from finding feasible solutions for
the underlying problem. To avoid infeasibility, we need to reduce βc and consequently
yTL
p . Following the example given by Albey et al. (2015), with soft service-level constraints

we endogenously reduce yTL
p to avoid infeasibility if the capacity becomes binding. Let

yds
tp denote the dynamic safety stock level during the replenishment cycle that starts from

period t. We know that yTL
tp = btp + yds

tp (Silver et al., 2017). The introduction of soft
service-level constraints means that we can allow for a shortfall of either yds

tp , or btp, or
both. Thus, we introduce two continuous decision variables ψds

tp ≥ 0 and ψbl
tp ≥ 0 that

correspond to the shortfall of the dynamic safety stock part and to the shortfall of the
mean of the replenishment cycle demand part of the order-up-to-level, respectively.

A different interpretation of these shortfalls has been given by (Albey et al., 2015). ψbl
tp

represents planned backlog; based on the expected demand (btp), this is what we plan to
backlog in order to accommodate for limited capacity. ψds

tp , on the other hand, represents
the planned deviation from the required dynamic safety stock. The per unit shortfall of
the dynamic safety stock is penalised by cdsp . Moreover, the per unit shortfall of the mean
of the replenishment cycle demand is penalised by cblp , which, in the deterministic model,
is used as the backlog penalty cost coefficient. We assume that the per unit shortfall
of the dynamic safety stock is less costly than the per unit shortfall of the mean of the
replenishment cycle demand (cdsp < cblp ). This is because a violation of dynamic safety
stocks is usually more acceptable than a violation of demand satisfaction. The MILP
for the integrated model is introduced as follows. Table 4.3 presents the new decision
variables.

min TC =
∑
p∈P

∑
t∈T

(
chp · y+

tp + cminq
p · ζtp + cblp ·ψbl

tp + cdsp ·ψds
tp

)
+
∑
p∈P

cy
fi

p · ρp, (4.24)
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subject to

y0p + qtp ≥ yTL
tp −ψbl

tp −ψds
tp , ∀p ∈ P , t = 1 (4.25)

y0p +
∑

i∈T |i≤t
qip −

∑
i∈T |i<t

dip ≥ yTL
tp −ψbl

tp −ψds
tp − (1− δtp) ·M, ∀t ∈ T , p ∈ P|t > 1

(4.26)

ψds
tp ≤ yds

tp , ∀t ∈ T , p ∈ P (4.27)

yTL
tp ≥ 0,ψds

tp ≥ 0,ψbl
tp ≥ 0, ∀t ∈ T , p ∈ P (4.28)

(4.8), (4.9), (4.10), (4.11), (4.13), (4.14), (4.15) and (4.16).

The objective function in (4.24) minimises the total inventory cost, the shortfall costs
of the minimum production quantity and the final inventory level, as well as the associated
shortfall costs of the order-up-to-level in the soft service-level constraints. The soft service-
level constraints in (4.25) and (4.26) are used instead of the chance-constraints in (4.20).
(4.25) and (4.26) ensure that the inventory level at the beginning of the first period and
at the beginning of the production periods are at least equal to the order-up-to-level.
In constraints (4.27), we introduce the upper bound for ψds

tp , which is the corresponding
dynamic safety stock level. Since ψds

tp is cheaper than ψbl
tp, ψbl

tp will only be used if ψds
tp

reaches the upper bound. Finally, we add the following constraints from the MILP of the
sequential approach, which also apply to the integrated model: The inventory balance
equations (4.8), the upper bound on capacity (4.9), the setup indicator logic (4.10), soft
constraints on minimum production quantity (4.11) and final inventory levels (4.13), as
well as the binary and non-negative decision variables constraints (4.14), (4.15) and (4.16).
Note that we dropped the soft safety stock constraints (4.12) and their associated costs
in the objective function.

So far, we introduced the MILP for the integrated model without discussing how to
determine btp, mtp and yTL

tp within an MILP. Since fp(.) is characterised by btp and mtp,
yTL
tp depends on btp and mtp, i.e., yTL

tp (btp,mtp). Given βc, the demand distribution of D̂tp,
btp and mtp, we can easily specify yTL

tp in (4.23) by using a numerical method. However,
yTL
tp is a bivariate non-linear function. Later in this section, we introduce a linearisation

technique that uses a triangulation method as an MILP to approximate yTL
tp .

The main issue that still remains to be dealt with is how to endogenously specify btp
and mtp, both of which depend on the production periods (the solution of the underlying



4.4. Mixed-Integer Linear Programs 51

Table 4.3: New decision variables for the integrated model.

yTLtp order-up-to-level of product p in period t

yds
tp dynamic safety stock level of product p part of the order-up-to-level in period t
ψds
tp shortfall of the dynamic safety stock part of the order-up-to-level of product p in

period t
ψbl
tp shortfall of the mean of the replenishment cycle demand (btp) part of the order-up-

to-level of product p in period t

lot-sizing problem). We address this issue in the following section.

Demand uncertainty parameters btp and mtp over endogenous replenishment
cycles

Table 4.4 summarises the new parameters and decision variables introduced in this section.

Table 4.4: New notation for demand uncertainty parameters.

Parameters
bmaxtp upper bound on btp for product p in period t

mmax
tp upper bound on mtp for product p in period t

Decision variables
btp mean of the replenishment cycle demand of product p in period t
mtp variance of the replenishment cycle demand of product p in period t
b̄tp fraction of btp from bmaxtp for product p in period t
m̄tp fractional of mtp from mmax

tp for product p in period t
utp auxiliary decision variable corresponding to b̄tp for product p in period t
ctp auxiliary decision variable corresponding to m̄tp for product p in period t

• Mean of replenishment cycle demand (btp).

Let bmax
tp denote the upper bound of the mean of the replenishment cycle demand

that corresponds to period t, which is obtained by summing up the mean demands
from the beginning of period t to the end of the planning horizon.

bmax
tp =

∑
i∈T |i≥t

dip. ∀t ∈ T , p ∈ P (4.29)
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Let the continuous decision variable b̄tp = btp/bmax
tp denote the fraction of the mean

of the replenishment cycle demand of product p in period t from bmax
tp . We use the

fractional values because they improve the computational performance by avoiding
the implementation of bigM formulations. Furthermore, we define the auxiliary
continuous decision variable utp to track the values of b̄tp over the planning horizon.

utp ≤ δtp, ∀t ∈ T , p ∈ P (4.30)

utp ≥ b̄tp − (1− δtp), ∀t ∈ T , p ∈ P (4.31)

utp ≤ b̄tp + (1− δtp), ∀t ∈ T , p ∈ P (4.32)

b̄tp · bmax
tp =

∑
i∈T |i≥t

dip −
∑

i∈T |i>t
uip · bmax

ip , ∀t ∈ T , p ∈ P (4.33)

utp, b̄tp ≥ 0. ∀t ∈ T , p ∈ P (4.34)

Constraints (4.30) force the auxiliary decision variable utp to take on the value of
zero if t is not a production period (δtp = 0) otherwise (δtp = 1), constraints (4.31)
and (4.32) force the auxiliary variable utp to take on the same value as the fractional
mean of the replenishment cycle demand at the beginning of period t (b̄tp). Equa-
tions (4.33) calculate the mean of the replenishment cycle demand at the beginning
of period t (b̄tp · bmax

tp ) by summing up the mean demand of the periods, including
and following the current micro period, less the mean of the replenishment cycle
demand that corresponds to the following replenishment cycles stored by the auxil-
iary decision variables.

• Variance of replenishment cycle demand (mtp).

Letmmax
tp denote the upper bound of the variance of the replenishment cycle demand

that corresponds to period t.

mmax
tp =

∑
i∈T |i≥t

σ2
ip. ∀t ∈ T , p ∈ P (4.35)

Let the continuous decision variable m̄tp = mtp/m
max
tp denote the fraction of the

variance of the replenishment cycle demand of product p in period t from mmax
tp .

Furthermore, we define the auxiliary decision variable ctp to track the values of
m̄tp over the planning horizon. As with the determination of the mean of the
replenishment cycle demand, the following formulation presents the calculation of
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the variance of the replenishment cycle demands.

ctp ≤ δtp, ∀t ∈ T , p ∈ P (4.36)

ctp ≥ m̄tp − (1− δtp), ∀t ∈ T , p ∈ P (4.37)

ctp ≤ m̄tp + (1− δtp), ∀t ∈ T , p ∈ P (4.38)

m̄tp ·mmax
tp =

∑
i∈T |i≥t

σ2
ip −

∑
i∈T |i>t

cip ·mmax
ip , ∀t ∈ T , p ∈ P (4.39)

ctp, m̄tp ≥ 0. ∀t ∈ T , p ∈ P (4.40)

Table 4.5 shows a numerical example of how the mean and variance of the replenishment
cycle demand are determined for product p over a planning horizon with six periods. The
production periods are specified by δtp = 1. For example, the mean of the replenishment
cycle demand in period one is b1p = 400, which is the sum of the mean demand from
period one to the end of period six less the mean value of the following replenishment
cycle, i.e., u5p · bmax

5p = 200.

Table 4.5: Mean and variance of replenishment cycle demand.

t 1 2 3 4 5 6
δtp 1 0 0 0 1 0

dtp 100 100 100 100 100 100
btp 400 300 200 100 200 100
utp · bmax

tp 400 0 0 0 200 0

σ2
tp 400 400 400 400 400 400

mtp 1600 1200 800 400 800 400
ctp ·mmax

tp 1600 0 0 0 800 0

Bivariate linearisation method

We approximate the bivariate non-linear order-up-to-level function (yTL
tp ) by a triangu-

lation method. (See, e.g., Vielma et al. (2010) and Rebennack and Kallrath (2015) for
more details on triangulation methods). Think of a rectangular region the horizontal and
vertical sides of which represent the ranges of the mean and variance of the replenish-
ment cycle demand. We construct an approximation grid by breaking down the region
into small rectangles based on predetermined approximation points on the horizontal and
vertical sides. Every small rectangle is then further divided into two triangles, i.e., the
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upper and the lower triangles. The vertices of the triangle, in which the value of yTL
tp is

located, are then used for the linear interpolation.
More specifically, on the x-axis, which represents the values of the mean of the re-

plenishment cycle demand (btp), we define |N | predetermined approximation points btpi,
where btpi ∈ [0, bmax

tp ] for every i = {0, ..., |N |} in period t for product p (see Figure
4.1). In a similar way, on the y-axis, which represents the values of the variance of the
replenishment cycle demand (mtp), we define |M| predetermined approximation points
mtpj where mtpj ∈ [0,mmax

tp ] for every j = {0, ..., |M|} in period t for product p. We set
bmax
tp = ∑

i∈T |i≥t dip and mmax
tp = ∑

i∈T |i≥t σ
2
ip for every product p in every period t.

For a given btpi and mtpj, we use a numerical method to calculate the corresponding
order-up-to-level yTLtpij (see the mathematical relation (4.23)) based on the given target
service level and demand distribution.

Figure 4.1: Approximation grid: Selecting a lower triangle (left-hand side), selecting an
upper triangle (right-hand side). Indexes p and t have been dropped.

For every upper (lower) triangle, we define the binary decision variable as ωu
ij ( ωl

ij)
and the three respective weights λu

ij, λuh
ij and λuv

ij (λl
ij, λlh

ij and λlv
ij). For the sake of

readability, we drop the indexes of p and t. On the left-hand side of Figure 4.1, we see
a selected lower triangle (ωl

ij = 1), where the value of b is obtained by summing up the
fraction of point bi given by weights λl

ij and λlv
ij , as well as the fraction of point bi+1 given

by weight λlh
ij . The value of m in this triangle is obtained by summing up the fraction

of point mj given by weights λl
ij and λlh

ij , as well as the fraction of point mj+1 given
by weight λlv

ij . If the upper triangle is chosen, i.e., ωu
ij = 1 (on the right-hand side of

Figure 4.1), then the weights of its vertices are determined in a similar way. Depending on
which triangle (upper or lower) is chosen, the value of yTL is approximated by the convex
combination of the respective vertices and the weights that are used for determining the
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corresponding values of b and m.
We can improve the approximation grid by cutting off unnecessary small rectangles

from the approximation grid (see the shaded rectangles in Figure 4.1). For example, think
of an approximation point on one of the axes. An approximation point is a predetermined
value with the boundary of the mean or variance of the replenishment cycle demand.
Given the mean or variance per period, we can calculate the length of the replenishment
cycle from the value of the approximation point. Having determined the length of the
replenishment cycle for that approximation point, we can calculate the corresponding
value on the other axis. All values (approximation points) beyond that value are irrelevant
as far as the original approximation point is concerned, and can be deducted from the
approximation grid. The final effective approximation grid will resemble a diagonal shape,
as illustrated in Figure 4.1.

The following constraints present the linearisation of the bivariate non-linear function
yTL
tp (btp,mtp). The corresponding notation is given in Table 4.6. Note that |Ntp| and
|Mtp| indicate the total number of relevant approximation points for product p in period
t on the x- and y-axis, respectively.

∀p ∈ P , t ∈ T :∑
i∈Ntp

∑
j∈Mtp

ωu
tpij +

∑
i∈N̄tp

∑
j∈M̄tp

ωl
tpij = 1, (4.41)

λu
tpij + λuv

tpij + λuh
tpij = ωu

tpij, i ∈ Ntp, j ∈Mtp (4.42)

λl
tpij + λlv

tpij + λlh
tpij = ωl

tpij, i ∈ N̄tp, j ∈ M̄tp (4.43)

btp =
∑
i∈Ntp

∑
j∈Mtp

((λu
tpij + λuv

tpij) · btpi + λuh
tpij · btp,i−1)+

∑
i∈N̄tp

∑
j∈M̄tp

((λl
tpij + λlv

tpij) · btpi + λlh
tpij · btp,i+1), (4.44)

mtp =
∑
i∈Ntp

∑
j∈Mtp

((λu
tpij + λuh

tpij) ·mtpj + λuv
tpij ·mtp,j−1)+

∑
i∈N̄tp

∑
j∈M̄tp

((λl
tpij + λlh

tpij) ·mtpj + λlv
tpij ·mtp,j+1), (4.45)

yTL
tp =

∑
i∈Ntp

∑
j∈Mtp

(λu
tpijy

TL
pij + λuh

tpijy
TL
p,i−1,j + λuv

tpijy
TL
pi,j−1)+

∑
i∈N̄tp

∑
j∈M̄tp

(λl
tpijy

TL
pij + λlh

tpijy
TL
p,i+1,j + λlv

tpijy
TL
pi,j+1), (4.46)
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btp,mtp,yTL
tp ≥ 0, (4.47)

ωu
tpij ∈ {0, 1},λu

tpij,λ
uh
tpij,λ

uv
tpij ≥ 0, i ∈ Ntp, j ∈Mtp (4.48)

ωl
tpij ∈ {0, 1},λl

tpij,λ
lh
tpij,λ

lv
tpij ≥ 0. i ∈ N̄tp, j ∈ M̄tp (4.49)

Constraints (4.41) ensure that only one triangle on the entire approximation grid is se-
lected. Constraints (4.42) and (4.43) guarantee that when a triangle is chosen, the cor-
responding weights are added up to one and no values for the weights of a triangle are
allowed if that triangle has not been chosen. Constraints (4.44) and (4.45) determine the
corresponding weights used for obtaining the values of btp and mtp respectively. Con-
straints (4.46) determine the approximated value for yTL

tp in period t for every product p.
Non-negativity and binary variables are given in (4.47) to (4.49).

Table 4.6: Notation used for the approximation grid.

Sets:
i ∈ Ntp = {1, ..., |Ntp|} approximation points on x-axis for product p in period t (upper

triangles)
j ∈Mtp = {1, ..., |Mtp|} approximation points on y-axis for product p in period t (upper

triangles)
i ∈ N̄tp = {0, ..., |Ntp| − 1} approximation points on x-axis for product p in period t (lower

triangles)
j ∈ M̄tp = {0, ..., |Mtp|−1} approximation points on y-axis for product p in period t (lower

triangles)
Parameters:
btpi predetermined approximation point i on the x-axis
mtpj predetermined approximation point j on the y-axis
yTLtpij predetermined order-up-to level for the combination of btpi and

mtpj

Decision variables:
λutpij ,λ

uv
tpij ,λ

uh
tpij weights associated with the vertices of the upper triangles

λltpij ,λ
lv
tpij ,λ

lh
tpij weights associated with the vertices of the lower triangles

ωu
tpij binary decision variable equals one if the approximation point

with indexes of i and j for product p in period t is in an upper
triangle, otherwise zero.
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ωl
tpij binary decision variable equals one if the approximation point

with indexes of i and j for product p in period t is in a lower
triangle, otherwise zero.

4.4.3 The Integrated Model with Re-planning-Opportunity Ad-
justment

The MILP we presented in Section 4.4.2 for the integrated model does not take the future
re-planning opportunities under rolling horizon planning into account. The re-planning
opportunities give the flexibility to change previously planned schedules according to the
actual demand realisation. In other words, the re-planning opportunities can protect
against some demand uncertainty if sufficient capacity is available under rolling horizon
planning. In such cases, we need less safety stock. In order to reduce safety stock to
account for the flexibility, we reduce the target inventory level, yTL

tp (btp,mtp), in the
integrated model by discounting the values of btp and mtp as follows.

yαTLtp = yTL
tp (αp · btp, αp ·mtp), ∀t ∈ T , p ∈ P (4.50)

where yαTLtp is the adjusted order-up-to level in period t for product p and (0 < αp ≤ 1)
is an exogenous product-specific re-planning opportunity coefficient. In what follows, we
introduce a heuristic method for approximating the optimal values of αp under rolling
horizon planning.

Re-planning opportunity coefficient (αp)

If the capacity is not binding, the average length of the replenishment cycles of product p
over the planning horizon can be approximated by the average time between orders (Lp).
In our case, Lp can be easily calculated based on the total demand and the minimum
production quantity. As illustrated in Figure (4.2), the demand uncertainty during Lp
is not only covered by the safety stock, but also by the safety capacity with respect
to re-planning opportunities. The re-planning opportunity coefficient αp anticipates the
fraction of Lp covered by the safety capacity, i.e., (1− αp) · Lp. The demand uncertainty
of the remaining part, i.e., αp · Lp, is covered by the dynamic safety stock.

If the capacity is limited, we cannot reduce the value of αp beyond a certain point. In
this case, we first approximate an average excess capacity level (the safety capacity). Let
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Figure 4.2: Replenishment cycle of product p with an average length of Lp.

K̄p denote the safety capacity available during Lp for product p. The following equation
approximates K̄p by multiplying the length of Lp with the average excess capacity per
product and period. The average excess capacity per product and period is determined by
uniformly distributing the excess capacity for the entire planning horizon (the numerator
in (4.51)) over all products and periods (the denominator).

K̄p = Lp ·
∑
t∈T Kt −

∑
t∈T

∑
p∈P kP · dtp −

∑
p∈P zp · |T |Lp

|T | · |P|
. ∀p ∈ P (4.51)

We ensure that K̄p is sufficient for producing the demand during (1− αp) · Lp.

