
Technische Universität München
Physik Department

Max-Planck-Institut für Astrophysik

A new scheme to treat neutrino
effects in neutron-star mergers:

implementation, tests and
applications

Ricard Ardevol Pulpillo
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1. Introduction

On August 17, 2017 the first gravitational wave (GW) signal from the collision
(or merger) of two neutron stars (NSs) was detected by the Advanced LIGO and
Advanced Virgo GW detectors (Abbott et al., 2017f). In the aftermath of the
event, numerous observatories and space telescopes detected electromagnetic (EM)
emission in multiple wavelengths at the same sky location (Soares-Santos et al., 2017;
Cowperthwaite et al., 2017; Nicholl et al., 2017; Chornock et al., 2017; Margutti
et al., 2017; Alexander et al., 2017; Fong et al., 2017), opening the door to a new
era of multi-messenger astronomy (Abbott et al., 2017a).

Numerical simulations are instrumental in understanding the merger process of
the two NSs and their observable signals. They have consistently shown, as proposed
by Lattimer and Schramm (1974), that some material gets unbound from the system
during and after the merger, with the appropriate conditions to synthesize a large
fraction of the neutron-rich trans-iron elements we observe in the Solar System.
Many of these newly-formed elements are radioactive, and their decay can power
the EM emission of the so-called kilonova (Li and Paczyński, 1998) observed after
the NS merger GW event (Soares-Santos et al., 2017; Cowperthwaite et al., 2017;
Nicholl et al., 2017; Chornock et al., 2017). However, amongst the most prominent
uncertainties in the modelling of NS mergers, are those related to the treatment of
neutrinos. Neutrinos, by their emission and absorption, change the ratio of protons
to neutrons in the ejected material, hence favouring or prohibitig the production of
neutron-rich elements. It is in this context that we introduce an Improved Leakage-
Equilibration-Absorption Scheme (ILEAS), a new computationally efficient method
to describe neutrino effects in NS merger simulations which is designed to satisfy all
important physics constraints.

1.1. Neutron star mergers in the era of
multi-messenger astronomy

1.1.1. Neutron star binaries and their inspiral phase

Neutron stars are born from the collapsing cores of a massive stars in supernova
(SN) explosions (Bethe and Wilson, 1985; Bethe, 1990). They are extremely com-
pact objects, with typical masses in the range of 1 − 2 times the mass of the Sun
and radii of the order of ∼ 10 km, thus reaching densities in their cores beyond
those of atomic nuclei (ρNS & ρnuc ' 2.7· 1014 g/cm3). The extreme conditions in
the interior of NSs cannot be reproduced in a laboratory, and hence the exact com-
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position of NSs remains a mystery. Although originally assumed to be composed
mainly of neutrons, more exotic particles such as hyperons and mesons or even free
quarks could also be present. Nevertheless, several constraints have been derived
from nuclear experiments as well as from astrophysical observations (see Lattimer
2012 and Özel and Freire 2016 for recent reviews), which combined with approx-
imate descriptions of the particle interactions allow for the creation of reasonable
equation of state (EoS) models describing the properties of NS matter, widely used
in numerical simulations (e.g. Shen et al. 1998; Hempel and Schaffner-Bielich 2010).

Up to date, there are observations of nearly a dozen binary systems composed of
two NSs orbiting each other in our galaxy (Lattimer, 2012; Swiggum et al., 2015;
Özel and Freire, 2016) and even though they have not yet been observed, binaries
hosting a NS and a black hole (BH) are also expected to occur (e.g. Mennekens and
Vanbeveren 2014; Postnov and Yungelson 2014; Dominik et al. 2015; Belczynski
et al. 2016). The two compact objects (COs) in a binary, either two NSs or a
NS and a BH1, radiate energy and angular momentum away in the form of GWs,
shrinking their orbit and, eventually, leading to a coalescence. If at least one of
the COs is magnetized, the interactions of its magnetosphere with the conducting
companion could power an X-ray/radio precursor to the merger (Palenzuela et al.,
2013). Figure 1.1 illustrates the different phases of the merger and its associated
GW or EM signals, which we will discuss in the following text one by one.

GWs were predicted in 1915 by Albert Einstein (Einstein, 1915, 1918) in his
theory of general relativity (GR). They are perturbations of the space-time which
propagate at the speed of light and are produced by changes in the mass quadrupole
moment of a system, Qij. The amplitude of GWs, hij, can be approximately written
as (Blanchet and Damour, 1989),

hi,j ≈
2G

c4r
Pijkm(n)

d2Qkm

dt2
, (1.1)

where r is the distance to the source, n the unit vector in the direction from the
source to the observer and Pijkm(n) the projection tensor, defined as,

Pijkm(n) = (δik − nink)(δjm − njnm)− 1

2
(δij − ninj)(δkm − nknm). (1.2)

The factor 2G/c4r in equation (1.1), where c is the speed of light and G the gravita-
tional constant, is responsible for the weakness of GW radiation, and thus the great
challenges of their detection.

The existence of GWs was indirectly proven by the long term observations of the
Hulse-Taylor binary pulsar (PSR1913+16) discovered in 1975 (Hulse and Taylor,
1975), whose orbit is shrinking due to GW emission, as predicted by GR (Taylor
and Weisberg, 1989; Weisberg and Taylor, 2005). Nevertheless, it was not until a

1Binary BHs do not eject any material, produce any neutrinos nor trigger any EM emission,
except possibly in very rare circumstances, when matter is present in the close vicinity of the
coalescing binary BHs. Therefore they are not relevant for the purpose of this work.
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hundred years after Einstein’s postulation that GW could be detected for the first
time. In 2015, the two detectors LIGO-Livingston and LIGO-Hanford (both in the
USA) registered the first GW signal produced by a binary BH merger (Abbott et al.,
2016b).

The instruments employed for the detection of GWs are high-precision laser in-
terferometers (bottom-left picture in figure 1.2), capable of detecting strains of up
to ∼ 10−23 due to the passage of GWs (Martynov et al., 2016) (or equivalently, to
detect changes in the distance traversed by the laser of ∼ 10−21 m LIGO). Besides
the two LIGO GW detectors which detected the first GW signal from two merging
BHs, a third GW detector in Italy, VIRGO, started observing in 2017, providing
much better sky localization of observed events via triangulation. Up to date, GWs
from several BH-BH binaries (Abbott et al., 2016b,c, 2017c,d,e) and one NS-NS
binary (GW170817, bottom-right graphic in figure 1.2) (Abbott et al., 2017f) have
been detected by the ground-based interferometers.

These detectors are most sensitive to GW frequencies between ∼ 10 and ∼
10000 Hz (Martynov et al., 2016). At such frequencies, the inspiral of two COs in a
binary prior to merger present one of the loudest GW sources in the local universe.
For the interferometers, once operating at design sensitivity, NS-NS mergers will be
detectable up to ∼ 200 Mpc while NS-BH mergers up to a distance ∼ 2 − 3 times
larger (Abadie et al., 2010). Based on the observational evidence on NS-NS binaries,
the detection rate of NS-NS mergers is predicted to be 3− 18 events per year (Kim
et al., 2015), while the NS-BH merger rate cannot be constrained empirically due to
the lack of observations. Alternatively, population-synthesis calculations2 predict a
similar NS-NS merger detection rate of ∼ 3 events per year, and a comparable rate
for NS-BH mergers (see e.g. Dominik et al. 2015). However, both the observational
and population synthesis predicted rates are subject to multiple uncertainties, such
as the low number statistics of observed systems or the uncertainties in the modelling
of binary stellar evolution (S.N. Shore 1992, see e.g. Tauris et al. 2015; Dominik
et al. 2015), respectively.

The long delay time expected between the formation of the two NSs and their
merger, leads to a reduction of the eccentricity in the orbit due to GW emission,
becoming quasi circular at the time of the merger. All the presented rate estimates
neglect the contributions from CO binaries evolving in dense stellar environments,
such as globular clusters, where gravitational interactions with neighbouring stars
can lead the system to merge with highly eccentric orbits. Although eccentric merg-
ers are expected to be rare (∼ 1 per cent of the total CO merger rate), they could
be of relevance due to the large amount of material ejected during the merger (East
et al., 2012; Samsing et al., 2014).

2Population synthesis calculations are simulations in which a population of stars, including bina-
ries and their interactions, is evolved by means of simplified stellar evolution track models.
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Figure 1.1.: Schematic illustration of the different phases of a neutron-star merger
with its associated observable signals, either in gravitational waves or
electromagnetic radiation. Credit: Fernández and Metzger (2016b),
final version published in Fernández and Metzger (2016a).

1.1.2. The merger phase

Due to the extreme compactness of NSs (and BHs), the two COs in a binary evolve as
gravitational point-sources until they reach very close orbits. Once in the tidal field
of the companion, the dynamics are dominated by the mass ratio between the two
COs (and the spin of the BH). In equal-mass (symmetric) NS-NS mergers on the one
hand, the two NSs deform in tear-like shapes before merging in a violent collision,
expelling material from the collision interface at high velocities, some of which later
settles as a disc around the remnant. On the other hand, in asymmetric NS-NS
binaries, the lighter NS is disrupted in the tidal field of its companion, expanding in
a tidal tail which winds around the resulting central object like a spiral arm. Some of
the material from this tail becomes unbound and the rest settles as an accretion disc
around the merger remnant. The merger of two NSs can result in the direct collapse
to a BH of the central object, the delayed collapse of a metastable hyper-massive
NS (HMNS) or a stable NS (see section 4.1 for details). In NS-BH mergers, the NS
is disrupted as in asymmetric NS-NS mergers if the masses are not too dissimilar or
the BH is spinning rapidly. In the case of a slowly spinning BH or much higher BH
mass, the NS is instead swallowed as a whole by the BH. In either case, the final
remnant is always a BH, possibly surrounded for some time by a torus of NS matter

10



if the NS was disrupted (see e.g. Kyutoku et al. 2013; Bauswein et al. 2014a; Just
et al. 2015a).

The fate of the central object in NS-NS mergers depends primarily on the EoS
of NS matter and the total binary mass. Both thermal pressure and rotational
support can delay the collapse of the HMNS, but ultimately if the total remnant
mass is larger than the maximum NS mass allowed by the EoS, the star will collapse.
The lifetime of the remnant is of special importance for the post-merger (ringdown)
GW signal signal, produced mainly by quadrupolar oscillation modes excited in the
HMNS. Furthermore, the fate of the central object will influence the remnant phase
of the merger, as will be discussed below.

The amount of material unbound during the merger (also known as dynamical
ejecta), as well as its origin, depends on the binary mass ratio and compactness
(mass-radius ratio) of the NSs, determined by the EoS (see appendix E). Dynamical
ejecta masses can range from 10−4 to 10−2 times the mass of the Sun (M⊙) in
NS-NS mergers, or up to some ∼ 0.1 M⊙ in NS-BH mergers. In NS-NS mergers
most of the ejecta originates from the collision interface, with larger contributions of
tidally ejected material in asymmetric systems (see section 4.1). In NS-BH mergers
all the dynamical ejecta comes from the expanding tidal tail. However, not all of the
material ejected in the collision or in tidal tails gets unbound. Up to ∼ 0.3 M⊙ of
NS material settles in an accretion disc around the central object ∼ 10 ms after the
collision.

The dynamical ejecta from NS-NS/BH mergers reaches typical velocities ranging
from 0.1 to 0.3 times the speed of light, regardless of its origin (shock or tidal).
However, the exact composition of the ejecta remains a vivid topic of debate amongst
astrophysicists. The electron fraction, Ye, which is the number of electrons per
nucleon (equivalent to the ratio of protons to nucleons in charge-neutral matter), is
the main quantity determining the ejecta composition. As will be discussed below,
Ye governs the distribution of elements synthesized in the expanding ejecta.

At the high temperatures (∼ 1011 K) and densities reached during a NS-NS
merger, copious amounts of neutrinos are produced, amongst others, via β-interactions,

p+ e− ↔ n+ νe (1.3)

n+ e+ ↔ p+ ν̄e (1.4)

changing Ye in the NS material. The shock-heated material ejected from the collision
interface reaches higher temperatures than tidal ejecta, and hence is more influenced
by the neutrino interactions, which scale with matter temperature. Due to the
intrinsic low Ye (∼ 2 · 10−2, which means high neutron content) of NSs, electron
antineutrino (ν̄e) emission dominates (equation 1.4), and the ejecta Ye increases with
respect to that of cold NS matter. Moreover, the exposure of the dynamical ejecta
to the neutrino fluxes emitted by the merger remnant further influences the plasma
composition. Because of the geometry of the merger remnant, material located in
the polar directions is more strongly irradiated by neutrinos, thus tentatively raising
its Ye further (see remnant phase in figure 1.1). However, in NS-BH mergers the
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temperature of the disrupted NS remains lower and the central object (BH) does not
emit neutrinos, hence deeming the impact of neutrinos less important in comparison
to NS-NS mergers.

As will be discussed below, the exact extent to which neutrino effects alter the
composition of the dynamical ejecta remains a subject of study by the merger com-
munity, specifically in the context of numerical simulations (e.g. Wanajo et al. 2014;
Foucart et al. 2016; Radice 2017).

1.1.3. The merger remnant: accretion phase and gamma ray
bursts

On longer time-scales, from tens of milliseconds to seconds (see Accretion phase in
figure 1.1), the hot matter that settled into the torus cools via neutrino emission
and accretes onto the central object. The re-absorption of neutrinos emitted by
the disc, helps unbind some amounts of torus material (. 10−3 M⊙), especially
in the cases where the central object is a HMNS, which also contributes to the
neutrino flux (Perego et al., 2014b; Richers et al., 2015). However, a larger amount
of mass is ejected in the post-merger phase due to the outward transport of angular
momentum in the torus induced by magnetic viscosity, reaching amounts comparable
to the dynamical ejecta (e.g. Fernández and Metzger 2013; Just et al. 2015a). As
we mentioned earlier, the initial neutron richness of NS matter translates into a
dominant emission of ν̄e, thus pushing the mean Ye of the ejecta to ∼ 0.2−−0.3.

Gamma ray bursts (GRB) are flashes of collimated γ-radiation of extra-galactic
origin, amongst which astrophysics have identified two distinct populations, based on
their duration and spectral properties. Those lasting more than 2 seconds with softer
(less energetic, lower frequencies) spectra are long GRBs (lGRB) and have been as-
sociated with very energetic SNe (see Della Valle 2006 and references therein). In
contrast, NS-NS/BH mergers have been suggested as the engine behind the shorter
ones with harder spectra (sGRB) (Paczynski, 1986). The standard scenario describ-
ing sGRBs assumes the collapse of the central object into a BH surrounded by a
torus of NS matter, which by its own energy release together with energy tapped
from the BH would launch a collimated beam (jet) in the polar directions. Alterna-
tively, the formation of an extremely strongly magnetized NS, known as magnetar,
could also provide the necessary energy output by means of its magnetic field (e.g.
Eichler et al. 1989; Blandford and Znajek 1977; Paschalidis et al. 2015; Just et al.
2016; Ruiz et al. 2016; Kiuchi et al. 2015).

In the case of evenet GW170817, a low intensity sGRB was observed 1.7 seconds
after the GW detection of the NS merger at a coincident location (top panels of
figure 1.2) (Margutti et al., 2017; Fong et al., 2017). Although this observation
shows that NS mergers can trigger γ-ray emission, the interpretation of the signal
remains disputed. The initial conclusion in the detection papers, argued that the low
intensity of the burst was explained by an observation of the jet off-axis. However,
other groups interpret the observation as a chocked jet, i.e. a jet that is not energetic
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Figure 1.2.: Top: Picture of Fermi γ-ray space telescope and the detection of a
short gamma ray burst (∼ 1 s) shortly after the neutron-star merger
event (GW170817) and compatible with the same sky location. Bot-
tom: Picture of the VIRGO gravitational wave detector and the de-
tection of gravitational waves from the neutron-star merger GW170817.
The graphics shows the signal observed by the LIGO-Livingston gravita-
tional wave detector, where one can clearly see the increase of the grav-
itational wave frequency as the neutron stars spiral towards each other.
Credit: NASA’s Goddard Space Flight Center, Caltech/MIT/LIGO Lab
and ESA

enough to pierce through the material surrounding the central object (Kasliwal et al.,
2017; Gottlieb et al., 2018). Future observations of sGRB associated with GW events
will be necessary to understand the jet mechanism and to estimate the chances of
the jet to break through the merger debris.

In a fair fraction of cases, extended X-ray emission has been observed following a
sGRB for up to a few hours (Norris and Bonnell, 2006; Fong et al., 2015). Although
its origin is not yet clear, the two leading explanations for the engine behind the
signal are loosely bound material falling back onto the central object (e.g. Rosswog
2007; Lee et al. 2009) or a rapidly spinning magnetar as a merger remnant (Gompertz
et al., 2013).

1.1.4. The unbound material: nucleosynthesis and
electromagnetic emission

Neutron-rich elements heavier than Zinc (atomic number Z = 30) are expected
to be synthesized by successive neutron captures by seed nuclei in fast-expanding
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material with neutron excess (e.g. Sneden et al. 2008). Two distinct processes are
differentiated depending on the comparatison of the neutron-capture rate (Rn) and
the β-decay rate (Rβ): the slow neutron-capture process or s-process (Rn � Rβ),
and the rapid neutron-capture process or r-process (Rn � Rβ) (Burbidge et al.,
1957). The site of the s-process has been identified to be intermediate mass stars
(1.3–8 M⊙, e.g. Herwig 2005), but the source of r-process material has remained
uncertain for long. The observation of solar-like r-process abundances in metal-
poor3 stars in the Milky Way (e.g. Sneden et al. 2008), favours the scenario of an
r-process site with robust prediction of the heaviest elements.

SNe were the prime candidates for producing suitable conditions for the r-process,
but more and more sophisticated multidimensional simulations have failed to demon-
strate sufficiently neutron-rich environments in the SN ejecta (e.g. Hüdepohl et al.
2010; Roberts et al. 2012; Mart́ınez-Pinedo et al. 2012). An alternative candidate
was already proposed in the 1970’s: provided NS-NS/BH binaries could unbind
enough material during their merger, the intrinsic neutron richness of decompressed
NS matter could provide ideal conditions for the r-process (Lattimer and Schramm,
1974).

Nucleosynthesis calculations4 for the ejecta obtained by numerical simulations of
NS-NS/BH mergers yield a robust solar abundance pattern for elements with atomic
mass numbers A & 140 (e.g. Goriely et al. 2011; Korobkin et al. 2012; Bauswein
et al. 2013, 2014a; Just et al. 2015a, see left panel of figure 1.3). These abundances
are rather insensitive to the binary parameters (NS masses, spins and EoS), partially
due to fission recycling : the high neutron flux allows the formation of very massive
isotopes which undergo nuclear fission, providing new seed nuclei to capture more
neutrons, closing the cycle. Moreover, Just et al. (2015a) showed, that the material
unbound during the post-merger phase contributes to the production of most of the
lower-mass (90 . A . 140) r-process elements (see right panel of figure 1.3).

In general, material with Ye . 0.2 produces heavy r-process elements (A & 140),
while in less neutron rich material, 0.2 . Ye . 0.4, lighter r-process nuclei are
synthesized (90 . A . 140). As mentioned previously, neutrino interactions have
a significant impact on the Ye of the dynamical ejecta, changing the amount of
available free neutrons, and hence the nucleosynthetic yields (Just et al., 2015a;
Sekiguchi et al., 2015; Goriely et al., 2015; Radice et al., 2016; Wu et al., 2016;
Lippuner et al., 2017; Martin et al., 2018). Some groups find almost complete
solar r-process abundances (A & 90) in the dynamical ejecta of NS-NS mergers
when including neutrino effects (e.g. Wanajo et al. 2014; Sekiguchi et al. 2015),
while others can only reproduce the heavy r-process distribution (A & 140, e.g.
Radice et al. 2016). These discrepancies are linked to the different treatments of
neutrino physics employed in the different numerical codes, illustrating the need
for improvement in this regard (see Thielemann et al. 2017 for a recent review on

3With low mass fraction of non-hydrogen, non-helium elements.
4Nucleosynthesis calculations compute the elements synthesized under defined thermodynamical

conditions by employing a network of nuclear reactions.
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Figure 1.3.: Left: Mass fractions of the elements synthesised in the expanding mate-
rial dynamically ejected from three equal-mass neutron-star merger sim-
ulations that employ different equations of state of neutron-star matter.
The empty circles denote the element mass fractions observed in the
Solar System. Right: Elemental yields formed in the combined ejecta
from numerical simulations of neutron-star mergers and post-merger
black hole-torus remnants with different disc masses. Both figures are
originally from Just et al. (2015a) (figures 11 and 19 in the original
publication).

r-process production in NS-NS/BH mergers).
The freshly synthesized elements in NS-NS/BH merger ejecta decay radioactively,

powering an EM signal in the optical (wavelengths of 400–780 nm) and/or near
infrared (780–1500 nm) bands (Li and Paczyński, 1998), known as kilonova5 (Met-
zger et al., 2010). The colour and peak time, i.e. the time of maximum luminos-
ity (brightness) when the expanding medium becomes transparent for radiation to
escape, of the EM signal depend on the synthesized elements. Heavy r-process ele-
ments, particularly lanthanides (58 ≤ Z ≤ 71) and actinides (89 ≤ Z ≤ 102), are
highly opaque to optical EM radiation due to their complex valence electron struc-
ture (open f-shell). The vast number of available electron bound-bound transitions
effectively translates into the atom absorbing photons in a semi continuous energy
range (e.g. Kasen et al. 2013). On the contrary, lighter r-process elements are more
transparent to radiation of the same wavelengths.

If the ejecta are dominated by heavy r-process elements, these high lanthanide
opacities6 will delay the peak time of the kilonova up to ∼ 10 days after the merger,
as the expanding neutron-rich material will only become transparent at low densities.
Additionally, the temperature of the ejecta at such late peak time will be low (∼ 1000
K), thus radiating in the near infrared. On the contrary, if some component of the
merger ejecta has such an elevated Ye that no significant amount of heavy r-process

5Or macronova.
6Opacities are defined as the inverse of the mean free path, which is the mean distance traversed

by photons between interactions.
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elements is synthesized, the kilonova signal could peak at times as early as a day
after the merger. Conversely, this material would remain hotter at peak time, thus
radiating in optical (blue) wavelengths (e.g. Kulkarni 2005; Metzger et al. 2010;
Kasen et al. 2015; Fernández et al. 2017; Hotokezaka et al. 2016; Barnes et al.
2016; Tanaka et al. 2018). As figure 1.1 depicts, the material ejected in the polar
directions in a NS-NS merger is more likely to be less neutron rich due to the
neutrino irradiation by the torus and HMNS. Again, this highlights the need for a
reliable treatment of the neutrino physiscs in NS-NS mergers to better understand
the composition of the material ejected in different directions and for different binary
configurations.

It has also been proposed that an ultraviolet (10 ∼ 400 nm) signal could precede
the kilonova, peaking a few hours after the merger and powered by the β-decay
of fast expanding free neutrons, which avoid being captured by nuclei (Metzger
et al., 2015). Finally, months or years after the merger, the expanding ejected
material can collide with the surrounding interstellar medium, launching a shock
wave and powering a radio (> 1 dm) signal (Nakar and Piran, 2011). All the
predicted EM signals associated with a NS-NS/BH merger are summarized in figure
1.1 (see Fernández and Metzger 2016a; Metzger 2017 for recent reviews).

In the aftermath of the NS merger GW event GW170817, several ground-based
and space telescopes detected an associated EM signal in optical/infrared wave-
lengths (Abbott et al., 2017a; Soares-Santos et al., 2017; Cowperthwaite et al., 2017;
Nicholl et al., 2017; Chornock et al., 2017; Alexander et al., 2017; Shappee et al.,
2017; Abbott et al., 2017b) (see figure 1.4). Based on the observed colour, peak
times and spectral features7, this signal has been identified as a kilonova, thus pro-
viding strong evidence of the presence of r-process elements in the merger ejecta
(Smartt et al., 2017; Chornock et al., 2017; Pian et al., 2017; Shappee et al., 2017).
Analysis of the obtained data at different wavelengths suggests a total of 0.03-0.05
M⊙ of rapidly-expanding ejecta, composed of neutron rich material. However, the
exact distribution and elemental composition of the ejecta powering the kilonova has
started a heated debate amongst astrophysicists. Some groups fit the observed EM
signal assuming only one ejecta component (Smartt et al., 2017), while other groups
have suggested the need of two (Cowperthwaite et al., 2017; Kasen et al., 2017) or
even three (Perego et al., 2017) distinct ejecta components to explain the data. All
these studies are based on simple models describing the evolution of the signal (like
Arnett 1982). However, to understand all the details of the kilonova evolution, full
radiative transfer simulations are required (Tanaka et al., 2017). Unfortunately, the
opacities of r-process elements required for such calculations are poorly constrained
due to the lack of experimental data (e.g. Tanaka et al. 2018), and the obtained
results are sensitive to the initial ejecta conditions, which are quite uncertain. In
order to improve the understanding of future detections, it is indispensable to rely
on accurate numerical simulations with all the relevant physics, including neutrinos,
taken into account and a complete survey of initial conditions.

