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Modulation of spray droplet
number density and size distribution
by an acoustic field

Javier Achury and Wolfgang Polifke

Abstract

Multiple interactions may occur when a poly-disperse spray is exposed to an acoustic field. In the context of spray

combustion instabilities, acoustic agglomeration, the formation of a droplet number density wave and the modulation of

the droplet size distribution are interesting effects. A droplet number density wave, i.e. preferential concentration of

droplets in space, may result from size-dependent, one-way momentum coupling between the acoustic field and the

spray. The modulation of the droplet size distribution, which has been evidenced in the experimental work of Gurubaran

and Sujith (AIAA 2008-1046), is thus a consequence of the droplet number density wave formation. In the present work,

the mechanisms that produce these effects are simulated and analyzed in depth by means of computational fluid dynam-

ics. The spray is modeled with both Lagrangian (particles mass-point approach) and Eulerian (continuous phase approach)

descriptions. The particular Eulerian method used is a variant of the presumed density function method of moments,

which allows to account for the effects of poly-dispersity, in particular the size-dependence of particle velocity. Both the

Lagrangian and Eulerian models are validated against experimental data for spray dynamics and spray response to an

acoustic field.
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Introduction

In industrial systems that make use of sprays, there are
important efforts to understand and characterize the
spray dynamics and the spray response to oscillatory
conditions of the carrier fluid. This is a critical aspect as
the spray dynamics determines several features of the
process or products. In sprays flames, for example, a
steady droplet concentration is normally desired. Time-
varying concentration of droplets lead to unsteady feed
of fuel and, potentially, to a unstable combustion pro-
cess. Periodic fluctuations of the fluid field, i.e. oscillat-
ing fields or acoustic waves, excite the spray
periodically, producing an unsteady droplet concentra-
tion. This mechanism is clearly prejudicial and needs to
be avoided. In other applications, interactions between
a spray and periodic fluctuations of the fluid field may
be beneficial. Acoustic agglomeration (AA), the mech-
anism that promotes particle collision and coalescence

due to the presence of velocity nodes (or attractors) in
the acoustic field, is a good example. Recently, the use
of acoustic standing waves to promote agglomeration
of particulate material to ease filtration in exhaust sys-
tems (such as diesel engines) is being extensively inves-
tigated analytically, numerically and experimentally.1

The particular spray dynamics that results from the
interaction with a pulsating or oscillating carrier flow is
what we call here spray response. Although different
scenarios of sprays interacting with unsteady flows
have been studied experimentally,2–5 by means of
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computational fluid dynamics (CFD),6,7 and analytic-
ally,8,9 there is to the best of our knowledge no proper
and comprehensive classification of different types of
spray responses in the literature. The problem of
making a rigorous classification lies in the fact that,
depending on the scenario under investigation, various
mechanisms are more or less dominant.

It should thus not come as a surprise that different
studies draw very varied conclusions. Gajan et al.4 pre-
sent evidence that the fundamental spray response is
the appearance of a number density (ND) wave. It is
argued in that study that the origin of the ND wave is
related to two factors: the atomization process itself
and the fluctuating transport of small droplets.
Gurubaran and Sujith have also performed experimen-
tal investigations in non-evaporating2 and evaporating
sprays5 submitted to an axial acoustic field. They found
that the spray velocity oscillates with the same fre-
quency as the excitation signal, but out of phase.
Droplets clustering and a maximum variation of 25%
in droplet mean diameter were observed. The particle
size distribution (PSD) was measured locally and aver-
aged conditioned on the phase angle of the acoustic
oscillation. A strong influence of the acoustic pressure
amplitude on the modulation of the PSD was observed.

Guiliani et al.7 performed experiments where both the
liquid and the air in a liquid-fuel atomizer were pulsating.
They concluded that, although relevant for technical com-
bustion control, pulsations on the liquid phase do not
affect considerably the PSD. However, the air pulsation
produces a dense droplet front close to the injector exit.
Such droplet concentration is formed and ejected period-
ically during the high-acceleration phase of the air vel-
ocity. A simplified Lagrangian CFD simulation for a set
of poly-disperse particles was also performed in their
work to illustrate the concept. It was concluded that the
smaller droplets dominate the droplet ND wave forma-
tion, due to their low Stokes number. Chisty et al.6 carried
out a Lagrangian-drop/Eulerian-flow simulation study of
a non-reacting spray in an acoustic field. A dense pocket
of droplets appearing at an interval equal to the acoustic
wavelength was found. Katoshevski et al.8,9 attempted to
study the droplet grouping phenomena analytically. They
have proposed conditions under which droplet grouping
may or may not occur, based on the solution of the equa-
tion of motion of a droplet excited by an acoustic wave
with mean flow (only drag force was accounted for). This
condition is related to how the droplets are attracted to a
distance equal to the acoustic wavelength. Unfortunately,
this analysis was performed for a combination of acoustic
frequency and wavelength that is not realistic.