(1− αp) · Lp · d̄p · kp ≤ K̄p. ∀p ∈ P (4.52)

αp ≥
Lp · d̄p · kp − K̄p

Lp
. ∀p ∈ P (4.53)

If the safety capacity is negligible, αp becomes almost one, which means that there is a
small degree of flexibility that can be used for influencing the replenishment cycles under
rolling horizon planning. However, if the capacity is unlimited, αp is not restricted by
(4.53). This implies that the safety capacity alone can cover the demand uncertainty. This
might not always be true since we may need more setups than optimally required. Since
there is a minimum production quantity, an extra setup can result in an excess inventory
at the end of the planning horizon. Thus, in the following, we look for a trade-off between
the inventory cost of increasing the number of setups and the benefits of decreasing the
dynamic safety stock in order to find a lower boundary on αp. Let nsetupp denote the
increased number of setups for product p over the planning horizon. Mathematically,

nsetupp = d |T |
αp · Lp

− |T |
Lp
e, ∀p ∈ P (4.54)

where dxe indicates the smallest integer value that is higher than or equal to x. Note that
nsetupp ≤ |T |, which implies that αp ≥ 1

1+Lp
.
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The following equation (4.55) approximates the total cost incurred by incorporating
αp. The first term indicates the approximation of the increased inventory holding cost
brought about by the increased number of setups in relation to qmin

p . The second term
indicates the savings on the inventory costs through a reduced dynamic safety stock.

TC(αp) = 1
2 · n

setup
p · qmin

p · chp − [ysst,Lp − ysst,αLp ] · |T | · chp , ∀p ∈ P (4.55)

where, ysst,Lp and ysst,αLp denote the dynamic safety stocks necessary to cover demand
uncertainty of product p during Lp and αp ·Lp, respectively, in relation to a target service
level.

We use a numerical search to approximate the value α∗p ∈
[
max{ 1

1+Lp
, Lp·d̄p·kp−K̄p

Lp
}, 1

]
that returns the lowest value for the total cost function in (4.55). The second lower
boundary is a logical consequence after applying the constraints (4.53).

In the following, we present the full MILP for the integrated model with re-planning
opportunity adjustment. Note that if we set αp = 1, then the the integrated model with
re-planning opportunity adjustment resembles the standard integrated model.

The MILP for the integrated model with re-planning opportunity adjustment

The objective function is given in (4.56). The base constraints are shown in (4.57) to
(4.61). The relevant constraints to the service-level are given in (4.62), (4.63) and (4.64).
The mean of the replenishment cycle demand is determined by means of (4.65) to (4.68).
The variance of the replenishment cycle demand is determined by means of (4.69) to
(4.72). Linearisation of yαTLtp is similar to the model formulation given in (4.41) to (4.49)
in the previous section on pages 55 and 56. Non-negativity constraints and binary decision
variables are presented in (4.73) to (4.76).

min TC =∑
p∈P

∑
t∈T

(
chp · y+

tp + cminq
p · ζtp + cblp ·ψbl

tp + cdsp ·ψds
tp

)
+
∑
p∈P

cy
fi

p · ρp, (4.56)
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subject to

y+
tp − y−tp = y0p +

∑
i∈T |i≤t

(qip − dip), ∀t ∈ T , p ∈ P (4.57)

∑
p∈P

(kp · qtp + zp · δtp) ≤ Kt, ∀t ∈ T (4.58)

kp · qtp ≤ Kt · δtp, ∀t ∈ T , p ∈ P (4.59)

qtp ≥ δtp · qmin
p − ζtp, ∀t ∈ T , p ∈ P (4.60)

y+
|T |,p − y−|T |,p ≥ yfip − ρp, ∀p ∈ P (4.61)

y0p + qtp ≥ yαTLtp + (1− αp) · dtp −ψbl
tp −ψds

tp , ∀p ∈ P , t = 1 (4.62)

y0p +
∑

i∈T |i≤t
qip −

∑
i∈T |i<t

dip ≥

yαTLtp + (1− αp) · dtp −ψbl
tp −ψds

tp − (1− δtp) ·M, ∀t ∈ T , p ∈ P|t > 1 (4.63)

ψds
tp ≤ yds

tp , ∀t ∈ T , p ∈ P (4.64)

utp ≤ δtp, ∀t ∈ T , p ∈ P (4.65)

utp ≥ b̄tp − (1− δtp), ∀t ∈ T , p ∈ P (4.66)

utp ≤ b̄tp + (1− δtp), ∀t ∈ T , p ∈ P (4.67)

b̄tp · bmax
tp =

∑
i∈T |i≥t

dip −
∑

i∈T |i>t
uip · bmax

ip , ∀t ∈ T , p ∈ P (4.68)

ctp ≤ δtp, ∀t ∈ T , p ∈ P (4.69)

ctp ≥ m̄tp − (1− δtp), ∀t ∈ T , p ∈ P (4.70)

ctp ≤ m̄tp + (1− δtp), ∀t ∈ T , p ∈ P (4.71)

m̄tp ·mmax
tp =

∑
i∈T |i≥t

σ2
ip −

∑
i∈T |i>t

cip ·mmax
ip , ∀t ∈ T , p ∈ P (4.72)

y+
tp ≥ 0,y−tp ≥ 0,qtp ≥ 0, δtp ∈ {0, 1}, ∀t ∈ T , p ∈ P (4.73)

ζtp ≥ 0,ψds
tp ≥ 0,ψbl

tp ≥ 0, ∀t ∈ T , p ∈ P (4.74)

yTL
tp ≥ 0,utp ≥ 0, b̄tp ≥ 0, ctp ≥ 0, m̄tp ≥ 0, ∀t ∈ T , p ∈ P (4.75)

ρp ≥ 0. ∀p ∈ P (4.76)
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4.5 Numerical Study

4.5.1 Experimental Design

We use the illustration in Figure 4.3 to explain the rolling horizon setting. Let n refer
to the nth rolling horizon schedule. In the first schedule (n = 1), we solve the problem
for a planning horizon with |T | = 12 periods. We implement the production plan for
the first period, i.e., the frozen horizon. Note that the production plan during the frozen
horizon is no longer updated. We roll forward the planning horizon for one period (re-
planning horizon) in order to generate the second rolling horizon schedule (n = 2). The
re-planning horizon is the time that elapses between the starting points of two consecutive
rolling horizon schedules. Then, we implement the production plan of its frozen horizon,
roll forward and repeat until we implement the production plans of all periods of the
evaluation interval. If we define an evaluation interval of |E| = 50 periods, we generate in
total of 50 rolling schedules n = {1, 2, ..., 50}.

Figure 4.3: Rolling horizon setting.

Besides the rolling horizon setting, we further define an open loop setting, where we set
both the frozen horizon and the re-planning horizon to 10 periods. The open loop setting
can be seen as a variant of the static uncertainty strategy introduced by Bookbinder
and Tan (1988), where the length of the frozen horizon is equal to the length of the
planning horizon. However, in the open loop setting, we take ten periods instead of
twelve periods, as this reduces the influence of the final inventory level constraints on
the starting inventory level of the next schedule. Table 4.7 summarises the experimental
design.

We use the following procedure to generate the forecast and demand values. We assume
that forecast values are not updated over time and that the length of the planning horizon
(|T | = 12) remains constant. Thus, we need |S| = 61 values of the forecasted demand d̃jp
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Table 4.7: Experimental design.

Initialisation of Demand Parameters:
Mean demand d̄p = 30
Inter-period demand variation CV ip = 0.3
Coefficient of variation CV d = 0.3

Levels of Main Input Factors:
Time between orders L ∈ {1, 2, 3, 6}
Capacity level Capa. ∈ {uncapacitated, capacitated}
Target service level βc ∈ {0.90, 0.98}

Initialisation of Basic Parameters:
Inventory holding cost chp 1
Production capacity utilisation kp 1
Setup time zp 0.15 ·Kt

Min. production quantity qmin
p wminq · d̄p

Min. production quantity coefficient wminq {0,2,3,6}
Backlog/backorder penalty cost cblp 120
Shortfall from exogenous safety stock csstp {0.1, 0.2, 0.3} · cblp
Shortfall from dynamic safety stock cdsp csstp
Shortfall from min. production quantity cminq

p 600
Shortfall from final inventory cy

fi
p cminq

p

∀p ∈ P , j ∈ S = {1, ..., |S|}. Note that the last run under the rolling horizon takes place
between periods 50 and 61 (see Figure 4.3). Let CV ip denote the coefficient variation of
the inter-period demands. In order to generate dynamic forecast values, we use Normal
Distribution (ND) with a mean demand indicated by d̄p, and a standard deviation of
d̄p · CV ip.

d̃jp = ND(d̄p, d̄p · CV ip). ∀p ∈ P , j ∈ S (4.77)

Since the forecast is not updated, the expected demand values dtp ∀p ∈ P , t ∈ T for a
given schedule n are taken from d̃jp as follows.

dtp = d̃t+n−1,p, ∀p ∈ P , t ∈ T (4.78)

where n ∈ {1, 2, .., 50} under the rolling horizon and n ∈ {1, 2, .., 5} under the open loop.
We assume that the actual demand d̂ip for every p ∈ P and i ∈ E = {1, ..., |E|} follows

a Gamma Distribution (GD) with mean d̃ip and standard deviation d̃ip ·CV d, where CV d
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indicates the coefficient of variation of demand that relates to the randomness of the
actual demand.

d̂ip = GD(d̃ip, d̃ip · CV d). ∀p ∈ P , i ∈ E (4.79)

We randomly generate 20 independent replications of the actual demand series for each
combination of the main input factors, which is a high enough number of replications to
derive consistent results. The main input factors are defined as follows.

a. Time between orders (L)

We use qmin
p to define the time between orders. qmin

p is calculated as the product of
the coefficient wminq and the mean demand. Thus, we set wminq = 0 to obtain L

=1. We set wminq = {2, 3, 6} to obtain L = {2, 3, 6}.

b. Capacity level

We take two cases of the uncapacitated and capacitated levels into account. In a
capacitated case, we determine the available capacity level as follows. We use wutil

as an indicator, which is defined as a fraction of the production capacity requirement
for all products based on their average demand per period as follows.

Kt = C =
∑
j∈S

∑
p∈P d̃jp
|S|

· wutil. ∀t ∈ T (4.80)

To ensure a sufficient capacity for producing qmin
p within a period, we set the values

of wutil based on the values of wminq, which is done as follows. If wminq = 0, we set
wutil = 1.3. If wminq ∈ {2, 3, 6}, we set wutil = wminq + 0.3. This means that the
capacity level in every period is the total capacity needed to produce qmin

p plus 30%
of the capacity requirement for the mean demand. Moreover, as we increase the
capacity level according to wminq, we also increase the number of products in order
to keep the problem capacitated. Thus, if we investigate an uncapacitated case or
a capacitated case with wminq = 0, we take only a single product (|P| = 1) into
account. If wminq = 2, we set |P| = 2. Finally, if we use wminq = 3 or 6, we take
|P| = 3.
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c. Target cycle fill-rate (βc-service level)

We use βc to determine order-up-to-levels for the integrated models. We use a
simple rule-of-thumb approach, i.e., a common day of supply (wcDoS), to calculate
exogenous safety stocks for the sequential approach. wcDoS is defined as a factor
multiplied with the length of one period. The exogenous safety stock in every period
is calculated by multiplying wcDoS with the forecasted demand of the period.

The holding cost of product p ∈ P per period and the capacity consumption per unit of
product p are set to one. The setup time of every product p is set to 15% of the available
capacity level in period t. We assume that setup costs are zero. The backlog penalty cost
per unit of product p and per period is defined as the total holding cost of product p over
the entire planning horizon multiplied by ten (cblp = 120). The initial inventory level of
product p at the beginning of the evaluation interval is set to the sum of the expected
demand over the first two periods (y0p = d̃p1 + d̃p2). The final inventory level for the open
loop setting is set as follows.

yfip =
∑
t∈T d̃tp
|T |

. ∀p ∈ P (4.81)

The shortfalls of qmin
p and of yfip are penalised with five times the value of the backlog

penalty cost (cminq
p = cy

fi
p = 600). The penalty cost to be paid for a shortfall of the

exogenous safety stock level (or the dynamic safety stock level in the order-up-to-level) is
set to csstp = cdsp =0.1, 0.2, and 0.3 of the backlog penalty cost.

We report two main performance measures as the outcomes of the evaluation setting:
The Total Cost (TC) and the average realised cycle fill-rate (βRL) over the evaluation
interval. The TC is defined as the cost of holding the actual inventory on-hand level
at the end of the periods within the evaluation interval. βRL is defined as the average
of realised cycle fill-rates over all replenishment cycles, over all products and over the
evaluation interval. If nRC indicates the total number of the realised replenishment cycles
over the evaluation interval, we can mathematically write

βRL = 1
|P| · nRC

·
∑
p∈P

∑
i∈{1,2,...,nRC}

(1−
ϕRC
ip

dRCip
), (4.82)

where ϕRC
ip and dRCip denote the total backorder quantities and the total actual demand of

product p during the realised replenishment cycle i.
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The comparison between two selected modelling approaches, i.e., the sequential ap-
proach and the integrated model, is done under consideration of the total cost difference
(∆TC) when both approaches return an identical βRL. Specifically, ∆TC is the TC ob-
tained by the sequential approach minus the TC from the integrated model divided by
the TC from the integrated model, given in percentage. If this value is positive, then the
integrated model has a lower TC than the sequential approach. If ∆TC is negative, then
the sequential approach outperforms the integrated model.

4.5.2 Numerical Results

Computational performance of the integrated model

We use the MIP solver FICO Xpress Optimizer 64-Bit v.28.01.04 to solve all the models
on a platform with sufficient RAM and the following CPU specification: Intel Core i7-4770
CPU @ 3.40 GHz 3.40 GHz, 64-bit. The maximum runtime is set to 3,600 seconds.

Table 4.8 reports the averages and standard deviations of the runtime (in seconds)
required for solving the MILP of the integrated model. The table also reports the average
and standard deviations of the optimality gap (in %) and the average number of rows
(constraints) and columns (variables) of the MILP.

The results are based on 50 runs under rolling horizon planning for the capacitated
and uncapacitated cases and for three different values of L = {1, 2, 3} with βc = 0.98.
We also distinguish between the General Approximation Grid (GAG) and the Improved
Approximation Grid (IAG) introduced in Section 4.4.2.

Taking the results from Table 4.8 into account, we observe that the MILP is com-
putationally efficient if we use the IAG. With the exception of the uncapacitated case
with L=3, where an average optimality gap of 2.2% is returned, all instances are solved to
optimality. Compared to the GAG, using the IAG can significantly increase the computa-
tional performance. The IAG reduces the required average numbers of rows and columns
by half. This is due to the fact that the IAG cuts off the unnecessary binary decision
variables on the approximation grid.

Soft service level constraints versus hard service level constraints in the inte-
grated model

We want to find out if we need to use the soft service level constraints instead of the hard
service level constraints in order to avoid infeasibility in case of limited capacity. We test
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Table 4.8: Computational performance (runtime in seconds, gap in %).

Capacitated Uncapacitated
Runtime gap Rows Columns Runtime gap Rows Columns

L avg [stDev] avg [stDev] avg avg avg [stDev] avg [stDev] avg avg

GAG 1 8 [13] 0 [0] 2606 9745 10 [7] 0 [0] 2600 9745
2 304 [573] 0 [0] 5196 19490 531 [983] 0.4 [1.5] 5182 19454
3 2926[1062] 29.8[29.4] 8027 28634 3603[2] 42.1[10.4] 7883 27550

IAG 1 2 [1] 0 [0] 1435 5061 3 [1] 0 [0] 1429 5061
2 25 [35] 0 [0] 2851 10111 19 [13] 0 [0] 2843 10111
3 420 [411] 0 [0] 4291 15209 1463 [1417] 2.2 [6.4] 4334 15132

100 runs (new production schedules) under the open loop and 1,000 runs under rolling
horizon planning for each βc and L combination. We start by solving each run with the
Hard Service Level Constraint (HSLC). If there is an infeasibility during the procedure,
then we introduce the Soft Service Level Constraint (SSLC).

Table 4.9 presents the percentage of the total instances where the SSLC, rather than
the HSLC, are needed. Furthermore, Table 4.9 shows the average capacity utilisation over
the evaluation interval and over the independent replications of the actual demand series.
Based on the results presented in Table 4.9, we make the following main observations.
With the exception of L=6, where the average capacity utilisation is low (less than 50%),
the SSLC is always needed in order to obtain feasible solutions. We notice that, in general,
the necessity for the SSLC is reduced as the value of L increases. Moving from βc = 0.90
to βc = 0.98, we observe that the necessity for the SSLC is slightly higher if L=1 and
lower if L > 1. These observations can be explained as follows: An increase of L or a
move from βc = 0.90 to βc = 0.98 can increase inventory levels, the consequence of which
is the avoidance of a shortfall of the order-up-to-level.

Table 4.9: Soft service level constraints versus hard service level constraints.

βc=0.90 βc=0.98
open loop rolling horizon open loop rolling horizon
SSLC Cap. util. SSLC Cap. util. SSLC Cap. util. SSLC Cap. util.

L in % avg. in % in % avg. in % in % avg. in % in % avg. in %

1 25.0 86.1 48.2 85.5 29.0 86.5 49.7 86.1
2 30.0 79.3 27.6 90.2 22.0 91.4 8.9 91.4
3 4.0 93.1 1.9 92.6 1.0 94.0 0.4 92.4
6 - 48.5 - 47.4 - 49.4 - 47.8
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Realised service levels versus target service levels in the integrated model

In order to facilitate the comparison between the values of βRL and βc, we first analyse
the evolution of the inventory level over the evaluation interval. Figure 4.4 shows the
evolution of the average inventory level during the evaluation interval over the independent
replications of the actual demand series. We assume βc = 0.90 and L=1 for both the
uncapacitated and the capacitated case under the open loop and the rolling horizon.

Taking the illustrations from Figure 4.4 into account, we make the following main ob-
servations. If the capacity is not binding, then rolling horizon planning leads to consider-
ably lower average inventory and backlog levels than open loop planning. If the capacity
becomes binding under the open loop and the rolling horizon, both the inventory and
backlog level are increased. Under the rolling horizon, this implies that the capacity limi-
tation significantly restricts flexibility when it comes to rescheduling. Therefore, the time
backorders spend in the system until they are fulfilled are longer.

Figure 4.4: Evolution of the average inventory level (βc = 0.90).

Table 4.10 presents the values of βRL and the corresponding standard deviations over
the evaluation interval and the independent replications of the actual demand series. The
results are evaluated for each βc, L and capacity level combination under both the rolling
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horizon and the open loop. Note that Table 4.9 shows the corresponding average capacity
utilisation for the settings under the capacitated case.

