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Abstract

Harnessing sunlight to cover humankind’s relentlessly increasing energy demand in a
cost-efficient and scalable way is one of the most desirable future developments on Earth.
In this regard, organic solar cells – photovoltaic cells comprised of organic semiconductors
– offer the prospect of cheap light-harvesting devices that are compatible with large-
scale fabrication processes. Due to a generally disordered molecular arrangement and a
substantially lower permittivity of organic semiconductors, the processes controlling the
charge generation, transport and loss mechanisms in organic solar cells differ considerably
from those of inorganic solar cells.
The need for a deeper understanding of the physics of devices based on organic

semiconductors has driven the development of microscopic numerical models in order to
complement experimental research. Especially simulations based on the kinetic Monte
Carlo method represent a powerful tool because they allow to explicitly model the
disordered configuration of organic molecules and track the dynamic behavior of single
particles. This is a particular advantage over experiments or continuum-based models in
which the underlying single-particle effects are often concealed within effective quantities.

In this thesis, a 3D kinetic Monte Carlo model of organic solar cells is presented and
used to obtain a comprehensive picture about the charge carrier distribution, the charge
pair separation dynamics and charge recombination in the active layer. These microscopic
quantities can be linked to the macroscopic solar cell performance which allows to identify
the origin of loss mechanisms.
At first, bulk-heterojunction cells are studied. The necessity of a 3D particle-based

model is highlighted by showing that the reduction of a bulk-heterojunction to an effective
medium cannot capture the morphological effects appropriately.
Next, the effects arising from the key differences of organic (compared to inorganic)

semiconductors, namely the low permittivity and the energetic disorder, are investigated.
It was found that in case of low permittivity and large disorder insufficient charge pair
separation from the heterojunction interface leads to a strongly inhomogeneous charge
carrier distribution in the active layer with charges accumulating along the heterojunction
interface, thus leading to increased recombination. However, even slight changes in
disorder or permittivity can affect the interface density and charge separation time
drastically and can outweigh orders of magnitude of recombination rates.

At last, in a joint modeling and experimental study, an explanation for the so far not
understood origin of photocurrent in fullerene-based systems with low donor content is
provided. The effect of a hole-transfer from the dispersed donor to the fullerene phase is
proposed and the fullerene phase is identified as the ambipolar charge transport layer.
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Kurzfassung

Die Umwandlung von Strahlungsenergie der Sonne in elektrische Energie ist einer der
erstrebenswertesten Wege, um den stetig wachsenden Energiebedarf der Menschheit zu
decken. Insbesondere organische Solarzellen, Photovoltaik-Zellen basierend auf organis-
chen Materialien, erlauben es kostengünstig und großflächig hergestellt zu werden.
Die vorherrschenden Mechanismen in organischen Halbleitern, sowie Bauteilen beste-

hend aus diesen, sind bisher jedoch nicht ins Detail verstanden. Numerische Simulationen
basierend auf dem kinetischen Monte Carlo Algorithmus stellen eine hilfreiche Methode
dar, um virtuelle Modelle von organischen Solarzellen nachzubilden und tiefgehende
Einblicke in deren Funktionsweise zu bekommen. Solche Modelle erlauben es explizit
die in organischen Materialien vorherrschende ungeordnete Struktur zu implementieren
und bieten gleichzeitig Zugriff auf die zeitliche Entwicklung einzelner Teilchen. Somit
ermöglichen sie eine genauere Modellierung von organischen Solarzellen im Vergleich zu
etablierten Modellen basierend auf Kontinuums-Beschreibungen und bieten Zugriff auf
Größen, die in Experimenten oftmals verborgen bleiben.
In vorliegender Arbeit wird die Implementierung eines 3D kinetischen Monte Carlo

Modells für organische Solarzellen vorgestellt. Das entwickelte Modell wird angewandt
um ein umfassendes Bild der Ladungsträgerverteilung, der zeitlichen Entwicklung der
Trennung von positiven und negativen Ladungen und deren Rekombination zu erhalten.
Das Verhalten einzelner Teilchen kann zur Ableitung der makroskopischen Kennzahlen
der Solarzelle verwendet werden und dazu beitragen, den Ursprung von Verlusten auf
mikroskopischer Ebene zu identifizieren.

Zunächst werden Mischphasen-Zellen untersucht. Das entwickelte 3D Modell wird mit
einem makroskopischen 1D Modell verglichen, um seine Notwendigkeit hervorzuheben.

Nachfolgend wird gezeigt, dass die niedrige Permittivität und die ungeordnete Struktur
der organischen Materialien für eine stark inhomogene Ladungsträgerverteilung innerhalb
der Zelle verantwortlich sind, was zu erhöhten Verlusten führt. Schon kleine Änderungen
in Permittivität und dem Grad der Unordnung können einen bedeutsamen Einfluss auf
diesen Effekt haben und erhebliche Rekombinationszeiten aufwiegen.

Zuletzt wird das Modell angewendet, um das bisher nicht verstandene Funktionsprinzip
von organischen Solarzellen mit sehr niedrigem Donator-Anteil zu erklären. Der Effekt
eines Loch-Transfers von den Donator-Molekülen auf die Akzeptor-Phase wird vorgeschla-
gen, wonach die Akzeptor-Phase die ambipolare Transportschicht für Ladungen darstellt.
Der Effekt wird durch eine kollaborative Studie aus Modell und Experiment verifiziert.
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1. Introduction

1.1. Motivation

Solar irradiation is by far the largest, on human timescales inexhaustible source of energy
on Earth. A vast 1018 kWh of energy reach the Earth’s surface during the course of
a year in form of sunlight [1]. Compared to mankind’s total annual energy supply of
roughly 1.6× 1014 kWh as of 2015 [2], harvesting a fraction of 0.016 % of the available
sunlight would be sufficient to cover the worldwide energy demand. After all, also the
majority of fossil fuels in the Earth’s mantle, i.e. crude oil, natural gas and coal (not
fissile elements which originate from supernovae), are a product of sunlight that has been
converted by photosynthesis of plants and algae and stored in form of chemical energy in
carbohydrates. The dwindling amount of fossil fuels and the abundant availability of
sunlight make the usage of solar power inevitable on future perspectives. According to
an outlook by the Energy Information Administration [3], solar energy could provide one
third of the global energy demand by 2060.

The direct conversion of radiation into electrical energy by solar cells, officially termed
photovoltaic cells because they utilize incident photons to create an electrical voltage,
is arguably one of the most elegant ways to harness sunlight. Solar cells require no
mechanical components (such as turbines or generators), do not emit physically or
environmentally harmful waste products (such as COx, NOx, SO2, particulate matter,
which are either toxic or green-house gases) during their operation and the resulting
electrical energy can easily be converted into other forms of energy.

A downside of sunlight is that it is not particularly concentrated: on a sunny day, the
maximal solar irradiance is around 1 kW m−2 at sea level. Thus, on an area of 1 m2 and
during 10 h of sunshine around 10 kWh are deposited, which is equal to the chemical
energy stored in 1 L of gasoline. The irradiance is even lower on cloudy days and in regions
of larger latitudinal coordinates. In order to obtain the equivalent energy contained in
the gas tank of a car of 50 L (i.e. 500 kWh) during average weather conditions in middle
latitude regions (250 W m−2) with a solar cell with 20 % efficiency from a solar rooftop
with 10 m2 area, one would need 1000 h, or several months. Therefore, large-area solar
modules are required to make up for the low concentration of sunlight and collect a
sufficient amount of energy for practical applications.
Currently established solar cells are mainly based on Silicon (Si). Si is abundantly

available and the knowledge about its physical properties and processing techniques
has benefited from decades of research in the chip industry. While solar cells based on
monocrystalline Si reach efficiencies of up to 26.7 % nowadays [4], the processing of Si to

1
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Figure 1.1. – Record power conversion efficiencies of single junction organic solar cells.
Data from: Solar cell efficiency tables 2001 to 2019 (latest version [4])1.

highly pure crystals is generally expensive because it requires high-temperature processing
conditions. Furthermore, the complex manufacturing process often involves harmful
chemicals and is not easily scalable. These drawbacks have prevented the large-scale
adoption of Si solar cells, in particular for residential, private installations.
Next-generation solar cells are technologies that offer the prospect to overcome these

restrictions and allow for a cost-efficient, large-scale adaption of photovoltaic technology.
During recent years, especially solar cells comprised of organic materials, so called

Organic Solar Cells (OSCs), have become serious contenders to emerge as next-generation
solar cells and have been subject of intense research [5]–[9]. OSCs exhibit a wide range of
favorable features such as the compatibility to low-temperature manufacturing processes
with high throughput (e.g. roll-to-roll printing) [10], [11], a low energy payback time
[12], [13] and sustainability (i.e. abundant availability and recyclability) [14]. Additional
unique features such as mechanical flexibility, low weight and semi-transparency open up
the possibility for a variety of novel applications, for example small, mobile/wearable
power units or the integration of light harvesting devices in building facades.
One of the main reasons for the absent prevalence of OSCs is their lack in Power

Conversion Efficiency (PCE), i.e. the ratio by which a solar cell can convert the incident
radiant power to electrical power, in comparison to their inorganic counterparts. Figure 1.1
shows the trend in the PCE of OSCs between 2001–2019. Intense research has led to
a steady increase in efficiency and the PCE of pioneering devices reaches 13 %-14 %
[15]–[18] for single junction cells by now. A PCE of 15 % is generally considered as the
threshold for successful commercialization [19]. In combination with a 20-year lifetime
this is estimated to allow OSCs to produce electricity at a price of less than 0.07 $/kWh

1Data confirmed by National Renewable Energy Laboratory (http://www.nrel.gov/).
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(= 0.06 €/kWh) which is roughly the current cost of production (without taxes and other
charges) for electricity in the U.S. (or Germany) [12].

Just recently and for the first time, the milestone efficiency of 15 % was reported both
in a single junction [20] as well as in a multi-junction OSC [21]. While this is a truly
promising and motivating development from a commercial point-of-view, from a scientific
standpoint there is much more room for improvement as the theoretical limitation for
OSCs is estimated to be around 27 % for single junction cells [22], and consequently
even higher for multi-junction cells. Further optimization therefore requires a deeper
understanding of the physical processes and loss mechanisms in OSCs.

OSCs are based on organic semiconductors, for whose discovery in the late 1970s Heeger,
MacDiarmid and Shirakawa were awarded with The Nobel Prize in Chemistry in 2000
[23]. The vast amount of organic compounds available and the ability to tune the optical
and electrical properties of organic semiconductors, e.g. their bandgap or their response
to electric fields, by chemical engineering allows to adapt the organic semiconductors to
the desired needs of the application. This has not only been beneficial for OSCs [24]–[28],
but has also led to the development of a variety of electronic components such as organic
light-emitting diodes [29], organic field-effect transistors [30], and organic thermoelectric
generators [31], which were derived in analogy to the corresponding inorganic devices.

Compared to the extensive experimental, analytical and numerical research on inorganic
semiconductors performed during the 20th century, the understanding of the physics of
organic semiconductors is still in its infancy. There are two fundamental differences of
organic semiconductors compared to their inorganic counterparts:

(1) For one, organic materials generally lack a periodic arrangement of their constituents,
which leads to a spatially varying distribution of their energy levels.

(2) Furthermore, electric charges are only weakly screened in organics due to their
substantially lower permittivity with values around εr = 3− 4 (compared to silicon
εr = 11.7).

These differences have two important implications for the physics of organic semicon-
ductors and OSCs:

(i) Due to the spatial disorder, charges tend to be spatially confined to certain molecules
or sub-units of molecules. Charge motion in organic semiconductors takes place by
a thermally activated “hopping” process between such localized states instead of
delocalized band transport as present in inorganic semiconductors.

(ii) The absorption of light in organic materials leads to the generation of strongly
bound charge pairs/excited states (excitons) instead of free charges. In order to
obtain free charges that can be extracted, an additional separation mechanism
is required, which makes the introduction of a two-component donor/acceptor
heterojunction necessary. In order to understand the charge separation process
from the heterojunction, the dynamics of the charge pairs needs to be considered
explicitly and on a single particle level.
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A further difficulty in gaining a comprehensive picture of the functionality of OSCs
arises from the fact that the mechanisms responsible for photocurrent generation can
range over both large spatial dimensions (from charge localization at the (sub-)nm scale
to hundreds of nm of absorption layer size) and timescales (between tens of fs for charge
transfer and several µs for non-geminate recombination).

So far, optimizations in device performance have largely been achieved by experiments,
yet they often rely on "trial-and-error" approaches. Resolving charge behavior spatially
and temporally by experimental techniques is challenging due to the disordered structure
and effects on a single particle level. Furthermore, due to the complex geometry of its
constituents, closed-form analytic models of full-device OSCs are hard to formulate and
quickly become impossible to solve. Design and optimization of OSCs must therefore be
complemented by the ’third pillar’ of research: numerical simulations based on virtual
device models are valuable tools to gain insights into the charge generation, transport
and loss mechanisms in OSCs and to guide the further development and the improvement
of such.

In order to meet the mentioned complexities in OSCs by a numerical model, especially
simulations based on the kinetic Monte Carlo (kMC) method are a suitable tool to
investigate the processes governing the operation of OSCs. The kMC method shows
several advantages that make it the preferred choice to model OSCs:

(a) due to its event-based, stochastic nature it is well suited to model the thermally
activated hopping transport between localized states (as well as diffusive processes);

(b) it allows to explicitly consider single particles and evaluate their time-dependent
behavior;

(c) it is able to resolve processes on the nm/fs scale while still being able to model
entire device geometries (hundreds of nm) and slow processes (µs);

(d) it does not struggle with convergence problems, not even for disordered geometries
as existent in OSCs.

The kMC method is a mesoscopic simulation model since it bridges the gap between
macroscopic continuum models and microscopic atomistic models. Continuum-based
models are well-established in inorganic semiconductor research. They are the suitable
choice for systems in which collections of particles can be approximated by continuous
quantities, as generally the case in inorganic semiconductors with high symmetries.
However, for complex geometries on small scales and large local variations of quantities,
e.g. charge densities, they can suffer from convergence problems. Furthermore, the
implementation of single-particle effects and their time-dependency is not generally
possible. Atomistic models, on the other hand, are not capable of modelling entire
devices. While being more accurate, their computational demand quickly becomes
unfeasible for even slightly larger physical structures (several nm).
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In this work, a sophisticated, state-of-the-art 3D kMC model for OSC solar cells is
described which is utilized to perform simulations of a full solar cell device under real
operation conditions, while considering morphological and particle-based effects on the
nanoscale. The spatially and energetically disordered morphology as well as the set of
the major dynamic processes responsible for the time-dependent behavior of particles are
implemented. A particular emphasis is laid on an elaborate treatment of the electrostatic
interaction between all individual charges and the correlation effects arising herefrom.
The developed model is able reproduce the solar cell characteristics and allows to evaluate
quantities that are only accessible through microscopic modelling. Using this model, we
evaluate the spatially resolved charge carrier distributions, charge mobilities, the time-
dependent charge pair separation and recombination in OSCs as well as establish their
link to the solar cell performance and identify the major loss mechanisms. A particular
focus of the investigations is put on the influence of the two key factors permittivity and
the energetic disorder, as well as the active layer morphology.

1.2. Outline and context of publications

At first, in Chapter 2, the fundamentals of solar cells – with the focus on organic materials
as constituents – are presented. After a review of the operation principle of photovoltaic
devices and an overview of established and emerging solar cell technologies in general,
the specific properties of organic semiconductors, which differ significantly from inorganic
semiconductors (in particular in terms of the energetic disorder and the permittivity),
are introduced. The herefrom resulting implications for energy and charge transport in
OSCs, as well as the role of the active layer morphology, are presented in the following
in order to introduce the necessary theoretical background to understand the model
implementations. Lastly, pathways how to improve the efficiency of OSCs are described
briefly.
Chapter 3 presents the essence of the kMC algorithm. A brief historical review of

the development of kMC simulations and its versatile applicability gives the reader an
impression of the scope of kMC simulations. It follows a mathematical derivation of the
algorithm and a blueprint of the general flow of the application of a sequential kMC
algorithm. Parts of Chapter 3 have been published in [32].
Chapter 4 merges the two preceding chapters and shows the specific implementation

of the fundamental processes in OSCs into an event-based kMC framework to form a
comprehensive, three dimensional model for OSCs. The beginning of the chapter provides
a literature survey of state-of-the art modelling approaches for OSCs and highlights the
specific advantages of the implementation that is used within this thesis. Then, the setup
of the device and the implementation of all processes is described in detail. The input
parameters and evaluation details are presented and their applicability is discussed.

After the theoretical background and the description of the model, the following four
chapters present different applications of the kMC model to address current issues in
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OSC research.
In Chapter 5, the need for a 3D model of the active layer morphology is highlighted by

comparing the kMC model to a Drift-Diffusion (DD) implementation. This is particularly
important in Bulk-Heterojunction (BHJ) OSCs because the important processes for the
generation of photo-current, i.e. the transition from optical excitation to free charges,
occur at the heterojunction interface. We show that these processes cannot be captured
by reducing the active layer to an effective medium with effective solar cell parameters.
The differences between the models are elucidated by comparing the device characteristics
and the charge carrier distributions within the active layer. The content of this chapter
has been published in [33].
In continuation to the drawbacks of the 1D model, which concern mainly interface

effects, it follows in Chapter 6 a demonstration of what can be achieved with the 3D
kMC model: the distribution of charge carriers within a bulk-heterojunction organic solar
cell and its performance are investigated with respect to the energetic disorder and the
permittivity. It was found that charges in low-permittivity and highly disordered organic
blends accumulate at the heterojunction interface, which has a considerable effect on
charge recombination, which we quantify in turn. The results presented in this chapter
are based on [34].

Next to the analysis of steady state quantities, Chapter 7 demonstrates the power of a
time-dependent kMC model: the separation dynamics of exciton-generated electron-hole
pairs from the BHJ interface are explicitly extracted, statistically analyzed over a large set
of charge pairs and separation times are quantified. The separation times in dependence
of the permittivity and the disorder are put into relation to the recombination times as the
loss mechanism competing with separation. This exceeds the capabilities of continuum
models, which lack the consideration of the underlying behavior of single charges. It
is shown that even small changes in permittivity and disorder can outweigh orders of
magnitude of recombination rates, which allows to formulate guidelines for optimization
of the separation process. The results presented in this chapter are based on [35].
Chapter 8 shows that the kMC model is not only able to help understand effects in

BHJs but also in newly arising OSC device architectures. In a joint experimental and
numerical study, we present a model explaining the origin of photocurrent in fullerene-
based solar cells with low donor concentrations. The results provide a theory for the
not yet understood working mechanism of OSCs at low donor concentrations below the
percolation threshold. The content of this chapter has been published in [36].

In the end, Chapter 9 provides a summary and a conclusion.

1.3. Preliminary work

Preliminary work carried out within T. Albes, “Kinetic Monte Carlo Modelling of Bulk-
Heterojunction Organic Solar Cells”, Diplomarbeit (unpublished), submitted to the
Department of Physics, Technical University of Munich, Munich, Germany (quoted [37]
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in the following), in May 2014 by me, Tim Albes, has been incorporated into this thesis
in agreement with the doctoral supervisor Prof. Dr. Alessio Gagliardi.
During the preliminary work, the foundation for this work was laid and the core of

the kMC model was set up. The theoretical background (Chapter 2 and Chapter 3) and
the implementation of the model (Chapter 4) of the thesis at hand are based on [37]
and are in parts identical to it. Chapter 2 and Chapter 3 are a summary of knowledge
about OSCs and the kMC algorithm; they have been adapted from [37]. Chapter 4 is an
updated version of the implementation described in [37].

Prior studies carried out within [37] include the validation of the model by comparison
to experimentally fabricated solar cells as well as first investigations concerning the
influence of the permittivity on device performance [38], [39].
The novel research results are presented in Chapters 5-8 and have been published in

[33]–[36]. Parts of [33]–[36] have also been incorporated into Chapters 1-4.
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2. Organic Solar Cells

This chapter aims to give an introduction into the field of solar cells and OSCs in
particular. In the beginning, the basic working principles of solar cells and the figures
of merit to characterize their performance are covered. A brief overview of existing
solar cell technologies bridges the gap to novel device concepts, such as active layers
based on organic materials. Organic materials exhibit fundamentally different properties
in terms of charge carrier generation and transport than their inorganic counterparts.
The concept of charge transport based on hopping between localized states in spatially
and energetically disordered semiconductors and the implications of low permittivities,
as inherent in organic semiconductors, on charge generation is explained. It follows a
description of the key working processes that take place in OSCs from light absorption to
power extraction. At last, the influence of different active layer morphologies is described
and possible pathways to improve the efficiency of OSC are presented.

Some content of this chapter is based on [37] and is in parts identical with it.

2.1. Basic principles of photovoltaics

The underlying principle for the direct conversion of radiative energy to electrical energy
is the photovoltaic effect, discovered by E. Bequerel in 1839 [40] and first explained
by A. Einstein in 1905 [41]. It can be observed in semiconductors that are exposed to
photons with energies larger than their bandgap energy. An incident photon can deposit
its energy in the semiconductor and excite an electron from a bound state over the
bandgap in an unoccupied state. This leaves a hole state behind. The charges can then
be extracted to obtain an electric current.

Specifically, three essential steps are required to convert radiation energy into electrical
energy:

1. Absorption of light and generation of electron-hole pairs
2. Separation of electron-hole pairs into free charges
3. Transport of free charges to opposite electrodes

Each device that is able to perform steps (1) to (3) is a solar cell. Therefore every solar
cell consists of a structure to account for all of these processes.
At first, to make use of the incident light an appropriate absorber material as active

layer must be used. Semiconductors are a suitable choice as active materials because
their bandgap energy usually is in the energy range of photons from sunlight and allows
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Figure 2.1. – Spectral solar irradiance. The AM0 spectrum corresponds to extraterres-
trial conditions without absorption in the atmosphere. The AM1.5 standard with an
integrated power of 1000 W m−2 resembles irradiance under an incident light angle of
48.19° on earth.1

excitation by the photovoltaic effect. The solar spectrum is shown in Figure 2.1. The
AM0 condition is the measured spectral irradiance Φ(λ) of the sun outside of the Earth’s
atmosphere. Different absorption bands from gaseous H2O in the Infra-Red (IR) and
ozone (O3) in the Ultra-Violet (UV), as well as scattering by dust and aerosols lower the
effective radiation that reaches the Earth’s surface and can be used by terrestrial solar
cells (AM1.5 spectrum). As can be seen, the peak irradiance is in the visible range. A
semiconductor with a bandgap Eg can only absorb photons with energies that are at
least larger than its bandgap. Materials with a larger bandgap absorb less sunlight and
are transparent to wider parts of the solar spectrum. For example, silicon has a bandgap
of ESi

g = 1.12 eV at room temperature. This corresponds to a wavelength of λ = 1100 nm.
Silicon can therefore make use of photons that have wavelengths smaller than 1100 nm,
i.e. the entire UV and visible spectrum, as well as a large part of the IR spectrum.
After the absorption, an electron-hole pair is formed. The electron is lifted to a

higher, excited state and leaves an unoccupied hole-state behind. An excited state in a
semiconductor can be imagined as a Coulomb-bound pair of electron and hole, called
exciton. The binding energy of an exciton is inversely proportional to the permittivity εr
(or: dielectric constant) of the absorbing material. In silicon, exciton binding energies
are of the order of 10 meV and therefore less than the thermal energy kBT ≈ 25 meV.

1Data from National Renewable Energy Laboratory (http://rredc.nrel.gov/solar/spectra/am1.5/)

10



2.1. Basic principles of photovoltaics

photon

+-

+

-

front contact

back contact

n-type
semiconductor

p-type
semiconductor

U

(a) (b)

x

E

+

-

γ

n-type

p-type

Figure 2.2. – Generic solar cell working principle. (a) The basic structure of a solar
cell consists of an active layer in between two metallic contacts. A photon is absorbed
in the active layer and generates an electron-hole pair. The pair must be separated
and electron and hole driven towards opposite electrodes where they can be extracted
and contribute to an external current. (b) A junction between n-type conductive and
p-type conductive materials supports the separation of opposite charges and directs
the current to obtain a direct current.

Excitons are either directly dissociated by the energy of the incident photon or by
thermal fluctuations. For materials with low dielectric constants the introduction of
special heterojunctions of a donor and acceptor material is needed to overcome the high
binding energy. This is a crucial factor for the design of OSCs as will be discussed in
Section 2.5.
Electrons and holes must be spatially separated and their flow directed to opposite

electrodes in order to obtain a direct current. The desired transport is schematically
indicated in Figure 2.2a. To direct electrons to one end of the cell and holes to the
opposite side, the active layer is formed from a junction between an electron-conducting
(n-type) and a hole-conducting (p-type) material. The energetic distribution of states
in such a junction drives electrons into the n-type material and holes in the p-type
semiconductor and restrains them inside the respective material as shown schematically
in Figure 2.2b.

Electrons and holes can, depending on the specific material properties and the design of
the cell, approach each other and recombine after a characteristic lifetime. The distance
they diffuse during their lifetime is called the diffusion length. Classification into two
different classes of solar cells is possible: if the diffusion length is sufficiently larger than
the thickness of the active layer the cell can be operated as a diffusion cell where charges
motion towards the contacts is driven alone by the concentration gradient of photoinduced
charges; otherwise, an additional internal electric field is necessary to efficiently drive
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electrons and holes towards the contacts and lower recombination. Diffusion cells are
only applicable for materials with large charge mobilities, e.g. crystalline silicon. For
low-mobility materials it is necessary to generate an internal electric field for example
by controlling the size of the pn-junction by specific doping concentrations or using the
potential drop over the active layer induced by a difference in the work functions of the
electrodes.

Finally, charges arriving at an electrode contact need to be transferred to the metal. A
charge carrier concentration gradient builds up a potential difference (the photo-voltage)
that can be tapped to power an external load. Upon connecting the solar cell to an
external circuit, the photo-voltage generated by the illumination leads to a photo-current
through the connected load.
For each photon absorbed by the cell, only one electron-hole pair can be generated,

which limits the achievable photo-generated electrical current that can be extracted from
the cell. It would therefore seem plausible to use only low-bandgap semiconductors in
order to absorb photons from a wide part of the solar spectrum. However, for photon
energies that are larger than the bandgap the excess energy is lost by thermal relaxation
to the edges of the bandgap. This limits the maximum achievable photo-voltage and hence
the efficiency. On the other hand, large bandgaps reduce the amount of photons that can
be absorbed by the semiconductor and therefore reduce the photo-current. The ideal
configuration is therefore a tradeoff between current and voltage. Based on this principle,
a theoretical limit for the performance of single-junction solar cells has been derived by
Shockley and Queisser [42]. The so-called Shockley-Queisser-limit states the maximum
PCE for a single-junction solar cell under standard AM1.5 illumination condition in
dependence of the bandgap of the semiconductor. The ideal bandgap is derived to be
approximately 1.34 eV, for which a maximum PCE of 33.7 % can be achieved [1]. In
OSCs, the intermediate step of exciton separation and the lower charge mobility decreases
the maximum achievable PCE. The limit was extended to OSCs with maximum PCEs of
23 %-27 % [22], [43].

2.2. Characterization of solar cell performance

The relationship between current density output (j) and contact potential drop (U) of a
solar cell device under illumination and load provides the important Current Density-
Voltage (j-U) characteristic. It is used to evaluate the performance of a solar cell and to
extract figures of merit. The current density is defined by j = I

A , where I is the absolute
current through the surface area A of the cell.
The typical j-U-output characteristic of a solar cell with and without illumination is

illustrated in Figure 2.3. Depending on the operation regime (i.e. the applied load), the
cell exhibits different current outputs and potential drops:

• At negative bias (U < 0 V) the current saturates asymptotically against the so called
generation current (jg) and is determined by the illumination and electron-hole pair
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Figure 2.3. – Typical j-U behavior of a solar cell with important figures of merit.
Illumination shifts the dark current characteristic by the generation current in reverse
current direction. The short circuit current jsc, open circuit voltage Uoc, and fill factor
FF are the important quantities to characterize the solar cell performance.

generation. Separated electrons and holes are transported to the cathode and anode,
respectively, defining the reverse current direction. The charge migration is more
efficient for larger (negative) voltages and the saturation current is reached when
all electrons and holes from dissociated excitons are collected and none recombine
on their way. The cell dissipates power in this regime (photodetector regime).

• At no potential drop (U = 0 V), the short-circuit current (jsc) is defined. Usually
|jsc| ≤ |jg|, because at short-circuit condition a finite amount of recombination
occurs.

• Voltages between U = 0 V and U = Uoc are the regime in which a photovoltaic
device is operated because power can be extracted from the device here. The
electrical power throughput of a cell is Pcell = I · U = j · A · U . By definition, a
negative Pcell means that electrical power is released by the cell, while a positive
value stands for power dissipation. To extract the highest possible power from the
solar cell it has to be operated at the Maximum Power Point (MPP) (Umpp, jmpp)
where Pcell is maximized: Pmpp = jmpp ·A ·Umpp. The shape of the j-U curve in this
regime is crucial for the solar cell performance. This can be visualized by observing
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the fill factor
FF = Pmpp

jscAUoc
= jmppUmpp

jscUoc
(2.1)

which represents the relation of the extracted power to the maximum possible
power given by the product of short-circuit current and open circuit voltage. With
increasing applied voltage charge carriers experience a decreasing driving force
towards those electrodes at which they need to be extracted for a negative current.
Consequently, recombination as well as extraction at the wrong electrodes increases
which lowers the extracted power.

• At the open-circuit voltage Uoc, the net driving force for charge carriers to either
electrode is zero. Such a balanced transport in positive and negative current
direction yields no net current, which is the definition of the open circuit voltage
j(Uoc) = 0. Large recombination of free charge carriers can be observed here,
because the Coulomb interaction is the only force acting and driving electrons and
holes to approach each other.

• For even larger voltages U > Uoc, generated charge carriers are mostly extracted
at the wrong electrodes – in terms of solar cell operation. The cell exhibits an
exponentially increasing current behavior in forward direction, generated by charges
that were injected at electrodes and made their way through the active layer.

If no illumination is present, normal diode behavior is observed: a small current due
to thermally activated charge carriers at voltages smaller than the open circuit-voltage
and an exponential increase afterwards.

A large fill factor is obtained when j rises abruptly as U approaches Uoc. The overall
PCE of a solar cell, η, is given by the relation of the highest extracted electric power
Pmpp to the incident spectral power Pγ

η = Pmpp
Pγ

= jscAUoc FF

Pγ
, (2.2)

and is characterized by the quantities jsc, Uoc, and FF . The incident spectral power is
the integral of the spectral irradiance (Figure 2.1) over all incident wavelengths λ and the
area of the cell A, Pγ =

∫
dλΦ(λ) ·A. Increasing any of jsc, Uoc, FF (and not decreasing

one of the others at the same time) increases the overall efficiency.
From a more microscopic point-of-view, η can alternatively be expressed by

η = ηabs ηexs ηcol = ηabs ηexs (1− ηehr) (2.3)

as the product of efficiencies of all contributing internal processes, namely the light
absorption efficiency ηabs, the efficiency of exciton separation ηexs, and efficiency of the
charge migration to and collection by the electrodes ηcol. The latter can also be expressed
by its complementary process, the charge recombination efficiency ηehr as (1 − ηehr).
These quantities are important when it comes to relating the internal charge processes to
the macroscopic figures of merit of an OSC.
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2.3. Solar cell technologies

The discovery of the first solar cell dates back to the 1880s [44]. It was based on selenium
and had a PCE of around 1 %. Further research on photovoltaic technology was then
suspended for a long time due to the reliance on fossil fuels during the proceeding
industrialization. More than 70 years later, in 1954 at Bell Laboratories, a silicon solar
cell with an efficiency of 6 % was developed [45]. Since then, a variety of different solar cell
technologies have emerged and can roughly be categorized into three different generations,
based on the materials used as absorber and their device architecture.
First generation solar cells are based on crystalline silicon (c-Si) and they account

for more than 90 % of the worldwide solar cell share in terms of production [46]. The
efficiency of monocrystalline silicon cells (mono-Si) has been improved to 26.7 % [47] and
is approaching its theoretical efficiency limit of 29.4 %, based on the Shockley-Queisser
limit for its bandgap of 1.12 eV [48]. The large efficiency is a result of the high purity of
mono-Si and its favorable bandgap energy. Despite its advantages of being abundantly
available and non-toxic and although the manufacturing process has received great benefit
through the semiconductor industry, the fabrication of mono-Si is expensive due to the
high-temperature processes required to grow the highly purified crystals. Furthermore,
due to the indirect bandgap of Si and the resulting low absorption coefficient, silicon
solar cells need to have thicknesses of several hundreds of µm in order to efficiently
absorb incident light, thus requiring large amounts of material. Poly-crystalline (poly-Si)
wafers are only partially crystalline with grain boundaries between the crystalline regions.
Poly-Si is easier to process and solar cells made from poly-Si absorption layers are a
tradeoff between lower production cost and decreased efficiency of about 22.3 % [47].
According to the price learning curve [46], for a doubling in cumulative solar cell

production, the module price has dropped by an average of 24 % since the 1980s. However,
since the efficiency of pure silicon solar cells is slowly reaching the theoretical maximum
and a minimum thickness (i.e. a minimum amount of material) is required in order to
efficiently absorb light, this will eventually lead to a power-to-cost ratio for mono-Si based
solar cells that cannot be improved any further. Thus, different solar cell technologies
have gained research interest.

Second generation solar cells are so-called Thin-Film (TF) solar cells. These are made
of thin films of semiconductor materials such as amorphous Si (a-Si), microcrystalline
Si (µc-Si), Copper Indium Gallium Selenide (CIGS) or Cadmium Telluride (CdTe). TF
solar cells emerged due to expectations for low production costs and minimal material
consumption, which make these cells more attractive for industrial applications.

a-Si and µc-Si differ from c-Si as they generally lack a long-range order in the arrange-
ment of the Si atoms. While a-Si is completely disordered, µc-Si (better called nc-Si)
forms partially crystalline regions (nanocrystals, nc). The disordered arrangement leads
to many defect states in the form of dangling bonds (a hybrid silicon orbital without
a bond). These defects act as recombination centers and lower the effective charge
mobility which has a negative influence on device performance. The dangling bonds are
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commonly passivated by hydrogen atoms which yields a-Si:H or nc-Si:H with improved
electronic properties. Due to their (partially) amorphous structure both a-Si and nc-Si
effectively exhibit a direct bandgap and show better absorption coefficients than c-Si.
Therefore, smaller thicknesses are sufficient to absorb the solar spectrum. The record
PCEs of a-Si cells is 10.2 % while nc-Si based cells achieve an efficiency of 11.9 % [47].
Due to lower processing temperatures the fabrication of a-Si or µc-Si is cheaper. However,
the biggest disadvantage of disordered Si cells is their degradation due to illumination
(Wronski-Staebler effect).

CIGS and CdTe TF cells were developed because of their high stability and good
efficiencies. These cells are also much less expensive to produce than c-Si cells. CIGS cells
have the highest efficiencies of TF cells with 21.7 % [47]; CdTe cells have an efficiency of
20.0 % [47].

Although these TF solar cells are competitive to the first generation solar cells because
of lower costs and good efficiencies, they have some drawbacks. Except for a-Si, most of
the materials that these cells are made of are either becoming increasingly rare and more
expensive (In) or are toxic (Cd). Mass production of these solar cells would also require
new facilities which increases the total production cost. Because of these drawbacks,
another generation of solar cells has been inspired.
Third generation solar cells refer to a broad class of novel approaches for solar cells.

The focus is laid on devices that combine the advantages of the first generation cells
with those of the 2nd generation, namely a reasonably high efficiency for thin-films
with large absorption, minimal material consumption, and the possibility for low-cost
production on large scales. Some of the most notable concepts for third generation cells
are Dye-Sensitized Solar Cells (DSSCs), perovskite solar cells, and OSCs.

DSSCs, also called Grätzel cells after their developer M. Grätzel, separate the absorption
of photons from the transport of charge carriers [49]. A DSSC consists of a photosensitive
dye that covers a porous wide bandgap titanium dioxide (TiO2) anode and is immersed
in an electrolyte. Solely the dye is responsible for light absorption. Dyes show good light
incoupling and allow for a TF structure. After excitation, the electron is transferred from
the dye to the TiO2 which transports the charge out of the cell to an external circuit.
The electrolyte is used to close the circuit and refill the dye with electrons. Grätzel cells
are inexpensive to produce and reach efficiencies of 11.9 % [47]. However, the major
challenge of DSSCs is their long-term stability. The electrolyte can leak from the cell if it
is not properly encapsulated or it can lead to corrosion of the metal electrode. Another
DSSC device architecture based on a substitution of the liquid electrolyte by a solid,
organic semiconductors, solid state DSSC [50], can help resolve these problems.