The remarkable variety of conclusions of the above-
mentioned studies, the mixture of scenarios and the
lack of knowledge of the role of the various parameters
in the spray response have motivated the present

investigation. We strive to clarify the role of each par-
ameter by selecting simplified configurations of the
spray (test cases) and use CFD methods to draw gen-
eral conclusions, when possible. It is proposed that the
spray response can be classified in terms of two effects:
(1) AA and (2) generation of a droplet ND wave. Test
cases corresponding to these effects are constructed and
analyzed. A cross-validation that employs two
approaches for sprays simulation, i.e. the Euler–
Lagrange (EL) and the Euler–Euler (EE), is carried
out for each case. We investigate the capabilities and
limitations of the particular EE approach, the pre-
sumed density function Method of Moments
(PMoM), to capture the aforementioned spray
responses. Validation of the EL and EE models is
also performed against the experimental results
obtained by Gurubaran and Sujith2 for a spray sub-
mitted to an axial acoustic field.

Mathematical model and considerations

Generally speaking, spray dynamics can be modeled by
means of two descriptions, the EE and EL, where the
carrier flow dynamics is expressed in Eulerian form in
both. It is well known that each approach provides
advantages and disadvantages in terms of mathematical
modeling and computational cost. Despite the need of
elaborate more mathematical models to account for
poly-dispersity and poli-celerity for the EE case, this
approach can be a cost-effective alternative.

Continuous phase equations

The Eulerian equations for the continuous phase are
common for both approaches. In an incompressible
flow, the continuity equation reads

r � uc ¼ 0 ð1Þ

where uc is the continuous phase velocity. The absence
of source terms implies that small liquid volume frac-
tions (�) are considered and droplets do not evaporate.
The momentum equation reads

@uc
@t
þ r � ucucð Þ ¼ �

1

�c
rPþ

1

�c
r � �c þ gþ

1

�c
Mi ð2Þ

where P is the pressure, �c the continuous phase dens-
ity, g the gravity and �c the stress tensor. The source
term Mi is the disperse phase (spray) momentum trans-
ferred from/to the continuous phase, where the sub-
script i stands for i¼L in the Lagrangian spray
model and i¼E in the Eulerian.

For the one-dimensional test cases, the continuous
phase velocity is imposed (one-way momentum
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coupling). The general form of the excitation (varied
according to the corresponding test case) is

ucðx, tÞ ¼ Ûc þ ûc sinð2�ftÞ cosð2�x=�Þ ð3Þ

where Ûc is the mean flow velocity, f the frequency, ûc
the amplitude of the velocity oscillation and � the
wavelength.

Since no thermal effects are contemplated, there is
no energy equation and the continuous phase is
assumed to be incompressible. The use of this incom-
pressible approach is discussed in the validation sec-
tion, as long as the validation problem can be
approximated as acoustically compact.

Disperse phase equations

Lagrangian mass-point approach. In the Lagrangian frame-
work, the spray model is comparatively simple. The
equation of motion of a droplet with diameter D can
be read as10

dup
dt
¼

3CD

4�D
juc � upjðuc � upÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

drag

þ
1

�

Duc

Dt
� �cr

2uc

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

undisturbed flow

þ
� � 1

�

� �
g|fflfflfflfflfflffl{zfflfflfflfflfflffl}

gravity

ð4Þ

where up is the droplet velocity. Three forces have been
considered here, the steady-state drag force, the undis-
turbed flow force and gravity. The drag coefficient
CD ¼ f124=Rep depends on the regime determined by
the droplet Reynolds number, Rep ¼ juc � upjD=�c, in
the following way

f1 ¼
1 Rep 5 1 Stokes flow
1þ 0:15Re0:687p Rep 5 800 Schiller and

Naumann

8<:
Although the undisturbed flow force is composed

by the pressure gradient the shear stress around the
‘‘absent’’ droplet,10 with the help of the Navier–
Stokes equations for an incompressible fluid,
this force can be conveniently expressed only in
terms of the fluid velocity field, as occurs in equation
(4). For a gas-particle flow with large droplet and fluid
density ratio � ¼ �p=�c, this force can be, in fact,
neglected.

In the Lagrangian context, the momentum transfer
from/to the continuous phase can be calculated as the
local sum of the particles momentum variation along
the Eulerian time stepa �tE ¼ tout � tin. For a given
computational cell j, the source term due to momentum

transfer becomes

ML@cellj ¼

P
i �p

�
6D

3
i up,i,tout, cellj � up,i,tin, cellj
� �
Vcellj�tE

ð5Þ

Eulerian approach. The so-called PMoM is just one
(among several) EE moment model for the description
of a poly-disperse spray. A systematic derivation of the
mathematical model of the PMoM is given in the work
of Carneiro11,12 or Dems.13,14 Without detailing math-
ematical and statistical formalities of the method, the
main idea is to resolve transport equations for the k
moments MðkÞ of the number density function (NDF).
These k transport equations

@

@t
MðkÞ þ r � MðkÞuðkÞ

� �
¼ 0 ð6Þ

are obtained after integrating the population balance
equationb on the size spectrum. The moments of the
NDF are the integrals