Taking the open loop planning into account, we make the following main observations.
βRL usually overachieves βc with βc = 0.90. If βc = 0.98, βRL moves closer to the values
of βc and a considerable over-achievement is observed if L = 6. This observation can be
explained by the fact that larger lot-sizes can prevent backorder quantities in the initial
periods of the replenishment cycle, which leads to an improvement of βRL values. If
the capacity becomes binding (Capa.), the values of βRL usually improve slightly. These
improvements are the result of the cumulated inventories in periods with a low demand
and can be applied in order to protect against backorders in periods with a peak demand.

Taking the rolling horizon planning into account, we make the following main obser-
vations. In every case, βRL is higher than βc. In contrast to open loop planning, the
outstanding backorder quantities from the previous cycle are immediately fulfilled. Fur-
thermore, we observe that an increase of L leads to very high values of βRL. This implies
that, under the rolling horizon, larger batch sizes, along with re-planning opportunities,
can cover most of the demand uncertainty, even if βc is set low. If the capacity becomes
binding, βRL decreases. In this case, it takes a long time for the outstanding backorder
quantities to be fulfilled, which is due to restricted re-planning opportunities.

Table 4.10: Realised service level (βRL) in %.

βc=0.90 βc=0.98
open loop rolling horizon open loop rolling horizon
Uncapa. Capa. Uncapa. Capa. Uncapa. Capa. Uncapa. Capa.
avg. avg. avg. avg. avg. avg. avg. avg.

L [st.Dev.] [st.Dev.] [st.Dev.] [st.Dev.] [st.Dev.] [st.Dev.] [st.Dev.] [st.Dev.]

1 95.1 95.8 94.8 94.9 96.3 96.9 98.9 98.1
[0.9] [1.2] [0.9] [0.7] [1.2] [1.1] [0.5] [1.0]

2 91.1 89.8 99.0 96.7 97.0 96.5 99.9 99.7
[2.7] [3.1] [0.6] [2.7] [2.1] [3.1] [0.2] [0.5]

3 91.5 95.9 99.4 98.7 98.3 98.8 100 99.8
[2.5] [2.1] [0.6] [1.3] [1.4] [1.1] [0.1] [0.3]

6 95.1 96.6 99.6 99.6 99.3 99.6 99.9 99.7
[1.5] [0.9] [0.6] [0.5] [0.8] [0.5] [0.4] [0.3]
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Dynamic safety stocks versus exogenous safety stocks

We investigate what impact the integration of dynamic safety stocks (the integrated
model) or of the simple rule-based exogenous safety stocks (the sequential approach) has
on lot-sizing. Table 4.11 presents the average, the min., the max. as well as the quantiles
of 0.25, 0.5, and 0.75 of ∆TC over the randomly generated actual demand series for all
combinations of the input factors. The results are based on comparison between the inte-
grated model and the sequential approach. Additionally, under rolling horizon planning
with the uncapacitated case, Table 4.12 presents the results from the comparison between
the re-planning opportunity adjusted integrated model and the sequential approach. The
values of α∗p are given with respect to L and βc. Due to the homogeneous products, α∗p is
identical for every p ∈ P . If we compare the average values to the corresponding quantile
values, we can conclude the significance of the explanatory power for the average values.
The min. values and in some cases the 0.25 quantiles indicate the existence of negligible
noises in the comparison of the total costs with respect to an identical average realised
βc over the evaluation interval with 50 periods. To facilitate the interpretation of the
results, Figure 4.5 illustrates the development of the average ∆TC if we increase L with
respect to βc in the following four comparison categories: (i) The open loop and the un-
capacitated case, (ii) the open loop and the capacitated case, (iii) the rolling horizon and
the uncapacitated case, and (iv) the rolling horizon and the capacitated case. Note that
the corresponding average capacity utilisations for the capacitated cases and the average
values of βRL on which the comparison of the values of TC of the integrated model and of
the sequential approach is based are presented in Table 4.9 and Table 4.10, respectively.

(i) The open loop and the uncapacitated case. We compare the integrated model
with the sequential approach under the open loop in the presence of ample capacity.
From Figure 4.5 (see lower right-hand corner), we notice that the integrated model
outperforms the sequential approach in almost every setting. The highest average
cost saving potential of the integrated model can be achieved by setting βc = 0.98
for L = 2 or 3. With L=6, the impact of dynamic safety stocks declines, because a
major part of the uncertainty is captured by large batch sizes.

(ii) The open loop and the capacitated case. Taking the corresponding results
from Figure 4.5 (see lower left-hand corner) into account, we make the following
main observations. If we set βc = 0.90, the integrated model outperforms the
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Table 4.12: The re-planning opportunity adjusted integrated model versus the sequential
approach for the uncapacitated case under rolling horizon planning (∆TC in %).

quantile
βc LTBO αp avg min 0.25 0.5 0.75 max

0.90 1 1.00 0.2 - 2.0 - 0.8 - 0.0 1.3 3.5
2 0.76 11.6 - 14.9 5.5 11.0 19.9 30.0
3 0.67 6.3 - 13.9 5.3 8.5 12.7 17.8
6 0.67 3.2 - 6.3 0.6 3.1 6.1 16.4

0.98 1 1.00 0.3 - 2.8 - 1.0 - 0.6 0.9 7.9
2 0.67 1.9 - 19.0 - 7.6 - 1.7 4.7 54.6
3 0.58 5.4 - 13.8 - 0.7 5.7 10.3 22.0
6 0.51 2.8 - 4.1 0.0 0.9 5.3 16.6

Figure 4.5: The integrated model and the re-planning opportunity adjusted integrated
model versus the sequential approach: The development of the average of ∆TC in %.

sequential approach. With βc = 0.98, the integrated model has, on average, cost-
saving advantages against the sequential approach if L = 3 or 6. However, if L
= 1 or 2, then the sequential approach can outperform the integrated model. These
observations can be explained as follows. Under a capacitated case, the production
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decisions may not merely follow the stochastic demand process. After all, the inven-
tories can be built during the earlier periods and then be used during the subsequent
periods of peak demand. This can lead to a higher uncertainty when we anticipate
the actual inventory levels at the beginning of the subsequent replenishment cycles
(the expected initial inventories). A longer frozen horizon (here T fh = 10) can in-
clude a higher number of replenishment cycles (particularly if L = 1). Thus, the
anticipation of the actual initial inventory levels of the replenishment cycles involves
more uncertainty towards the end of the frozen horizon. As our results show, the
sequential approach will not always outperform the integrated model. However, for
some settings, the sequential approach with simple-rule exogenous safety stocks can
provide better results than the integrated model.

(iii) The rolling horizon and the uncapacitated case. If we take the integrated
model into account, we notice that, with the exception of L = 1, the sequential
approach can outperform the integrated model with considerable average TC dif-
ferences. These (unexpected) observations can be explained as follows. In the
presence of ample capacity, the rolling horizon provides a high degree of flexibility
for re-planning when it comes to reacting to demand uncertainty. In general, such
a high re-planning opportunity allows for the fulfilment of possible backorders with
a maximum delay of one period. Furthermore, as L increases, more demand is bun-
dled into one lot. Such a large lot size can easily cover the demand uncertainty
observed during one period under the rolling horizon. Thus, it is no longer neces-
sary to add extra safety stocks. However, in the case of the integrated model, if L
> 1, the dynamic safety stock is calculated by taking the demand uncertainty of
the entire replenishment cycle into account, which leads to an excess inventory. If
we incorporate re-planning opportunity adjustment, we notice that the integrated
model can outperform the sequential approach in every input factor combination.
The re-planning-opportunity adjusted integrated model can prevent excess dynamic
safety stocks and lead to a considerable improvement in performance.

(iv) The rolling horizon and the capacitated case. In our last category, we com-
pare the performance of the integrated model with that of the sequential approach
under the rolling horizon and the capacitated case. In Figure 4.5, we notice that
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the integrated model can outperform the sequential approach in almost every case.
The only exception is βc = 0.98 with L = 6. Note that this setting is not really
capacitated, as Table 4.9 shows an average capacity utilisation of 47.8%. This is
an interesting observation and not in accordance with the results we obtained un-
der the rolling horizon in the presence of ample capacity without the re-planning
opportunity adjustment (αp = 1). It can be explained as follows. The restricted
flexibility for re-planning caused by capacity limitation implies that we cannot re-
act to demand uncertainty in less time than one period. Thus, it is necessary to
take the demand uncertainty over entire lengths of the replenishment cycles into
account, especially those that are longer than the length of the frozen horizon at
the beginning of the planning horizon. Due to the capacity restriction, there is less
likelihood that the replenishment cycles will be affected (changed) by future plan-
ning revisions. Thus, the dynamic safety stocks placed by the integrated model can
lead to a better performance than the sequential approach, which ignores the length
of the replenishment cycles.

We investigated other cases that we do not report in detail because of limited space.
Our numerical study shows that, if we freeze the schedule of the entire planning horizon
(T fh = 12), the results do not vary much from the setting with T fh = 10. In our numerical
study, we presented the results with the assumption that cdsp = 0.2. We also looked into
other penalty cost coefficients for the deviation from the target (dynamic) safety stocks,
i.e., cdsp = {0.1, 0.3, 1}. Similar results are obtained for cdsp = {0.1, 0.3}. However, using
identical deviation cost coefficients for both components of the order-up-to-level (cdsp = 1)
usually leads to worse results than those we get under different cost coefficient values.

Integrated model versus stochastic dynamic program

We evaluate the absolute performance of the integrated model under rolling horizon plan-
ning by means of the theoretical lower bound obtained from the SDP. We take both
the capacitated and uncapacitated cases, as well as βc = {0.90, 0.98} with L = 1, into
account. The comparison is based on 200 independent replications of the realised demand
series, which is a sufficient number to obtain statistically significant comparison results.

We use the following comparison procedure. First, we solve the integrated model
and obtain the average realised service level (βRL) for all independent replications of the
realised demand series. Then, we solve the SDP with different backlog penalty costs (cblp )
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and select a value that results in the SDP returning the same βRL as the one obtained
from the integrated model. Afterwards, we calculate the total cost difference (∆TC =
TCIM − TCSDP) for each independent replication of the actual demand series. We also
conduct a 99% t-paired confidence interval test to prove the statistical significance of the
average ∆TC.

Table 4.13 presents the average and standard deviations of βRL and TC over all inde-
pendent replications of the actual demand series for both the integrated model and the
SDP. Table 4.13 further shows the target cycle fill-rate for the integrated model and the
selected cblp value for the SDP.

Taking the uncapacitated case into account, we see that the average ∆TC increases as
we move from βc = 0.90 to βc = 0.98. The integrated model with βc = 0.98 results in
excess inventories under the rolling horizon.

If we take the capacitated case into account, we note that the integrated model returns
higher average TCs than the SDP for both βc = 0.90 and βc = 0.98. Due to its full
look-ahead capability, the SDP can use the available capacity to better prepare for the
upcoming low or high demand periods than the integrated model.

Table 4.13: Integrated model versus stochastic dynamic program under rolling horizon
planning.

Integrated Model SDP
βRL TC βRL TC

βc avg.[St.Dev.] avg.[St.Dev.] avg.[St.Dev.] avg.[St.Dev.]

Uncap. 0.90 95.0 [0.8] 268.0 [20.8] 95.0 [0.8] 267.8 [20.8]
0.98 99.1 [0.4] 705.4 [15.4] 99.1 [0.5] 700.1 [15.2]

Cap. 0.90 95.1 [0.7] 268.9 [20.3] 95.1 [0.7] 264.4 [19.7]
0.98 99.0 [0.5] 726.9 [24.0] 99.0 [0.5] 711.7 [21.2]

4.6 Conclusions

We addressed a stochastic capacitated lot-sizing problem by introducing a stochastic
dynamic program and three MILPs, i.e., the sequential approach, the new integrated
model, and the adjusted integrated model to deploy capacity flexibilities under rolling
horizon planning.

In the experimental study, we first compared the performance of the integrated model
to the widely-used sequential approach. Figure 4.6 summarises our main findings from
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the comparison of these modelling approaches. According to our experimental study, we
found that, if capacity is binding, the integrated model leads to lower total costs than the
sequential approach for an identical average realised service level under rolling horizon
planning. However, we noticed that, if capacity is not binding, the integrated model
leads to excess dynamic safety stocks since it ignores re-planning opportunities to exploit
capacity flexibilities under rolling horizon planning. The new adjusted integrated model
could outperform the sequential approach since it was able to reduce dynamic safety
stocks by correctly anticipating re-planning opportunities. The comparison under open
loop planning showed that, if capacity is not binding, the integrated model returned lower
total costs than the sequential approach for an identical realised service level but it was
not always true if capacity is limited.

Figure 4.6: Choosing an appropriate modelling approach with respect to the planning
approach and capacity level.

The comparison of the integrated model with the SDP showed that, under the uncapac-
itated case, the integrated model can provide near optimal solutions if the target service
level is low. However, the absolute performance of the integrated model decreases if we
set a high target service level because the integrated model yields excess safety stocks. If
capacity becomes binding, the absolute performance of the integrated model reduces due
to the lack of a full look-ahead capability that would have allowed the anticipation of low
and peak demand periods for an optimal assignment of the limited capacity.



Chapter 5

Integrated Lot-sizing, Scheduling
and Dynamic Safety Stock Planning:
A Real-World Case Study

We develop and apply a new approach for integrated production lot-sizing and safety stock
planning under serially-correlated demands. In the literature, as well as in most Advanced
Planning Systems (APS), stochastic lot-sizing and scheduling optimisation problems are
often translated into a deterministic problem by entering predetermined safety stock tar-
gets into the production planning model. The sequential approach represents an approx-
imation because the safety stock requirement depends on the production plan, which is
not known a priori. Ideally, both problems should be addressed simultaneously in an in-
tegrated model. We develop a Mixed-Integer Linear Program (MILP) that endogenously
determines dynamic safety stocks over replenishment cycles with continuous and non-
equidistant lengths according to the uncertainty parameters for both uncorrelated and
serially-correlated demands. To account for re-planning opportunities under rolling hori-
zon planning, we introduce a new method that prevents an excessive build-up of safety
stocks. We use the integrated model to help our industrial partner from the process in-
dustry with the quantification of the cost-saving potential over the traditional sequential
approaches. Based on a real-world dataset, we find that feeding cost-optimised safety
stock targets into the sequential approach instead of employing a widely-used Rule-of-
Thumb (RoT) can already deliver cost savings of up to 10%. Further cost improvements
of up to 20% over the cost-optimised safety stock targets can be obtained by the integrated
model. The integrated approach can provide an additional 5% in cost saving if it takes

76
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serially-correlated demand into account. Despite its complexity, the integrated model is
also appealing for practical purposes because it produces robust highly promising results
and does not require any separate safety stock specification upfront.

5.1 Introduction

The acquisition of effective production plans that provide high customer service at a
low cost plays a critical role in many industries including, e.g., the consumer products,
electronics, paper, pharmaceutical, steel and the chemical industry (Jans and Degraeve,
2008). Many use planning software such as MRP II and APS. Despite the application
of these tools, the various production constraints in real-world settings and the uncertain
nature of the product demands still render this a challenging task to achieve effective
production plans. In the concrete application example from the chemical company that
we study in this chapter, we face a limited production capacity, minimum production
quantities and times, sequence-dependent setup costs and times as well as uncertain and
serially-correlated demands.

Our industrial partner is one of the world’s largest chemical companies and has more
than 350 production plants worldwide. In order to facilitate and improve its production
planning activities within and across plants, the company has started with a widespread
implementation of APS for production planning in its plants several years ago. Although
many plants have previously created their production plans manually with the help of self-
developed spreadsheets, most of them have APS in place nowadays. The extent to which
the plants use the system’s available functionality for production planning varies consid-
erably, however. Some plants only make use of the graphical planning board (instead of
the previously used spreadsheet), but still create the actual production plan manually.
Others exploit the planning heuristics that the system offers, for instance part period bal-
ancing or the Groff heuristic (Groff, 1979). Other plants work with APS’ mathematical
programming model to optimise their production plans.

This broad range of sophistication in terms of planning, referred to as planning maturity
levels by our industrial partner, suggests a clear potential for further improvements. While
the development path and potential for the plants at the low maturity levels is rather
obvious, it is not apparent to the company management whether they should also invest
in trying to push for further improvements at the highly mature plants that already use
an optimisation model.
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The reason why the management team considers the latter option at all is the aware-
ness that even the optimisation model now available in APS has certain shortcomings. As
is common for most APS, the simultaneous lot-sizing and scheduling problem with un-
certain demands is broken down into two planning problems that are solved sequentially:
(1) A safety stock planning problem that addresses the demand uncertainty and (2) a
deterministic production planning problem that uses the predetermined safety stocks as
inputs. The production and safety stock planning problems are interrelated, however.
The safety stock needs to buffer against the demand uncertainty over the replenishment
cycle. In the stochastic-demand inventory literature, the replenishment cycle comprises of
the replenishment lead time plus the review interval. In the production planning context,
it is the time span between two consecutive production lots of a product.

Figure 5.1 illustrates a production plan for one product over twelve time periods.
Production occurs in periods 1 and 6 and is marked red. In the remaining periods (marked
blue), this product is not produced. Therefore, the first replenishment cycle extends over
5 periods, from the beginning of period 1 to the end of period 5. In order to decide about
the production quantity in period 1, we need to take into account the demands of periods
1 to 5 (including), because new material will only become available in period 6 when next
the lot is produced. If the next lot has already been produced in period 4 instead of in
period 6, the replenishment cycle is 3 periods. Consequently, the production plan clearly
impacts the safety stock requirement. On the other hand, the safety stock quantities need
to be produced at some point. Therefore, the safety stock requirement also affects the
production planning problem.

Figure 5.1: Replenishment cycle.

The open questions asked by our industrial partner for the plants at the high maturity
level refer to:

1. The appropriateness of the predetermined safety stocks that the plants currently
use in the sequential safety stock and production planning approach.

2. The potential savings achieved by using a simultaneous approach in the form of an
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integrated (stochastic) production and safety stock planning model.

While some integrated (stochastic) production and safety stock planning models exist
in the literature, none of them addresses the Stochastic General Lot-sizing and Scheduling
Problem (S-GLSP) that describes a real-world application setting like ours (see literature
review in Chapter 2 for details). Moreover, the company under study and many other
companies in practice pursue a rolling-horizon planning approach. The existing models,
however, ignore the rescheduling opportunity available under rolling-horizon planning
when the required safety stocks are determined. If there is excess production capacity, it
might be beneficial to reduce a product’s safety stock and save inventory holding costs
by taking advantage of the possibility to pre-pone the production of the next lot where
necessary. In order to reflect this rescheduling opportunity and its anticipation accurately,
a stochastic dynamic programming model needs to be used (e.g., see Section 4.3 in the
previous chapter). Such an approach suffers from the curse of dimensionality, however.
Consequently, it is of only limited use in practice. For practical purposes, it is desirable to
find a way to consider the rescheduling flexibility in a mixed-integer programming model
formulation.