Another notable material for solar cell application is the methylammonium lead halide
perovskite CH3NH3PbX3, where X can be either of the halides Cl, Br, or I. Perovskites
have received great attention since they were found to be an effective absorber in
mesoporous TiO2 (just like the dye in DSSCs) in 2009 [51]. It was found that the
mesoporous structure is not required for an effective solar cell and stable, TF absorbing
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layers could be formed from planar perovskite layers alone, acting both as electron
and hole transporter [52]. Both mesoporous and TF perovskite devices are intensely
researched and achieve record efficiencies 20.9 % to 22.1 % [47], [53]. Problems with
perovskite-based solar cells include long-term stability, a hysteresis effect attributed to
migrating ions, and the toxicity of lead on which the best-performing devices depend
(lead-free devices show lower performances).

Finally, OSCs based on semiconducting polymers and small organic molecules have
emerged as candidates for next-generation solar cell applications. OSCs are classified as
such because their absorption and transport layer consists entirely of organic materials. A
major advantage of polymer based devices is the possibility to process them by roll-to-roll
printing, spin-coating or spray-coating techniques at low temperatures. Thus they hold
the possibility for a substantially lower manufacturing cost due to the compatibility
to fabrications techniques that are highly scalable and require little energy. The large
absorption coefficient of the order of α = 105 cm−1 allows for very thin (50 nm-200 nm)
active layers with good light incoupling and low material usage. Additional interesting
features are the mechanical flexibility and the low weight: many applications from small,
mobile power units to charge smartphones or power wearable electronic devices up to the
integration in architectural designs are imaginable. On the downside, OSCs still struggle
with long-term stability and lack in PCEs.

The PCE of OSCs is not yet competitive with the efficiencies of 1st and 2nd generation
solar cells. This is due to the fact that the charge generation, transport and loss
mechanisms in organic semiconductors and devices build from them are, due to their low
permittivity and disordered structure, fundamentally different from those of inorganic
semiconductors and are not as well understood. The efficiencies for single junction OSCs
to date are around 13 %-14 % [16]–[18]. Thus, optimization and a better understanding
of the internal processes by experiment and theory is needed to further improve their
efficiency. The following chapters are aimed to give a basic introduction into the theory
of organic materials and the working principles of OSCs.

2.4. Organic semiconductors

Semiconducting organic molecules are the basis for organic optoelectronic devices such
as OSCs. In contrast to conventional inorganic semiconductors, in which either single
elements (e.g. Si, Ge) or atomic compounds (e.g. GaAs, InGaAs) in a periodic arrange-
ment represent the building blocks of a crystal, organic semiconductors are a composition
of organic (i.e. Carbon-based) molecules. These are typically conjugated polymers or
polycyclic aromatic compounds, which exhibit the necessary energetic configuration for
charge conduction. However, in organic solids, much weaker inter-molecular forces are
present which leads to fundamentally different electrical and optical properties compared
to conventional semiconductors. The basics of the energetics of organic semiconductors
as well as their electrical and optical properties shall briefly be introduced here. More
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details about the properties of organic semiconductors can be found in [54], [55].

2.4.1. Energetic structure

The chemical element carbon (C) is the basis for all organic matter. Carbon is extremely
versatile and can form bonds with almost every element of the periodic table. Thus, a
vast number of organic compounds is known and they can be classified into several major
material classes. Among these, polymers and small molecules that contain conjugated
π-systems are the most important for OSCs. A brief description of how conjugated
systems and their energetic structure originate from single carbon atoms is given here.

Molecules are comprised of a set of nuclei and electrons. Such a multi-particle system
can, in principle, be fully described by the Hamilton operator considering the kinetic
and potential energy terms of all constituents. However, for more than two particles
the Schrödinger equation cannot be solved analytically and one must rely on different
concepts in order to obtain the wave functions (representing the Molecular Orbitals
(MOs)) and the eigenenergies (representing the MO energy levels) of the Hamiltonian
(representing the molecule). There exist several different approaches to construct suitable
wave functions for molecules in quantum chemistry; the focus here is laid on the MO
theory and the concept of hybridization. While the former provides a good understanding
of the spectroscopic properties of a molecule, the latter is more useful when it comes
to the spatial arrangement of atoms in a molecule (bonding angles and interatomic
distances).
In MO theory, electrons are not seen to be associated to a single nucleus but rather

to the molecule as a whole. Charge carriers are distributed over the dimensions of the
entire molecule. In a Linear Combination of Atomic Orbitals (LCAO) approach MOs
are formed from the atomic orbitals of atoms in their ground state. In general, the
combination of n atomic orbitals yields n MOs. Charges reside in the MO energy levels
instead in distinct atomic orbitals. But how do MO energy levels originate from single
atoms? The underlying mechanism is that the Coulomb interaction of multiple nuclei
acting on charge carriers lifts the degeneracy of the identical energetic states of single
carbon atoms. This leads to a splitting of the degenerate energetic states when they are
brought together so close that their atomic orbitals overlap. In the case of just two atomic
orbitals with one electron participating in the bonding process one so-called bonding
and one antibonding state are formed. This is indicated schematically in Figure 2.4.
As one can see in the MO-diagram (Figure 2.4, right hand side), the bonding state is
energetically lower than the single atomic states, which makes it the favorable state to
occupy. When two electrons, one of each of the two atoms, lower their energy by sharing
a bonding state, the atoms form a bond. The resulting antibonding state would lead to
an increase in energy and is not occupied in the ground state.
Carbon atoms can adopt different energetic configurations depending on the environ-

ment they are surrounded with. Figure 2.5 illustrates different configurations of carbon.
In its ground state, a single carbon atom has an electronic configuration of 1s22s22p2
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Figure 2.4. – Overlap of atomic wave functions φ leads to formation of bonding and
antibonding states.

with two localized electrons in the inner 1s shell, two electrons in the fully occupied
2s shell, and the two remaining electrons in two different outer orthogonal 2p orbitals,
e.g. px and py (Figure 2.5a). For a chemical bond usually only the valence electrons are
considered since the inner orbitals are strongly localized around the nucleus (indicated
as yellow sphere in Figure 2.5a). For the concept of hybridization, in contrast to MO
theory, only the interaction between two individual atomic orbitals is considered instead
of orbitals from all atoms. An at first glance energetically unfavorable configuration is
the promotion of one inner 2s electron to the third unoccupied pz orbital. This sets the
carbon atom in an excited configuration 1s2 2s1 2p1

x 2p1
y 2p1

z. By a linear combination of
the four now singly occupied orbitals four tetragonal sp3 hybrid atomic orbitals can be
formed (see Figure 2.5b) which are occupied with one electron each. Such hybrid atomic
orbitals can now interfere with another, also hybridized atomic orbital of a neighboring
atom and can split the degenerate energy level into a bonding and anti-bonding state.
The bonding configuration can be favorable when the energy gained from the two atoms
sharing their electrons in the respective orbital is larger than the promotion energy for the
hybridization. The bond between two hybrid orbitals is aligned along the axis through
the nuclei of the corresponding atoms, which is called a σ-bond. Because one sp3 orbital
can form exactly one bond with another atom, they are called single bonds in chemical
terms. This bond is predominant in classical inorganic semiconductors like silicon and
germanium, or organic molecules where the C atom has four equivalent bonds like in
methane.

Alternatively, instead of four tetrahedrally aligned hybridization orbitals, the formation
of three trigonal-planar sp2 orbitals separated from each other by an angle of 120◦ is
possible following the same principle as described above. In this case, only two 2p orbitals
and the 2s orbital form hybrid orbitals while the third pz orbital remains unaffected and
is aligned orthogonally to the sp2 orbital plane (Figure 2.5c).
The sp2 configuration is of special importance for the concept of conjugated systems

in organic materials. Figure 2.6 illustrates the bonding mechanism and its effect on the
electronic configuration of the MOs in sp2-systems. The sp2 orbitals can form σ-bonds
with neighboring orbitals by splitting in a bonding and a antibonding state. The crucial
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Figure 2.5. – Atomic orbitals of carbon in the ground state (a) have fully occupied
1s and 2s shells, while the remaining px and py orbitals are partially filled with one
electron each. In the sp3 configuration (b), four equal hybrid orbitals, separated by an
angle of 109.5◦, are formed from intermixing of the 2s and 2p atomic orbitals. Each of
the orbitals is occupied by one electron and is able to bond to a neighboring atom by a
single σ-bond. Alternatively, three sp2 orbitals can be formed (c) which are separated
by 120◦ in a plane perpendicular to the unaltered pz orbital.

difference in this configuration is that the unhybridized pz orbitals (reaching vertically
out of the plane) also overlap, although to a smaller extent, and form an additional,
weaker bond which is called a π-bond. The combination of σ- and π-bond is known as a
double bond. Because the overlap and therefore the bonding energy of π-bonds is weaker,
electrons are not as strongly localized in between the nuclei and are extended over the
participating atoms. The consecutive alternation between single and double bonds in a
molecule consisting of more than just two carbon atoms is called conjugation.

The overlap of multiple (degenerate) pz-orbitals in polymers or aromatic rings leads to
a division into further energy levels. The weaker binding energy of a π-bond as compared
to a σ-bond reflects in the energy levels of the MO: the energy level splitting due to the
degeneracy lifting of the pz orbitals E(π → π∗) is smaller than E(σ → σ∗), therefore
the π/π∗ states represent the frontier orbitals of the molecule, which in turn determine
its electronic and optical properties. Electrons successively fill the resulting MOs from
the ground state up under consideration of the Pauli exclusion principle. The energetic

20



2.4. Organic semiconductors

σ-bond σ-bo
nd

σ-bo
nd

π-b
ond

π-bond π-b
ond

-
σ

σ

E

E2pz

π∗

π

σ∗

σ

π∗

π

π∗

π

π∗

π

LUMO

HOMO

( )2 ( )n

π
π

π

Figure 2.6. – Overlap of frontier pz orbitals determines the electronic properties of
organic molecules. (top) Overlap along a chain segment of polyacetylene (polymer)
and the benzene (aromatic small molecule) leads to charge delocalization over the
molecule. A combination of these linear and ring shaped systems forms the basis for
many important conductive polymers. (bottom) Lifting of the degeneracy of π-states
forms MO states including the HOMO and LUMO.

states of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied
Molecular Orbital (LUMO) can be introduced in analogy to the valence and conduction
band in inorganic semiconductor physics. The bonding state π with the highest energy is
the HOMO energy level, while the anti-bonding state π∗ with the lowest energy level is
the LUMO level. HOMO and LUMO are separated by an energetic bandgap Eg which is
typically between 1.5 eV and 3 eV [55].
In case of a widely extended periodic arrangement the band-structure theory of

semiconductors applies and the frontier orbitals exhibit sharp edges in form of the
conduction and valence band edges. A periodic overlap of the pz orbitals can then lead
to charge conduction, which is is the case in highly ordered organic crystals. However,
generally in organic solids the structural configuration can differ strongly from a periodic
arrangement. As shown in Figure 2.7, the backbones of aromatic rings and conjugated
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Figure 2.7. – Structural disorder in the form of torsion and kinks induced by weak
inter-molecular interactions broadens the MO energy levels.

chains are covalent (σ) bonds between carbon atoms in sp2 hybridization – they form
the basic structure of the molecules. However, the inter-molecular forces between organic
molecules are dominated by much weaker and locally varying van der Waals-interactions,
dipole-dipole interactions and hydrogen-bonds. This leads to kinks and twists of the
molecules, as well as different inter-molecular distances. Thus, the periodic arrangement
is disrupted and with it the pz overlap, which affects charge delocalization and therefore
alters charge conduction. Together with different side-chains, finite and different molecules
sizes as well as impurities, the energetic structure of organic molecules is often strongly
disordered. No bandstructure can generally be defined for solids from such disordered
constituents and one must rely on the more general concept of a Density of States (DOS)
in order to describe their energetic configuration. The effect of structural disorder on
the broadening of the frontier energy levels is illustrated in Figure 2.7. The sharp band
edges are broadened by the energetic disorder around the intrinsic HOMO and LUMO
energy levels.
One should distinguish between the intrinsic DOS as a broadening induced by the

structural disorder of the material (around HOMO/LUMO energy levels, of the order of
100 meV) and the extrinsic DOS, introduced by defects usually deep within the bandgap
and of the order of several hundreds meV. In this work, we only consider intrinsic
disorder.

Due to the disorder, charges tend to get confined in local potential valleys of the DOS.
They are therefore not delocalized but rather localized to certain units or sub-units
(e.g. monomers of a polymer) of a molecule. This has important implications on charge
transport, as will be discussed next, which takes place by a hopping mechanism between
localized states instead of by delocalized band transport.

To quantitatively describe the distribution of the localized states around the respective
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HOMO and LUMO energies a Gaussian DOS or an exponential DOS is commonly used
to describe the disorder. During this work, we will only consider a Gaussian DOS of the
form

g(E) = N√
2πσ2

exp
(
−(E − E0)2

2σ2

)
(2.4)

where N is the available density of localized states, E0 is the center of the HOMO
or LUMO level, and σ is the energetic disorder. Such a DOS has been introduced by
Bässler [56] and was confirmed to be a suitable description of the disorder in organic
semiconductors.[57], [58]

Semiconductivity in organic materials

Semiconductivity is not narrowly defined and the distinction from insulators is somewhat
fluent. One of the common definitions is that the conductivity of a semiconductor can be
modified over several orders of magnitude by introduction of impurity states via dopants.
In the ground state, organic materials are usually insulators due to their high bandgap
of 1.5 eV to 3 eV. Their HOMO states are all occupied and full bands cannot contribute
to charge transport. To exhibit intrinsic conductivity at room temperature there must
be a sufficient number of electrons thermally excited into LUMO states because here
free states are available for transport. However, the valleys of the energetic disorder
act as defect states that compensate any thermally excited charge carriers by trapping
them. An introduction of a certain amount of external charges is necessary to observe
a measurable conductivity in organic materials. This was first observed by introducing
additional charges by doping organic molecules: in 1976 Shirakawa, MacDiarmid and
Heeger showed that the conductivity of the polymer polyacetylene could be modified over
a wide range by doping it with large amounts of iodine. They were awarded with the
Nobel Prize in Chemistry in 2000 [59] for this discovery. In terms of the definition given
above this makes polyacetylene doped with iodine a semiconductor. In general, to make
organic materials semiconducting, additional charges must be introduced, be it from
dopants, by injection from an adjacent metal, or by illumination. Depending on which
charge types are introduced the terms n-type and p-type organic semiconductor can be
applied. Additional charges first successively fill the defect states. If a sufficient amount
of charges to fill the low levels in the DOS is introduced, charge conduction is possible.

2.4.2. Charge transport

In crystalline inorganic semiconductors, electrons under the influence of a periodic lattice
potential are described by Bloch-waves, i.e. a free wave with a modification factor due to
the periodic lattice. Scattering and deviations from the otherwise ballistic transport only
occurs due to impurities. For low impurity concentrations, the mean free path of charges
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Figure 2.8. – (a) Hopping transport in disordered organic systems can be described by
a Gaussian distributed modification of localized state energies around the MO energy
levels. Driving forces for hopping processes are thermal activation and the influence of
an electric field. (b) Hopping transport as a combination of tunneling and thermal
activation.

is large and extends over many atoms in the solid. This leads to mobilities of the order
of e.g. 103 cm2 V−1 s in Si.
In organic disordered systems, due to the lack of a long-range order, the mean-free

path before charges find a deviation from the periodic arrangement is small. Charges are
confined to localized states with a localization length of the order of α = 0.1 nm− 1 nm
[60], [61]. Charge carrier transport is described as an incoherent tunneling process from
one localized state to another, commonly called a hopping transport process. Hopping
transport as the dominant transport mechanism in organic disordered systems and OSCs
has been generally agreed on [54], [55], [62]. An illustration of the hopping transport
in a Gaussian DOS is depicted in Figure 2.8a. Consequently, a reduction in mobility is
observed for hopping transport, the charge mobility in organic semiconductors is limited
by the hopping mechanism. Typically, charge mobilities in disordered organic systems
can be as low as 10−5 cm2 V−1 s−1 − 10−3 cm2 V−1 s−1 [8] and therefore many orders of
magnitude lower than in crystalline inorganic semiconductors.

A model to describe hopping processes in disordered systems is the Miller and Abrahams
model [63] (see also Section 4.3.5):

ahop = a0 · exp(−2γr)

exp
(
− ∆E
kBT

)
for ∆E > 0

1 for ∆E ≤ 0
(2.5)

The hopping rate ahop is given in s−1 and depends on the so called attempt-to-hop
frequency (or maximum hopping rate) a0 which is of the order of the typical phonon
oscillation frequency at room temperature (about 1012 s−1), the inverse localization
constant γ = α−1, the distance between localized states r, and the energy level difference
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between initial and final localized state with respect to the thermal energy ∆E/kBT . The
Miller-Abrahams model is divided in a tunneling part and a thermal activation part. The
potential energy landscape of an electron in a disordered material is indicated in Figure
2.8b. A tunneling process is more likely if the tunneling distance (or hopping distance) r
is smaller and if the overlapping integral which is inversely proportional to γ is larger.
On the other hand, a carrier can gain energy by absorbing a phonon and get thermally
activated. This process is dependent on the energetic difference ∆E of the initial and
final localized state and is described by the Boltzmann factor exp (−∆E/(kB T )).

Bässler utilized the Miller-Abrahams model to investigate charge mobility in a Gaussian
density of states in dependence of the disorder σ, temperature, and applied electrostatic
field by kMC simulations [56]. At larger disorder, the energy distribution of localized
states around the HOMO/LUMO levels is widened. This can be imagined by the energy
landscape in Figure 2.8b. On the one hand it is more unlikely to hop out of an energy
valley with large disorder and on the other hand the states with increased energy are
much harder to surmount. Thus, charge carriers get either trapped in a state with deep
energy or have a hard time finding a subsequent pathway around energy peaks they
can follow. This lowers the effective mobility. Excess charges introduced into the DOS
first thermally relax into the lowest energy levels. Charge transport then takes place
not around the intrinsic MO level but around a deeper transport energy Et = E0 − σ2

kBT
.

This relaxation is implicitly considered in the kMC simulations employed in this study.
Another commonly used model to describe charge transport by means of a charge

transfer process between molecules is the Marcus model [64]. Additional charges on
organic molecules can lead to a distortion of the molecule due to the charge. The complex
of a charge and its deformation on the molecule is known as a quasi-particle called polaron.
Polarons are basically lattice shifts within the molecule in order to compensate for the
additional charge. This can lead to a "self-trapping" of the charge, which lowers their
effective mobility. Marcus theory considers this effect by introducing a reorganization
energy of the molecule due to the charge transfer process. The Marcus theory for charge
transport is not used within this work, but shall be mentioned at this point for the sake
of completeness.

2.4.3. Excitons

Upon illumination, organic molecules can be excited to a higher energetic state. Excitation
corresponds to the interaction of an incident electromagnetic wave with the MO system
(usually a π-π∗-transition) and can be represented in an MO diagram as the lifting of
an electron from a HOMO to a LUMO state. This leaves an unoccupied hole state in
the HOMO. When such an electron-hole pair is generated, the charges interact with
each other via Coulomb force and are spatially localized. Because organic materials have
a much lower permittivity εr than common inorganic semiconductors, electromagnetic
forces are not well screened. With εr around 3 to 5 [65], the electron hole pair forms a
bonding state with energies of the order of several 100 meV [8]. Bound electron-hole pairs
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are know as excitons from inorganic semiconductor physics. In silicon, with εr = 11.7
excitons are weakly bound with energies of the order of 25 meV [66] and are termed
Wannier-Mott excitons. For excitons with a sufficiently larger dissociation energy, as
in the case of the discussed excitonic electron-hole pairs, the term Frenkel exciton is
common.
Due to the strong bonding between electron and hole, the exciton is localized on e.g.

one monomer of a polymer chain or on a small molecule. Excitons have a net charge of
zero and do not contribute to an electric charge transport. By interaction with thermal
oscillations (phonons) excitons can diffuse through the material. This can be seen as
a hopping process from one localized state to another. Exciton motion represents an
energy transport through the solid with no net charge transport. The excited state can
decay after a characteristic lifetime of the order of ns by relaxation to the ground state
by emission of a photon (radiative decay) or by releasing its energy in form of phonons
(non-radiative decay).

In order to obtain a photo-current in OSCs, an additional design concept, namely
the introduction of a donor/acceptor heterojunction, is required in order to provide the
necessary energy to overcome the binding energy between the electron and the hole. This
is a peculiarity of the operation principle in OSCs and will be discussed in the next
section.

2.5. Organic solar cells

The essential steps taking place in an OSC from incident light to the extraction of a
photo-current are briefly introduced in this section. For further details, many reviews
about the physics behind organic solar cells can be found in literature [6]–[9], [67], [68].

2.5.1. Working principle and design

The geometrical structure of an OSC as well as its energetic configuration and a schematic
representation of the working principle is illustrated in Figure 2.9.

In Figure 2.9a, a typical OSC device architecture is shown. The solar cell is fabricated
on a transparent substrate, e.g. glass, representing the front side where the light incides.
On top of the substrate, a transparent conductive oxide such as Indium Tin Oxide (ITO)
forms the anode. The anode can be modified by a hole-transport (or electron-blocking)
layer such as Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), in
order to provide a filter for charge carriers and alter the contact work function. Next, the
active layer comprised of organic materials is the part which makes use of the incident
photons in order to generate charge carriers. On top of the active layer, the cathode (e.g.
Al) is deposited as the back-contact. Similarly to the anode, the cathode can optionally
be modified by an electron-transport (or hole-blocking) layer. The internal processes
of the OSC should direct positive charges to the anode and vice versa electrons to the
cathode in order to generate a direct current that can be tapped by connecting the cell
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Figure 2.9. – Geometrical structure (a,c,e) and energetic configuration (b,d) of an OSC.
On top: typical device architecture of an OSC (a), its active layer morphology (c),
and an illustration of the charge transfer process (e) from donor to acceptor. At the
bottom: energetic configuration (b) and working principle of an OSC in a schematic
energy diagram (d). The key steps are indicated by numbers in the geometrical (c)
and energetical picture (d): Incident light generates a strongly bound exciton (1).
After diffusion of the exciton (2) to a donor/acceptor heterojunction, the exciton can
dissociate into an electron and a hole by a charge transfer process (3). The electron-hole
pair needs to separate against the mutual interaction of electron and hole (4), then
the charges can percolate to the electrodes (5) and be collected (6).

to an external circuit.
In Figure 2.9b, the energetic configuration of the solar cell structure is shown. When

forming a junction between the contacts and the active layer materials, the Fermi level
EF aligns across the entire device in the equilibrium state. In order to help direct positive
and negative charges towards separate contacts, contacts with different work functions
are utilized. Typically, the cathode is chosen to have a lower work function φc than
the anode work function φa. Upon alignment of EF , the difference in intrinsic work

27



2. Organic Solar Cells

functions of the metals ∆φ = φc − φa induces a potential drop across the active layer.
This built-in potential modifies the HOMO/LUMO energy levels of the organic materials
in the active layer in a way that a driving force for electrons towards the cathode and
vice versa for holes towards the anode is induced. The HOMO and LUMO energy levels
of the donor and acceptor and their bending due to the built-in potential are indicated
in Figure 2.9b: the donor HOMO and LUMO is denoted by EDHOMO and EDLUMO, the
HOMO and LUMO energy level of the acceptor by EAHOMO and EALUMO. The MO energy
levels of the acceptor are deeper in energy than those of the acceptor in order to provide
for the necessary energy difference to dissociate the strongly bound excitons.
Figure 2.9c and Figure 2.9d illustrate the key steps of photo-current generation from

incident light in a spatial and energetical picture, respectively. At first, (1) a photon
absorbed in the active layer can generate a strongly bound exciton. The exciton can then
diffuse through the material (2). In order to generate charge carriers, the exciton needs
to be dissociated into electron and hole. Due to their high binding energy of several
hundreds of meV excitons cannot be dissociated at room temperature (kBT ≈ 25 meV) or
by excess energy of the photon and an additional process is required. For this purpose,
the concept of a heterojunction comprised of two organic materials with a large difference
in MO energy offset was introduced. The energy difference of the corresponding HOMO
and LUMO states of the material must be larger than the dissociation energy of an
excitonic state. When an exciton diffuses towards a donor/acceptor heterojunction a
charge-transfer process is performed (3) that separates charges onto molecules of different
species. Hence, materials that electrons are transferred to are called (electron-) acceptor
materials, while those where the electron originated and in which the remaining hole
resides are called (electron-) donor materials. The most prominent acceptor materials
are derivatives of the Buckminster fullerene, Phenyl-C61/C71-butyric acid methyl ester
(PCBM), because their large electronegativity has shown major improvement in exciton
dissociation [69]. However, nowadays also non-fullerene acceptors are increasingly studied
[70] on which the current record devices are based on [18]. For the donor molecules,
one of the most widely studied materials is the polymer Poly(3-hexylthiophen-2,5-diyl)
(P3HT), but also here many new molecules are actively being engineered [9]. The charge
transfer process is indicated by (3), together with the molecular skeletal formulas of
P3HT and PCBM in Figure 2.9e. Heterojunctions comprised of P3HT and PCBM are
some of the most extensively studied compositions today and act as a benchmark device
for comparison of novel devices. They are easy to process and show reasonably high
efficiency of up to 5 % [71], [72].
After excitons have become dissociated at a heterojunction interface, the electron

resides in the acceptor material and the hole stays in the donor phase. However, the
charges are not free yet, as the electron-hole pair is Coulombically bound to each other.
This state is often called a Charge Transfer (CT) state. In order to obtain free charges,
the electron-hole pair needs to separate against their mutual interaction (4). The driving
forces for this process are the internal electric field and thermal activation. Once the
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charges have been separated, they can be transported in their respective transport phases
(electrons in the acceptor, hole in the donor), driven by the electric field, towards the
contacts. At the contacts, charges can be collected (6) and contribute to an external
current.

Several loss mechanisms can occur in OSCs after the photon absorption that reduce the
amount of generated photo-current: in case no junction between donor and acceptor is in
range of the exciton diffusion length from the location where the exciton was generated
(2), the exciton decays before it can be separated. In such a case the energy deposited
by the incident photon is lost. Furthermore, charge recombination between electrons
and holes can take place. If, during the initial charge separation process of electron and
hole (4), the electron-hole pair does not manage to overcome their mutual attraction, it
can recombine (geminately). After exciton dissociation and during the transport to the
metal contacts (5), charge carriers can meet a charge of opposite type and recombine
(non-geminately). Since electrons are transported in the acceptor material and holes in
the donor material, recombination generally takes place at a heterojunction interface.
Because of the low dielectric constant in organic materials, electrostatic interactions can
have a considerably larger influence on the attraction between electrons and holes than in
inorganics. Charges transported in their respective phases are attracted by the Coulomb
interaction of opposite charges, driven towards each other at a heterojunction interface,
and have an increased probability to recombine. Electrons and holes generated from
exciton dissociation can either recombine with other exciton-generated charges or with
charges injected from the electrodes. Experimentally, it is not possible to distinguish
where a charge originated. If at all, only the absolute number of recombination processes
can be investigated. With kMC simulations however, one is able to track every single
charge and store its origin. It can be specifically distinguished which charges were involved
and allows for an accurate determination of the recombination ratio.

2.5.2. Active layer morphology

The first OSCs were comprised of a single layer of an organic material in between two
contacts [73]. These cells showed very low PCEs because the internal electric field is not
sufficient to separate excitons and they had to rely on the dissociation of excitons at the
contacts instead.
OSCs based on a heterojunction between two materials at first consisted of a planar

structure of donor on acceptor material stacked on top of each other. This was realized
by Tang [74] and led to OSCs of 1 % PCEs. In such a bilayer configuration free charges
can only face charges of opposite type at the planar heterojunction. In their respective
phase and on the way to an electrode, few to no opposite charge carriers are present.
Therefore, this setup provides an efficient migration to the electrodes and minimizes
recombination which can only take place at the donor/acceptor interface. The exciton
dissociation efficiency was improved a lot by the introduction of fullerenes as acceptor
materials [69], since then research focused on donor:fullerene systems. Nowadays, the
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field of non-fullerene acceptors is emerging [70].
A major disadvantage of the planar heterojunction is the low exciton separation rate.

An exciton can only diffuse a distance of the order of 10 nm through the material from
the origin of its generation [6]. If it was generated further away from a heterojunction
than the mean diffusion length, then it will decay and the excitation energy is lost. To
resolve this issue, Heeger and Yu [75] introduced the concept of a BHJ. Donor and
acceptor material are mixed together in a blend to form a BHJ blend. The concept is
illustrated in Figure 2.9c. Due to a fine intermixing the exciton separation efficiency can
be improved drastically, because the mean distance to a junction is lowered. In contrast,
for too fine intermixing there are no subsequent pathways for charges from their position
of generation towards the electrodes. Charge migration is disturbed and recombination
of free charges increased. It has been shown that the morphology can be controlled in
a certain manner e.g. by a thermal annealing process [72]. The heating process leads
to a clustering of donor and acceptor material and an increased cluster size. A tradeoff
between small distances to a heterojunction (small exciton decay) and large free pathways
in the respective phases (small electron-hole recombination) has to be found for optimal
performance. Ideally, the cluster size should be of the order of the exciton diffusion length
to provide an efficient exciton separation. The charge recombination is then increased due
to lack of pathways to electrodes, but the overall efficiency improves drastically compared
to a planar heterojunction. The exact internal structure of a BHJ is still a subject of
debate. Effective (bottom-down) experimental methods to gain direct insight in a BHJ
are difficult to perform. This is one of the reasons for the development of kMC methods
because one can control the appearance of the donor/acceptor phase intermixing in a
model (see Section 4.2.2) and track the dynamic movement of single particles within the
blend.
Recently, a novel active layer morphology has been subject of study: donor/fullerene

systems with very low concentrations of donor have been shown to yield good short-
circuit currents [76]–[78]. In such devices, the low amount of donor is fully dispersed
within the fullerene matrix and consecutive percolation pathways for holes are missing
because the donor forms isolated domains. This gives rise to the question whether the
prevalent BHJ morphology, including transport pathways for charges within separate
phases is a necessity for the operation of OSCs and, in particular, shows that the processes
controlling the photo-current generation in OSC still lack understanding and that further
insight is required. Investigating the functionality of this particular system is the topic
of Chapter 8.

2.5.3. Pathways to improve the efficiency

Many problems responsible for the lack in efficiency of OSCs can be attributed to the two
key differences of organic semiconductors with respect to their inorganic counterparts,
namely their substantially lower permittivity εr as well as the spatially varying energetic
disorder σ. These fundamental differences have to two important implications for the
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operation principle of OSCs: For one, upon light absorption, the low permittivity leads
to the generation of strongly bound electron-hole pairs (excitons) instead of free charges.
In order to separate the charge pair, the utilization of a two-component donor/acceptor
active layer is necessary. Thus, charge generation takes place at the donor/acceptor
heterojunction interface. At the same time, the low exciton diffusion length must be
accounted for, which has led to the intermixed BHJ morphology, a tradeoff between
efficient exciton separation and sufficiently good charge transport. Furthermore, due to the
disorder, charge transport takes place by a thermally activated hopping process between
localized states, i.e. between monomers of a polymer or between small organic molecules,
instead of delocalized band transport. Once a charge transfer at a heterojunction has
taken place, the electron-hole pair is subject to their mutual Coulomb interaction and
sees a disordered potential landscape in a spatially disordered BHJ, which can lead to
insufficient separation of charges from the interface and, in turn, local charge accumulation
and concomitant space-charge effects. It is therefore evident that the behavior of charges,
after they originate at the interface, is subject to an interplay between spatial and
energetic disorder, thermal activation, mutual Coulomb interaction, and internal electric
fields – and is much more complex than in structured inorganic solar cell.

Understanding and gaining control over the properties of electron-hole pairs, in partic-
ular their separation from the heterojunction and their recombination dynamics is a key
factor in the photogeneration process in OSC blends [79]–[82]. A focus of the present
work is dedicated to study the influence of permittivity and energetic disorder on charge
behavior within the donor/acceptor morphology, in particular the charge distribution
and dynamics, and their relation to loss processes, i.e. recombination.
The separation dynamics are often described by the Onsager-Braun (OB) [83], [84]

model, in which kinetic rates are used to describe separation, re-formation, and (geminate)
recombination of the bound state. These rates do not contain effects that are based
on spatial variations and are therefore not appropriate to describe the influence of the
blend morphology, local variation of energetic disorder, or different Coulomb energies for
different electron-hole distances [79], [85]. The kMC method is a suitable tool to include
the spatial variations as well as the time-dependency of the charge separation process
and is therefore the superior tool to model the occurring proccesses responsible for the
operation of OSCs.
Koster et al. have emphasized that the permittivity is one of the key quantities to

overcome the current drawbacks of OSCs by tackling a number of negative effects induced
by strong Coulomb interaction at the same time: the high exciton binding energy in
order to dissociate excitons more efficiently, geminate and non-geminate recombination
as well as all overall space-charge induced effects [86], [87]. For relative permittivities
larger than approx. 8 to 10, the exciton binding energy becomes negligible and thermal
fluctuations or excess energy of the photon are sufficient to generate free charges [86],
[87]. There has since been an increasing number of studies demonstrating the positive
effect of materials with high permittivity on device performance, e.g. refs. [82], [88]–[92].
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However, it is a demanding task to synthesize high-εr organic materials and it is not
obvious if such materials can ever be successfully utilized for OSCs. Until this is not
possible, the donor/acceptor concept will be the preferred device configuration. A large
part of this work is attributed to show that even slight increases in permittivity can
strongly affect charge separation times and recombination times and can nevertheless be
very beneficial for organic solar cells even if values around 8 to 10 cannot be reached.
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The light induced generation and successive transport of excitons and charge carriers
in disordered organic systems is a complex interplay between many factors. No closed
analytical model has been derived so far and it is doubtful if it is even possible to develop
a general model to cover the vast number of disordered solids. Numerical simulations
provide a viable tool to gain insight into the behavior at the nanoscale. Especially kMC
simulations hold advantages over other numerical models that make them a proper choice
to model disordered organic systems, namely the access to time-dependent single-particle
trajectories and the possibility to incorporate 3D morphologies on device scales.
In this chapter, the fundamental ideas of the kMC method are covered. At first, a

brief survey of the historical development is given and the classification of the kMC
method in comparison to competing simulation models is described. Thereafter, the
mathematical framework of the algorithm is derived. The typical execution steps for the
implementation of the algorithm are highlighted and give insight into the application of
the procedure before the specific implementation for OSCs is covered in Chapter 4.

The content of this chapter is based on [37] and is in parts identical with it. Parts
of this chapter have been published in M. Auf der Maur, T. Albes, and A. Gagliardi,
“Thin-Film Solar Cells”, in Handbook of Optoelectronic Device Modeling and Simulation:
Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods, J. Piprek, Ed.,
Taylor & Francis, Boca Raton, Sep. 2017. © 2017 Reproduced by permission of Taylor
and Francis Group, LLC, a division of Informa plc.

3.1. Historical development

The term Monte Carlo method refers to a broad class of numerical algorithms that offer a
simple yet powerful tool to solve real world problems by utilizing random numbers. The
expression originated from the famous Monte Carlo Casino located in Monte Carlo, the
municipality of the Principality of Monaco, where allegedly an uncle of S. Ulam, (Ulam
is often referred to as the inventor of the Monte Carlo method), used to utilize random
numbers to gamble away his money [93].
The idea for the use of random numbers in an algorithm came from E. Fermi [94]

and was further pursued by S. Ulam and N. Metropolis in the 1940s studying neutron
diffusion in fissionable materials at the Los Alamos National Laboratory. At the same
institute one of the most popular Monte Carlo methods of this kind, the Metropolis
algorithm [95], was developed in a study about the calculation of state equations for a
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system of interacting particles described by a hard sphere cutoff potential. At roughly
the same time and also for the Manhattan project, a group around J. v. Neumann was
first to program the ENIAC computer to carry out Monte Carlo simulations for the study
of thermonuclear reactions [96].
In the following decades, Monte Carlo methods have proven to be a versatile tool in

a variety of areas, ranging from the evaluation of multidimensional integrals [97], via
surface adsorption processes, radiation damage annealing, statistical physics [98]–[100],
through to applications in computational biology [101] and many more. Especially
the development of a Monte Carlo algorithm class that models physical systems as
dynamically evolving from state to state by a certain set of transition rates obtained
large interest as it allowed to study time-dependent properties of physical systems. This
class of algorithms is today commonly known as kinetic Monte Carlo (kMC). It has
received great benefit in the growing computational power of modern processors and still
provides one of the major tools to simulate the dynamical behavior of physical systems,
e.g. transport processes in inorganic semiconductor devices [102] or leakage currents
through high-permittivity materials [103].
Major contributions to the modern kMC algorithm, as it is used in this work, have

been made by A. Bortz, M. Kalos and J. Lebowitz in 1975 [100] and D. Gillespie in 1976
[104] and 1977 [105].