MðkÞ ¼

Z 1
0

Dkf ðDÞdD ð7Þ

The NDF is defined as f ðDÞ ¼ Np
~f ðDÞ=V, where

~f ðDÞ is the probability density function (PDF)15 (or
particle NDF11) and V is the volume which contains
a number of Np droplets. uðkÞ is the velocity (given in
Eulerian coordinates) at which the corresponding k
moment of the NDF is transported, formally

uðkÞ ¼
1

MðkÞ

Z 1
0

uðDÞDkf ðDÞdD ð8Þ

The moments MðkÞ provide statistical information of
the evolution of the NDF in time and space. Thus, once
the set of k equations (6) are resolved in the problem
domain, f(D) can be reconstructed if a presumed func-
tion is selected. Two requirements are fundamental in
order to build an appropriate PDF: (1) the presumed
function must represent a typical spray droplet size dis-
tribution (DSD) and (2) provide an analytical solution
of the integral (7). Although, there are several possible
candidates, the gamma distribution fulfills these two
requirements and is selected here. Thus, f ðDÞ ¼
C0D

q�1 expð�D=pÞ=pq�ðqÞ, being the gamma function
�ðqÞ ¼

R1
0 r q�1ð Þe�rdr. Three parameters (C0, p and q)

define exactly the shape of f(D) and any of its moments
can be explicitly calculated by means of

MðkÞ ¼ C0
�ðqþ kÞ

�ðqÞ
pk ð9Þ
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A set of moments needs to be selected to perform the
reconstruction. For the gamma function, three consecu-
tive moments are required, then

p ¼
Mðkmþ2ÞMðkmÞ � Mðkmþ1Þ

� �2
MðkmÞMðkmþ1Þ

ð10Þ

q ¼
ðkm þ 1Þ Mðkmþ1Þ

� �2
�kmM

ðkmþ2ÞMðkmÞ

Mðkmþ2ÞMðkmÞ � Mðkmþ1Þð Þ
2

ð11Þ

C0 ¼

Mkm

pkm
Qkm�1

l¼0
ðqþl Þ

if km 2 Nþ

Mð0Þ if km ¼ 0

8<: ð12Þ

km is chosen depending on which quantity one wants
to ensure conservation. Making km¼ 0 or km¼ 1
ensures the conservation of number of particles per
unit volume Mð0Þ or volume fraction � (¼ �Mð3Þ=6),
respectively.

Nevertheless, there is still an issue regarding the
transport velocities for the moments uðkÞ, since they
are not yet in closed form. This is in fact the main
matter of the approach for poly-celerity of the
method. For the third moment Mð3Þ, a disperse phase
momentum equation can be set in order to resolve uð3Þ

@

@t
Mð3Þuð3Þ
� �

þ r � Mð3Þuð3Þuð3Þ
� �

¼ �
1

�d
Sþ

g

�dMð3Þ

ð13Þ

uð3Þ is assumed to represent the mean spray velocity. S is
the integral over the size spectrum of the individual
contribution of momentum transfer from the particle
to the continuous phase, or vice versa, via drag, then

S ¼ 18	c

 
Mð1Þðuð1Þ � ucÞ þ 0:15Mð1:687Þ

�
juð1Þ � ucj

�c

� �0:687

uð1:687Þ � uc
� �! ð14Þ

This expression is obtained after integrating the drag
force indicated in equation (4) on the size spectrum. It
contains both the linear (Stokes) and non-linear
(Schiller and Naumann) law for drag (see
‘‘Lagrangian mass-point approach’’ section). The cor-
responding momentum transfer term in equation (2)
becomes ME ¼ 6=�S, which confers the momentum
coupling between the two phases.

For the rest of the transport velocities uðkÞ, a fast
Eulerian method is used, the so-called relaxation
approach, which is inspired in the concept of Eulerian
equilibrium proposed by Ferry and Balachandar16,17

and developed for the PMoM approach by
Carneiro.11 The Eulerian equilibrium offers a fast way
to estimate the particle velocity based only on its char-
acteristic time response �p ¼ �D

2=18�c and the continu-
ous phase velocity. If this particle velocity is integrated
on the size spectrum and a reference velocity is chosen
(uð3Þ), the following equation is obtained to estimate the
k moments transport velocities

uðkÞ � uc þ
�ðkÞ

�ð3Þ
uð3Þ � uc
� �

, �ðkÞ /
Mðkþ2Þ

MðkÞ
ð15Þ

Although, this approach results very efficient com-
putationally, important assumptions have been made.
Our task is to identify if they are restrictive or not for
sprays in oscillating flows.

The set of equations (1), (2), (6) and (13) are resolved
using a customized OpenFOAM� code, which is based
on a finite volume discretization. A first-order integra-
tion schema has been used to resolve equation (4),
based also in an existing OpenFOAM library.

Problem description of the test cases

The test cases set-up is represented in Figure 1. In
which, for ‘‘Acoustic agglomeration’’ section, all drop-
lets are placed at initial time (no injection), while for the
‘‘ND wave formation’’ and ‘‘Modulation of the DSD’’
sections, a continuous injection of droplets is
implemented.

Acoustic agglomeration

Consider a population of droplets that is positioned in
a section of a one-dimensional channel, as represented
in Figure 1.

For the Lagrangian representation 12,000 particlesc

are placed uniformly in space, which produces a con-
stant initial ND profile. The droplets diameter follow a
Gamma density distribution with parameters
p ¼ 6 � 10�6 and q¼ 6.

Figure 1. Illustration of the test case. Initial ND profile for the

AA case.
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The corresponding Eulerian model can be con-
structed based on the adopted density function. The
zero-moment Mð0Þ, which represents the droplets ND,
is calculated to equal the assumed initial droplet ND of
the Lagrangian case. The first and second moment of
the NDF are also calculated and set uniformly within
such region.