In our search for answers to the questions raised by our industrial partner, we actually
make the following contributions:

• From a modelling and methodology point of view, we introduce an MILP for the
stochastic lot-sizing and scheduling problem that determines the exact length of
a product’s replenishment cycle and thus enables the endogenous sizing of the re-
quired safety stocks based on the demand uncertainty parameters during the re-
plenishment cycle. The demand uncertainty parameters during the replenishment
cycles are determined in the presence of serially-correlated demands. We develop a
bivariate linearisation technique to approximate non-linear dynamic safety stock re-
quirements. We present a new method to adjust the safety stock levels, thus taking
advantage of the flexibility provided through the regular re-scheduling opportunities
under rolling horizon planning. We propose a period-based decomposition approach
for obtaining a promising solution in a reasonable amount of time since even the
deterministic lot-sizing and scheduling problem is known as an NP-hard problem.

• We explore the cost-saving potential that results from the use of more sophisticated
modelling approaches based on a real-world dataset from the chemical company
under study from a managerial point of view. We find that, even if a high level
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of sophistication in terms of production planning has already been achieved in the
form of the common sequential approach, the optimisation of the exogenous safety
stock targets can provide significant gains. Compared to a widely-used RoT at the
company, the implementation of cost-optimised Days-of-Supply (DoS) safety stock
targets according to a stochastic-demand inventory control logic shows a cost-saving
potential of up to 10% for both a common Days-of-Supply (cDoS) target for all
products and individual Days-of-Supply (iDoS) targets in the studied scenarios. In
all settings, further improvements of up to 20% over the cost-optimised DoS safety
stock targets can be obtained with our newly developed integrated production and
safety stock planning model. If we take serially-correlated demand into account,
further improvement up 5% can be achieved. Even though the integrated models
are more complex, it is appealing, also from a practical point of view, to apply them
because they are robust and the planner is not required to specify the replenishment
cycle length for the safety stock determination, since this is all done endogenously.

The remainder of this chapter is organised as follows. Section 5.2 outlines the real-world
planning problem of the company under study and its current planning practice. Section
5.3 presents the general problem description, the assumptions and notation. Section
5.4 shows how we estimate demand uncertainty. Section 5.5 presents the mathematical
model formulations for the sequential approaches. In Section 5.6, we develop the inte-
grated approach. Section 5.7 provides the solution approaches. Section 5.8 compares the
performance of the different planning approaches numerically and Section 5.9 concludes
this chapter.

5.2 The Production Setting and Current Planning
Practice of the Company under Study

The production plant under consideration is a medium pressure multi-purpose system.
The input materials for the chemical reaction are provided through pipelines in any quan-
tity required. Therefore, we can assume ample supply. Through different reaction vari-
ants, seven final products can be produced. Six of them are sold to external customers,
one is targeted solely for internal usage at another plant. Due to the special organisa-
tional structure of the company, it is common to have not only external, but also internal
customers. Whenever a product is to be produced, a setup time of 3 days, as well as a



5.2. The Production Setting and Current Planning Practice 81

sequence-dependent setup cost of several tens of thousands of Euros is incurred. Due to
technical and quality restrictions, a minimum lot size of 14 days of production is required
for each product. The output products are stored in tanks with different volumes holding
between 140 and 510 tons. If the product demand cannot be fully satisfied from stock,
excess demand is backlogged.

Demands for the different products fluctuate over time (see Figure 5.2). According to
the company’s current planning guidelines, the creation of a forecast is generally required
for all products with external demand. Therefore, for six of the seven products the
marketing and sales department creates monthly forecasts and forwards the numbers to
the production planner via APS. Each month the planner receives updated forecasts
for the next 12 months. For the internal Product 7, no forecast is generated. For this
particular product, the production planner can align the production plan very well with
the downstream plant (internal customer). Information is exchanged on a regular basis.
Therefore, it can be assumed that there is no uncertainty at all attached to this product
demand, neither with respect to timing nor to quantity.

The forecast data form the basis for the generation of a new production plan each
month. The planner feeds these data into the mathematical optimisation module of APS.
Before starting the optimisation run, the inputs can be manually modified, if required.
For instance, if a bias in the forecasting process has been observed in the past, the planner
can try to correct it. Ideally, the correction should take place at the source where the
forecast is generated. However, the power to do so lies with the marketing and sales
department, and thus outside the planner’s discretion. The planner can only “correct” it
at a later stage, which he controls, namely right before the production plan is created.
This situation is similar to the one described in Manary and Willems (2008).

The planner uses the standard APS optimisation model, which is a deterministic lot-
sizing and scheduling model formulation with a predetermined safety stock target for each
product, to generate the production plan for the upcoming 12 months. The plan for the
next month gets implemented and a new plan is created in the upcoming month based
on the realised demand and the updated forecast data. This represents a rolling horizon
planning approach with a planning horizon of 12 months and a re-planning interval of 1
month.

The challenge for the planner lies in the specification of appropriate safety stock tar-
gets for the different products, which are required as inputs to the optimisation model.
Currently, he uses a simple RoT. He works with a DoS approach, as recommended by
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(b) Product 2
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(c) Product 3
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(d) Product 4
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(e) Product 5
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(f) Product 6
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(g) Product 7

Figure 5.2: Historical demand time series for the different products.

many software vendors (see Neale and Willems, 2015). Since the production plan can be
adjusted every month, the planner chooses a common DoS target of one month, i.e., 30
days, as the safety stock target for each product.

Given this planning setting, the goal of this chapter is two-fold. First, we seek to
assess the appropriateness of the safety stock specification with the current RoT. To
this end, we compare it with an approach that sets the safety stock targets based on
cost optimisation considerations as is common in stochastic-demand inventory theory.
Second, we evaluate the cost-saving potential resulting from a transition to an integrated
(stochastic) production and safety stock planning model that endogenously determines
the safety stock requirements.

Since we do not have access to the optimisation model in the company’s APS, we
rebuild it as closely as possible. For our analysis we parametrise it with the two different
exogenous safety stock specifications (RoT vs. cost-optimal). The advantage of using our
own deterministic model formulation in the sequential approach is that we can clearly
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identify the value added by the safety stock integration in a next step, because we can
ensure that both models only differ in terms of the safety stock aspect. Such an assessment
would not be straightforward in case of the APS optimisation model. In the following
sections we outline our mathematical model formulations.

5.3 General Problem Description, Assumptions and
Notation

We consider a single machine that can produce multiple products p ∈ P = {1, ..., |P|}.
We formulate the lot-sizing and scheduling problem as a tailored hybrid GLSP model
that combines large-bucket and small-bucket time scales. The finite planning horizon is
divided into equidistant macro periods t ∈ T = {1, ..., |T |} (large buckets), representing
months and continuous, non-equidistant micro periods s ∈ S = {1, ..., |S|} (small buck-
ets). Multiple products can be produced within a macro period, but only a single product
is produced in every micro period. St ⊂ S denotes the set of micro periods within the
macro period t, and set Send ⊂ S summarises the last micro periods of all the macro
periods. Moreover, slastt ∈ Send represents the last micro period of macro period t, and
ts returns the corresponding macro period of micro period s. The starting time of the
planning horizon is given as τ 0(= 0). The production capacity consumption (in time per
unit) of product p is given by coefficient kprdp . The available production capacity is defined
per macro period in terms of time, Kprd

t . There is a minimum production quantity qmin
p

per product and a minimum production time zminq, which is identical for all products. All
processed products are stored in dedicated tanks with a product-specific limited storage
capacity K inv

p . The storage capacity consumption per unit of product p is given as kinvp .
The daily demand of each product p is random, non-stationary variable and follows

a normal distribution with the mean µp and the standard deviation σp. The probability
density and cumulative distribution functions of the standard normal distribution are
indicated by φ(zp) and Φ(zp) respectively. We assume the demand of each product to
be independent of the other products, but may be serially-correlated over time. Each
processed item is available to satisfy demand as soon as it leaves the production process
however we do not have to wait for the entire production lot to be completed. Unsatisfied
demand is backlogged.

The goal is to size the safety stock targets and derive a solution in terms of lot-sizes
and detailed schedules that minimises the total costs. The total costs consist of four
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components: (1) A linear inventory holding cost per product, chp, (2) a backlogging cost,
cblp , which corresponds to the product’s contribution margin, (3) a sequence-dependent
setup cost for switching from product p to m, csetuppm , (as well as a setup time zsetuppm ) and
(4) a penalty cost for deviations from the safety stock target of product p, csstp . The latter
cost component is only used in the sequential approach. In integrated approaches, we
penalise the expected backlogged quantities at the end of the replenishment cycles.

Since we consider using a rolling-horizon planning approach, we might have to fix the
production quantity of a specific product right at the start of the new planning horizon
in order to fulfil the minimum production quantity constraint from the previous planning
run, given as qinitialp . Moreover, for each planning run, we know the initial inventory
quantity of each product, yp0, and the initial setup configuration on the machine, δp0.

5.4 Calculation of Forecast Bias and Demand Uncer-
tainty

In this section, we try to answer the question how to estimate the forecast error for each
product. This is what we need to buffer against with safety stock. We use an out-of-sample
evaluation approach. We divide the provided demand and forecast time series into an
estimation phase and an evaluation phase. In the estimation phase, t ∈ E = {1, . . . , |E|},
we compute the forecast uncertainty and the forecast bias. In the evaluation phase,
t ∈ V = {|E| + 1, . . . , |E| + |V|}, we conduct the numerical comparison between the
different production planning approaches, which we develop in this chapter. We pretend
that this time span (for which we already know the actual demand realisations) represents
the future, so that we can simulate the performance of the different models under real-
world conditions.

For the computation of the forecast measures in the estimation phase, we follow Cachon
and Terwiesch (2012), Chapter 12. In the interest of an easy presentation, we drop the
product index p in the following exposition. For each forecast step i ∈ F = {1, . . . , |F|},
i.e., for all 1-month ahead forecasts, 2-month ahead forecasts and so on, we compute the
mean and standard deviation over all months in the estimation phase, t ∈ E = {1, . . . , |E|},
of the ratio between the actual demand in period t (indicated by at) and the forecast value
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(indicated by ft−i,t) for this month as it was generated i months in advance:

Mean(DFi) = 1
|E|

|E|∑
t=1

at
ft−i,t

, ∀i ∈ F (5.1)

SD(DFi) =

√√√√√ 1
|E| − 1

|E|∑
t=1

(
at
ft−i,t

−Mean(DFi)
)2

. ∀i ∈ F (5.2)

In case of a perfect forecast for step i, Mean(DFi) = 1. If Mean(DFi) is larger
(smaller) than 1, there is a negative (positive) forecast bias. By multiplying the respec-
tive mean and standard deviation with the future forecast for a particular month in the
evaluation phase and beyond, i.e., periods t = |E|+ 1, . . . , |E|+ |V|+ |F| − 1, we convert
the relative forecast accuracy measure into an absolute one. (Note that the time index t
runs until time period |E|+ |V|+ |F| − 1, because at the end of period |E|+ |V|, we still
need to create a production plan based on the forecasts for the next |F| − 1 months so
that the production in |E|+ |V| is planned based on the 1-month ahead forecasts.) Thus,
we obtain the bias corrected point forecast (forecast mean) that we use for the MILP
models in the sequential and integrated approaches as

f̃t−i,t = Mean(DFi) · ft−i,t, ∀i ∈ F , t = |E|+ 1, . . . , |E|+ |V|+ |F| − 1 (5.3)

and the standard deviation that represents the forecast uncertainty used in the integrated
model and for setting the safety stock targets in the first step of the sequential model as

σ̃ft−i,t = SD(DFi) · ft−i,t, ∀i ∈ F . t = |E|+ 1, . . . , |E|+ |V|+ |F| − 1 (5.4)

Based on the Mean(DFi) ratios, we find that the forecasts are basically not biased at all
for three out of all the products 1-5. Of the other two products, one exhibits a rather
strong positive forecast bias and the other a strong negative forecast bias. For product
6, we cannot perform this kind of analysis on an individual forecast-step basis because of
the special demand structure with many zero-demand periods. The remaining number of
periods with positive demand realisations is too small for a sound statistical analysis of
every individual forecast step. Therefore, we only compute the Mean(DF )-ratio across
all positive historical demands and forecasts. We detect no bias for this product, either.
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5.5 Lot-sizing and Scheduling with Exogenous Safety
Stock Targets

Under the sequential modelling approach, we first determine safety stock targets for all
products. Next, we use them in a deterministic lot-sizing and scheduling model.

5.5.1 Rule-of-Thumb for Safety Stock Targets

For each product p we determine a safety stock target for macro period (month) t, ysstpt .
The planner’s current RoT uses a cDoS target of one month (30 days) for safety stock
sizing. Since the re-planning interval is one month, having a safety stock of one month was
considered to be reasonable by the planner. Accordingly, when creating the production
plan for the upcoming 12 periods, t = 1, . . . , 12, at the end of period 0, the planner
considers the available demand forecasts for these periods at this point in time denoted as
f̃p,0,t for each product p (see Section 5.4 for details on f̃p,0,t). Since one period corresponds
to one month in our model, the safety stock target of product p in period t is set equal
to the forecast demand of that period in order to satisfy the DoS target, i.e., ysstpt = f̃p,0,t,

for every t ∈ T .

5.5.2 Cost-based Approach for Safety Stock Targets

The RoT does not take any costs into account. In stochastic-demand inventory models,
a cost-based approach is usually suggested for the safety stock determination. As an
alternative, we use the (s,Q) optimisation approach by Silver et al. (2017) that determines
the reorder point s (hereafter sROP) under a given lot-size Q (hereafter qmin

p ) based on
an approximate total cost minimisation under stationary normally distributed demand,
which is commonly known and applied in practice. In order to account for non-stationary
demand, APS vendors recommend the use of a DoS measure, instead of a constant safety
stock target quantity (see, e.g., Neale and Willems, 2015). Even though the DoS target
is kept constant, such an approach self-adjusts the safety stock target quantity with the
(non-stationary) demand without adding complexity. We convert our determined safety
stock target quantity into a DoS measure and consider this in the specification of ysstpt .

Let c̄setupp denote the average fixed setup cost of product p.1 Lp denotes the lead time,
1Even though we face sequence-dependent setup costs in our production setting, we do not need to

worry about this in the specification of the cost model because c̄setup
p is not relevant for determining the
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which corresponds to the replenishment cycle in our production planning context. In
our production setting, we choose the lot size for each product p, qmin

p , equal to the
daily product-specific production rate times the minimum production time zminq

p , as this
represents a lower bound. The expected total cost Cp(zp) of a specific product p per
period is (see Silver et al., 2017)

Cp(zp) = µp
qmin
p

· c̄setupp + chp ·
(
qmin
p

2 + zp · σp ·
√
Lp

)
+ µp
qmin
p

· cblp · σp ·
√
Lp ·Gp(zp), (5.5)

with Gp(zp) = φ(zp)+zp·(1−Φ(zp)) and zp = x−µp

σp
for any x ∈ R. The resulting optimality

condition is Φ(zp) = 1−chp ·qmin
p /cblp ·µp. Given the optimal zp, the safety stock for product

p, ȳsstp , follows as ȳsstp = zp · σp ·
√
Lp and the reorder point as sROP

p = Lp · µp + ȳsstp .
With respect to the demand parameters, we update µp and σp at the beginning of each

year only, based on the available forecasts and their standard deviations at corresponding
point in time. Since demand is serially correlated, σp is determined by taking covariances
between two consecutive forecast values into account. Recall from Section 5.4 that f̃p,i,t
and σ̃fp,i,t indicate the point forecast and its standard deviation for product p, which is
created in period i for period t, respectively. Let cov(f̃p,0,t, f̃p,0,t+1) denote the covariance
between two consecutive point forecasts f̃p,0,t and f̃p,0,t+1. Assuming that t = 1 indicates
January and one month = 30 days we calculate:

µp = 1
12 · 30

12∑
t=1

f̃p,0,t, (5.6)

σp = 1
12 · 30

11∑
t=1

√
(σ̃fp,0,t)2 + (σ̃fp,0,12)2 + 2 · cov(f̃p,0,t, f̃p,0,t+1). (5.7)

The only parameter left to specify is Lp, the replenishment cycle. This represents the
actual challenge because it depends on the production plan that we do not know when
determining the safety stock targets. We can only use an approximation. Since we can
re-plan every month, we choose Lp = 30 days for all products.