Bortz, Kalos and Lebowitz developed a model to describe the formation of domains in
ferromagnetic materials below their critical temperature. With regard to the Ising model
[106], they stated that the arrangement of next neighbors to a randomly chosen spin
from a magnetic material can be reduced to a small number of equivalent configurations
with different multiplicities. Instead of choosing one spin, looking at its surroundings,
calculating the probability for a spin exchange, and executing or rejecting the swap with
a certain probability, they proposed a new algorithm. By not choosing a single random
spin but rather one of the equivalent configurations, weighted by their multiplicity, they
found an improvement in efficiency to solve the Ising model and laid the foundations of
the modern kMC method.

Gillespie published his famous work about a new method to examine chemical reactions
near instabilities where deterministic approaches are invalid. For complex systems with
many molecules and a set of reactions between them involved, such as solutions of
distinct reactants, analytical solutions in both a deterministic or stochastic framework
soon become unfeasible. He proposed a simple and efficient numerical method to offer a
systematic approach in simulating the chain of processes that, strung together, describe
the time evolution of the system based on only one fundamental assumption. Gillespie and
his work made a great contribution in popularizing the method and are often referred to
today as the kMC method. More detail on the Gillespie algorithm is given in Section 3.3.
For the scope of this work, the ideas of Gillespie are followed closely but the approach by
Bortz, Kalos and Lebowitz and the Gillespie algorithm are similar and the treatment of
system time evolution is essentially the same.
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Figure 3.1. – Different model approaches for different scales in time and dimension.
Kinetic Monte Carlo simulations bridge the gap between macroscopic and microscopic
modelling techniques.

3.2. Classification and advantages

To model a physical system, one needs to identify the spatial dimensions and the time
scales on which the underlying processes determining the properties of the system occur.
Depending on the time and length scales, there are several different modelling approaches.
The choice of the appropriate model comes along with a tradeoff between the simulated
time (i.e. the time span that the model can predict the system’s functionality) and
the computational effort (i.e. the real-world time that the model prediction needs to
run on the computing machine). Figure 3.1 shows an overview of the different levels of
simulation models. A full quantum mechanical treatment is the most accurate approach,
but is highly unfeasible for any larger system. On the other hand, network models hide all
underlying device properties and cannot be used to predict device functionality. Among
the models that can be suited to model physical components are:

• Molecular dynamics (MD): microscopic, discrete
• kinetic Monte Carlo (kMC): mesoscopic, discrete
• Drift-diffusion (DD): macroscopic, continuous

Molecular Dynamics (MD) is the preferred tool for the dynamical behavior of microscopic
systems at the molecular level (nm scale) [107], such as for example the folding of a
protein. Within MD, the classical equations of motion are integrated forward in time for
an ensemble of particles. Hence, MD provides access to the time-dependent evolution of
all particles in the system. It is commonly used to model the interaction of single atoms
with all spatial movements such as vibrations that occur on time scales of the order of
10−15 s (= femtoseconds). Therefore, the total time interval that can be calculated in a
reasonable amount of real time are less than µs. Many interesting molecular processes in
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devices happen on longer time scales, e.g. diffusion, phase transitions or a steady state in
OSCs, and can therefore not be investigated using MD. This is known as the time-scaling
problem of MD and an approach to overcome this limitation is needed for a full device
model.
Another common and macroscopic approach are continuum models such as the DD

model. In continuum models, instead of being based on single particles, the system is
characterized by continuous quantities like the local charge carrier distribution and the
local current densities and differential equations between them. This not only allows to
model larger structures but can also lead to a strongly reduced computational demand.
The differential equations are self-consistently solved until convergence is reached: an
initial distribution of the charge carrier densities and the electrostatic potential is guessed
and the current density for this guess calculated. The obtained solution is used to
calculate a new distribution of charge carriers and potential. This process is iteratively
repeated until a steady state is reached, defined by a certain difference in the current
between two iterations. The downside of this method is that the information about the
dynamics of single particles is concealed within the continuous quantities. Furthermore,
it is difficult to incorporate more complex morphologies, especially in 3D. For spatially
disordered systems, such as BHJ OSCs, the DD equations become highly nonlinear and it
may not be possible to obtain a converging solution. This is why in DD models, complex
structures are often reduced to an effective medium of lower dimensionality with effective
physical parameters. This approximation is in many cases a strong simplification of
the functionality and comes with physical inaccuracy. Chapter 5 contains a comparison
between the DD model and the kMC model for OSCs.
To overcome the time-scaling problem on the one hand, and on the other hand be

able to implement the desired nanoscale morphology, the kMC method offers a suitable
tool. In comparison to MD, kMC is based on the concept of coarse-graining the system
dynamics (illustrated in Figure 3.2a). The system is characterized by a set of long-term
states with discrete transitions between them (so-called infrequent events). Motions on
smaller timescales, like fast vibrational modes, can be neglected as long as the current
state can still be assigned to a long-term state. Coarse-graining allows to neglect a
sufficient amount of (fast) processes and thus, reach much longer overall simulation times
up to seconds without the loss of important system dynamics. Only transitions between
long-term states determine the dynamic evolution of the system. It needs to be carefully
considered which processes are implemented in the model and which ones are combined
to long-term states in order not to lose essential parts of the system dynamics. This way
the kMC method can accomplish a tradeoff between accuracy and simulated time and
bridges the gap between MD and continuum approaches. An illustrative description of
coarse graining for kMC can be found in [108].

For the processes in OSCs, particles like excitons, electrons and holes reside in localized
states. Their motions can consist of processes on smaller timescales, but as long as they
do not perform a hopping process from one localized state to another, the particles are
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Figure 3.2. – (a) Transitions from long-time state to long-time state with underlying
fast modes in an infrequent-event system. (b) State-to-state transitions reduced to the
needs for kMC.

spatially assigned to that state. The overall dynamical behavior is only determined by
jumps to another localized state. This makes the concept of an infrequent event system
applicable.

To consider the morphology on the nanoscale, the whole photoactive layer comprised
of donor and acceptor molecules will be discretized into a grid of localized states between
which hopping processes can take place. This allows on the one hand to include a more
accurate picture of the donor acceptor morphology. On the other hand, one is able to
account for dynamical processes of individual particles at the nanoscale.

3.3. Kinetic Monte Carlo algorithm

The essential concept of the kMC method is, as stated above, the characterization of the
considered system by a set of system specific long-time states. A state is for example
defined by the position of all particles in the system at a certain time. Under dynamical
evolution, it is possible for the system to change its state by certain system-specific
transitions, e.g. the motion of particles from one state to another. It needs to be noted
that all physics describing the system dynamics is contained in the transition rates. Since
the kMC method is not an ab-inito method, it is not able to predict transition rates. The
rates are input to the simulation and can either be based on underlying physical models
or on experimental measurements. The task for an accurate kMC model is to identify
all the important processes that take place in the system by considering processes that
happen on long time scales and neglecting those which act on very small time scales. For
these processes, rate expressions must then be obtained. Under the assumption that the
rates are chosen well, kMC provides the correct dynamical evolution of the system.
Let the physical system considered be in a certain system state i. Depending on the
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current system setup, a set of M distinct states {j} = {j1, . . . jM} exists to which a
transition (or: event) can take place. This is indicated in Figure 3.2b. The transitions from
an initial state i to the possible final states {j} can be characterized by at corresponding
set of transition rates {aij} = {aij1 , . . . aijM } given in units of s−1. Transition rates are a
measure for the probability of the corresponding transition from i→ j. An important
property of the physical system must be that the rates are memoryless, meaning that
they are only dependent on the setup of the current state and are not dependent on how
the system evolved into it. This property is known from the theory of Markov chains
[109] and it allows, if the set of rate constants is known, to determine the dynamical
evolution of the system.

As known from statistical physics [110], stochastical processes characterized by discrete
transitions from state to state under temporal evolution can phenomenologically be
described by the master equation

dpi(t)
dt

= −
M∑
j=1

aij pi(t) +
M∑
j=1

aji pj(t). (3.1)

The probability pi(t) to find the system in state i at a certain time t changes in a way
that is determined by the rate constants aij and the probabilities of only the initial state
pi(t) and the possible final states pj(t). Finding solutions of the master equation, be it
by analytical or numerical methods, is often complex and not feasible. The kMC method
does not try to solve the master equation. It is based on a stochastical framework and
provides a numerical approach to obtain the dynamic system evolution based on the time
dependent propagations from state to state. By choosing a transition pathway through
a chain of subsequent states, one possible dynamical evolution evolution of a system
through its phase-space is obtained. The kMC method can therefore be imagined as a
direct execution of the Master equation. Such a walk through a pathway of transitions
forms a Markov chain. Averaging over a large number of such Markov chains provides an
equivalent system behavior as described by the master equation.

In order to derive the associated mathematical framework, the concept of the Gillespie
algorithm [104] is adapted in the following.

3.3.1. Probability density function

The algorithm as proposed by Gillespie is reliant on the ability to characterize the system
events by a set of transitions

{Rµ} with µ = 1, 2, . . . ,M (3.2)

where each Rµ corresponds to a transition i → {jµ} from above and M is the total
number of possible transitions. All transitions must describe distinct processes and their
number can vary over time, depending on which events are enabled at a certain step in
the system evolution. As stated before, it is essential to consider all important processes
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no transition

t t+ τ + dτ
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Figure 3.3. – Illustration of the probability density function interpretation: after a time
τ of inactivity, a transition µ occurs in an infinitesimal time interval dτ .

between long-time states in order to be able to accurately reproduce the behavior of the
system. The main task is now to develop a procedure to simulate the time dependent
evolution of the system under consideration of the given transitions. This makes it
necessary to derive an algorithm that is able to choose which transition will be carried
out and (for the time dependency) at what time span, all based on the drawing of random
numbers.

In order to quantify the transitions, a transition probability rate aµ corresponding to
each transition is introduced. The set of transition rates are defined as

aµδt = probability for a transition Rµ to (3.3)
occur in the next time interval δt.

At any given time, the set of {aµ} characterizes the possible transitions. They are usually
functions of the current system setup and will change over time. Determining their
specific values for an organic solar cell is the focus of Section 4.3.
Instead of finding a solution to the master equation, the kMC method is based on a

function called the Probability Density Function (PDF). The PDF is the suitable function
to select a transition and its corresponding time step based on random numbers. The
PDF is defined as

P (τ, µ) dτ = probability at time t for the next transition
to occur in time interval (t+ τ , t+ τ + dτ) (3.4)
and being a transition of type Rµ,

where P (τ, µ) is the PDF. This function can be interpreted as follows: it is a joint
probability density function of the continuous time variable τ (0 ≤ τ < ∞) and the
integer variable µ (µ = 1, 2, ... ,M) characterizing the transition. At a certain time t,
the PDF represents the probability for transition µ to occur within an infinitesimal time
span of dτ after no other event has taken place for a time interval τ (cf. Figure 3.3).
Hence, P (µ, τ) can be seen as the independent probabilities to have no transition in the
time interval (t , t+ τ) and to have a transition of type Rµ immediately afterwards in
the infinitesimal interval (t+ τ , t+ τ + dτ). The latter is precisely the definition of a
transition probability given by Equation (3.3). Mathematically, the joint probability of
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two independent probabilities equals their product:

P (τ, µ) dτ = (P0(τ) · aµ) dτ. (3.5)

In order to calculate the probability for no occurring event P0(τ), the interval (t, t+ τ)
is divided into K parts of equal length ε = τ

K . The probability for no event µ in a time
interval of length ε is (1− aµε). The combined probability for no transition at all in each
of the intervals ε, separately, is then

M∏
ν=1

(1− aνε) = 1−
M∑
ν=1

aνε+ o(ε).

For the entire time interval τ , no reaction must occur in any of the K subintervals.
P0(τ) is therefore the product of probabilities for no transition occurring in each of the
subintervals combined,

P0(τ) =
[
1−

M∑
ν=1

aνε+ o(ε)
]K

=
[
1−

M∑
ν=1

aν
τ

K
+ o

(
τ

K

)]K
,

where o(ε) is an error term of the order of ε. The expression above must be true for
any number of subintervals K. For K → ∞, the error term o(K−1) approaches zero.
Exploiting the representation of the exponential function as the limit of a sequence1, one
obtains

P0(τ) = lim
K→∞

[
1− 1

K

M∑
ν=1

aντ

]K
= exp

(
−

M∑
ν=1

aντ

)
. (3.6)

Using the abbreviation

a =
M∑
ν=1

aν (3.7)

as the total transition probability per unit time, where a δt stands for the probability
that any transition will occur in the next time interval δt, the final expression for the
PDF is given by

P (τ, µ) = aµ · exp
(
−

M∑
ν=1

aντ

)
= aµ exp(−aτ). (3.8)

This function, only dependent on the set of events aµ, is the starting point to choose a
random number pair (τ, µ) that characterizes the next transition and time step in the
dynamic evolution of the system. The PDF is properly normalized, meaning that every
pair (τ, µ) with τ ∈ (0 ≤ τ <∞) and µ = 1, 2, ... ,M has its weighted contribution to the

1exp(x) = lim
n→∞

(1 + x
n

)n
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PDF and that it is guaranteed to obtain an associated value for the PDF by randomly
choosing one pair: ∫ ∞

t=0
dτ

M∑
ν=1

P (τ, ν) =
M∑
ν=1

aν

∫ ∞
t=0

dτ exp(−aτ) = 1. (3.9)

Now, the crucial Monte Carlo step can be defined: by choosing a random pair of the
variables (τ, µ) according to the PDF P (τ, µ) after Equation (3.8), a weighting based
on the magnitude of the various transitions and the exponential decrease in time is
performed. For the execution of this step, two approaches were suggested by Gillespie:
the direct method and the first reaction method. In this context, the direct method is used.
The direct method is most efficient in the way it utilizes random numbers to determine a
pair of transition and a time step. There will be a brief comment on the differences of
the methods at the end of the section.

3.3.2. Choosing time and transition in the direct method

In the direct method, the PDF is divided into two separate PDFs, each of which is itself
normalized and only dependent on either the time τ or the transition µ, respectively:

P (τ, µ) = P1(τ) · P2(µ|τ). (3.10)

Here, the first factor represents the probability density that any of the possible transitions
takes place in the time interval (t+ τ, t+ τ + dτ), irrespective of which one. Thus, P1(τ)
is the sum over all transitions. With Equation (3.8) it follows

P1(τ) =
M∑
ν=1

P (τ, ν) =
M∑
ν=1

aνexp(−aτ) = a · exp(−aτ). (3.11)

From this and Equation (3.10), P2(µ|τ) is easily derived as

P2(µ|τ) = P (τ, µ)
P1(τ) = aµ

a
, (3.12)

and P2(µ|τ) dτ represents the probability that a reaction µ occurs, given the condition
that a time step of τ has been chosen before.

Both P1 and P2 are properly normalized PDFs on their own. Generating two random
numbers according to these PDFs yields a pair (τ ,µ), distributed with the total PDF
P (τ, µ)2.

Random number generation and the inversion method

All modern programming languages offer the possibility to generate (pseudo-) random
numbers. Pseudorandom numbers are sufficient for the Monte Carlo method, although

2for an extended proof, see [111]
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the sequence after which they repeat should be large and the algorithm after which they
are generated should be fast. For the Monte Carlo step, the generated random numbers
need to be distributed according to the PDFs (3.11) and (3.12). Since these are specific
functions, a procedure is needed to generate them from simpler distributions, such as a
uniform distribution in the unit interval.

Random numbers in a uniform distribution over the unit interval (0, 1) can be defined
as follows: the probability for a random number r to be in an arbitrary subinterval
r ∈ (α, β) with (0 ≤ α < β ≤ 1) is given by the length of the subinterval:

p(α ≤ r ≤ β) = β − α. (3.13)

Every normalized PDF P (x) has an associated cumulative distribution function, defined
by

F1(x) =
∫ x

−∞
P1(x′) dx′ for a continuous P1(x), (3.14)

F2(i) =
i∑

i′=1
P2(i′) for a discrete P2(i). (3.15)

Because lim
x→ −∞

F1(x) = 0 and lim
x→∞

F1(x) = 1 for the continuous case, and F2(0) = 0 and
F2(M) = 1 for the discrete case, both functions are monotone and limited. Thus, there
exists an inverse function F−1 for each of them. It is made sure that every value from the
output range has a corresponding value x or i in the domain range. The concept of the
inversion method is to draw two uniform random numbers r1, r2 ∈ (0, 1), and calculate
x = F−1

1 (r) and i from F−1
2 (i). This way the obtained values for x and i are distributed

according to the PDF from which F is derived.

Continuous time step

Using the inversion method and the PDF P1(τ) = a · exp(−aτ), the corresponding
cumulative probability function is3

F1(τ) =
∫ τ

0
a · exp(−aτ ′) dτ ′ = 1− exp(−aτ). (3.16)

The continuous and exponentially distributed time variable τ , which describes the time
passed before one transition (or, for a more vivid interpretation: the time “needed” for
one transition), is then given by the inverse function of F1. Hence4,

τ = F−1
1 (r1) = 1

a
ln
( 1
r1

)
with a =

M∑
ν=1

aν and r1 ∈ (0, 1) (3.17)

3note that P1(t) is only defined for t ≥ 0
4The term 1− r has been replaced by r. Since we are dealing with probabilities, this is valid for uniform
random numbers in the unit interval.
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3.3. Kinetic Monte Carlo algorithm

0 a1 a1 + a2

. . .

. . .

. . .

. . . a

a1 a2 a3 aM

0 ar · a⇒ (0, 1) · a

Figure 3.4. – Drawing a discrete transition by a continuous random variable r ∈ (0, 1).
All enabled rate constants are added to yield the total rate a. Multiplication of a
random number in the unit interval with the total rate corresponds to one specific
rate process, weighted by its magnitude. Rates are added until the next addition will
exceed r · a. The last rate in the addition is chosen.

Discrete transition

To choose a transition µ from the set of events {aµ} (µ = 1, 2, ...,M) by a random number
r2, the cumulative probability must satisfy

F2(µ− 1) < r2 ≤ F2(µ) (3.18)

That is, r2 ∈ (0, 1) corresponds to one plateau in the discrete histogram of F2. Substituting
Equation (3.12) in Equation (3.15) yields an expression for F2(τ |µ):

F2(τ |µ) =
µ∑
ν=1

aν
a

(3.19)

With this, the above condition reads

µ−1∑
ν=1

aν
a
< r2 ≤

µ∑
ν=1

aν
a

(3.20)

or, multiplying by a,

µ−1∑
ν=1

aν < r2 · a ≤
µ∑
ν=1

aν with a =
M∑
ν=1

aν and r2 ∈ (0, 1). (3.21)

This represents a sum of all transition probabilities, up to an index for which the sum is
larger than the random variable r2. This index is set to be the chosen transition µ. The
process to derive µ computationally from a random number is illustrated in Figure 3.4.

43



3. The Kinetic Monte Carlo Algorithm

Remarks on the first reaction method

In the first reaction method after Gillespie [104], a random number is generated for every
transition that can take place separately. A time step is assigned to every event and
they are sequentially queued by ascending time. The transition with the smallest time is
chosen to be executed, it’s rate is re-calculated and the transition is re-entered in the
waiting queue. However, the other rates remain unchanged with the changes that the
executed transition brings to the system. This method is faster in execution than the
direct method but, by neglecting the changes of the executed transition to the system, it
leads to physical incorrectness. Because the severity of the physical error that the first
reaction method makes is hard to estimate, the direct method is applied in our model for
the sake of physical correctness.

3.4. Algorithm procedure

After the mathematical derivation, which condenses to only two equations (3.17) and
(3.21) to calculate a pair of random numbers (τ, µ), the rest of the kMC method is fairly
straightforward and can be reduced to only a few, simple steps. The whole procedure is
depicted in a flowchart in Figure 3.5.

0. Initialization
Right after the start, system specific parameters are read in by the program. This
includes all parameters that must be known in order to set up the system and to
calculate the transition rates. Variables to store the occurrence of relevant processes
during the simulation are set up here. A crucial variable is the simulation time
tstop. It determines how long the dynamic evolution of one run should be simulated.
The starting time is set to t = 0. Specific initialization for the organic solar cell
model is shown in Section 4.2 and includes the lattice discretization into nodes,
the assignment of energy levels to every node and the pre-calculation of Coulomb
energy values for a specific treatment of the electrostatic interaction. A list of all
input parameters can be found in Section 4.4.

1. Calculate transition rates
The kMC method is reliant on physical models for all processes that can occur in
the system. All physics enters the model in terms of the transition rates which are
calculated in this step. Depending on the current state only some transitions may
be activated. Conditions must be met in order to make sure that rates for processes
that cannot occur in a certain system state are deactivated. This is realized by
setting the value for a deactivated rate aµ = 0 so that it is not considered in the
selection a transition after Equation (3.21). After all rates have been calculated
and stored, they are summed up to provide the total rate a. The calculation of
transition rates is the topic of Section 4.3.

44



3.4. Algorithm procedure

2. Monte Carlo step
As described in the preceding section, a random pair (τ, µ) is generated according
to the PDF P (τ, µ). Two uniform random numbers r1 and r2 are drawn; from these,
the time step τ is calculated after Equation (3.17) and the transition is calculated
after Equation (3.21). This accounts for the stochastically correct time step τ for
the selection of a transition µ.

3. Update system
To update the system the time t is advanced by τ . Based on which transition µ
has been chosen, the system configuration needs to be updated accordingly. How
every update is specifically performed is also covered Section 4.3.
After updating the system, a check is performed whether the simulation time has
reached the specified stopping time tstop. If t < tstop, the simulation will continue
by jumping back to step 1 and recalculate the event rates. This way, the system
update on the behavior of other processes is reflected. The steps 1-3 represent the
so called Monte Carlo loop. They will be executed as long as termination condition
is not yet fulfilled.

4. Termination and data output
Through the successive time advance t eventually becomes larger than the stopping
time and the Monte Carlo loop is terminated. At last the variables tracking selected
events are printed out and can be evaluated. Details about the evaluation of
physical quantities are given in Section 4.5

Overall, the kMC method offers a straightforward algorithm to simulate the time-
dependent evolution of a system. It is only reliant on (i) the assumption that all physical
processes can be determined by rate expressions (3.3), and (ii) that a (pseudo-)random
number generator with a sufficiently small correlation between two subsequent numbers
and a large period is provided.
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3. The Kinetic Monte Carlo Algorithm

Begin Read parameters

Initial system setup

• set tstop
• system specific setup

Calculate rates

• identify enabled rates

• calculate transition rates {aµ}
• calculate total rate a =

∑M
ν=1 aν

Monte Carlo step

• draw two uniform random num-
bers r1, r2 ∈ (0, 1)

• calculate time step τ

• choose transition µ

Update system

• advance time by τ : t→ t+ τ

• update system configuration
according to transition µ

Check if
t ≥ tstop

Output data Stop

yes

no

Figure 3.5. – Flowchart of a general kinetic Monte Carlo algorithm.
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4. Kinetic Monte Carlo Model of Organic
Solar Cells

With the fundamental working principle of OSCs and the framework of the kMC method
being introduced, the specific implementation is shown in this chapter. The physical
processes governing the operation of OSCs are merged with the kMC framework to
obtain a simulation tool that is able to reproduce the characteristics of OSC devices
under illumination, while giving insight to the internal dynamics at the level of single
particles. At first, a literature survey of past and current kMC models for OSCs is given
and the specific advantages of the model described herein are highlighted. After that, the
consecutive steps of the Monte Carlo procedure are described. The initial system setup
including the discretization of the photoactive layer and the generation of the morphology
is described. An essential part of the model is the treatment of Coulomb interaction. A
method based on the evaluation of the Ewald summation is implemented. By making
use of the discrete nature of the lattice, a considerable amount of processing time can be
outsourced to the initial setup process. It follows the derivation of the specific models for
each process considered and a description of how the system is updated after every single
transition. The equations to calculate event rates resemble the core of the simulator,
since the underlying physics enters the model with them. In order to prepare for the
results, an overview of the input parameters and further information on the evaluation of
the data output is given.

The content of this chapter is an updated version to the implementation described in
[37] and is in parts identical to it.

4.1. State-of-the-art implementations

The first applications of the kMC method to model charge transport in disordered
systems date back to the late 1980’s [112]. In his pioneering work [56] Bässler showed
that the kMC method is a convenient tool to simulate charge carrier dynamics in terms
of a discrete hopping process between localized states in disordered organic materials
described by a Gaussian DOS. Since then, the method has been utilized to investigate
(unipolar) charge transport in disordered organic semiconductors [113]–[116].

The concept of photoactive layers consisting of donor and acceptor materials for exciton
dissociation gave rise to the kMC studies of two-phase (bilayer) systems including excitons,
their separation, ambipolar electron and hole conduction as well as their recombination
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4. Kinetic Monte Carlo Model of Organic Solar Cells

[117]–[119].
After the introduction of the BHJ [75] to overcome the large exciton decay in bilayer

structures, models were developed to reproduce the intermixed structure of the donor
acceptor blend [120]. Watkins et al. included both charge carrier and exciton dynamics
in a kMC framework to study the dependence of the morphology on device performance
at short circuit conditions [121]. They showed that the internal quantum efficiency
strongly depends on the the interfacial area between donor and acceptor material and
developed an algorithm to control the phase separation in a BHJ. In order to simulate
full j-U-characteristics of BHJ devices, Marsh et al. [122] used a BHJ model together
with a charge injection process from the electrodes into the organic materials, based on a
thermionic emission process according to Wolf et al. [123]. They used their model to
study recombination and collection efficiencies over typical voltage ranges and for different
illumination intensities. However, they did not include exciton dynamics and restricted
their studies to charge carrier effects. To combine all previous models in one, Meng et al.
took account of all processes concerning exciton and charge carrier transitions including
injection from the electrodes [124]. Because they implemented all major processes, their
model allowed them to compare their results to an experimentally fabricated device with
two polymers acting as donor and acceptor materials and make predictions about its
optimization.
Further applications of the kMC method to OSCs have been performed to study for

example the effect of morphology [125], exciton dynamics [126], [127], charge transport
and mobility [33], [128], [129], charge separation [35], [130]–[133], geminate [134], [135]
and nongeminate recombination [136]–[138], space charge effects [34] and charge trapping
[135]. More information about the kMC method and its applicability to disordered
systems can be found in e.g. [115], [139], [140].
A group around Casalegno has tackled a two approximations that had been made in

many kMC models but had never been tested to extent [118]. (1) The first approximation
is the use of a cutoff radius to calculate the Coulomb interaction instead of an exact
treatment of the long-range electrostatic forces. A cutoff seems especially inappropriate
in organic materials where the dielectric screening length is much larger than in inorganic
semiconductors. Casalegno et al. introduced a treatment known from MD to calculate
the long-range electrostatic interactions, the Ewald sum [141], and showed that the
device performance is underestimated by the use of a cutoff. (2) Secondly, many previous
implementations relied on the First Reaction Method (FRM) method as proposed by
Gillespie [104], where events are sorted by waiting times in a queue and the transition
with the smallest time is executed first. In the FRM used in former kMC models only
the rate corresponding to the one executed (the fastest) transition is updated. Therefore,
the system update is not reflected on the remaining processes that might be affected
by the executed transition. Groves et al. noticed this problem and performed a study
about the difference of this modified FRM approach and the direct method [142]. They
came to the conclusion that, in terms of charge separation after the dissociation of an
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4.2. System Setup

exciton into electron and hole, both methods differ by less than two percent. However,
their study is mainly focused on bilayer devices. Since the effects in other active layer
structures, such as a BHJ or dilute donor systems, could be quite different, a Monte
Carlo algorithm using the direct method seems to be more appropriate.
In this work, a comprehensive kMC model based on the most advanced methods by

Meng et al. is described but without the approximations mentioned by Casalegno. The
core of the model follows the implementation described in [118], but is adapted to BHJ
cells and its capabilities are largely extended as described in detail throughout this
chapter. A full treatment of the electrostatic interactions via evaluation of the Ewald sum
and the use of the direct method as derived in Chapter 3 are implemented. The simulator
is used to model state-of-the-art OSC devices like the extensively studied P3HT:PCBM
composition in both a BHJ configuration or a diluted donor configuration. However, the
model can be applied to other material configurations if their material specific parameters
such as the HOMO and LUMO levels, disorder and the hopping prefactors are known.
A focus of this study is the treatment of full-device simulations during operation of

the solar cell with all major dynamical processes implemented, including charge injection
from the contacts and the consideration of the correlation between all charges in the
system. Full-device simulations while considering effects on the nanoscale is a particular
advantage of the kMC method: the physical processes controlling the operation of OSCs
range over large spatial dimensions from charge localization at the (sub-)nm scale [61] up
to hundreds of nm of absorption layer size as well as large timescales between tens of fs
for charge pair separation and several µs for non-geminate recombination [81]. Therefore,
a sufficiently large number of simulation steps need to be executed in a kMC simulation
in order to sample the slowest processes to a sufficient extent with respect to the fast
processes and hence make valid statements about their occurrence and their steady-state
values. This comes at the cost of computational demand and makes kMC simulations
generally slower than continuum-based simulations or numerically solving the Master
equation [143], [144]. On the contrary, the kMC method does not suffer from convergence
problems for complex geometries and allows to investigate the transient evolution of
a system, which makes it the preferred choice for dynamical analyses of disordered
semiconductors and BHJs.

4.2. System Setup

4.2.1. Lattice discretization

To represent the spatial nanoscale structure of the solar cell in the simulation model, at
the beginning of each simulation the photoactive layer and the electrodes are divided
into a 3D lattice consisting of a discrete set of nodes. Each node in the photoactive
layer is aimed to represent a localized state at which a particle can reside, i.e. a node
can be seen as either a monomer in a polymer chain or small molecule. An equidistant
node spacing of l = 1 nm is chosen as lattice constant. This resembles a typical hopping
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Figure 4.1. – Grid representation of the solar cell. Bottom and top nodes are cathode
and anode, respectively. The nodes in between represent localized states of either
a polymer monomer or a small molecule. Every node stores information about the
current system state. The arrow indicates the periodic boundary conditions applied in
x- and y-direction.

distance along a polymer chain or between two small molecules. Also, it allows to account
for the fine phase segregation of donor and acceptor materials in a bulk-heterojunction
and to consider local effects on the scale of nm.
A typical grid representation is shown in Figure 4.1. The total number of grid sites

in the three spatial dimensions is denoted by Mx, My and Mz, respectively. Due to
l = 1 nm, the magnitude of the M ’s is equal to the solar cell dimensions in nm. While
Mz · l corresponds to the actual thickness of the device, periodic boundary conditions
are applied in x- and y-direction. If the entire area of a typically 1 cm2 large device
would be considered with a lattice spacing of 1 nm, the number of nodes would be of the
order of 107 × 107 × 100 = 1016. Such an amount of sites would make the simulation
unfeasible in terms of computational effort. Considering a box segment with the full
height (Mz · l = 50 nm to 200 nm, device thickness) but reduced planar dimensions of
the order of Mx · l = My · l ≈ 50 nm as a periodic simulation box to represent a larger,
extended photoactive layer is aimed to be a sufficient tradeoff between simulation time
and accurate representation of morphology. This assumption is valid as long as the size
of typical features of the morphology does not get as coarse as the dimensions of the
bulk volume V = MxMyMz l

3. A justification for this assumption was performed in [37].
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4.2. System Setup

Periodic boundary conditions for all particles transitions and interactions have to be
applied in x- and y-direction in this approach. For example, it must be assured that the
neighboring site in positive y-direction of a particle at y = My l is the node at y = 0, as
indicated in Figure 4.1.
To take account of the electrodes, the nodes at the bottom z = 0 and at the top

z = Mz l represent the cathode and anode, respectively. Correspondingly, all nodes with
z/l ∈ 1, 2, ...,Mz − 1 are either donor or acceptor sites. Every node in the photoactive
layer has a certain set of fixed and variable properties assigned, and the total set of nodes
including their current properties is a full representation current system state of the layer.
The properties of a node are:

Node position: In the initial setup, every node gets its coordinates in the grid assigned.
The coordinates remain fixed for each node throughout the simulation. The position
is used to find the neighboring localized states, to check their properties in order
to see if certain events are enabled, and to calculate the corresponding rates. To
quantify the discrete lattice, the position of a node i can be described as

ri = (xi, yi, zi) = (mx
i l, m

y
i l, m

z
i l)

with the set of integer variablesmx
i ∈ [0,Mx−1], my

i ∈ [0,My−1], and mz
i ∈ [0,Mz].

Periodic boundary conditions in x- and y-direction require that n ·Mx + mx
i =

mx
i and n ·My +my

i = my
i , with n ∈ N. This way, all processes can be reduced to

a simulation box of [0,Mx − 1] × [0,My − 1] × [0,Mz], with a total number of
nodes Mx × My × (Mz + 1). In z-direction the electrodes at mz

i = 0 and mz
i = Mz

represent real boundaries of the system.

Node occupation: The node occupation variable stores whether a particle resides at a
particular node at the current simulation time and, if so, which kind of particle.
During the dynamic time evolution nodes can become occupied with excitons,
electrons or holes. A node is not allowed to be occupied by more than one particle
at a time. This has an effect on some transitions:
Hopping transitions to occupied nodes are deactivated which must be considered
by setting the hopping rate to occupied nodes to zero. If two neighboring nodes
are occupied by an electron and a hole, respectively, recombination is activated, i.e.
the rate becomes non-zero. Additionally, no excitons can be generated at already
occupied nodes.

Node material: Every node in the photoactive layer is either of donor or acceptor type.
This information is stored in a node material variable. To generate the intermixed
distribution of a BHJ morphology, a special algorithm is applied (cf. Section 4.2.2).
It shall be stressed that in all results, the morphology is generated once per
simulation in the initial setup and remains constant throughout the execution, if
not stated otherwise.
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4. Kinetic Monte Carlo Model of Organic Solar Cells

Node interfaces: Each node has the information assigned if, and in which direction, an
interface to another material is present. Interfaces are crucial for the locations
where and how excitons get separated and where charges can recombine. Analyzing
the size of the interfacial area between donor and acceptor phase are is almost
impossible by experiments. In the simulation, the number of neighboring nodes
with a donor/acceptor junction can easily be counted and be used to determine
such as the average cluster size and the recombination current density of the phases.

Node energy levels: Two distinct energy values, EHOMO
i and ELUMO

i , are assigned to
each node, representing the energetic states affecting holes and electrons, respectively.
Depending on whether a node represents an acceptor or a donor material, its
molecular orbital energy differs. After the morphology has been generated, a fixed
HOMO (EHOMO

A or EHOMO
D ) and a fixed LUMO (ELUMO

A or ELUMO
D ) level are

assigned to each node to account for the distribution of the two phases. Additionally,
both an electric field and the energetic disorder (Section 4.2.3) as well as the
influence of the Coulomb potential (Section 4.2.4) induced by other charges in the
cell contribute to the local energy levels.
Altogether, these four influences make up the overall energy landscape that electrons
and holes experience and are the determining factor to calculate the hopping
transition rate.

In contrast to the photoactive layer nodes, sites representing electrodes act as charge
reservoirs. The occupation of every single site at mz

i = 0 and mz
i = Mz is seen to be

always one, mimicking the metal character of the anode and the cathode. If a charge
carrier is injected from an electrode node into the photoactive layer, then the occupation
of the electrode node should be empty. But since metals can be seen as a continuum of
fully occupied and delocalized electronic states below the Fermi energy, the empty state
is assumed to get refilled immediately. The energy levels of the contact nodes are equal
to the Fermi energy of the respective metal, i.e. the cathode work function φcathode and
the anode work function φanode. The energy difference between the Fermi level and the
energy levels of the adjacent organic nodes is the determining quantity for the charge
injection at the metal-organic contact and the reverse extraction process.

