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Abstract-Computational modeling of neural circuits en­
hances our comprehension of brain functions. In addition to the 
simulation of the models which helps to anticipate cognitive pro­
cesses, embodiment of these models is essential. Such embodiment 
would provide the setting to explain neural functioning ongoing 
in real environments under oncoming sensory information besides 
giving opportunity of implementation of intelligent systems. Even 
studies pursued in neuroscience seem far from achieving all 
these aims in intelligent systems, the pre-results using cognitive 
models are faster than animal experiments in leading further 
the understanding of cognitive processes and designing related 
experiments. 

In this study, a computational model of basal ganglia, 
thalamus and cortex for action selection is extended with the 
point neuron approach to obtain a more realistic method to 
investigate the model in real time task on humanoid robot 
platform, Darwin-Op. The spiking neural network model of 
cortex consists of channels for each action to be elected and 
plastic alI-to-alI connections from the sensory stimuli to the basal 
ganglia structures which are modulated with reward. 

In the task, the sensory inputs, namely colors, are presented 
to the humanoid robot and it is expected that these sensory inputs 
would be associated with the predefined actions by modulating 
the connections. Furthermore, the rearrangement of these associ­
ations with reward is performed after learning is accomplished. 
In this way, the embodiment of computational model provided 
more information on the evolution of connections through reward 
based learning in the action selection circuit. 

I. INTRODUCTION 

To build models of neurological systems rendering cog­
nitive processes helps our understanding of brain. Though 
conventional models, as animal models, enlightened many 
mysteries of brain, recently computational neuroscience begin 
to contribute more and more to our comprehension of neural 
mechanisms giving rise to intelligent behavior. One means to 
benefit more from these computational models is the embodi­
ment of these models as neurorobots. Neurorobots would not 
only provide platforms for systematically dissecting the neu­
ronal circuits responsible for specific behaviours, simulating 
the effects of genetic defects, lesions, and loss of cells at dif­
ferent levels of brain organisation and modelling the effects of 
drugs as stated in [13] , but also would enhance technology for 
intelligent systems. Based on the computational model of Basal 
ganglia-Thalamus-Cortex (BTC) loop for action selection [4] , 
[2] , [3] , here the task of associating a sensory stimulus with the 
desired action is realized on humonoid robot. The association 

978-1-4799-1959-8/15/$31.00 @2015 IEEE 

Neslihan Serap �engor 
Electrical and Electronics Faculty 

Istanbul Teechnical University 
Istanbul, Turkey 34469 

Email: sengorn@itu.edu.tr 

is built due to reward learning and this is accomplished by 
modulating the connections between structures in BTC loop. 
The computational model in [2] is expanded by using point 
neurons for cortex (Ctx), to obtain a more realistic model for 
building association between sensory stimuli and actions. 

The task consists of associating sensory inputs, which are 
three different colors, presented to the humanoid robot with 
desired actions. Through this task, the associations are built 
with reward by modulating the plastic connections in the model 
and the connections between channels of Ctx which provide 
the neural computation. Eventhough there are neurocomputa­
tional models of action selection realized by point neurons [5] , 
embodiment of learning action selection by a humonoid robot 
is realized in this work. 

In Section II, the extended model of BTC loop and the 
learning circuit are explained first. Then, how the implemen­
tation of the computational model is done described and the 
real time evolution of task is revealed in Section III. After 
explanation of model and the environment, the experiments and 
results are presented to further clarify the real time evolution 
in Section IV. The paper is concluded with the discussion of 
results in Section V. 

II. A SPIKING NETWORK MODEL FOR LEARNING 

ACTION SELECTION 

The neurocomputational model used here to build asso­
ciation between sensory stimulus and desired action consists 
of two main parts. Decision on an action is accomplished 
by action selection part which involves a neurocomputational 
model of BTC loop. The second part modulates the parameters 
of the action selection part to provide the learning of the 
selection of desired actions. With the modulation of parameters 
using temporal difference learning (TDL) method, this part 
realizes building up the association between sensory stimulus 
and desired action. 

A. Neurocomputational Model 

Basal ganglia (BG) along with the related parts of Ctx and 
Thalamus (Thl) take part in decision making tasks [1] , [2] . 
In this study, the BTC model considered in [2] and [3] is 
expanded using spiking neural network model of Ctx which is 
given in Figure 1. In the expanded model, sensory information 
which reaches to Ctx is transferred to BG and Thl through Ctx 
and prosessed there to decide on an action. 
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Fig. I. BTC action selection model. Model is structured with the connections 
between Ctx, BG substructures and Thl. Ctx part of the model consists of point 
neurons while the other structures are modeled as mass models. Basal ganglia 
part consists of Str, GPe, GPi and Stn. 

The sensory information transfer is realized by three dif­
ferent pathways: Direct pathway through striatum (Str) and 
globus pallid us internal (GPi), indirect pathway through Str, 
globus pallidus external (GPe) and subthalamic nucleus (Stn) 
and hyperdirect pathway through Stn and GPi [6] , [7] . 