Given this parameter specification, we can determine an optimal zp value and conse-
quently safety stock target quantity ȳsstp for each product. By dividing ȳsstp by µp we obtain

optimal safety stock level.
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iDoS targets (ȳiDoS
p ):

ȳiDoS
p =

ȳsstp
µp

. ∀p ∈ P (5.8)

If a cDoS target for the different products is desired (indicated by ȳcDoS), it follows
that

zp · σp ·
√
Lp = µp · ȳcDoS ⇔ zp = µp

σp ·
√
Lp
· ȳcDoS. ∀p ∈ P (5.9)

By inserting (5.9) into (5.5) and summing up over all products we obtain the relevant
total cost function C(ȳcDoS) and the first order condition for the optimal ȳcDoS value:

C(ȳcDoS) =
|P|∑
p=1

Cp(zp), (5.10)

dC(ȳcDoS)
d ȳcDoS =

|P|∑
p=1

chp +
µp · cblp
qmin
p

·

Φ
 µp

σp ·
√
Lp
· ȳcDoS

− 1
 µp

σp ·
√
Lp

= 0. (5.11)

We can simply use a numerical root search method to find the the optimal value of ȳcDoS.
For ȳDoS ∈ {ȳiDoS

p , ȳcDoS} we obtain ysstpt as (where ∑b
a x = 0 if a > b):

nmonth =
⌊
ȳDoS

30

⌋
, nday = ȳDoS mod 30, (5.12)

ysstpt =
t+(nmonth−1)∑

i=t
f̃p,0,i︸ ︷︷ ︸

full months

+nday ·
f̃p,0,t+nmonth

30︸ ︷︷ ︸
remaining days

. (5.13)

5.5.3 Mixed-Integer Linear Program for Lot-sizing and Schedul-
ing with Exogenous Safety Stocks

We enter the predetermined safety stock targets, ysstpt , into the following deterministic lot-
sizing and scheduling model to determine the production plan for the planning horizon
t = 1, . . . , |T |. Let dpt correspond to the (bias corrected) point forecasts f̃p,0,t that have
been created at the beginning of the planning horizon for periods t = 1, . . . , |T | (see
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Section 5.4). The notation is summarised in Table 5.1.

minTC =∑
p∈P

∑
t∈T

chp · y+
p,slastt

+
∑
p∈P

∑
m∈P

∑
s∈S

csetuppm · ηpms +
∑
p∈P

∑
s∈S

cblp · y−ps +
∑
p∈P

∑
t∈T

csstp ·ψpt, (5.14)

subject to

y+
ps − y−ps = yp0 +

∑
i∈S|i≤s

[qpi − (τ i − τ i−1) · dp,ti ], ∀s ∈ S, p ∈ P (5.15)

∑
p∈P

kprdp · qps +
∑
p∈P

∑
m∈P

zsetuppm · ηpms ≤ Kprd
ts · (τ s − τ s−1), ∀s ∈ S (5.16)

kinvp · (y+
p,slastt

− y−
p,slastt

) ≤ K inv
p , ∀t ∈ T , p ∈ P (5.17)

y+
p,slastt

− y−
p,slastt

≥ ysstpt −ψpt, ∀t ∈ T , p ∈ P (5.18)

kprdp · qps ≤ Kprd
ts · δps, ∀s ∈ S, p ∈ P (5.19)

qps ≥ qmin
p · (δps − δps−1), ∀s ∈ S \ Send, p ∈ P (5.20)

qps + qps+1 ≥ qmin
p · (δps − δps−1), ∀s ∈ Send \ |S|, p ∈ P (5.21)

τ s ≥ τ s−1 + zminq

Kprd
ts

− (1− (δps − δp,s−1)), ∀s ∈ S \ Send, p ∈ P (5.22)

(τHt − τHt−1) ·Kprd
t + (τHt+1 − τHt) ·K

prd
t+1 ≥

zminq − zminq · (1− (δp,slastt
− δp,slastt −1)), ∀t ∈ T \ |T |, p ∈ P (5.23)∑

p∈P
δps = 1, ∀s ∈ S (5.24)

δps−1 + δms ≤ ηpms + 1, ∀s ∈ S, p ∈ P ,m ∈ P (5.25)

τ slastt
= t, ∀t ∈ T (5.26)

qp1 ≥ qinitialp , ∀p ∈ P (5.27)∑
p∈P

ηpms = δms, ∀s ∈ S,m ∈ P (5.28)

∑
m∈P

ηpms = δp,s−1, ∀s ∈ S, p ∈ P (5.29)

δp,s−1 +
∑

m∈P|p 6=m
ηmps +

∑
m∈P|p 6=m

(δms −
∑

l∈P|l 6=m
ηlms) ≤ 1, ∀s ∈ S, p ∈ P (5.30)

ηpms ∈ {0, 1}, ∀s ∈ S, p ∈ P ,m ∈ P (5.31)

qps ≥ 0,y+
ps ≥ 0,y−ps ≥ 0, δps ∈ {0, 1}, ∀s ∈ S, p ∈ P (5.32)
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ψpt ≥ 0, ∀t ∈ T , p ∈ P (5.33)

τ s ≥ 0. ∀s ∈ S (5.34)

The objective function (5.14) minimises the inventory holding costs, changeover costs,
backlogging costs, and deviation costs from the safety stock targets. Constraints (5.15)
represent the inventory balance equations on the micro period level. Constraints (5.16)
ensure that the capacity requirement for the production and the changeover time in micro
period s cannot exceed the available production capacity in that micro period. Constraints
(5.17) ensure that the inventory level of product p at the end of macro period t (equal
to slastt ) will not exceed the available storage capacity for product p. The soft safety
stock constraints are given in (5.18). Constraints (5.19) present the production setup
logic on the micro period level. The minimum production quantity constraints are given
in (5.20) and (5.21). Similarly, the minimum production time constraints are presented
in (5.22) and (5.23). Since the minimum production quantities are determined based on
the minimum production times, we use constraints (5.22) and (5.23) as valid inequalities.
Equations (5.24) ensure that only one product can be produced in a single micro period
s. Note that the equality enables the preservation of the setup state over micro periods.
Constraints (5.25) ensure that changeovers are carried out at the beginning of each mi-
cro period. Equations (5.26) couple the endogenous micro periods with the exogenous
macro periods. These equations impose a fixed ending time for the last micro period of
every macro period t. Constraints (5.27) fix the production quantity in the first micro pe-
riod to guarantee the minimum production quantity constraint related to the incomplete
production from the previous planning epoch.

We further introduce valid inequalities to improve the computational efficiency. The
valid inequalities (5.28) and (5.29), known as unit flow equalities, are in fact the flow con-
servation constraints that relate the setup and changeover variables. The valid inequalities
in (5.30) take the fact into account that only four setup and changeover conditions are
possible for product p in micro periods s− 1 and s. In the first case, product p is set up
in both the micro periods s − 1 and s. In the second case, product p is set up in micro
period s− 1 but not in s. In the third case, there is a changeover for product p in micro
period s, i.e., product p is set up in micro period s but not in s − 1. Finally, in the last
case, there is no setup or changeover for product p in the micro periods s− 1 and s. For
more details and proofs of these valid inequalities, we refer the reader to Koçlar (2005).
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Table 5.1: Notation for the sequential approach.

Sets:
t ∈ T = {1, ..., |T |} set of macro periods
s ∈ S = {1, ..., |S|} set of micro periods
p ∈ P = {1, ..., |P|} set of products
St ⊂ S set of micro periods within macro period t
Send ⊂ S set of last micro periods of macro periods

Parameters:
dpt demand of product p in macro period t
qmin
p minimum production quantity for product p
zminq
p minimum production time per production activity
ysstpt safety stock target for product p at the end of macro period t
K inv
p storage capacity for product p

kinvp inventory capacity consumption for a unit of product p
Kprd
t length of macro period t (available production capacity)

kprdp production capacity consumption to produce a unit of product p
zsetuppm changeover time from product p to product m
chp inventory holding cost of a unit of product p for one macro period
csetuppm changeover cost from product p to product m
cblp contribution margin (backlog penalty cost) of a unit of product p
csstp cost of deviation from the safety stock level of product p per macro

period
yp0 initial inventory of product p at the beginning of the planning horizon
δp0 initial setup configuration of product p at the beginning of the plan-

ning horizon
qinitialp fixed production quantity which must be produced for product p in

the first micro period
τ 0 the starting time of the planning horizon (= 0)
slastt the last micro period of macro period t
ts the corresponding macro period of micro period s

Decision variables:
qps production quantity of product p in micro period s

δps setup indicator of product p in micro period s
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ηpms indicates if a changeover from product p to product m occurs at the
beginning of micro period s

τ s ending time of micro period s

y+
ps inventory on hand of product p at the end of micro period s

y−ps not fulfilled amount of demand (backlogged) of product p until the
end of micro period s

ψpt deviation of product p from its safety stock target at the end of macro
period t

5.6 Integrated Lot-sizing, Scheduling and Dynamic
Safety Stock Planning Model

5.6.1 Shortage-Cost Minimisation Approach

We apply a shortage-cost minimisation approach in order to develop an integrated model.
This integrated model is built on the GLSP model formulation we used in the sequential
approach. However, instead of specifying the approximate length of the replenishment
cycles exogenously for safety stock sizing, we integrate this task into the MILP model and
determine the exact length of the replenishment cycles that result from the production
schedule endogenously. Whenever we schedule the production of product p in a micro
period, as well as in the very first micro period of the planning horizon, we calculate
the expected backlogged quantity that results from the on-hand stock and the planned
production quantity at the end of the replenishment cycle. We penalise this expected
quantity in the objective function. Thus, the production quantities are chosen in such a
way that they account for the demand uncertainty over the replenishment cycle.

Let bRLps denote the expected backlogged quantities in micro period s if s is the start
of a replenishment cycle, otherwise it is zero. Let y−RLps denote the deterministic back-
logged quantity in every micro period s (equivalent to y−ps) except if s is the start of a
replenishment cycle. Note that, in every micro period s, only one of bRLps and y−RLps can
take on a positive value. We define ypost

ps ∈ R as the inventory level of product p in
micro period s immediately after production and before the realisation of demand, i.e.,
ypost
ps = y+

p,s−1−y−p,s−1 +qps. Moreover, let fp(x) and Fp(x) denote the probability density
and cumulative distribution functions of the demand of product p during the replenish-
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ment cycle, respectively. In the following, we present the mathematical formulation of
the integrated approach. The complete additional notation requirement for the integrated
approach is summarised in Table 5.2.

minC =∑
p∈P

∑
t∈T

chp · y+
p,slastt

+
∑
p∈P

∑
m∈P

∑
s∈S

csetuppm · ηpms +
∑
p∈P

∑
s∈S

cblp · bRLps +
∑
p∈P

∑
s∈S

cblp · y−RLps .

(5.35)

subject to

(5.15)− (5.17), (5.19)− (5.34),

bRLps =
∫ ∞

ypost
ps

(x− ypost
ps ) · fp(x) · dx, ∀p ∈ P , s ∈ S (5.36)

y−RLps ≥ y−ps − δps ·M, ∀p ∈ P , s ∈ S|s > 1 (5.37)

y−RLps ≥ 0. ∀p ∈ P , s ∈ S (5.38)

The first and second terms in the objective function (5.35) are identical to those for
the sequential approach in (5.14). We penalise the expected backlogged quantity bRLps by
the contribution margin cblp . The last term penalises the deterministic backlog within a
replenishment cycle, not including its starting micro period. This last term is only used
for clearing the backlog quantities within a replenishment cycle at the earliest possible
time as we penalise the expected backlog quantities only at the start of the replenishment
cycles. Note that, in (5.35), we have dropped the penalty cost term for deviations from
the safety stock targets (∑p∈P

∑
t∈T c

sst
p ·ψpt), which is no longer needed.

Constraints (5.15) - (5.17) and (5.19)-(5.34) from the sequential approach are also used
in the integrated model. Note that we only drop the soft constraints for the exogenous
target safety stocks (5.18). Equations (5.36) determine the expected backlogged quantity
of product p at the end of the replenishment cycle that starts in micro period s. Con-
straints (5.37) and (5.38) determine the values of the deterministic backlogged quantity
y−RLps based on y−ps in micro periods s where s is not the beginning of a replenishment
cycle.

The most challenging part of the above model formulation are the non-linear equations
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in (5.36). We can rewrite them as

bRLps =
∫ ∞

ypost
ps

(x− ypost
ps ) · fp(x) · dx = bps −

∫ ypost
ps

0

[
1− Fp(x)

]
· dx, (5.39)

where, bps is the mean of the replenishment cycle demand of product p in micro period
s. (5.39) implies that bRLps depends on bps, ypost

ps and Fp(x). Fp(x) further depends on the
demand uncertainty parameters (mean and variance) over the replenishment cycle. In the
following three sections, we focus on how to specify bRLps step by step. We first develop
an MILP to determine the mean and variance of the replenishment cycle (Section 5.6.2)
endogenously. Then, in Section 5.6.3, we show how to adjust these demand uncertainty
parameters in order to account for the re-planning opportunities that exist under rolling
horizon planning. Finally, in Section 5.6.4, we introduce a bivariate linearisation method
for determining bRLps .

5.6.2 Demand Uncertainty Parameters over Replenishment Cy-
cles

The mean or variance of the replenishment cycle demand is defined as the sum of the
mean or variance of micro periods within a replenishment cycle. Since the length of
micro periods can assume non-integer values, a macro period demand is disaggregated
(uniformly distributed) in the micro level proportional to the lengths of its micro periods.
Mathematically, the mean or variance of micro period s belonging to macro period t for
product p is written as (τ s − τ s−1) · dpt and (τ s − τ s−1) · σ2

pt, respectively. Note that,
here and hereafter, we assume that µpt = dpt and σ2

pt indicate the mean and variance of
demand of every product p in each macro period t.

• Mean of the Replenishment Cycle Demand (MRCD)

We modify the approach introduced in Section 4.4.2 to take non-equidistant micro
periods into account. Let bmax

pt denote the sum of the mean demand from (including)
macro period t to the end of the planning horizon for product p. We introduce the
decision variable b̄ps as the sum of the mean of demands of product p from micro
period s to the beginning of the next production lot, expressed in the fraction of
bmax
p,ts . If s is a production period, then b̄ps represents the MRCD. Moreover, let

ups denote an auxiliary continuous decision variable corresponding to b̄p,ts . The
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Table 5.2: Additional notation for the integrated approach∗.

Mean of the Replenishment Cycle Demand (MRCD)
Parameter:
bmax
pt Upper boundary on the MRCD
Decision variables:
bps MRCD
b̄ps MRCD in fraction of bmax

pt

ups Auxiliary decision variable

Variance of the Replenishment Cycle Demand (VRCD)
Parameter:
mmax
pt Upper boundary on the VRCD

covpij Covariance of product p for macro period i and j, where j ≥ i
Decision variables:
mps VRCD
mind
ps VRCD if demand is independent

m̄ind
ps mind

ps in fraction of mmax
pt

mcrl,micro
ps Part of VRCD refers to the correlation between different micro periods

mcrl
pt Approximation of mcrl,micro

ps on the macro level
δmacro
pt Binary decision variable that takes on the value of one if there is a setup in t

for p, otherwise zero.
ccrlpt First auxiliary decision variable
cirlpij Second auxiliary decision variable

Expected backlog
Decision variables:
ypost
ps Inventory level after production before the realisation of demand in s for p

bpost
ps Defined as y+

p,s−1 − y−p,s−1 + qps − bps
bpost+
ps Absolute value of bpost

ps

bpost−
ps −bpost

ps if bpost
ps ≤ 0

γps Binary variable that takes on value of one if bpost
ps ≤ 0, otherwise zero

bps Expected backlog at the end of the replenishment cycle which includes s
bRLps bps if s is the start of the replenishment cycle, otherwise zero
y−RLps Deterministic backlogged quantity if s is not the start of an replenishment cycle
∗ s stands for micro period s ∈ S, t for macro period t ∈ T and p for product p ∈ P



5.6. Integrated Model with Shortage-Cost Minimisation Approach 96

following mathematical model formulation determines the MRCD.

ups ≤ δps, ∀p ∈ P , s ∈ S (5.40)

ups ≥ b̄ps − (1− δps), ∀p ∈ P , s ∈ S (5.41)

ups ≤ b̄ps + (1− δps), ∀p ∈ P , s ∈ S (5.42)

b̄ps · bmax
p,ts =

∑
i∈S|i≥s

(τ i − τ i−1) · dp,ti −
∑

j∈S|j>s
upj · bmax

p,tj
, ∀p ∈ P , t ∈ T (5.43)

b̄ps,ups ≥ 0. ∀p ∈ P , s ∈ S (5.44)

According to (5.40), if micro period s is not a production period, the auxiliary
decision variable ups becomes zero. Constraints (5.41) and (5.42) ensure that ups
is exactly equal to the fractional value of the cumulative mean demand (b̄ps) if the
micro period s is a production period. Equations (5.43) determine the MRCD for
a production start in micro period s (bps = b̄ps · bmax

p,ts ) in a recursive way. These
equations sum up the mean demand of all the following micro periods and including
micro period s and subtract the sum of the auxiliary variables of micro periods j,
where j > s for every j ∈ S. Note that the values of the auxiliary variables in these
equations are converted to the quantity-based values (upj · bmax

pj ). Constraints (5.44)
indicate the non-negativity of the decision variables.

• Variance of the Replenishment Cycle Demand (VRCD)

On top of the MRCD calculation, we need to introduce a new method for computing
VRCD due to the serial correlation of the period demands. Let covpij denote the
covariance of product p for periods i and j, where j ≥ i. Moreover, we define cov∗pij
as follows.

cov∗pij = covpij, ∀p ∈ P , i, j ∈ T |i = j (5.45)

cov∗pij = 2 · covpij. ∀p ∈ P , i, j ∈ T |i 6= j (5.46)

We describe a replenishment cycle as micro periods k ∈ {i, i+ 1, ..., j − 1}, starting
from micro period i and ending at the beginning of micro period j. Let mpi denote
the VRCD of product p during the replenishment cycle, which starts from micro
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period i. The following equations specify the VRCD.

mpi =
∑

k∈S|k≥i∧k<j

∑
l∈S|l≥k∧k<j

cov∗pkl. ∀p ∈ P , i ∈ S (5.47)

We can separate equations (5.47) into:

mpi =
∑

k∈S|k≥i∧k<j
cov∗pkk︸ ︷︷ ︸

mind
pi

+
∑

k∈S|k≥i∧k<j

∑
l∈S|l>k∧l<j

cov∗pkl︸ ︷︷ ︸
mcrl,micro

pi

. ∀p ∈ P , i ∈ S (5.48)

The first term in (5.48), i.e., mind
pi , refers to the VRCD if there is an independent

demand situation, which can be determined as follows. Let mmax
pt denote the sum of

the variances of demand from (including) macro period t to the end of the planning
horizon for product p. We introduce the decision variable m̄ind

ps as the sum of the
variances of product p from micro period s to the beginning of the next production
lot, expressed in fraction of bmax

p,ts . mind
pi is determined analogously to the MILP

formulation of the MRCD by using the following mathematical model.

cps ≤ δps, ∀p ∈ P , s ∈ S (5.49)

cps ≥ b̄ps − (1− δps), ∀p ∈ P , s ∈ S (5.50)

cps ≤ b̄ps + (1− δps), ∀p ∈ P , s ∈ S (5.51)

m̄ind
ps ·mmax

p,ts =∑
i∈S|i≥s

(τ i − τ i−1) · σ2
p,ti
−

∑
j∈S|j>s

cpj ·mmax
p,tj

, ∀p ∈ P , t ∈ T (5.52)

m̄ind
ps , cps ≥ 0. ∀p ∈ P , s ∈ S (5.53)

The second term in (5.48), mcrl,micro
pi , relates to the correlation between different

micro periods. Assuming that the correlation coefficients are only known between
macro periods, the determination of the correlation between micro periods of differ-
ent lengths requires a higher sophistication level and handling effort. Thus, we use
an approximation method that only calculates the corresponding covariances on the
macro level. Figure 5.3 (lower part) illustrates a replenishment cycle on the micro
level, starting from micro period i and ending at the beginning of micro period j.
The reflection of this replenishment cycle on the macro level starts at the beginning
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of macro period ti and ends at the beginning of macro period tj. We approximate
mcrl,micro

pi by only taking the correlation between the macro periods that are fully
covered by the replenishment cycle, i.e., from ti+1 to tj−1 (denoted by mcrl

p,ti
), (see

upper part of Figure 5.3). Mathematically,

mcrl,micro
pi ∼mcrl

p,ti
=

∑
t∈T |t>ti∧t<tj

∑
k∈T |k>t∧k<tj

cov∗ptk. ∀p ∈ P , i ∈ S (5.54)

Figure 5.3: Correlation in the VRCD.