7Emission lines due to electron bound-bound transitions.
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Figure 1.4.: Picture of the observed kilonova associated to the NS-NS merger GW
detection in its host galaxy. The image was taken by Hubble Space
Telescope and the three insets show three observations of the source
at different times in the course of six days, showing its gradual fading.
Credit: ESA/Hubble.
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1.2. Numerical simulations of compact object
mergers including neutrino effects

NS-NS/BH merger simulations have been successfully performed by different groups
with varying degrees of accuracy and physics included, from (post-)Newtonian grav-
ity8 (e.g. Shibata et al. 1992; Xing et al. 1994; Rasio and Shapiro 1994; Davies et al.
1994; Ruffert et al. 1996) to GR (e.g. Faber et al. 2004; Bauswein et al. 2014b;
Lehner et al. 2016a; Dietrich et al. 2017; Fernández et al. 2017; Radice 2017; Ciolfi
et al. 2017; Kyutoku et al. 2018). The impact of NS or BH spins (Kastaun et al.,
2013; Kastaun and Galeazzi, 2015; Dietrich et al., 2017), eccentric orbits (Radice
et al., 2016), magnetic fields (Lehner et al., 2016a; Ciolfi et al., 2017), or neutrino
interactions (Ruffert et al., 1996; Rosswog et al., 2013; Radice et al., 2016; Lehner
et al., 2016a; Fernández et al., 2017; Kyutoku et al., 2018) have also been studied,
constrained by the numerical resources available. For recent reviews on numerical
simulations of NS-NS and NS-BH mergers, we refer the reader to Faber and Rasio
(2012) and Rosswog (2015a); and Shibata and Taniguchi (2011), respectively.

As we have pointed out during this introduction, neutrinos are a crucial ingredient
in NS-NS/BH merger simulations, especially in order to understand the nature of
the matter outflows and their related observables. Although they are dynamically
not of primary importance, neutrinos can have a noticeable impact on the amount of
unbound material, both in the merger and post-merger phases. However, the most
significant contribution of neutrinos is in shaping the composition of the NSs and of
the ejected matter by governing the evolution of the neutron-to-proton ratio.

The neutrino phase-space distribution function evolves following the Boltzmann
transport equation. This constitutes a six-dimensional (three spacial directions and
three more in momentum space), time-dependent problem for each neutrino species,
which is currently impossible to solve without some approximation to reduce its
dimensionality (e.g. Lindquist 1966). Therefore, numerous schemes of varying com-
plexity and accuracy have been developed to approximate the impact of neutrinos
in numerical simulations.

In the context of NS mergers, truncated moment schemes are the most sophisti-
cated approximations successfully used. In those schemes, the Boltzman transport
equation is simplified by introducing a series of so-called moments, for which the
neutrino phase-space distribution function multiplied with increasing powers of the
unit vector in the neutrino momentum direction is integrated over two momentum
components: the angles of neutrino propagation, thus reducing its dimensionality.
This leaves an infinite set of equations which depend only on the three spatial di-
rections and the neutrino energies. In order to approximately solve the system, the
series of moments needs to be truncated at a certain order by closing the set of
equations with a closure relation, which generally expresses the highest employed
moment as a function of all the previous ones.

The so-called M1 schemes (e.g. Shibata et al. 2011; O’Connor 2015) truncate

8Including higher order gravitational effects such as GWs.
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the series of moments after the first-order, evolving the neutrino energy density
(zeroth order) and the neutrino flux density (first order), and closing the system
with an analytical relation between the two. Versions of these schemes exist in an
energy dependent form (e.g. Just et al. 2015b), or in a grey form, where the energy
dependence has been removed by employing energy integrated/averaged quantities
in the evolution equations (e.g. Foucart et al. 2015). Despite their popularity
for describing the transport of neutrinos, M1 schemes are computationally very
expensive and cannot handle properly the evolution of two neutrino beams crossing
each other because of the non-linearity of the closure relation. Instead of following
their own trajectories, the two crossing beams merge and from a single beam in the
average direction of propagation of the two initial beams. This undesirable effect
can have a detrimental impact on the merger ejecta escaping in the polar directions,
“artificially” altering its composition.

Leakage schemes are a very popular and computationally simple approximation
for the treatment of neutrino effects in NS-NS/BH merger simulations. Instead of
solving the Boltzman transport equation or its moment equations, these schemes
compute local effective sources for neutrino energy and lepton-number losses by
means of an interpolation between neutrino diffusion rates (in opaque, optically
thick conditions) and neutrino production rates (in a transparent, optically thin
medium).

Neutrino leakage schemes were introduced in the context of Newtonian NS-NS
merger simulations by Ruffert et al. (1996, 1997); Ruffert and Janka (1999, 2001)
and Rosswog and Liebendörfer (2003); Rosswog et al. (2003); Korobkin et al. (2012);
Rosswog et al. (2013); Rosswog (2013). More recently, versions of such schemes
including gravitational redshift effects (Sekiguchi, 2010; O’Connor and Ott, 2010;
Galeazzi et al., 2013) have been used in many relativistic merger simulations (Sekiguchi
et al., 2011a,b; Kiuchi et al., 2012; Deaton et al., 2013; Foucart et al., 2014, 2017;
Neilsen et al., 2014; Palenzuela et al., 2015; Lehner et al., 2016b,a; Bernuzzi et al.,
2016), as well as longer-term evolution calculations of post-merger remnants, in-
cluding HMNSs (Metzger and Fernández, 2014; Lippuner et al., 2017) or BH-torus
systems (Shibata et al., 2007; Fernández et al., 2015a,b).

Nevertheless, traditional leakage schemes only reproduce one aspect of neutrino
transport, namely neutrino energy and lepton-number losses. Additionally, the
“standard” descriptions of diffusion rely on a simple dimensional analysis which
results in an overestimation of the production of neutrinos in the semi-transparent
region, while at the same time failing to drain the interior of the star (see comparison
in appendix A). Other relevant effects, such as the impact of neutrinos trapped and
in equilibrium within the fluid in optically thick conditions or the re-absorption of
neutrinos by semitransparent material, should be taken into account as well. Some
more sophisticated leakage variants incorporate some of these elements by different
means, albeit with some restrictions.

Perego et al. (2016) developed an Advanced Spectral (energy-dependent) Leak-
age (ASL) scheme which includes the impact of neutrinos in equilibrium with the
medium parametrized using time-scale arguments. Additionally, they employ com-
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plex propagation paths to re-map the local neutrino emission to the star’s surface,
from where neutrinos radiate isotropically and are re-absorbed by optically thin
matter (see Perego et al. 2014a,b, 2016). This scheme was tested against a Boltz-
mann transport solver in one and two dimensional simulations of core-collapse SNe,
reporting good agreement in the comparison (Perego et al., 2016). However, even
though qualitative agreement is achieved, local discrepancies, reaching up to a fac-
tor two, can be observed in some cases. Furthermore, the ASL code relies on three
parameters calibrated for the tested scenario (core-collapse SNe), with no guaran-
tee of their performance on NS-NS/BH mergers. The current limitations in the
understanding of the impact of neutrinos in NS-NS/BH mergers does not allow for
a sensible calibration a priori of these parameters, thus rendering this approach
unsatisfactory.

Other groups have tried to exploit the advantages of different neutrino treatments
by employing hybrid methods between leakage and moment schemes. Radice et al.
(2016); Radice (2017); Radice et al. (2017, 2018); Zappa et al. (2018) use a standard
relativistic leakage method (Galeazzi et al., 2013) to treat local neutrino losses.
In order to approximately calculate neutrino re-absorption, they evolve the zeroth
moment equation (what they call M0 ) along radial rays using the leakage source term
instead of the local production rate and assume freely streaming neutrinos, where
the number flux density is equal to the neutrino number density times the speed
of light. The M0 equation is solved on every hydrodynamical time-step, together
with an evolution equation for the neutrino mean energy. This scheme does not take
equilibration of neutrinos and matter into account.

Similarly, Sekiguchi et al. (2012, 2015, 2016); Fujibayashi et al. (2017); Shibata
et al. (2017); Kyutoku et al. (2018) also calculate local neutrino losses by means of a
leakage method (Sekiguchi, 2010; Sekiguchi et al., 2012) and use a moment scheme
to estimate the neutrino re-absorption. However, instead of the M0 approach they
evolve the zeroth and first moments of the Boltzmann equation with an analytical
closure (M1), using the leakage source term instead of the local neutrino production
as well9. Furthermore, they do assume a component of neutrinos trapped within
the fluid in optically thick conditions, including an ansatz for neutrino equilibration
with a β-equilibrium limiter (Sekiguchi, 2010; Sekiguchi et al., 2012). This limiter
ensures that the local neutrino fraction does not exceed the one in β-equilibrium,
and distinguishes the trapping from the free-streaming neutrino component.

There are only a few comparisons in the literature between different neutrino
schemes. Foucart et al. (2015, 2016) reports considerable differences between the
results obtained with their grey M1 code (SpEC) and with a “conventional” leakage
scheme in the context of NS-NS merger and post-merger simulations. More precisely,
they find a discrepancy of up to a factor two in the neutrino luminosities and the
electron fraction of the ejected material, possibly due to the lack of neutrino re-

9This is our interpretation of the method loosely described in the original papers (Sekiguchi et al.,
2016; Fujibayashi et al., 2017; Kyutoku et al., 2018), which agrees with the reading by Radice
et al. (2016). We apologize for any misunderstanding of the actual approach.
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absorption in the leakage model. In contrast, with the exception of ASL, there are
no published test comparisons between any of the described hybrid leakage schemes
and more sophisticated transport solutions. Therefore, it is not possible to ascertain
the accuracy of such schemes.

1.3. Goals and structure of the thesis

The GW detection in 2017 of a NS-NS merger and its associated EM counterparts
have highlighted the need to develop more sophisticated numerical models in order
to understand these and also future observations. As discussed above, one of the
most crucial ingredients in NS-NS/BH merger simulations is the description of neu-
trino interactions, which drive the chemical composition of the ejected material, and
thus characterize the signal powered by the radioactive decay of heavy neutron-rich
isotopes.

However, only a few computational approaches described in the literature include
neutrino treatments, and they are either computationally expensive or treat the
physics very approximately with a variety of shortcomings (see section 1.2). The
chief aim of this work is to provide a code capable of treating neutrino physics in NS-
NS/BH mergers at a moderate computational cost, yet capturing all the essential
neutrino effects with sufficient accuracy. Such a code will allow for the calculation of
large sets of merger simulations, needed to explore the big variety of initial conditions
that describes NS-NS/BH binaries (system masses and mass ratios, spins, orbital
parameters, EoS). Leakage schemes provide the perfect basis for such a project, with
their algorithmic simplicity and efficient performance. Furthermore, the typically
short dynamical time-scales of the merger phase, i.e. the fluid configuration evolving
faster than the transport of neutrinos, render this approach a successful alternative
to more sophisticated transport schemes.

With this in mind, and motivated by all the shortcomings of existing schemes
described in section 1.2, I introduce a new implementation of an improved leak-
age method in the context of NS-NS/BH mergers: ILEAS (Improved Leakage-
Equilibration-Absorption Scheme). In the first place, ILEAS includes a new formu-
lation of the escape time-scale of neutrinos by using a diffusion description, which
improves on the “conventional” leakage prescription. Additionally, the fact that
neutrinos remain trapped and in β-equilibrium with the fluid in the optically thick
regime is accounted for by our novel equilibration treatment. Finally, the effects of
neutrino re-absorption in optically thin conditions are accounted for by a ray-tracing
algorithm, reproducing transport results in the optically thin limit.

Each constituting block of our scheme is designed to mimic the physical behaviour
of neutrino transport in different regimes, avoiding the use of ad hoc parameters
when possible. In contrast to the intransparence of some hybrid schemes, where
the physical notion of the different components is not clearly defined or demon-
strated, we motivate our choices with physics-based arguments, which we back up
with results obtained in relevant astrophysical test-scenarios. Unlike other improved
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leakage schemes reported in the literature, ILEAS includes a description of neutrino
interactions in optically thick conditions consistent with neutrino diffusion and trap-
ping. Moreover, the raylike nature of our absorption scheme proves advantageous
to trace the intrinsic three-dimensional geometry of NS-NS mergers.

We examine the performance of our new scheme in relevant astrophysical scenar-
ios, such as newly born hot proto-NSs (PNS) and BH-torus systems, and compare
the results to the ones obtained by more sophisticated neutrino transport treatments.
This two scenarios allow us to probe all the range of possible environments for neu-
trino transport, from diffusion inside the optically thick PNS to neutrino irradiation
and absorption in the optically thin torus. Although several neutrino schemes are
employed by different groups in simulations of NS-NS/BH mergers, comparisons be-
tween different methods are scarce (Foucart et al., 2016; Perego et al., 2014b). In
contrast, we provide a detailed comparison of the results obtained by ILEAS and the
employed transport schemes, not only in the global neutrino properties, but also in
their spatial dependence. Our comparisons show an agreement, locally and globally,
to better than ∼15 per cent in the relevant neutrino-related quantities in all our
tested scenarios.

To assess the importance of each of the modules which compose ILEAS (leakage,
absorption and equilibration), we test them individually in NS-NS merger simula-
tions with the same initial conditions, and show the consequences of neglecting some
of these relevant effects.

Finally, we perform numerical simulations of NS-NS mergers with different NS
masses, mass ratios and EoSs. We study the neutrino-related properties as well as
the impact of neutrinos on the composition of the ejected material for the differ-
ent initial configurations. Moreover, we compare the obtained results with those
reported by other groups employing the same initial setups in NS-NS merger sim-
ulations with different codes. However, we point out that these comparisons face
other challenges, such as the intrinsic differences in the handling of the hydrody-
namical evolution of the merger, which have a considerable impact on the neutrino
properties due to their high sensitivity on the matter temperature.

This thesis is organized as follows. In chapter 2 I describe the neutrino scheme
developed for this work, summarize the NS merger code and explain how both are
coupled. In chapter 3 I show the excellent performance of our leakage scheme by
comparing our results to the ones obtained by more sophisticated treatments in
the context of newly born proto-NSs (PNSs) and BH-torus systems. Chapter 4 is
devoted to the impact of the neutrino physics included in our model on the merger
ejecta. Additionally, I contrast our findings with similar results from other research
groups. Finally, I summarize our work in chapter 5. There, the strengths of our
method are also highlighted and I discuss the conclusions that can be drawn from
the obtained results, concluding with the natural steps to follow in future work.

As a complimentary analysis, in appendix A I compare the performance of the
leakage module of ILEAS to the “conventional” leakage schemes given in the litera-
ture. In appendix B the formulation of the neutrino interactions included in ILEAS
are summarized. Then in appendix C I compare the two standard derivations of
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the neutrino production rates, and how they affect the luminosity profile of a PNS.
In appendix D the rendering of smoothed particle hydrodynamics (SPH) particles
on a numerical grid is discussed. Ultimately, I provide some information about the
different NS EoSs employed in this work in appendix E.

Throughout this thesis cgs units are used unless stated otherwise and in section
2.1 I use G = c = 1. The expression CO merger will be applied to refer to the
merger of a NS with either a BH or a NS. Binary BH mergers produce no ejecta nor
neutrino emission, and, therefore, they are irrelevant for the purpose of this work.
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2. Computational model

2.1. Relativistic smoothed particle hydrodynamics in
the conformal flatness approximation

To simulate the merger of two neutron stars we employ the relativistic code described
in Oechslin et al. (2007); Bauswein (2010). Using a smoothed particle hydrodynam-
ics (SPH) approach, it solves the relativistic Euler equations to calculate the hydro-
dynamical evolution of the system. The metric potentials are then computed on an
overlaid grid by solving the Einstein equations in the conformal flatness condition.
It is essential to simulate such events in the framework of general relativity, as for
such extreme compactness as that of NSs, the deviations from classic Newtonian
gravity are significant. Additionally, the Lagrangian formalism of SPH allows us to
naturally track the evolution of the merger ejecta to arbitrary distances, without
the need of tracer particles.

The SPH method was first described by Lucy (1977) and Gingold and Monaghan
(1977), as a method to simulate particle ensembles, but it has been widely used
in astrophysics since then. We refer to Rosswog (2015b) for a recent review on
SPH, especially devoted to their application in the framework of CO mergers. The
SPH formalism relies on the representation of a fluid as a set of particles of constant
mass mi, which carry their hydrodynamical properties along their trajectories. They
are characterized by a kernel function, W (|r−rj|, hj), which describes their spacial
extent, peaking at the particle position, rj, and modulated by the smoothing length,
h. The kernel function must be normalized to unity, continuous and differentiable.
We employ the commonly used spherically symmetric cubic spline kernel,

W (d = |r − rj|, hj) =
1

πh3


1− 3

2
d2 +

3

4
d3, for 0 ≤ d ≤ 1

1

4
(2− d)3, for 1 < d ≤ 2

0, for d > 2

(2.1)

By means of the kernel, any function A can be expressed as a smoothed average,

〈A(r)〉 =

∫
A(rj)W (|r − rj|, hj)d3rj. (2.2)

Describing the fluid by means of SPH particles, the previous equation can be easily
discretized as,

〈A(r)〉 '
∑
j

VjA(rj)W (|r − rj|, hj). (2.3)
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where the particle volume, Vj, can be expressed as Vj = mj/ρ
∗
j , and the summation

runs over neighbouring particles.
As in most hydrodynamic solvers, we define the conserved quantities: conserved

rest-mass density, ρ∗, conserved specific momentum, ûi, and conserved energy den-
sity, τ , as a function of their primitive counterparts, rest mass, ρ, velocity, vi and
specific internal energy, ε, via

ρ∗ = ραu0ψ6, (2.4)

ûi = Hui = H(vi + βi)ψ4u0, (2.5)

τ = HW − P

ρW
−

√
1 +

ûiûjδij

ψ4
. (2.6)

Here the Lorenz factor is defined as W = αu0 =
√

1 + γijuiuj, with γij being
the spatial components of the metric, u0 and ui are the time and space components
of the eigenvelocity, H represents the relativistic specific enthalpy, defined as H =
1 + P/ρ + ε, and δij is the Kronecker delta. The metric potentials, α, βi and ψ are
described below (equation (2.10)). We then write the relativistic Euler equations,
where we include the neutrino source terms defined in equation (2.15), Qtot, in the
momentum and energy equations with the pertinent corrections, as

d

dt
ρ∗ = −ρ∗∂ivi, (2.7)

d

dt
ûi = − 1

ρ∗
αψ6∂iP − αû0∂iα + ûj∂iβ

j +
2ûkûk
ψ5û0

∂iψ

+
Qtotαûi
ρHW

, (2.8)

d

dt
τ = −ψ

6

ρ∗
(vi + βi)

(
1− HW

ω

)
(∂iP )− ψ6 P

ρ∗
∂i(v

i + βi)

− 6ψ5 P

ρ∗
(vi + βi)(∂iψ)− ûi

ψ4

(
1− HW

ω

)
(∂iα)

+
1

ψ4

(
1

HW
− 1

ω

)[
ûiûj∂jβ

i − 1

3
ûiûi∂jβ

j

]
+
Qtotα

ρ

[
1− ûiûjδ

ij

ψ4HWω

]
, (2.9)

where d/dt = ∂t + vi∂i and ω =
√

1 + (ûiûjδij/ψ4). To close the system, one
needs a microphysical equation of state (EoS) in the form of f(ρ, ε, Ye), representing
the thermodynamics of the fluid. The Euler equations are then evolved forward in
time using a 4th order Runge-Kutta (RK) integration scheme, and the primitive
variables are recovered every time step by solving iteratively the definitions above.
In the original version of the code, the electron fraction was simply advected with the
fluid, as it included no microphysics that affected the matter composition. However,
the inclusion of the neutrino leakage scheme introduces a source term for Ye, and it
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will be evolved in the RK cycle. See section 2.2 for details on the changes in the
formulation due to the inclusion of weak interactions.

Adopting a 3+1 space-time decomposition and the CFC approximation for the
spatial component (Wilson et al., 1996), the metric can be expressed as

ds2 = (−α2 + βiβ
i)dt2 + 2βidx

idt + ψ4δijdx
idxj, (2.10)

where ψ is the so-called conformal factor and δij the Kronecker delta. The metric
potentials α and β, are the lapse function and the shift vector, respectively (Alcu-
bierre, 2008). By adopting the Maximal Slicing gauge condition, ∂tK = K = 0, the
Einstein equations can be written as,

4ψ = −2πψ5E − 1

8
ψ5KijK

ij, (2.11)

4(αψ) = 2παψ5(E + 2S) +
7

8
αψ5KijK

ij, (2.12)

4βi +
1

3
∂i∂jβ

j = 16παρWûi + 2ψ10H ij∂j

(
α

ψ6

)
≡ Sβ. (2.13)

Here E and S are defined respectively as E = ρhW 2−P and S = ρh(W 2−1) + 3P .
The extrinsic curvature, Kij, can be calculated from the metric potentials as,

Kij =
ψ4

2α

(
δil∂jβ

l + δjl∂iβ
l − 2

3
δij∂kβ

k

)
. (2.14)

We discretize the Einstein equations on an overlaid 3D Cartesian grid spanning the
size of the binary, and employ a multipole expansion up to second order as an outer
boundary condition (Oechslin et al., 2002).

The advantage of our formulation in comparison to a full GR formulation, is that
we just need to solve the initial value problem repeatedly, instead of dealing with the
issues which arise from attempting to solve a set of hyperbolic evolution equations,
while still capturing the essence of GR. The time evolution of the system is achieved
by mapping the matter distribution evolved by the SPH module onto the grid at the
end of each time-step, and then solving the elliptical metric equations (2.11,2.12 and
2.13), by iteration until convergence. The new metric potentials are subsequently
mapped back to the SPH particles characterizing the space-time in which matter
will evolve in the next RK step.

Since the CFC formulation does not take into account gravitational radiation, a
gravitational wave back-reaction scheme needs to be included in order to be able
to simulate the merger. It is done in a Post-Newtonian framework as described in
Oechslin et al. (2007).

In order to obtain the initial data for our simulations, we first create two NS by
solving the Tolman-Oppenheimer-Volkov (TOV) equations and put them on orbit
around each other with a test angular velocity. We assume both stars to be irro-
tational on the basis that delay time since the last SN is enough for the NSs to
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have spun down, so their angular velocity is negligible in comparison to the orbital
velocity. The initial separation is chosen to ensure several orbits before the merger.
We then relax the system by employing a version of our code which does not include
the GW back-reaction, modifying the orbital angular velocities of the stars until a
quasi-stable circular orbit is achieved. We also relax the SPH particles by means of
a damping force.

The results shown in this work employed approximately 350000 particles to resolve
the NS binary and 0.7 km resolution for the metric grid.

2.2. Neutrino interactions with ILEAS in CFC
relativistic hydrodynamics

We present a novel neutrino leakage scheme, ILEAS, that is capable of reproduc-
ing/capturing the fundamental aspects of the neutrino physics described by more
sophisticated transport schemes at lower computational cost. The scheme calculates
the energy and lepton number changes caused by weak interactions of three neutrino
species: electron neutrinos, νe, electron antineutrinos, ν̄e, and heavy lepton neutri-
nos, νx (which include µ and τ neutrinos and their antiparticles). Neutrinos are
considered to be mass-less because their relevant mean energies are of order MeV,
orders of magnitude larger than their rest mass (¡1eV). Neutrino flavour oscillations
are ignored in our treatment. The full scheme is composed of three major modules
which model different aspects of the transport of neutrinos, summarized in figure
2.1: the leakage, the equilibration and the absorption modules. The leakage unit
estimates the local number and energy loss rates of neutrinos which ‘leak’ out of
the system, as an interpolation between trapping and free streaming conditions. At
high optical depths, neutrinos of all species are in equilibrium with matter, which
we account for explicitly with our equilibration unit. This effect is ignored in most
leakage schemes with few recent exceptions (Sekiguchi, 2010; Sekiguchi et al., 2011a;
Perego et al., 2016), but was used as initial conditions for nuclear network calcu-
lations (Goriely et al., 2015). Finally, the absorption module computes the energy
and number deposition rates due to interactions of the escaping neutrinos with the
optically thin material, by means of a simple ray tracing algorithm.