An acoustic standing wave may be described a vel-
ocity field for the continuum ucðx, tÞ ¼ ûc sinð2�ftÞ
cosð2�x=�Þ and the spray response to such oscillatory
motion is evaluated. In order to understand the flow
physics of the mechanism of AA, consider the motion
of a droplet during the first half of a cycle, say. A drop-
let is displaced to a position, where the intensity of the
acoustic oscillation is larger, if it is initially at a position
where the slope of the wave amplitude is positive (the
second half of a wave length, say). Conversely, if the
initial position is at a position where the slope is nega-
tive, the particle is displaced to point with reduced
oscillation amplitude. During the second half of cycle,
the reverse effect is observed, such that net droplet dis-
placement after one cycle towards the closest velocity
node results. This occurs for each acoustic cycle, inde-
pendent of the initial droplet position. Therefore, all
droplets are continuously attracted towards the stand-
ing wave velocity nodes, producing peaks of the ND at
those locations.

This mechanism of AA is clearly recovered by both
CFD model formulations (see Figure 2): a droplet ND
profile composed by a series of U-shape intervals is
established in the x domain. This profile becomes
more prominent as the time advances and the accumu-
lation rate, which could be measured as the rate at
which these peaks grow, augments if the amplitude of
the excitation (ûc) increases and diminishes if the fre-
quency (f) augments. Nevertheless, in an ideal gas, the
potential increment of the accumulation rate by
decreasing the frequency is compensated by larger
wavelengths, as long as frequency and wavelength are
coupled by the speed of sound ( �c ¼ � f ). In fact, it can
be stated that the dimensionless number controlling the
AA mechanism is the acoustic displacement (or acous-
tic Mach number) Ma ¼ ûc=� f . In this mechanism, the
ND of droplets increases or decreases continuously
in time at each point with almost imperceptible
oscillations.

The corresponding PMoM simulation of the equiva-
lent problem captures qualitatively the evolution of
the ND profile (dotted lines in Figure 2). However, the
development of the ND profile is slower than in the
Lagrangian reference case (dashed lines of Figure 2).
This suggests that the way in which the transport vel-
ocity of the zero moment uð0Þ is estimated (relaxation
approach, see above), is under-predicting the amplitude
and/or the phase angle with respect to the excitation uc.

In order to analyze to what extent the predictions
obtained by the relaxation approach are accurate, the
transport velocities uð0Þ and uð3Þ are reconstructed from
the Lagrangian results according to equation (8)d at the
most critical point, which in this case is the velocity
anti-node. At this location, the excitation velocity is
maximal and the droplet ND tends to zero, which is
evidently a very critical scenario to evaluate the PMoM
performance. The time series of excitation uc and
responses (uð0Þ and uð3Þ) calculated from the
Lagrangian case are represented in Figure 3 (left),
where it can be appreciated that there is a small phase

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4
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Figure 2. Normalized ND profile obtained with Lagrange

mass-point approach (– – –) and PMoM approach (� � ��) after 100

acoustic cycles. Frequency f¼ 250 Hz, wave length � ¼ 0:4 m,

oscillation amplitude ûc ¼ 15 m/s, Stokes numbers S�t ¼ 0:5 and

1, respectively.
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Figure 3. Time signals of uc (——–), uð3Þ (– – –) and uð0Þ ð� � �Þ at

the velocity anti-node (x=� ¼ 1:5), calculated with the results of

the Lagrangian case (left) and PMoM prediction with relaxation

approach (S�t !1) (right).
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angle between the moments transport velocities. The
phase lag between the zero and third moment velocity
(uð0Þ and uð3Þ) is over-predicted at this point if the relax-
ation approach is used, see Figure 3 (right), which is
reflected in a delayed droplet ND profile formation. In
order to correct this over-prediction, an improvement
of the relaxation approach for oscillating conditions of
the fluid is proposed in this work. We call it relaxation
approach with limited inertia.

Relaxation approach with limited inertia

One of the fundamental premises of the Eulerian equi-
librium method (which derives the relaxation approach)
is that it is suitable only for small particle relaxation
times (�p). This is due to the particle velocity u is
expanded in Taylor series in �p but truncated in the
first-order term. This makes that the method implicitly
presumes that the size–velocity correlation follows a
quadratic function of the size, in the form:
uðDÞ � uc þ 
D

2. On the other hand, for particles
immersed in oscillating flows, it is known that for
large Stokes numbers (St ¼ �p f ), particles are almost
insensitive to the flow oscillation due to their large iner-
tia.18 This, in fact, can be seen in Figure 4, where the
droplets velocity at a velocity anti-node are plotted
against their size, for two phase angles of the fluid oscil-
lation � ¼ 0 and � ¼ �.