4.2.2. Morphology generation

Bulk-heterojunction

After the grid is set up and the node positions are fixed, the distribution of donor and
acceptor sites must be assigned to the grid. The morphology of a BHJ is an intertwined
phase separation of donor and acceptor molecules with subsequent “percolation pathways”
within the respective phases [120]. In studies by Ma et al. [72] and Li et al. [71], it has
been shown that the nanoscale morphology of a P3HT:PCBM blend can be influenced by
a thermal annealing process and that a coarser morphology leads to both an increased
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4.2. System Setup

Figure 4.2. – Illustration of the spin-exchange algorithm. The magnetic interaction
energy with a defined set of neighbors determines the likelihood for the exchange.

fill factor and short circuit current, and, thus, a higher overall efficiency. To be able to
control the intermixing in the simulation, a model based on the Kawasaki spin-exchange
algorithm [145] is used [121]. The algorithm allows for an efficient way to reproduce the
BHJ morphology.

In the spin-exchange algorithm, compare Figure 4.2, the donor and acceptor materials
are interpreted as spins, pointing up or down. They are initially randomly distributed
over the entire photoactive layer with equal probability of pointing up or down. Then,
two non-equal spins are chosen at random and the magnetic interaction energy with their
surroundings is calculated according to the Ising model [106], where only first and second
neighbors are considered. The second nearest neighbor interaction energy is weighted by
a factor 1√

2 to account for their larger distance. The magnetic interaction energy of a
spin si with its neighbors sj without an external magnetic field is

εi = −J
∑
j

(si sj − 1) , (4.1)

where J is the interaction energy and the summation index j ranges over all first and
second neighbors. The spins can take on values of +1 (up) or −1 (down). The interaction
energy is chosen to be J = 0.5 kBT , where kBT is the thermal energy. This value,
together with kBT = 26 meV, was found to reproduce the BHJ effectively in terms of
calculation time. Periodic boundary conditions for the interaction are applied in x- and
y-direction to make sure that there is a continuous transition in the material distribution
from one face of the periodic lattice box to the next. Then, an attempt is made to swap
the neighboring spins and the energy of the new configuration is recalculated. A swap
is actually executed with a probability given by the Boltzmann factor for a canonical
ensemble

P (∆ε) =
exp

(
− ∆ε
kBT

)
1 + exp

(
− ∆ε
kBT

) , (4.2)
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Figure 4.3. – Morphology generation of a BHJ by a spin-exchange algorithm allows
control of cluster size: (i) initial random distribution, (ii) weak clustering, (iii) strong
clustering and (iv) equilibrium configuration. Figure reprinted from [38]. © 2014 IEEE.

where ∆ε = εi′ − εi is the energy difference between two (swapped) configurations εi
(initial) and εi′ (final). Note that the overall number of spins pointing upwards or
downwards does not change during a spin exchange. The number of acceptor and donor
sites does not change, they only get redistributed.
Subsequent iterations of exchanges lead to the relaxation of the system to a lower

energy and a less intermixed state. The number of swaps is counted in terms of Monte
Carlo Steps (MCs) in the literature [121], where one MC equals the number of sites in
the cell, i.e. 1 MC = Mx×My×Mz. The cluster size of the phase mixing can be roughly
estimated by d = 3V/A, where V is the total volume and A the interface area. The
algorithm allows to control the generated device morphology. As the result of the spin
exchange, a 3D view of the various BHJs that can be generated this way is illustrated
exemplarily in Figure 4.3. The corresponding MCs range from 0 (random distribution)
to 106 (very ordered) and yield cluster sizes of 1.9 nm, 6.3 nm, 15.9 nm and 28.3 nm,
respectively. The latter case is the equilibrium state of the spin-exchange and results in
an almost perfect segregation of the two phases. This configuration is not suitable for
a BHJ but is meant to illustrate the algorithm. The morphologies generated this way
can be used to mimic the distribution of donor and acceptor material in a BHJ on the
discrete lattice.
With this algorithm it is possible that there remain single material sites embedded

into the opposite material as can be observed from Figure 4.3. These sites are removed
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Figure 4.4. – Adjusting cluster size with the spin exchange algorithm (a) to match
the morphology of an annealed P3HT:PCBM blend as observed by TEM (b). (b) is
reprinted with permission from J. S. Moon, J. K. Lee, S. Cho, J. Byun, and A. J. Heeger,
“’Columnlike’ Structure of the Cross-Sectional Morphology of Bulk Heterojunction
Materials”, Nano Letters, vol. 9, no. 1, pp. 230–4, 2009. © 2009 American Chemical
Society.

from the distribution because it is not possible to control their number and distribution
due to the randomness of the generation process.
In a study about the morphology of a P3HT:PCBM blend [146], Moon et al. used a

Focused Ion Beam (FIB) to cut out a slice of a standard blend as used in their experiments.
They examined the cross section of the slice with a Transmission Electron Microscopy
(TEM) to get insight into the cluster sizes of the respective phases. Figure 4.4 shows a
comparison of the TEM image of the real blend and the distributions obtained with the
spin exchange algorithm for a various number of MCs. Slices through the generated virtual
morphology are 100 nm× 100 nm wide. The TEM image shows a 1.15 µm× 100 nm wide
section from the experimentally observed morphology after a binary filter was applied
for better distinction of the phases. As can be seen, at around 5000 MCs, a reasonably
accurate representation of the real blend can be obtained by the virtual model. This
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# steps

Figure 4.5. – Pivot algorithm for polymer chain generation illustrated in 2D and for a
chain length of N = 7 and the first 4 steps. The red arrow points to the pivot site.
The black arrow indicates the direction of rotation around which the sites before or
after the pivot site (marked green) are rotated.

corresponds to an average cluster size of d ≈ 17 nm. For the blend simulations later on,
the algorithm is used with this cluster size, unless stated otherwise.

Polymer chain generation

Next to the BHJ generation, in which the donor and acceptor regions are connected
bulk regions, it is also possible to explicitly generate polymer chains. A simple model to
generate polymer chains is the Pivot algorithm [147]. The Pivot algorithm is a Metropolis
Monte Carlo algorithm to construct a polymer chain on a regular lattice by a Self-Avoiding
Walk (SAW). The implementation of the algorithm was adapted from [148] and works as
follows: at first, the length of the polymer chains to be generated is defined as L = N · l,
where N is the number of monomers and l is the lattice constant. In our model, we
assume all polymers to have the same length. The length can alternatively be drawn
from a certain distribution individually for each polymer chain. Furthermore, the number
of pivot steps (kinks) to apply is specified as n. The number of kinks executed is initially
set to k = 0. The algorithm starts with a linear chain of length N . Then, the sequence
illustrated in Figure 4.5 is applied:

1. Pick a random ’pivot’ site from the chain (red arrow).
2. Pick a direction to modify: either the sites before the pivot or after.
3. Apply a 90° rotation around the pivot site to all sites of the selected chain part

(black arrow). This rotation can be in either direction by equal chance.
4. Check if the chain is touching itself (self-avoidance). If yes, undo the rotation. If

no, keep the rotation.
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5. Increment number of steps performed and terminate if k = n.

Depending on the dimension, the rotation in step 3 can occur in a plane (2D) or in space
(3D). With increasing number of steps n, the chains will cluster to a more confined region.

4.2.3. Energy distribution

The energy level assigned to each node reproduces the potential landscape experienced
by particles in the photoactive layer. There are four terms contributing to the local
potential energy at node i:

EHOMO
i = E0,HOMO

i + EFi + Eσi + ECi (for holes) (4.3)
ELUMO
i = E0,LUMO

i + EFi + Eσi + ECi (for electrons) (4.4)

where E0
i is the MO energy of the respective material, EFi is the electric field, Eσi the

energetic disorder and ECi the Coulomb potential – each at node i. While the first three
contributions (MO energy, electric field and energetic disorder) are considered to be
fixed for each simulation run, the Coulomb interaction is dynamically updated during
each simulation step to account for the motion of charges and their mutual interaction.
The implementation of each of the four terms E0

i , EFi , Eσi and ECi is explained in
the following sections. Alongside the explanations, a typical distribution of the four
contributions to LUMO and HOMO energy levels is depicted in Figure 4.6 and Figure 4.7,
respectively. From these illustrations it is evident that the potential landscape in spatially
and energetically disordered materials, and hence the charge transport, is tremendously
complex. The consideration of single-particle effects on such disordered structures is
virtually impossible to describe by continuum models – which is where the kMC method
shows its potential.

Molecular orbital energies

The first energy term E0
i in Equations (4.3) and (4.4) is associated with the MO energy

of the material at node i. Depending on the node material, HOMO and LUMO energy
levels have to be considered accordingly. If node i is an acceptor material, E0

i gets the
HOMO and LUMO energy level of the acceptor, EHOMO

A and ELUMO
A , assigned in two

designated variables. Vice versa, if node i is a donor site, E0
i gets the HOMO and LUMO

energy level of the donor, EHOMO
D and ELUMO

D , assigned. Thus,

E0,HOMO
i =

 EHOMO
A if i acceptor site

EHOMO
D if i donor site

(4.5)

E0,LUMO
i =

 ELUMO
A if i acceptor site

ELUMO
D if i donor site.

(4.6)
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Figure 4.6. – Energy distribution of LUMO levels, affecting electrons, with: (a)
distribution of donor and acceptor materials, (b) with electric field and contact work-
function difference, (c) with energetic disorder, and (d) with the influence of charge
carriers in the system.

This results in two different energetic distributions for electrons and holes. Electrons
are transported in the LUMO levels and holes in the HOMO levels. Therefore, when
considering an electron movement only the LUMO energy states are considered and
vice versa the HOMO levels for holes. Figure 4.6a and Figure 4.7a show an example
for the constant energetic distributions for E0,HOMO

i and E0,LUMO
i of a slice through

a blend as generated by this setup. The intermixing of donor and acceptor sites with
their respective MO levels and the periodic boundary condition in y-direction can be
observed. Subsequent pathways within the respective phases act as possible percolation
pathways for the charge carriers to be transported through the bulk. A large energy
barrier between the different materials restricts them to stay in one phase, namely the
acceptor for electrons and the donor for holes. Simultaneously, these interfaces offer the
energy necessary to separate an exciton into free charge carriers. Cathode and anode
nodes are at mz

i = 0 and mz
i = Mz, respectively.
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4.2. System Setup

Electric field contribution

The second term in Equations (4.3) and (4.4), EFi , reflects the internal distribution of
the electric field induced by the contacts. It is assumed that the potential difference
between cathode and anode drops linearly across the organic layer, justified for low
charge carrier densities [149], in a direction perpendicular to the electrode surfaces. The
total potential energy drop from mz

i = 0 to mz
i = Mz consists of the contribution of

the electrode work function difference ∆φ = φanode − φcathode and the potential energy
drop across the external load eUext. Electrode work functions are defined as negative,
φanode < 0, φcathode < 0. Thus, the energy of every node at constant mz

i (all nodes in
planes parallel to the electrodes) is modified by

EFi = mz
i

Mz
(eUext −∆φ). (4.7)

For no external potential drop (short-circuit condition), the influence of the electric
field is determined only by the work functions of the electrodes. Usually, in OSCs, the
anode material has a larger (negative) work function so that ∆φ < 0. Both HOMO
and LUMO level get tilted upwards in energy as mz

i increases and the driving force acts
towards the cathode for electrons and towards the anode for holes (reverse current).

The modification of the node energies over the photoactive layer under the influence of
different work functions and Uext = 0 (short-circuit) condition is shown in Figure 4.6b
for the LUMO level and in Figure 4.7b for the HOMO level. The electric field acts as
driving force for charge carriers to the electrodes. Electrons tend to move downwards
the “LUMO surface” in order to relax in energy. Vice versa, holes relax in energy when
they hop upwards the HOMO. In order to extract power from the device, solar cells are
operated in a configuration in which electrons are driven to the bottom contact, defining
the cathode, and holes are driven to the top contact, defining the anode.

A reverse bias condition (Uext < 0) is conceptually similar to the short-circuit condition,
i.e. electrons tend to percolate towards the bottom (cathode) contact, and hole toward the
top (anode) contact. The only difference is that the slope of the electric field contribution
(eUext − ∆φ)/Mz is steeper, and hence the driving force stronger. For large Uext in
negative direction, this setup corresponds to a photo-diode. Such a setup can also be
simulated by the model but is not done within this work. Power is dissipated in this
regime.
By applying a forward bias Uext > 0, the energy landscape tilts downwards and

eventually reaches flat band conditions (eUext − ∆φ = 0 ⇒ EFi = 0 ∀i, similar to
Figure 4.6a and Figure 4.7a). At flat band conditions, no net driving force induced by
EFi to either electrode acts on particles. For even larger voltages, a driving force acts
in forward current direction. In forward bias condition, the slope of the energy levels
has turned the other way around and more electrons become collected at the anode and
holes at the cathode than the other way around. Forwards bias, however, is not relevant
for solar cell operation as no power is extracted from the cell in this condition but only
dissipation occurs.
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Figure 4.7. – Energy distribution of HOMO levels, affecting holes, with: (a) distribution
of donor and acceptor materials, (b) with electric field and contact work-function
difference, (c) with energetic disorder, and (d) with the influence of charge carriers in
the system.

In the model, it is assumed that the potential energy of the cathode stays the same
for any applied voltage and only the anode and photoactive layer nodes energies get
shifted. The cathode work function acts as reference potential. This can be justified by
the fact that only energy differences between two nodes Eij = Ej − Ei are relevant for
the calculation of any transition rate (cf. Section 4.3) and it is of no importance how
large the absolute values are. Nodes at mz

i = Mz, which correspond to the energy levels
of the anode, are shifted by EFmzi=Mz

= eUext −∆φ. The anode energy level relative to
the cathode is then

φanode + EFmzi=Mz
= φanode + eUext −∆φ = eUext + φcathode. (4.8)

This way, for the equilibrium state Uext = 0⇒ EFmzi=Mz
= φcathode, anode and cathode

have the same energy level, namely the equilibrium Fermi energy of the entire device.
During a simulation run, the external bias can be varied to obtain the current-voltage
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4.2. System Setup

characteristics of the solar cell. For every voltage, the influence of EFi has to be
recalculated and added to the HOMO/LUMO levels E0

i . Apart from the Coulomb forces,
which vary during each time step of the simulation, E0

i +EFi +Eσi is calculated once per
setup process and remains fixed throughout one simulation run for constant voltage.

Energetic disorder

The third term in Equations (4.3) and (4.4), Eσi , accounts for the energetic disorder of the
organic semiconductors. Due to the lack of a periodic spatial arrangement of disordered
materials, the concept of a band structure and its physical description of delocalized states
forming electronic bands with a parabolic DOS does not apply. Disordered semiconductors
can therefore only be described by a DOS by which the localized states are distributed.
One should generally distinguish between the intrinsic DOS, i.e. the distribution of

states around the MO levels of the pure material, broadened by structural disorder,
and the DOS of (deep) trap states. For the intrinsic DOS, an uncorrelated Gaussian
distribution of localized states (Gaussian Density of States (GDOS)) was introduced by
Bässler [56] and is nowadays widely adapted to model charge transport in disordered
organic semiconductors, especially by kMC simulations. A correlation, i.e. smoothing of
the uncorrelated disorder and its effect on charge transport have been investigated [116]
but are not considered here.

For pure films of organic semiconductors, a GDOS (intrinsic) with an exponential low
energy tail (trap states) has been extracted by Kelvin probe force microscopy e.g. in
[150], [151]. In OSCs, the shape of the DOS for trap states is controversial. Statements
that the GDOS can be suitable to describe intrinsic and trap states [58], [152] as well as
arguments in favor of a pure exponential DOS can be found [153].
In terms of modelling transport in organic disordered materials, Baranovskii has

extensively compared the applicability of a (pure) exponential DOS and a (pure) GDOS
in his reviews [57], [154]. The conclusion of his comparison is that when the charge
mobility in an organic semiconductor is dependent on the charge carrier concentration at
low concentrations, as it was measured in commonly studied polymers such as P3HT,
an exponential DOS can be ruled out and the DOS must be close to a Gaussian [155].
Based on these arguments, and since we do not explicitly introduce traps, we employ the
GDOS model without additional extensions in the bandgap.
The energetic disorder Eσi can be chosen separately for donor and acceptor sites

Eσi =

 EσA if i acceptor site,
EσD if i donor site.

(4.9)

where EσA is the contribution of energetic disorder to node i at an acceptor site and EσD
is the contribution at a donor site. The energetic disorder affects HOMO and LUMO
levels in Equations (4.3) and (4.4) equally.
The value of Eσi is, for each node and for donor and acceptor sites independently,
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drawn by a Gaussian distribution of the form

g(E) =



N√
2πσ2

A

exp
(
−(E − E0

i )2

2σ2
A

)
if i acceptor site,

N√
2πσ2

D

exp
(
−(E − E0

i )2

2σ2
D

)
if i donor site.

(4.10)

where N = l−3 is the available site density, E0
i is the MO energy level of site i, and σA

and σD are the standard deviations of the distribution in acceptor and donor material,
respectively. The standard deviation is commonly labeled as the energetic disorder.
Unless stated otherwise, we will use one common value of energetic disorder σ for both
donor and acceptor sites, i.e. σ = σA = σD. Values around σ = 70 meV have been found
for materials established in OSCs such as P3HT:PCBM [156]–[158].
An illustration of the potential landscape for charges with the influence of a GDOS

(on top of E0
i + EFi ) is represented in Figure 4.6c for electrons and in Figure 4.7c for

holes, respectively.

4.2.4. Treatment of Coulomb interaction

During a simulation run, charge carriers are constantly in motion and modify the local
Coulomb potential acting on each node point at every time step. The last term in
Equations (4.3) and (4.4) must therefore be updated during the simulation run with
every charge carrier hopping to another node. The local modification of the potential
energy with electrons and holes in the system is depicted in Figure 4.6d for electrons
and in Figure 4.7d for holes at a snapshot in time. The particles induce local spikes in
potential energy due to their Coulomb attraction/repulsion.

Since organic materials have a relatively low dielectric constant (εr ≈ 3− 5), Coulomb
forces are not well screened and act on much larger distances than in inorganic semicon-
ductors like silicon. Thus, the interaction between charged particles is expected to have
a larger influence on transport and recombination in organic solar cells than in inorganic
solar cells.

Most of the former kMC models [121], [122], [124] use a cutoff radius for the range in
which charges are influenced by the Coulomb potential of other charges around them in
order to save computation time. Casalegno et al. [118] addressed this problem because no
studies on the justification for the use of a cutoff, especially in low εr materials, existed.
Their model is based on a full-range treatment of Coulomb interactions with image
charges induced in the electrodes and consideration of interactions across the periodic
simulation box, with only little additional computational effort at runtime. In this work,
the full range model is adapted to preserve accuracy and is described in this section,
following the implementation of Casalegno et al. [118]
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Method of image charges

Charge carriers within the photoactive layer are located in between two metallic surfaces.
As known from basic electrostatics, a particle with charge q next to a bulk metallic
conductor induces a non-negative surface charge to account for the boundary conditions
(vanishing electric field in metals) at the interface between the metal and the material
the charge resides in. To calculate the electrostatic energy of this setup, it is a common
approach to use the method of image charges [159], [160]. In this method, the conductor
is replaced by a charge of opposite sign q′ = −q, located at a position exactly mirrored
to the original charge q with regard to the metallic surface. This imaginary setup fulfills
the boundary conditions of the real system. It allows to calculate the electrostatic energy
of a point charge next to a conductor, simply as interaction between two point charges,
the real and the mirrored one, but without the existence of the conductor.
To apply the method of image charges to a solar cell setup, Casalegno et al. used a

setup as shown in Figure 4.8a. Particles located in the region from −Z
2 to +Z

2 (organic
layer) induce image charges in the electrodes. The electrodes are represented as half
spaces from −Z

2 to −∞ and +Z
2 to +∞. An image charge in one electrode, in turn,

induces itself another image charge inside the opposite electrode. Continuing this pattern
periodically, the relative position of mirrored charges can be reduced to a single unit cell of
height 2Z. As a concrete example, let a hole with charge +q be located at −Z

2 < z0 < +Z
2 .

The first order image charges have an opposite charge −q. They are induced in the lower
electrode at z−1 = −Z − z0 and at z+1 = +Z − z0 in the upper electrode, respectively.
Mirroring z−1 at the upper electrode interface yields again a positive charge at z+2 and,
vice versa, z+1 induces z−2. Without loss of generality, a box of height 2Z containing
the initial charge and the first mirror charge in the upper electrode can be defined as
periodically reoccurring in z-direction. This periodic box represents the unit element for
the treatment of Coulomb interaction including all mirror charges.

The Ewald sum

To determine whether a particle at a node i experiences a driving force due to electrostatic
interaction with other charges, all possible interactions must be considered. One has to
take into account the Coulomb interaction with other charges in the original simulation
box, the periodically mirrored charges in the electrodes (z-direction), and the periodic
replicas in neighboring cells in x- and y-direction. In general, the electrostatic potential
at node i is calculated by

Ui = 1
4πεrε0

∑
n̄

2N∑
j=1

′ qj
|r̄ij + n̄|

. (4.11)

Here, the first sum over n̄ corresponds to the periodically reoccurring unit boxes in x-,
y- and z-direction with n̄ = (nxX, nyY, 2nzZ) where nx,y,z = 0,±1,±2, . . . . The second
sum includes all charged particles qj in box n̄ interacting with i at a distance rij between
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Figure 4.8. – Charges inside the photoactive layer induce mirror charges in the electrodes
by a periodic pattern (a). Exploiting the pattern and considering periodic boundary
conditions in x- and y-direction (b), the Coulomb interaction calculation can be
calculated by the evaluation of the Ewald sum in a periodic simulation box of size
X × Y × 2Z. (a) adapted (replicated) from [118].

node i and a particle at j. The inner summation index j ranges over N real particles and
N first order mirror charges in box n̄. The periodicity of the unit boxes is completely
considered in n̄. All image charges are included by considering only the first order image
charge in the 2Z box and calculating the sum over the nz indices. Duplicated charges in
simulation box replicas in x- and y-direction enter the interaction potential by summation
over nx and ny (Figure 4.8b). Self-interaction of the particle at i must be omitted, which
is indicated by the prime ′.

To determine whether it is favorable for a particle to hop from node i to j in terms of
electrostatic energy, the difference ∆ECij = 1

2q(Uj − Ui) has to be calculated. It would
be possible to consider the local Coulomb energy by adding an energy term ECi = 1

2qUi
to every single node as indicated in Equations (4.3) and (4.4) in analogy to the initial
setup process for the MO levels and the electric field. However, Ui would have to be
recalculated for every single node in every kMC step to update the constantly changing
Coulomb forces. A more efficient treatment is to calculate Ui at runtime and only for
those nodes a particle can hop to. This way, a sufficient amount of processing time can
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be saved.
The evaluation of Equation (4.11) for a multi-particle system is complicated. A direct

evaluation is computationally not feasible. A common approach is to consider only the
next neighbor’s boxes in the calculation or even only the particles residing in a certain
cutoff radius around a charge. However, an exact evaluation can be obtained by making
use of the Ewald sum [141], an approach that is commonly used in MD. According to
[161], [162] the sum is conditionally convergent, meaning that the result depends on the
order of summation. If chosen appropriately the sum converges to its limit value but only
very slowly [163]. By separation into two specifically chosen sub-sums, a fast convergence
of both sub sums can be achieved. The fundamental idea behind the Ewald summation is
to separate the Coulomb interactions into short range and long range interactions. While
the component for short range interactions is calculated best in real space coordinates,
the long range part converges quickly in the reciprocal space. The full derivation is
beyond the scope of this thesis and can be found in [107], [163]. According to [161] the
final expression is

Ui = 1
4πεrε0

∑
n̄

2N∑
j=1

′qj
erfc(α|r̄ij + n̄|)
|r̄ij + n̄|

+ 4π
Vsb

∑
k̄ 6=0̄

2N∑
j=1

qj

|k̄|2
exp

(
−|k̄|

2

4α2

)
cos(k̄ · r̄ij)− qj

2α√
π

 . (4.12)

Here, erfc(..) is the complementary error function1, α is the so called splitting parameter,
k̄ the lattice vector in reciprocal space and Vsb = 2XY Z the volume of the simulation box.
The first term corresponds to the sum in real space, the second is the sum in k-space,
and the third term is a self-potential term.
According to [161], α shifts the ratio between real and reciprocal space contributions

to the sum. By setting α = 21/6√π Vsb1/3, the evaluation in real space can be executed
within the boundaries of two periodic boxes without loss of accuracy. This makes it
possible to reduce the number of possible interactions to a finite number and to implement
the full Coulomb treatment efficiently into the model.

Implementation

Calculating the Coulomb potential for every charged particle at simulation runtime after
Equation (4.12) in every kMC step would lead to an unfeasible amount of computational
effort. By a restatement of Equation (4.11), it is possible to outsource a sufficient amount
of calculations to the initial setup process before the dynamic kMC part begins. Taking

Ui =
2N∑
j=1

qj

[
1

4πεrε0

∑
n̄

′ 1
|r̄ij + n̄|

]
, (4.13)

1complementary error function erfc(t) = 2
π

∫∞
x
e−t

2
dt
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the evaluation can be separated in the inner part, which represents the interaction of one
single particle j with all its images in different image boxes n̄, and the outer part, which
considers the total number of different particles in the unit box. As stated above, it is
sufficient to evaluate the Ewald sum for two neighboring periodic simulation boxes in the
real space because the long range interactions are effectively calculated in the k-space
summation. Since the number of nodes in these is restricted, the number of interactions
with their images is also restricted and the term inside the square brackets can only take
on a finite number of values. Exploiting the fact that the system is set up on a discrete
grid, the distances between two distinct particles are:

r̄ij = ( (mx
j −mx

i ) l, (my
j −m

y
i ) l, (mz

j −mz
i ) l )

= (mx
ij l, m

y
ij l, m

z
ij l) (4.14)

For two neighboring simulation boxes in each direction, the node indices are restricted to
integer values in the ranges mx

ij ∈ [−Mx,Mx], my
ij ∈ [−My,My], and mz

ij ∈ [−2Mz, 2Mz].
By defining a pair potential function as

Upair(mx
ij ,m

y
ij ,m

z
ij) = 1

4πεrε0

∑
n̄

′ 1
|r̄ij + n̄|

, (4.15)

that can only take on a discrete set of constant values depending only on the distance of
two distinct charge carriers, it is possible to pre-calculate these values and store them
in the memory prior to runtime. During runtime, the only evaluations that have to be
made are

Ui =
2N∑
j=1

qj U
pair(mx

ij ,m
y
ij ,m

z
ij), (4.16)

where the values for Upair are stored in the memory and can easily be read out, passing
Upair the distance between two nodes i and j with a set of the three integers {mij}.
The initial setup of Upair still has to be calculated by the Ewald sum, whose inner

part reads after reformulation:

Upair(mx
ij ,m

y
ij ,m

z
ij) = 1

4πεrε0

(∑
n̄

′ erfc(α|r̄ij + n̄|)
|r̄ij + n̄|

+ 4π
Vsb

∑
k̄ 6=0̄

1
|k̄|2

exp
(
−|k̄|

2

4α2

)
cos(k̄ · r̄ij)

 . (4.17)

The third term in Equation (4.12), the self-potential term, is omitted because it vanishes
when a difference between two potentials is calculated by ∆ECij = 1

2q(Uj − Ui).
In summary, the Coulomb energy calculation comprises a full treatment of electrostatic

forces with interaction over periodic boundaries in x- and y-direction and mirror charge
effects in the electrodes (z-direction) are implemented after Casalegno et al. [118]. A
reformulation of the total electrostatic energy by the Ewald sum is taken into account
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to optimize the demand on processing time. This allows to make use of (i) the specific
periodic boundary conditions applied, and (ii) the discrete nature of the lattice, in order to
outsource the interactions of a single particle with its images in the electrodes and replicas
in other periodic simulation boxes. These interactions are calculated via Equation (4.17)
before kMC runtime and stored in the memory as pair potentials. During runtime,
interactions between distinct particles is calculated via Equation (4.16), where the values
for the pair potentials can simply be read from the memory, and the final contribution
to the last term in the potential landscape is calculated by ∆ECij = 1

2q(Uj − Ui).

4.3. Implementation of processes

After the initial system setup, the kMC loop is entered (see flowchart in Figure 3.5).
Depending on the current system state, the transition rate values determine the probability
for the steps in the dynamic evolution of the system. Each process is described either
by a physical model or takes on values extracted from experimental measurements. In
this section it is described by which model the individual rates are implemented or what
measurement values are used for the magnitude of the rates.
The implemented processes are:

1. exciton generation (exg)
2. exciton diffusion by hopping (exh)
3. exciton separation (exs)
4. exciton decay (exd)
5. electron and hole hopping (elh, hoh)
6. electron-hole recombination (ehr)
7. electron and hole injection from electrodes (eli, hoi)
8. electron and hole collection at electrodes (elc, hoc)

In Figure 4.9, an overview on the events and their chain of dependencies on processes
necessary for their activation is given. For example, at the beginning of a simulation only
two processes are enabled, namely the exciton generation and the injection of electrons
or holes from the electrodes. It is obvious that no exciton diffusion or charge carrier
hopping should occur if there are currently no excitons or charge carriers present in
the photoactive layer. Thus, all other rates must be zero to disable the corresponding
processes. Physically forbidden processes are deactivated by setting the corresponding
rate to zero. In the same logical manner each process activation is considered. Periodic
boundary conditions in the planar dimensions are implemented for exciton hopping,
exciton separation, charge carrier hopping and recombination. While charge carriers can
be injected and collected at the bottom and top contacts, excitons are confined to the
simulation box.

67



4. Kinetic Monte Carlo Model of Organic Solar Cells

1. Exciton generation

2. Exciton diffusion

4. Exciton decay 3. Exciton separation

7 .Charge injection
from electrodes

Charge generation

5. Charge hopping

6. Charge recombination8. Charge extractionCurrent

lig
ht

Figure 4.9. – Schematic representation of process activation. At the beginning of
a simulation, either light induced exciton generation or charge injection from the
electrodes can occur. If excitons and charge carriers are present, their respective
processes for motion, recombination, and removal become activated. Finally, if charge
carriers get collected at an electrode they contribute to an external current.

To adapt the derived models to real devices, specific input parameters must be taken
from experimental data. It is not possible by the kMC method to derive material
parameters per se, because it is not an ab-initio method based on fundamental physical
laws. The focus is directed towards parameter values for the benchmark device comprised
of P3HT:PCBM because it is the most extensively studied composition regarding polymer
based compositions. Nevertheless, the derivations are applicable in the same manner for
other compositions, considered that equivalent data is available for those materials.

Alongside the explanation of the processes (1)-(8) throughout this section, an illustration
of the respective process behavior on the simulation grid is depicted in Figure 4.10; in
Figure 4.10a for the excitonic processes and in Figure 4.10b for the charge processes.

4.3.1. Exciton generation

Upon illumination, excitons are generated in the photoactive layer. We describe the
exciton generation by a generation profile G(xi, yi, zi) in units of nm−3 s−1 to count the
number of excitons created per unit time and volume at node i. Two models for the
exciton generation are implemented:

• a constant generation over the entire active layer and
• a Transfer Matrix Method (TMM) generation profile.

It shall be explicitly noted at this point that for all simulations the TMM model is used.
Both the constant generation and the TMM model are an approximation to cover the
optical effects leading to the absorption of photons and generation of excitons. For a

68



4.3. Implementation of processes

ex

ex

ex

x

1

2
3

4

(a) Exciton processes

h h e

h

8

5 56

7

(b) Charge processes

Figure 4.10. – Geometrical illustration of implemented processes for excitons (a)
and charge carriers (b) on the simulation grid. The right broken line represent the
heterojunction between donor (left, purple) and acceptor (right, orange) nodes at
which excitons are separated and electron and hole can recombine. The left broken
line indicates the interface between a contact (left, light blue) and the donor material
(right, purple) at which charges can be injected or collected.

sophisticated treatment of the optical effects, a full 3D solution of the Maxwell equations
[160] would be most desirable to calculate the local G(xi, yi, zi). However, this approach
is not straightforward: solving the Maxwell equations on an intertwined geometrical
structure such as a BHJ is exceedingly complex. One must rely on numerical methods,
such as the Finite Element Method (FEM) on a discretized representation of the blend.
A method to generate a discrete mesh on which the equations can be solved without
convergence problems does not yet exist. While our group is working on such a structure
(see refs. [164], [165]), this approach is not covered here. In this study, the mentioned
simplified exciton generation models are used and they are assumed to contain all optical
effects. We have furthermore investigated the influence of different generation profiles on
the performance of BHJ OSCs and found little influence on the results (cf. Appendix A.1).
It is therefore argued that the TMM model is sufficient to describe the exciton generation.

In the case of constant generation, a fixed generation rate aexg in units of nm−3 s−1 is
chosen. For a lattice constant of 1 nm, aexg represents precisely the exciton generation
rate per single node in the layer, i.e.

G(xi, yi, zi) = aexg ∀i. (4.18)

The generation rate is assumed to be constant regardless of the node materials, i.e. exciton
generation happens with equal probability in donor and acceptor material. Since there is
no information about the external illumination strength in the constant generation model,
aexg needs to be adapted to the illumination spectrum, i.e. 100 mW cm−2 in standard
conditions, or needs to be fitted to experimental results. For a given incident power, aexg
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Figure 4.11. – Exciton generation profiles G(z) obtained from [166] by TMM for
different active layer thicknesses. (b) is adapted from [33]. © 2016 IEEE.

can easily be estimated under the assumption that each incident photon has the same
energy, creates one electron-hole pair, and that all charges are collected.

The TMM model is a more sophisticated model that allows to calculate the generation
profile in dependency of the external illumination spectrum and utilizes the specific
complex refraction indices n̄ = n+ iκ of the materials in the active layer, where n is the
refractive index and κ is the extinction coefficient. It also considers interference effects
that arise from reflection of light at the contacts and lead to a standing wave in the
active layer. We use a TMM model in one dimension based on the work of Burkhard et
al. [166]. Following this model, the exciton generation rate is determined with respect to
the penetration depth z,

G(xi, yi, zi) = G(zi) (4.19)

and is considered to have the same value for all nodes in each plane perpendicular
to the contacts, irrespective of the material. With the effective refractory indices
of a P3HT:PCBM blend, n̄P3HT:PCBM, also taken from [166], and for a device struc-
ture ITO/PEDOT:PSS/ P3HT:PCBM/Al the generation profiles obtained under 1 sun
(AM1.5) illumination (cf. Figure 2.1) are shown in Figure 4.11a for several different
active layer thicknesses ranging from 50 nm-200 nm. For most of the simulations a 50 nm
structure will be used. The generation profile G(z) as used in the 50 nm simulations
is depicted in Figure 4.11b, together with the contacts and the incident light. Further
information on the TMM model and its application to organic thin-films can be found in
[32], [167], [168].
Each exciton generated in the simulation box has individual properties assigned that

represent its current state and can be used for evaluation:

• Exciton position
• Exciton diffusion rate in ±x, ±y, ±z direction
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• Exciton decay rate
• Exciton separation rate in ±x, ±y, ±z direction

4.3.2. Exciton diffusion

Because electron and hole are strongly bound to each other in an excitonic state, they
are spatially localized and can therefore be considered as a neutral particle that is not
affected by the influence of an internal electric field. This gives rise to the assumption
that excitons diffuse randomly through the organic material. In analogy to a 3D random
walk, commonly used for Brownian motion, the exciton diffusion can be described by a
diffusion coefficient

D = L2

6T (4.20)

with L and T being the average diffusion length and lifetime, respectively, of an exciton
before it decays. These values correspond to the average distance L a neutral particle
diffuses from the originating location after a Brownian random walk for a time interval
of T . Experimental measurements show that L ≈ 10 nm and T ≈ 500 ps [6] for excitons
in BHJs, yielding a diffusion constant of D = 3.3× 10−2 nm2 ps−1. Further, the hopping
rate is calculated as the inverse of the mean time interval for a hopping process τhop from
one node to another where only next neighbor hopping is considered (l = 1 nm),

aexh = 1
τhop

= 6D
l2
. (4.21)

According to this model, an average exciton hopping rate of aexh = 2× 1011 s−1 is
obtained.

4.3.3. Exciton decay

An exciton decays radiatively after its average lifetime of T ≈ 500 ps if it has not reached
a donor/acceptor heterojunction to become separated in this time. The decay rate can
therefore be expressed as the inverse of the lifetime

aexd = 1
T
. (4.22)

With T = 500 ps from above, aexd = (500 ps)−1 = 2× 109 s−1. The decay rate is
considered to be a cumulative rate for all exciton decay channels and constant for every
exciton. Exciton decay is considered to be definite, i.e. after decay has occurred the
excitation energy is lost and cannot contribute to any other process anymore.