The leakage and absorption modules provide the neutrino cooling rates, Q−νi , and
heating rates, Q+

νi
, respectively, for all three neutrino species. The total energy

source term, which enters the hydrodynamical evolution equations described in sec-
tion 2.1 (equations (2.8),(2.9)), can be calculated from them as,

Qtot =
∑
i=νe,ν̄e

Q+
νi
−

∑
i=νe,ν̄e,νx

Q−νi . (2.15)

Similarly, the lepton change rates, R−νi and R+
νi

can be combined in the total (electron
flavour) lepton change rate as,

Rtot = R+
νe −R

+
ν̄e −R

−
νe +R−ν̄e . (2.16)
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Figure 2.1.: Elements of the different modules which compose our ILEAS
scheme (leakage, equilibration and absorption) and their primary
interdependences.

Details for the calculation of the rates will be discussed in sections 2.3 and 2.4.

In the equilibration module, we treat the regions where neutrinos are trapped and
in β-equilibrium with the medium in a specific way by redefining the specific energy
density, ε, pressure, P , and specific enthalpy, H, to include the contributions from
the combined fluid of matter plus trapped neutrinos. This means, that in order to
close the set of evolution equations in those regions, we need to build an additional
set of EoS tables which also incorporates the contributions from the neutrinos.

Without the inclusion of weak interactions, the net electron fraction, Ye, is just
advected with the fluid (dYe/dt = 0). The leakage and absorption modules, however,
provide a source term, Rtot, as defined in equation (2.16), which enters the evolution
equation of Ye,

d

dt
Ye =

Rtotα

AρW
. (2.17)

To model the trapping conditions, we advect the trapped νe and ν̄e lepton fractions
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(equation (2.48)) in addition to the Ye,

d

dt
Y trap
νe = 0, (2.18)

d

dt
Y trap
ν̄e = 0. (2.19)

The final goal of this procedure, is to obtain an updated trapped lepton fraction at
the end of every time-step, defined as,

Ylep = Ye + Y trap
νe − Y trap

ν̄e . (2.20)

We can then use this Ylep in an equilibration step to recover the new equilibrium
values for Ye, Yνe and Yν̄e . This requires the construction of a set of EoS tables
which serve the inversion of f(ρ, ε, Y trap

lep ) to obtain Ye. We will expand the details
on the equilibration module in section 2.5.

We calculate the weak interactions on a 3D Cartesian grid instead of on SPH
particles, which requires the mapping of the evolved thermodynamical quantities
(ρ, T and Ye) and metric potentials (α and ψ) form SPH to the grid, and the
neutrino source terms back to the particles. Additionally, we map the optical depth
from the 3D grid onto the SPH particles, in order to determine their equilibration
status. Appendix D briefly describes the rendering procedure. The main reason why
we decided to implement ILEAS on a 3D Cartesian grid instead of SPH, is because
we were interested in assessing its performance on snapshots of simulations which
included more sophisticated transport schemes. This required either to map the
original data from such grid-based transport simulations on SPH and then relax the
system, or simply employ a grid-based scheme. To avoid the complications which
would arise by the relaxation, and to minimize unavoidable transients, we stuck to
the second option. Additionally, the rendering on a grid eases possible temperature
spikes present in the SPH particles, which is a known caveat of the formalism.

For our NS-NS merger simulations we take 0.7 km grid resolution for the leakage
module as sufficiently accurate for our purposes, while still maintaining an accept-
able computational cost. This grid covers two times the initial orbital separation of
the two NS, to ensure a sufficient coverage of the merger remnant.

2.3. The neutrino leakage scheme

The leakage part of our code is based on the archetypical leakage scheme from
Ruffert et al. (1996). The essence of the model consists in the evaluation of the local
effective neutrino production rates,

R−νi ≡ Rνiγ
eff
νi,num, (2.21)

and
Q−νi ≡ Qνiγ

eff
νi,en, (2.22)
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where Rνi and Qνi are the local neutrino production rates for number and energy re-
spectively, as defined in equations (B.33) and (B.34). γeff

νi,num and γeff
νi,en are obtained

by means of an interpolation between the relevant time-scales in the diffusion (opti-
cally thick), tdiff

νi
(see equations 2.37 and 2.38), and free streaming (optically thin),

tprod
νi

(see equations 2.30 and 2.31), regimes:

γeff
νi
≡
(

1 +
tdiff
νi

tprod
νi

)−1

. (2.23)

Although energy dependent leakage schemes have been developed and successfully
used, a grey approximation offers advantages in connection to our treatment of
the equilibration regime, while keeping the scheme at a minimum with respect to
computational cost, especially in the absorption module. Therefore, we employ
spectrally averaged/integrated quantities for our calculations1 (see appendix B for
details). We do, however, retain the energy dependence in the calculation of the
diffusion time-scale as will be explained in section 2.3.1.

We assume the neutrino spectrum to follow a Fermi-Dirac distribution with matter
temperature, T , expressed in energy units,

f(ε;T, ηνi) =
1

1 + e(ε/T−ηνi )
, (2.24)

for neutrinos with energy ε. The neutrino degeneracy parameter, ηνi = µνi/T ,
(with µνi being the neutrino chemical potential) is prescribed as an interpolation of
the equilibrium degeneracy, ηeq

νi
, at high optical depth and a vanishing value at low

optical depth:

ηνi = ηeq
νi

(1− e−τνi ). (2.25)

The equilibrium degeneracy of electron neutrinos obeys

ηeq
νe = ηe + ηp − ηn −Q/T, (2.26)

where ηe is the electron degeneracy (including rest mass), ηp and ηn are the proton
and neutron degeneracies (without rest mass) and Q = mnc

2 −mpc
2 = 1.2935MeV

is the nucleon rest-mass energy difference. Electron antineutrinos are assumed to
have an equilibrium degeneracy, ηeq

ν̄e = −ηeq
νe , whereas for heavy lepton neutrinos it

is considered to be zero, ηνx = 0. Ensuring the correct limit for ηνi at low optical
depth is essential when using microphysical EoS, in order to avoid an undesirable
behaviour of the analytical solutions of the Fermi integrals and their ratios. In the
semitransparent regime, however, leakage schemes can only approximate ηνi , in the
case of ILEAS via an interpolation, which can have a non-negligible impact on the
neutrino luminosities in comparison to transport schemes.

1Denoted with an over-bar, when susceptible to confusion with their energy dependent counter-
parts.
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Table 2.1.: Neutrino interactions implemented in our scheme. Appendix B provides
the formulation employed for each reaction.

Name Interaction
ν

species

β-react. for νe p+ e− ↔ n+ νe νe
β-react. for ν̄e n+ e+ ↔ p+ ν̄e ν̄e
e−e+ annihil. e− + e+ → νi + ν̄i νe, ν̄e & νx
Plasmon decay γtrans → νi + ν̄i νe, ν̄e & νx
N-N brems. p+ n→ n+ p+ νi + ν̄i νx
Nucleon sct. N + νi → N + νi νe, ν̄e & νx
α part. sct. α + νi → α + νi νe, ν̄e & νx
Nuclei sct. (A,Z) + νi → (A,Z) + νi νe, ν̄e & νx

In equation (2.25), τνi is the optical depth for neutrino species νi, estimated as
the minimum optical depth calculated in the six Cartesian directions (±x, ±y, ±z)
as

τνi =

∫ ∞
r

κ̄j=1
νi

(r′)dr′. (2.27)

Here the total opacity is defined as in equation (B.19). We consider as opacity
sources the absorption of electron neutrinos and electron antineutrinos on neutrons
and protons, respectively, the absorption of νe on heavy-nuclei, and the scattering
of all neutrino species on nucleons, alpha particles and heavy-nuclei. We employ the
same absorption opacities as in Ruffert et al. (1996), with the additional inclusion
of stimulated absorption2 (neutrino blocking) and nucleon rest mass corrections.
The scattering opacities are also taken from the same source but with the nucleon
blocking factors from Mezzacappa and Bruenn (1993) (see appendix B.2 for details).
Contrary to Ruffert et al. (1996), we do not assume matter to be fully dissociated
and employ the nucleon number fractions from the EoS instead, in the computation
of the nucleon blocking factors. Since ηνi are necessary for the calculation of the
opacities, one iteration step is performed assuming that τνi is a function of the
density, ρ. We find that there is no need for multiple iterations, as the results
converge very quickly.

The description of the nucleon blocking factors, Ynn, appearing in the absorp-
tion opacities and production rates (appendix B) are implemented following Bruenn
(1985), assuming the nucleons are ideal non-relativistic Fermi gases. Due to this
approximation, using the nucleon chemical potentials from modern EoS’s is incon-
sistent, because the corresponding chemical potentials contain corrections due to
nucleon self-interaction potentials in a dense medium. In fact, it causes these block-
ing factors to become unphysical (either negative or bigger than unity) and unable

2Only in the calculation of tdiff
νi .
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to reproduce the non-degenerate limit. In order to avoid this undesirable behaviour,
we calculate the chemical potentials by inverting the expressions for the number den-
sities of free Fermi gasses (see Rampp 2000), which we use only for the computation
of the nucleon blocking factors.

With the knowledge of the neutrino degeneracies, we can calculate the neutrino
production rates, Rνi and Qνi , for number and energy respectively (see appendix B).
The neutrino interactions included in this work are summarized in table 2.1. Besides
the production rates employed in Ruffert et al. (1996), we include nucleon-nucleon
bremsstrahlung as a source for heavy-lepton neutrinos, which is one of the dominant
production channels at high densities, and heavy-nuclei νe emission3.

At this stage, it is useful to define the energy dependent neutrino number and
energy density,

Ej
νi

(ε) ≡ gνi
4π

(hc)3
ε2+jf(ε;T, ηνi), (2.28)

where j = 0 is for the number and j = 1 for the energy density. Integrated over the
neutrino spectrum, they become

Ēj
νi
≡ gνi

4π

(hc)3
T 3+jF2+j(ηνi), (2.29)

where Fk =
∫∞

0
xkf(x; ηνi)dx are the relativistic Fermi integrals of order k and the

multiplicity factor, gνi , is unity for νe and ν̄e and 4 for νx. Now we can calculate the
production time-scales for number and energy, tprod

νi
, as4

tprod
νi,num =

Ēj=0
νi

Rνi

, (2.30)

tprod
νi,en =

Ēj=1
νi

Qνi

. (2.31)

2.3.1. The diffusion time-scale

At high optical depth, neutrinos are trapped and slowly diffuse through the medium
on a much longer time-scale than they are produced. A simple estimate of this time-
scale is obtained when considering a random walk. The average distance a particle
can travel in an optically thick medium can be approximated as

d =
√
Nλ, (2.32)

where N is the number of times a particle scatters and λ the mean free path between
scatterings. Assuming neutrinos travel at the speed of light, one can estimate the
diffusion time-scale as

tdiff
νi
∼ N

λ

c
=

d2

λc
. (2.33)

3See appendix B.3 for details on the implementation of the bremsstrahlung and nuclei emission
production rates.

4Note the change in the notation with respect to Ruffert et al. (1996).
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Figure 2.2.: Components of the leakage module and their mutual interdependences.

A similar expression can be obtained from the energy diffusion equation (zeroth-
order moment of the transport equation), ignoring neutrino source terms and con-
sidering a static background medium.

∂Eνi(ε)

∂t
= −∇·F νi(ε), (2.34)

with E(ε) as defined in the previous section. The neutrino flux F νi(ε) can be ob-
tained from Fick’s law as

F νi(ε) =
−c

3κνi(ε)
∇Eνi(ε). (2.35)

The factor 3 in the diffusion coefficient arises from the assumption of an isotropic
neutrino distribution (see Dimitri Mihalas 1984). Now by a simple dimensional
analysis, using κνi = 1/λνi , one gets

Eνi
tdiff
νi

=
cλνiEνi

3d2
, (2.36)

easily recovering the result of equation (2.33).
Previous leakage schemes made different assumptions about the length-scale d in

order to derive a numerical value for tdiff
νi

, any of which gives a good order of mag-
nitude approximation of neutrino losses. In appendix A, we analyse in detail some
of these prescriptions and compare the corresponding results with those from more
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sophisticated transport calculations, as well as those obtained in the present work.
There, one can see that all such leakage approximations perform poorly when one
is interested in reproducing the local neutrino losses of detailed transport calcula-
tions: most neutrinos are radiated from a narrow region close to the neutrinosphere,
defined as the radius where the optical depth is τνi = 2/3, and hardly any from the
optically thick region in the deeper interior. In addition, the total luminosities can
exceed those of a transport calculation by a factor of 2 or more. The reason for
this behaviour is the simplistic dimensional analysis used to estimate the time-scale,
which leads to a steep decrease of the time-scale with radius, inversely proportional
to the mean free path, preventing the diffusion of neutrinos out from high optical
depth and favouring those produced near the NS surface.

To obtain a more accurate treatment, we evaluate numerically the spatial deriva-
tives in equations (2.34) and (2.35), using five-point stencils, in order to recover
the divergence of the flux. Since neutrinos with different energies diffuse at differ-
ent speeds, which leads to a significant impact on the spectrally averaged diffusion
time-scale in the semitransparent regime, we retain the energy dependence in the
calculation of the flux. Integration to obtain the diffusion time-scale yields,

tdiff
νi,num =

Ēj=0
νi

∇·
∫∞

0
−c

3κνi (ε)
Λj=0
νi (ε)∇Ej=0

νi (ε)dε
, (2.37)

tdiff
νi,en =

Ēj=1
νi

∇·
∫∞

0
−c

3κνi (ε)
Λj=1
νi (ε)∇Ej=1

νi (ε)dε
, (2.38)

for number and energy diffusion respectively. Due to the inclusion of rest mass
corrections in the computation of the opacity (see equations (B.2) and (B.3)), we can
not rely on an analytical solution of the Fermi integrals. For the energy integration
we employ 15 energy bins in a logarithmic spacing up to 400 MeV (with bin limits
at 5.0, 6.4, 8.4, 11.2, 20.7, 39.2, 54.3, 75.5, 105.2, 146.7, 204.8, 286.1 and 400.0
MeV), which is the same grid employed by the M1 scheme ALCAR in the models
discussed for comparison in section 3.

It is well known, that in the (semi)transparent region diffusion becomes accusal
because the flux diverges as λ = 1/κ → ∞. In order to ensure the correct limits,
we employ a flux limiter, Λνi(ε), as successfully used in flux limited diffusion (FLD)
schemes (Wilson et al., 1975; Levermore and Pomraning, 1981) schemes. Because the
differences between different flux limiters is effectively small, we use the canonical
expression suggested by Wilson et al. (1975), retaining the energy dependence in
order to ensure causality for each of the energy bins,

Λj
νi

(ε) =

(
1 +

1

3κνi(ε)

|∇Ej
νi

(ε)|
Ej
νi(ε)

)−1

. (2.39)

The divergence of the flux, in equations (2.37) and (2.38), gives us information
about the nature of a given region, either as a source from which neutrinos diffuse
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out (∇·F νi(ε) > 0) or as a sink where neutrinos flow to (∇·F νi(ε) < 0). Because
the leakage model is constructed to approximate the local neutrino losses, it can
not directly deal with sinks, which would translate to negative diffusion time-scales.
Sinks represent regions where more neutrinos diffuse to a volume than out of it.
Therefore, no net neutrino losses occur in such regions and, in concordance, we
assume the diffusion time-scale to be infinite, quenching all local neutrino losses. At
low optical depths, however, this approach does not make sense because radiation
does not obey the physics of diffusion, but the free streaming limit, with tdiff

νi
< tprod

νi
,

should be recovered. Accordingly, we set tdiff
νi

= ∞ only inside the neutrinosphere,
where the optical depth is τνi > 2/3 and take its absolute value outside (which will
always be smaller than tprod

νi
). In the same spirit, small regions (less than a few grid

cells) bounded by two sinks are treated as sinks as well, as neutrinos will diffuse to
the neighbouring sinks and remain trapped. This final correction turns out to be
necessary to avoid overestimated neutrino emission near the neutrinosphere in some
of the PNS snapshots at later times.

Including relativistic corrections (Shibata et al., 2011) for an asymptotically flat
space-time (ds2 = −α2dt2 +ψ4δijdx, where α is the lapse function, ψ the conformal
factor and we take the shift vector, β, to be negligible for simplicity), the diffusion
time-scale becomes:

tdiff
νi,j

=
ψ2Ēj

νi

∇·
(
αψ2

∫∞
0

−c
3κνi (ε)

Λj
νi(ε)∇Ej

νi(ε)dε
) , (2.40)

for j = 0, 1.

2.4. Neutrino absorption in optically thin matter

At low optical depths, neutrinos decouple from matter and essentially stream away
at the speed of light. However, before free streaming is reached, a significant fraction
of these neutrinos can be re-absorbed. This neutrino energy and number deposition
in semitransparent regions is crucial for many astrophysical phenomena, such as the
shock revival in SNe, the ejecta composition in CO mergers or neutrino-driven winds
from the remnants of either event. Any attempt to reliably simulate any of those
scenarios, therefore, requires to account for neutrino absorption. The ‘standard’
leakage approach only serves the purpose of estimating neutrino losses, but does
not take care of re-absorption. Therefore, a complimentary absorption scheme is
needed. We present a description here based on the 1D formulation of radiation
attenuation by Janka (2001), generalized to any 3D geometry by means of a simple
ray tracing algorithm.

We start with the premise that are neutrinos produced in the centre of a given
cell and approximately escape in the direction of the gradient of the neutrino energy
density, −∇Ēj=1

νi
, following a straight ray. This is a fair assumption in spherical

symmetry, and although in complex geometries neutrinos will scatter and change
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direction along their way out, it is a reasonable first order approximation5. We use a
3D slab formalism (Kay and Kajiya, 1986) to find the cells of our 3D Cartesian grid
crossed by a given ray and estimate the deposited energy and number as a function
of the distance traversed in the cell, reducing the escaping luminosity accordingly.

According to equation (72) of Janka (2001), the luminosity is reduced along a
path s due to absorption as given by

Lνi(s) = Lνi(s0)exp

(
−
∫ s

s0

κ̄a
νi

〈χνi〉
ds′
)
, (2.41)

where 〈χνi〉 is the average flux factor, defined as a ratio of the neutrino flux and
energy density times the speed of light. In leakage schemes, however, there is no
notion of neutrino flux outside the diffusive regime, and therefore, and approximate
expression is required. In free streaming conditions, the average neutrino flux factor,
〈χνi〉, approaches the value of 1 as the radiation becomes forward peaked far away
from the source, while at high optical depths 〈χνi〉 vanishes. Its exact behaviour
between both extremes, however, remains strongly dependent on the geometry of
the neutrino emitting object. In the case of a spherical cooling PNS (e.g. Janka
1991), 〈χνi〉 is known to be about 1/4 at the neutrinosphere and we adopt for
such a case the interpolation suggested by O’Connor and Ott (2010), 〈χνi〉−1

PNS =
4.275τνi+1.15. For more complex geometries, such as a BH-torus system or a binary
NS merger, more sophisticated models for the streaming factor, which encode the
geometric effects, would be necessary. However, we take the aforementioned linear
interpolation to be sufficiently good for the present work, as shown in the tested
scenarios in section 3.

The luminosity produced by a cell, ∆Lνi , is generally calculated in leakage schemes
as

∆Lνi ≈ Q−νi(ψ
2V )cell,em, (2.42)

including metric corrections to the volume. We also include gravitational redshift
on the luminosities between the emitting and absorbing cells following O’Connor
and Ott (2010), but we omit the Doppler effect for simplicity.

∆Lνi(s2) = ∆Lνi(s1)
α(s1)2

α(s2)2
, (2.43)

for neutrinos that are emitted at position s1 and absorbed at position s2 in the fluid
rest frame.

Combining equations (2.41) and (2.42), we obtain the absorption rate, Q+
νi

, from
the superposition of all the rays crossing a given cell, and for homogeneous conditions

5Perego et al. (2014b,a) spent significant effort on designing recipes to construct radiation paths
for their ray-tracing treatment. We refrain from adding complications to our code in this aspect,
first to save computer time, second because our simple scheme works well in near-surface regions
that dominate the neutrino emission and absorption (as proven in practise by our test results),
and third because any complicated path definition will still remain an approximation whose
general validity cannot be guaranteed without verification by comparison to detailed transport.
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in cells, as,

Q+
νi

= γeff
νi,en·

∑
rays

∆Lνi(s
−)

(ψ2V )cell,abs

·[
1− exp

(−κ̄a
νi

(s+ − s−)

〈χνi〉

)]
, (2.44)

where s− and s+ delimit the path the ray travels inside the cell. The factor γeff
νi,en

ensures that the absorption is only applied in the optically thin regime (see (2.23)
for definition of γeff

νi,en). The mean absorption opacity of a given cell, κ̄a
νi

, is cal-
culated as in equations (B.13) and (B.14) with the corresponding spectrum of the
absorbed neutrinos. In the framework of the leakage scheme, neutrinos are assumed
to instantaneously leak out of the system, which would imply that they carry their
production spectrum along the ray. Physically, however, neutrinos slowly diffuse
out of the hot NS, thermalizing with the medium in the process, until the optical
depth becomes small enough for them to freely stream away. In order to mimic this
behaviour, we assume that neutrinos to be treated by absorption possess a Fermi dis-
tribution with the local matter temperature inside of the neutrinosphere (τνi = 2/3),
where they decouple from matter and carry their neutrinospheric spectrum along
the rest of their ray path. Neutrinos produced outside the neutrinosphere advect
their production spectrum along the ray.

As in other grey absorption schemes (e.g. O’Connor and Ott 2010), we then
estimate the lepton deposition as,

R+
νi

=
Q+
νi

ε̄νi
. (2.45)

Consistent with our assumption for the neutrino absorption spectrum, we calcu-
late the neutrino mean energy, ε̄νi , of neutrinos being absorbed in β-processes by
considering Fermi spectra:

ε̄νi = T
F5(ηνi)

F4(ηνi)

α(s1)

α(s2)
, (2.46)

where the matter temperature and the neutrino degeneracies are taken at the last
cell crossed by the ray with optical depth τνi > 2/3, or, if produced outside the
neutrinosphere, at the production cell. The redshift is applied between these cells
of origin and the absorbing cells.

We employ a Gaussian smoothing filter with standard deviation σ = 1 over the
absorption rates. This ensures the conservation of the total absorption rates and
mitigates the drawbacks of employing a limited number of rays in a ray-tracing
approach. Thus smoothing out high local rates over neighbouring points moderately
boosts the computational performance of the scheme.
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Figure 2.3.: Diagram illustrating the functioning of the neutrino equilibration treat-
ment. We use three overlapping equilibration regions, one for each neu-
trino species.

2.5. Neutrino equilibration in optically thick matter

At the typical densities and temperatures achieved during NS mergers or SNe, a part
of the neutrinos is expected to remain trapped in optically thick conditions. Under
such circumstances, they will achieve local beta equilibrium with the surrounding
matter within a very short time, carrying lepton number, and contributing to the
energy and pressure of the stellar medium.

In order to account for this important effect, we developed an equilibration scheme
which ensures that the fluid remains in beta equilibrium with the trapped neutrinos
in the optically thick regime, by two measures. First, we employ a set of EoS ta-
bles which include the contribution of the trapped neutrinos to the specific internal
energy and pressure of the medium, to be used for the hydrodynamical evolution of
the system. Second, we perform an equilibration step after each hydro step, ‘reshuf-
fling’ the trapped leptons and recovering the equilibrium values of the corresponding
thermodynamical quantities. This last step requires the advection of the total lep-
ton fraction Ylep, which can be expressed as the individual neutrino fractions, Yνi ,
together with the electron fraction, Ye, as we described in section 2.2 (see equations
2.17-2.19 there).