So, there is a conflict between the unbounded (quad-
ratic) nature of the implicit size–velocity correlation of
the relaxation approach for large sizes and the bounded
particle response expected for large St (large D). Two
potential alternatives may resolve this conflict: (1) a
higher order expansion in �p or (2) bounding the quad-
ratic function of the size–velocity correlation in the
‘‘standard’’ relaxation approach. The latter alternative
is employed here as the extension of high-order terms
requires a complex mathematical treatment involving
total derivatives and gradients of the velocity field
uc

16 and is not easily implementable in the PMoM con-
text. If a critical Stokes number S�t (where the particles

become less sensitive to the flow oscillation) is identi-
fied, the corresponding critical diameter is

D� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18�cS�t
f�

s
ð16Þ

A piecewise size–velocity correlation (bounded) can
be adopted saying that

uðDÞ �
uc þ 
D

2 ! if D � D�

uc þ 
D
�2 ! if D4D�

�
ð17Þ

Combined with the definitions of the incomplete
gamma functions

�1ðr, qÞ ¼

Z r

0

rq�1e�rdr and

�2ðr, qÞ ¼

Z 1
r

rq�1e�rdr

the following corrected expression for the relaxation
approach is obtained

uðkÞ � uc þ
�ðqþ 3Þ

�ðqþ kÞ

�
�1

D�

p , qþ kþ 2
	 


þ D�

p

	 
2
�2

D�

p , qþ k
	 


�1
D�

p , qþ 5
	 


þ D�

p

	 
2
�2

D�

p , qþ 3
	 
 uð3Þ � uc

� �
ð18Þ

in which only a new input S�t must be specified. In the
limiting case for S�t ! 0 then uðkÞ � uð3Þ 8 k and for
S�t !1, the standard relaxation approach (equation
(15)) is obtained.

Employing the limited inertia schema decreases this
phase angle, as it can be seen in Figure 5. This improves
significantly the agreement of the droplet ND profile
formation of the PMoM approach with respect to the
Lagrangian one, as the delay of the former is reduced.
This can be appreciated in Figure 2 for two critical
Stokes numbers S�t .

A closer look for the size–velocity correlation (u(D))
at the velocity anti-node (see Figure 4) supports prop-
erly the need of using the correction for large particle
sizes in oscillating excitations. Although droplets con-
tinuously leave the plot as the time lapses, the shape of
the evolving size–velocity correlation is maintained.
Clearly, this function can be properly approximated
by a quadratic function only for small droplets sizes
(see dotted lines in Figure 4), but may cause over- or
under-predictions up to some critical sizes D� (or S�t ).
In fact, the values of S�t used here (S�t ¼ 0:5 and S�t ¼ 1)
are not arbitrary, they correspond to the interval where

0 10 20 30 40 50 60 70

-1

-0.5

0

0.5

1

Figure 4. Size–velocity correlation at the velocity anti-node

(x=� ¼ 1:5). Circles represent Lagrangian droplets.
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the size–velocity correlation has the inflection point.18

The relaxation approach with limited inertia relieves
this over- or under-predictions because it recovers the
bounded nature of the size–velocity correlation.

The wavelength � is a key parameter for AA. Note
that, in principle, if �!1 the ND would not suffer
any distortion, since droplets would not have any
attractor. This result implies that a distortion of the
ND profile in oscillating flows (�!1) can be
expected only if this scenario is changed. We consider
in the next section, a continuous injection of droplets
interacting with an oscillating flow with mean velocity.

ND wave formation

The continuous injection of droplets (mono-disperse
spray with D ¼ 25 mm) and mean flow in the forced
field Ûc are now introduced in the model. We study
the case where the acoustic wavelength is infinite
� ¼ 1, to differentiate it from mechanisms linked to
acoustics (finite �), thus, the excitation becomes:
ucðx, tÞ ¼ Ûc þ ûc sinð2�ftÞ. Since a mono-disperse
population is considered, a special Eulerian spray
solver is implemented (method of classes for one
class), in which only the transport equation for the
volume fraction (�) is resolved (equation (13) for
Mð3Þð¼ �6=�Þ) and the momentum transfer of the
mono-disperse population of droplets is calculated
according to

S ¼
108	c�

�D2
ðu� ucÞ 1þ 0:15

ju� ucjD

�c

� �0:687
 !

ð19Þ

The continuous injection of droplets in an oscillating
population generates a ND wave at the injection area
which is transported downstream by the mean flow Ûc.
The mechanism is simple, each injected droplet moves
at the mean flow component of the velocity Ûc while it
is transported back and forth due to the oscillating
component ûc. Since this occurs continuously in time,
the whole cloud of droplets oscillates. If the rate of
droplet injection is constant, more droplets are
appended to the population when the velocity of the
cloud oscillation is zero and the peak of the wave is
formed.

In Figure 6, both the droplet ND and Mð0Þ waves are
normalized with respect to the value without excitation
and represented for t¼ 0.05 s. The ND wavelength,
indicated in Figure 6, can be estimated by �x ¼ Ûc=f.
By carrying out simulations where the parameters are
varied (results not shown here), it can be concluded that
the amplitude of the ND wave grows when ûc or f
increase, but decreases if the size (D), densities ratio
(�) or mean flow (Ûc) augment.