Since there are three sensory information in the con­
sidered task, Ctx has three separated neuron populations, 
which are named channels. In Figure 2, these three neuron 
populations/channels are indicated by three different colors. 
In addition, each channel has two neuron groups: excitatory 
and inhibitory neurons, which are denoted by upper groups 
and lower groups in Figure 2, respectively. Excitatory neurons 
make connections only within the channel. They have random 
connections in themselves and to the inhibitory neurons of 
the channel. However, inhibitory neurons are connected to the 
excitatory neurons of each channel. So, when a channel is 
promoted by a specific sensory stimulus, it inhibites the other 
channels by its inhibitory neuron group. So neuron populations 
in Ctx perform winner-take-all competition [8] . 

Excitatory neurons and inhibitory neurons are modeled as 
regular spiking and fast spiking point neurons, respectively [9] . 
There are 80 regular spiking and 20 fast spiking neurons in 
each channel. All connections are realized with 10% random 
connectivity. So, each regular spiking neuron makes eight 
connections in the excitatory neuron group of the channel 
and another eight connections to fast spiking neurons of the 
channel. And each fast spiking neuron makes two random 
connections to each of three excitatory neuron groups of all 
channels. 

The BG and Thl neurons are modeled as mass models 
and each of them also has three channels. Ctx, Thl and 
each element of BG are connected as shown in Figure 1. 
The excitatory connections are shown as regular arrows and 
inhibitory connections are shown as point-headed arrows. All 
the connections are static except the ones between sensory 

Fig. 2. Spiking neural network model of Ctx. There are three channels in the 
Ctx model each for a sensory stimulus and each channel consists of 80 regular 
spiking and 20 fast spiking Izhikevich neurons [9] connectivity of which 
are 10%. Regular spiking neurons are excitatory (upper neuron groups of 
each channel) and they have only connections inside its channel. Fast spiking 
neurons are inhibitory (lower neuron groups of each channel) and they have 
interchannel connections. So, the connections between channels are provided 
by inhibitory neurons of each channel. 

stimuli and Ctx and between Ctx and Str, which are indicated 
as We and Wr respectively. These dynamic connections are 
modified to build up the association between sensory stimuli 
and actions, 

The dynamical system model equations of the BTC model 
of Figure 1 is given in Equations 1. 

Str(k + 1) = Wr. * f (Ctx (k)) 
GPe (k + 1) = f( -Str (k)) 

Stn (k + 1) = f (Ctx (k) - GPe (k)) 
GPi (k + 1) = f (Stn (k) -Str (k)) 
Thl (k + 1) = f (Ctx (k) - GPi (k)) 

(1) 

Here, k is discrete time variable and all the time dependent 
neural structure parameters are 3xl vectors and their values 
are in [0,1] range which is provided with tangent hyperbolic 
function f given in Equation 2. 

f (x) = 0.5 (tanh (3 (x -0.45)) + 1) (2) 

Ctx values in equations are the scaled mean firing rates of 
each excitatory group. In this way, the connections and neural 
structures shown in Figure 1 compose a dynamical system 
model of BTC circuit. 

Now, dynamical connections between sensory stimuli and 
Ctx, i.e., We and between Ctx and Str, i.e., Wr will be clarified 
more. Each sensory stimulus, which correspond to red, yellow 
and blue colors are denoted by R, Y and B letters in Figure 
1, has connections to excitatory neurons of all three channels. 
Each sensory stimulus connects to all excitatory neurons of 
the three different channels similarly. The value of promoted 
input, the input of presented color, is 0.9 while the values 
of other inputs are 0.1. In this way, all inputs take part in 
the learning process. In addition to the sensory stimuli, the 
excitatory neurons in Ctx have noisy inputs with poisson of 
45 Hz. So, there are nine dynamic connections from sensory 
stimuli to the three different channels of Ctx, which builds 
up 3x3 matrix We. Due to this connection structure, before 
association is built, the sensory stimuli are homogoneously 
connected to each channel though there are different channels 
denoting three different colors. 



The other dynamic connection is between Ctx and Str. 
Each channel of Ctx projects onto the same channel of Str. 
The projection to Str is proportional to firing rates of the 
excitatory neurons of channels in Ctx. Therefore, there are 
three connections through the channels of Ctx and Str and 
these connections are indicated as W,.. which is denoted by 
a 3x1 matrix. These dynamic connections between sensory 
stimuli and Ctx and between Ctx and Str are modulated 
with expectation error of TDL explained in the following 
subsection. 

B. Modulation of Connections 

Modulation of the twelve connections between inputs (I), 
Ctx and Str are provided according to the TDL. TDL is a 
method of reinforcement learning [10] that is claimed to be 
related to reward based learning in BG [11] . TDL modulates 
the connections by evaluating the expectation error between 
the expectation of reward as the result of the action chosen 
with respect to the given sensory inputs and the actual reward 
that is determined by the environment. The modulation process 
is provided by the Equations 3 to 7. 