We treat each of the three different neutrino species independently, describing
overlapping equilibration regions, which requires us to build an additional EoS table
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Table 2.2.: Listing of the neutrino equilibration regions included in ILEAS, enu-
merating the trapped neutrino species in each of them.

Equilibration re-
gion

Trapped ν
species

1 νe, ν̄e, νx
2 νe, ν̄e
3 νe, νx
4 ν̄e, νx
5 νe
6 ν̄e
7 νx
8 none

for each possible combination of trapped species. This amounts to a total of eight
different regions, listed in table 2.2. Even though we opted for the most general
description for the neutrino equilibration regions, it is also possible to reduce the
number of equilibration zones by assuming a hierarchy in the maximum densities for
which neutrinos from the different species remain trapped. In most relevant astro-
physical scenarios, νx will decouple from matter at higher densities than the other
two species, followed by ν̄e, and finally νe at lower densities. Therefore, a simpler
equilibration treatment could be achieved with only the inclusion of regions 1, 2, 5,
and 8, yet capturing all the relevant physical effects under most circumstances.

Our new EoS tables will provide all the relevant thermodynamical quantities as
a function of the density, ρ, the fluid specific internal energy (including the corre-
sponding trapped neutrino contribution), ε, and the trapped lepton fraction, Ylep,
defined as in equation (2.20), with only the contribution of the trapped neutrinos.
We remind the reader that only νe and ν̄e will contribute to the trapped lepton
fraction in their respective equilibration regions, as νx are produced in pairs and do
not carry electron flavour. The thermodynamical quantities we will need to obtain
from the EoS call are

• the fluid pressure (which also includes the contributions of trapped neutrinos),
P ,

• the temperature, T ,

• the chemical potentials, µn, µp and µe,

• the individual lepton fractions, Ye, Yνe and Yν̄e

• and the individual neutrino specific energy contributions, ενe ,εν̄e and ενx .
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These two last sets of values, the individual lepton fractions and the individual
neutrino specific energies, are relevant for the treatment of the boundaries of each
equilibration region, as will be detailed below. Is this line really here? Sadly, no one
will ever notice.

The neutrino contribution to the specific internal energy of the fluid can be calcu-
lated from the neutrino equilibrium energy density of a given neutrino species, Ē1

νi

(equation (2.29), j=1), as,

ενi =
Ē1
νi

ρc2
, (2.47)

assuming all quantities are expressed in cgs units. Similarly, the neutrino fractions,
Yνi , can be obtained from the neutrino equilibrium number density, Ē0

νi
(equation

(2.29), j=0), as,

Yνi =
Ē0
νi

ρA
, (2.48)

where A is Avogadro’s constant. The equilibrium energy density contribution of
νxν̄x pairs is computed by the analytical expression from Bludman and van Riper
(1978), whereas for νe and ν̄e we analytically approximate the Fermi integrals in
equation (2.29) (with j = 0 for number and j = 1 for energy) following Takahashi
et al. (1978). Then, one can calculate the pressure of each neutrino species as,

Pνi =
1

3
Ē1
νi
. (2.49)

We apply our equilibration treatment for a given neutrino species, νi, down to
optical depths τνi ≥ 1. At lower optical depths, the deviations from the equilibrium
energy density become significant (¿20 per cent), and thus the assumption of beta
equilibrium is not suitable.

Each equilibration region from table 2.2 employs a different EoS table, which
depends on the composition of matter in that region via Ylep and the fluid specific
internal energy, ε. During the dynamical evolution of a system, SPH particles or
grid cells will switch between the different equilibration regions. In order to ensure
energy conservation of material crossing these boundaries, we add or subtract from
that cell’s or particle’s ε, the corresponding neutrino contribution. This requires the
recovery of the neutrino specific energy component, ενi from the EoS tables at every
time step. Because outside of a given equilibration region, we assume that νi are
not in equilibrium with matter, we simply advect ενi , i.e. ενi is only updated inside
the νi equilibration region. Similarly, we advect the individual Yνi , not exclusively
in the corresponding trapping region, but in the whole domain (see equations (2.18)
and (2.19)). This advection serves the purpose of avoiding non-physical energy or
lepton losses by material oscillating around a given boundary. When matter flows
inside an equilibration region, its advected Yνi and ενi will contribute again to the
fluid’s total lepton fraction and specific internal energy, respectively. This boundary
treatment is sufficiently good under the assumption that material re-entering a given
regime, spent too little time outside to completely lose its neutrino content, which
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is likely to be the case. In figure 2.3 we summarize the equilibration module for a
given equilibration region.

2.6. Extraction of neutrino properties from ILEAS

It is often desirable to extract some relevant neutrino-related quantities from nu-
merical simulations, to be used for post-processing, in nucleosynthesis calculations
or to treat neutrino oscillations, to predict the detectability of a signal by neutrino
detectors or just for diagnostic. In the present section, we describe how we calculate
the neutrino luminosities and the neutrino mean energies in ILEAS.

Given the neutrino cooling and heating rates, the net neutrino luminosities as
seen by a Lagrangian observer can be written as

Len
νi

(xobs) =

∫
(Q−νi(x)−Q+

νi
(x))

α(x)2

α(xobs)2
ψ(x)2dV , (2.50)

for energy, and

Lnum
νi

(xobs) =

∫
(R−νi(x)−R+

νi
(x))

α(x)

α(xobs)
ψ(x)2dV , (2.51)

for number, where, x and xobs are the positions of the emitting cell and of the
observer respectively, and the integral runs over our grid domain. Trivially, for an
observer at rest at an infinite distance, α(xobs) = α(∞) = 1.

The natural way to estimate the neutrino mean energies in the leakage framework
is simply as the ratio of net energy and number luminosities,

〈εleak
νi
〉(xobs) =

Len
νi

(xobs)

Lnum
νi

(xobs)
. (2.52)

This approach, however, bears the same deficiencies mentioned earlier, ignoring the
thermalization of neutrinos produced at high optical depths on their way out of
the star. As detailed in section 2.4, in our absorption module we do not follow
this leakage ansatz, but instead work with the local neutrino spectra inside the
neutrinosphere, τνi > 2/3, and assume that neutrinos in the optically thin region
(τνi < 2/3) carry either their neutrinospheric spectra, if produced in the optically
thick region, or their production one.

In order to provide a more meaningful value for the neutrino mean energies, we
make the following approximations in a post processing step. First, we differentiate
the optically thick and optically thin regimes, as introduced earlier, separated by
the neutrinosphere at τνi = 2/3. The mean energy for neutrinos produced in the
optically thin regime is calculated in the fashion of leakage schemes, but accounting
independently for the absorption of energy and number as,

〈εthin
νi
〉(sobs) =

Q−νi(s1)exp
(
−
∫ s+
s−
κ̄a,en
νi

/〈χνi〉ds′
)
α(s1)

R−νi(s1)exp
(
−
∫ s+
s−
κ̄a,num
νi /〈χνi〉ds′

)
α(sobs)

(2.53)
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Here the spectrally averaged opacities for energy and number absorption, κ̄a,en
νi

and
κ̄a,num
νi

, are calculated as in equations (B.13) and (B.14) with the neutrino production
spectrum of the emitting cell. We remind the reader that s is the ray coordinate, as
used in section 2.4, and the ray origin, s1 corresponds to the Cartesian coordinate
x. Because we want to evaluate the mean energies outside of our domain, we
include the gravitational redshift from the neutrinosphere to an observer positioned
at sobs = xobs. Given the steep density distribution typical of the environments of
PNSs or HMNSs, it is a fairly accurate approximation that most neutrinos will be
re-absorbed near their emission location. In this spirit, we approximate the path in
the line integral in equation (2.53) by the total distance the ray would travel if it
crossed the whole production cell, which we consider as a proxy for the absorption
along the whole outgoing ray. Note that in the absorption module (section 2.4), we
only take the path from the centre to the edge of the cell for self absorption of a
production cell, but follow the whole paths of outgoing rays. Furthermore, we define
an absorption correction factor of the mean energy for neutrinos coming from inside
the neutrinosphere,

cabs =

 exp
(
−
∫ s+
s−
κ̄a,en
νi

/〈χνi〉ds′
)

exp
(
−
∫ s+
s−
κ̄a,num
νi /〈χνi〉ds′

)

τνi=2/3

. (2.54)

This correction factor is evaluated in all cells immediately adjacent to the neu-
trinosphere, using their local neutrino spectrum. Rays escaping from inside the
neutrinosphere which cross this cell, will then have their mean energies corrected by
means of cabs, representing the whole absorption outside the neutrinosphere. Each
ray produced in the optically thick regime will thus contribute to the final average
with a mean energy,

〈εthick
νi
〉(sobs) =

[
cabsT

F3(ηνi)

F2(ηνi)

]
τνi=2/3

·
α(sτνi=2/3)

α(sobs)
, (2.55)

calculated where the ray crosses the neutrinosphere, and including the aforemen-
tioned correction factor.

Finally, we obtain the total mean neutrino energy by means of a weighted average
of all rays, using the neutrino energy luminosities leaving the corresponding cells:
neutrinosphere for the optically thick rays and production for the optically thin,

〈εtot
νi
〉 =

∑
j|τνi>2/3

〈εthick
νi,j
〉·∆Lνi,j(s+)∑

j∈V
∆Lνi,j(s

+)
+

∑
j|τνi<2/3

〈εthin
νi,j
〉·∆Lνi,j(s+)∑

j∈V
∆Lνi,j(s

+)
(2.56)
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Here the summations in the numerator go over all rays j which are emitted from
cells inside (τνi > 2/3) or outside (τνi < 2/3) the neutrinosphere, and the one in the
denominator over the whole volume.
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3. Astrophysical test applications:
cooling PNS & BH-torus systems

3.1. Snapshot calculations of a cooling proto-neutron
star

In order to asses the quality of our new ILEAS code, we need to test it against
more sophisticated transport schemes and in different regimes. Given that our
ultimate goal is the application of ILEAS in the context of NS mergers, cooling
PNS’s present a relevant test scenario. At the explosion of a massive star in a SN,
its core contracts to high densities and temperatures, giving birth to a young NS.
The hot, dense interior of the newly formed PNS is a perfect representation of an
optically thick regime where the diffusion treatment can be tested. Additionally,
the star is surrounded by a less dense envelope, where absorption of the neutrinos
emitted from the NS’s surface will apply. In between, the transition region around
the neutrinosphere poses the most challenging conditions for treatments based on an
interpolation of diffusive and free streaming regimes, such as in our ILEAS method.

We apply our scheme to several snapshots from a hydrodynamical simulation per-
formed by Hüdepohl et al. (2010), who used the 1D PROMETHEUS-VERTEX
code1. We take the hydrodynamical and thermodynamical data at different times
post bounce from the model labelled Sr (reduced opacities), and map it to our 3D
Cartesian grid. The motivation behind the chosen model is the similarity of our
opacities and production reactions with the ones included in the original setup.
Figure 3.1 shows the density, temperature and electron fraction profiles of the cor-
responding snapshots.

For the sake of more detailed comparisons, we also employed the M1 scheme AL-
CAR (Just et al., 2015b) to calculate the neutrino luminosities from one of the snap-
shots (0.5 s). Starting the evolution from a previous timestep (0.4 s post-bounce) of
the VERTEX simulation and evolving it for 0.1 s, ALCAR was able to reproduce
the results of VERTEX with remarkable accuracy. We use this evolved ALCAR
background (at 0.5 s post-bounce) as well for our direct, detailed comparison of the
results obtained by ILEAS and ALCAR. The neutrino interactions employed by
both schemes for the tests are summarized in table 3.1. We must point out, that
the prescriptions for νx production rates (pair processes and bremsstrahlung) differ
between both codes, so a bigger disagreement is to be expected in the luminosities

1This cooling PNS is the remnant of a 8.8 M⊙(ZAMS) electron capture SN.
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Figure 3.1.: Hydrodynamical/thermodynamical profiles (density black, temperature
red and electron fraction blue) of the different PNS snapshots employed
in section 3.1. Post-bounce times of the profiles are specified in the left
lower corner of the panels.
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Table 3.1.: Neutrino interactions employed in section 3 for our tests with the ILEAS
code in comparison to ALCAR calculations.

Name Interaction
ν

species

β-react. for νe p+ e− ↔ n+ νe νe
β-react. for ν̄e n+ e+ ↔ p+ ν̄e ν̄e
e−e+ annihil. e− + e+ → νi + ν̄i νx
N-N brems. p+ n→ n+ p+ νi + ν̄i νx
Nucleon sct. N + νi → N + νi νe, ν̄e & νx

of these heavy-lepton neutrinos (see Rampp and Janka 2002 and appendix B for the
exact definitions of the rates employed by ALCAR and ILEAS, respectively). Fi-
nally, some differences will unavoidably arise from the fact that ILEAS is in essence
a grey scheme while ALCAR is fully energy dependent.

As a foreword to the comparison, it is important to note that there are still some
essential differences between ALCAR and the standard formulation of ILEAS in
the derivation of the neutrino production rates. The former calculates the rates
for β-production of νe and ν̄e from a formulation that ensures detailed balance,
based on blocking corrected absorption opacities, κ∗, defined in equations (B.2) and
(B.3), following Rampp and Janka (2002). On the other hand, ILEAS employs the
emissivity, jνi , defined as in equations (C.4) and (C.6) (Bruenn, 1985), to compute
the rates. In appendix C we show the derivation of the rates in both schemes, and
provide a detailed comparison of the effects of each prescription on the neutrino
luminosities. In order to show a more accurate comparison, ILEAS employs the
prescription of the β-production rates from ALCAR in the results shown in this
section, with the same energy binning described in section 2.3.1.

Figures 3.2 and 3.3 show the luminosity profiles of each neutrino species obtained
by ILEAS for the selected time snapshots from the VERTEX simulation, in com-
parison to the original transport results. In the bottom panels of figure 3.2 we
present the results obtained on the background evolved with ALCAR, where the
results obtained by both transport codes are also plotted for comparison. Note that
in this panel, for a better comparison with ALCAR, we do not include redshift in
the calculations with ILEAS. In order to obtain these results, we have relaxed the
background using ILEAS to adjust the temperature and electron fraction to their
new steady-state values. After a brief transient of a few ms, all quantities settle
into a quasi-stationary state. We will discuss the details of the scheme employed for
relaxation as well as the longer time evolution of one of these snapshots in section
3.3.

In all the tested snapshots, from 0.2 s to 1.5 s post bounce, ILEAS is able to
reproduce the transport results for νi and ν̄i with better than 10 per cent accuracy.
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The slightly bigger discrepancies for νx are very likely associated with the different
prescriptions of nucleon bremsstrahlung employed by the different codes.

The performance of ILEAS in the optically thick region is remarkable, especially
for the ALCAR background, in which both codes use exactly the same opaci-
ties. The good agreement arises from the prescription of our diffusion time-scale,
which is derived from an energy integration of the zeroth-order moment of the
transport equation. This effectively translates in a local source term calculated
as Q−νi ' −

∫∞
0
∇·F νidε, which, in the case of quasi-stationarity, ∂Eνi(ε)/∂t ∼ 0,

is essentially the same result as with ALCAR. As we approach the semitranspar-
ent region, however, the results start to differ slightly due to the deviations from
β-equilibrium of the neutrino spectrum, which we approximated by our interpola-
tion of the neutrino degeneracies (equation 2.25). This is one of the most delicate
regimes for our scheme, as the diffusion time-scale depends strongly on the neutrino
spectrum, which cannot be properly determined by a leakage method. Finally, in
the optically thin regime, our 3D absorption model successfully captures the essen-
tial features of energy and lepton deposition in the PNS envelope. This is visible
from a very good agreement of the Ye(r) profiles obtained with ILEAS and AL-
CAR/VERTEX, respectively (figure 3.4). In section 3.2 we will discuss in further
detail the features of our 3D absorption scheme, in the context of a BH-torus system.

In the profiles of ν̄i and νx, negative luminosities can be observed at around 10
km for the transport schemes. They are the result of a net neutrino flux directed
towards the centre of the PNS, i.e. neutrinos in this region diffuse inward. Because
ILEAS is unable to reproduce such an effect by construction, the diffusion time-
scale in those regions, which would become negative, is set to infinity, preventing
any leak of neutrinos out of the star2.

It is interesting to note the small differences in the relaxed electron fraction profile.
Figure 3.4 shows the original profile from the 0.5 s PNS snapshot evolved by VER-
TEX in comparison with the profiles obtained by ALCAR, and the one further
relaxed using ILEAS. It catches the eye that there is a consistent shift of the low
Ye region, corresponding to the PNS surface, to slightly larger radii for the ILEAS
model. In fact, this effect is generic because of the inability of any leakage scheme to
accurately model the semitransparent regime, regardless of the absorption or equi-
libration parts, as can be seen by our test results obtained with other definitions
of the diffusion time-scale, summarized in appendix A. Tentatively, a better handle
on the neutrino spectrum out of equilibrium could mitigate this effect. However,
we emphasize that our implementation of ILEAS with its novel definition of the
diffusion timescale is performing extremely well compared to results shown from
other schemes used in the literature (Perego et al., 2016).

Table 3.2 lists a summary of the luminosities and mean energies of the three neu-
trino species, as seen by a local observer in the rest frame of the neutrino source at
the edge of our grid, ∼ 100km, obtained by ILEAS for all our tested conditions, in
comparison to the original results obtained by the corresponding transport codes.

2See section 2.3.1 for details on the treatment of negative time-scales.

48



 0

 5

 10

 15

 20

 25

0.2s

 νe

 0

 5

 10

 15

 20

 25

0.2s

 νe

0.2s 0.2s

 ν‾ e

0.2s 0.2s

 ν‾ e

0.2s 0.2s 0.2s

 νx

0.2s 0.2s 0.2s

 νx

-2

 0

 2

 4

 6

 8

 10

 12

 14

0.2s 0.2s 0.2s

0.3s

-2

 0

 2

 4

 6

 8

 10

 12

 14

0.2s 0.2s 0.2s

0.3s

0.2s 0.2s 0.2s

0.3s 0.3s

0.2s 0.2s 0.2s

0.3s 0.3s

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

-2

 0

 2

 4

 6

 8

 10

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s

L
u

m
in

o
s
it
y
[1

0
5

1
 e

rg
/s

]

-2

 0

 2

 4

 6

 8

 10

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s

L
u

m
in

o
s
it
y
[1

0
5

1
 e

rg
/s

]

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

-2

 0

 2

 4

 6

 8

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift)

VERTEX

-2

 0

 2

 4

 6

 8

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift)

VERTEX

ALCAR

-2

 0

 2

 4

 6

 8

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift)

VERTEX

ALCAR

ILEAS

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

-2

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

-2

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

-2

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

 0  10  20  30  40  50

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

 0  10  20  30  40  50

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

 0  10  20  30  40  50

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

 0  10  20  30  40  50  60

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

 0  10  20  30  40  50  60

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

 0  10  20  30  40  50  60

0.2s 0.2s 0.2s

0.3s 0.3s 0.3s

0.4s 0.4s 0.4s

0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift) 0.5s (VERTEX bg., ILEAS incl. redshift)

0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift) 0.5s (ALCAR bg., ILEAS wo. redshift)

r[km]

Figure 3.2.: Integrated neutrino luminosity profiles obtained by ILEAS on a sta-
tionary background for νe, ν̄e and νx, as measured in the local frame at
each radius r, compared to the results of more sophisticated transport
schemes. Snapshots are taken from the results of PNS cooling simula-
tions by Hüdepohl et al. (2010) at different post-bounce times, which are
noted in the lower right corner of each panel. The temperature and Ye
profiles were relaxed for 5 ms with ILEAS to obtain stationary results.
The ‘transport (VERTEX)’ results shown are the original luminosities
from the source model, and for the case at 0.5 s, we also show the results
obtained by the moment scheme ALCAR (Just et al., 2015b) on the
same snapshot. The bottom row of plots shows the results of ILEAS
obtained on the background adopted from ALCAR instead of directly
using the output of the VERTEX simulation. We caution the reader
that the ALCAR luminosities, as well as the ones obtained by ILEAS
on the ALCAR background (bottom row), do not include gravitational
redshift.
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Figure 3.3.: Integrated neutrino luminosity profiles obtained by ILEAS on a sta-
tionary background for νe, ν̄e and νx, as measured in the local frame at
each radius r, compared to the results of more sophisticated transport
schemes. Snapshots are taken from the results of PNS cooling simula-
tions by Hüdepohl et al. (2010) at different post-bounce times, which are
noted in the lower right corner of each panel. The temperature and Ye
profiles were relaxed for 5 ms with ILEAS to obtain stationary results.
The ‘transport (VERTEX)’ results shown are the original luminosities
from the source model.
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Figure 3.4.: Electron fraction profile after 5 ms of relaxation obtained by ILEAS ap-
plied to the 0.5 s PNS snapshot from ALCAR. We show for comparison
also, the Ye profiles of the VERTEX and ALCAR simulations.

All ILEAS results are extracted after a few milliseconds of relaxation, employing the
formulations described in section 2.6. As mentioned earlier, the neutrino luminosities
obtained by ILEAS for all tested PNS snapshots provide a very good approxima-
tion of the luminosities obtained by the transport calculations. The mean neutrino
energies calculated in the leakage approach, however, exhibit a greater disagreement
with the transport results, especially for the νe case. As we already pointed out
in section 2.6, this is a natural consequence of the leakage ansatz (equation 2.52),
which ignores the thermalization of neutrinos produced at high optical depths on
their diffusive propagation to the neutrinosphere. Considering the neutrino luminos-
ity profiles in figures 3.2 and 3.3, it is easy to understand that νe, which are emitted
from deeper inside the PNS, will be most affected by this shortcoming. To ease this
deficiency, we provide the approximate diagnostic mean energies defined by equa-
tion (2.56). We find that, as expected, these post-processed energies dramatically
improve our mean energy estimates for νe, with just moderate corrections for ν̄e,
providing an agreement below typically ∼ 15 per cent (∼ 1.5 MeV difference in the
worst case). The larger differences observed in the νx mean neutrino energies stem
from the different prescription of bremsstrahlung employed by ILEAS,ALCAR and
VERTEX.

3.2. Snapshot calculations: black hole-torus system

In order to assess the performance of our scheme on a possible remnant of a CO
merger, we calculate the neutrino luminosities for two different BH-torus systems
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evolved previously using the ALCAR code (Just et al., 2015b). The neutrino reac-
tions employed for the BH-torus systems are the same as for the PNS (table 3.1),
except for heavy lepton neutrinos, which are switched off in both calculations.

In table 3.2 we also include the neutrino luminosities and mean energies for each
neutrino species as obtained by ILEAS, applied to two BH-torus systems. Because
tori are optically thinner than PNS’s, their cooling time-scale is much shorter, and
the temperature can change considerably during the relaxation of the background.
We took that into account by providing the results of both ALCAR and ILEAS
after 3 ms, with respect to the original snapshots. Even though we also provide
the mean energies calculated as equation (2.56), the ones obtained by the leakage
approximation by equation (2.52) should be more accurate in the case of BH-torus
systems, for two simple reasons. First, in the BH-torus models considered in this
work, matter becomes optically thin during the relaxation (the optical depth is
τνi < 2/3 almost everywhere after a few milliseconds of evolution) or it encloses
a very small volume, so the leakage ansatz, namely that neutrinos stream away
carrying their production spectrum, is a reasonable approximation. Second, the
gradients in the hydrodynamical and thermodynamical quantities are considerably
softer than the PNS case. Therefore, the reasoning that most absorption occurs in
the production cell, which is employed to estimate the mean energies in equation
(2.56), is a less accurate approximation. Because the leakage mean energies employ
a more accurate description of absorption in the optically thin region, which are
the absolutely dominant conditions in the tori, we advise the reader to consider the
leakage mean energies for any diagnostic analysis or comparison.

Figure 3.5 shows the performance of our absorption scheme on the snapshot of a
torus of 0.3M⊙ around a 3M⊙ BH. Despite the effects caused by the ray tracing
approach, the qualitative resemblance between ALCAR (left) and ILEAS (right)
is remarkable. M1 schemes are known to perform poorly in regions where flows cross
paths, so we can draw no meaningful conclusions of the comparison in the z-axis
region.