4.3.4. Exciton separation

A study about the separation has shown that the charge transfer process happens
extremely fast [69], [169], [170], i.e. on timescales of τsep ≈ 50 fs. The exciton separation
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rate is defined as the inverse of the separation time

aexs = 1
τsep

. (4.23)

Thus, a separation rate of aexs = τ−1
sep = 2× 1013 s−1 is used. Because the rate is large

compared to the order of magnitude of all other rates, separation is the dominant process
to be executed in case excitons reside at an interface.
Depending on whether the exciton resided in a donor or acceptor material when

separation occurs, charge transfer is treated in the opposite manner: in case the exciton
was on a donor, an electron transfer to the acceptor is performed and the hole remains
in the donor. Vice versa, in case the exciton was on an acceptor, a hole transfer to the
donor is performed and the electron remains in the acceptor.

4.3.5. Charge carrier hopping

Charge carriers move under the influence of the internal energy distribution as assigned
to the nodes in Section 4.2.3. The hopping process of a charge carrier at node i to node
j is described by the Miller-Abrahams formula [63],

ai→j = a0,i · exp(−2γi rij)

exp
(
−∆Eij

kBT

)
for ∆Eij > 0

1 for ∆Eij ≤ 0
(4.24)

This equation forms the fundamental basis for the dynamic behavior of all charged
particles in the solar cell and its terms and parameters need particular explanation.
The prefactor a0,i represents the so called attempt-to-hop frequency at node i and

originates from the interaction of charges carrier from the interactions with phonons.
The value of a0,i, in units of s−1, is of the order of typical phonon frequencies. a0,i can
be set separately for electrons and holes and depends on the material at node i, i.e.
different hopping prefactors for donor and acceptor can be chosen. From an energetic
point of view, a0,i · exp(−2γirij) is the rate by which a particle hops from one localized
state to another under isoenergetic site conditions ∆Eij = 0, as suggested by [121]. It
can be derived in close analogy to the random walk treatment of excitons. With the
Einstein-Smoluchowksi relation for charged particles [171], [172], the diffusion coefficient
reads

D = µ · kBT
e

, (4.25)

where electrons and holes have to be treated differently with their respective mobility
µe and µh. The mobilities enter the model by experimental measurements. It needs
to be mentioned that the validity of the Einstein relation in Equation (4.25) may not
be fulfilled in general in organic semiconductors. There is however evidence that in
particular for small electric fields as applied in OSCs, the relation is valid [33]. More on
the validity of the Einstein relation in BHJs can be found in the results in Chapter 5.3.2.
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Substituting D in Equation (4.21) and considering ∆Eij = 0 in Equation (4.24), one
obtains for next neighbor hopping (rij = l):

a0,i = 6µkBT
e · l2

e2γil. (4.26)

Exact mobility values for organic materials are hard to determine and depend on many
factors such as the grade of disorder and purity. Some typical values are of the order
of 10−3 cm2 V−1 s−1 for electrons and 10−4 cm2 V−1 s−1 for holes in a P3HT:PCBM
blend [173], [174]. With µe = 3.7× 10−3 cm2 V−1 s−1 and µh = 7.1× 10−4 cm2 V−1 s−1,
different attempt-to-hop frequencies for electrons and holes are obtained: a0,elh =
3× 1012 s−1 and a0,hoh = 6× 1011 s−1. As mentioned, these values can vary in a wide
range for different materials, morphologies, processing conditions, etc. For the scope of
this work, electrons only reside in the acceptor material and holes in the donor material
due to the large offset in MO energies between donor and acceptor. We therefore consider
only one electron hopping prefactor a0,elh and one hole hopping prefactor a0,hoh.

The second factor accounts for the tunneling character of the hopping process from one
localized state to another. γi is the inverse localization radius (in nm−1) of the material
at node i and originates from the overlap integral between neighboring wave functions. It
can be chosen separately for donor and acceptor materials. Here, it is set to a fixed value
of γ = γi = 2 nm−1 according to [118], [121] and similar to 1.7 nm−1 which was observed
in [61]. The localization constant is a complex function of the spatial arrangement of the
atomic orbitals and its exact prediction requires a full quantum mechanical treatment.
This is beyond the scope of the mesoscopic kMC method which is why γ is considered as
a constant here. rij is the distance between the two nodes i and j. If only next neighbor
hopping is considered, rij is always equal to the lattice constant l.
The last factor is of major importance for the dynamical evolution. Its influence can

be imagined as a thermal activation process. The differences in the single node energy
levels ∆Eij = Ej − Ei = ∆E0

ij + ∆EFij + ∆Eσij + ∆ECij enter the model here, as derived
in Section 4.2.3. The contributions from the first three terms ∆E0

ij + ∆EFij + ∆Eσij are
assigned to the local node sites. For the Coulomb interaction energy of a charge carrier at
node i with all other real, image and replica (in neighboring simulation boxes) particles,
the previously stored pair potentials can be read out from the local memory and are
used to calculate Ui from Equation (4.16). Then, the third energy term is calculated by
∆ECij = 1

2q(Uj − Ui). Because ∆Eij is evaluated for every charge carrier in every kMC
step and for every direction a particle is allowed to hop, the calculation of hopping rates
is one of the computationally most demanding processes in the simulation. This holds
especially true for a large number of charge carriers, i.e. high charge densities.

If the energy of a particle can be lowered by a transition from i→ j, the last factor is
independent of the exact energy difference and set to 1. On the contrary, if an energy
barrier has to be surmounted for a transition, its rate drops exponentially with the
magnitude of the barrier ∆Eij > 0.
After exciton separation or charge injection, electrons or holes are introduced to the
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simulation box. In analogy to the excitons, both electrons and holes have the following
information assigned for each charge carrier individually that can be used for further
evaluation:

• Position
• Hopping rate in ±x, ±y, ±z directions
• Recombination rate (only for electrons, see below)
• Collection rate
• Origin (which exciton, cathode or anode)

4.3.6. Charge carrier recombination

Charge recombination represents one of the major loss mechanisms in OSCs. In case
two oppositely charged particles are located on adjacent sites (with a distance of 1 nm),
they can recombine with a recombination rate aehr. It represents the rate at which direct
recombination of a bound electron-hole pair takes place.
One should generally distinguish between different types of recombination in organic

solar cells. In case recombination takes place between an electron and a hole that
originated from the same exciton, recombination is termed geminate recombination. On
the other hand, in case the two charges originated either from two different excitons, or one
of the charges stems from injection from a contact, recombination is non-geminate. Since
the origin of each charge is tracked, these recombination channels are easily distinguishable
in the kMC model. One value for aehr is used for the direct recombination, independently
of whether they originate from the same exciton (geminate recombination) or from a
different source (non-geminate recombination). Figure 4.12 depicts an illustration of the
different recombination processes.

In experiments it is hard to determine the origin of charges and a spatial resolution of
where exactly recombination took place is difficult to achieve. Recombination is therefore
often described by effective recombination models of the form

R = k · np (4.27)

where R is the volume recombination rate (in cm−3 s−1), k is a model-specific recombina-
tion parameter (in cm3 s−1), and n and p are the electron and hole charge densities (in
cm3). One of the most widely used recombination models for OSCs, the Langevin model
[175], is given for

k = e

ε0εr
(µe + µh) (4.28)

where εr is the permittivity of the material and µe, µh are the electron and hole mobilities.
However, large deviations from the Langevin model have been observed in OSCs [176],
[177]. The Langevin model is not generally applicable to spatially and energetically
disordered BHJs since it was derived for homogeneous materials and does not include

74



4.3. Implementation of processes

A
n
o
d
e

C
ath

o
d
e

h

e

e

h

(a)
(b)

h

e

(d)

h
(c)

Figure 4.12. – Definition of different recombination processes: (a) geminate recombi-
nation of a charge pair. (b)-(d) non-geminate recombination between charges of (b)
different charge pairs, (c) an optically generated charge and an injected charge, and
(d) two injected charges.

any information about the blend geometry. More on the validity of the Langevin model
and its deviations will be investigated and discussed in the results in Chapters 5 to 7.

If a neutral system is assumed, n = p and Equation (4.27) reads R = k · n2, a typical
expression used to describe (bimolecular) recombination. The exponent of the charge
density can be generalized to classify recombination in terms of the recombination order
δ in an effective recombination across the entire device with

R = k · nδ (4.29)

With δ, different recombination orders can be classified: for δ = 1 recombination is
monomolecular because it is only dependent on the density of one type of particle; this is
the case if e.g. one type of charge is trapped in a defect and recombination is limited
by another type of charge approaching the trap, or for the recombination of bound
electron-hole pairs. For δ = 2 recombination is bimolecular because it depends on the
product of two charge densities; in this case two types of charges must find each other
in order to recombine. Even higher recombination orders can exist (e.g. δ = 3, Auger
recombination) but are not considered here.

The relation between the direct recombination rate aehr and the volume recombination
rate R is difficult to establish. We can however, derive the volume recombination rate R
from the kMC simulations and compare to experiments, which will be shown in Chapter 8.
In case the charges of a charge pair have successfully managed to separate from

each other, it is unlikely for them to find their geminate partner again. Therefore,
separated charges may only recombine non-geminately when they find a distinct oppositely
charged partner. The latter is equal to the definition of bimolecular recombination. We
can therefore approximately compare non-geminate with bimolecular recombination.
Monomolecular recombination contains geminate recombination and recombination by
immobilized charges by local valleys in the energetic disorder. Throughout this thesis,
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we will refer to geminate and non-geminate recombination because the kMC model is
able to extract these quantities and they provide for a more detailed insight into the
recombination processes.
aehr is defined as the inverse of the recombination time τrec,

aehr = 1
τrec

, (4.30)

where τrec is either directly extracted from experiments, or is obtained from fits of device
models to measurements.
An kMC study on recombination was done by Marsh et al. [122] who have set the

recombination rate to arec = 5× 105 s−1, to achieve a good agreement with measured
results. However, they stated that the rate can vary by several orders of magnitude
depending on the materials and the exact molecular interaction at the interface. Fits to
j-U characteristics have been achieved with recombination rates between 104 s−1-106 s−1

[178], [179].
Also in terms of measurements, τrec and concomitantly aehr can vary over large

ranges. Values between in the range of µs and sub-µs have been reported for bimolecular
recombination, while recombination investigated by Transient Absorption Spectroscopy
(TAS) measurements was found to vary between 107 s−1-109 s−1 and even down to sub-ns
by CT lifetime measurements [81], [131], [180]–[184].

Summing up, due to large uncertainties in the value for the recombination rate, values
in the range of aehr = 104 s−1-1010 s−1 are used, where the exact values are stated when
used.
It shall be noted that we do not explicitly introduce trap states in addition to the

distribution of the density of states around the MO energy levels. Although charges will
relax in local minima of the density of states during the simulation, recombination within
such a state is generally not considered as trap-assisted recombination. All recombination
in this model is therefore direct recombination and no trap-assisted recombination is
considered.
When a recombination event occurs, both contributing charges are removed and

excitation energy is lost ultimately.

4.3.7. Collection at electrodes

In order to extract a current, the collection rate of electrons and holes at nodes adjacent
to the electrodes (mi

z = 1 and mi
z = Mz − 1) is enabled. The collection process is treated

in analogy to charge carrier hopping with ∆Eij ≤ 0. This yields acol = a0 · exp (−2γrij).
For a fixed rij = l and γ, the collection rates are reduced to a constant rate. The
collection rates can separately be set for electrons at the bottom and top contact, aelc,bot
and aelc,top, as well as for holes at the bottom and top contact, ahoc,bot and ahoc,top to
reflect the quality of the contact with respect to the collection of a particular charge.
Here, we use the same values at the bottom and top contact for electron collection
aelc = ahoc = 1010 s−1, following previous kMC models [118].
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After a collection process the corresponding particle is removed from the photoactive
layer and contributes to the photo-current extracted from the cell.

4.3.8. Injection from electrodes

To be able to simulate full j-U characteristics of a solar cell, the dark current, i.e. the
injection of charges from the contacts, must be considered. A model based on thermionic
injection of charge carriers from the electrodes into the adjacent organic materials
according to Wolf et al. [123] is used. This is fundamentally a charge hopping process
from the Fermi energy level of the electrode into the HOMO/LUMO level of the organic
material. In the applied model the influence of the charge under its own image induced
in the electrode is considered, which reduces the injection barrier. This is in addition
to the already considered influences of the morphology, an applied electric field and the
energetic disorder on the local energy level in the adjacent organic layer. These factors
determine the energy that has to be surmounted from metal into the organic layer, the
local injection barrier. The local injection barriers are the determining factors for the
dark current of a solar cell.

When the morphology of the photoactive layer has been created in the setup process,
a random distribution of clustered donor and acceptor areas is adjacent to the electrode
nodes. Because donor and acceptor level usually have a large deviation in MO energies
of several hundred meV, the injection rate into a donor material differs strongly from the
injection rate into an acceptor. Electrons are usually injected in the acceptor LUMO
because of the lower energy barrier from electrode to acceptor LUMO than donor LUMO.
Vice versa, hole injection takes place with great probability into a donor HOMO. To
calculate the injection rates, there are four distinct injection processes that have to be
considered:

• electron injection from cathode (bottom) into adjacent LUMO (aeli,bot)
• hole injection from cathode (bottom) into adjacent HOMO (ahoi,bot)
• electron injection from anode (top) into adjacent LUMO (aeli,top)
• hole injection from anode (top) into adjacent HOMO (ahoi,top)

The rate for each of these processes is, in analogy to hopping, calculated by the Miller-
Abrahams equation. The total injection rate for each of the processes, separately, is
calculated by

ainj =
∑
n

a0,n exp (−2γl) exp

−E(n)
b − e2

16πεrε0 l

kBT

 , (4.31)

where E(n)
b = En − φ is the injection barrier from the electrode node at mn

z = 0 (with
φ = φcathode) into the adjacent organic node mn

z = 1 for injection at the cathode or the
barrier from the anode at mn

z = Mz (with φ = φanode) into mn
z = Mz − 1 for anodic

injection. The summation index n ranges over the entire metal-organic contact area,
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i.e. for all nodes [0,Mx − 1]× [0,My − 1]. The term e2

16πεrε0 l
accounts for the reduction

of the barrier due to an induced mirror charge [123]. The prefactor a0,n can be chosen
individually for electrons and holes, injection from the cathode or anode, and injection
into donor and acceptor, in each combination.
For example, consider injection of electrons at the cathode. At every single electrode

node n ∈ [0,Mx − 1] × [0,My − 1] × [0], the energy barrier is determined by Enb =
ELUMO
mnz=1 − φcathode − e2

16πεrε0 l
. Whether the adjacent organic material is of donor or

acceptor character is already defined by the energy levels of ELUMO
mnz=1 , and so is the

influence of the electric field and the disorder. Iterating over all junction nodes and
summing up the rates after Equation (4.31) yields the total electron injection rate at the
cathode aeli,bot. Proceeding in the same manner for all processes mentioned above, the
four different total injection rates are stored.
An important effect to be mentioned arises from the combination of charge injection

and charge collection at the metal organic interface. After a charge carrier has been
injected, it resides at a node next to the electrode. Thus, its collection rate is enabled
and a recently injected charge carrier can immediately be extracted from the device again.
For low injection barriers and low driving electric fields as for example at open-circuit
condition, these subsequent injection and recollection processes dominate the simulation
and are computationally expensive. This is known as the “small-barrier” problem in the
recent kMC literature [143], [185] and restricts kMC models with the sort of injection
treatment described here from simulating configurations where the injection barrier is
smaller than approximately 0.2 eV, ohmic, or even negative (no barrier at all).
The injection model considers the static energy distribution in the active layer to

determine the injection rates, but does not consider the dynamical fluctuations induced
by charges in the system. Updating the calculation of injection rates and considering
specific nodes for the injection process (instead of randomly picking a node) considering
the internal electrostatic potential should be done for a more sophisticated contact
model. However, doing so in every simulation step is computationally not feasible, and
approximations must be made in order to achieve a tradeoff between simulation time and
physical accuracy. We consider the implementation described above as a good tradeoff
for OSCs.

4.4. Simulation input parameters

To summarize all input parameters, the system setup parameters are listed in Table 4.1
and the input rate values are listed in Table 4.2. If different values than indicated in
these tables are used, then it is explicitly stated in the text.
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Table 4.1. – System setup parameters.

Parameter Symbol Value Reference

Nodes x direction Mx 50 -
Nodes y direction My 50 -
Nodes z direction Mz 50 -
Lattice constant l 1 nm -
Localization constant γ 2 nm−1 [61], [118], [121]
Relative permittivity εr 3 to 5 [65]
Energetic disorder σ 0 meV-100 meV [156]–[158]
Work function cathode φcathode −4.3 eV [65], [186]
Work function anode φanode −4.95 eV [65], [187]
PCBM (acceptor) HOMO level EHOMO

A −6.0 eV [65], [188]
PCBM (acceptor) LUMO level ELUMO

A −3.8 eV [65], [187]
P3HT (donor) HOMO level EHOMO

D −5.2 eV [189]
P3HT (donor) LUMO level ELUMO

D −3.0 eV [190]
Thermal energy (temperature) Eth (T ) 25.7 meV (298 K) -
Monte Carlo steps MCs 5000 [146]
Cluster size d ≈ 15 nm [146]
External voltage range Uext 0.0 to 0.8 V -
Simulation time tstop 1 ms-10 ms -

Table 4.2. – Transition rate values.

Process Symbol Rate value Reference

Exciton generation aexg Generation profile G(z) [166]
Exciton hopping aexh 2× 1011 s−1 [6]
Exciton decay aexd 2× 109 s−1 [6]
Exciton separation aexs 2× 1013 s−1 [69], [169]
Electron hopping prefactor aelh 3× 1012 s−1 [173], [174]
Hole hopping prefactor ahoh 6× 1011 s−1 [173], [174]
Electron hole recombination aehr 104 s−1-1010 s−1 [81], [122], [178]–[184]
Electron collection prefactor aelc 1010 s−1 -
Hole collection prefactor ahoc 1010 s−1 -
Electron injection prefactor aeli Thermionic injection [123]
Hole injection prefactor ahoi Thermionic injection [123]
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Figure 4.13. – Illustration of particle trajectories for photocurrent generation (a) and
loss mechanisms (b). Excitons (green) diffuse randomly after their generation and get
separated into electron (blue) and hole (red) at a heterojunction. Charges can then be
transported and collected at the electrodes (a) and contribute to a photocurrent or
recombine (b), in which case the excitation is lost. The long pathways from one face
of the box to the opposite face indicate the periodic boundary conditions.

4.5. Evaluation details

4.5.1. Particle trajectories

To highlight the particular advantage of a kMC model to track the transport pathway of
individual particles through the photoactive layer, an exemplary extract of the processes
responsible for current generation and recombination, as recorded at runtime, is shown in
Figure 4.13. Positions and time information of individual particles from their generation to
their removal can be stored during runtime and utilized for further processing afterwards,
as described for the most relevant quantities in the following sections.
The sequence of processes for photocurrent generation is shown in Figure 4.13a. At

first, an exciton (green) is created somewhere inside the photoactive layer by absorption
of an incident photon based on the exciton generation model. The exciton then diffuses
through the material by hopping from node to neighboring node with equal probability,
according to the random walk treatment. As soon as it meets a donor acceptor interface,
the separation rate gets activated. The electron (blue) is placed in the acceptor material
and the hole (red) in the donor material. The generated charge carriers then move in
their respective material phases under the influence of the energy distribution. The data
in Figure 4.13a was taken from a cell in reverse bias condition where the electric field is
directed as such that the electron is driven to the cathode at the bottom (z = 0) and the
hole to the anode at the top (z = 50). After the charge carriers have been collected they
are removed from the layer and contribute to an external current.
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The implemented loss processes due to exciton decay and electron-hole recombination
are depicted in Figure 4.13b. If a generated exciton does not reach a donor acceptor
interface within its average hopping length, it decays and is removed from the simulation
box.
In the upper half of the simulation box the pathway of a decaying exciton is shown.

After generation and a certain amount of hopping events from node to node, an exciton
decay transition is chosen by the algorithm and the exciton vanishes. Note the periodic
boundary conditions on the hopping path: a particle at the boundaries of the simulation
box making an attempt to hop over the edge gets re-entered on the opposite side to
continue its path. This is indicated by the long green pathways from one face of the
periodic simulation box to the opposite side.

In the lower half of the simulation box two excitons are separated at an interface and
generate an electron-hole pair. The depicted simulation was executed at a bias around the
open-circuit voltage, i.e. the driving force on the charge carriers induced by the internal
electric field is small in this configuration and the predominant force between electrons
and holes is Coulomb interaction. Attempts to become spatially separated from each
other are suppressed and the charges stay close to each other on their hopping pathways.
This increases the probability for them to recombine because the corresponding rate is
always activated when two charges reside at nodes next to each other. If they recombine,
they are removed from the layer and cannot contribute to an external current anymore.

4.5.2. Charge mobilities

With the trajectory information for all charges, we have the information about location
of origin ~xs and destination ~xe of all charges as well as time of origin ts and time of death
te. Together with the internal electric field F = EFi=Mz

/(e ·Mz · l) = ∆φ/(e ·Mz · l),
the effective charge mobility of a single charge carrier through the morphology can be
evaluated by

µ = v

F
= |~xe − ~xs|
|te − ts| · F

. (4.32)

Averaging over a large number of charges then yields a mean value for the charge mobility
in the operating solar cell.

4.5.3. Charge carrier densities

To determine the local particle densities for electrons, ne or n, and holes, nh or p, we use
the average occupancy by electrons and holes, separately, of each node i. By tracking the
occupation X(i)

k ∈ {0, 1} at node i for each time step τk during the absolute simulation
time T = ∑

k τk, the densities are defined by

〈
ne/h

〉(i)
= 1
l3 · T

∑
k

X
(i)
k · τk (4.33)
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4. Kinetic Monte Carlo Model of Organic Solar Cells

where l is the lattice constant. The maximum density is limited by the site density
l−3 = 1021 cm−3 in case of l = 1 nm if a site is occupied by a charge during the entire
simulation time T .

4.5.4. Charge pair displacement

With the position and time information of electrons and holes, ~re(tk) and ~rh(tk), the
time-dependent displacement d(tk) of an electron-hole pair after exciton separation can
be described by a discrete time-series:

d(tk) = |~re(tk)− ~rh(tk)| , (4.34)

where d(tk) needs to be updated every time step k in which a charge of the charge pair
moves. A simple average over different d(t) is not appropriate to statistically evaluate
the pair displacement due to the different timescales and different outcomes a pair might
end up (collection, geminate and non-geminate recombination and combinations). A
more appropriate evaluation technique is described in Chapter 7.

4.5.5. Counter-based evaluation

Each event that takes place has a designated counter variable that is incremented every
time the event occurs. After a simulation run has been completed, the counters can be
used to calculate characteristic quantities. Counter variables are implemented for the
number of

• excitons generated Nexg,
• excitons decayed Nexd,
• excitons separated Nexs,
• charge carriers originating from exciton separation and recombining Nehr,
• geminate recombination events Ngr,
• non-geminate recombination events Nngr,
• electrons and holes injected from the electrodes N cathode

hoi , Nanode
hoi , N cathode

eli , Nanode
eli ,

• electrons and holes collected at the electrodes N cathode
elc , Nanode

elc , N cathode
hoc , Nanode

hoc .

From these counters, the following quantities can be derived:

Exciton separation efficiency: The ratio of excitons successfully separated into charge
carriers can be expressed as

ηexs = Nexs

Nexg
(4.35)

The loss of excitons by decay is the complementary process,

ηexd = Nexd

Nexg
= 1− ηexs (4.36)

because excitons either get separated or they decay (Nexg = Nexs +Nexd).
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4.5. Evaluation details

Total charge carrier recombination: Only charges originating from a separated exciton
are considered for the total recombination ratio. They are set in relation to the total
number of charge carriers that can possibly be generated from exciton separation,
where one electron and one hole emerge from one exciton:

ηehr = Nehr

2Nexg
(4.37)

This quantity represents the loss of optically generated charges. It contains both
geminate and non-geminate (only between charges from different excitons, no
injected charges) recombination events.

Geminate and nongeminate recombination: Furthermore, we count the number of gem-
inate and non-geminate recombination events, Ngr and Nngr, respectively. With
these, we can evaluate the relative geminate recombination ratio as the ratio of
geminate recombination events with respect to the total number of recombination
events

ηgr = Ngr

Ngr +Nngr
. (4.38)

as well as the relative non-geminate recombination ratio as the ratio of non-geminate
recombination events with respect to the total number of recombination events

ηngr = Nngr

Ngr +Nngr
. (4.39)

These allow for further investigation about how much geminate/non-geminate
recombination actually takes place with respect to the overall recombination. It
needs to be noted that Nngr can also contain charges that originate from injection
from the contacts.

Current density: The current density is the net charge that is passing the organic/electrode
contact per electrode area and unit time. The current density is evaluated at the
bottom and top contact, separately. Negative charges count oppositely to positive
charges and injected charges count oppositely to collected charges. Thus for the
cathode the current density leaving the cell is

j = 1017 · −e(N
cathode
elc −N cathode

eli +N cathode
hoi −N cathode

hoc )
A tstop

(4.40)

where A = l2MxMy is the electrode area in nm2 and tstop the simulation time in
s. The dimensionless prefactor allows to express the current density in units of
mA cm−2. Vice versa for the anode current density. In a steady state, the top and
bottom current are equal.
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4. Kinetic Monte Carlo Model of Organic Solar Cells

4.5.6. Local Coulomb potential

The evaluation of the local Coulomb potential φ(i)
C was performed by a block-averaging

technique as described by Casalegno et al. [118]. After every pre-defined time block
∆tblock, the Coulomb potential induced on node i by all charge particles currently in the
simulation cell, i.e. at nodes j and with charge qj = ±e, is calculated for the time block
k by

φ
(i)
block,k =

2N∑
j=1

qj U
pair(mx

ij ,m
y
ij ,m

z
ij) (4.41)

in analogy to the treatment of Coulomb interaction from Section 4.2.4. Then, the
arithmetic mean of all time blocks gives the average electric potential at node i:

φ
(i)
C = 1

Nblocks

Nblocks∑
k=1

φ
(i)
block,k (4.42)

where Nblocks is the number of time blocks for which the potential was evaluated. For
example, when choosing a block time interval of ∆tblock = 10−5 s, for a total simulation
time of T = 10 ms a total of Nblocks = T

∆tblock = 1000 time blocks are averaged to obtain
φC . The smaller the block time interval is chosen, the larger the computational effort to
calculate φC but the more representable its value, and vice versa. This technique is only
used for visualization purposes of the local potential induced by charges.
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5. Investigation of Blend Effects in
Bulk-Heterojunction Organic Solar Cells

The intermixing of donor and acceptor materials in the active layer of BHJ OSCs leads
to a complex morphology. Many processes such as the dissociation of excitons, charge
dynamics, and charge recombination are based on the morphology, in particular on the
interface between the two materials. To enhance the solar cell performance that is mainly
based on these processes, two different modeling techniques are established today. In
Drift-Diffusion (DD) simulations, the common assumption is to reduce the morphology
including all interfaces to an effective material. On the contrary, kMC simulations offer a
method to investigate organic solar cells considering a realistic blend morphology. We
establish a common basis between the real blend kMC simulations and DD simulations
with an Effective Medium Approximation (EMA) and compare the two models. Our
results show that in the effective medium, the absence of local interface effects such as an
explicit treatment of the short-ranged Coulomb interaction of charges across an interface
lead to a fundamentally different charge density profile across the active layer. We show
that it is not possible to capture the morphological effects by an EMA-based model. We
provide hints that the effective medium approach might not be sufficient to treat the
internal effects induced by the blend morphology.

The content of this chapter is adapted, with permission, from T. Albes, P. Lugli, and
A. Gagliardi, “Investigation of the Blend Morphology in Bulk-Heterojunction Organic
Solar Cells”, IEEE Transactions on Nanotechnology, vol. 15, no. 2, pp. 281–288, 2016.
© 2016 IEEE.
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5. Investigation of Blend Effects in Bulk-Heterojunction Organic Solar Cells

5.1. Background

The concept of an intermixed BHJ [69] between organic donor and acceptor materials
forms the basis for OSCs with the currently highest reported PCEs [16]. The BHJ allows
to handle both the separation of photo-generated excitons and the successive charge
transport efficiently, while maintaining a simple fabrication process.

The fabrication of BHJ active layers is usually performed by spin-coating of the donor
and acceptor blend from solution with a successive thermal annealing process to improve
the clustering of identical materials [71]. As a consequence and due to the resulting
intermixed morphology, the interface area between the donor and acceptor phases has
a complex geometry. The interface is the region where photo-generated excitations are
separated and charges originate. On the other hand, these are also the regions where
charge recombination takes place. The BHJ interface is therefore directly related to loss
processes.
One established way to model organic solar cells is to solve the DD equations. They

offer an approach at a macroscopic continuum level, low computational effort, and with
good fits to experimental data [178], [191]. A common approximation used in DD
simulations is the EMA [136], [144], [153], [178], [192]–[195], i.e. the reduction of the 3D
donor:acceptor morphology to a single effective medium with intermediate properties.
In an EMA model, all interface effects between the donor/acceptor boundaries, such as
exciton splitting and electron-hole recombination, are assumed to be bulk processes and
evenly distributed across the photoactive layer. Therefore, neither are the real exciton
dynamics considered, i.e. an absorbed photon directly generates an electron-hole pair,
nor is the actual transport of charges through the complex blend treated in an EMA-DD
model. This affects for example the dynamics of charges after their separation at an
interface under the influence of Coulomb interaction. These disadvantages of the 1D
EMA model have been pointed out by Li et al. [196] and need to be addressed.
For this purpose, lattice-based kMC simulations offer a suitable tool to investigate

the processes in BHJ solar cells [38], [124]. A schematic comparison of the real blend
morphology and the EMA is shown in Figure 5.1. In contrast to an effective medium
DD model, the interface effects exciton dissociation and the charge recombination can
explicitly be treated in a kMC model. Also, charge transport through the complex
pathways is taken into account by a hopping model between localized states, which
cannot explicitly be considered on a local scale in an effective medium.

We compare the results from DD simulations in 1D with the EMA approach to kMC
simulations incorporating the 3D blend geometry to investigate whether an EMA with
a bulk treatment for interface processes can be considered a realistic approximation.
To our knowledge, a direct comparison between full-device kMC and DD simulations
has not been performed yet. Only a loose multiscale approach has been reported [197]
where certain parameters (e.g. charge mobility, exciton separation ratio) are extracted
from kMC simulations and plugged into the DD model. The comparison to a full kMC
simulation is the aim of this study.
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Figure 5.1. – Real blend (top) vs. EMA (bottom). In the EMA, the BHJ blend is
treated as an effective medium with properties intermediate between the two materials.

In Section 5.2 the DD model is briefly described and the specific differences between
the kMC and DD model are highlighted. Section 5.3 shows the comparison of the EMA
and the real blend simulations and a discussion about the validity of the EMA.

5.2. Model specifics

The DD model and the kMC model need to be based on the same parameters to be
able to decide whether the EMA with its bulk models is a valid approximation or
if important effects cannot be captured without the real blend morphology. We set
up each model to simulate a 50 nm thick OSC comprised of the established device
structure ITO/PEDOT:PSS/P3HT:PCBM/Al under a standard illumination condition
of 1000 W m−2. ITO/PEDOT:PSS acts as transparent anode and is on the illuminated
side of the cell. P3HT:PCBM is the intermixed active layer, and Al is the cathode.
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5. Investigation of Blend Effects in Bulk-Heterojunction Organic Solar Cells

5.2.1. Drift-Diffusion model

The DD method solved on finite elements is a common technique for semiclassical
modelling of semiconductor devices. The model for the OSC treated here has been
implemented within the TiberCAD simulation tool [198], [199] in 1D.
The solar cell model consists of the 1D active layer representing the region where

generation, transport, and recombination take place. At the boundaries, cathode and
anode are located and are used to inject and collect charges. The EMA is used for the
active layer, i.e. a virtual semiconductor with the HOMO level of the donor and the
LUMO level of the acceptor acts as an effective medium.

The complete equation system coupled to the Poisson and continuity equations is:

∇ · (εr∇ϕ) = e (n− p−N+ +N−) = −ρ (5.1)
∇ · jn = ∇ · (µnn∇φn) = −R+G (5.2)
∇ · jp = ∇ · (µpp∇φp) = R−G (5.3)

where εr is the dielectric constant of the material, ϕ the electric potential, n and p are
the electron and hole densities of mobile charges, µn and µh are the electron and hole
mobilities, and N+ and N− are the densities of a general static charge distribution, i.e.
trap states. No trap states are considered in this model. The last two equations are the
continuity equations for the electron and hole currents, proportional to the gradients of
their electro-chemical potentials φ and their mobilities µ, respectively. R and G are the
recombination and generation rates, respectively.

Recombination is described by the Langevin model, in which R is proportional to the
mobilities of electrons and holes:

RLangevin = C · µn + µp
ε0εr

· (np− n0p0) (5.4)

here, C is a prefactor to correct morphological effects that lead to deviations from the
ideal Langevin law. The densities n0 and p0 are the electron and hole densities in
equilibrium.

For the energetic structure in the organic materials a Gaussian DOS is assumed. This
is a common approach for all simulations of disordered organic semiconductors [124],
[199] and is based on the work of Bässler [56]. Due to the irregular structure of small
organic molecules and polymers, each molecule and/or monomer of a polymer acts as
a single charge transport site, a localized state. The dynamics of charges is based on
phonon assisted hopping between localized states. The conduction band is centered at
the LUMO level, while the valence band is centered at the HOMO level. Hence the
GDOS can be written as:

g(E, σ)dE = N0

σ
√

2π
exp

(
−1

2
E − EC,V

σ2

)
dE (5.5)
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where N0 is the site density of the localized states, EC and EV are the LUMO and
HOMO centers, respectively, and σ is magnitude of the energetic disorder.
In analytic derivations of hopping transport mobilities in disordered materials, for

rather small values of energetic disorder, the mobility is constant with respect to the
electric field [154], [200]. Nevertheless, mobility is strongly dependent on the disorder σ.
We used a constant mobility model in the DD simulations, for an additional justification
see the mobility extraction part in Section 5.3.2.
With 50 nm, the active layer is so thin that interference effects from the incident

light waves with the reflected waves at the electrode have to be taken into account. To
capture this feature and to consider the different absorption spectra of donor and acceptor
materials, photo-generation is adopted using the TMM as described in Section 4.3.1 for
a P3HT:PCBM blend. The TMM can be used to calculate the exciton generation profile
through the active layer under an AM1.5 illumination spectrum. The profile obtained
from these calculations and used in both models is depicted in Figure 4.11b and is used
in both the DD and the kMC model.
The boundaries between the active layer and the electrodes are treated as Schottky

contacts. At the boundaries, charges can be injected from the electrodes into the active
layer or become extracted from the active layer at the contacts. Injection considers an
image charge potential lowering, while the collection is modelled after a model by Scott
and Malliaras [201], both as implemented in [199].

5.2.2. Kinetic Monte Carlo model

The implementation of the kMC model described in Chapter 4 is used for a 50×50×50 nm3

cell with a BHJ morphology of 15.7 nm cluster size.
The recombination rate was fixed at aehr = 5× 105 s−1 after [122]. The simulations

were run for 10 ms, where a steady state was reached after approximately 1 ms. All
quantities extracted are based on a steady state condition and we compare the equilibrium
results. The DD model only yields results in an equilibrium state.

5.2.3. Establishing a common basis

In order to compare the two models a common basis has to be established. Table 5.1
depicts a list of the simulation parameters used for both models. Unmentioned parameters
used in the kMC model are taken as listed in Table 4.1 and Table 4.2. The differences
between the DD and the kMC model are: 1D vs. 3D; the morphology itself (EMA vs.
real blend); the treatment of Coulomb interaction (Poisson equation vs. Ewald sum);
the recombination model (bulk Langevin vs. interface); exciton splitting (uniform vs.
interface); and charge transport (implicitly given by the morphology; in the EMA the
effects of the morphology are contained in the effective mobility). Therefore, a comparison
of the results will highlight mainly morphology related differences.