Modulation of the DSD

The ND wave formation in a poly-disperse injection of
droplets is reflected as a local modulation of the DSD
in time, as can be appreciated in Figure 7 (top). Any
given point sees an undulating droplet ND profile tra-
veling at a velocity Ûc. The modulation of the size dis-
tribution is the result of the modulation of each droplet
class, according to the effect described in ‘‘ND wave
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Figure 6. ND wave formation for a mono-disperse spray

(D ¼ 25	m) interacting with an oscillating velocity field with

mean flow. Injection takes place at x¼ 0. The straight line rep-

resents the ND profile without excitation (ûc ¼ 0). The nor-

malized droplet ND wave (cND) in the presence of excitation is

obtained by means of the Lagrangian simulation (���) and dMð0Þ
by the Eulerian approach (� � ��). Wave length � ¼ 1, frequency

f¼ 250 Hz, mean flow velocity Ûc ¼ 5m/s and oscillation ampli-

tude ûc ¼ 2:5 m/s.
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Figure 5. Time signals of uc (——-), uð3Þ (– – –) and uð0Þ ð� � �Þ at

the velocity anti-node (x=� ¼ 1:5). The correction for large

diameters (‘‘Relaxation approach with limited inertia’’ section)

has been employed. S�t ¼ 1 (left) and S�t ¼ 0:5 (right). f¼ 250 Hz.
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formation’’ section. Taking into account that no inter-
actions among droplets are considered, i.e. collisions or
coalescence, the main features of the droplet ND wave
formation, presented in ‘‘ND wave formation’’ section,
are preserved for the poly-disperse case: the amplitude
of the local DSD modulation grows with ûc and f, the
period of modulation is 1=f and the U-shape of the size
distribution modulation is linked to the U-shape
obtained for the droplet ND profile. The reconstructed
DSD obtained with the PMoM model (Figure 7
(bottom)) is also modulated and corresponds to the
Lagrangian prediction, the mechanism is properly cap-
tured by the PMoM.

The droplet ND wave for the Lagrangian model and
the PMoM approach for two values of the critical

Stokes number (S�t ) are presented in Figure 8. Note
that good predictions are achieved only if (again) the
relaxation approach with limited inertia is used (see the
dotted lines in Figure 8). Likewise the results obtained
in ‘‘Acoustic agglomeration’’ section, a close match is
reached for S�t � 0:5. Then, the correction schema is
also important here because the amplitude of the ND
wave would be drastically underestimated by the stand-
ard relaxation approach (S�t !1).

Phase lag of the modulated DSD

Due to the size-dependent relaxation that each droplet
experiments, a phase lag in the modulated DSD is
expected for large diameters. This situation is more evi-
dent if a relative velocity in the droplets injection is
introduced in the previous test case (Ûc 6¼ upðx ¼ 0Þ).

Figure 7. Left: modulation of the DSD at x¼ 0.03 m. Right: reconstructed function of the PMoM simulation.
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Figure 8. Poly-disperse spray response obtained with Lagrange

mass-point approach (- - -) and PMoM (� � �). The continuous line

indicates the droplet ND profile before the system is excited.

The droplets are injected at x¼ 0 m. � ¼ 1, f¼ 250 Hz, Ûc ¼ 5

m/s and ûc ¼ 2:5 m/s. The droplet ND wave is formed at the

injection plane and transported downstream by the mean vel-

ocity Ûc.
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Figure 9. ND wave formation of the poly-disperse spray with

relaxation, obtained with Lagrange (- - -) and PMoM (� � �) for

S�t ¼ 0:5. The continuous line indicates the droplet ND profile

before the excitation starts. The droplets are injected at x¼ 0 m.

� ¼ 1, f¼ 250 Hz, Ûc ¼ 5 m/s and ûc ¼ 2:5 m/s.
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For this scenario, the spray relaxes until it reaches an
equilibrium velocity. The interval where this occurs,
called here relaxation zone, is delimited by a vertical
line in Figure 9. As long as the spray velocity relaxes,
the ND increases, which is represented with the solid
line in Figure 9.

If an oscillation in the gas field is imposed (ûc 4 0), a
number particle density pocket is formed. This dense

pocket, is transported downstream by the mean flow
producing the modulation of the DSD, following the
same mechanism described in ‘‘Modulation of the
DSD’’ section. Since each droplet class relaxes differ-
ently according to its size, a phase lag in the modulated
DSD (see arrows in Figure 10) develops. This effect is
well predicted by the Lagrangian simulation (Figure 10
(left)) but poorly captured by the PMoM as shown in

Figure 11. Schema of the experimental setup.2

Figure 10. Local modulation of the DSD and phase lag (arrows) due to the droplets relaxation. Lagrange (left) and PMoM for

S�t ¼ 0:5 (right) prediction.
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Figure 10 (right). The inability of the PMoM approach
to treat the dynamics of each droplet class independ-
ently results evident for this scenario. Nevertheless, it
has been shown that the PMoM approach works fine
for relatively compact size intervals, where the phase
lag is expected to be small.

Comparison with experiment

As a validation case, the experimental setup of
Gurubaran and Sujith2 has been taken, which is repre-
sented in Figure 11. It consists of an injector fed by a
liquid and a gas line, placed inside of an acoustic cham-
ber. Four acoustic drivers, placed on the top of the
channel, are synchronized to produce an acoustic
standing wave, which interacts with the spray. The
location of the injector is adjusted in such a way that

the solid cone spray reaches one of the standing wave
pressure nodes. In that position, the largest acoustic
velocity amplitude is produced.