It must be noted that ILEAS assumes the flux factor to follow the simple inter-
polation 〈χνi〉−1

PNS = 4.275τνi + 1.15, suggested by O’Connor and Ott (2010). This
is an acceptable approximation for the case of a cooling PNS, but fails to capture
the geometry of the BH-torus system. More sophisticated prescriptions of the flux
factor, which account for geometric effects, would certainly improve the accuracy
of the absorption scheme in the area around the inner edge of the torus. However,
such improvement is beyond the scope of this work, and we consider the obtained
results with the presented approximations as satisfactory.
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Figure 3.5.: Results of our neutrino absorption scheme for an 0.3M⊙torus around a
3M⊙ BH, left: for νe, right: for ν̄e. Colour coding displays the absorp-
tion dominated region, where the net neutrino rate Qνi,tot = Q+

νi
− Q−νi

is positive. The left half of each panel shows the results obtained by
the ALCAR scheme, while the right ones are the results with ILEAS.
The white contour depicts the neutrino surface, where τνi = 2/3.
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Table 3.2.: Neutrino luminosities and mean energies obtained by ILEAS applied to several snapshots of a PNS cooling
simulation at different times and two BH-torus models, in comparison to the results from transport calculations
with different codes. All leakage quantities are computed as described in section 2.6. Leakage mean energies
provide the mean energies calculated by equation (2.52), while mean energies for diagnostics are obtained via
equation (2.56). All values are taken for a local observer in the rest frame of the source at the edge of the grid
(100 km). νx luminosities refer to each of all four species.

Model ν-species

Transport
luminosity

(1052 erg·s−1)

Leakage
luminosity

(1052 erg·s−1)

Transport
mean energy

(MeV)

Leakage mean
energy (MeV)

Mean energy
for

diagnostics
(MeV)

Transport
code

PNS 0.2 s νe 1.62 1.64 9.72 7.85 11.04 VERTEX
PNS 0.2 s ν̄e 1.73 1.91 12.42 12.43 12.72 VERTEX
PNS 0.2 s νx 1.37 1.45 14.32 21.38 - VERTEX
PNS 0.3 s νe 0.98 0.91 9.43 7.20 10.65 VERTEX
PNS 0.3 s ν̄e 1.08 1.15 12.18 11.98 12.27 VERTEX
PNS 0.3 s νx 1.02 1.10 13.80 20.14 - VERTEX
PNS 0.4 s νe 0.74 0.67 9.31 6.96 10.52 VERTEX
PNS 0.4 s ν̄e 0.81 0.87 12.00 11.88 12.30 VERTEX
PNS 0.4 s νx 0.84 0.91 13.51 19.19 - VERTEX
PNS 0.5 s νe 0.62 0.55 9.26 7.11 10.58 VERTEX
PNS 0.5 s ν̄e 0.67 0.69 11.86 11.32 12.28 VERTEX
PNS 0.5 s νx 0.73 0.80 13.33 18.75 - VERTEX
PNS 0.5 s νe 0.70 0.67 9.93 7.95 11.43 ALCAR
PNS 0.5 s ν̄e 0.76 0.81 13.32 12.62 13.08 ALCAR
PNS 0.5 s νx 0.90 1.04 15.67 21.46 - ALCAR
PNS 0.8 s νe 0.46 0.44 9.24 7.42 10.44 VERTEX
PNS 0.8 s ν̄e 0.49 0.51 11.64 11.39 12.45 VERTEX
PNS 0.8 s νx 0.57 0.63 13.02 18.07 - VERTEX
PNS 1.1 s νe 0.38 0.36 9.24 6.56 10.10 VERTEX
PNS 1.1 s ν̄e 0.40 0.40 11.45 12.54 12.64 VERTEX
PNS 1.1 s νx 0.49 0.53 12.76 17.48 - VERTEX
PNS 1.2 s νe 0.37 0.35 9.24 6.16 10.02 VERTEX
PNS 1.2 s ν̄e 0.38 0.37 11.43 12.98 12.73 VERTEX
PNS 1.2 s νx 0.47 0.50 12.69 17.17 - VERTEX
PNS 1.3 s νe 0.35 0.33 9.24 5.79 10.08 VERTEX
PNS 1.3 s ν̄e 0.36 0.35 11.38 13.46 12.85 VERTEX
PNS 1.3 s νx 0.44 0.47 12.61 16.89 - VERTEX
PNS 1.5 s νe 0.32 0.30 9.22 5.18 10.01 VERTEX
PNS 1.5 s ν̄e 0.33 0.32 11.27 14.26 12.88 VERTEX
PNS 1.5 s νx 0.41 0.43 12.43 16.46 - VERTEX
BH-torus 0.3 M⊙ νe 2.33 2.15 12.13 12.66 13.76 ALCAR

BH-torus 0.3 M⊙ ν̄e 1.84 1.67 14.97 15.89 16.56 ALCAR

BH-torus 0.1 M⊙ νe 0.65 0.65 12.02 12.69 13.65 ALCAR

BH-torus 0.1 M⊙ ν̄e 0.52 0.48 14.20 14.50 14.79 ALCAR
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3.3. Time evolution of a proto-neutron star and two
black hole-torus systems

In order to test the performance of our scheme in evolving systems and to relax the
thermodynamical background we have attached ILEAS to a simple time evolution
scheme. As we want to focus on the radiation field, we only evolve the temperature
(via the fluid energy density, Efluid) and the electron fraction, keeping the matter
density fixed and ignoring the velocity terms3.

We can calculate the changes in the electron fraction from the advection equation
as, (

dYe
dt

)
source

=
Rtot

Aρ
, (3.1)

where Rtot is given in equation (2.16) and A is the Avogadro constant. For the fluid
energy density, following the first law of thermodynamics for a quasi-static system
with fixed density, we can express its evolution equation as,(

dEfluid

dt

)
source

= Qtot, (3.2)

where Qtot is given in equation (2.15). We solve these simple equations explicitly
with a forward integration, allowing for changes on either quantity of up to 2 per cent
in a single timestep. Then, we only need to call the EoS to obtain the temperature
from the energy, density and Ye (via bisection) and then the chemical potentials,
which we use in the next leakage step. We also include equilibration as described in
this paper.

We initialize the system by computing the fluid energy density and chemical
potentials from the EoS using the density, temperature and electron fraction from
the initial snapshot, then calculating the equilibration surfaces and initializing the
lepton fractions in their pertinent regime. The results obtained by ALCAR shown
in this section were obtained by evolving only the temperature and the electron
fraction in a similar fashion.

Figure 3.6 displays the time evolution of the neutrino luminosities for the PNS
snapshot relaxed by ALCAR (0.5 s post bounce). The time axis starts at the time
of the original snapshot, where the evolution is started. After a brief transient of
a few milliseconds, the electron fraction and the temperature relax to their equi-
librium values, and the system slowly evolves in a quasi steady state. The results
listed in table 3.2 correspond thus to the results of the plot at 5 ms. ILEAS is ca-
pable of reproducing the results obtained by ALCAR with ∼ 10 per cent accuracy
throughout the 50 ms simulated.

It is important to note that, in the BH-torus models, the unavoidable transient
which occurs when switching on ILEAS, proceeds to swiftly cool the optically thin

3Which are anyway small for the tested scenarios.
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Figure 3.6.: Time evolution of the neutrino luminosities obtained by ILEAS and
ALCAR as seen by a local observer in the rest frame of the neutrino
source at the edge of our grid (100 km), produced by a cooling PNS with
fixed density background, but evolved T and Ye profiles. The starting
time corresponds to the relaxed ALCAR snapshot discussed in section
3.1 (0.5 s post bounce).

disk before a stationary state can be reached. The natural consequence is, therefore,
that the ILEAS luminosities become smaller than those obtained by ALCAR,
whose background remains hotter. Nevertheless, the results obtained by ILEAS
agree to less than 10 per cent with the ones obtained by ALCAR, as can be seen
in figure 3.7. Note that these plots start at the time of the original snapshots
from where the time evolution is started. Therefore, the results listed in table 3.2
correspond to the results of the plots at 3 ms.
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Figure 3.7.: Time evolution of the neutrino luminosities obtained by ILEAS and
ALCAR as seen by a local observer in the rest frame of the neutrino
source at the edge of our grid (100 km), produced by a thick (0.3M⊙,
left) and thin (0.1M⊙, right) BH-torus around a 3M⊙ BH. The top
panels show the first 10 ms of evolution, while the bottom ones show
the full duration of the simulation on a logarithmic scale for better
visibility.

57





4. Binary neutron-star mergers

4.1. Systematics of merger dynamics, the remnant
and the ejecta

NSs in a binary system interact as gravitational point sources, slowly radiating
away orbital momentum in the form of GWs and inspiraling closer together. It is
not until the last few orbits before merger, that the tidal forces between both stars
begin to have an impact on the evolution of the system. In the standard scenario,
at this stage the orbit is quasi-circular due to the GW emission and long delay time
between the formation of a NS binary and the final merger. Furthermore, the NS
spin frequencies prior to merger are expected to be low compared to the orbital
velocity1 (Bildsten and Cutler, 1992; Kochanek, 1992). The details of the merger
dynamics are, then, determined mainly by the EoS of NS matter and the masses of
both COs.

Out of the ∼ 10 known NS binaries, all have been measured to have a total mass of
∼ 2.7±1 M⊙ and most of them a mass ratio, q = M1

NS/M
2
NS, of approximately unity

(Lattimer, 2012; Lattimer). This bias towards symmetric systems of such mass has
puzzled scientists for some time, and there is no clear conclusion about the possible
existence of a natural selection effect. However, some years ago, the masses of an
asymmetric system were precisely measured, proving that asymmetric binaries are
still a significant fraction of NS binaries (Martinez et al., 2015). As can be seen in
figure 4.1, mass asymmetry has a strong impact on the dynamics of the merger, and
thus on the ejecta and torus masses. The panels on the left column show different
stages of the numerical simulation of a symmetric merger, where both NS have a
mass of MNS = 1.35 M⊙, while the ones on the right display an asymmetric merger
of a MNS = 1.20 M⊙ and a MNS = 1.60 M⊙ NSs. In both simulations the same EoS
(DD2) was employed. In symmetric mergers (left), the two NSs deform in a tear-like
shape in the tidal field of their companion, until their tips collide violently, and the
two stars merge. Material is squeezed out from the collision interface, becoming
unbound or settling in an accretion disk around the newly formed central object.
Some of this material joins the expanding outer regions of the tidally deformed NSs,
creating two small spiral arms that wind around the central object. In contrast, in
the asymmetric merger case (right) the lighter NS gets disrupted by the tidal field of
the heavier companion, building an elongated tidal tail which ends up as a massive

1However, in globular clusters the high degree of interaction between stars likely contributes to
form binaries with rapidly spinning NSs, as well as mergers wit an eccentric orbit (e.g. Grindlay
et al. 2006).
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torus surrounding the HMNS. Albeit the two NSs still collide violently as in the
symmetric scenario, the redistribution of angular momentum along the tail also aids
the release of more tidal ejecta than in the symmetric case. Note that in figures 4.1
and 4.3 we define the time of the merger (0 ms) at the moment when the lapse (the
metric function α, see section 2.1) reaches its minimum value, which is a common
approach in the NS merger simulation community.

For the most favored configurations2, the remnant of a NS merger is expected to be
a differentially rotating HMNS surrounded by a thin torus of NS material. However,
the lifetime of this central HMNS is highly dependent on the binary properties and
the EoS of NS matter, ranging from the direct collapse to a BH to a long-lived
super massive NS (SMNS) or even a stable one (see below). During the merger,
some material also becomes unbound, ejected from the collision interface and the
tidal tails of the deformed NSs, referred to as dynamical ejecta. In a longer time-
scale, neutrino driven winds and viscosity driven ejecta can also arise from a long
lived remnant and the surrounding torus, which we dub torus ejecta.

The EoS determines which is the maximum mass a stable NS can sustain, Mmax,
before the nuclear pressure cannot counterbalance the gravitational pull, and the
star collapses to a BH. For a given EoS, the total mass of the system decides, thus,
the final fate of the merger remnant. However, right after merger, the newly formed
HMNS will retain the angular momentum from the progenitor NS binary, and the
centrifugal forces can temporarily prevent the collapse, even with a remnant mass
above Mmax. Hydrodynamic instabilities, magnetic fields and GWs, redistribute and
radiate away angular momentum from the differentially rotating HMNS, eventually
reaching a stage of rigid rotation, known as super massive NS (SMNS). During all
this process, the centrifugal forces gradually reduce, and the star will collapse if they
are not strong enough to aid the nuclear pressure against gravity. For very low mass
NS binaries, it is in principle possible to form a stable NS as merger remnant, if
the final remnant mass is below Mmax. Figure 4.2 shows these evolution paths in a
schematic way.

During the merger, an accretion disc is formed around the central remnant, orig-
inated from the tidal tails of the deformed NSs as well as some of the material
squeezed out from the collision interface. Consequently, the amount of mass com-
prised in this accretion disc depends on the size of these tidal tails, which are related
to the deformability of the NSs. They key quantity which determines the amount
of deformation a NS of a given mass suffers in the tidal field of its companion is the
compactness, CNS, which relates to the NS radius and mass by

CNS = MNS/rNS, (4.1)

and is characteristic of a given EoS. Soft3 EoS, yield more compact NSs, which are
more resilient to tidal deformation, while larger NSs are the product of stiffer EoS,

2Based on theoretical and observational considerations
3The terms soft and stiff in the context of EoS on NS matter, make reference to the slope of the

pessure as a function of the matter density, p(ρ). In softer EoS, pressure builds up slower with
increasing density, thus producing more compact stars, and viceversa.
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Figure 4.1.: Dynamics of the merger of two symmetric NSs of MNS = 1.35 M⊙ (left) and two
asymmetric NSs of MNS = 1.20 M⊙ and MNS = 1.60 M⊙ (right), both employing
the DD2 EoS. From top to bottom, each panel represents: the instant of first contact
of the two stars (∼ 1 ms), the moment of the minimum lapse (0 ms) and 2 ms after
the merger. The time which is plotted in the lower right corner of every picture, is
normalized to the merger time, when the lapse reaches its minimum value. Color-
coded, the logarithm of the rest-mass density is plotted (in g/cm3). The black dots
represent some of the particles that will eventually be ejected, tracing the origin of
the ejected material. The visualization tool SPLASH was used to convert SPH data
to grid data (Price, 2007).
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Figure 4.2.: Evolution paths for a binary NS merger. Picture inspired by the one
found in Just et al. (2015a)

more prone to be deformed by strong tidal fields. Therefore, more massive tori are
expected to form for low compactness (stiffer) EoS.

The compactness of a NS also determines the amount of material dynamically
ejected during the merger. Soft EoS provide more compact stars, which are able
to inspiral to closer orbits, producing more violent collisions and ejecting more ma-
terial. Their tidal tails however, are small, and the ejecta contribution from this
source is negligible. Stiff EoS, on the contrary, yield larger NSs which can get
severely deformed before collision. As a consequence, more material is stripped
from the tidal tails, albeit the ejecta component from the collision interface is still
the dominant one. Because most of the material is ejected from the collision in-
terface between the merging NSs regardless of the compactness, soft EoS produce,
overall, a larger amount of ejecta. Figure 4.3 illustrates this dependency on the EoS
with two symmetric mergers of two NSs with a mass MNS = 1.35 M⊙ employing a
soft EoS (SFHo, left) and a stiffer one (TM1, right). In appendix (E) we show the
mass-radius relations of the EoS employed in this work.

4.2. Neutrinos in binary neutron-star mergers

4.2.1. Impact of ILEAS’ modules on the composition of
neutron-star merger’s ejecta

As we described in section 2, ILEAS is composed of three modules which reproduce
different aspects of neutrino interactions with matter. In this section, we want to
demonstrate the importance of including all these effects for the correct reproduc-
tion of neutrino transport physics in NS mergers, focusing on how each module
individually impacts the electron fraction of the ejected material. For this purpose,
we set up several numerical simulations of symmetric MNS = 1.35 M⊙ NS mergers
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Figure 4.3.: Dynamics of the merger of two NSs of MNS = 1.35 M⊙ with the DD2 (left) and
SFHo (right) EoS. From top to bottom, each panel represents: the instant of first
contact of the two stars (∼ 1 ms), the moment of the minimum lapse (0 ms) and 2
ms after the merger. The time which is plotted in the lower right corner of every
picture, is normalized to the merger time, when the lapse reaches its minimum value.
Color-coded, the logarithm of the rest-mass density is plotted (in g/cm3). The black
dots represent some of the particles that will eventually be ejected, tracing the origin
of the ejected material. The visualization tool SPLASH was used to convert SPH
data to grid data (Price, 2007).
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Table 4.1.: List of numerical simulations of NS mergers performed to test the impact
of the different ILEAS’ modules. Each entry indicates the modules in-
cluded for that simulation (Equil stands for Equilibration, Leak for leak-
age and Abs for absorption) and displays the properties of the ejected
material (mass and 〈Ye〉) extracted at 5 ms post-merger. All simulations
employ the DD2 EoS and two symmetric NSs of MNS = 1.35 M⊙.

Merger
Model

Modules
in-

cluded

Ejecta
mass

(10−3 M⊙)

Ejecta
〈Ye〉

DD2 135(noν) No ν 2.6 0.03
DD2 135(L) Leak 1.6 0.21
DD2 135(E) Equil 1.9 0.18
DD2 135(LA) Leak+Abs 2.0 0.17
DD2 135(LE) Leak+Equil 1.5 0.21
DD2 135(LEA) Leak+Equil+Abs 1.9 0.21

with the DD2 EoS, in which we enable different combinations of ILEAS’ modules4.
The tested cases are listed in table 4.1, together with the ejecta masses and average
electron fractions obtained in those simulations at 5 ms after merger.

The first feature which is worth pointing out are the relevant differences in the
amount of material ejected during the merger for the different setups. On the
one hand, the inclusion of the effects of weak interactions, either in the form of
equilibration in optically thick conditions or neutrino energy and lepton losses by
means of a leakage treatment, reduces the amount of unbound material by up to
∼ 25−−40 per cent, from Mej = 2.6 M⊙ (without neutrino interactions included)
to Mej = 1.5·10−3 − 1.9·10−3 M⊙. This is due to the energy loss caused by neu-
trino emission, which is also implicitly present in the boundary treatment of the
equilibration module (see section 2.5 for details). On the other hand, neutrino re-
absorption helps unbind some material by depositing energy in the optically thin
region, reducing the negative impact of neutrinos on the ejecta mass to < 25 per
cent (Mej = 1.9·10−3 − 2.0·10−3 M⊙).

A quick glance at table 4.1 shows that the equilibration and leakage modules both
contribute to raising the average Ye of the ejecta, increasing it even further if they
are employed together. On the contrary, the impact of the absorption is not clear
from the average Ye, since it either reduces it o does not seem to produce any effect
at all (see below).

For a more precise understanding of the impact of ILEAS’ modules on the ejecta
composition, we provide in figure 4.4 histograms of the Ye distribution of the ejected

4Trivially, we omit the cases which imply including neutrino re-absorption without emission
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Figure 4.4.: Histograms showing the electron fraction (vs. mass fraction) of the ma-
terial ejected in a symmetric merger of two NSs of MNS = 1.35 M⊙ em-
ploying the DD2 EoS. Each panel displays the ejecta obtained by a
simulation of the same binary setup, but including different combina-
tions of the ILEAS’ modules to treat neutrino interactions. The top-left
panel shows the results without any neutrino scheme (note the differ-
ent y-axis range with respect to the other panels); the top-right panel
shows the results including only equilibration in optically thick condi-
tions (section 2.5) and only neutrino losses via leakage (section 2.3); the
bottom-left panel shows both, the results with only leakage+absorption
(section 2.4), where we switched off the equilibration module, and the
results with only leakage+equilibration, ignoring the effects of neutrino
re-absorption; and finally, the bottom-right panel shows the results in-
cluding the full ILEAS scheme (leakage+absorption+equilibration).
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material, normalized to the total ejecta mass. The top-left panel shows the ejecta Ye
distribution of a merger without weak interactions (note the different y-axis range
with respect to the other panels). There, the initial cold NS matter composition is
advected during the merger and, therefore, with no neutrino interactions to alter its
composition, all the unbound material remains neutron rich (Ye < 0.05). This con-
figuration which ignores the impact of neutrinos leads to the synthesis of a Solar-like
distribution of heavy r-process elements (A & 140) in the ejecta (e.g. Bauswein et al.
2013). On the contrary, the bottom-right panel displays the ejecta Ye distribution
of the same setup, but includes neutrino interactions using the full ILEAS scheme.
The differences are notorious, with the ejecta Ye distributed in a Gaussian-like shape
around the average value Ye = 0.21, with some material reaching values as high as
0.5. This broad distribution of Ye in the ejecta suggests that light r-process elements
(A & 90) are likely to be synthesized as well (e.g. Wanajo et al. 2014).

The top-right panel shows the results of the merger simulation including only
the equilibration module, which, by ensuring β-equilibrium in the optically thick
conditions, drives the composition of hot NS matter to less neutron rich values.
On the same panel, we include the Ye distribution of the ejecta obtained by the
simulation which includes only the leakage module. As expected, the Ye increases
due to the dominant emission of ν̄e from neutron rich NS matter (equation 1.4).
The two effects, equilibration and neutrino emission, produce a similar impact on
the Ye, albeit the leakage results present a tail spreading to higher Ye values, while
the inclusion of equilibration clusters more matter near intermediate values of the
electron fraction (Ye ≈ 0.2).

Finally, the bottom-left panel displays the ejecta Ye distribution for the cases where
we use equilibration plus leakage (no absorption); and leakage plus absorption (no
equilibration). The combination of leakage and equilibration modules shows the tail
of unbound material with higher Ye also present in the model including only the leak-
age in the top-right panel, but the bulk of matter seems more concentrated around
Ye = 0.2, combining the two effects described in the top-right panel. Contrariwise,
the re-absorption of neutrinos emitted by the remnant spreads the Ye distribution of
the material, increasing the neutron richness of some of the ejecta, while raising the
Ye of another smaller component. However, the exact impact of the absorption is
very direction-dependent and a more accurate analysis of the geometry of the ejecta
is left for future work.

4.2.2. Dependence on the neutron-star masses and the equation
of state

As discussed in section 4.1, the properties of NS merger ejecta are highly dependent
on the EoS and the NS masses. In order to probe the parameter space of initial
conditions, we performed numerical simulations with different EoSs, total masses
and mass ratios. We narrowed down the array of possibilities by choosing the initial
configurations of NS merger simulations published in the literature which include
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Table 4.2.: List of NS merger models presented in this work, with their initial setup
(NS masses and EoS) and the properties of the ejected material (mass
and 〈Ye〉) extracted at 5 ms post-merger.

Merger
Model

EoS

NS
masses
(M⊙)

Ejecta
mass

(10−3 M⊙)

Ejecta
〈Ye〉

DD2 135 DD2 1.35-1.35 1.9 0.21
DD2 130 DD2 1.30-1.30 1.6 0.20
DD2 120 160 DD2 1.20-1.60 7.5 0.21
SFHo 135 SFHo 1.35-1.35 2.8 0.23
SFHo 130 SFHo 1.30-1.30 2.0 0.20
TM1 135 TM1 1.35-1.35 1.1 0.14

neutrino interactions. This allows us to compare our results to those published by
other groups using different schemes, which we analyze in detail in section 4.2.3. To
further motivate our choice, we have selected the total mass to be approximately
the one measured in the GW event, which is also the one measured in most known
binary NS systems, and for the asymmetric systems, we took the most extreme mass
ratio compatible with the event estimates5 (Abbott et al., 2017f).

The EoSs we employ are SFHo, a soft EoS, DD2, a moderately stiff EoS, and TM1,
a stiff EoS, all microphysical EoS which together cover the span of expected NS radii
(see appendix E for a glimpse at the mass-radius relations of the EoS employed in
this work). For the symmetric mergers we took the canonical mass of NSs, 1.35
M⊙, and a mass of 1.30 M⊙, inspired by the simulations performed in Palenzuela
et al. (2015); Sekiguchi et al. (2016) and Foucart et al. (2016). Finally, to test the
effects of an asymmetric mass ratio we took q = 1.33 (as defined in section 4.1)
with NS masses of 1.6 M⊙ and 1.2 M⊙. Table 4.2 summarizes the initial conditions
employed in the simulations presented in this work, as well as the resulting ejecta
properties6.