The use of the EMA and a DD model reduces the computational demand significantly.
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Table 5.1. – Parameters equal in both models.
Parameter Value

Active layer thickness 50 nm
Exciton generation profile G(z) (Figure 4.11b)
Cathode (Al) work function −4.3 eV

Anode (ITO/PEDOT:PSS) work function −4.95 eV
Acceptor (PCBM) LUMO −3.8 eV
Donor (P3HT) HOMO −5.17 eV

Temperature 298 K
Dielectric constant 3.5

Gaussian energetic disorder 10 meV, 65 meV
Localized state density 1021 cm−3

Since the spatial 3D structure of the blend does not need to be considered, a 1D
representation of the solar cell is sufficient. The electrostatic potential obtained by the
solution of the Poisson equation is therefore only dependent on a 1D charge distribution.
In comparison to the Ewald sum solution in 3D in the kMC model, there are no periodic
boundary conditions perpendicular to the light incidence to be considered. A second
special feature of the Ewald model is the treatment of mirror charges induced in the
electrodes.
Another difference is the treatment of charge recombination. The Langevin recom-

bination model is a bulk model, i.e. recombination can take place everywhere in the
active layer, with a spatial dependency on the local charge densities, see Equation (5.4).
These in turn are not depending on the morphology because there is no morphology
implemented. Recombination in the kMC model is explicitly controlled by the blend
morphology. The condition for recombination is that oppositely charged particles are
located on nodes next to each other which is only possible at a donor/acceptor interface.
When this condition is fulfilled, the recombination is controlled by a constant rate. This
rate is dependent on molecular properties of P3HT and PCBM. Higher interface charge
densities also lead to higher recombination. The effect of the blend on recombination is
often fitted into the prefactor C of the Langevin recombination model.

Since excitons are not explicitly treated in the DD model, we renormalized the results
by the exciton separation ratio that we observe with the kMC model. There, for the
cluster size of 15.7 nm, about 95 % of the excitons are successfully separated, i.e. a loss
of 5 % is observed. The current and charge densities of the DD model are therefore
multiplied by this factor of 0.95.
The differences in charge mobilities between the models are discussed in the results

section below. At first we tried to use the mobilities as fitting parameter to adapt the DD
simulations to the kMC results. In a later step, we extracted the mobilities of charges
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through the kMC blend, their ‘effective mobility’, and plugged it into the DD model to
contain the blend effect in the DD simulations. The so obtained results of the 1D DD
model with the blend mobilities from kMC are then compared to the kMC model itself
in more detail, i.e. by comparing their internal charge density distribution.
In all results, we show the data for one low-disorder case (10 meV) and a medium-

disorder case (65 meV). Since the kMC model is computationally expensive with higher
values of energetic disorder, no higher values than 65 meV are shown here. These two cases
allow us to observe how effect of the disorder influences the results in the two different
models, especially in relation to the charge densities and how the charge transport is
influenced by the disorder for different electric fields.

5.3. Results and discussion

5.3.1. Mobility fit

The aim of the comparison is to keep as many parameters of both models equal as possible
and to see whether it is theoretically possible to achieve similar results by neglecting the
morphology and putting all blend information in the remaining fitting parameters. We
took the kMC model as reference for the DD model. Only the prefactor in the Langevin
recombination model and the mobilities for electrons and holes in the DD model are
taken as fitting parameters. The closest fit to the kMC model that could be achieved
is depicted in Figure 5.2 for two different values of energetic disorder. The Langevin
recombination prefactor was found to be C = 5. The mobilities obtained from the fit are
µ10meV
e = 5× 10−5 cm2 V−1 s−1 and µ10meV

h = 1× 10−5 cm2 V−1 s−1 for the 10 meV case.
For the 65 meV case µ65meV

e = 1× 10−4 cm2 V−1 s−1 and µ65meV
h = 5× 10−4 cm2 V−1 s−1

are obtained.
In recent studies of BHJ OSCs, the Langevin prefactor is known to be well below C = 1

[202]. This correction factor is assumed to be due to the fact that recombination may not
be described by a bulk model such as the simple Langevin model. The Langevin model is
overestimating the recombination rate because recombination processes only take place
at donor-acceptor interfaces while the derivation of the model assumes a continuous
medium. Therefore, the recombination rate in the DD model to fit the kMC results is
artificially higher than what is expected. This is a first hint for the incompatibility of
the models.

In a P3HT:PCBM blend, experimental measurements show that the electron mobility
is usually higher than the hole mobility [71], [203], depending on the parameters of the
thermal annealing process. While in the 10 meV case the hole mobility had to be chosen
lower than the electron mobility to achieve a reasonable fit, the reverse was necessary
in the 65 meV case. A disorder of 65 meV is more in the range of the real value for the
disorder. Therefore, the parameters that had to be used for the fit appear to be artificial
and in no good agreement with the experimentally observed values.
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Figure 5.2. – Comparison of EMA and real blend j-U characteristics. Here, the
mobilities and the Langevin recombination prefactor in the DD model have been fitted
in order to match the kMC results.

5.3.2. Mobility extraction

In a next step, to confirm that the kMC simulations lead to a better representation of
the internal working principles of the BHJ cell, we extracted the effective mobility of
electrons and holes through the blend. Since the internal electric field induced by the work
function difference and the applied bias is small in OSCs (. 104 V cm−1) under operation
condition, the evaluation of the mobility as the relationship between the velocity of a
particle through the blend and the (small) electric field might not be accurate because
the driving force is very small and the particle dynamics could be diffusion controlled
[154]. We therefore not only evaluate the drift mobility, but also the diffusion coefficient
D = 〈z

2〉
2t as the mean square deviation of the position of a particle with respect to its

origin
〈
z2〉 and time t. This quantity can be set into relation with the drift mobility

by the Einstein relation. It shall be noted that the validity of the Einstein relation
µ = e

kBT
·D in OSCs is still under discussion. But for the case of low electric fields and

energetic disorders below about 150 meV, it was shown to be valid by theoretical studies
[154], [200]. The results of the evaluation are shown in Figure 5.3.

For both cases of energetic disorder, respectively, the mobilities obtained by the drift-
and the diffusion-evaluations are of the same order of magnitude, implying the validity of
the Einstein relation. Moreover, the mobilities are only slightly dependent of the electric
field and can therefore be considered as constant, justifying the use of a constant mobility
in the DD model. A field-independent mobility has been found in organic materials at
small electric fields [56], [154] such as applied in OSCs, which coincides with our results,
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Figure 5.3. – Evaluation of the effective mobility of charges through the BHJ morphology.
(a) Evaluation based on drift induced by the electric field. (b) Diffusion mobility based
on the mean square displacement of charges with respect to their origin. The error
bars show the standard deviation over 1000 evaluated particles each.

while for larger fields a Poole-Frenkel law of the form µ(E) ∝ exp(−
√
E/E0) applies.

As it can be seen, both mobilities drop by orders of magnitude when the disorder is
increased from 10 meV to 65 meV. The low disorder simulations show electron mobilities of
approximately µ10meV

e = 1.1× 10−1 cm2 V−1 s−1 and µ10meV
h = 2.5× 10−2 cm2 V−1 s−1.

At 65 meV, µ65meV
e = 1.4× 10−4 cm2 V−1 s−1 and µ65meV

h = 4.6× 10−5 cm2 V−1 s−1 are
obtained. The values achieved here can be compared to experimental measurements of
the mobility because it includes the pathway of charges through the intermixed structure.
For the latter, realistic (i.e. comparable to what is observed in experiments) values in
a P3HT:PCBM system are obtained by the kMC simulations. Also electrons are more
mobile in PCBM than holes in P3HT.

5.3.3. Re-fit with extracted mobilities

With the mobility results from the previous evaluation, the DD-EMA simulations are
repeated. This time, the information about the blend should be correctly included in the
mobility values for electrons and holes. All other parameters are kept the same. The
new EMA j-U characteristics with the kMC results for both cases of disorder are shown
in Figure 5.4. With just a change in the mobilities the previous agreement is lost. All
critical quantities, short-circuit current, open-circuit voltage and fill factor do not match
the kMC results anymore.
With the only remaining parameter, the prefactor of Langevin recombination, it was

not possible to achieve a fit. Thus, we could not find a way to match the 1D DD EMA and
the 3D kMC real blend models. This means that the effects specific to the morphology,
i.e. the interface effects and the charge dynamics, could not be included in bulk models
and parameters in the here presented manner.
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Figure 5.4. – Comparison of EMA and real blend j-U characteristics with effective
blend mobilities extracted from the kMC simulations. For both values of the energetic
disorder the results differ noticeably in open-circuit voltage, short-circuit current as
well as in the fill factor.

5.3.4. Charge density evaluation

To take a closer look at why the results are different, Figure 5.5 shows the charge densities
along the z-direction of the active layer for both cases of energetic disorder and both
models. For the 3D kMC simulations these are the averaged densities for electrons and
holes, respectively, per 2D slice along the z-direction.

The predominant difference between the DD and the kMC model is the separation of
positive and negative charges. The electron and hole densities in the real blend kMC
model are similar in most layers. This indicates that electrons and holes, after they
have been created by exciton separation at a donor-acceptor interface, stay together and
are located very close to each other leading to equal densities throughout the active
layer. The local Coulomb interaction induced by the electron-hole pair on each other
is therefore stronger than the electric field to separate the pair. The electron and hole
densities only differ near the contacts, where the electron density is increased near the
cathode and hole density near the anode. This is attributed for one to the injection of
charges from the contact: the injection barrier is much lower for holes at the anode and
for electrons at the cathode, and hence lead to more charge injection. Furthermore, in
the low disorder case, charge collection is slower than charge transport to the contact,
which leads to a further pile-up of charges. The average charge density across all layers at
10 meV disorder is n = 1.34× 1016 cm−3 for electrons and p = 1.83× 1016 cm−3 for holes.
Increasing the disorder to 65 meV, the densities increase slightly to n = 2.45× 1016 cm−3

94



5.4. Conclusion

0 10 20 30 40 50
1012

1013

1014

1015

1016

1017

1018

1019

z (nm)

C
ha
rg
e
de
ns
it
y
(c
m

−
3
)

p (kMC) n (kMC)

p (DD) n (DD)

0 10 20 30 40 50
1012

1013

1014

1015

1016

1017

1018

1019

z (nm)

C
ha
rg
e
de
ns
it
y
(c
m

−
3
)

p (kMC) n (kMC)

p (DD) n (DD)

(a) (b)

Figure 5.5. – Comparison of the average charge densities per slice along the z-direction
for 10 meV (a) and 65 meV (b) of disorder for both the DD and the kMC model. All
results are at short-circuit condition.

and p = 7.50× 1016 cm−3. These are commonly assumed values in organic solar cells
[203]. Higher disorder is the reason for decreased charge mobility due to trapping in deep
states of the Gaussian disorder. The trapping of charges leads to an increased charge
density, both positive and negative, inside the active layer. Since hole mobility is lower
than electron mobility, the increase is stronger for p than for n.

The result of the DD simulations with the same system setup is also shown in Figure 5.5.
The densities in the EMA show a different behavior. Electron and hole densities are not
equal throughout the layer but rather seem being influenced strongly by the electric field
across the active layer. Holes are pushed towards the anode and electrons towards the
cathode, i.e. an internal charge separation takes place. This is fundamentally different to
the kMC results where opposite charges stay clustered together and the electron and hole
are still Coulomb bound in a region around the interface where they have been created.
However, it is impossible for the EMA model to show this effect because it is purely
morphological/interface effect. Therefore, the global electric field dominates here over
the effects of the local one. Increased electron density at the cathode and increased hole
density at the anode can also be observed in the EMA model, i.e. the injection processes
are comparable. The general trend is the same for the 65 meV simulations although the
effect of charge separation seems to be lower, i.e. influence of the disorder on the charge
density distribution has grown.

5.4. Conclusion

We compared DD and kMC simulations of an organic solar cell comprised of a P3HT:PCBM
blend as the active layer. In the DD simulations the blend is modeled as a 1D effective
material while the kMC method includes the realistic blend morphology in 3D. We ex-
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tracted mobilities containing the charge dynamics through the blend by the kMC model.
These mobilities were plugged in the DD model to represent the blend information. The
j-U characteristics of the two models showed no good agreement in terms of short-circuit
current, open-circuit voltage and fill-factor. Investigating the charge density distribution
across the active layer shows that local (interface) effects are hidden with the EMA and
that it is not possible to put morphological effects in the mobility and the recombination
prefactor of the Langevin recombination in a 1D DD model. In the DD model, the lack
of morphology leads to charge separation and the formation of an imbalance between
positive and negative charge throughout the layer. In the real 3D blend simulations,
opposite charges stick together at an interface for most of their lifetime and no global
charge separation can be observed. These are blend effects that cannot be captured by
the EMA. Due to the close distance of electrons and holes, more recombination takes
place, reducing the short-circuit current and lowering the performance in comparison
to less recombination in the DD model due to charge separation. Thus, the results can
raise doubt on the physical accuracy of the EMA for OSCs which possess both a low
dielectric constant, due to which local Coulomb effects play a major role, and a complex
geometrical structure, such as in a BHJ configuration.

96



6. Influence of Permittivity and Energetic
Disorder on the Spatial Charge Carrier
Distribution in Organic
Bulk-Heterojunction Solar Cells

In BHJ OSCs the low permittivity in combination with the spatial and energetic disorder
of the organic materials leads to a complex behavior of charge carriers within the active
layer. Charges originate in the form of bound electron-hole pairs from exciton separation
at the heterojunction interface. The successive interplay between mutual Coulomb
interaction and the transport through the disordered organic can lead to insufficient
separation from the interface, increased interface densities with respect to the bulk
regions and, hence, affect recombination. To further understand the mechanisms of
recombination, insight into the explicit spatial distribution of charge carriers within the
blend is crucial. We performed kMC simulations on a BHJ OSC to assess the effect of
Coulomb interaction and energetic disorder on the three-dimensional spatial distribution
of charge carriers and highlight the correlation to both geminate and non-geminate
recombination. We show that for materials with low permittivity and large energetic
disorder the charge distribution is strongly inhomogeneous with accumulation along the
heterojunction interface. In such cases recombination is not limited by recombination
partners finding each other but rather an interface controlled process where geminate
recombination dominates over nongeminate recombination.

The content of this chapter is adapted from T. Albes and A. Gagliardi, “Influence
of Permittivity and Energetic Disorder on the Spatial Charge Carrier Distribution and
Recombination in Organic Bulk-Heterojunctions”, Physical Chemistry Chemical Physics,
vol. 19, no. 31, pp. 20 974–20 983, 2017, with permission from the PCCP Owner Societies.
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6.1. Background

In BHJs, after the charge transfer at the donor/acceptor heterojunction, the electron
resides in the acceptor material and the hole in the donor material. In this intermediate
state, the geminate charges can still feel their mutual Coulomb attraction (controlled
by the εr), up to a separation distance of about the Coulomb radius rC = 14− 19 nm
for εr = 3− 4, and see an energetically disordered landscape in their respective phase
(controlled by σ). Both Coulomb attraction and energetic disorder hinder the electron
and hole from separating from each other and the interplay between εr and σ is expected
to have a big impact on the spatial Charge Carrier Distribution (CCD) and, in turn,
recombination. The crucial question arising is: are charges rather concentrated along the
heterojunction interface or can they be considered free within their respective phase? In
the former case the photogeneration process is controlled by the size and the properties of
the heterojunction, in the latter case it might be sufficient to reduce the BHJ to effective
bulk models. The longer opposite charges stick together in a bound state at the interface
(i.e. the larger the interface charge density) the more likely it is for them to undergo
geminate recombination. If they have managed to overcome their mutual influence (by
the support of thermal fluctuation or an electric field) they can, on their pathway towards
the contacts, meet a charge originating from a different exciton and recombine, in which
case the recombination is considered nongeminate.

Techniques like TEM can be used to determine the structural morphology of BHJs and
estimate the grade of intermixing and typical cluster sizes [146]. However, the spatial
resolution of location-dependent physical quantities such as the CCD or recombination
channels is challenging to obtain during device operation [204]. Quantities extracted
by experimental techniques such as photo-Charge Extraction by Linearly Increasing
Voltage (p-CELIV) [205], Impedance Spectroscopy (IS) [206] or transistor methods [207]
are mostly bulk/average quantities because they assume a homogeneous distribution,
reducing the BHJ to a single effective medium and hiding all blend/interface effects
within them.

While there are OSC systems with a charge separation yield approaching unity [208],
recombination remains a limiting factor in others [209], [210] and the question under which
conditions charge separation or accumulation are dominating needs further investigation.

The reason for efficient charge separation is an actively discussed topic, and especially
the theory about hot CT states [211] has gained popular interest. The theory describes a
long-range charge transfer process using excess energy of the photon. However, there has
been evidence that the separation probability does only weakly depend on excess energy
of the incident photon [212]–[214]. Forcing the charge pair to have an initial separation
distance of up to several tens of nanometers willingly suppresses geminate recombina-
tion. This method was used within kMC simulations to specifically study nongeminate
recombination on its own [215]. Suppressing nongeminate recombination is inappropriate
to compare the relationship between geminate and nongeminate recombination. We do
therefore not consider an initial long-ranged charge pair splitting in this study.
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6.2. Model specifics

After separation has occurred, the Langevin model [175] is most widely used to describe
nongeminate recombination. The Langevin model is of the form R = (q µeµh)/εr · np,
where n, p are the (mean) electron and hole charge densities and µe, µh their (mean)
mobilities. It describes a bimolecular process where recombination is limited by the
chance of charges finding each other within their Coulomb radius rC , after which the
actual recombination process is inevitable and happens instantaneously. All charge pairs
generated within rC = 14 − 19 nm would therefore be condemned to recombine. The
Langevin model was derived for free charges in homogeneous, low mobility materials
to describe nongeminate bimolecular recombination. In organic BHJs charges cannot
generally be considered free due to their confinement to their respective phase. Even
within the respective phase the CCD is not necessarily uniform due to the initial charge
generation at the heterojunction, mutual Coulomb interaction and energetic disorder.
Deviations from Langevin behavior due to spatial separation have been reported in
polymer:fullerene blends [176], [177]. For charges accumulated at the interface the
limitation of recombination being based on charges finding each other is not given
anymore. They are already in vicinity of each other and recombination is a monomolecular
(instead of a bimolecular) process based on the CT state density and its actual (geminate)
recombination rate.

In order to consider the spatial variations of charge densities, models with a represen-
tation of the 3D blend are needed. Continuum models in combination with 1D effective
medium descriptions for the BHJ are established to simulate OSCs [33], [195], especially
due to their low computational demand. However, extending the blend geometry to 3D,
continuum models often suffer from convergence issues and studies are scarce [216], [217].
The kMC method is the most suitable simulation technique to model processes in

disordered OSCs as it allows to implement an approximation of the 3D blend morphology
and explicitly evaluate the spatially resolved CCD in the BHJ.

In this study we use a kMC model of a BHJ OSC to show the effect of permittivity in
combination with the energetic disorder on the 3D resolved charge density distribution
within the cell and its correlation to recombination. For data evaluation, we explicitly
distinguish between interface and bulk charge densities as well as geminate and nongemi-
nate recombination which allows us to quantify the absolute values and the ratio of the
interface/bulk densities and geminate/nongeminate recombination.

6.2. Model specifics

The implementation of the kMC model described in Chapter 4 is used for a 50×50×50 nm3

cell with a BHJ morphology of 13.7 nm cluster size. The cluster size in combination with
the exciton diffusion rate used yields an exciton separation efficiency of 95 % ± 0.5 %
throughout all simulations and can be considered constant. In this way, we make sure
that the exciton separation efficiency does not influence the electrical part which is the
focus of this study.
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Figure 6.1. – (top) Illustration of the 3D electron and hole charge density distribution
in the BHJ. (bottom) Definition of interface densities (electron nint, hole pint) and bulk
charge densities (electron nbulk, hole pbulk) as well as geminate (a) and nongeminate
(b) recombination events.

Comparing the magnitude of the four contributions to charge transport in Equa-
tion (4.2.3), the MO offset between donor and acceptor is usually large (' 600 meV) so
that electrons and holes are confined to the acceptor and donor phase, respectively, at all
times. The influence of EF is small on local scales with ≈ 10 meV nm−1 compared to the
disorder, usually in the range of 70 meV, and the Coulomb interaction with EC up to
more than 400 meV for two charges within a distance of 1 nm at εr = 3.5. Disorder and
Coulomb interaction are therefore expected to have the dominating influence on charge
dynamics on close scales.

Interface nodes are classified as all nodes within a distance of 1 nm to a heterojunction.
Bulk region are all regions further away from a heterojunction. We define the arithmetic
mean of all interface nodes in the donor as the hole interface density pint, and vice
versa nint as the electron interface density in the acceptor. The bulk densities pbulk and
nbulk are defined in analogy for the nodes in the bulk regions. A typical result for the
charge density distribution as obtained by the kMC simulations and an illustration of the
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definition of the interface and bulk densities for both electrons and holes are depicted
in Fig. 6.1. The immediate regions near the contacts are not included in the density
evaluation in order not to distort the results by space charge effects induced by charge
injection from the contacts.
All simulations are performed at short-circuit condition (Uext = 0) and the overall

simulation time was T = 10 ms where equilibrium was reached after approximately 1 ms,
determined by a steady current extracted from the contacts. For the analysis presented
here, the values of energetic disorder were chosen to be 42 meV, 71 meV and 99 meV.1
For convenience, we will refer to them as 40 meV, 70 meV and 100 meV, respectively,
throughout this study. An overview of the remaining parameters used in the simulations
is listed in Table 4.1 and Table 4.2.

6.3. Results and discussion

6.3.1. Charge accumulation and operation regimes

At first, we investigate the effect of energetic disorder σ and the strength of Coulomb
interaction controlled by εr on the spatial distribution of charges within the active layer.

Figure 6.2 pictures the CCD of electrons and holes across a slice though the center of
the active layer for both lower and higher permittivity (3 and 5) and for different values
of the energetic disorder ranging from 40 meV to 100 meV (Figure 6.2a–c). Figure 6.2d
shows the corresponding charge density scale and an illustration on how the density
relates to the Gaussian disorder centered around the MO level E0 of acceptor or donor,
respectively. While for small disorder the distribution is relatively smooth and almost
uniform within the respective phases, spatial fluctuations in the CCD become much more
evident with increasing energetic disorder. With rising disorder there are an increasing
number of sites with either deep or high energy levels around the MO level. These tail
states shape the potential landscape charges experience and directly influence the CCD.
Deep levels act as local trapping sites in which charges can get stuck repeatedly. Thus,
these sites can show drastically increased charge densities (shown in red). High levels
have elevated energy levels and appear as hills for charges that are unlikely to be occupied,
therefore decreasing the density at those sites (shown in blue). A disorder of 100 meV
can make the CCD fluctuate locally by several orders of magnitude around the average
charge density in the phases. In addition, also the permittivity leads to an inhomogeneity
in CCDs: for low permittivity charges appear to be located rather at the interface than
in the bulk regions. This effect is more evident for larger energetic disorder. Especially

1In [34], the values used for the Gaussian energetic disorder σ were stated as 0 meV, 30 meV, 50 meV
and 70 meV. Due to a mistake in the implementation, these values need to be rescaled by a factor of√

2 and correspond to 42.4 meV, 70.7 meV, and 99.0 meV, respectively. In the content presented here,
the disorder has been re-labeled accordingly in the text and the figures. The overall implications
of interface accumulation at large disorder in combination with a low permittivity as well as the
conclusions drawn do not change. See also [218].
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Figure 6.2. – Electron and hole charge density distributions along a slice through
the morphology for different values of energetic disorder ranging from 40 meV (a) via
70 meV (b) to 100 meV (c). All density maps are shown for two cases of permittivity
(ε = 3 and ε = 5), respectively. In (d), the corresponding density scale and the
relationship of energy levels within the Gaussian distribution and the charge density is
shown.

for higher values of disorder, the exact behavior of the CCD is rather unclear from the
raw data. In order to decide if and under which conditions charges accumulate near the
interface an analysis setting the interface and bulk densities into relation is needed.

The ratio between interface charge densities and the bulk densities for holes, pint/pbulk,
and for electrons, nint/nbulk, is illustrated in Figure 6.3 for a parameter set of σ = 0, 40,
70, and 100 meV and εr = 3, 3.5, 4, 5 and the artificial case of ∞. It gives an indication
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Figure 6.3. – Ratio of interface to bulk charge densities of (a) holes and (b) electrons
for different parameter sets of energetic disorder and permittivity (σ, εr). High values
indicate an inhomogeneous charge distribution with accumulation of charges at the
heterojunction interface while a value of 1 represents homogeneous charge distributions
of electrons in the acceptor and holes in the donor, respectively. The artificial case of
εr =∞ (no Coulomb interaction) is added to be able to interpret the effect of disorder
alone.

whether charge carriers accumulate near the heterojunction interface or if they are rather
distributed homogeneously within their respective phases. After Equation (4.33) the
interface and bulk densities are in direct correlation to the average time a charge spends
at the interface or in the bulk regions, respectively. The recombination rate is fixed with
a value of aehr = 5× 104 s−1 for these simulations.

It is clearly visible from Figure 6.3 that the combination of disorder and permittivity
is controlling where charges are located. For no disorder the interface density is almost
identical to the bulk density, only a slight increase up to a factor of nint/nbulk ≈
pint/pbulk ≈ 2 can be observed, attributed to the fact that charges are initially generated
in the interface regions. After generation they can quickly move away from the interface
because they experience a flat energetic landscape due to the missing disorder. The
disorder generally has a negative effect on charge transport because charges tend to
get stuck in deep tails and are less likely to overcome hills of the distribution. In the
no-disorder-regime, Coulomb interaction only plays a minor role and affects accumulation
only slightly. The larger the energetic disorder, the larger not only the overall magnitude
of the accumulation but also the influence of permittivity grows. Since the permittivity
controls the strength of the electrostatic interaction, it directly affects the efficiency of
electron/hole pairs to overcome the mutual attraction and move from the interface region
into the respective bulk regions. While at (σ = 0 meV, εr = 5) the ratio is around 2,
it increases up to nint/nbulk ≈ 85 for electrons and up to pint/pbulk ≈ 41 for holes at
(σ = 100 meV, εr = 3) indicating that most of the charges in the cell remain in the
interface region for the largest part of their lifetime.
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The operation principle can therefore roughly be classified into two different regimes:
R1 (low σ, high εr) and R2 (high σ, low εr). In R1 charge transport is good and Coulomb
interaction weak, we can observe a homogeneous CCD without regions of accumulation.
This regime can be attributed to highly organized, well screening materials. R2 applies
to materials with substantial energetic disorder and weak screening of electrostatic
interaction. In this regime, the CCD within the BHJ is inhomogeneous with a large
accumulation of charges at the heterojunction interface. The interplay between σ and εr
is controlling where charges are located and can shift the operation regime from bulk to
interface dominated.

The artificial case of no Coulomb interaction was added to the data to show the influence
of increasing energetic disorder independently of the influence of electrostatic interaction.
While accumulation is sensitive to increasing disorder, only the combination of bad charge
transport and mutual interaction drastically increases interface accumulation.
It needs to be mentioned that in case the permittivity exceeds εr ' 9 excitons have

negligible binding energy and are thermally dissociated into free charges [86], [87], [178].
This effect is not implemented in our simulations but needs to be considered in the
interpretation. It would render the exciton separation efficiency to be 100 %. Compared to
the weakly fluctuating exciton separation efficiency of 95 %± 0.5 % in all our simulations,
one could expect a minor difference in the results as more charges should have been
created than they actually were in our model.
Values for the energetic disorder are around 70 meV for established material combi-

nations used in polymer:fullerene blends formed from P3HT and PCBM [156]–[158].
Depending on the crystallinity and purity of the materials, the disorder can vary around
this commonly assumed value. Higher values than 100 meV of disorder lead to an exten-
sively large computational demand of the kMC model. To maintain a feasible amount
of simulation time we restricted our analysis to σ ≤ 100 meV. Interpolating the trend
of charge accumulation strength, in case of an energetic disorder larger than 100 meV
the effect of accumulation will only be pronounced stronger. The permittivity of organic
materials is mostly assumed to be around 3.5. For permittivity the choice of our parame-
ter variation from 3 to 5 is meant to provide a sensitivity analysis to show how already
slight changes can affect the charge location drastically.

The accumulation effect qualitatively holds true for both electron and hole distribution
although the effect is more pronounced for electrons than for holes. To have a more
detailed look at the absolute values of the charge densities, Figure 6.4 illustrates the
absolute interface and bulk densities face to face for an energetic disorder of 100 meV. At
εr = 3, the interface densities with nint = 1.07× 1018 cm−3 and pint = 1.28× 1018 cm−3

are by the previously mentioned factors, 85 and 41 respectively, larger than the bulk
densities of nbulk = 1.26× 1016 cm−3 and pbulk = 3.13× 1016 cm−3. The total charge
density in the active layer is therefore mainly made up by charges at the interface.
With increasing permittivity, nint and pint drop while the bulk densities rise. By

increasing the permittivity only slightly to εr = 5, the interface densities drop to
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Figure 6.4. – Absolute values of interface and bulk charge densities of electrons and
holes at energetic disorder σ = 100 meV for different values of permittivity εr. For
each εr, the inner two bars show the interface densities and the outer two bars the
bulk densities.

nint = 2.00× 1017 cm−3 and pint = 3.42× 1017 cm−3 and the bulk densities increase to
nbulk = 2.30× 1016 cm−3 and pbulk = 4.56× 1016 cm−3. Charges are not drawn to the
interface as strong, they are moving away from the interface into the bulk regions more
quickly, and the distribution inclines towards a more homogeneous distribution. But
even in the case of no Coulomb interaction they are not fully equal induced by the bad
transport due to the disorder. The generally higher hole densities are a result of the
lower hole hopping mobility compared to the electrons we assumed. This means holes are
slower and need more time to move both away from the interface and also spend more
time in the bulk regions resulting in higher average densities. These results show that
the permittivity has a strong effect on charge location and that even slight modifications
can drastically change the distribution.

6.3.2. Influence on recombination

Independently of whether opposite charges in a pair stem from the same or from a
different origin, the longer they spend time in vicinity of each other the higher the
chance for them to undergo recombination. Therefore, and because opposite charges can
only meet at the interface, a correlation between the interface charge accumulation and
recombination is expected. Recombination occurs with the rate aehr and is dependent on
many factors, e.g. the molecular species of the donor and acceptor materials and their
arrangement along the heterojunction. The kMC model cannot make predictions about
such properties, and therefore about the magnitude of aehr, and its value is still under
debate. Fitting current j-U characteristics to measurements yielded values in the range
of 104 s−1 to 106 s−1 [178], [179], while TAS measurements concluded a recombination
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Figure 6.5. – Amount of total recombination ηehr (a) and the corresponding relative
part of geminate recombination ηgr (b), both shown vs. recombination constant aehr at
different values of εr and at an energetic disorder of 70 meV. A value of ηehr = 100 %
means that all charges generated by exciton splitting undergo recombination. A value
of ηgr = 100 % means that from all recombination events, every single one is geminate
and none are nongeminate. All recombination that is not geminate is nongeminate
recombination.

rate in the range of aehr = 107 s−1 up to 109 s−1 [131], [181], [183], [219]. In previous
kMC models the most commonly used values are around 5× 105 s−1 as in [142]. Due
to the uncertainty in recombination rate and the sensitivity of the accumulation effect
with respect to small changes in permittivity shown above, we analyzed the amount of
recombination with respect to a variation of aehr many orders of magnitude from 104 s−1

to 109 s−1 and εr ranging between 3 and 5, inducing different accumulation strengths.
In order to show the influence of permittivity at a realistic disorder of 70 meV, Figure 6.5

shows the total recombination ηehr and the ratio of geminate recombination with respect
to the total recombination ηgr in dependence of the recombination rate aehr, varied
between 104 s−1 and 109 s−1, for different permittivities. From Figure 6.5a it can be
observed that both a lower permittivity as well as a higher recombination constant
increase the total recombination. At a low recombination of 104 s−1, there is only little
recombination observable: ηehr ranges between 0.24 % at εr = 3 and 0.02 % at εr = 5.
Increasing aehr to 107 s−1, i.e. 100 ns of recombination time, ηehr drastically increases
to 29.45 % for εr = 3 and can be lowered by more than a third down to 8.7 % when
increasing the permittivity to 5. At very high recombination rates of 109 s−1 (τrec = 1 ns),
the total recombination further increases to 41.25 % at εr = 3 and 27.94 % at εr = 5.
The fact that aehr is varied by several orders of magnitude and εr only between values
of 3 and 5, and yet the changes in overall recombination are of comparable magnitude,
highlights the drastic influence of εr on charge recombination.

When the average time two charges spend next to each other approaches the range of
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Figure 6.6. – Amount of total recombination ηehr (a) and the corresponding relative
part of geminate recombination ηgr (b), both shown vs. recombination constant aehr
at different values of εr at an energetic disorder of 100 meV.

the average recombination time τrec = (aehr)−1, recombination is starting to occur. The
interface charge density is a measure for the time charges spend in the interface regions.
In Langevin theory, the actual recombination process is independent of the rate of the
actual recombination process and is considered instant. However, if charges are mostly
confined to the interface regions due to bad transport and mutual Coulomb interaction,
the influence of the bimolecular part (i.e. the recombination partners finding each other)
is reduced, as they have already found each other or have never been separated, and the
actual recombination rate cannot be neglected. For the case of interface accumulation,
the strong dependency of the recombination rate is obvious from the results and it
increases with higher accumulation, for instance induced by lower permittivity. This is in
accordance with theoretical and experimental studies of increasing permittivity to reduce
recombination [87], [88], [90], [92].
Figure 6.5b shows the amount of geminate recombination with respect to the total

recombination ηgr. For recombination rates larger than 106 s−1, almost all recombination
is geminate. For lower aehr, ηgr slightly reduces, but the majority of recombination
remains geminate. It has to be noted that at very low recombination rates the overall
recombination is next to negligible and prevents a meaningful interpretation of the ratio
between geminate and nongeminate recombination. It can be concluded that without an
additional mechanism to support charge separation, and only based on the influence of
Coulomb interaction and Gaussian disorder, geminate recombination cannot be neglected
as a major loss pathway in BHJs, as stated in e.g. [220].

In order to show the sensitivity of the recombination to the energetic disorder, Figure 6.6
shows ηehr and ηgr at a large energetic disorder of σ = 100 meV, for a recombination
rate aehr between 104 s−1 and 107 s−1. While the general trend remains similar, the
overall recombination is strongly increased (Figure 6.6a). The influence of only small
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6. Influence of Permittivity and Energetic Disorder on the Spatial Charge Carrier
Distribution in Organic Bulk-Heterojunction Solar Cells

Table 6.1. – Effect of permittivity and disorder on short-circuit current density jsc (in
mA cm−2) at aehr = 107 s−1.

εr

σ 3 3.5 4 5 ∞
100 meV 0.95 2.08 3.24 5.18 8.08
70 meV 5.08 5.72 6.15 6.85 8.10
40 meV 7.45 7.51 7.54 7.69 8.13
0 meV 7.47 7.51 7.66 7.86 8.35

changes in εr on overall recombination is drastic: for a slow recombination process with
aehr = 104 s−1, the total recombination increases from 1.12 % at εr = 5 to 21.5 % at
εr = 3. Here, the biggest change occurs when changing εr from 3 to only 3.5, where
ηehr changes from 6.05 % to 21.5 % and highlights the sensitivity of recombination to the
dielectric screening strength at a large disorder. With higher recombination rate the
relative influence of εr drops, however the absolute number of photogenerated charge
carriers recombining is very high. At aehr = 107 s−1, the recombination varies between
81.87 % and 32.05 % for permittivity changing from 3 to 5. The corresponding amount of
geminate recombination ηgr is shown in Figure 6.6b The general trend is similar to the
overall recombination, i.e. geminate recombination increases with higher aehr as well as
with lower εr. At aehr = 107 s−1, between 86.4 % and 98.1 % of recombination is geminate
and only a marginal part of recombination is nongeminate. Slower recombination reduces
the ratio of geminate recombination to as low as 47 % at low aehr = 104 s−1 and high
εr = 5, because it is easier for charge pairs to separate from each other before they reach
the critical recombination time.