Our CFD model comprises the reduced section
where the spray develops. We assume this section to
be acoustically compact, as its length is small compared
to the acoustic wavelength, and therefore, the gas is
presumed to be incompressible. This is advantageous
in terms of both solver formulation and boundary con-
ditions treatment for acoustic waves.19 By doing so, we
automatically discard AA (as described in ‘‘Acoustic
agglomeration’’ section) as a dominant mechanism.
This is reasonable because the flow velocity in the
spray axis is large, the acoustic velocity amplitude is
relative small and only few acoustic cycles pass between
the transport of particles from the injector to the pres-
sure node. Therefore, the intensity of droplets
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Figure 12. Spray axial velocity immediately downstream of the atomizer exit, which is located at x¼ 0.55 m. Experimental value

(——–), Lagrangian velocity of droplets crossing a thin layer at the corresponding section (instantaneous, not post-processed) (0) and

PMoM (þ).
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clustering due to AA is small in this case. Thus, we
want to prove that the DSD modulation evidenced in
the experiment can be explained by the mechanism of
droplet ND wave formation.

Boundary conditions of the CFD model are approxi-
mated in the following manner: for the Lagrangian
case, an injection of droplets was implemented in the
code. It consists in a series of points of injection on the
atomizer exit, where droplets are appended at a given
velocity emulating the spray velocity profile measured
experimentally. The diameter of each injected particle
follows the discrete DSD measured at the pressure
node. The rate of injected particles and the air entrance
at the injector exit were estimated to satisfy the global
liquid phase load (� ¼ 0:0025), which corresponds to
the spray with a Weber number of We¼ 33.1.e The
concept of parcel or super-particle has been used
here, which means that one computational parcel rep-
resents a number of particles np. In order to satisfy the
liquid phase load with 420 points of injection, np is 10 in
our case. The distribution of the air velocity and liquid
volume fraction on the injection patch are uncertain
boundary conditions, as they were not measured
experimentally. Both were initially assumed to be con-
stant through the injection patch, but, in order to get a
better approximation, they were varied in a series of
iterations of the simulations to obtain approximately
the spray velocity profile at x¼ 0.65m (pressure node
location). This time-consuming step was required for a

good description of the spray dynamics before an exci-
tation was applied. For the PMoM simulation, the
droplet velocity field at the atomizer exit was mapped
directly as the uð3Þ profile. The corresponding moments
of the selected DSD combined with the required liquid
injection rate (Mð3Þ ¼ 6�=� ¼ 0:0048) were calculated
and set as fixed values on the injection patch.

Figure 14. Sauter mean diameter (D32 ¼ Mð3Þ=Mð2Þ) (left) and

volume fraction (right) of the spray without excitation. PMoM

model.

Figure 13. Droplet size (left) and volume fraction (right) of the

spray without excitation. EL model.

Figure 15. Droplet size (left) and volume fraction (right) in a

thin cross-sectional area of the spray with excitation. p0 ¼ 3 kPa,

f¼ 250 Hz. EL model.
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For the aforementioned volume fraction, two-way
momentum coupling is expected and the system of
equations [(1), (2), (4)] and [(1), (2), (6), (13)] are
resolved for the Lagrangian mass-point and PMoM
approach, respectively.

First, the spray without an imposed acoustic wave is
simulated. The x-component of the spray velocity up at
axial planes x¼ 0.56, 0.6, 0.625 and 0.65m, respect-
ively, is presented in Figure 12. Adaptation of the pro-
files of volume fraction and air velocity on the injection
patch resulted in a good match between experiment and
computation, in particular at the most downstream
location. This level of agreement allows meaningful
comparison of DSD modulation in the presence of
oscillations, see below. Note that for the Lagrangian
simulation, individual particle velocities are plotted
(0) without further post-processing. This choice was
made because due to the limited number of computa-
tional particles, any averages would not be robust. In
Figure 13, a thin cross-sectional area of the spray

simulated with the Lagrangian mass-point approach
can be appreciated. Although the spray is relatively
dense at the injection plane, spreads quickly. Thus,
the two-way momentum coupling between the spray
and carrier gas remains reduced to a relatively small
volume at the tip of the conical shape. The droplets
with larger sizes tend to concentrate at the spray per-
iphery, as shown by the experiment. The corresponding
spray model simulated by means of the PMoM is pre-
sented in Figure 14. A non-physical concentration at
the spray edge is observable. A similar issue is reported
by Bo and Watkins20 who affirm that this occurs
because moments of higher order tend to zero much
faster than low-order moments. This accumulation at
the spray edge, although uncomfortable for the view,
seems not to influence the dynamics of our points of
interest located at the spray axis. The mean diameter
also grows in the spray periphery.

The excitation is applied as a uniform air velocity
fluctuation (which is equivalent to excite the pressure)

Figure 16. Phase-locked DSDs of droplets at the pressure node (x¼ 0.05 m from the atomizer exit) for different amplitudes of

excitation (from left to right p0 ¼ 1, 2 and 3 kPa, respectively). Experimental measurement (top21), Lagrangian mass-point approach

(middle) and PMoM reconstruction (bottom).
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around the cone of injection. A small mean flow vel-
ocity was also imposed (0.1m/s), in accordance to the
experiment characterization. The structure that the
spray develops when the acoustic excitation is applied
(p0 ¼ 3 kPa and f¼ 250Hz) is shown in Figure 15 for a
thin cross-sectional area.