In section 4.1, we described how the amount of ejecta depends on the initial
configuration. These trends are clearly visible in the results reported in table 4.2.
In a nutshell, NS mergers with softer EoS produce more ejecta than mergers with
stiffer ones, as more compact stars collide more violently. With a similar argument,
a small decrease in the NS masses has a noticeable reduction on the amount of
ejected material in the merger and, in asymmetric mergers, the tidal disruption of
the lighter NS produces much more ejecta than in the symmetric case (see figures

5Under the assumption of irrotational NSs
6The merger model name is composed of the EoS name (DD2, SFHo or TM1) the mass of the

lighter star (in 100· M⊙) and the mass of the heavier star (if absent, both stars have the same
mass).
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4.1 and 4.3 for a glimpse at the merger dynamics of some of the listed models).

However, the manner in which the average electron fraction depends on the initial
configuration appears to be less trivial. The top panels in figure 4.5 compare the Ye
distribution of the ejected material for merger simulations employing different NS
masses, with the DD2 (top-left) and SFHo (top-right) EoS. For the SFHo cases, we
can observe a small shift in the distribution towards higher Ye for the more massive
NSs. This behaviour can be explained by the higher temperatures reached during
the merger, due to the increased violence of the collision by a stronger gravitational
pull and a similar NS compactness. Higher temperatures translate into increased
neutrino luminosities (see middle panels in figure 4.6) and because neutrons are
much more abundant than protons (Ye � 0.5), ν̄e emission pushes the ejecta Ye to
higher values (equation 1.4). Nevertheless, the same trend cannot be appreciated for
the models with the DD2 EoS, where all three distributions seem undistinguishable.
A more carefull and direction-dependent analysis and a more detailed exploration of
the parameter space would be necessary to understand the origin of these differences,
as well as the exact impact of neutrino re-absorption.

The bottom panel of figure 4.5 shows a clear dependency of the ejecta Ye on the
EoS, which is also evident in table 4.2. The same argument we used to explain the
differences between the two symmetric mergers with different masses and the SFHo
Eos, applies in this case as well. Softer EoS produce more compact stars, which can
inspiral to closer orbits, thus reaching higher velocities and colliding more violently.
More ν̄e are produced due to the higher temperatures and abundance of neutrons,
thus increasing the Ye of the NS matter. Figure E.2 in the appendix E, shows the
mass-radius relations of the employed EoS, helping interpret the differences in the
ejecta masses and Ye distributions.

In table 4.3 we list the neutrino luminosities and mean energies, measured at 5 ms
post-merger, from the models described in table 4.2. The neutrino mean energies
of all species, calculated with the two approaches described in equations (2.52) and
(2.56), are almost independent of the merger initial configuration. Heavy lepton
neutrinos are the most energetic of all three species, followed by ν̄e and νe. Because
the neutrino luminosities depend strongly on the matter temperature, systems with
more compact and massive NSs will produce a higher flux of neutrinos of all species.
Given the high neutron richness of NS matter, ν̄e emission dominates over the other
individual νi species7. Figure 4.6 shows the time evolution of the luminosities of
all three neutrino species for all the models presented in table 4.2. At 5 ms, when
we extracted the data presented in tables 4.2 and 4.3, the νe luminosity is still
increasing, while ν̄e and νx luminosities remain approximately constant.

In some of the models, especially in those employing the SFHo EoS, a bright ν̄e
(and to a lesser extent νe) flash appears shortly after merger. It is not clear if this
effect has any physical meaning or is a numerical artifact caused by leakage schemes,
as it is also present in the simulations performed by Palenzuela et al. (2015) and
Sekiguchi et al. (2015), which used the same EoS, but a “conventional” leakage

7The luminosity of all νx species together, still dominates the ν̄e ones in all cases.
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Figure 4.5.: Histograms showing the electron fraction (vs. mass fraction) of the
material ejected in the NS merger models introduced in table 4.2. The
top-left panel shows the results of the simulations which employ the
DD2 EoS with different initial NS masses: 1.35 − 1.35 M⊙, 1.30 −
1.30 M⊙ and 1.20 − 1.60 M⊙. The top-right panel displays also the
models with different initial NS masses, 1.35 − 1.35 M⊙ and 1.30 −
1.30 M⊙, but for the simulations employing the SFHo EoS. The bottom
panel displays the results of the symmetric NS merger models with
masses 1.35 M⊙ employing three different EoS: DD2, SFHo and TM1.
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scheme and a leakage-M1 hybrid, respectively. In contrast, the results reported by
Foucart et al. (2016) employing both, a leakage and a grey M1 scheme do not show
this feature.
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Table 4.3.: Luminosities and mean energies (calculated as equations (2.52) and (2.56)) of all three neutrino species obtained
from the NS merger models listed in table 4.2. All quantities are taken as seen by an observer at infinity, extracted
at 5 ms post-merger. Heavy lepton neutrino luminosities are displayed for each νx species.

Merger
Model

Lνe
(1052erg/s)

Lν̄e
(1052erg/s)

Lνx
(1052erg/s)

〈εleak
νe 〉

(MeV)
〈εtot
νe 〉

(MeV)
〈εleak
ν̄e 〉

(MeV)
〈εtot
ν̄e 〉

(MeV)
〈εleak
νx 〉

(MeV)

DD2 135 3.3 5.1 1.9 9.0 15.3 11.5 18.6 24.7
DD2 130 2.8 4.3 1.6 9.4 15.2 11.8 18.5 25.0
DD2 120 160 4.6 7.4 3.3 9.0 14.7 11.4 17.9 25.2
SFHo 135 4.0 6.1 3.0 9.5 15.4 11.1 18.5 24.6
SFHo 130 3.3 4.9 2.4 9.1 15.1 10.7 18.3 24.6
TM1 135 2.0 3.5 1.1 8.6 13.7 11.3 17.6 24.5
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4.2.3. Comparison of the results obtained by ILEAS with those
given in the literature

As mentioned in section 4.2.2, the initial conditions (NS masses and EoS) of the
presented NS-NS merger models were chosen to match the ones employed by other
NS-NS merger simulations discussed in the literature in which the effects of neutrinos
were also included. In this section we contrast the original results reported by three
different numerical approaches, Sekiguchi et al. (2015, 2016) (referred as Kyoto code
hereafter), Foucart et al. (2016) (referred as SpEC ) and Palenzuela et al. (2015)
(referred as US code), with the ones obtained by our ILEAS+SPH-CFC code for
the same NS binary setups.

We must caution the reader that important differences can arise in some neutrino-
related quantities due to the different treatment of the hydrodynamic evolution of
the systems. Although general agreement is observed amongst the different ap-
proaches, neutrino interactions depend on multiple powers of the temperature (see
appendix B), and hence small differences in the profiles can be severely amplified. In
particular, while our merger code relies on a SPH discretization of the hydrodynamic
equations with a CFC approximation for the description of GR (see section 2.1), the
Kyoto code, SpEC and the US code rely on grid-based hydro-solvers with different
formulations of GR (see Sekiguchi et al. 2012, Duez et al. 2008 and Neilsen et al.
2014, respectively). Therefore, only qualitative agreement between the different
numerical approaches can be expected.

Neutrino physics are treated differently in the thee numerical approaches as well.
On the one hand, the Kyoto code employs a relativistic leakage scheme (Sekiguchi,
2010; Sekiguchi et al., 2012) to estimate the neutrino losses and provide the pro-
duction source terms for the M1 moment equations (Shibata et al., 2011), which
are then used to evolve a free-streaming component of the neutrinos. This ap-
proach accounts for neutrino re-absorption besides leakage losses (Kyutoku et al.,
2018). Finally, neutrinos are assumed to be trapped and in equilibrium within the
fluid in optically thick conditions, defined by a β-equilibrium limiter (Sekiguchi,
2010; Sekiguchi et al., 2012) (see also section 1.2). On the other hand, both SpEC
(Deaton et al., 2013; Foucart et al., 2014) and the US code (Neilsen et al., 2014)
model the neutrino interactions by means of a “conventional” lakage scheme (Ross-
wog and Liebendörfer, 2003; O’Connor and Ott, 2010). In Foucart et al. (2015) they
also employed an energy-averaged M1 scheme for one of their models and compared
the results with the ones obtained by SpEC. Unfortunately, we cannot currently
reproduce the initial NS-NS binary configuration of such a model because we do not
have the necessary EoS implemented. However, we can use the information pro-
vided for a qualitative assessment of ILEAS’ results, especially in comparison with
“conventional” lakage schemes.

In table 4.4 we list the initial configuration of the relevant models described in the
abovementioned papers, as well as the reported ejecta properties (analogous to table
4.2). For a comfortable comparison, we also include the results of the simulations
performed in this work, with the ejecta properties measured at the same times post-
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Figure 4.6.: Time evolution of the νe, ν̄e and νx (each) luminosities obtained from
the NS merger models listed in tables 4.2 and 4.3, as seen by an observer
at infinity.
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merger as the literature models. Overall, we find qualitatively good agreement in
the ejecta masses and to some extent quantitatively (∼ 30 per cent) for most of the
models. Some exceptions are the SFHo simulation from the Kyoto group, which
exhibits an unusually large amount of ejecta, even for a soft EoS, and the SpEC
model also employing SFHo, which displays a ridiculosly small amount of ejecta
mass, exactly the opposite as one would expect for such compact NSs. Nevertheless,
it must be noted that in Foucart et al. (2016) the autors describe their ejecta masses
as “unreliable”, as simulations with different resolutions yield different amounts of
unbound material, about an order of magnitude appart. In general, grid-based
codes rely on a low density environment (athmosphere or floor value) in which the
object of the simulation evolves. This residual density interacts with the outflows,
causing possible artificial behaviour of the ejecta. For this same reason, the US
group reports the ejecta properties only at 3 ms post-merger, in order to minimize
the athmospheric pollution of later, slower outflows (Palenzuela et al., 2015).

As we already pointed out in section 1, there is no consensus on the 〈Ye〉 of ejected
material obtained by different groups and different neutrino schemes. The models
from the Kyoto group show (for two out of three cases) higher average Ye than our
presented simulations and a clear dependence of 〈Ye〉 on the EoS, specially for the
SFHo case, which has has a 〈Ye〉 = 0.31. This extra high 〈Ye〉 together with the
extra high ejecta mass they report are probably related to extreme temperatures
reached during the collision. In Sekiguchi et al. (2015), the authors plot the Ye
distribution of the ejecta for the three discussed models (TM1 135(K), DD2 135(K),
SFHo 135(K)), in which most of the material clusters around the average value of
the electron fraction8. This behaviour is a bit different to what we observe in our
simulations, where the ejecta is distributed more homogeneously between Ye = 0.001
and Ye = 0.4 (see figure 4.4). In spite of all these small differences, we find a good
qualitative agreement between ILEAS’ results and those obtained by the Kyoto
group, particularly in the dependency of the ejecta masses and electron fractions on
the EoS.

On the contrary, the results from SpEC show a lower average Ye, insensitive to the
EoS of NS matter (〈Ye〉 = 0.11). This lower Ye is probably associated with the lack
of neutrino re-absorption, as suggested in Foucart et al. (2016), when comparing
it to the higher electron fraction, 〈Ye〉 = 0.2, obtained by their model employing
M1 (which implicitly includes neutrino re-absorption). This M1 〈Ye〉 is perfectly
compatible with the one we observe in the ILEAS model using the DD2 EoS, which
has a similar mass-radius relation as the one employed in Foucart et al. (2016).

In contrast, the US models show a disconcertingly high 〈Ye〉 for a leakage scheme,
but as the SpEC results, no dependence on the EoS is observed. Interestingly,
this leakage scheme is virtually the same as the one employed in SpEC (with some
small modifications), so more similar results between the two groups would have
been expected. The differences in the NS masses used for the initial binary setups
simulated by both groups are not prominent enough to justify the disagreement, as

8Beware the logatihmic axis in the plot.
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demonstrated by the small differences we observe in the results presented in this
work between merger models with different NS masses (see table 4.3).

In spite of the huge discrepancies between the ejecta average Ye obtained by the
Kyoto code and SpEC, there is a strikingly good agreement in their νe and ν̄e
luminosities. This is even more surprising, if one has in mind that the Kyoto models
do include neutrino re-absorption, while SpEC does not. In fact, in Foucart et al.
(2016) the authors show how in the results obtained with their M1 scheme, the νe
luminosities are reduced by a factor two with respect to the leakage case due to
re-absorption of neutrinos in the torus surrounding the HMNS (with no obvious
changes in ν̄e). Therefore, one would expect a similar reduction of the luminosities
in other neutrino schemes with absorption. In contrast, the results obtained by the
US code show discrepancies with the Kyoto and SpEC simulations ranging from ten
per cent to a factor two.

Regardless of the quantitative differences, in all numerical approaches higher lu-
minosities of all neutrino flavours are reported for more compact EoS, and in general
following the hierarchy Lν̄e > Lνe > Lνx . In most models we observe a prevailing
ν̄e/νe luminosity ratio of ∼ 1.5, as reported by Foucart et al. (2016), except for one
of the SFHo simulations. Finally, the mean energies reported by SpEC are in good
agreement with the ones obtained by ILEAS (equation 2.56), although the ones
reported by the other groups are a few MeV lower.

To summarize, we find overall good qualitative agreement between our results and
those reported in the literature which employ more sophisticated neutrino treat-
ments, such as Sekiguchi et al. (2015). The presented results help thus validate the
trends in the ejecta composition previously published by some other groups, with
respect to its dependence on the NS masses and the EoS. The systematically higher
〈Ye〉 we observe in comparison with numerical approaches relying on “conventional”
leakage schemes (Palenzuela et al., 2015; Foucart et al., 2016) highlights the need
to include transport effects, such as β-equilibration and neutrino re-absorption, in
order to describe the evolution of the ejecta composition to sufficient accuracy.
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Table 4.4.: List of NS merger models used for the comparisons in section 4.2.3, including the literature source from where
the data is extracted, the initial setup (NS masses and EoS), the properties of the ejected material (mass and
〈Ye〉) and the time post-merger at which they are extracted. Additionally, we include the models simulated in
this work, with the ejecta quantities measured at the same time post-merger as the literature models.

Merger
Model

Source EoS

NS
masses
(M⊙)

Ejecta
mass

(103 M⊙)

Ejecta
〈Ye〉

Measurement
time
(ms)

DD2 135(K) Sekiguchi et al. (2015) DD2 1.35-1.35 2.0† 0.23† 10
DD2 135 This work DD2 1.35-1.35 2.2 0.23 10
DD2 135(US) Palenzuela et al. (2015) DD2 1.35-1.35 0.43 ∼ 0.18 3
DD2 135 This work DD2 1.35-1.35 1.8 0.20 3
DD2 130(SpEC) Foucart et al. (2016) DD2 1.30-1.30 1.3 0.11 10
DD2 130 This work DD2 1.30-1.30 1.9 0.22 10
SFHo 135(K) Sekiguchi et al. (2015) SFHo 1.35-1.35 10.0† 0.31† 10
SFHo 135 This work SFHo 1.35-1.35 3.2 0.25 10
SFHo 135(US) Palenzuela et al. (2015) SFHo 1.35-1.35 3.2 ∼ 0.18 3
SFHo 135 This work SFHo 1.35-1.35 2.4 0.22 3
SFHo 130(SpEC) Foucart et al. (2016) SFHo 1.30-1.30 0.5 0.11 10
SFHo 130 This work SFHo 1.30-1.30 2.2 0.21 10
TM1 135(K) Sekiguchi et al. (2015) TM1 1.35-1.35 1.0† 0.22† 10
TM1 135 This work TM1 1.35-1.35 1.2 0.16 10

† Data extracted from the corresponding plots at the chosen time.
Data extracted from a histogram.
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5. Summary and conclusions

In this thesis, we have introduced ILEAS (Improved Leakage-Equilibration-Absorption
Scheme), an improved leakage method which accounts for the basic physical effects
of neutrino transport at moderate computational costs. ILEAS is ideal for explor-
ing wide parameter spaces in three dimensions, where ∼ 10 per cent of accuracy is
enough to capture the essential impact of neutrino physics.

Original leakage models (Ruffert et al., 1996; Rosswog and Liebendörfer, 2003)
describe the local neutrino losses (but not transport) by means of an interpolation
between the diffusion and free-streaming limits. However, not only do they omit
important aspects of neutrino transport, such as neutrino-matter β-equilibrium in
optically thick conditions or neutrino re-absorption in the optically thin regime,
but also generally misrepresent the neutrino losses by diffusion due to their simplis-
tic ansatz based on a dimensional analysis for the diffusion timescale. Truncated
moment schemes provide a more sophisticated alternative to leakage schemes for
the modelling of neutrino transport. Nevertheless, they require substantially larger
computational resources and face serious difficulties when modelling crossing beams
of neutrino radiation, casting doubt on their reliability in determining the correct
composition of polar outflows in NS-NS mergers. Additionally, another potential
problem of such schemes may be the lack of accuracy in following neutrinos in fast
(∼ 0.3 times the speed of light) moving material due to limitations in numerical
resolution. Unfortunately, such tests are not available in the literature.

With this in mind, ILEAS builds upon the leakage ansatz, greatly improving its
description of neutrino transport effects while retaining computational efficiency and
simplicity. In the first place, the crude description of diffusion typical of “conven-
tional” leakage schemes is replaced by a more accurate formulation of the escape
time-scale based on the flux-limited diffusion equation, which provides a much bet-
ter estimate of the neutrino losses in optically thick regions. Furthermore, neutrinos
trapped and in β-equilibrium with the moving fluid contribute to the matter pressure
and energy density, and the recovery of the correct electron and neutrino fractions
in the β-equilibrium regime is ensured by our equilibration step. Finally, we employ
a three-dimensional ray-tracing algorithm to account for the re-absorption in opti-
cally thin conditions of the neutrinos that are radiated away from the system. We
resorted to a grey approximation for ILEAS in order to keep the ray-tracing for the
absorption module at a reasonable computational cost. Nevertheless, we account
for the detailed dependence on the neutrino spectra both in the calculation of the
diffusion time-scales, approximately capturing the energy dependent decoupling of
neutrinos from matter, and along the rays in the absorption module.

Comparisons between different neutrino treatments in the literature are scarce

77



(Foucart et al., 2016; Perego et al., 2016), and tests demonstrating the accuracy
of many widely employed schemes are not available. In contrast, we provided de-
tailed comparisons of the performance of ILEAS with more sophisticated neutrino
transport schemes in relevant astrophysical scenarios. Because our final goal is the
application of ILEAS in the context of NS mergers, we selected simulations which re-
produce the typical conditions achieved during such events. Therefore, we chose the
dense, hot environment of PNSs as reasonably similar to that of a HMNS remnant,
allowing us to test the new description of the diffusion time-scale, the equilibration
treatment, the decoupling of neutrinos from matter in the semitransparent regime
and their subsequent partial re-absorption by the optically thin material surrounding
the PNS. We presented the results obtained by ILEAS applied on 3D mappings of
several PNS cooling snapshots from the 1D simulation (Sr) performed by Hüdepohl
et al. (2010), where the authors employed the neutrino transport code VERTEX.
After a short relaxation of the initial conditions, ILEAS was able to reproduce the
VERTEX results in all tested cases, ranging from 0.2 s until 1.5 s post-bounce, with
∼ 10 per cent of accuracy. Not only did ILEAS show such good agreement in the
total neutrino luminosities, but also in the complete radial luminosity profiles. For
a time-dependent comparison, we evolved the medium temperature and Ye of one
of the snapshots (keeping the density fixed) for 50 ms using both an M1 neutrino
transport code, ALCAR (Just et al., 2015b), and ILEAS. We found that the good
agreement (∼ 10 per cent) was maintained throughout the simulation.

One of the most innovative upgrades of ILEAS is its treatment of neutrino re-
absorption. In order to verify the performance of this treatment, we tested ILEAS
in the context of BH-torus systems, natural representations of highly asymmetric
mass distributions with a nearly transparent conditions to neutrinos. Snapshot
calculations of thick (0.3 M⊙) and thin (0.1 M⊙) tori around BHs demonstrated
a good qualitative and quantitative agreement between ALCAR and ILEAS in the
characterization of neutrino re-absorption, also of its geometry. As with the PNS
case, we evolved the temperature and Ye of both BH-torus models for 50 ms using
ALCAR and ILEAS, and reported also an agreement of ∼ 10 per cent preserved
during the whole simulation.

We concluded that, despite the approximative nature of the treatment, ILEAS
is sufficiently good to reproduce the results of more sophisticated transport schemes
on the level of ∼ 10 per cent, locally and globally and i their time dependence.

The next logical step after assessing the capability of ILEAS to reproduce trans-
port results, was its application on NS-NS merger calculations. We coupled ILEAS
to our relativistic smoothed particle hydrodynamics (SPH) NS-NS merger code and
performed a variety of numerical simulations. In the first place, choosing a “stan-
dard” initial configuration (a symmetric 1.35 M⊙ binary NS and a moderately stiff
EoS, DD2), we tested the impact of the individual modules which compose our
ILEAS scheme on the properties of material ejected during the merger. We de-
scribed how the neutrino losses caused by the leakage module and the energy loss
of SPH particles leaving the β-equilibrium region consistently reduce the amount of
ejected mass by up to ∼ 25− 40 per cent compared to the case without neutrino in-
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teractions, from Mej = 2.6·10−3 M⊙ to Mej = 1.5·10−3−1.9·10−3 M⊙. In contrast,
energy deposition by neutrino re-absorption on loosely bound SPH particles pushes
this reduction to < 25 per cent (Mej = 1.9·10−3 − 2.0·10−3 M⊙). As expected, the
impact of the different aspects of neutrino transport on the ejecta composition is
non-trivial (figure 4.4). While the neutrino leakage and re-absorption modules seem
to spread the ejecta Ye between 0.02 to 0.5, the equilibration treatment concentrates
more material around the intermediate values (Ye ≈ 0.2). Neutrino re-absorption
does not seem to change noticeably the average ejecta Ye, but pushes more ejecta
mass both to lower (Ye ≈ 0.05) and to higher (Ye ≈ 0.35) electron fractions.

In order to assess the impact of the initial binary configuration on the ejecta
properties and neutrino-related quantities, we performed a set of NS-NS merger
simulations with different NS masses, mass asymmetries and EoSs. Unfortunately,
a detailed comparison with other models reported in the literature is not possible due
to underlying differences between the numerical approaches which are not directly
related to the treatment of neutrinos. In fact, substantial discrepancies already
exist amongst the various results published by different groups. These differences
are possibly linked to the diverse treatments of hydrodynamics, the formulations
of GR or resolution issues, besides the differences in the neutrino treatment, all of
which can severely influence the impact of neutrino effects (Sekiguchi et al., 2015;
Palenzuela et al., 2015; Foucart et al., 2016).

Therefore, the simulations reported in this work add to a small pool of computa-
tional models available in the literature, serving as a cross check of the qualitative
results reported by other groups. Qualitatively, ILEAS reproduces the trends al-
ready observed by Sekiguchi et al. (2015) in the ejecta masses and composition
and in the neutrino luminosities. Nevertheless, other groups do not find the same
patterns (Palenzuela et al., 2015; Foucart et al., 2016). Further progress can only
be achieved by direct comparison of neutrino schemes employing the same exact
code for the hydrodynamical evolution of the NS-NS/BH merger. For this reason
we are considering the option of opening ILEAS to public domain, or at least to
make it available for other groups in a collaboration to improve our understanding
of neutrino effects in NS-NS/BH merger simulations.

In conclusion, in this thesis we introduced a new improved neutrino leakage
scheme, ILEAS, and demonstrated its outstanding performance, by reproducing neu-
trino transport results within ∼ 10 per cent accuracy in several multi-dimensional
astrophysical scenarios. ILEAS includes the fundamental physical effects of neu-
trino transport that play a role on evolution time-scales shorter than the diffusion
time-scale. It surpasses the performance of “conventional” leakage schemes while
retaining most of their efficiency and simplicity, providing a more complete picture
of the variations of the matter composition in NS-NS mergers. The accuracy and
computational efficiency of our scheme render it ideal for the exploration of the vast
parameter space of possible binary configurations in NS-NS/BH merger simulations.