It can be concluded that the overall recombination is very sensitive to both permittivity
and disorder and that the dominant recombination mechanisms as predicted by the
model is geminate recombination. If it were possible tuning the permittivity and disorder,
recombination could be strongly suppressed even for large recombination rates.
A particularly interesting result is observed for no Coulomb interaction (εr =∞) as

well as for no disorder, independently of one another: here, no recombination at all is
observed (data not shown). In these cases the average time a charge pair stays at the
heterojunction is small and does not interfere with the average recombination time τrec,
i.e. separation is much faster than recombination. Therefore no recombination occurs in
this regime and interface accumulation can seems to be a requirement for recombination
to occur.
Finally, to link the effect of σ and εr to the performance of the cell, Table 6.1 shows

the short-circuit current density at aehr = 107 s−1. In accordance to the discussion about
recombination there is an anti-correlation of interface accumulation strength and jsc.
Larger accumulation leads to more recombination and, in turn, recombination reduces
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the current reaching the contacts, i.e. jsc. While disorder and permittivity separately
have an influence on jsc, only the combination of both dramatically influences the current.
No disorder and perfect screening lead to perfect charge collection efficiency without
recombination and jsc = 8.35 mA cm−2. The influence of εr is particularly evident for
σ = 100 meV and the increased recombination due to low Coulomb screening reduces the
short-circuit current down to 0.95 mA cm−2 at εr = 3.

6.4. Conclusion

The kMC method allows to investigate the 3D CCD and recombination events in complex
morphologies such as BHJs, otherwise challenging to assess by experiments and scarcely
modeled by DD models. We set up a kMC model with particular focus on Coulomb
interaction and showed that the two key differences of disordered organic with respect to
inorganic semiconductors, energetic disorder and permittivity, strongly affect the charge
carrier distribution in BHJs which, in turn, have a direct influence on the losses by
recombination. The CCD can be classified into two regimes:

• A low permittivity in combination with a high disorder leads to a strongly inho-
mogeneous CCD with accumulation of charges along the interface. In this case
charge pair separation is inefficient due to strong mutual Coulomb interaction and
bad transport though the disordered landscape. As a result, recombination is an
interface-controlled process with strong dependence on the recombination rate aehr.
Geminate recombination clearly dominates over nongeminate recombination and
cannot be neglected as major loss mechanism.

• On the contrary, a high permittivity and a low disorder lead to a homogeneous
distribution of charges within their phases. In this case the overall recombination
ratio is strongly reduced because charge pairs can separate faster than the average
recombination time. Furthermore, the ratio of geminate recombination reduces and
slightly shifts towards nongeminate recombination, however in the light of a low
overall recombination.

The accumulation effect and its influence on recombination are very sensitive on both
permittivity as well as energetic disorder. Even slight changes can shift the operation
away from the an accumulation regime with high recombination losses towards a more
homogeneous CCD regime with lower recombination and therefore support other studies
where increasing the permittivity was stated as the route towards high-efficiency BHJ
OSCs.
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7. Charge Pair Separation Dynamics in
Organic Bulk-Heterojunction Solar Cells

Charge pair separation in organic BHJ solar cells is a complex interplay between numerous
factors such as the spatial geometry of the blend, the distribution of energetic disorder,
the electric field, thermal fluctuations, and the mutual electron-hole Coulomb attraction.
Insufficient separation from the interface and concomitant charge pair recombination
is a main limitation in improving the power conversion efficiency of organic BHJ solar
cells and requires in-depth understanding of the time scales involved. We investigate
the time-dependent evolution of mutual electron-hole pair distances separating from
the heterojunction interface by using a 3D kMC model of a BHJ OSC. We find large
fluctuations in separation times, in particular in dependence of the energetic disorder and
the permittivity of the organic materials. At commonly observed values of energetic dis-
order, already slight modifications of the permittivity can drastically influence the charge
separation time and even outweigh orders of magnitude of geminate recombination rates,
hence help to suppress geminate recombination. Thus, our results strongly support the
recent trend of developing high-permittivity organic materials for solar cell applications.

The content of this chapter is adapted, with permission, from T. Albes and A. Gagliardi,
“Charge Pair Separation Dynamics in Organic Bulk-Heterojunction Solar Cells”, Advanced
Theory and Simulations, vol. 1, no. 7, p. 1 800 032, 2018. © 2018 Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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7. Charge Pair Separation Dynamics in Organic Bulk-Heterojunction Solar Cells

7.1. Background

Charge generation in BHJ OSCs takes place at the donor/acceptor interface: after the
dissociation of an exciton into electron and hole, the electron-hole pair remains in a state
bound across the heterojunction interface. The electron and hole must first separate
against their mutual attraction and away from the BHJ interface, before they can be
transported to the contacts and contribute to a photocurrent.
Both partners of the Charge Pair (CP) feel the mutual Coulomb interaction and see

a disordered landscape, spatially due to BHJ morphology and energetically due to the
energetic disorder. Separation of the CP is driven by thermal fluctuations and an eventual
electric field. In case of insufficient separation, the CP pair can recombine geminately
reducing the photocurrent. It is therefore evident that the entire charge separation
process in organic BHJs is a complex interplay between Coulomb interaction, spatial and
energetic disorder, thermal fluctuations, diffusion, and the electric field.

Recent studies state that the dynamics of CP separation, in particular the timescales
involved, still lack understanding and that a deeper insight is of utmost importance
[221], [222]. In some systems, almost all photo-generated charges can separate from the
heterojunction [208], in others large losses by recombination can be observed [209], [210].
No general understanding exists to predict the requirements on efficient charge separation
[223].

Direct investigation of the time-dependent evolution of single charge pairs is challenging
and the explicit charge separation dynamics have only scarcely been studied. For instance,
Vithanage et al. have shown by the time-resolved electric field-induced second harmonic
method that (thermally activated) diffusion is dominating CP separation at close scales
[224], while this dominance weakens at farther separation distance in favor of drift. For
an analytic description of the dynamics the OB model is often applied [83], [84]. However,
it does not include the spatial variations of energetic disorder or local electrostatic effects
[79], [85], [131]. Furthermore, models based on continuum approaches are not sufficient
to describe the spatial and energetic disorder [33], as well as the impact of Coulomb
correlation [225], especially when time-dependent processes are to be investigated. A
complementary approach from a thermodynamic point of view has shown that entropy in
combination with disorder is sufficient for charge separation for even strongly localized
and thermalized charge carriers, but the need for more kinetic approaches is also stated
herein [226].
The kMC method is a powerful simulation technique to model the time-dependent

behavior of physical systems. A specific advantage of the kMC method is that it allows
to include explicit particle-particle interactions and that it gives direct access to the
charge trajectories which can be used to determine the time-dependent displacement of
the electron and the hole of a CP.

A pathway for highly-efficient OSCs was given by Koster et al. [87], who suggested to
increase the permittivity of the organic materials used within OSCs in order decrease the
mutual attraction of CPs and enhance their separation. This strategy has not gained
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7.1. Background

much attention until recently, but is now actively studied: increasing the permittivity was
shown to be very beneficial for OSC device performance by many groups [27], [28], [82],
[88]–[92], [227]–[230]. In addition, pristine organic materials with low energetic disorder
can support separation dynamics: a low disorder leads to a more ballistic transport and
more efficient separation [221], [222]. Typical values for the energetic disorder range from
100 meV in blends formed from P3HT and PCBM blend, down to 40 meV [221], [231],
[232].

Also charge recombination in organic BHJs takes place at the donor/acceptor interface.
Independently of whether a CP fails to separate from the interface and thus recombines
geminately or whether two charges from distinct excitons find each other at the interface
and recombine non-geminately, the actual recombination process of a CP occurs with
a monomolecular rate aehr of the CT state. The recombination rate for bound CPs
is under active discussion and expected to depend on many factors such as interfacial
properties of the materials, i.e. their molecular orientation [233]. The kMC method takes
the recombination rate as an input parameter which needs to be derived from underlying
models or measurements. Fits to j-U curves yielded recombination rates of 104 s−1 to
106 s−1 [178], [179], while measurements found it to be in the range of aehr = 107 s−1,
up to 109 s−1 [131], [180], [183], [219]. The recombination time as the inverse of aehr
is competing with the time that charges need to separate from each other and decides
whether successful separation or recombination takes place. The Langevin recombination
model [175] is the most common way to describe recombination in OSCs: it assumes that
once two charges are within the Coulomb radius, they inevitably recombine. However,
deviations from Langevin have been observed which are most likely attributed to the fact
that the model was derived for homogeneous materials, and that it does not consider the
motion of single CP dynamics but is rather based on a continuum approach. In reality,
the explicit CP dynamics needs to be considered: if separation time is of the order or
larger than the average pair-recombination time, recombination is more likely to occur.
Here we put our focus on geminate recombination only, since it is directly linked to the
CP separation dynamics. Improving the CP separation, e.g. by the enhancement of
mobility, has direct consequences on geminate recombination and hence the performance
of OSCs [181], [234]. Non-geminate recombination as the alternative recombination
channel has been studied thoroughly both by simulations and experiments [138], [202],
[215] and is not considered here.
We have already shown in a previous study by kMC simulations that both a large

disorder and low permittivity lead to increased interface charge density and, in turn,
larger recombination [34]. However, the explicit time-dependent evolution of large sets
of CPs and their separation times have not been extracted and a link to the current
research on the effect of permittivity on CP separation times, as well as the relation of
separation times to CP recombination times, is missing.
In this study, we employ kMC simulations for BHJ OSCs and investigate the time-

dependent evolution of electron-hole pair separation under the influence of various

113



7. Charge Pair Separation Dynamics in Organic Bulk-Heterojunction Solar Cells

Table 7.1. – Comparison of different energetic contributions to the overall energy
change ∆E on charges on local nm scale.

∆E0 ∆EF ∆Eσ ∆EC kBT

∆E/nm in meV nm−1 ≈700 ≈13 ≈70 .411 ≈26

permittivities and values of energetic disorder. Due to the statistical nature of hopping
transport, CP separation can follow very different distributions. We evaluate a large
dataset of electron-hole pairs and classify times after which the majority of charges have
separated or recombined. We show the sensitivity of charge separation to the strength of
the Coulomb interaction and the energetic disorder and extract absolute times. These
absolute times are put into relation to the charge mobilities, as the dominating material
property for charge transport, and the CP recombination strength as the controlling
factor for geminate CP recombination.

7.2. Model specifics and evaluation details

The implementation of the kMC model described in Chapter 4 is used for a 50×50×50 nm3

cell with a BHJ morphology of 15 nm cluster size. Here, we only investigate the dynamical
evolution of CPs that originate from the same exciton.

Once an exciton is dissociated into electron and hole, the offset in donor/acceptor MO
levels of typically several hundreds of meV prevents electrons to move back from the
acceptor to the donor and vice versa for holes, i.e. positive and negative charges are
confined within their respective phases. Besides the dominant MO offset, charges move
under the influence of electric field, the energetic disorder, the mutual Coulomb interaction
between themselves and their geminate partner and the electrostatic surroundings. A
comparison of the typical energetic contributions that charges of a bound electron-hole
pair feel on the local scale after they have been generated from an exciton and are closely
(1 nm) apart from each other is listed in Table 7.1. It is evident that the influence of
energetic disorder and Coulomb interaction prevails over the influence of the electric field
as well as the thermal energy on the local scale. It shall be noted that the contribution
of the electric field is largest in short-circuit condition (as considered in this study) and
decreases the closer the applied bias approaches the open-circuit voltage. The electric
field and the thermal fluctuations must act as the driving forces for charge pair separation
because Coulomb interaction prevents charge pair separation and the energetic disorder is
a spatially random contribution that can either support or hinder separation, depending
on the local distribution. The separation process therefore is mainly dominated by the
interplay between Eσ and EC . We therefore focus on analyzing the effects of disorder
and permittivity on charge separation dynamics.

For the CP separation analysis, we define d(t) as the (Euclidean) distance between the
electron and the hole of a single charge pair originating from an exciton with respect to
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Figure 7.1. – Electron-hole separation distance d(t) after charge transfer. The separation
time tsep with d(tsep) = rc defines the transition from bound state to separated state,
where rc is the Coulomb radius defined by EC(tsep) = kBT (outer dashed radius). The
disorder time tdis with d(tdis) = rσ marks the transition between Coulomb interaction
and energetic disorder being the dominant influence on charge pair dynamics, where
rσ is the disorder radius defined by EC(rσ) = σ (inner dotted radius).

its time of origin (exciton dissociation). Figure 7.1 illustrates the CP distance and the
following definitions required for the data evaluation. CP separation is often defined by
the Coulomb radius rc, which is the distance after which the attractive force between the
mutual partners becomes indistinguishable from thermal fluctuations, i.e. EC(rc) = kBT .
With the definition of Coulomb energy

EC(r) = e2

4πε0εrr
, (7.1)

the Coulomb radius reads explicitly

rc = e2

4πε0εrkBT
. (7.2)

We define the separation time tsep as the time at which two charges of a geminate pair
have reached the Coulomb radius d(tsep) = rc. In case a bound pair does re-form and
overcome the radius multiple times, the last time after which definite separation occurs is
chosen as separation time. As long as the charges of a CP are located within this radius,
d(t) < rc, they can be considered a bound pair; once they have managed to overcome
this radius (for the final time), i.e. d(t) > rc ∀t, the CP is considered as separated.

The strength of the Coulomb interaction drops with the CP distance and after only a
couple of nm, the effect of the energetic disorder can dominate over the Coulomb energy.
We therefore define a disorder radius rσ as the radius at which the influence of energetic
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Table 7.2. – Overview of disorder radii rσ (EC(rσ) = σ) for different combinations of
energetic disorder and permittivity. For comparison, the Coulomb separation radii rc
(EC(rc) = kBT ) at room temperature are listed for different values of permittivity.

εr

r 3 3.5 4 5
rσ (σ = 99 meV) 4.8 nm 4.1 nm 3.6 nm 2.9 nm
rσ (σ = 71 meV) 6.9 nm 5.9 nm 5.1 nm 4.1 nm
rσ (σ = 42 meV) 12.0 nm 10.1 nm 9.0 nm 7.2 nm
rc (kBT = 26 meV) 18.5 nm 15.8 nm 13.8 nm 11.1 nm

disorder equals the electrostatic interaction energy EC(rσ) = σ:

rσ = e2

4πε0εrσ
. (7.3)

In analogy to the separation time, a disorder time tdis is introduced as the time at which
the Coulomb energy equals the energetic disorder, i.e. d(tdis) = rσ. Similarly to the
separation, the last time step after which the CP distance exceeds the disorder radius
definitively, d(t) > rσ ∀t, is picked as the disorder time in case of multiple crossings of rσ.
In this study, we consider values for the energetic disorder of 42 meV, 71 meV and

99 meV.1 For convenience, we will refer to them as 40 meV, 70 meV and 100 meV, respec-
tively. All calculations have been performed with the exact values. Table 7.2 presents an
overview of the disorder and Coulomb radii for the different permittivities considered,
εr = 3 − 5. At room temperature (kBT = 26 meV) and for the investigated values of
energetic disorder (σ = 40 meV − 100 meV), the disorder radius is always smaller than
the Coulomb radius, i.e. disorder time is reached before separation time. The charge
separation dynamics of one individual CP can therefore be divided into the following
timeline (see Figure 7.2a for an illustration of a typical evolution of d(t) for no disorder
as well as 100 meV of disorder):

At generation electron and hole are put on adjacent nodes, therefore d(t = 0) = 1 nm
for every pair. They then move under the influence of the local potential Equation (4.24)
by the thermally activated hopping after Equation (4.2.3). Until the charge pair reaches
the disorder radius rσ (for no disorder, the disorder radius is not defined), i.e. during
the disorder time tdis, the attractive Coulomb force is the dominant influence, controlled

1In [35], the values used for the Gaussian energetic disorder σ were stated as 0 meV, 30 meV, 50 meV
and 70 meV. Due to a mistake in the implementation, these values need to be rescaled by a factor of√

2 and correspond to 42.4 meV, 70.7 meV, and 99.0 meV, respectively. The content presented here
shows the re-calculated results with the correct values of disorder. Except for a slight shift of the
disorder and interim times the results do not change. The disorder has been re-labeled accordingly in
the text and the figures. The overall implications of slow charge pair separation at large disorder and
low permittivity as well as the conclusions drawn do not change. See also [235].
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by the permittivity εr. Eventually, after further successful separation, the charge pair
can reach the Coulomb radius rc at tsep. We define the time between separation and
disorder time as the interim time tint = tsep − tdis. During tint, charge separation is
an interplay between Coulomb attraction and the influence on energetic disorder, with
energetic disorder dominating however. When d(t) has surpassed rc, the influence of
Coulomb attraction is indistinguishable from thermal fluctuations and does not influence
the pair anymore, it can be considered as separated. We define the lifetime tlife of a pair
as the time after which the first of the two geminate partners has been removed from
the cell, either by collection at a contact or by recombination with a different charge
(non-geminate recombination). The time between the lifetime and the separation time is
classified as transport time ttrans = tlife − tsep. By definition and for the investigated
parameters, these times always occur in the order as discussed: 0→ tdis → tsep → tlife.
We analyze d(t) for all charge pairs generated by exciton separation under standard

operation of the solar cell in a steady state, which corresponds to a minimum of 11 000
pairs for each parameter set. We neglect very long living pairs, i.e. the largest 5 %
lifetimes are removed from the evaluation. Those charges are found to be stuck in local
minima of the disorder. Ultimately, a charge pair can evolve in the following scenarios:

(1) both charges of a pair are collected;
(2) one charge is collected, the other recombines non-geminately;
(3) both charges recombine non-geminately;
(4) the pair recombines geminately.

Furthermore, (1)-(3) can occur before or after charge separation, while in (4) the pair
never manages to separate. We focus our analysis on (1) and (4). Therefore, the collection
of charge pair distances is split into two datasets:

(i) one set for charge pairs that manage to separate definitively, where both charges
are collected at the contacts and contribute to the photocurrent and

(ii) the complementary dataset with the charges pairs that do not manage to separate
and therefore eventually recombine geminately.

The former dataset (i) is used to evaluate the separation dynamics (Section 7.3.1) and
the charge carrier mobility (Section 7.3.3), while the latter (ii) is used to study geminate
recombination (Section 7.3.4). The remaining charge pairs, where at least one partner
recombines non-geminately, are not considered in the evaluation because a common basis
needs to be established in order to achieve a meaningful comparison.

The processing steps applied to the dataset (i) are illustrated in Figure 7.2 for εr = 3.5,
σ = 0 meV (1, left column) as well as σ = 100 meV (2, right column) at aehr = 105 s−1.
Figure 7.2a depicts the typical evolution of the pair distance in time including the
definitions for disorder-, separation-, and lifetime. Figure 7.2b shows the distribution
those times for a total of 9247 (0 meV) or 4980 (100 meV) resp. (collected) charge pairs.
It can be seen that they follow different distributions which is a result of the various
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Figure 7.2. – Illustration of the evaluation steps of charge pair separation dynamics for
σ = 0 meV (1, left column) and σ = 100 meV (2, right column) at εr = 3.5. (a) Typical
evolution of d(t) for a charge pair. The threshold radii rc (red, horizontal), rσ (gray, horizontal)
and the corresponding times tsep (purple, vertical), tdis (green, vertical) as well as the pair
lifetime (orange, vertical) are indicated. (b) Distributions of tdis, tsep, and tlife of all pairs
in this dataset. (c) Cumulative distributions of (b) with 75 % threshold (horizontal line). (d)
Threshold values from (c) in comparison for different permittivities, including the interim-
(between disorder and separation) and the transport (between separation and lifetime) times.
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influences on different length scales. In order to quantify and compare these times we
investigate the cumulative distributions with respect to the time after pair origin, which
are shown in Figure 7.2c for different permittivities. The plot shows the fraction of
pairs having reached rσ, rc and their lifetime after time t after their origin. Thus, the
fraction of pairs ranges from 0 being no charges having reached the respective time to 1
meaning all charge pairs have reached those times. With the 75 % threshold we define
the 75 %-times t75 %

dis , t75 %
sep and t75 %

life , at which time three quarters of all charge pairs have
reached said condition. Systematically, t75 %

int = t75 %
sep − t75 %

dis and t75 %
trans = t75 %

life − t75 %
sep are

defined. An overview of all 75 % times defined for this dataset is shown in Figure 7.2d
extracted from Figure 7.2c for several permittivities. This evaluation allows to quantify
and compare the complex distribution of charge pair separation times. In the following
results, only the 75 % threshold times will be compared.

The evaluation of the recombination distribution (ii) is performed in the same manner
as for the collected charge pairs to obtain a recombination time t75 %

gr , after which 75 %
of charges in the recombination dataset have recombined geminately.

7.3. Results and discussion

At first, we analyze the interplay of energetic disorder and permittivity on the charge
pair timelines and charge mobilities. For this analysis the charge recombination rate
was fixed at aehr = 105 s−1, sufficiently low to have a large number of charges separating
in order to have a good statistics. We then fix the energetic disorder to 100 meV, an
upper limit for the value observed in well-studied systems such as P3HT:PCBM, and
study the effect of recombination rate, by varying aehr by several orders of magnitude
(aehr = 104 s−1−107 s−1), in combination with the permittivity on geminate recombination
times. Charge pair separation and mobility studies are based on the same dataset (i)
(all particles collected), while the recombination study is based on a different dataset (ii)
(only geminate recombination, i.e. all charges that did neither surpass rσ nor rc). All
times presented and compared here are the 75 % times defined in the previous section.

7.3.1. Charge pair separation dynamics: absolute times

The absolute times are presented in Figure 7.3 for combinations of σ = 0 meV− 100 meV
and εr = 3− 5, with an illustration of the characteristic timeline. Note that no disorder
and interim times are shown for tdis and tint because the disorder radius is not defined
for σ = 0 meV after Equation (7.3).
A first observation is that all times can vary over a large range from below ns to

above µs and are strongly dependent on the energetic disorder, whereas a considerable
dependence on the permittivity exists for the disorder-, separation-, and lifetime at large
σ. During the disorder time ∆EC > ∆Eσ, therefore the influence of Coulomb attraction
dominates over disorder. At a small disorder of 40 meV, rdis is reached very fast with
a disorder time of the order of ns. Changing the permittivity from 3 to 5 leads to a
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Figure 7.3. – Absolute values for characteristic times: Absolute values for characteristic
times: (a) disorder-, (b) interim-, (c) separation-, (d) transport-, and (e) lifetime in
dependence on disorder and permittivity. At σ = 0 meV, the disorder- and interim
time are not defined. The timeline of a charge pair with the characteristic times is
schematically illustrated on the bottom right.

2-fold decrease of disorder time. Here, the overall charge motion is not strongly affected
by the disorder because the disorder is roughly in the range of the thermal fluctuations.
Separation can therefore occur relatively fast and the effect of Coulomb attraction is low.
At σ = 100 meV however, charge motion is more strongly affected by the local energetic
fluctuations which renders the effective charge motion to be slower. This makes the effect
of mutual attraction more pronounced: reaching tdis takes 3.7× 10−6 s at εr = 3 and
decreases by roughly one order of magnitude to 2.7× 10−7 s at εr = 5. The disorder time
is the most decisive point in time when it comes to the question whether a charge pair
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manages to successfully separate, and hence leading to collection, or whether it will never
overcome the disorder radius in which case it will most likely recombine geminately. tdis
is the upper limit in time that needs to be compared to a competing recombination time,
since tdis is the time during which the geminate charges are nearby and have the change
of recombining. A ten-fold increase in tdis, as observed for a change in permittivity from
3 to 5, should therefore have considerable influence on suppressing geminate charge pair
recombination. The absolute times will be linked in the recombination section.
After the disorder time, tint marks the interplay between disorder and Coulomb

attraction until full charge separation occurs. However, already at this stage, the effect
of permittivity is small: between εr = 3 and εr = 5, the interim time less than halves
for all values of disorder, but the strong influence of disorder remains. The combination
of disorder time and interim time constitute the separation time. Since tint is almost
independent of the permittivity, it is mostly a constant offset on top of tdis and tsep
is mainly made up by the behavior of tdis. This is reflected in the distribution of tsep:
for no disorder, tsep is very small with values between 6.6× 10−10 s− 1.1× 10−9 s when
εr is reduced from 5 to 3. The separation time, just like the disorder time, increases
by orders of magnitude with increasing disorder due to worsened charge transport. At
σ = 100 meV, the effect of Coulomb interaction is evident also for tsep, and separation
time varies between 6.6× 10−7 s− 4.4× 10−6 s.
After tsep, the strength of mutual Coulomb interaction is not distinguishable from

thermal fluctuations. Therefore the transport time ttrans is independent of permittivity
and solely determined by the energetic disorder. It changes by three orders of magnitude
from 10−9 s at σ = 0 meV to 10−6 s at σ = 100 meV, with almost no influence of εr.
During this stage of the separation process, the charges act as if they are transported
through a disordered semiconductor alone. The transport time will be related to the
charge mobility in Section 7.3.3.
The overall lifetime as the sum of disorder-, interim-, and transport time therefore

follows a similar behavior as the disorder time. Charge pairs live about 2 ns without
disorder and independently of the influence of εr, and the lifetime gradually increases
with σ to the µs regime at 100 meV, with a moderate dependence on permittivity. While
the overall lifetime of charges is not particularly relevant for the overall separation process,
slower charge lifetimes lead to higher overall charge densities in the solar cell and might
affect non-geminate recombination which is not discussed here.
The influence of the disorder therefore affects the separation process over the entire

lifetime, In contrast, the influence of permittivity drops with larger separation distance
and is most relevant on smaller distances up to the Coulomb radius and irrelevant
afterwards. This insight into the absolute times allows is particularly interesting to
compare the separation process to opposing processes such as recombination.
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Figure 7.4. – Relative values for characteristic times normalized to the respective
lifetime for the investigated values of disorder and permittivity. For no disorder (top),
the disorder time is not defined, therefore only separation (blue) and transport times
(orange) are shown. For finite disorders, the first bar represents the disorder time
(red), the middle bar is the interim time (purple) and the last bar the transport time
(orange). The ratio of each time with respect to the lifetime is indicated in the bars in
percent.

7.3.2. Charge pair separation dynamics: relative times

In order to get a better understanding of the relative interplay between disorder-,
separation- and transport time independently of their absolute lifetime, Figure 7.4 shows
the characteristic times (tdis, tsep, tint, ttrans) normalized to their respective lifetime tlife.
For all cases of disorder, the permittivity has a considerable influence on the relative
times. At σ = 0 meV, tsep reduces from approximately half of the lifetime to around one
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third when increasing epsilon from 3 to 5. For a finite disorder, a similar trend can be
observed for tsep. Here, tsep consists of the contributions of tdis and tint; the relative
interim time is not strongly affected by permittivity at lower disorders, but the influence
increases with σ. The effect of the permittivity occurs as a shift between disorder- and
transport-time.
At σ = 100 meV and for a permittivity of εr = 3, the charge pairs spend 68.1 % of

their lifetime just to overcome the disorder radius of rdis = 4.8 nm. It takes 13.1 % of the
lifetime more to reach the Coulomb radius rc = 18.5 nm after which they are considered
to be free of mutual influence. During a remaining 18.8 % of the lifetime electron and
hole are transported though the disordered landscape to the contacts. Increasing the
permittivity only to 5, the distribution changes drastically: the disorder radius is reached
after around 17.0 % of the overall lifetime, and another 24.3 % are required to overcome
the Coulomb radius, which is rc = 11.1 nm at this permittivity. The last 58.7 % of
lifetime is spent on transport in this case. This highlights how already a small increase
in permittivity can drastically improve the charge separation efficiency.

7.3.3. Relation of transport to mobility

Based on Equation (4.32) we evaluate the mobility for all collected electrons and holes,
individually, and calculate the average mobilities as the arithmetic means over the entire
dataset for the investigated parameter sets. Figure 7.5 shows the obtained electron (solid
lines) and hole (dashed lines) mobilities. The mobility is found to be strongly dependent
on the energetic disorder: the electron mobility decreases by around three orders of
magnitude from µ0 meV

e = 1.6× 10−2 cm2 V−1 s−1 to µ100 meV
e = 1.3× 10−5 cm2 V−1 s−1

(at εr = 3) and µ100 meV
e = 3.5× 10−5 cm2 V−1 s−1 (at εr = 5); similarly, the hole mobility

decreases from µ0 meV
h = 3.2× 10−3 cm2 V−1 s−1 to µ100 meV

h = 5.2× 10−6 cm2 V−1 s−1 (at
εr = 3) and µ100 meV

h = 8.5× 10−6 cm2 V−1 s−1 (at εr = 5). A large disorder leads to a
highly inhomogeneous energy landscape that charges move in. They repeatedly get stuck
in local minima of the disorder which slows them down and decreases the mobility. The
permittivity and hence the strength of the Coulomb attraction shows an influence only
at large disorder, at low disorder no influence of εr on µ can be observed. This is because
the disorder is present over the entire charge lifetime, while the Coulomb attraction
influences charge mobility considerably in the first tdis after generation as was shown
previously. A slow separation gives the charges more time to re-approach each other
and explains the slight increase in mobility with permittivity as the effect of Coulomb
interaction decreases with εr.
The definition of charge mobilities µ = v/F considers the velocity v of a charge only

under the influence of an applied electric field F and no other confounding quantities.
During the charge separation process, especially during t < tdis, charges are affected by
the mutual attraction – thus lowering the average velocity with respect to the electric
field. Once charges are free of mutual interaction, i.e. after tsep, the remaining time
until their final collection, ttrans, must correlate to the charge velocity unaffected by
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Figure 7.5. – Electron (solid lines) and hole (dashed lines) mobilities vs. energetic
disorder for different permittivities. The inset shows the inverse transport time of the
charge pair statistics for the same parameters.

charge pair interaction, while the mobility evaluation from above includes the dynamics
of the separation process. Comparing these allows to investigate the differences between
transport and separation. The inset in Figure 7.5 shows the inverse transport time
t−1
trans. The trend closely resembles that of charge mobilities, i.e. the decrease with
disorder by the same orders of magnitude, but no influence of the permittivity can be
seen. The difference observed at large disorder, where µ increases with εr is attributed
to the fact that the evaluation of the mobility includes the separation process and the
slower separation at lower εr. We can therefore conclude that the effective mobility of
charges is slightly affected by the permittivity, while after separation charge transport is
independent of permittivity.

7.3.4. Relation of separation to geminate recombination

At the end of their lifetime, charge pairs that do not manage to separate will recombine
geminately. Charge separation times and mobilities are obtained from the dataset
with all charges fully separating, i.e. not recombining. We will now compare only
recombining charges, which have never managed to overcome the disorder radius. The
amount of recombination of charges from a pair (geminate) and the absolute times after
which they recombine are evaluated with respect to the permittivity and the charge
pair recombination rate at fixed values for disorder of 100 meV. We only evaluate pure
geminate recombination here as we are focusing on the explicit separation of a pair.

Figure 7.6 shows the recombination time t75 %
gr after which three quarters of all charges

in this set have recombined in dependence of εr and aehr. The recombination time t75 %
gr
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Figure 7.6. – Effective geminate recombination time t75 %
gr for combinations of permit-

tivity and recombination rate.

is, at large recombination rates 107 s−1, found to be independent of permittivity with a
recombination time of ≈1.4× 10−7 s. The lower the recombination rates, the more does
the permittivity affect t75 %

rec . In order to explain this behavior one must compare the
average time charges need to separate, which we classify by tdis, and the average time
for geminate recombination of a CP, the inverse recombination rate a−1

ehr. It needs to be
noted that the evaluation of the disorder time is based on the charge set in which all
charges have managed to separate, while the recombination times are based on the CP
set in which no CP has managed to separate. Therefore the comparison between disorder
time and recombination time represents an estimation and is aimed to reveal tendencies.

Previously we extracted tdis ≈ 3.7× 10−6 s−2.7× 10−7 s for a disorder of σ = 100 meV
and for εr varying from 3 to 5. At large aehr = 10−7 s, we therefore have tdis & a−1

ehr =
10−7 s. The time needed for charges to overcome the disorder radius is larger than a−1

ehr.
The charges remain longer nearby each other than the average time after which CP
recombination occurs, i.e. recombination occurs faster than separation. In this case,
charge recombination is controlled by the recombination rate itself, meaning tgr ≈ a−1

ehr.
This is reflected in the results for tgr in Figure 7.6: the actual recombination time
tgr ≈ 1.4× 10−7 s is just slightly slower than a−1

ehr = 10−7 s. The recombination time also
independent of εr, because for all permittivities slower disorder times that the inverse
recombination rate (tdis > a−1

ehr) are observed.
As we lower the recombination rate to aehr = 104 s−1, now tdis is faster than the

inverse recombination rate, i.e. tdis < a−1
ehr = 10−4 s. This means that CP separation is

faster than the geminate recombination rate acts. In contrast to large aehr, where slow
separation gives enough time for the nearby charges to recombine, the recombination
time is now not purely controlled by the recombination rate itself but it depends on the
separation time, which in turn is controlled by the permittivity. The difference between
εr = 3− 5 leads to tgr decreasing by roughly one order of magnitude from 2.5× 10−5 s
to 2.8× 10−6 s. The faster CP separation occurs (at larger permittivity), the less time
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remains for recombination to occur and those charges which do recombine, must do
so faster than the CP separates. On the contrary, the slower CP separation occurs
(at smaller permittivity), the more time the CP has to recombine before separation
occurs, This means the longer the disorder time is, the closer tgr is to a−1

ehr. In this
scenario: for small permittivities the recombination time (2.5× 10−5 s) is closer to the
inverse recombination rate (10−4 s) than for larger permittivities (tgr = 2.8× 10−6 s)
with a−1

ehr = 10−7 s.
The results lead to the following picture about geminate recombination: the recom-

bination times are either recombination rate controlled (insufficient separation with
respect to recombination) in the case of large (with respect to separation/disorder time)
recombination rates or permittivity controlled (separation controlled by εr) in the case
of slow recombination rates.

7.4. Conclusion

The kMC method is a suitable tool to access the time-dependent separation process
of electron-hole pairs in spatially and energetically disordered BHJs during operation.
Using a 3D kMC simulation model of a BHJ solar cell we investigated the charge pair
separation dynamics under the influence of energetic disorder and in particular the mutual
Coulomb interaction of the electron-hole pair, controlled by the permittivity, as well as
the geminate recombination rate of the bound electron-hole pair. Both separation- and
recombination times were extracted over a large set of exciton-generated charge pairs.
We find that the energetic disorder strongly affects the charge separation dynamics

over their entire lifetime, while the Coulomb interaction dominates on local scales and
during the initial time of separation. The (disorder) radius after which the disorder
is larger than the Coulomb attraction is found to be a more meaningful definition to
classify charge separation in organic materials than the Coulomb radius. Once charges
are separated by more than the disorder radius, the influence of Coulomb attraction
does not considerably affect transport anymore. The amount of geminate recombination
is a results of a combination between large recombination rate and low permittivity
(i.e. low disorder/separation times); however, for realistic values of energetic disorder,
even small increases in permittivity can suppress orders of magnitude of geminate
recombination. Hence, improving the permittivity provides a pathway to suppress charge
pair recombination.
In conclusion, the recent pathway of utilizing high-εr organic materials for more

effective charge separation is strongly supported by our results. Additionally, low-disorder
materials are highly beneficial for a fast charge separation. Both routes should be pursued
in order to support efficient charge separation in BHJ OSCs.
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8. The Origin of Photocurrent in
Fullerene-Based Solar Cells

Fullerene-based organic solar cells with only a minute amount of donor show a substantial
photocurrent while maintaining a large open-circuit voltage. At low concentrations the
donor is fully dispersed within the fullerene and no percolation pathways of holes towards
the anode exist; this morphology is in contrast to BHJ donor:acceptor blends where
percolative pathways for both electrons and holes are present within their respective
transport phases. Therefore, the question arises how holes contribute to the photocurrent.
Here we demonstrate that the photocurrent is readily explained by photo-generated holes
transferring back to the fullerene matrix due to Coulomb repulsion and the fullerene acting
as an ambipolar conductor for both electrons and holes. The two critical parameters
controlling this process are the values of the HOMO level difference between the donor
and the acceptor and of the recombination strength, both are found to agree between
experimental measurements and kinetic Monte Carlo simulations. We provide evidence
that the HOMO level difference between donor and acceptor is smaller in a dilute donor
configuration. Successive percolation pathways towards the contacts – the reason for
introducing the BHJ configuration – are not an absolute requirement to obtain substantial
photocurrents in OSCs.