We introduce a new recursive method to determine mcrl
pt ∀p ∈ P , t ∈ T on the macro

level. We use the example illustrated in Figure 5.4 to explain the recursive method.
Assume a planning horizon with six macro periods, where production occurs in
macro periods one and four. Figure 5.4a presents all possible combinations of cov∗(.)
between these six macro periods except those taken in (5.45) into consideration.
For the sake of simplicity, we drop index p. We start from production period t = 4,
which is the starting point of the last replenishment cycle (periods four to six).
According to the above explanation, mcrl

pt in t = 4 is equal to cov∗5,6. We exclude
cov∗4,5 and cov∗4,6 since we do not know if macro period 4 is fully covered by the
corresponding replenishment cycle as defined on the micro period level (see Figure
5.3). We introduce a new continuous auxiliary decision variable ccrlpt ∀t ∈ T and set
ccrlpt = mcrl

pt for t = 4. If t is not a production period, we set mcrl
pt = 0. Since t = 4 is

a production period, the combinations of cov∗i,j for ∀i, j ∈ T |i ≤ 4 ∧ j ≥ 4 ∧ i 6= j

become irrelevant for the calculation of the correlation of replenishment cycles that
precede t = 4 (see dark grey block in Figure 5.4a). Note that i ≤ 4 and j ≥ 4 with
i 6= j no longer belong to the same replenishment cycle. In order to capture these
irrelevant combinations, we introduce another continuous auxiliary decision variable
cirlpjt ∀j, t ∈ T |j ≤ t = 4 and set cirlpjt = ∑

k∈T |k≥t∧j 6=k cov
∗
jk for ∀j, t ∈ T |j ≤ t for

t = 4. For example, for j = 2 with t = 4, we have cirlp,2,4 = cov∗2,4 + cov∗2,5 + cov∗2,6. If
t is not a production period, we set cirlpjt = 0 for ∀j ∈ T |j ≤ t.
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We move back to the beginning of the replenishment cycle with the one that starts
in t = 4, i.e., t = 1, where mcrl

pt is equal to cov∗2,3. mcrl
pt with t = 1 (block A

in Figure 5.4b) is determined as follows. We sum up all combinations of cov∗jk
∀j, k ∈ T |j > t ∧ k > j (blocks A+B+C in Figure 5.4b), less ccrlpk ∀k > t (block C)
and cirlpij ∀i, j ∈ T |i > t∧ i ≤ j ∧ j > t (block B). Both blocks C and B have already
been determined in the replenishment cycle that succeeds the current one.

Figure 5.4: Illustration of the determination of mcrl
pt .

The corresponding MILP is given as follows.

δmacro
p,ts ≥ δps, ∀p ∈ P , s ∈ S (5.55)

δmacro
pt ≤

∑
s∈St

δps, ∀p ∈ P , t ∈ T (5.56)

δmacro
pt ∈ {0, 1}, ∀p ∈ P , t ∈ T (5.57)

ccrlpt ≤ δmacro
pt ·M, ∀p ∈ P , t ∈ T (5.58)

ccrlpt ≥ −1 · δmacro
pt ·M, ∀p ∈ P , t ∈ T (5.59)

ccrlpt ≥mcrl
pt − (1− δmacro

pt ) ·M, ∀p ∈ P , t ∈ T (5.60)

ccrlpt ≤mcrl
pt + (1− δmacro

pt ) ·M, ∀p ∈ P , t ∈ T (5.61)

cirlpjt ≤ δmacro
pt ·M, ∀p ∈ P , t ∈ T , j ∈ T |j ≤ t (5.62)

cirlpjt ≥ −1 · δmacro
pt ·M, ∀p ∈ P , t ∈ T , j ∈ T |j ≤ t (5.63)

cirlpjt ≥
|T |∑
k=t

cov∗pjk −
|T |∑

k=t+1
cirlpjk − (1− δmacro

pt ) ·M, ∀p ∈ P , t ∈ T , j ∈ T |j ≤ t (5.64)
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cirlpjt ≤
|T |∑
k=t

cov∗pjk −
|T |∑

k=t+1
cirlpjk + (1− δmacro

pt ) ·M, ∀p ∈ P , t ∈ T , j ∈ T |j ≤ t (5.65)

mcrl
pt =

|T |∑
j=t+1

|T |∑
k=j+1

cov∗pjk

−
|T |∑

k=t+1
ccrlpk −

|T |∑
k=t+1

k∑
j=t+1

cirlpjk, ∀p ∈ P , t ∈ T (5.66)

mcrl
pt , ccrlpt ∈ R, ∀p ∈ P , t ∈ T (5.67)

cirlpjt ∈ R. ∀p ∈ P , j ∈ T t ∈ T |j ≤ t (5.68)

Constraints (5.55) ensure that δmacro
pt becomes 1 if any of the micro periods in macro

period t are set up for product p. Constraints (5.56) guarantee that δmacro
pt becomes

zero if no setup is configured for product p in any of the micro periods in macro
period t. Constraints (5.57) indicate the binary decision variables. Constraints
(5.58) and (5.59) set the first auxiliary variable to zero in non-production periods.
Constraints (5.60) and (5.61) set the first auxiliary decision variable equal to mcrl

pt

if t is a production period. Constraints (5.62) and (5.63) set the second auxiliary
variable to zero in non-production periods. Constraints (5.64) and (5.65) assign
the sum of the invalid combinations of cov∗(.) in macro period t to the second
auxiliary decision variable if t is a production period. Finally, constraints (5.66)
determine mcrl

pt by summing up all the combinations of cov∗(.) between the macro
periods following t except those from (5.45), less the combinations that have already
been considered in two auxiliary variables ccrlpk , k > t and cirlpjk, where k > t and
j > t ∧ j ≤ k. The constraints in (5.67) and (5.68) indicate that the auxiliary
decision variables can assume either positive or negative values, depending whether
the serially-correlated demand is positive or negative.

5.6.3 Re-planning-Opportunity Adjustment under Rolling Hori-
zon Planning

Under rolling-horizon planning, the production schedule, and thus also the previously
determined replenishment cycles, can be changed at regular intervals. Changes are most
likely in settings with a lot of excess (safety) capacity. We found in the previous chapter
that, if we ignore this additional flexibility, the placement of dynamic safety stocks over
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replenishment cycles can result in excessive stocks. We can reduce dynamic safety stocks
and save the corresponding costs by arranging for them to cover only part of the demand
uncertainty over the replenishment cycle. The remainder is dealt with by the safety
capacity and the resulting possibility to re-plan.

In the previous chapter, we introduced a re-planning opportunity coefficient αp (see
Figure 4.2 in Section 4.4.3) in order to divide uncertainty during the replenishment cycle
between the safety stock and the safety capacity. We used a simple method to specify αp
according to the available average excess capacity.

In order to account for the additional flexibility, we introduce a new period-dependent
scaling factor αpit where ∀p ∈ P , i ∈ T , t ∈ T |t ≥ i. We define the scaling factor αpit
as the probability that the demand uncertainty for product p in period t needs to be
covered by safety stock (inventory option) during the production in i where t ≥ i. We
use the example illustrated in Figure 5.5 to explain the scaling factor αpit. Consider a
production plan where periods 2 and 8 represent production periods (marked in red).
When producing in period 2, we keep safety stock to cover demand uncertainty during
periods 2 to 7. If there is a replanning opportunity with enough capacity flexibility, we
may deploy capacity flexibility instead of keeping safety stock to cover uncertainty during
all periods between 2 and 7. For example, we may already start production in period 6
instead of in period 8 if we have enough excess capacity in period 6. If that is what we do,
then we only need safety stock to cover uncertainty for periods between 2 and 5. In this
example, αpit with i = 2 becomes 1 for every t = {2, 3, 4, 5} and αpit = 0 for t = {6, 7}.

Figure 5.5: The scaling factor αp,t,τ in period t = 2.

Being in period 2, we only need to make the advancement decision (to keep inventory
or deploy capacity flexibility) for the periods prior to the next planned production period
in 8, i.e., during the replenishment cycle that starts from period 2. The scaling factor is
set to zero for all periods t ≥ 8. Moreover, we must ensure that we have enough excess
capacity in period 6 to cover average demand during periods 6 and 7.
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In order to find the optimal values of the scaling factor αpit, we develop the following
linear program.

min C =
∑

p∈P,i∈T ,t∈T |t≥i
chp · zp · σpt ·αpit, (5.69)

subject to

∑
p∈P,k∈T |k≥t∧k<i+Lp

0.5 · (1−αpit) · ap · dpk ≤ [Kt −
∑
p∈P

ap · dpt]+, ∀i ∈ T , t ∈ T |t ≥ i

(5.70)

αpit ≥ αpi,t+1, ∀p ∈ P , i, t ∈ T |t ≥ i, t < |T | (5.71)

αpit ≤ αp,i+1,t, ∀p ∈ P , i, t ∈ T |t ≥ i+ 1, i < |T | (5.72)

0 ≤ αpit ≤ 1. ∀p ∈ P , i, t ∈ T |t ≥ i (5.73)

In the objective function (5.69), we minimise the total inventory holding costs if we
decide for the inventory option to cover demand uncertainty during all periods and over
all products. Note that zp · σpt is the required safety stock in period t for product p.

Constraints (5.70) ensure that we have enough excess capacity in period t if we decide in
period i that the next planned production lot should be advanced to period t. On the right-
hand side of constraints (5.70), the approximated excess capacity in period t is set to the
total available capacity in period t (Kt) minus the total production capacity consumption
for demand of all products in that period. Note that, for reasons of simplification, we
assume a lot-for-lot case.

On the left-hand side of constraints (5.70), we sum up the capacity requirements of the
demand from period i until i+Lp for those we decide a capacity flexibility option. i+Lp

anticipates the start of the next planned production lot where Lp indicates the average
length of a replenishment cycle. Moreover, assuming a symmetric distribution by which
excess demand only occurs in 50% of the cases, we multiply the term on the left-hand
side of constraints (5.70) with 0.5.

Constraints (5.71) indicate that the probability of choosing a flexibility option for the
demand of a period increases if a demand is far in the future. Constraints (5.72) imply
that, if a demand was assigned to the inventory option, then we do not need other re-
planning opportunities, i.e., the other scaling factors that refer to the same demand in
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period t should also be one.
Having determined the optimal values for the scaling factor αpit, we need to adjust

the values of the MRCD and VRCD. In the previous chapter, we simply multiplied the
re-planning opportunity coefficient αp with the MRCD and VRCD. In the case of the
scaling factor αpit, we need to adjust the model formulations we introduced in the previous
section for the MRCD and the VRCD.

We first present the adjusted model formulation for the MRCD. In every period i ∈ T ,
the mean demand of the periods following to i, i.e., t ∈ T |t ≥ i, which is used for
calculating the MRCD, will depend on αpit. We define a matrix of demand as Dpit =
dpt · αpit where ∀p ∈ P , i ∈ T , t ∈ T |t ≥ i. Note that, αpit = 1 if i = t. We map
this matrix on the micro level: Dpis = Dptits · (τ s − τ s−1), where ti and ts indicate the
corresponding macro period of the micro period i and s and (τ s − τ s−1) is the length
of micro period s. We further require two continuous auxiliary decision variables of uI

pis

and uII
pis where i, s ∈ S|s ≥ i. The second auxiliary decision variable (uII

pis) is used for
recursively calculating the first auxiliary decision variable uI

pis. The first auxiliary decision
variable is used for calculating the MRCD. The adjusted mathematical model formulation
is given as follows.

uI
pis ≤ δps · bmax

pts , ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.74)

uI
pis ≥ uII

pis − (1− δps) · bmax
pts , ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.75)

uI
pis ≤ uII

pis + (1− δps) · bmax
pts , ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.76)

uII
pis =

∑
k∈S|k≥s

Dpik −
∑

k∈S|k>s
uI
pik, ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.77)

bpi =
∑

k∈S|k≥i
Dpik −

∑
k∈S|k>i

uI
pik. ∀p ∈ P , i ∈ S (5.78)

Constraints (5.74) set the first auxiliary decision variable uI
pis to zero if s is not a

production period for every product p in every period i where s ≥ i. If s is a production
period, constraints (5.75) and (5.76) set uI

pis to the second auxiliary decision variable uII
pis.

In a recursive way similar to the one we introduced in the previous section in equations
(5.43), we use the auxiliary decision variable uI

pis in equations (5.77) for determining the
value of uII

pis and equations (5.78) for determining the values of bpi. Equations (5.77) and
(5.78) can be seen as the period-specific versions (i ∈ T ) of the recursive method applied
in (5.43). Note that we need equations (5.77) in order to correctly determine the values
of uI

pis in constraints (5.75) and (5.76).
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We now present the adjusted mathematical model formulation to specify mind
pi . We

define a matrix of variances of demand as Vpit = σ2
pt ·αpit where ∀p ∈ P , i ∈ T , t ∈ T |t ≥ i.

We map this matrix on the micro level: Vpis = Vptits · (τ s − τ s−1) ∀p ∈ P , i, s ∈ S|s ≥ i.
We define two continuous auxiliary decision variables of cIpis and cIIpis where ∀p ∈ P , i, s ∈
S|s ≥ i. In analogy to the adjusted model formulation for the MRCD, the following
mathematical formulation determines mind

pi ∀i ∈ S.

cIpis ≤ δps ·mmax
pts , ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.79)

cIpis ≥ cIIpis − (1− δps) ·mmax
pts , ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.80)

cIpis ≤ cIIpis + (1− δps) ·mmax
pts , ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.81)

cIIpis =
∑

k∈S|k≥s
Vpik −

∑
k∈S|k>s

cIpik, ∀p ∈ P , i ∈ S, s ∈ S|s ≥ i (5.82)

mind
pi =

∑
k∈S|k≥i

Vpik −
∑

k∈S|k>i
cIpik. ∀p ∈ P , i ∈ S (5.83)

In the last step, we change the model formulation for mcrl
pt ∀p ∈ P , t ∈ T as introduced

in (5.55) to (5.68). First, for every period i ∈ T , we determine a period-specific cov∗(·)
as cov∗pijt = cov∗pjt · αpit where ∀p ∈ P , j, t ∈ T |j ≥ i ∧ t ≥ j. The two auxiliary decision
variables introduced in the previous section for mcrl

pt receive a period-specific index ∀i ∈ T ,
i.e., ccrlpit where t ≥ i and cirlpijt where j ≥ i and t ≥ j. Moreover, we define a new auxiliary
decision variable ucrl

pit where t ≥ i, which is used for determining ccrlpit. The following
mathematical model formulation determines mcrl

pt if we apply the scaling factor αpit.

ccrlpit ≤ δmacro
pt ·M, ∀p ∈ P , i, t ∈ T |t ≥ i (5.84)

ccrlpit ≥ −1 · δmacro
pt ·M, ∀p ∈ P , i, t ∈ T |t ≥ i (5.85)

ccrlpit ≥ ucrl
pit − (1− δmacro

pt ) ·M, ∀p ∈ P , i, t ∈ T |t ≥ i (5.86)

ccrlpit ≤ ucrl
pit + (1− δmacro

pt ) ·M, ∀p ∈ P , i, t ∈ T |t ≥ i (5.87)

cirlpijt ≤ δmacro
pt ·M, ∀p ∈ P ,i, j, t ∈ T |j ≥ i ∧ t ≥ j (5.88)

cirlpijt ≥ −1 · δmacro
pt ·M, ∀p ∈ P ,i, j, t ∈ T |j ≥ i ∧ t ≥ j (5.89)

cirlpijt ≥∑
k∈T |k≥t

cov∗pijk −
∑

k∈T |k>t
cirlpijk − (1− δmacro

pt ) ·M, ∀p ∈ P , i, j, t ∈ T |j ≥ i ∧ t ≥ j (5.90)
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cirlpijt ≤∑
k∈T |k≥t

cov∗pijk −
∑

k∈T |k>t
cirlpijk + (1− δmacro

pt ) ·M, ∀p ∈ P , i, j, t ∈ T |j ≥ i ∧ t ≥ j (5.91)

upit =
∑

j∈T |j>t

∑
k∈T |k≥j

cov∗pijk

−
∑

k∈T |k>t
ccrlpik −

∑
k∈T |k>t

∑
j∈T |j>t∧j≤k

cirlpijk, ∀p ∈ P , i, t ∈ T |t ≥ i (5.92)

mcrl
pt =

∑
j∈T |j>t

∑
k∈T |k≥j

cov∗ptjk

−
∑

k∈T |k>t
ccrlptk −

∑
k∈T |k>t

∑
j∈T |j>t∧j≤k

cirlptjk, ∀p ∈ P , t ∈ T (5.93)

mcrl
pt , ∀p ∈ P , t ∈ T (5.94)

ccrlpit,ucrl
pit ∈ R, ∀p ∈ P , i, t ∈ T |t ≥ i (5.95)

cirlpijt ∈ R. ∀p ∈ P ,i, j, t ∈ T |j ≥ i ∧ t ≥ j (5.96)

The constraints in (5.84)- (5.96) are the period-specific versions of the original model
formulation introduced in (5.55) to (5.68) with an extra index of ∀i ∈ T . Note that, in
the period-specific version, we further added an intermediate step in constraints (5.92) to
determine the new auxiliary decision variable uII

pit ∀p ∈ P , i, t ∈ T |s ≥ i. In constraints
(5.86) and (5.87), we use uII

pit to specify ccrlpit.

5.6.4 Linearisation of Expected Backlogged Quantity

Given that there is bps and mps in every micro period s and every product p, we can
rewrite the equation in (5.36) as follows.

∀p ∈ P , s ∈ S :

bps(bps,mps,ypost
ps ) =

∫ ∞
ypost

ps

(x− ypost
ps ) · fp(x) · dx = bps −

∫ ypost
ps

0

[
1− Fp(x)

]
· dx,

(5.97)

where, bps presents the expected backlogged quantity of product p in every micro period
s. Note that, we temporarily use bps instead of bRLps . We will derive bRLps from bps later on.

The expected backlogged quantity depends on three decision variables bps, mps and
ypost
ps . Therefore, we face a three-dimensional non-linear function. In what follows, we

show how this can be reduced to a two-dimensional non-linear function.
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In the case of a normally-distributed demand for product p, we can work with the
standard normal distribution instead of the normal distribution by converting ypost

ps into
zps according to zps = (y+

p,s−1 − y−p,s−1 + qps − bps)/
√mps. Consequently, the expected

backlogged quantity of product p that we take in micro period s into account can be
written as follows:

bps = √mps ·
∫ ∞

zps

(x− zps) · φp(x) · dx = √mps ·
[∫ ∞

zps

x · φp(x) · dx− zps ·
∫ ∞

zps

φp(x) · dx
]
.

(5.98)

Based on the property of the standard normal distribution, that φ(x)
dx

= −x ·φ(x) holds
true, the above expression is reduced to:

bps = √mps ·
[
φp(zps)− zps · (1− Φp(zps))

]
. (5.99)

Let bpost
ps = y+

p,s−1 − y−p,s−1 + qps − bps with bpost
ps ∈ R. Thus we can write zps =

bpost
ps /
√mps. Consequently, the expected backlogged quantity function becomes a bivari-

ate non-linear function, bps(mps,bpost
ps ). In bps(mps,bpost

ps ), for every t ∈ T and every
s ∈ St, we have mps ∈ [0,∑k∈T |k≥t

∑
l∈T |l≥k covpkl] and bpost

ps ∈ [yp0 −
∑
i∈S|i≤s(τ i − τ i−1) ·

dp,ti , b
post,max
ps ], where bpost,max

ps is the maximum inventory level of product p in micro period
s. We observe that bpost

ps can become negative. If we let bpost+
ps denote the absolute value

of bpost
ps , then the following equations are always true.

bps(mps,−bpost+
ps ) = bpost+

ps + bps(mps,bpost+
ps ). (5.100)

Proof of equation (5.100)

bps(mps,−bpost+
ps ) = √mps ·

[
φp(
−bpost+

ps√mps

)−
−bpost+

ps√mps

(1− Φp(
−bpost+

ps√mps

))
]
,

according to φ(−x) = φ(x) , we can write

= √mps · φp(
bpost+
ps√mps

) + bpost+
ps − bpost+

ps Φp(
−bpost+

ps√mps

)

= bpost+
ps +√mps ·

[
φp(

bpost+
ps√mps

)−
bpost+
ps√mps

Φp(
−bpost+

ps√mps

)
]
.
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As we know Φ(−x) = 1− Φ(x), we can rewrite the above expression as

= bpost+
ps +√mps ·

[
φp(

bpost+
ps√mps

)−
bpost+
ps√mps

(1− Φp(
bpost+
ps√mps

))
]

= bpost+
ps + bps(mps,bpost+

ps ).