With the first direct detection of a GW signal from a NS-NS merger event
(GW170817), followed by the observation of its associated EM counterparts (Abbott
et al., 2017a,f), the era of multi-messenger astronomy has begun, and with it, the
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demand for accurate predictions of future observables is more important than ever.
At the time of the writing of this thesis, the three GW detectors are being upgraded
for the next observing run (O3), which is due to start next autumn and last a whole
year. With the new upgrade, the GW detectors will increase their detection dis-
tance by a factor ∼ 2 (detection volume by a factor ∼ 8) (Abbott et al., 2016a), and
predictions suggest a NS-NS merger detection rate of 3 − 18 events per year (Kim
et al., 2015; Dominik et al., 2015). Many of these potential detections will likely be
followed by an observable kilonova, which will provide invaluable information about
the merger events and the ejected material.

The identification of a kilonova signal associated with the GW170817 event and
the subsequent debate about its exact nature (e.g. Cowperthwaite et al. 2017;
Nicholl et al. 2017; Chornock et al. 2017; Kasen et al. 2017; Smartt et al. 2017;
Pian et al. 2017; Perego et al. 2017), have brought to light the need of a reliable
understanding of the composition and spatial distribution of the merger ejecta. This
knowledge can only be achieved by means of numerical simulations of NS-NS/BH
mergers which include all the relevant physics to sufficient accuracy, especially neu-
trinos. Therefore, the tool presented in this work will serve the need of probing
the parameter space of initial conditions that describe NS-NS/BH binaries (system
masses and mass ratios, spins, orbital parameters, EoS), and will help to improve
our understanding of the composition and distribution of the ejected material. This
information will be used to predict the elemental abundances in the merger ejecta,
as well as the characteristics of the associated kilonovae, to be contrasted with the
future observations.

For an even more accurate description of the neutrino microphysics and their
impact on the matter composition, upgrades of the neutrino interactions included
in ILEAS should be considered in the future. Mean-field effects (Roberts, 2012;
Roberts et al., 2012; Mart́ınez-Pinedo et al., 2012), nucleon recoil and weak mag-
netism corrections (Horowitz, 2002) are significant improvements to the neutrino-
nucleon interaction cross sections, relevant at the matter densities typical of NSs.
All these effects alter the spectra and luminosities of each neutrino species in a differ-
ent measure, thus potentially influencing the composition of matter outflows in NS
mergers. Furthermore, neutrino oscillations have been shown to also have a relevant
impact on the radiated luminosities in different neutrino species (Wu and Tamborra,
2017; Wu et al., 2017). The composition of the ejected material can be influenced
by the exposition of the outflow to modified neutrino luminosities caused by fast
flavour conversions of νeν̄e pairs to νµν̄µ or ντ ν̄τ . For this reason also oscillation
physics should be included in ILEAS and merger simulations in future modelling
efforts.
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A. Comparative analysis of diffusion
time-scale prescriptions used in
the literature

Although leakage schemes have been around for more than two decades, not many
comparisons between the different realizations can be found in the literature. Here
we want to briefly compare the most common leakage implementations used in the
context of neutrino physics in NS mergers, in particular, the schemes from Ruffert
et al. (1996) (RJS) and Rosswog and Liebendörfer (2003) (RL).

There are three main differences between both schemes: the definition of the dif-
fusion time-scale, the energy averaging and the prescription of the neutrino chemical
potential to describe the neutrino spectra.

As we discussed in section 2.3.1, in a first approximation the diffusion time-scale
can be obtained from a dimensional analysis of the diffusion equation as,

tdiff
νi

=
3d2

cλνi
, (A.1)

where d is simply a characteristic length-scale of the system. RJS took the approx-
imation of a homogeneous sphere to define

λνi =
d

τνi
. (A.2)

By plugging equation (A.2) into (A.1) we are left with one factor of the length-scale,
which is chosen as the integration path for the optical depth, taken as the minimum
distance to the neutrinosphere (r(τνi = 2/3)):

tdiff,RJS
νi

=
3d

c
τνi . (A.3)

Similarly, RL proceeded to further approximate the remaining length-scale as d ∼
τνiλνi (with λνi = 1/κνi) to obtain:

tdiff,RL
νi

=
3λνi
c
τ 2
νi
. (A.4)

It is worth noting that other groups have suggested alternative prescriptions for
the definition of d, such as using the pressure scale-hight d ' P/∇P (Metzger and
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Fernández, 2014). This approach could be generalized to using the scale-height of
any convenient scalar quantity that defines the medium in which neutrinos diffuse.

One of the caveats of grey schemes is the unambiguity associated with the energy
averaging of the neutrino quantities. In RJS, the diffusion time-scales are computed
from spectrally averaged opacities (and optical depths),

κ̄νi =

∫∞
0
κνi(ε)ε

2f(ε; ηνi)dε∫∞
0
ε2f(ε; ηνi)dε

. (A.5)

In RL, on the contrary, the (roughly) ε2 dependence of the opacities is factored out
and carried on to the calculation of the integrated diffusion rates,

Rj
νi,diff =

∫ ∞
0

Ej=0
νi

(ε)

tdiff
νi

(ε)
dε =

∫ ∞
0

Ej=0
νi

(ε)

tdiff,RL
νi ε2

dε, (A.6)

for lepton number diffusion and equivalently for the energy diffusion rate,

Qj
νi,diff =

∫ ∞
0

Ej=1
νi

(ε)

tdiff
νi

(ε)
dε =

∫ ∞
0

Ej=1
νi

(ε)

tdiff,RL
νi ε2

dε. (A.7)

In both schemes, the effective loss term is then calculated as an interpolation
between diffusive and production rates:

R−νi ≡ Rνi

(
1 +

Rνi

Rj
νi,diff

)−1

, (A.8)

and

Q−νi ≡ Qνi

(
1 +

Qνi

Qj
νi,diff

)−1

, (A.9)

for number and energy, respectively, which are equivalent to equations (2.21) and
(2.22) in the case of the RJS averaging.

Moreover, without an actual energy-dependent transport scheme, it is impossible
to determine the correct neutrino phase-space distribution. In the optically thick
regime, neutrinos remain in β-equilibrium with the medium, thus their spectrum
is a Fermi distribution with the chemical potential being easily obtained from the
EoS. RL assume that this behaviour will remain a good approximation even in the
optically thin regime, where neutrinos decouple from matter. RJS on the other hand
also use a Fermi distribution throughout, but interpolate between the equilibrium
chemical potential and an expected value at free streaming conditions of µν = 0 (see
equation 2.25).

We apply both schemes to one of our PNS cooling snapshots and compare the
results to the ILEAS model presented in this work. To further disentangle the
contribution of each approximation, we also test different permutations, combining
the prescriptions for the diffusion time-scale, the spectral averaging and the neutrino
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chemical potential out of equilibrium. A list of the models and the prescriptions
employed are provided in table A.1. In order to focus on the impact of the leakage
module alone, we let the system relax without including equilibration or neutrino
absorption in any of the calculations. Relativistic corrections in the diffusion time-
scale are omitted as well. Figure A.1 shows the radial profiles of the electron fraction
and luminosity profiles for all the relaxed models (after 5 ms) together with the ones
obtained by ALCAR and ILEAS (including all modules).

The first aspect that catches the eye is the substantial improvement of our pre-
scription (model 7) with respect to all previous models. For the luminosities this
is particularly true in the high-optical-depth regime, where the diffusion time-scale
dominates. This is no surprise, as we define tdiff

νi
directly from the diffusion equa-

tion, which encodes much more information about the way neutrinos are transported
than the simple ansatz of equation (A.1). Due to the slightly slower increase of RL’s
tdiff
νi

with growing optical depth (models 2,3,6) in comparison to RJS’s tdiff
νi

(models
1,4,5), neutrinos escape from further inside the star in the former models. As a con-
sequence, they resemble a bit closer the transport profile, but overproduce neutrinos
of all species at lower optical depths. On the other hand, the consequences of the
energy averaging are much less straightforward. Differences between a few percent
up to a factor 3 can be seen for the different species.

The choice of neutrino chemical potential does not significantly affect the re-
sults of the leakage scheme in the chosen snapshot. The differences could become
more significant in a scenario where most neutrino luminosities are produced in the
semitransparent region. Based on the current results, however, the interpolated µν
(equation 2.25) should be preferred, because it fulfils the correct limit at high op-
tical depth and a well controlled behaviour at low optical depths, thus avoiding an
undesirable behaviour of the analytical solutions of the Fermi integrals and their
ratios at low optical depth.

It is impossible to draw a definitive conclusion from the presented data, but for
the studied case, the standard formalism from RJS seems, overall, to be in somewhat
better agreement with the transport results.

It is worth noticing that, as can be seen in the first panel of figure A.1, all leakage
versions produce a similar effect on the electron fraction after relaxation. Namely,
the low Ye region near the NS surface expands outwards and the matter becomes
more neutron rich. The cause for this effect is simply the inability of any leak-
age scheme to accurately describe the semitransparent region, which comes as no
surprise being a model constructed as an interpolation between pure diffusion and
pure free streaming. A similar effect, albeit to a much smaller extent due to the
more accurate diffusion time-scale, can be observed when applying ILEAS. This
comparison further highlights the advantages of the scheme presented in this work
with respect to some of the leakage versions widely used in the literature.
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Table A.1.: Summary of the prescriptions for the neutrino diffusion time-
scale, tdiff

νi
, energy averaging and neutrino chemical potential, µν ,

employed for all models shown in figure A.1. Additionally, we
present the neutrino luminosities of the three neutrino species ob-
tained by applying them to a PNS snapshot at 0.5 s post-bounce.
Models 1-7 do not include the effects of neutrino re-absorption
or equilibration, whereas the results obtained by ILEAS and
ALCAR do.

Model tdiff
νi

Energy
Avg.

µν
Lνe

(1051 erg·s−1)
Lν̄e

(1051 erg·s−1)
Lνx

(1051 erg·s−1)

Model 1 RJS1 RJS RJS 7.0 7.8 4.2
Model 2 RL2 RL RL 17.9 19.3 4.8
Model 3 RL RJS RJS 18.5 16.5 15.4
Model 4 RJS RL RJS 10.1 11.9 3.0
Model 5 RJS RJS RL 7.0 7.6 4.2
Model 6 RL RL RJS 18.6 19.3 4.8
Model 7 AJJB3 AJJB AJJB 9.1 12.5 10.4
ILEAS AJJB3 AJJB AJJB 6.7 8.1 10.4
ALCAR - - - 7.0 7.6 9.0

1 Ruffert, Janka & Schäfer (Ruffert et al., 1996)
2 Rosswog & Liebendörfer (Rosswog and Liebendörfer, 2003)
3 Ardevol, Janka, Just & Bauswein (this work)
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Figure A.1.: Radial profiles of the electron fraction and the neutrino luminosities
of the three neutrino species obtained by the different leakage models
summarized in table A.1, applied on a PNS snapshot (relaxed ALCAR
background at 0.5 s post bounce). We did not include absorption or
equilibration in any of the numbered models in order to focus on the
differences of the leakage module alone. For comparison, we also plot
the results obtained by ALCAR and ILEAS (with absorption and
equilibration).
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B. Neutrino reactions

In this appendix we collected the formulae for the different neutrino reactions (opac-
ities and production rates) of all three neutrino species, employed in our scheme.
Most reactions and their constants are extracted from Ruffert et al. (1996) and ref-
erences therein. In this section, unlike in the body of this work, we employ only the
superscript Qj

νi
with j = 0, 1 to denote number and energy rates respectively for

reasons of compactness in the formulation. All production rates and opacities for
νx include the contribution of all four species (νµ,ν̄µ,ντ and ν̄τ ).

B.1. Opacities for diffusion

We define the energy-dependent absorption opacities, κνi,a(ε), following Bruenn
(1985), with the correction of stimulated absorption (neutrino phase space blocking)
from Rampp and Janka (2002),

κ∗νi,a(ε) = κνi,a(ε)[1− f(ε; ηeq
νi

)]−1. (B.1)

Here, f(ε; ηi)) = [1 + exp((ε/T )− ηi)]−1 is the distribution function of fermions with
degeneracy parameter ηi = µi/T and energy ε. The superscript ‘eq’, in this case,
denotes the usage of the equilibrium neutrino degeneracy instead of the interpolated
one (see section 2.3). The opacity for νe absorption on neutrons, n, is given by

κ∗νe,a(ε) =
1 + 3g2

A

4
σ0ξnp

[1− f(ε+Q; ηe−)]

[1− f(ε; ηeq
νe )]

(
ε+Q

mec2

)2

·
[
1− (mec

2)2

(ε+Q)2

] 1
2

, (B.2)

and ν̄e absorption on protons, p, by

κ∗ν̄e,a(ε) =
1 + 3g2

A

4
σ0ξpn

[1− f(ε−Q; ηe+)]

[1− f(ε; ηeq
ν̄e )]

(
ε−Q
mec2

)2

·
[
1− (mec

2)2

(ε−Q)2

] 1
2

Θ(ε−Q−mec
2). (B.3)

Here c is the speed of light, gA ∼ 1.25, σ0 = 1.76·10−44cm2 and me the electron
mass. [1− f(ε±Q; ηe∓)] are the electron/positron phase space blocking factors and
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ξnp and ξpn
1 are related to the nucleon blocking factors Ynp and Ypn as

ξnp = (nn + np)·Ynp ≡ Aρ
Yp − Yn

eηp−ηn − 1
, (B.4)

and

ξpn = (nn + np)·Ypn ≡ Aρ
Yp − Yn

1− eηn−ηp
, (B.5)

where Yp and Yn are the proton and neutron number fractions, respectively and A
is the Avogadro constant (Bruenn, 1985). As we pointed out in section 2.3, this
formulation of the blocking factors assumes nucleons to be well represented by a
free Fermi gas. In order to avoid unphysical behaviour, we make use of the free
Fermi gas nucleon chemical potentials, which we calculate by inverting the relation
(Rampp, 2000; Hecht, 1989),

nN =
4π

(hc)3
(2mNT )3/2F1/2(ηN), (B.6)

where N refers to the nucleon type, p or n.
If one assumes complete dissociation of matter in protons and neutrons, the nu-

cleon fractions can be expressed as Yp = Ye and Yn = (1 − Ye), as in Ruffert et al.
(1996). However, for more consistent comparison to ALCAR, we relaxed this as-
sumption and employed the nucleon number densities obtained from the EoS. The
Heaviside step function Θ(ε−Q−mec

2) in equation (B.3) ensures that the opacity
remains positive, setting the rest mass difference between particles on both sides of
the interaction as the minimum energy for ν̄e absorption.

The transport opacities for neutrino-nucleon scattering of all three neutrino species
are defined as

κνi,s(ε) = CNσ0ξNN

(
ε

mec2

)2

, (B.7)

where Cp = [4(CV − 1)2 + 5g2
A]/24 and Cn = (1 + 5g2

A)/24 with CV = 1/2 + 2sin2θW
and sin2θW = 0.23. We define the nucleon Pauli blocking factor, YNN , following
Mezzacappa and Bruenn (1993), as an interpolation between (non-relativistic) de-
generate and non-degenerate limits:

ξNN = nN ·YNN ≡ AρYN
ζN√

1 + ζ2
N

, (B.8)

with ζN ≡
3T

2EF
N

, (B.9)

where EF
N is the Fermi energy of nucleon N ,

EF
N =

h2

8π2mb

(
2π2nN

)2/3
. (B.10)

1We relabelled the final state blocking ξN instead of ηN (Bruenn, 1985) to avoid confusion with
degeneracy parameters.
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Similarly, scattering on nuclei of mass number A can be expressed as,

κνi,s(ε;A) =
1

6
A2

[
CA − 1 +

Z

A
(2− CA − CV )

]2

·σ0nA

(
ε

mec2

)2

, (B.11)

where CA = 1/2, Z is the proton number of nuclei and nA the nuclei number density.
This equation is used both for scattering on heavy nuclei of average mass number
and proton fraction Ā and Z̄ and for scattering on α-particles (A = 4 and Z = 2).

The total opacities for each neutrino species, both for energy and number trans-
port, are simply

κνe(ε) = κ∗νe,a(ε) + κνe,s(ε;n) + κνe,s(ε; p) + κνe,s(ε;α)+

κνe,s(ε; Ā),

κν̄e(ε) = κ∗ν̄e,a(ε) + κν̄e,s(ε;n) + κν̄e,s(ε; p) + κν̄e,s(ε;α)+ (B.12)

κν̄e,s(ε; Ā),

κνx(ε) = κνx,s(ε;n) + κνx,s(ε; p) + κνx,s(ε;α) + κνx,s(ε; Ā).

These opacities are used for the calculation of the diffusion time-scales (equations
2.37 and 2.38) as explained in section 2.3.1.

B.2. Opacities for absorption and optical depth

We use spectrally averaged opacities to estimate the optical depth (equation 2.27)
for the interpolation of the neutrino degeneracies (equation 2.25), as well as in the
absorption module. For consistency with our production rates, we do not correct
these opacities for stimulated absorption (equation B.1, see also the discussion in
appendix C). Following Ruffert et al. (1996), we average the absorption opacities
(ignoring electron rest-mass terms) as

κ̄jνe,a =

∫∞
0
κνe,a(ε+Q)Ej

νe(ε)dε∫∞
0
Ej
νe(ε)dε

=
1 + 3g2

A

4(mec2)2
σ0ξnp〈1− f(ε̄e− ; ηe−)〉

· T
2F4+j(ηνe) + 2QTF3+j(ηνe) +Q2F2+j(ηνe)

F2+j(ηνe)
, (B.13)
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and

κ̄jν̄e,a =

∫∞
0
κν̄e,a(ε−Q)Ej

ν̄e(ε)Θ(ε−Q)dε∫∞
0
Ej
ν̄e(ε)dε

=
1 + 3g2

A

4(mec2)2
σ0ξpn〈1− f(ε̄e+ ; ηe+)〉

· T
2F4+j(ην̄e −Q/T ) + (2 + j)QTF3+j(ην̄e −Q/T )

F2+j(ην̄e)

+
(1 + 2j)Q2F2+j(ην̄e −Q/T )

F2+j(ην̄e)

+
jQ3T−1F1+j(ην̄e −Q/T )

F2+j(ην̄e)
, (B.14)

where T is the matter temperature, Ej
νe(ε) is defined as equation (2.28) and Fk =∫∞

0
xkf(x; ηνi)dx are the Fermi integrals of order k of particle i, with Fk(ηe±∓Q/T )

evaluated including the nucleon rest mass correction to the lepton energy. In this
averaging procedure, we consider the correction of the electron rest mass to the
neutrino energy to be negligible. We also approximate the lepton blocking factors
assuming the electron and positron mean production energies2 to be

ε̄e− = T
F5(ηe− −Q/T )

F4(ηe−)
, (B.15)

ε̄e+ = T
F5(ηe+)

F4(ηe+)
. (B.16)

One can easily recover the results from Ruffert et al. (1996) by assuming the nucleon
rest mass to be negligible, ε̄e− ≈ ε̄νe and ε̄e+ ≈ ε̄ν̄e .

Following the same procedure, the spectrally averaged scattering opacities read,

κ̄jνi,s = CNσ0ξNN

(
T

mec2

)2
F4+j(ηνi)

F2+j(ηνi)
, (B.17)

for scattering on nucleons and,

κ̄jνi,s(A) =
1

6
A2

[
CA − 1 +

Z

A
(2− CA − CV )

]2

σ0nA

(
T

mec2

)2
F4+j(ηνi)

F2+j(ηνi)
, (B.18)

for scattering on α-particles and heavy nuclei. Like for the energy-dependent opaci-
ties (equation B.12), we define the total number (j = 0) and energy (j = 1) averaged

2Note that produced e− will have a minimum energy εmin
e− = Q.
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opacities as,

κ̄jνe = κ̄jνe,a + κ̄jνe,s(n) + κ̄jνe,s(p) + κ̄jνe,s(α)+

κ̄jνe,s(Ā),

κ̄jν̄e = κ̄jν̄e,a + κ̄jν̄e,s(n) + κ̄jν̄e,s(p) + κ̄jν̄e,s(α)+ (B.19)

κ̄jν̄e,s(Ā),

κ̄jνx = κ̄jνx,s(n) + κ̄jνx,s(p) + κ̄jνx,s(α) + κ̄jνx,s(Ā).

Finally, in the calculation of the neutrino absorption rates, spectrally averaged
absorption opacities are calculated as in equations (B.13) and (B.14), but employing
the neutrino spectrum from the corresponding ray, as defined in section 2.4.

B.3. Production rates

The β-processes are the main (far dominant) production sources of νe and ν̄e. From
the emissivities obtained by Bruenn (1985), we define the corresponding spectrally
averaged production rates (including nucleon rest mass corrections) as

Qj
νe,β

=
1 + 3g2

A

8

σ0c

(mec2)2
ξpn〈1− f(ε̄βνe ; ηνe)〉

· 8π

(hc)3

[
T 5+jF4+j(ηe− −Q/T )

+ 2QT 4+jF3+j(ηe− −Q/T )

+Q2T 3+jF2+j(ηe− −Q/T )
]
, (B.20)

for νe and

Qj
ν̄e,β

=
1 + 3g2

A

8

σ0c

(mec2)2
ξnp〈1− f(ε̄βν̄e ; ην̄e)〉

· 8π

(hc)3

[
T 5+jF4+j(ηe+)

+ (2 + j)QT 4+jF3+j(ηe+)

+ (1 + 2j)Q2T 3+jF2+j(ηe+)

+jQ3T 2+jF1+j(ηe+)
]
, (B.21)

for ν̄e. All quantities and constants are defined as in section B.1. The νe and ν̄e
mean production energies3 are approximated in analogy of equations (B.15) and
(B.16) as,

ε̄βνe = T
F5(ηνe)

F4(ηνe)
. (B.22)

ε̄βν̄e = T
F5(ην̄e −Q/T )

F4(ην̄e)
. (B.23)

3Note that produced ν̄e will have a minimum energy εmin
ν̄e = Q..
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Since the neutrino phase space blocking is small in the neutrino production dom-
inated regions, the approximate average value employed in Ruffert et al. (1996),
[1 − f(ε; ηνi)] ' 〈1 − f(ε̄; ηνi)〉, is very reasonable. We caution the reader that for
the tests presented in section 3 the β-production rates were implemented following
Rampp and Janka (2002), as is explained in detail in appendix C.

Thermal processes such as electron-positron pair annihilation are also an impor-
tant source of neutrino pairs of all three species. Following Cooperstein et al. (1986,
1987), the νe and ν̄e production rates read

Qj
νe,ν̄e,ee =

(C1 + C2)νeν̄e
72

σ0c

(mec2)2

· 〈1− f(ε̄eeei ; ηνe)〉〈1− f(ε̄eeei ; ην̄e)〉

·
[

8π

(hc)3

]2 [
T 4+jF3+j(ηe−)T 4F3(ηe+)+

T 4F3(ηe−)T 4+jF3+j(ηe+)
]
, (B.24)

where the constants (C1 + C2)νeν̄e = (CV − CA)2 + (CV + CA)2, with CA and CV
as defined in section B.1. Again, the mean neutrino energy in the neutrino phase
space blocking is approximated as Ruffert et al. (1996),

ε̄eeei = T

(
1

2

F4(ηe−)

F3(ηe−)
+

1

2

F4(ηe+)

F3(ηe+)

)
. (B.25)

It is worth noting that the rates above are for each individual neutrino species. When
comparing with the source material (Cooperstein et al., 1986, 1987), one should keep
in mind that the energy production rate of νi is half of the energy of the produced
pair, whereas the number production rate of νi is the same as the pair production
rate.

For heavy-lepton neutrinos, the production rate via electron-positron annihilation
for all 4 species is expressed as,

Qj
νx,ee =

(C1 + C2)νxνx
18

σ0c

(mec2)2

(
〈1− f(ε̄eeei ; ηνx)〉

)2

·
[

8π

(hc)3

]2 [
T 4+jF3+j(ηe−)T 4F3(ηe+)+

T 4F3(ηe−)T 4+jF3+j(ηe+)
]
, (B.26)

with (C1 + C2)νxνx = (CV − CA)2 + (CV + CA − 2)2.