The content of this chapter is adapted with permission from T. Albes, L. Xu, J. Wang,
J. W. P. Hsu, and A. Gagliardi, “Origin of Photocurrent in Fullerene-Based Solar Cells”,
The Journal of Physical Chemistry C, vol. 122, no. 27, pp. 15 140–15 148, 2018. © 2018
American Chemical Society.
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8.1. Background

The ratio by which a solar cell can convert an incident radiative power Pγ to electrical
power defines the PCE, η = jsc ·Ac · Uoc · FF /Pγ , which increases with the short-circuit
current density jsc, the open-circuit voltage Uoc and the fill factor FF of the cell with
surface area Ac. Enhancing these device parameters by e.g. proper material choice [9] or
morphology control [71], [236] has led to a steady increase of PCEs in OSCs. The highest
efficiency OSC devices currently are based on a BHJ [75], comprised of a donor:acceptor
blend, with PCEs surpassing 13 % [16]. In BHJs, material choice and blend morphology
influence both jsc and Uoc. Donors with lower bandgap allow to utilize a larger part of
the solar spectrum and hence increase the jsc, but at the same time reduce the difference
in quasi-Fermi levels of electrons and holes, and therefore limit Uoc. This is why in BHJs
jsc and Uoc often behave inversely proportional to changes in donor bandgap, and tuning
them for optimum performance presents an intrinsic tradeoff [237]–[239].
Recently, an emerging OSC system has gained attention that seems to circumvent

the tradeoff between jsc and Uoc. Fullerene-based OSCs, also called dilute-donor OSCs
[240], contain only a small amount of donor material embedded in the fullerene matrix
and show substantial jsc while maintaining a high Uoc, with the highest reported PCE
already reaching 8.1 % [241]. The high Uoc in these systems is assumed to be a result
of a Schottky barrier forming at the fullerene/anode contact [242] or a reduction in
recombination of free charge carriers [243]. Large Uoc were first observed in pure C60
devices [244] and shortly afterwards the introduction of even small donor amounts showed
a striking increase in jsc [240]. The observation of a substantial short-circuit current in
dilute donor systems is not restricted to a single material system: a multifold increase of
jsc can be observed in devices based on a variety of fullerene-based acceptors, such as
phenyl-C61-butyric acid methyl ester (PC61BM) and phenyl-C71-butyric acid methyl
ester (PC71BM), with donor materials as used in well-studied in BHJ OSCs, such as
the polymers P3HT, Tetraphenyldibenzoperiflanthene (DBP) or 1,1-bis-(4-bis(4-methyl-
phenyl)-amino-phenyl)-cyclohexane (TAPC) [76]–[78], [240]; see Figure 8.1. For a pure
fullerene-based device without donor material, the PCE, especially the jsc, is low. Adding
minute amounts of donor (a few wt.%) results in an increase in jsc and can substantially
improve the device performance. The observed behavior holds true as long as the amount
of donor is small enough; above a certain donor concentration Uoc drops, and the device
behaves increasingly like a standard BHJ. Further studies on the influences on Uoc [243],
jsc [77] and stability [245] were recently performed in order to gain a better understanding
of the working principle of dilute-donor cells.
Despite good performances, the detailed origin of photocurrent in fullerene-based

solar cells still lacks understanding: how do holes transport to the anode when donor
molecules are unlikely to form a percolative pathway at low concentrations? The general
working principle of OSCs consists of the key steps absorption, exciton splitting at a
donor/acceptor heterojunction and transport of charges towards the contacts. In BHJs,
the percolative donor domains provide transport paths for photo-generated holes and

128



8.1. Background

PC61BM PC71BM C60 C70

0

2

4

6

8

10

12

j s
c
(m

A
cm

−
2
)

w/o donor w donor

2% P3HT
1% P3HT

1.2% TAPC

2.5% DBP

Figure 8.1. – Comparison of increased short-circuit current in different fullerene-based
OSC systems with very low donor concentration. Donor materials: P3HT, TAPC,
DBP. Data from [76]–[78], [240].

the acceptor domains for electrons. Percolation pathways within the respective material
phases towards the contacts lead to the photocurrent (Figure 8.2a). In fullerene-based
OSCs with only minute amounts of donor, light absorption mainly takes place in the
fullerene. This is evident from absorption spectra of fullerene-based OSCs, where the
absorption spectra of cells with donor concentrations below 30 wt.% are similar to that of
pure PC71BM [36]. The typical vibronic features of P3HT are missing in the absorption
spectra which is an indication for a fully disperse arrangement of the P3HT chains in the
fullerene matrix. If agglomerates of P3HT were formed, it would likely crystallize which
would show absorption peaks in the spectra. We therefore assume that the polymer
chains are most likely fully dispersed within the fullerene matrix.

After light absorption, the generated excitons need to dissociate to obtain free charges.
A field-assisted mechanism to split excitons within the fullerene has been discussed but
was concluded to not be sufficient for efficient charge separation in fullerene-based solar
cells [242]. In an experimental study [77], charge photo-generation is shown to arise from
exciton diffusion to donor/acceptor interfaces; similarly to BHJs, the offset of HOMO
levels between donor and acceptor then induces the transfer of holes from fullerene to
donor and vice versa for electrons.
Due to the low concentration of only a few wt.% and the dispersion in the fullerene,

the donor polymer chains are likely to be entirely enclosed by fullerenes, i.e. without
percolation pathways to the anode (Figure 8.2b). During exciton separation, holes are
transferred from the fullerene to the donor. The donor regions enclosed within the
fullerene phase act as confining regions for holes (Figure 8.2c) because the HOMO energy
level of the donor EDHOMO lies shallower than the HOMO energy level of the acceptor
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Figure 8.2. – Scheme of BHJ (a) vs. dilute donor device configuration (b). In BHJs,
the donor acts as hole conductor and the acceptor as electron conductor. In dilute
donor systems, pathways for holes towards the contact may not be available and holes
can accumulate on the polymer chains. The hole-escape effect is illustrated in (c) and
the corresponding energetics are shown in (d).

EAHOMO. We hypothesize that holes must transfer back to the fullerene matrix in order to
extract a photocurrent and both electron and hole transport must occur in the fullerene
material. Hence, holes need to surmount the HOMO level offset

∆EHOMO =
∣∣∣EDHOMO − EAHOMO

∣∣∣ (8.1)

as depicted in Figure 8.2d in order to leave the donor regions and contribute to the
experimentally observed photocurrent. The origin of how holes can gain the required
escape-energy to be transferred back to the fullerene phase is examined here.
It has recently been stated that percolation pathways within the donor are not nec-

essarily a requirement in order to obtain a photo-current in donor/acceptor systems
by Melianas et al. [246]. They show that for dilutions of less than 4 wt.%-7 wt.% no
continuous pathways exist within the donor and that the donor forms a fully discontinuous
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network, further supporting the assumption of a fully disperse morphology. For such
concentrations they propose a hole transport mechanism by long-range tunneling between
donor molecules, where the average tunneling distance is up to 4 nm. For donor concentra-
tions below 4 wt.% however, in particular at 1 wt.% and below, tunneling between donors
was shown to be hindered. An additional mechanism of tunneling from the donor into
the acceptor is not shown for donor concentrations of 1 wt.% and below. Furthermore,
a substantial photo-current is observable even in systems with donor concentrations as
low as 0.1 wt.% [36]. In such cases, a different mechanism must be responsible for hole
transport.

In this joint experimental and numerical study, we propose an alternative mechanism
for the origin of hole current at very low donor concentrations that relies on hole-escape
from the isolated polymer chains into the fullerene material due to a lowering of the
HOMO energy barrier between donor and acceptor supported by Coulomb repulsion
of holes confined on the donor. We show that charge transport of holes towards the
contacts takes place in the fullerene instead of in the donor as it is the working principle
in BHJs. Using kMC simulations we show that a hole back-transfer is enabled by the
combination of (a) a reduction of ∆EHOMO between donor and fullerene and (b) the
Coulomb repulsion energy arising due to accumulation of holes in the donor domains
(Figure 8.2 c-d). By varying ∆EHOMO and the electron-hole pair recombination rates,
we study the hole-escape current as well as the charge density distribution and the
recombination current in a dilute-donor OSC system. Realistic values for ∆EHOMO and
the recombination current for a dilute-donor cell comprised of PC71BM with minute
amounts of P3HT are extracted by External Quantum Efficiency (EQE) measurements
and IS analysis, respectively. The experimental results are compared to the simulation
results and act as showcase to illustrate how the presented model explains photocurrent
generation in fullerene-based solar cells.

8.2. Methods

8.2.1. Model specifics

In order to test if and under which conditions it is possible for holes to undergo a
back-transfer from donor regions to the fullerene phase and reach the anode, we set up a
kMC model of a fullerene-based solar cell with a low donor concentration. Our model
system is a slab of fullerene molecules (PC71BM) with volume V = 50× 50× 50 nm3 =
1.25× 10−16 cm3 in between two contacts. Embedded into the fullerene matrix, we
distribute the donor material (P3HT) in form of 64 polymer chains with fixed length
of L = 33 nm each. The polymers are generated by a SAW described in Section 4.2.2.
The algorithms is executed until 100 successful kinks have been performed. Furthermore,
distinct chains do not touch each other in order to represent the discontinuous polymer
chain network. Each polymer chain spreads along 33 sites with volume 1 nm3, i.e.
each polymer occupies a volume of 33 nm3. The total polymer volume is therefore
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Figure 8.3. – Polymer chain distribution in the kMC model (left). A slice through
the morphology (right) is used to illustrate the charge density distributions and the
potential distribution on the polymer chains.

64× 33 nm3 = 2112 nm3. In relation to the volume of the simulation box this leads to a
polymer content of 2112 nm3/50 nm3 = 1.69 vol.%. Considering the molecular weight of
P3HT and PC71BM, this corresponds to 1.2 wt.% of donor in the active layer. The surface
area of the polymer/fullerene heterojunction is Ahj = 7898 nm2, which is used to calculate
the escape- and recombination current density. An illustration of the distribution of
polymers is shown in Figure 8.3. Although we do not know the exact shape of the donor
polymer chains in experiments, we use the above mentioned results from the absorption
spectra as justification for a fully disordered morphology. ∆EHOMO can explicitly be
tuned in the model by setting the value of EDHOMO while keeping the fullerene HOMO
fixed. In P3HT:PCBM BHJs the HOMO is usually around −5.2 eV, yielding a HOMO
level offset of 0.8 eV. For the fullerene-based simulations, the HOMO level offset is varied
between 0.1 eV and 0.8 eV by varying the donor HOMO between −5.2 eV and −5.9 eV in
0.1 eV steps. No external potential is applied, i.e. the system is in short-circuit condition
with only the contact work-function difference as the internal electric field. The energetic
disorder is assumed as σ = 30 meV.
In order to quantify the amount of holes leaving the donor region, we store the net

number of holes leaving the donor regions Nh (with charge q = +e) and, by dividing
through the surface area Ahj of the heterojunction between donor regions and surrounding
acceptor material as well as the simulation time tsim, define the net hole-escape current
density by

jhesc = q ·Nh

Ahj · tsim
(8.2)

The number of geminate and non-geminate recombination events, Ngr and Nngr (as
defined in Section 4.3.6), allows to explicitly calculate the recombination current density
at the donor/acceptor interface. Once a charge pair is separated by more than the
Coulomb radius the charges are considered free and it is unlikely for them to find their
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geminate partner again. Hence in most cases, charge recombination after separation (i.e.
recombination between free charges) is considered to be non-geminate. The timescale
of geminate recombination is ranging from hundreds of picoseconds up to ≈ 100 ns [81],
[131], [180]–[184]. In accordance to these measurements, we choose the value for aehr
used in the kMC simulations to range between 107 s−1 and 1010 s−1. We evaluate the
non-geminate recombination current density

jngrrec = q ·Nngr

Ahj · tsim
. (8.3)

as well as the total recombination ratio ηehr defined in Section 4.5. Similarly, we determine
the volume recombination rate in the entire system, normalized to the volume of the
simulation cell V , based on non-geminate recombination

R = Nngr

tsim · V
. (8.4)

The quantities jhesc and R obtained from the kMC simulations will be compared with the
corresponding experimentally obtained values in the last section. Apart from the jrec
and R we evaluate spatially resolved local charge densities for holes in the donor nh and
for electrons in the acceptor ne as well as the local electric potential φC in short-circuit
condition.

8.2.2. Experimental details

In order to determine whether the barrier between donor and acceptor material can be
decreased in dilute donor systems and the assumption for the kMC model is justified,
fullerene-based OSC with a low donor content of 1 wt.% in a PC71BM matrix were
fabricated and characterized by Liang Xu and Julia W.P. Hsu from the Department of
Materials Science and Engineering, University of Texas at Dallas, Texas, United States.
The solar cells are comprised of a ITO/PEDOT:PSS/active layer/Ca/Al structure.
Further details on the fabrication process and the experimental methods can be found in
[36], [77].

8.3. Results and discussion

8.3.1. The origin of hole-escape

First, we illustrate the effect of different ∆EHOMO on the distribution of electrons and
holes as well as the local Coulomb potential throughout the active layer. Figure 8.4
depicts the results for a selection of three different values of ∆EHOMO: (a) 0.8 eV, (b)
0.4 eV, and (c) 0.2 eV. A full set of densities and Coulomb potential distribution is
shown in Figure A.2 and A.3. For this illustration the recombination rate was fixed at
aehr = 109 s−1.
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Figure 8.4. – MO energy distribution, electric potential and charge densities across
isolated donor domains for HOMO level offsets of (a) 0.8 eV, (b) 0.4 eV, and (c) 0.2 eV.
The left part shows the HOMO and LUMO energy distribution along a straight line
though the donor region (line indicated on the right), without the influence of the
electrostatic potential φC due to the accumulation (dashed lines) and including the
potential (solid lines). The typical behavior of electrons and holes, in particular the
trapping in and escape from the donor phase, is schematically visualized. The right
panel shows electron and hole densities, where ne is depicted on the left, and nh on
the right hand side, respectively.
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For typical barriers between donor/acceptor HOMO levels as observed in BHJs of
0.8 eV [247]–[249] as shown in (a), holes stay confined to the isolated polymer chains and
large hole densities up to nh ≈ 1020 cm−3 build up because there is no possibility for
holes to leave the donor regions. As a result, φC within the confined region is positive and
reaches values up to +1 eV locally, shifting EDHOMO downwards in energy and decreasing
the effective barrier that holes need to surmount in order to perform a transition into the
fullerene phase. However, the barrier is too high in order for hole-escape to occur. No
finite hole density is observed in the fullerene phase. In contrast to holes, electrons do
show percolation pathways within the fullerene matrix. The negatively charged particles
move under the influence of the (positively) charged donor islands and the potential drop
induced by the contact work functions. It can be observed that the electron density is
distributed more or less evenly within the fullerene phase, i.e. the electrons can move
from chain to chain and to the contacts and are not confined. However, in the steady
state only a negligible short-circuit current is obtained because there is no flow of holes
towards the contacts which prevents the solar cell from working. The strongly positively
charged donor regions act as recombination centers for the electrons and all generated
electrons recombine with holes confined on donor regions. Recombination can take place
either with holes from the polymer chain on which the exciton was separated or with a
hole from another chain.
Upon lowering the barrier to 0.4 eV as shown in (b), a similarly high nh builds up

within the donor regions; only in this case a finite nh also appears in the acceptor matrix.
The formation of pathways of holes leaving the polymer chains and percolating towards
the anode can be observed. A Coulomb potential of up to +0.5 eV in the regions around
the polymer is obtained. In this case, Coulomb repulsion can provide a sufficient amount
of energy for holes to surmount the barrier. This means some holes are able to escape the
donor and can be transported to the anode via the fullerene phase. The fullerene is then
an ambipolar charge conductor and transports both electrons and holes to their respective
contacts; in contrast, charge transport in BHJ is spatially separated into acceptor as the
conductor for electrons and donor as the conductor for holes.
For a small barrier of 0.2 eV, a lower nh ≈ 1017 cm−3 indicates reduced confinement;

almost all holes are able to transfer unrestrictedly into the acceptor. Once in the fullerene
region, charges are subject to the dominating internal electric field and are driven to
the respective contacts. Due to a strongly reduced Coulomb potential on the donor
regions, also the amount of recombination is reduced. Charge pairs can separate faster
which leads to an increased photocurrent. It has to be noted that a sufficiently large
difference in ∆EHOMO is needed to provide the necessary driving force to dissociate the
excitons. The influence of barrier height on exciton separation is not included in our
model, excitons are always separated with a fixed rate. However, there is evidence that
charge transfer can take place even at very small HOMO level offsets [250].

Ultimately, all charges that are generated either reach the contacts, and contribute to
the short-circuit current Isc = jsc · Ac, with Ac the conctact area, or recombine at the
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Figure 8.5. – Hole-escape current density jhesc (a) and equilibrium hole density on the
donor nh (b) as a function of the HOMO level offset ∆EHOMO for various values of
the recombination rate aehr.

heterojunction interface and contribute to the recombination current Irec = jrec · Ahj ,
with Ahj the heterojunction interface area. In an idealized case of no recombination, the
highest possible Isc is equal to the net hole escape current Ihesc = jhesc ·Ahj . A finite aehr,
next to ∆EHOMO, is expected to affect nh because recombination reduces the average
time holes spend in the donor domain. Implicitly, nh determines φC (i.e. the repulsion
energy) and, in combination with ∆EHOMO, controls jhesc. Figure 8.5 shows the interplay
of ∆EHOMO and aehr on jhesc (Figure 8.5a) and on nh (Figure 8.5b). The barriers were
varied in a range from deliberately too small values of 0.1 eV up to values realistic in
BHJs of 0.8 eV to cover a wide parameter range.
The transition between hole escape and hole confinement upon changes in ∆EHOMO

can be observed in Figure 8.5 for different values of aehr. The barrier must be lowered
to values of ∆EthHOMO ≈ 0.3 − 0.4 eV in order for holes to leave the donor and to
achieve a substantial jhesc. There is also a large dependence of jhesc on aehr: at lower aehr
the threshold in ∆EHOMO to observe a back-transfer increases. For large aehr, holes
recombine with surrounding electrons before they can escape the donor. In the hole-escape
regime with a low barrier and low aehr, jhesc approaches a maximum of jhesc ≈ 2.5 mA cm−2.
Translated to the absolute current through the donor/acceptor heterojunction Ihesc =
jhesc · Ahj this current approaches Ihesc = 2× 10−13 A. No recombination leads to the
largest achievable current due to photo-generation with the generation profile used in
the simulations, and matches the absolute current through the contact interface Ac,
Isc = jsc · Ac = 1.9× 10−13 A (with jsc = 7.5 mA cm−2). The resulting short-circuit
current for the same set of parameters is shown in Figure 8.6. Hence, all photo-generated
holes can escape the donor and reach the anode to contribute to the short-circuit current.
Investigating the equilibrium hole density profile in Figure 8.5b, one can observe a

general trend of an exponentially increasing hole density as the barrier is increased until a
saturation is reached for large barriers. nh ranges from 1015 cm−3 up to around 1020 cm−3
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Figure 8.6. – Short-circuit current density vs. HOMO level offset for various recombi-
nation rates aehr.

when ∆EHOMO is changed from 0.1 eV to 0.8 eV, but is only slightly dependent on aehr.
In the regime where no hole escape takes place, the confined charges can recombine with
electrons surrounding the donor, thus lowering the density for larger aehr. Upon lowering
the barrier, holes are able to escape leading to decreased equilibrium hole density down
to 1015 cm−3. At large barriers the charge density is very high and holes stack up on the
polymer and cannot back transfer to the fullerene. At a certain point, no excitons can be
split anymore because there are no free sites for holes to be transferred onto the donor.
The equilibrium state of this configuration is a strongly positively charged polymer with
electrons surrounding them and all generated excitons are lost.
In the steady state, all charges that do not reach the contacts must recombine. The

recombination current must therefore behave inversely proportional to the short-circuit
current (Figure 8.6). Figure 8.7 depicts the influence of ∆EHOMO on the total ratio of
photo-generated charges recombining ηehr (Figure 8.7a) as well as on jhrec (Figure 8.7)
for various values of aehr. The same transition at barrier values around ∆EthHOMO ≈
0.3−0.4 eV and a strong dependence on aehr can be seen (Figure 8.7a): for barriers smaller
or equal to 0.2 eV, ηehr is on a plateau determined by aehr. For large aehr = 1010 s−1,
even at small barriers around ηehr = 87 % of a photo generated charges recombine. For
low aehr = 107 s−1, almost no recombination (ηehr less than 2 %) at all is observable
because holes can pass the small barrier faster than recombination can occur. Above
a ∆EHOMO of 0.3 eV, ηehr starts to surge and for increasing barriers almost all photo-
generated charges recombine, corresponding to a vanishing escape-current. The larger
aehr, the faster the maximum recombination is reached: at the critical barrier of 0.3 eV
a low aehr = 107 s−1 leads to ηehr = 3.4 % of all generated charges recombining, while
for aehr = 1010 s−1 already ηehr = 86.3 % of all charges recombine. ηehr includes both
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Figure 8.7. – Overall recombination ratio ηehr (a) and non-geminate recombination
current jngrrec (b) as a function of the HOMO level offset ∆EHOMO for various values of
the recombination rate aehr.

geminate and non-geminate recombination. In order to compare to the experimental
measurements from IS, we are interested in the non-geminate recombination current
only (Figure 8.7b). jngrrec also reflects the strong increase in recombination with ∆EHOMO

and shows a maximum of jngrrec = 1.9 mA cm−2 for large barriers, thus approaches the
maximum achievable photo-current in the escape-regime. At ∆EHOMO = 0.3 eV, jngrrec

ranges between 0.035 mA cm−2 and 0.241 mA cm−2. Interestingly, with larger aehr the
amount of non-geminate recombination is found to decrease. A larger aehr increases
the amount of geminate recombination in the initial charge separation process. The
more charges recombine geminately, the less charges can separate and are therefore
available for non-geminate recombination. However, as previously discussed, the overall
recombination ratio increases drastically with aehr. Therefore, the absolute amount of
recombination increases but the relative amount of non-geminate recombination shifts in
favor of geminate recombination.

In this model, we assume a fully dispersed configuration of the donor polymer chains
in the acceptor phase. The distribution affects many properties such as the MO levels,
charge separation, transport, as well as recombination. The exact morphology is not
easily accessible, however there is evidence for dispersion based on the missing peaks for
crystallic features in the absorption spectra. Full dispersion is an extreme case and in
reality there might occur some clustering of the polymer chains, i.e. by π-π stacking of
the sidechains. For the sake of generality we have also considered the other extreme case,
namely a full clustering of the polymer chains to small spherical bubbles. A visualization
of the morphology and the results for an analogous evaluation of this configuration are
shown in Figure 8.8 and yield qualitatively the same results: also here the effect of
hole-escape, as well as a substantial photocurrent, can be observed upon barrier lowering
and due to charge accumulation. We can therefore conclude that the effect occurs
independently of the detailed shape of the molecular arrangement. Larger clusters are
however unlikely because they would show crystalline features in the absorption.
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Figure 8.8. – Evaluation of hole-escape effect for fully clustered polymer chains as
depicted in (a). Short-circuit current density jsc (b), hole-escape current density
jhesc (c), hole density in the donor phase nh (d), the total recombination ratio ηrec
(e), and the nongeminate recombination current density jngrrec (f) are shown. This
morphology is the opposite extreme case to completely dispersed polymer chains and
yields qualitatively the same results.
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8.3.2. Energy barrier lowering

As shown in Figure 8.2d, ∆EHOMO can be determined as the difference between the
bandgap energy of the fullerene Eg,PCBM and the energy of the CT state energy (ECT ),

∆EHOMO = Eg,PCBM − ECT . (8.5)

In order to determine ∆EHOMO from experiments, the bandgap energy Eg,PCBM and the
CT state energy ECT can be extracted from EQE spectra. Details about the extraction
can be found in [36], [77]. The EQE measurements yield Eg,PCBM = 1.75 eV for PC71BM,
which agrees with literature values [251]. ECT can be obtained from the EQE spectra by
a Gaussian fitting of the spectra below the bandgap energy. A value of ECT = 1.45 eV
was found for various different (low) donor concentrations. This yields a HOMO level
offset of ∆EHOMO = 1.75 eV − 1.45 eV = 0.3 eV. Such an offset is considerably lower
than what is generally reported in BHJ cells, i.e. values between 0.8 eV-1.0 eV.

The difference in HOMO energy levels between a BHJ and a dilute donor configuration
can be explained by the morphological difference in the two configurations. In a dilute
donor configuration, the vibronic features at 570 nm and 610 nm, which are attributed to
an ordered P3HT arrangement, are absent in the absorption spectra [36]. The spectra of
the fullerene-based systems with low donor content closely resemble those of PC71M alone,
from which we conclude that the P3HT is in a fully disperse configuration, i.e. the PCBM
acts as a good solvent for the P3HT polymer chains. The HOMO level of the disperse
P3HT is found to be 0.3 eV deeper than in a BHJ configuration, therefore resulting in a
lower ∆EHOMO, in accordance with e.g. [252], [253]. The difference in HOMO energy
levels between ordered and disordered P3HT is also indicated in Figure 8.2d.
Furthermore, at the donor/acceptor interface, the MOs of the P3HT and the PCBM

overlap and interact with each other. This can lead to a significant broadening of the
interfacial MOs. We can determine the reorganization energy λ from Marcus theory
by determining the width of a Gaussian fit to the EQE spectra [254], [255]. For our
fullerene-based systems, the reorganization energy is found to be 0.35 ± 0.05 eV. λ

represents the full width at half maximum of the DOS at the donor/acceptor interface in
a disperse donor configuration. This can be an indication that the local ∆EHOMO at
the donor/acceptor interface can even be lower, and is meant as a supporting result to
justify the lower ∆EHOMO down to ≈ 0.3 eV in fullerene-based systems.

8.3.3. Comparison of model and measurements

We compare the experimentally determined values for jrec and R with the corresponding
values extracted from the kMC simulations. All recombination currents and rates
compared here are based on non-geminate recombination exclusively. Experimentally we
calculate the recombination current density by jexprec = eLn/τ , where e is the magnitude
of the elementary charge, L is the active layer thickness, n is the carrier density, and τ is
the carrier recombination time. The quantities n and τ are obtained from IS analysis
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[36], [77]. Rexp = V · n/τ is normalized with the volume of the simulation cell. With
∆EHOMO = 0.3 eV, as was determined to be a realistic case, and at aehr = 109 s−1,
the kMC simulations yield jsimrec = 0.195 mA cm−2 and Rsim = 9.6× 104 s−1. The
donor concentration in the simulation is 1.2 wt.%, which we compare to measurements
obtained from cells with 1 wt.% donor concentration. Experimentally, it is determined
jexprec = 0.056 mA cm−2 and Rexp = 6.3× 103 s−1. The measured recombination current
agrees with what is obtained by the simulations within a factor of 3-4, giving validation to
our proposed hole back transfer model to explain photocurrent generation in these dilute-
donor OSC system. Furthermore, the short circuit currents (cf. Figure 8.6) match well
with jsimsc = 2.9 mA cm−2 and jexpsc = 2.5 mA cm−2 and show that the device performance
can be reproduced by the model. We attribute the differences in recombination to the
unknown details of the geometry of the donor aggregates, which largely impacts charge
separation and recombination. Additionally, the exact value for aehr is under active
investigation; for reduced aehr of e.g. aehr = 107 s−1 we obtain a recombination current
of jsimrec = 0.049 mA cm−2 and a volume recombination rate of Rsim = 2.4× 104 s−1

which coincides well with what is obtained experimentally. We therefore argue that this
simplified model produces values in good agreement with those obtained experimentally.

8.4. Conclusion

In conclusion, we provide a model explaining the high photocurrent reported for fullerene-
based solar cells. First, we performed kMC simulations on a fullerene-based device with
polymer chains as donor material in low concentration embedded in a fully dispersed
configuration. We varied ∆EHOMO and aehr and investigated the transport processes
related to holes, in particular the hole current from the isolated donor domains to the
anode. The results show that a hole back-transfer from isolated donor domains can
occur, thus providing an explanation of the so far not yet understood origin of hole-
photocurrent in this system. We further identify threshold values of the HOMO level
offset of around ∆EHOMO = 0.3 eV for this process to occur. These barrier heights
induce critical hole densities in the donor phase of nthh ≈ 1019 cm−3, which provide a
Coulomb repulsion force large enough for holes to overcome the barrier and transfer to
the fullerene phase. The amount of jhesc and concomitantly the resulting photocurrent is
strongly dependent on aehr, but hole back-transfer was shown to be possible for all aehr
considered between 107 s−1 and 1010 s−1. After hole-transfer, the fullerene matrix acts as
an ambipolar charge transport layer for both electrons and holes towards the contacts.
Furthermore, we experimentally showed with the EQE measurements of PC71BM based
devices containing small amounts of P3HT that ∆EHOMO between fullerene and donor
phase is low, ≈ 0.3 eV, in contrast to commonly reported offsets of 0.8 eV in BHJs, due
to the highly disordered morphology of P3HT in the fullerene-based OSCs. The barrier
height extracted from the measurements fits well with the critical barrier predicted to
enable hole-escape by the simulations and hence supports this theory. Finally, we compare
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the measured and simulated recombination, which are consistent between experiment
and model for ∆EHOMO ≈ 0.3 eV and aehr of 109 s−1. Our model represents a new
mechanism, alternative to e.g. that of Melianas et al. [246], to explain the origin of
photocurrent in fullerene-based systems with low concentrations of donor material, by
which the hole transport takes place in the fullerene instead of the donor. The mechanism
of hole-escape renders the possibility that percolation pathways within the donor might
not be necessary to obtain efficiently operating organic solar cell devices.
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In this thesis, a 3D kMC model for OSCs was presented and used to provide insight into
the mechanisms controlling the photo-current generation and recombination in the active
layer. The model is capable of simulating full solar cell devices while considering effects
on the nm/sub-ps scale. The event- and particle-based kMC method is particularly suited
to describe the hopping transport between localized states in energetically disordered
organic semiconductors and allows to incorporate the active layer morphology of OSCs
on a nanometer scale, such as a BHJ geometry or the distribution of individual polymer
chains.
The physical processes controlling the behavior of particles in OSCs are transferred

into rate equations fitting for the kMC algorithm, which then allows to directly simulate
the time-dependent evolution of the solar cell during operation. By tracing the origin,
the pathways and the recombination of excitons and charge carriers, both spatially and
in time, macroscopic figures of merit of the solar cell can be evaluated and linked to the
underlying microscopic behavior of the particles.
The low permittivity of organic materials and the concomitant generation of charges

via an intermediate, strongly localized charge transfer state makes the treatment of
electrostatic interactions in OSCs particularly relevant. A specific advantage of the pre-
sented model over established implementations is the utilization of an Ewald summation
which makes it possible to consider both the short-ranged and the long-ranged Coulomb
interactions between all individual charges; this allows to account for effects arising from
direct particle-particle interactions while at the same time considering the influence of
long-ranged space-charge effects in the device.
At first, it is shown that effective medium models are not sufficient to capture the

morphological effects of BHJs with large energetic disorder and low permittivity. A
1D DD model based on an EMA was compared to the 3D kMC model. A common
basis of the two models was established and it was not possible to achieve agreement
between them. The reduction of a BHJ to an effective medium hides processes at the
donor/acceptor heterojunction which was elucidated by the charge carrier distribution:
the DD model shows a polarization of the device as negative and positive charges are
separated throughout the entire active layer while in the kMC simulations positive and
negative charges are confined at the heterojunction interface as a result of the weak
screening of electrostatic interactions. With this, the necessity of a 3D kMC model
including the heterojunction interface, the local energetic disorder as well as direct
particle-particle interactions is highlighted.
Following this, the charge behavior at the heterojunction was investigated in more
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detail. It is shown that a low permittivity and a large disorder lead to a strongly
inhomogeneous charge distribution throughout the active layer and that in such cases
charges are mostly confined along the BHJ interface. The charge accumulation is
quantified and it is shown that it strongly correlates to recombination, with geminate
recombination clearly dominating over nongeminate recombination. In a next step, we
analyze the time-resolved charge pair separation process and quantify the different phases
of separation by characteristic times. The initial phase of charge separation is found to
be strongly dependent on the permittivity. The charge separation times are put into
relation to recombination times. At common values of energetic disorder, it is shown that
even small increases in permittivity can suppress orders of magnitude of recombination
rates. Hence, the results strongly support the recent trend of developing high-permittivity
organic semiconductors for efficient OSC devices.
At last, a novel active layer morphology, a dilute donor configuration, is investigated.

In these devices, the donor is only present in very small amounts and does not form
percolation pathways (for holes) towards the contact. Thus, the mechanism of how
holes can contribute to the photocurrent was not understood well. The performed
kMC simulations provide an explanation for the working mechanism of such devices,
in accordance with experimental measurements. Due to confinement on isolated donor
molecules, holes accumulate on these. After a certain threshold in density, the Coulomb
repulsion leads to a transfer of holes to the acceptor. The transfer is supported by a
lower energy barrier between donor and acceptor in disperse systems (than in BHJs),
which was supported by EQE measurements. After hole-transfer, the acceptor is the
ambipolar conductor for both electrons and holes, in contrast to the working principle of
BHJ cells, where holes are transported only in the donor phase. This study elucidates
the flexibility of the kMC model and highlights its power to gain new physical insight
into the mechanisms governing the operation functionality of OSCs.
Altogether, the kMC model has shown to be a powerful tool to gain a deeper under-

standing of the internal processes in OSCs, such as the spatially resolved charge carrier
distributions or the time-resolved single-particle dynamics, which are otherwise challeng-
ing to access by experimental techniques or continuum-based models. A comprehensive
picture of the different steps involved in the process of photo-current generation could
be obtained and the underlying origins of loss mechanisms identified. The proposed
explanation of the working principle of a novel system, in combination with the agreement
between model and experiment, highlight the advantage of the kMC method in the design
and optimization of next-generation OSCs.
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A.1. Generation profiles

We compared three different generation profiles in order to investigate the effect on the
current density generated at different biases for two different active layer thicknesses, see
Figure A.1. A constant generation, a profile based on the TMM, and an artificially defined
profile, in which all excitons are generated close to one contact. The total generation
Gtot =

∫
G(z)dz was kept the same for all three profiles. It can be observed that for

both thicknesses, no particular difference between the constant and the TMM profile
in the current can be observed. Only for the artificial profile with a strong localization
near the bottom contact (cathode), a slight change in the current can be seen. The
current is reduced in this case, which is a result of the difficulty for holes to reach the
top contact (anode). All holes need to be transported though the entire active layer
morphology, which increases losses by recombination and thus reduces the current. The
analysis is meant to justify the TMM method in comparison to a full solution of the
Maxwell equations because it shows that the exact origin of excitons does not have a
tremendous influence on the solar cell performance.
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Figure A.1. – Comparison of different generation profiles on solar cell characteristics.
(a) 50 nm and (b) 200 nm active layer. The artificial (red) profile was tested as an
extreme case to see the differences to a constant and a TMM profile.
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A.2. Densities and potential in fullerene-based solar cells

Figure A.2. – Full set of electron (top) and hole (bottom) densities vs. donor-acceptor
HOMO level difference in dilute donor configuration. The inset shows the polymer
chain configuration in the considered slice through the active layer.

147



A. Appendix

Figure A.3. – Full set of electrostatic potential distribution vs. donor-acceptor HOMO
level difference in dilute donor configuration. The inset shows the polymer chain
configuration in the considered slice through the active layer.

.
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BHJ Bulk-Heterojunction.

CCD Charge Carrier Distribution.

CIGS Copper Indium Gallium Selenide.

CP Charge Pair.

CT Charge Transfer.

DBP Tetraphenyldibenzoperiflanthene.

DD Drift-Diffusion.

DOS Density of States.

DSSC Dye-Sensitized Solar Cell.

EMA Effective Medium Approximation.

EQE External Quantum Efficiency.

FEM Finite Element Method.

FIB Focused Ion Beam.

FRM First Reaction Method.

GDOS Gaussian Density of States.

HOMO Highest Occupied Molecular Orbital.

IR Infra-Red.

IS Impedance Spectroscopy.

ITO Indium Tin Oxide.

j-U Current Density-Voltage.
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Acronyms

kMC kinetic Monte Carlo.

LCAO Linear Combination of Atomic Orbitals.

LUMO Lowest Unoccupied Molecular Orbital.

MC Monte Carlo Step.

MD Molecular Dynamics.

MO Molecular Orbital.

MPP Maximum Power Point.

OB Onsager-Braun.

OSC Organic Solar Cell.

P3HT Poly(3-hexylthiophen-2,5-diyl).

PCBM Phenyl-C61/C71-butyric acid methyl ester.

PCE Power Conversion Efficiency.

p-CELIV photo-Charge Extraction by Linearly Increasing Voltage.

PDF Probability Density Function.

PEDOT:PSS Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).

SAW Self-Avoiding Walk.

TAPC 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane.

TAS Transient Absorption Spectroscopy.

TEM Transmission Electron Microscopy.

TF Thin-Film.

TMM Transfer Matrix Method.

UV Ultra-Violet.
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