�

Let bpost−
ps denote the term −bpost

ps if bpost
ps ≤ 0, and 0 otherwise. Furthermore, we

define a new binary decision variable γps, which takes on the value 1 if bpost
ps ≤ 0, and 0

otherwise. Then, the following MILP determines the values of bpost+
ps and bpost−

ps .

bpost+
ps ≥ bpost

ps , ∀p ∈ P , s ∈ S (5.101)

bpost+
ps ≤ bpost

ps + γps ·M, ∀p ∈ P , s ∈ S (5.102)

bpost+
ps ≥ −bpost

ps , ∀p ∈ P , s ∈ S (5.103)

bpost+
ps ≤ −bpost

ps + (1− γps) ·M, ∀p ∈ P , s ∈ S (5.104)

bpost−
ps ≥ bpost+

ps − (1− γps) ·M, ∀p ∈ P , s ∈ S (5.105)

γps ∈ {0, 1},bpost
ps ∈ R,bpost+

ps ≥ 0,bpost−
ps ≥ 0. ∀p ∈ P , s ∈ S (5.106)

In these formulations, bigM can be derived based on the maximum value of bpost
ps .

In (5.100), we approximate bps(mps,bpost+
ps ) by applying a bivariate linearisation tech-

nique. Before describing the linearisation technique, we first show, how to derive the
values of bRLps from bps in the following MILP. bRLps takes on the value of bps if s is the
starting micro period of the replenishment cycle. Note that a replenishment cycle starts
with either s = 1 or a production period.

bRLps (mps,bpost+
ps ) ≥ bpost−

ps + bps(mps,bpost+
ps ), ∀p ∈ P , s = 1 (5.107)

bRLps (mps,bpost+
ps ) ≥ bpost−

ps + bps(mps,bpost+
ps )− (1− δps) ·M, ∀p ∈ P , s ∈ S (5.108)

bps(mps,bpost+
ps ) ≥ 0. ∀p ∈ P , s ∈ S (5.109)

Constraints (5.107) and (5.108) ensure that the value of bRLps is at least equal to the
sum of bps(mps,bpost+

ps ) and bpost−
ps , if s is the first micro period or a production period,

respectively. The bigM in this formulation is determined through the maximum value
that bpost−

ps + bps(mps,bpost+
ps ) can assume. Constraints (5.109) indicate non-negativity.

In what follows, we briefly introduce a bivariate linearisation technique based on a
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triangulation method which is a similar approach to the one has been used in the previous
chapter at the end of Section 4.4.2. However, in the current problem, we will improve upon
the approximation grid in a different way. We define |N | predetermined approximation
points on the x-axis and |M| predetermined approximation points on the y-axis. For
every combination of the predetermined approximation points on the x and y axes (the
small circle points), we calculate the corresponding expected backlog. Furthermore, every
rectangle on the grid is divided into upper and lower triangles which are associated with
a binary decision variable. Depending on the triangle in which the combination of bpost+

ps

and mps is located, the corresponding value of the expected backlog is interpolated by
the associated weights to the vertices of that triangle.

Figure 5.6: Approximation grid to linearise the expected backlog function based on the
triangulation method.

We introduce a new way of improving the performance of the approximation grid by
reducing the number of binary variables. In every micro period s and for each product p,
we calculate an upper bound for mps as follows.

mmax
ps =

∑
i∈T |i≥ts

∑
j∈T |j≥ts

covpij. ∀p ∈ P , s ∈ S (5.110)

Based on mmax
ps , we can find a value of bpost,mid

ps , by which Φ(zps) → 1, where zps =
bpost,mid
ps /mmax

ps . Based on these definitions, we can prove that the following expression is
always true for every combination of mps, bpost+

ps .

if mps ≤ mmax
ps and bpost+

ps ≥ bpost,mid
ps ⇒ bRLps (mps,bpost+

ps )→ 0. (5.111)
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Proof of equations (5.111)
We know that Φ(zps) is a non-decreasing function where Φ(+∞) = 1. Moreover,

if Φ(zps) → 1, then φ(zps) → 0. According to definition, Φ(zps) → 1 with zps =
bpost,mid
ps /mmax

ps . For every mps ≤ mmax
ps and bpost+

ps ≥ bpost,mid
ps , we have zps = bpost+

ps√mps
≥ zps.

Thus, if Φ(zps) → 1, then Φ(zps) → 1 and consequently φ(zps) → 0. Recalling the
equations in (5.99), for every combination of mps and bpost+

ps where mps ≤ mmax
ps and

bpost+
ps ≥ bpost,mid

ps , we have:

bRLps (mps,bpost+
ps ) = √mps ·

[
φp(zps)− zps · (1− Φp(zps))

]
→ 0.

�

Therefore, if bpost,max
ps > bpost,mid

ps , it is sufficient to introduce only two triangles (two
binary decision variables) for the whole area where bpost+

ps ranges between bpost,mid
ps and

bpost,max
ps (see Figure 5.7).

Figure 5.7: The improved approximation grid.

In the following, we present the mathematical formulation of the approximation grid.
The notation is given in Table 5.3.

∀p ∈ P , s ∈ S :∑
i∈N̂

∑
j∈M̂

ωu
psij +

∑
i∈N̄

∑
j∈M̄

ωl
psij + ωU

ps + ωL
ps = 1, (5.112)

λu′

ps + λu′v′

ps + λu′h
′

ps = ωU
ps, (5.113)

λl
′

ps + λl
′
v′

ps + λl
′
h

′

ps = ωL
ps, (5.114)
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λu
psij + λuv

psij + λuh
psij = ωu

psij, i ∈ N̂ , j ∈ M̂ (5.115)

λl
psij + λlv

psij + λlh
psij = ωl

psij, i ∈ N̄ , j ∈ M̄ (5.116)

bpost+
ps =∑
i∈N̂

∑
j∈M̂

[(λu
psij + λuv

psij) · bpsi + λuh
psij · bps,i−1] +

∑
i∈N̄

∑
j∈M̄

[(λl
psij + λlv

psij) · bpsi + λlh
psij · bps,i+1]

+ [(λu′

ps + λu′v′

ps ) · bpost,max
ps + λu′h

′

ps · bpost,mid
ps ] + [(λl

′

ps + λl
′
v′

ps ) · bpost,mid
ps + λl

′
h

′

ps · bpost,max
ps ],

(5.117)

mps =
∑
i∈N̂

∑
j∈M̂

[(λu
psij + λuh

psij) ·mpsj + λuv
psij ·mps,j−1]

+
∑
i∈N̄

∑
j∈M̄

[(λl
psij + λlh

psij) ·mpsj + λlv
psij ·mps,j+1] + (λu′

ps + λu′h
′

ps ) ·mmax
ps + λl

′
v′

ps ·mmax
ps ,

(5.118)

bRLps =
∑
i∈N̂

∑
j∈M̂

(λu
psije

backlog
pij + λuh

psije
backlog
p,i−1,j + λuv

psije
backlog
p,i,j−1 )

+
∑
i∈N̄

∑
j∈M̄

(λl
psije

backlog
pij + λlh

psije
backlog
p,i+1,j + λlv

psije
backlog
p,i,j+1 ), (5.119)

ωu
psij ∈ {0, 1}, i ∈ N̂ , j ∈ M̂ (5.120)

ωl
psij ∈ {0, 1}, i ∈ N̄ , j ∈ M̄ (5.121)

ωU
ps ∈ {0, 1}, (5.122)

ωL
ps ∈ {0, 1}, (5.123)

λu
psij,λ

uh
psij,λ

uv
psij ≥ 0, i ∈ N̂ , j ∈ M̂ (5.124)

λl
psij,λ

lh
psij,λ

lv
psij ≥ 0, i ∈ N̄ , j ∈ M̄ (5.125)

λu′

ps,λ
u′h

′

ps ,λu′v′

ps ≥ 0, (5.126)

λl
′

ps,λ
l
′
h

′

ps ,λ
l
′
v′

ps ≥ 0. (5.127)

Constraints (5.112) ensure that, only one triangle can be used for the linearisation
for each product and micro period. Constraints (5.113)-(5.116) guarantee that only the
weights associated with the vertices of the selected triangle from (5.112) can obtain posi-
tive values. Consequently, the weights associated with the vertices of the other triangles
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become zero. Constraints (5.117) and (5.118) assign weights to the vertices of the selected
triangle to build values of bpost+

ps and mps, with respect to their corresponding predeter-
mined approximation points associated with the vertices of the selected triangle. Finally,
in constraints (5.119), the expected backlog is interpolated according to the determined
weights of the vertices of the selected triangle and the predetermined backlog values asso-
ciated with the vertices of that triangle. The non-negativity and binary decision variables
are given in constraints (5.120) to (5.127).

Table 5.3: Notation used for the approximation grid.

Sets:
i ∈ N̂ = {1, ..., |N | − 1} set of the predetermined approximation points on x-axis, corre-

sponding to the upper triangles
j ∈ M̂ = {1, ..., |M|− 1} set of the predetermined approximation points on y-axis, corre-

sponding to the upper triangles
i ∈ N̄ = {0, ..., |N | − 2} set of the predetermined approximation points on x-axis, corre-

sponding to the lower triangles
j ∈ M̄ = {0, ..., |M|− 2} set of the predetermined approximation points on y-axis, corre-

sponding to the lower triangles

Parameters:
bpsi predetermined approximation point i on the x-axis
mpsj predetermined approximation point j on the y-axis
ebacklogpsij predetermined expected backlog for the combination of bpsi and

mpsj

Decision variables:
λupsij ,λ

uv
psij ,λ

uh
psij weights associated with the vertices of upper triangles

λlpsij ,λ
lv
psij ,λ

lh
psij weights associated with the vertices of lower triangles

λu
′

ps,λ
u′v′

ps ,λu
′h

′

ps weights associated with the vertices of the big upper triangles

λl
′

ps,λ
l
′
v′

ps ,λ
l
′
h

′

ps weights associated with the vertices of the big lower triangles
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ωu
psij binary decision variable which gets one if the approximation point

is located in the upper triangle ij, otherwise zero.
ωl
psij binary decision variable which gets one if the approximation point

is located in the lower triangle ij, otherwise zero.
ωU
ps binary decision variable which gets one if the approximation point

is located in the big upper triangle, otherwise zero.
ωL
ps binary decision variable which gets one if the approximation point

is located in the big lower triangle, otherwise zero.

5.7 Solution Approaches

5.7.1 Period-based Decomposition Heuristic

The decomposition approach divides the problem into several sub-problems that are then
solved iteratively. In each sub-problem, only a reduced amount of binary decision variables
is considered. The solutions of the iterations are then reassembled to from an overall
solution.

We design our period-based decomposition heuristic as follows. We divide the planning
horizon into decision windows, approximation windows and frozen windows (see Figure
5.8). Within a decision window, all variables and constraints of the problem are taken
into account in order to find an optimal solution. A part of the solved decision window
becomes a frozen window for the following iterations. In the frozen window, we fix the
setup variables (δps) based on the results of the earlier iterations. The decision windows
are followed by an approximation window. In the relaxation window, we relax the setup
binary decision variables, the minimum production quantity constraints and the minimum
production time constraints.

We initially set the lengths of the windows for the first iteration as follows. The length
of the frozen window is set to zero and the length of the decision window is set to LDW.
Consequently, the length of the approximation window becomes |T | − 0− LDW. For the
following iterations, we increase the length of the frozen window by ∆FW and decrease the
length of the approximation window by ∆AW. Consequently, the length of the decision
window is changed by ∆DW = ∆AW −∆FW. The procedure of reducing the length of the
approximation window is repeated until the last period of the decision window is the end
of the planning horizon. Thus, the planning horizon of the last iteration only includes the
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frozen window and the decision window, as illustrated in Figure 5.8. The final solution is
the result of solving the last iteration.

Figure 5.8: Period-based decomposition heuristic.

5.8 Numerical Analysis

5.8.1 Data

We base our numerical analysis on the real-world data set described in Section 5.2. Due
to confidentiality reasons we cannot provide a more detailed data description. In addition
to the production, cost and demand information, we also received the historical forecast
time series that has been created each month for the next 12 months between January
2011 and December 2015. Due to structural changes in the time series, only data from
January 2012 onwards could be used for products 3 and 6.

For safety stock sizing, we need an estimate of the forecast error for each product as
explained in Section 5.4. We divide the provided demand and forecast time series into an
estimation phase (Products 1, 2, 4 and 5: Jan 2011 - Dec 2013; Products 3 and 6: Jan
2012 - Dec 2013) and an evaluation phase (Jan 2014 - Dec 2015).

Apart from the forecast mean and standard deviation, we also need to know the dis-
tribution of the forecast for safety stock sizing in our models. With the help of the
Kolmogorov-Smirnov test and the Chi-squared test at a significance level of 5%, we can
confirm the fit of the normal distribution for all products that are forecasted.

In addition to the original real-world dataset, we consider three variants of it in order to
analyse the sensitivity of our findings. First, we reduce the setup costs by half (Setup0.5).
In the original dataset they make up the largest chunk of the total cost. Note that the
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setup times remain unchanged. Second, we decrease the minimum production time from
14 days to seven days (minL0.5). Consequently, the minimum production quantities are
also reduced by half. Third, we reduce the production capacity consumption coefficient
by 20% for all products in order to obtain a moderately capacitated situation (Capa0.8).

5.8.2 Evaluation Approach

The sequential and integrated modelling approaches presented in Sections 5.5 and 5.6
are decision generators for prescribing lot-sizes and safety stocks (Schneeweiss, 2003).
These approaches use the forecast data available at the point in time when planning
takes place. The actual evaluation of the generated production plans must be done based
on the resulting setup, holding and backlog penalty costs under realised demands. We
compute the inventory holding costs at the end of each macro period and the backlog cost
at the end of each micro period where we penalise the newly backlogged quantity. The
24 months of the years 2014 and 2015 represent the evaluation horizon.

With respect to the safety stock target specification, we treat product 6 slightly different
from the other products. As outlined in Section 5.2, we know exactly in which periods a
positive demand occurs for this product. Consequently, we set the safety stock target to
zero in all periods with zero demand to avoid an unnecessary inventory build-up.

For the original real-world dataset, as well as for the three variants, we compare the per-
formance of the following approaches with each other, which is listed below in increasing
order of their level of planning sophistication:

1. Sequential Approach (SA) with exogenous safety stocks determined according to
the RoT;

2. SA with exogenous cost-optimised safety stocks (iDoS, cDoS);

3. Integrated Model (IM);

4. Integrated Model with serial demand CoRReLation (IM-CRRL).

In the IM we only calculate the endogenous safety stocks over the replenishment cycles
for the products the production of which is scheduled to start in the first three macro
periods. For the rest of the macro periods we use exogenous safety stocks determined
according to the cost-based iDoS logic. In the considered rolling horizon planning ap-
proach with a re-planning interval of one month, only the production plan of the first
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macro period is implemented in every planning iteration. The endogenous determination
of dynamic safety stocks in every planning iteration for the periods closer to the end of
the planning horizon would unnecessarily increase the computational complexity without
having a major impact on the final results.

We solve all models with the MIP solver FICO Xpress Optimizer 64-Bit v.28.01.04 on
a platform with sufficient RAM and the CPU specification: Intel Core i7-4770 CPU @
3.40 GHz, 64-bit.

5.8.3 Results

Period-based decomposition heuristic

We compare the computational performance of solving the Full Mixed-Integer Linear
Programs (F-MILPs) for the SA and for the IM with a period-based Decomposition
Heuristic (DH). In the SA, we use the cost-optimised cDoS safety stock targets. We
solve all models for the original dataset. In addition, we solve the SA for the other three
dataset variants.

For each model, we solve 24 planning iterations that correspond to our evaluation
horizon under rolling horizon planning with a re-planning interval of one month. We set
the maximum runtime to six hours per planning iteration for the F-MILP. In the case
of the DH, the maximum runtime for solving each sub-problem is one hour. To ensure a
fair comparison, we assume the same values for the initial inventory, the initial setup and
the fixed production quantity for both solution approaches in every planning iteration.

Table 5.4 presents the average runtimes and their standard deviations, as well as the av-
erage optimality gaps and their standard deviations. It also shows the number of iterations
(in %) where both approaches return identical objective function values (F-MILP=DH)
or the DH results in a lower value (DH>F-MILP). The last two columns present, if a
solution approach outperforms the other one (>), the mean and standard deviation of the
differences in the objective function values, given in the fraction of the objective function
value returned by the F-MILP in %.

From the SA results, we observe that solving the original datasets, Setup0.5 and
Capa0.8, is considerably easier than variant minL0.5. Average runtimes and gaps are
much lower. For these three settings, the DH obtains solutions comparable to those of
the F-MILP, but after a much shorter runtime. On average, it takes the DH less than
an hour, whereas the F-MILP needs more than three hours. For setting minL0.5, we find
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that the DH outperforms the F-MILP with respect to both the runtime and the solution
quality (lower objective function value) in most of the iterations.

For the IM, the F-MILP returns relatively high average optimality gaps after the
maximum runtime. The DH, on the other hand, returns significantly better solutions (on
average up to 14% lower objective function values) after considerably shorter runtimes.

In summary, we find that the DH is a promising solution approach for this kind of
model, which is why we use it for the numerical studies in the following sections.

Benefit of more sophisticated planning approaches.

We assess the potential benefit of an increase in the sophistication level of the planning
approaches specified in Section 5.8.2 as levels 1-4. In particular, we want to find answers
to the two questions raised by our industry partner:

1. How well does the current RoT for the safety stock determination in the SA perform
compared to a cost-based safety stock optimisation?

2. What is the cost-saving potential of using an even more sophisticated approach in
the form of the integrated (stochastic) model?