Finally, transversal plasmon decay will also contribute to the creation of all three
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neutrino species with a production rate described by

Qj
νe,ν̄e,γ ≈

π3

3α∗
C2
V

σ0c

(mec2)2

T 8

(hc)6
γ6e−γ(1 + γ)

· 〈1− f(ε̄γei ; ηνe)〉〈1− f(ε̄γei ; ην̄e)〉[
1

2
T

(
2 +

γ2

1 + γ

)]j
, (B.27)

for νe and ν̄e, and

Qj
νx,γ ≈

4π3

3α∗
(CV − 1)2 σ0c

(mec2)2

T 8

(hc)6
γ6e−γ(1 + γ)

(
〈1− f(ε̄γei ; ηνx)〉

)2
[

1

2
T

(
2 +

γ2

1 + γ

)]j
, (B.28)

for all νx together. α∗ = 1/137.036 is the fine structure constant and γ = 5.565·10−2√
1/3(π2 + 3η2

e−). The mean energy of neutrinos produced via plasmon decay is
taken as

ε̄γei =

[
1

2
T

(
2 +

γ2

1 + γ

)]
. (B.29)

In addition to the reactions included in Ruffert et al. (1996), we incorporate the
production of νx via nucleon-nucleon bremsstrahlung, which has been shown to have
a significant contribution to the production of heavy-lepton neutrinos. For the total
energy production rate (four νx species together), we employ the prescription of
Thompson et al. (2000):

Qj=1
νx,brems = 2.08·102ξbrems

(
Y 2
n + Y 2

p +
28

3
YnYp

)
ρT 5.5. (B.30)

Following Burrows et al. (2006), we set the constant ξbrems = 0.5, which is its
approximate value at the typical neutrinosphere conditions in PNSs. The factor of
2 higher numerical value of equation (B.30) compared with Burrows et al. (2006)
comes from the fact that we include two neutrino pairs (νµν̄µ and ντ ν̄τ ) in νx. In
order to estimate a number production rate, we make an assumption of the average
neutrino energy (Hannestad and Raffelt, 1998),

ε̄brems
νx ∼ 3T, (B.31)

namely, that all the kinetic energy of the nucleons is transferred to the created
neutrinos. Then, the total number production rate is simply,

Qj=0
νx,brems =

Qνx,brems

ε̄brems
νx

. (B.32)

for νx of all kinds in total.
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The total neutrino production rates are then written as,

Rνe = Qj=0
νe,β

+Qj=0
νe,ν̄e,ee +Qj=0

νe,ν̄e,γ,

Rν̄e = Qj=0
ν̄e,β

+Qj=0
νe,ν̄e,ee +Qj=0

νe,ν̄e,γ, (B.33)

Rνx = Qj=0
νx,ee +Qj=0

νx,γ +Qj=0
νx,brems,

for numbers of νe, ν̄e and all kinds of νx,respectively, and

Qνe = Qj=1
νe,β

+Qj=1
νe,ν̄e,ee +Qj=1

νe,ν̄e,γ,

Qν̄e = Qj=1
ν̄e,β

+Qj=1
νe,ν̄e,ee +Qj=1

νe,ν̄e,γ, (B.34)

Qνx = Qj=1
νx,ee +Qj=1

νx,γ +Qj=1
νx,brems,

for energy of νe, ν̄e and all kinds of νx,respectively.
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C. Production rates and opacities
used for tests

As we noted in section 3.1, there exists certain ambiguity in the derivation of the
neutrino β-production rates, which could become a source of uncertainty in our
neutrino treatment.

Following the derivation by Bruenn (1985), the rate of change of the neutrino
distribution function due to β-interactions (emission and absorption), Qtot

νi
, is pro-

portional to

Qtot
νi
∝ jνi(ε) [1− f(ε; ηνi)]− f(ε; ηνi)κνi,a(ε). (C.1)

On one hand, one can derive the neutrino production rates from the neutrino emis-
sivities as,

Qj
νi

=
4πc

(hc)3

∫ ∞
0

ε2+jjνi(ε)[1− f(ε; ηνi)]dε, (C.2)

where [1− f(ε; ηνi)] accounts for the neutrino final state blocking, and the neutrino
emissivities are defined as in Bruenn (1985),

jνe(ε) =
σ0(1 + 3g2

A)

4m2
ec

4
ξpnf(ε+Q; ηe−)(ε+Q)2 (C.3)

·

√
1− m2

ec
4

(ε+Q)2
, (C.4)

for νe and

jν̄e(ε) =
σ0(1 + 3g2

A)

4m2
ec

4
ξnpf(ε−Q; ηe+)(ε−Q)2 (C.5)

·

√
1− m2

ec
4

(ε−Q)2
, (C.6)

for ν̄e. This formulation corresponds to the one adopted for the presented ILEAS
scheme, as detailed in appendix B.

On the other hand, one can use the Kirchhoff-Planck relation,

κνi,af(ε; ηeq
νi

) = jνi(ε)
[
1− f(ε; ηeq

νi
)
]
, (C.7)
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to define a corrected absorption opacity, which includes the effects of stimulated
absorption (Rampp and Janka, 2002),

κ∗νi,a(ε) =
1

1− f(ε; ηeq
νi )
κνi,a(ε) (C.8)

= jνi(ε) + κνi,a(ε), (C.9)

as we described in equations (B.13) and (B.14). Then, equation (C.1) can be rewrit-
ten as,

Qtot
νi
∝ κ∗νi,a(ε)

[
f(ε; ηeq

νi
)− f(ε; ηνi)

]
. (C.10)

This expression is exactly equivalent to equation (C.1), and can be interpreted as a
redefinition of emission and absorption, with κ∗νi,a(ε) as the new opacity and j∗νi(ε) =

jνi(ε)f(ε; ηeq
νi

) [1− f(ε; ηνi)]
−1 as the new emissivity. The production rates can then

be calculated accordingly, as

Q∗,jνi =
4πc

(hc)3

∫ ∞
0

ε2+jκ∗νi,a(ε)f(ε; ηeq
νi

)dε. (C.11)

This formulation is adopted by many truncated moment schemes (Rampp and Janka,
2002; Just et al., 2015b) because it simplifies the computation of neutrino interac-
tions to κ∗νi,a(ε), instead of calculating the emissivities and opacities separately. Both
codes employed in the comparisons presented in section 3, ALCAR and VERTEX,
make use of this description. For this reason, we have also implemented this formu-
lation of the β-production rates in ILEAS and used it for such tests. In order to
be fully consistent, this reformulation requires to employ the corrected absorption
opacities for the neutrino absorption scheme as well. This translates to redefining
the opacities in equations (B.13) and (B.14) as

κ̄∗,jνe,a =

∫∞
0
κ∗νe,a(ε+Q)Ej

νe(ε)dε∫∞
0
Ej
νe(ε)dε

=
1 + 3g2

A

4(mec2)2
σ0ξnp

〈1− f(ε̄e− ; ηe−)〉
〈1− f(ε̄νe ; η

eq
νe )〉

· T
2F4+j(ηνe) + 2QTF3+j(ηνe) +Q2F2+j(ηνe)

F2+j(ηνe)
, (C.12)
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and

κ̄∗,jν̄e,a =

∫∞
0
κ∗ν̄e,a(ε−Q)Ej

ν̄e(ε)Θ(ε−Q)dε∫∞
0
Ej
ν̄e(ε)dε

(C.13)

=
1 + 3g2

A

4(mec2)2
σ0ξpn

〈1− f(ε̄e+ ; ηe+)〉
〈1− f(ε̄ν̄e ; η

eq
ν̄e )〉

· T
2F4+j(ην̄e −Q/T ) + (2 + j)QTF3+j(ην̄e −Q/T )

F2+j(ην̄e)

+
(1 + 2j)Q2F2+j(ην̄e −Q/T )

F2+j(ην̄e)

+
jQ3T−1F1+j(ην̄e −Q/T )

F2+j(ην̄e)
, (C.14)

and using them instead of κ̄a
νi

for equations (2.41) and (2.44) in the absorption
algorithm. The electron, positron, νe and ν̄e mean energies are calculated as in
equations (B.15), (B.16), (B.22) and (B.23), respectively

We remind the reader that for the tests presented in section 3 we employed only
the reactions included in table 3.1 in order to consistently compare our results with
those obtained by the ALCAR and VERTEX codes. The total neutrino production
rates used for such tests are,

Rνe = Q∗,j=0
νe,β

,

Rν̄e = Q∗,j=0
ν̄e,β

, (C.15)

Rνx = Qj=0
νx,ee +Qj=0

νx,brems,

and

Qνe = Q∗,j=1
νe,β

,

Qν̄e = Q∗,j=1
ν̄e,β

, (C.16)

Qνx = Qj=1
νx,ee +Qj=1

νx,brems,

for number and energy, respectively, with the β-production rates described in equa-
tion (C.11).

For a given nucleon species, n or p, equation (C.2) and equation (C.11) employ
different nucleon blocking factors, either (B.4) or (B.5). These two blocking factors
obey the relation (Bruenn, 1985),

ξnp = e(ηe−ηeq
νi

)ξpn. (C.17)

Employing this relation, and the general mathematical property of Fermi functions,
f(x),

ex =
1− f(x)

f(x)
, (C.18)
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the two definitions of the β-production rates in equations (C.2) and (C.11) are,
considering equation (C.7), equivalent except for a factor [1− f(ε; ηνi)]

−1 in the
integrand of equation (C.11). This factor, which corresponds to the neutrino phase
space blocking, amounts to a 1 − 2 per cent correction on the local rates, which
is accounted for by the correct redefinition of the absorption opacities in equations
(C.12) and (C.14).

There is, however, a more subtle, yet important difference between equations
(C.2) and (C.11). Our definitions of the nucleon phase space blocking (equations
B.4 and B.5) assume nucleons behave like a free Fermi gas and, accordingly, employ
the free Fermi gas nucleon chemical potentials in their calculation (equation B.6).
As we already pointed out in section 2.3, it is essential to use the free Fermi gas
chemical potentials, instead of the ones provided by the EoS, in order to avoid
unphysical behaviour of the blocking factors (becoming negative, bigger than unity
or not fulfilling the non-degenerate limits). This inconsistency between the nucleon
degeneracies employed in the nucleon blocking factors (free Fermi gas, see equations
B.4 and B.5) and in the calculation of the neutrino equilibrium degeneracies (EoS,
see equations 2.25 and 2.26), is a source of discrepancy between the two approaches.

Because we employ the free Fermi gas nucleon chemical potentials in the blocking
factors, ηeq

νi
in equation C.17 is different than the one obtained from the high-density

EoS (which considers nucleons as interacting particles) by equation (2.26). In order
to be able to recover (C.2) from (C.11) (except for a factor [1− f(ε; ηνi)]

−1), or
vice versa, the same nucleon chemical potentials would need to be used consistently.
Because in our formulation this is not the case, there appear notable differences be-
tween both rates in the regimes where the nucleon interactions (and thus deviations
between the two values of ηeq

νi
) become important. These differences are illustrated in

figure C.1, which shows the logarithm of the νe and ν̄e β-production rates calculated
following both approaches (equations C.2 and C.11) on a PNS snapshot (ALCAR
snapshot at 0.5 s post-bounce).

However, at the high optical depth at which this discrepancy exists, the neutrino
transport is dominated by diffusion. As a consequence, even though the production
rates differ considerably in the two approaches, neutrino luminosities are vastly
produced by the diffusion behaviour, and the impact of the prescription chosen for
the production rates is small. In figure C.2 this small effect in the luminosities
(less than 5 per cent) can be appreciated. We conclude thus, that the choice of
formulation of the β-production rates is not significantly relevant for the present
work, as its associated uncertainty lies well within the differences between the results
obtained by ILEAS in comparison to more sophisticated transport schemes (section
3). If higher accuracy would be desired, mean-field effects should be taken into
account in the nucleon-neutrino interactions. We refer the reader to Reddy et al.
(1998) for details on the original formulation, and Roberts (2012); Roberts et al.
(2012); Mart́ınez-Pinedo et al. (2012) for the implementation and application of
such corrections in the context of SN and PNS cooling simulations.
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Figure C.1.: Neutrino β-production energy rates derived from the modified opacities
(lines) and from the emissivities (dashed) for the ALCAR snapshot at
0.5 s post-bounce.
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relaxation, employing the β-production rates derived from the modified
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relaxed snapshot at 0.5 s. The results obtained by ALCAR are also
shown for comparison.
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D. SPH rendering to a grid

It is widely known that SPH codes produce relatively spiky data, with occasional
particles displaying a considerably larger or lower value for a given quantity, with
respect to its neighbours. This undesirable behaviour can be of significant impor-
tance when calculating weak interaction rates, which depend on high powers of the
temperature. It is thus advisable in any SPH code to smooth the thermodynami-
cal quantities, specially the temperature, before applying any neutrino scheme. As
mentioned in section 2.2, we decided to implement ILEAS on a 3D Cartesian grid
for better comparison with grid based codes and, therefore, we naturally smooth
the SPH quantities by rendering them onto a grid. This procedure, however, is not
unambiguous, as can be seen in Price (2007), where the author developed an SPH
rendering tool (SPLASH) for plotting purposes, or in Röttgers and Arth (2018). Un-
able to rely on a sophisticated rendering code such as SPLASH during our merger
simulations, we tested different rendering procedures on several snapshots from a
NS merger simulation, which we describe briefly hereunder.

The standard approach suggested in Price (2007) for rendering a given quantity A
from SPH particles (Aj) to a grid (〈A(r)〉), derives directly from the SPH discretiza-
tion, as a summation over the particles whose kernel overlaps with a grid point, r
(we refer the reader to section 2.1 for details on the SPH notation):

〈Astd(r)〉 =
∑
j

mj

ρ∗j
AjW (|r − rj|, hj). (D.1)

Here mj and ρ∗j are the mass and conserved rest mass density, respectively, of a
particle with index j. One can alternatively normalize this expression, by dividing
it by the interpolation of unity,

〈Anorm(r)〉 =
〈Astd(r)〉∑

j
mj
ρ∗j
W (|r − rj|, hj)

. (D.2)

As Price (2007) suggests, this normalization is desirable to avoid a misestimation
of the rendered quantity in locations with low SPH particle count. However, this
approach is known to cause a blur effect when rendering the edges of a solid object.

Expression (D.2) allows for the straightforward inclusion of a weighing factor,
such as ρ∗, in order to smooth the rendered data (ρ∗-weighted). Such modification is
achieved by rendering the quantity Ajρ

∗
j instead, and normalizing by the interpolated

ρ∗, as

〈Aρ(r)〉 =

∑
j
mj
ρ∗j
Ajρ

∗
jW (|r − rj|, hj)∑

j
mj
ρ∗j
ρ∗jW (|r − rj|, hj)

. (D.3)
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Recently, Röttgers and Arth (2018) have suggested a few modifications (S-binning)
to the procedures discussed in Price (2007), which are worth exploring. First, they
introduce a new weighting factor, Sj, which is the integral of the SPH particle’s
kernel discretized over the grid,

Sj =
∑
k

VkW (|rk − rj|, hj), (D.4)

with the cell volume, Vk, and the sumation over all grid points k. Notice that in
the limit of an infinitely small cell size, S → 1. Then we can rewrite equation D.2
(for all particles j which fulfil S > 0) as

〈ASbin(r)〉 =

∑
j
mj
ρ∗j
S−1AjW (|r − rj|, hj)∑

j
mj
ρ∗j
S−1W (|r − rj|, hj)

. (D.5)

This ensures that any given particle contributes with its whole Aj to the grid (see
Röttgers and Arth 2018 for examples). In order to take into account the contribu-
tions of particles which fall through the grid, i.e. particles whose kernel does not
overlap with any grid point (and thus S = 0), they are added to the nearest grid
point as

〈ASbin(r)〉 = 〈ASbin(r)〉+

(
mj/ρ

∗
j

)
Aj

Vk
(D.6)

For particles intersecting with the grid boundaries, they suggest to set S = 1, which
reduces equation D.5 to D.2 for that particle’s contribution to the rendered value.

In most scenarios, all the presented rendering procedures yield comparable results,
even with more sophisticated plotting tools such as SPLASH, as figures D.1,D.2
and D.3 demonstrate. However, the matter configuration obtained during the NS
collision (up to ∼ 1 ms post merger), poses a real problem. The different rendering
approaches yield significantly different results in such violent conditions, even when
using SPLASH, as can be seen in figures D.4,D.5 and D.6. As we mentioned earlier,
there is no perfect way of rendering SPH particles to a grid. All the models we
introduced perform better in some circumstances than in others, and thus, it is
necessary to make a choice based on the available information. With this in mind,
we consider the rendering described by equation (D.3) as the best candidate, and
thus we employ it for the simulations carried out in this work.

The motivation for our choice can be traced mainly to figure D.6. The panels sit-
uated on the right column, as well as the centre left panel, display striking artefacts,
which are inadmissible if we strive to obtain meaningful results. In this figure, one
would expect to see the two neutron rich (Ye . 0.1) NSs surrounded by an envi-
ronment of slightly higher Ye, raised by the interactions with the neutrinos emitted
from the hot collision interface. This is the picture described by the top-left and
bottom-left panels, which rely on the mapping described by equation (D.3). Fur-
thermore, the higher temperatures (figure D.5) and densities (figure D.6) obtained
by this same prescription, are more in the line of what one would expect at this stage
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of the NS merger. However, it is also important to keep in mind, that the better
performance of our chosen rendering procedure in the scenarios we tested does not
exclude some pathological behaviour under other specific conditions.

In this section we showed that SPH rendering can be a major source of uncertainty
in our models if not handled properly and, based on the presented tests, we choose
the rendering procedure described by equation (D.3) for the NS merger models
presented in this work. However, in order to fully understand the limitations of the
chosen approach, a more detailed study on the topic should be considered in future
work.
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Figure D.1.: Rest mass density in the horizontal plane of a symmetric NS merger
with 1.35 M⊙ NSs and the DD2 EoS at 3 ms after the merger. Each
panel shows the results obtained by different rendering procedures from
SPH particles to a Cartesian grid. The programs and methods used for
the rendering are: top-left: SPLASH (ρ∗-weighted, equation D.3), top-
right: SPLASH (normalized, equation D.2), centre-left: ILEAS (stan-
dard, equation D.1), centre-right: ILEAS (normalized, equation D.3),
bottom-left: ILEAS (ρ∗-weighted, equation D.3), bottom-right: ILEAS
(S-binning, equation D.5).
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Figure D.2.: Temperature in the horizontal plane of a symmetric NS merger with
1.35 M⊙ NSs and the DD2 EoS at 3 ms after the merger. Each panel
shows the results obtained by different rendering procedures from SPH
particles to a Cartesian grid. The programs and methods used for
the rendering are: top-left: SPLASH (ρ∗-weighted, equation D.3), top-
right: SPLASH (normalized, equation D.2), centre-left: ILEAS (stan-
dard, equation D.1), centre-right: ILEAS (normalized, equation D.3),
bottom-left: ILEAS (ρ∗-weighted, equation D.3), bottom-right: ILEAS
(S-binning, equation D.5).
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Figure D.3.: Electron fraction in the horizontal plane of a symmetric NS merger
with 1.35 M⊙ NSs and the DD2 EoS at 3 ms after the merger. Each
panel shows the results obtained by different rendering procedures from
SPH particles to a Cartesian grid. The programs and methods used for
the rendering are: top-left: SPLASH (ρ∗-weighted, equation D.3), top-
right: SPLASH (normalized, equation D.2), centre-left: ILEAS (stan-
dard, equation D.1), centre-right: ILEAS (normalized, equation D.3),
bottom-left: ILEAS (ρ∗-weighted, equation D.3), bottom-right: ILEAS
(S-binning, equation D.5).
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Figure D.4.: Rest mass density in the horizontal plane of a symmetric NS merger
with 1.35 M⊙ NSs and the DD2 EoS at 3 ms after the merger. Each
panel shows the results obtained by different rendering procedures from
SPH particles to a Cartesian grid. The programs and methods used for
the rendering are: top-left: SPLASH (ρ∗-weighted, equation D.3), top-
right: SPLASH (normalized, equation D.2), centre-left: ILEAS (stan-
dard, equation D.1), centre-right: ILEAS (normalized, equation D.3),
bottom-left: ILEAS (ρ∗-weighted, equation D.3), bottom-right: ILEAS
(S-binning, equation D.5).
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Figure D.5.: Temperature in the horizontal plane of a symmetric NS merger with
1.35 M⊙ NSs and the DD2 EoS at 3 ms after the merger. Each panel
shows the results obtained by different rendering procedures from SPH
particles to a Cartesian grid. The programs and methods used for
the rendering are: top-left: SPLASH (ρ∗-weighted, equation D.3), top-
right: SPLASH (normalized, equation D.2), centre-left: ILEAS (stan-
dard, equation D.1), centre-right: ILEAS (normalized, equation D.3),
bottom-left: ILEAS (ρ∗-weighted, equation D.3), bottom-right: ILEAS
(S-binning, equation D.5).
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Figure D.6.: Electron fraction in the horizontal plane of a symmetric NS merger
with 1.35 M⊙ NSs and the DD2 EoS at 3 ms after the merger. Each
panel shows the results obtained by different rendering procedures from
SPH particles to a Cartesian grid. The programs and methods used for
the rendering are: top-left: SPLASH (ρ∗-weighted, equation D.3), top-
right: SPLASH (normalized, equation D.2), centre-left: ILEAS (stan-
dard, equation D.1), centre-right: ILEAS (normalized, equation D.3),
bottom-left: ILEAS (ρ∗-weighted, equation D.3), bottom-right: ILEAS
(S-binning, equation D.5).
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E. Employed equations of state for
neutron star matter

One of the most uncertain aspects of NSs is the equation of state (EoS) of matter
beyond nuclear density (ρnuc & 2.7· 1014 g/cm3). The extreme conditions occurring
in the core of a NS can not be reproduced in a laboratory, and the exact composi-
tion of NS matter remains a mystery. Although originally assumed to be composed
mainly of neutrons, more exotic particles such as hyperons and mesons could also be
present. It has also been proposed that NSs may be made of pure strange quark mat-
ter (see e.g. Stuart L. Shappiro 1983). Nuclear physicists perform experiments to
constrain the properties of matter close to nuclear densities, as well as the coupling
terms present in the nuclear forces between nucleons and hyperons (see Lattimer
2012 and Özel and Freire 2016 for recent reviews, and references therein). Astro-
nomical observations can place constraints on the EoS as well. The most remarkable
is the discovery of two NSs with exactly ∼ 2M⊙ by Demorest et al. (2010) and An-
toniadis et al. (2013). For a theoretical EoS model to be plausible, it has to support
a cold NS with a mass of at least 2M⊙, in agreement with the observed lower limit
of the maximum NS mass. Further constraints are expected to be obtained in the
near future with more detections of NS merger events, by making use of the GWs
and the EM radiation. All of these experiments and observations combined with
approximate descriptions of the particle interactions allow for the creation of rea-
sonable EoS models which are widely used in numerical simulations (e.g. Shen et al.
1998; Hempel and Schaffner-Bielich 2010).

In order to close the set of evolution equations and to retrieve the thermodynam-
ical quantities necessary for the computation of the weak interactions, we require
an EoS of NS matter. For our presented simulations, we use several microphysical
EoS in tabulated from, as functions of the density, ρ, the temperature, T , and the
electron fraction, Ye.

In section 3, we employed the SHEN EoS (Shen et al., 1998, 2011) for the evo-
lution of a PNS, in the comparison between the performance of ILEAS and more
sophisticated transport schemes. It is one of the most widely used EoS in the SN
and merger community and, despite being one of the first microphysical EoS devel-
oped, it can support NSs of 2M⊙, as required by observations. Figure E.1 shows
the mass-radius relation of a cold NS in neutrino-less β-equilibrium with the SHEN
EoS.

For the NS merger simulations we have employed a set of EoS widely used in the
literature in the context of NS mergers: DD2 (Typel et al., 2010), SFHo (Steiner
et al., 2013) and TM1 (Sugahara and Toki, 1994). They are all based on the nucleon
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Figure E.1.: Mass radius relation of a cold NS in β-equilibrium with the SHEN
EoS, which was employed in the comparisons with more sophisticated
transport schemes in section (3). Picture modified from the original
one found in Mathews et al. (2013).

mean field model described in Hempel and Schaffner-Bielich (2010) (with different
parametrizations) and can support (within the error bars) a 2M⊙ NS. Figure E.2
allows for a direct comparison of the mass-radius relation of a cold NS when em-
ploying each of the three models. In both figures (E.1 and E.2) we show the two
∼ 2M⊙ NS observations for comparison. We chose these EoS in order to cover the
spread in the predicted NS radius, which has not been unequivocally constrained,
and has a significant impact on the merger dynamics. The soft EoS SFHo allows
the formation of a more compact NS, whereas TM1 is a stiff EoS and, for a given
mass, the resulting NS will have bigger radius.
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and TM1 EoS, which was employed in the NS merger simulations in
section 4.
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