It can be appreciated that dense droplet clusters are
formed at the injection zone and transported down-
stream with the local fluid velocity. The cluster extin-
guishes progressively downstream, as the air flow
velocity decreases.

The DSD was measured experimentally at several pos-
itions along the spray axis using phase Doppler particle
size analyzer (PDPA)/laser Doppler velocimetry (LDV),
but we focus on measurements performed at the pressure
standing wave node in particular. In this technique, two
lasers intersect forming a small probe window at the
measurement location. A droplet crossing this window
produces an interference pattern that can be used to deter-
mine its size and velocity. Each droplet crossing the probe
window contributes to the respective bin of the histogram,
according to the phase angle in the acoustic cycle. Thus,
after a large amount of acoustic cycles (around 500), the
histogram forms a pattern of a modulated DSD. Since
accounting for a large amount of acoustic cycles (to emu-
late the PDPA/LDV measurement) in the CFD simula-
tion is prohibitively expensive, our approach consisted in
taking a small computational probe volume to construct
the droplet size histograms in time, from the droplets
(with their corresponding sizes) contained in such probe
volume. The time series of histograms were phase aver-
aged over four cycles.

Predictions of DSD modulation due to spray/
acoustic interactions obtained by both EL and
PMoM agree qualitatively with experimental observa-
tions, see Figure 16: With increasing amplitude of
acoustic pressure oscillation, particle numbers at
phase � � � are reduced, while particle numbers at
phases � � 0 and � � 2� are increased. This modula-
tion pattern is clearly more pronounced at larger oscil-
lation amplitudes, while it does not vary strongly with
particle size. A one-to-one quantitative comparison of
experimental and computational results is not pos-
sible, because as noted above particle counts that
can easily be realized in experiment are inaccessible
to CFD simulations. Thus, the actual particle counts
in experiment and EL differ by more than an order of
magnitude. Furthermore, the EL results exhibit non-
negligible statistical variance due to the small particle
counts. The pMoM results, on the other hand, show
by design no statistical fluctuations. Nonetheless, the
CFD results support the conclusion that the mechan-
ism described in ‘‘Modulation of the DSD’’ section is
responsible for the clustering effect evidenced in the
experiment.

Conclusions

CFD methods have been employed in this work to
describe the spray response to an acoustic field. Two
important kinds of spray response, AA and ND wave
formation, have been identified and characterized. The
acoustic displacement (ûc=� f ) and mean flow velocity
(Ûc) have been found to be important parameters of
classification. The mechanisms producing these two
kinds of spray response have been presented and the
role of system parameters has been discussed for each
one. Additional consequences of the ND wave forma-
tion for poly-disperse spays, such as modulation of the
DSD, and distortion due to phase lags, have been also
presented. A cross validation of the EL and EE spray
descriptions was carried out, with the spirit of evaluate
the capabilities of the cost-effective PMoM approach
and exploring its limits. The need of a correction
schema of the relaxation approach for large particle
sizes, called here relaxation approach with limited inertia
has been recognized, formulated and investigated.

The hypothesis that the effect of ND wave formation
is the dominant mechanism in the experimental config-
uration of Gurubaran and Sujith2 has been validated
successfully. Potential aspects to be investigated in the
future include the assessment of more sophisticated
methods to estimate the size–velocity correlation in
the EE context, for oscillating flows in particular.
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Notes

a. A Lagrangian time step to resolve the ODEs for the particles

motion is denoted as �tL and should be shorter than �tE.
b. For a non-evaporative spray without break-up nor

coalescence.
c. The number is in principle arbitrary but provides a min-

imal good population response statistics.

d. This is a post-processing step as all statistical information

is known in the Lagrangian simulation.

44 The Journal of Computational Multiphase Flows 9(1)



e. Corresponding to an air flow rate of 10L/min and a water

flow rate of 25cm3/min.
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Appendix 1

Notation

Greek symbols.

� droplet volume fraction
� density ration between droplet/gas
� gamma function

 parameter of particle-size/-velocity correlation
� acoustic wave length
� kinematic viscosity
� density
� relaxation time of particles/moments
�c stress tensor
� phase angle
! frequency of oscillation (in radians/s)

Latin symbols

c speed of sound
C0 shape parameter of Gamma function
CD drag coefficient
D droplet diameter

D32 Sauter mean diameter
e Euler’s number
f frequency of oscillation

f(D) number density function (w.r.t. diameter D)
g gravitational acceleration
M momentum source term

MðkÞ k-th Moment of number density function
Ma acoustic Mach number
Nþ set of positive integer numbers
np number of particles
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p shape parameter of Gamma function
P pressure
q shape parameter of Gamma function

Rep particle Reynolds number
S integral drag term in disperse phase momen-

tum equation
St Stokes number, i.e. ratio of particle relaxation

time to oscillation period
t time
u velocity

uðkÞ transport velocity of k-th moment
Ûc time average (‘‘mean’’) of forcing velocity

V control volume
We Weber number
x x-coordinate

Sub-/superscripts.

0 oscillatory component (deviation from time
average)

c continuous phase
p particle (discrete) phase
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