First, we analyse the original real-world dataset. The first block in Table 5.5 sum-
marises the total costs and its individual components on the different planning levels.
With respect to the first question, we observe a significant cost-saving potential if the
safety stocks are determined with the help of the cost-optimisation approach instead of
the current RoT, i.e., if we move from level 1 to level 2. The cost-optimised cDoS target
results in 7% lower costs than the RoT. With the iDoS targets, 4% in costs can be saved.
Concerning the second question, we find that an increase of the planning sophistication
level from 2 to 3 towards our integrated model shows another considerable improvement
potential. It amounts to 10% more than the cDoS target and 12% more than the iDoS
targets on level 2. If we move from level 3 to level 4, i.e., IM-CRRL, we observe another
2% cost reduction.

By looking at the individual cost components, we see that the more sophisticated
planning approaches tend to better solve the trade-off between the different cost types.
The relative importance of the setup costs as a part of the total costs increases. The
same is true for the inventory holding costs, whereas the share of the backlog costs clearly
decreases. The ability to better balance the different costs results in an improved overall
performance.
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Based on these findings, we conclude for the original dataset that it is beneficial to
increase the planning level from 1 to 2. This transition can be easily done as it does
not require any adjustment of the current optimisation model in APS. Only the safety
stock targets for the individual products need to be determined according to the cost-
optimisation logic outlined in Section 5.5.2. Consequently, the required effort is small, but
cost savings of up to 7% can be achieved, depending on the DoS approach. Even though
a transition from level 2 to 3 would require the replacement of the current optimisation
model with the integrated one and thus some additional implementation effort, the return
is significant with cost savings of at least another 10%. Moreover, another advantage of
the IM is that the planner no longer has to regularly update the safety stock targets,
because the model takes care of safety stock sizing endogenously. A further increase of
the planning level from level 3 to 4 that leads to a cost-saving potential of 2% requires
additional model complexity caused by the consideration of the serial demand correlation.
The supposedly higher initial implementation effort also needs to be seen in the light of
the effort savings to be expected over the subsequent years.

Next, we study the results of the three variants of the original dataset as a form of
sensitivity analysis of the above findings. (see Table 5.5, blocks 2-3). For setting minL0.5,
we observe that the total costs on all planning levels are higher than the ones in the
original dataset, even though the same solutions should be feasible under minL0.5. The
reason is that, due to the shorter minimum production quantities, the problem gets harder
to solve. After our maximum computation time, the solver still has not found a solution
that is at least as good as the one of the original setting. While the average gap of the
decomposition heuristic for the other variants is close to 0%, it amounts to 3% for the
setting minL0.5 (see Table 5.4). Since we are only interested in the relative performance
of the approaches on the different planning levels and not necessarily in the absolute cost
values and the performance across different datasets, we can still use these results for our
analysis.

Across the three variants, we identify a total cost improvement of up to 10% if we
move from level 1 to 2 either with the cDoS or with the iDoS target. This range is very
similar to the original dataset. In setting Setup0.5, we observe a slight cost increase of 1%
for both the cDoS and iDoS targets. This difference is insignificant if we recall that our
evaluation is only based on 24 months. A total cost difference of about 1% is less than cost
of one setup in our dataset. It is easily possible that, an extra setup is scheduled in the
last period of the evaluation interval (period 24) just to satisfy the demand beyond the
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evaluation interval, e.g., in period 25. Consequently, we can conclude that the transition
to the cDoS and iDoS targets on level 2 generally leads to a cost improvement.

Between the cDoS and iDoS targets, we do not observe significant differences. In setting
minL0.5, the cDoS target leads to a cost-saving of 10% and the iDoS to a cost-saving of
7%. In setting Setup0.5, the performance is almost the same. In setting Capa0.8, the
cDoS target provides a cost-saving of 7% and the iDoS one of 10%.

The use of the integrated model on level 3 shows a clear additional benefit for settings
with a high capacity utilisation such as minL0.5 and Setup0.5. Here, the additional cost-
saving potential compared to the cDoS is 2% and 20%, respectively. Compared to the iDoS
target, cost savings of 5% and 20% can be achieved. However, in setting Capa0.8 with a
lower capacity utilisation, we observe an increase in cost by 10% and 14% depending on the
DoS approaches. In such settings, the regular re-planning possibility provides additional
flexibility in the presence of sufficient capacity, which is limited in other settings with
high capacity utilisation. This is an obvious shortcoming of the integrated approach that
neglects this flexibility and places more safety stocks than necessary in setting Capa0.8.

If we move from level 3 to 4, we observe a total cost improvement of 2% and 5% for
variants minL0.5 and Capa0.8. In Setup0.5, we observe a slight cost increase of 1%. This
difference is again less than one setup cost and can be explained by the finite evaluation
interval. Thus, we can conclude that the integration of the serial demand correlation into
the IM leads to cost-savings of up to 5%.

With the exception of Capa0.8, we find a consistent cost improvement potential over
the sequential approaches on level 1 and 2 from our newly developed integrated models.
The results also confirm, as we have already observed in the original dataset, that the
more sophisticated approaches choose a different balance between various cost components
and thus can realise a better overall cost performance. The setup and inventory holding
cost percentage of the total costs tend to increase whereas the backlog cost percentage
decreases.

With respect to the poor performance of the integrated approaches in setting Capa0.8,
we explore the effectiveness of our proposed re-planning opportunity scaling factor in the
following section.

Benefit of re-planning opportunity scaling factor

Recall that we suggested to introduce the re-planning opportunity scaling factor, αpit
∀p ∈ P , i, t ∈ T |t ≥ i, to account for the additional re-scheduling flexibility under rolling
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horizon planning. We assume that, in settings with considerable excess capacity, the
original production plan will be modified more frequently, which results in shorter actual
replenishment cycles and thus a smaller safety stock requirement.

Table 5.6 summarises the lengths of the first replenishment cycles in 2014 for all prod-
ucts. The column “expected” shows the results that our integrated model on level 3
prescribes. The column “realised” shows the lengths of the replenishment cycles of the
final production plan under rolling horizon planning.

For the original dataset, which is characterised by a high capacity utilisation of about
96%, we observe that the difference is only minor. On average across all products, the
relative deviation is only 2%. In contrast, for the dataset Capa0.8 with an average capacity
utilisation of 81%, we find that the average relative difference is 13%; this means the
replenishment cycle length of the final production plan is shorter by 13% than the one
that the integrated approach works with for the safety stock sizing.

With the help of our new scaling factor αpit, the average relative difference decreases to
about 7%. This illustration demonstrates that our re-planning opportunity scaling factor
shows the intended effect.

Table 5.6: Replenishment cycle length comparison for first replenishment cycle in 2014.

Original Capa0.8
without αpit with αpit

Product expected realised Rel. diff. expected realised Rel. diff. expected realised Rel. diff.

1 4.38 4.77 -9% 5.47 4.16 24% 4.16 4.22 -1%
2 5.40 7.14 -32% 7.20 7.55 -5% 8.68 8.32 4%
3 12.00 11.34 6% 12.00 10.68 11% 12.00 10.74 11%
4 3.13 2.90 7% 3.80 3.34 12% 3.61 3.20 11%
5 1.42 1.13 20% 2.29 1.00 56% 1.52 1.25 18%
6 2.06 1.73 16% 1.80 1.50 16% 2.04 2.00 2%

Avg. 4.73 4.84 -2% 5.42 4.70 13% 5.34 4.95 7%

In order to assess the economic benefit of the re-planning opportunity scaling factor,
we compute the total costs of the integrated models with and without αpit.

Figure 5.9 shows that the cost-saving potential due to αpit amounts to about 7.9% for
the IM on level 3 and is more than 1.9% for the IM-CRRL. These results demonstrate
that, even though our way of determining αpit is heuristic, it can improve the performance
of the integrated approaches.

To sum up, both the DoS target approaches and the newly developed integrated mod-
els represent approaches that produce consistent results across the analysed parameter
settings and can therefore be strongly recommended for implementation in practice. Even
though both DoS targets can be integrated more easily into the existing APS than the
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Figure 5.9: Cost-saving potential due to re-planning opportunity adjustment.

IM, a single target DoS value is also more easily manageable, which is another aspect
that further advocates the use of the cDoS target in practice.

Figure 5.10 graphically illustrates the magnitude of the cost-saving potential of differ-
ent approaches compared to the widely-used RoT at our industrial partner. While the
transition from level 1 to level 2 enables mainly some quick wins in the form of moder-
ate cost savings, a further transition to the integrated model on level 3 (IM) and level 4
(IM-CRRL) usually unlocks a much larger cost-saving potential.

5.9 Conclusions

We studied a simultaneous lot-sizing and scheduling problem with stochastic demands. In
the literature, as well as in most APS, this optimisation problem is commonly translated
into a deterministic problem by the introduction of predetermined safety stocks to the lot-
sizing and scheduling model formulation. We developed a new MILP that endogenously
determines dynamic safety stocks for both uncorrelated and serially-correlated demands.
To account for the re-scheduling opportunities under rolling horizon planning, we intro-
duced a heuristic that prevents an excessive build-up of safety stocks. We used this new
model formulation to help our industrial partner with the quantification of his cost-saving
potential that results from the use of more sophisticated production planning approaches.

Based on a real-world dataset, we found that a cost-based optimisation of the exogenous
safety stock targets in the traditional deterministic APS optimisation model can deliver
considerable value compared to a widely-used rule-of-thumb at our industrial partner.
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Figure 5.10: Cost-saving potential of different planning approaches compared to the rule-
of-thumb.

Both DoS approaches can return cost-savings of up to 10%. While the performance of
both the iDoS and cDoS targets are almost similar, a single cost-optimised cDoS target
for all products is easily implementable in practice. The newly developed integrated
models, on the other hand, prove robust across all studied scenarios. This makes it
very appealing for application in practice. Compared to the cDoS or iDoS results, the
integrated approaches provide an additional improvement potential of up to 20%. Despite
its complexity, the integration of the serial demand correlation into the IM, i.e., the use
of the IM-CRRL, can return cost-savings of up to 5%. Another appealing feature of the
integrated approaches is that the planner does not have to worry about the appropriate
specification of the replenishment cycle for the safety stock determination at all, as this
is all done endogenously.



Chapter 6

Conclusions

6.1 Summary

In the context of APP, this thesis first addressed a capacity planning problem in a case
where customer demand showed significant fluctuations. This problem was faced by a
highly automated electronics manufacturer with multi-stage production lines and parallel
machines located at different facilities. In order to determine the optimal capacity levels,
three flexibility instruments were available: Shift planning, overtime account and flexible
maintenance. This thesis introduced an MILP to set capacity levels at different worksta-
tions while a cost-optimal trade-off between flexibility instruments, subcontracting and
inventories was obtained. An extensive numerical analysis validated the robustness of the
proposed approach and its computational efficiency by using either a commercial or an
open-source MIP-solver. The cost analysis of using flexibility instruments showed signif-
icant cost-saving potentials resulting from shift planning. It was further revealed that
using a combination of different flexibility instruments had a higher cost-saving potential
than the sum of the cost-saving obtained from each individual flexibility instrument. The
simultaneous application of various types of flexibility instruments was especially impor-
tant in the case of limited capacity, where obtaining higher flexibility was crucial for the
adjustment of capacity levels at workstations in response to demand fluctuations.

Following a hierarchical planning concept and moving from APP to more disaggregate
planning, this thesis further considered the S-CLSP and S-GLSP.

An optimal solution of the S-CLSP required a simultaneous determination of dynamic
safety stocks and lot-sizes in the presence of limited capacity and stochastic demand. For
this problem, dynamic safety stocks were required to meet a target customer service level
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in terms of fill-rate. This stochastic problem was described by means of an SDP. Due to
the curse of dimensionality of the SDP, three MILPs were proposed as alternative mod-
elling approaches, namely, (i) a sequential approach, which sequentially solved the safety
stock planning problem and the deterministic CLSP with predetermined safety stocks, (ii)
an integrated model based on chance-constrained programming and (iii) an adjusted inte-
grated model to include re-planning opportunities under rolling horizon planning. While
the integrated model endogenously determined dynamic safety stocks over non-equidistant
replenishment cycles, the adjusted integrated model further reduced these endogenous dy-
namic safety stocks according to the available safety capacities. In both variants of the
integrated model, a bivariate linearisation technique based on a triangulation method
was applied for the linear interpolation of the non-linear order-up-to-level function. The
linearisation technique was further improved by excluding all unnecessary binary decision
variables on the approximation grid. The computational tests revealed a significant im-
provement in the performance of the bivariate linearisation technique through the use of
the adjusted approximation grid.

In an extensive experimental study, the performances of the proposed modelling ap-
proaches were compared with each other in terms of lower inventory levels for an identical
realised customer service level under rolling horizon planning. According to the results of
the experimental study, the integrated model outperformed the sequential approach when
the available capacity was strictly limited. If there were sufficient excess capacities, the
integrated model, surprisingly, did not perform as well as the sequential approach, since
it generated excess safety stocks by neglecting the re-planning opportunities found under
rolling horizon planning. In this case, the re-planning opportunity adjusted integrated
model was able to avoid the generation of excess safety stock and resulted in a more
robust and promising performance than the sequential approach.

The comparison of the integrated model with the SDP revealed that, when we set
a high target service level under an uncapacitated case, the absolute performance of the
integrated model decreased since the integrated model yielded excess safety stocks. In the
case of limited capacity, the lack of a full look-ahead capability of the integrated model to
anticipate low and peak demand periods resulted in a higher gap to the theoretical lower
bound.

The final problem addressed in this thesis was an S-GLSP. An optimal solution of
this problem required a simultaneous determination of lot-sizes, detailed schedules and
endogenous dynamic safety stocks. This problem had not yet been addressed in the litera-
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ture. It was based on a real-world case study from a leading global company in the process
industry. In this problem, various constraints and problem-specific assumptions, such as
sequence-dependent setup times and costs, minimum production quantities and times, as
well as inventory and production capacity constraints, were involved. Furthermore, the
customer demand was serially correlated. We proposed several MILPs of different degrees
of sophistication in order to address this complex problem.

First, within a deterministic APS optimisation model, a widely-used SA with the RoT
specification of the exogenous safety stock targets was presented. Then, a new SA was
introduced, where the exogenous safety stock targets were determined through a cost-
optimisation method than an RoT. In this respect, two variants of a cDoS safety stock
target for all products and a product-specific iDoS safety stock target were proposed. Af-
terwards, a new IM based on a cost-minimisation approach was developed. The proposed
IM enabled the simultaneous determination of lot-sizes on a macro level, detailed sched-
ules on a micro level as well as endogenous dynamic safety stocks during the non-integer,
non-equidistant lengths of the replenishment cycles on a micro level. The IM was further
adjusted to account for re-planning opportunities under rolling horizon planning. Finally,
the IM-CRRL was presented, which extended the IM to take serially-correlated demand
into account.

Based on a real-world dataset and a sensitivity analysis, the cost-saving potentials
of the proposed approaches were evaluated under rolling horizon planning. The results
showed that, within a deterministic APS optimisation model, replacing the widely-used
RoT with a cost-optimised exogenous safety stock target provided substantial cost-saving
potentials. Both the cost-optimised cDoS and iDoS approaches resulted in cost-savings
of up to 10% over the RoT approach. Increasing the level of model sophistication by
using the IM instead of the SA resulted in additional cost-savings of up to 20%. The
results revealed that taking serially-correlated demand in the IM into account, i.e., the
IM-CRRL, resulted in up to 5% cost-savings, despite its complexity.

To summarise, we briefly answer the research questions given in the introduction.

(i) We first introduced new MILPs to endogenously determine demand uncertainty pa-
rameters during the non-equidistant, discrete or continuous lengths of replenishment
cycles for both the S-CLSP and the S-GLSP. Then, we applied bivariate linearisa-
tion techniques to endogenously set dynamic safety stocks by taking either a service
level into account or applying the cost minimisation approach.
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(ii) If capacity is strictly limited, using an integrated model instead of a sequential
approach is beneficial. In the case of sufficient excess capacity, there is primarily
enough flexibility to capture some of uncertainty by using re-planning opportunities
under rolling horizon planning. In this case, an integrated model, which neglects
re-planning opportunities, results in excess safety stocks. The integrated model can
only outperform the sequential approach if it adjusts endogenous dynamic safety
stocks according to re-planning opportunities.

(iii) We introduced a new MILP to take serially-correlated demand into account. Despite
its complexity, this enabled additional cost-savings of up to 5% over the approach
with the assumption of independent demand in our problem settings.

(iv) The industrial partner could achieve some quick cost savings of up to 10% within a
deterministic APS optimisation model by simply switching from a widely-used rule-
of-thumb approach for exogenous safety stock targets to a cost-based optimised
approach, such as cDoS and iDoS. A further transition to the integrated model and
the integrated model with serially correlated demand could mostly provide a much
larger cost-saving potential of up to 20%.

6.2 Limitations and Future Research

This thesis addressed single-stage cases of stochastic lot-sizing and scheduling problems.
In practice, it is also common to face multi-stage stochastic lot-sizing and scheduling prob-
lems. In a multi-stage case, the determination of the endogenous replenishment cycles
does not solely depend on production periods, but also on the endogenous replenishment
cycles during the other stages. Such interrelations complicate these types of problems
significantly. If stochasticity is mainly introduced from the customer’s side on final prod-
ucts it might in some cases be sufficient to place dynamic safety stocks only during the
final stage. If this is true, then the integrated approaches proposed in this thesis can be
easily extended to address such multi-stage problems. However, it is not yet clear how
a multi-echelon dynamic safety stock placement problem can be fully integrated into the
lot-sizing and scheduling problems. There is definitely an interest, both academically and
practically, to investigate these types of integrated approaches in future research. The
approaches proposed in this thesis can be a useful and promising staring point in this
direction, too.
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Using a shortage-cost minimisation approach in order to determine the dynamic safety
stocks led to a trivariate non-linear function that depends on the inventory position and
the mean and variance of the replenishment cycle demand. We were able to reduce this
non-linear function to a bivariate one when demand was distributed normally. However,
it is not yet clear how we can obtain a bivariate non-linear function when demand follows
distributions other than the normal one. This would be another interesting topic to work
on in the future, especially for in cases where demand is gamma distributed.

Another important aspect is the existence of re-planning opportunities under rolling
horizon planning. In Chapter 4, we used a simple heuristic method to incorporate re-
planning opportunities in terms of safety capacities in order to adjust endogenous dynamic
safety stocks. In Chapter 5, we introduced a more comprehensive approach to capture
re-planning opportunities under rolling horizon planning. Future research can focus on
applying the latter approach in similar problems. It is a matter of interest to elabo-
rately integrate the re-planning-opportunity adjustment coefficient into the integrated
approaches without increasing the complexity. Nevertheless, in order to obtain optimal
solutions, approaches like an SDP are required. Due to their computational limitations,
however, these approaches are still less attractive in practice when it comes to address-
ing industrial problems that are usually large-scale and mainly problem-specific. Thus,
improving the re-planning opportunity adjustment heuristic within an MILP system in
future research would be more appealing to the practice.

Last but not least, the proposed ideas and approaches in this thesis addressing the
S-CLSP and the S-GLSP can be applied in other types of the lot-sizing problems or
in similar fields, such as the production planning stream, where lot-sizing or detailed
scheduling is not the primary focus.
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