V (k) = WJ (k) I (k) (3) 

6e(k + 1)=r + fLV(k-1)-V(k) (4) 

Wv (k + 1) = Wv (k) + ry6e (k) I (k) (5) 

We (k + 1) = We (k) + ry6e (k) Ctx (k) . * I (k) (6) 
W,.. (k + 1) = W,.. (k) + ry6e (k) Ctx (k) . * Str (k) (7) 

In these equations, k is a parameter indicating discrete time. 
All k dependent parameters are in vector or matrix form except 
V and 6e which are scalar variables. ry and fL are constants 
values of which are 0.9. r stands for the reward information 
coming from environment. Its value is 1 when there is reward 
and 0 otherwise. In equation 3, V indicates the value assigned 
to the given inputs. This value information is kept in Wv 
which has one weight value for each input, so it is a matrix 
of dimension 3x1. 

The expectation error is calculated according to the given 
reward and the difference between previous and current values 
that is denoted in Equation 4. This expectation error modulates 
the value weights of inputs Wv according to Equation 5. 
So, the weights of values are modulated using the input 
information and the expectation error when there exists sensory 
information. Also, We matrix and W,.. vector, which indicate 
the weights of connections on the action selection model, 
are modulated using the expectation error due to the reward 
obtained as a result of action as seen in Equations 6 and 7. 

Thus, whenever there is a difference between the expecta­
tion and the actual result the connections between the neural 
structures, We and W,.., are updated proportional to the relation 
between Ctx and inputs for We and between Ctx and Str for 
W,.. . W,.. determines the projection of information to the BG. 

After Ctx begins to select the desired actions in sequence, 
the W,.. connections increase with respect to the expectation 
error and this increases the projection of information to the 
BG which effects the learning in long term. In this study, W,.. 
connections have a base value that loosely corresponds to the 
base level of dopamine in the model. 

Fig. 3. The robot used in the study is a humanoid robot platform caUed 
Darwin-Op. The humanoid robot is expected to associate the presented colors 
to the desired predefined actions. The three colors to be associated to the 
actions are red, yellow and blue. The green color is used to indicate reward 
given when the action choice is the desired one. 

III. IMPLEMENTATION ON HUMANOID ROBOT 

The computational model described in Section II is im­
plemented on a humanoid robot and building the association 
between sensory stimulus and the desired action is realized. 
By implementing such a model, compatibility of spike based 
neural network on a real time task is investigated and a 
cognitive process is realized. So a step toward realizing a 
neurorobot which is capable of realizing intelligent behavior 
with a dynamic model of neural structures is taken. 

In the considered task, the robot is expected to associate the 
presented colors to the desired predefined actions. As shown in 
Figure 3 on the right side, there are three colors that are yellow, 
blue and red to be associated to the predefined actions which 
are head movement, leaning and hand movement, respectively. 
The green color is used to indicate reward given to the robot 
if its decision is the desired action corresponding to the color 
shown. In addition to this, robot is also expected to rearrange 
the previously associated sensory input-action pairs in the case 
of no reward. In this way, robot can manage to associate 
the sensory stimulus to a new desired action by reward 
and change its previous behaviour. So the implementation of 
the computational model on humonoid robot also shows the 
adapdation capacity of model to the changing environment. 

The robot used in the study is a humanoid robot platform 
called as Darwin-Op which is shown in Figure 3. It has 
1.6 GHz Atom CPU and 1GB RAM inside and all the 
calculations are realized on the robot and in real-time. Model 
is coded in two parts on the humanoid robot which are the 
simulation of action selection model and learning adaptation 
to the environment. The action selection model is coded in 
Python module using NEST simulator for the spiking neural 
network part [12] . In addition to this, getting sensory input 
and actuation part is coded in C++ with learning included. 
The communication scheme of the communicaton between two 
module can be seen in Figure 4. At first, the humanoid robot 
gets sensory inputs with its camera and sends this information 
with the weights of connections, We and W,.., to the simulator 
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Fig. 4. Model is coded in two parts on the humanoid robot which are 
the simulation of action selection model and learning together with the 
communication to the environment. The action selection model is coded in 
Python using NEST simulator for the spiking neural network part [12]. Getting 
sensory input and actuation part is coded in C++ including learning. This 
diagram shows the communication scheme of the communi caton between two 
modules. 

Fig. 5. This diagram shows the evolution of the task. During task, robot 
tries to learn to associate sensory stimuli to the desired actions. The color 
information is transmitted to the ETC model as a sensory stimulus in order 
to get decision from Ctx. After robot performs the selected action, the green 
card is presented as a reward if the selected action is the desired one. Reward 
causes an expectation error, which is used to update the values of connections 
between neural structures of action selection model. Updating values of 
the connections changes the behavior of dynamical system [4] and so the 
behaviour of the action selection model. Repeating the reinforcement process, 
robot is reinforced to associate the desired input-action pair by changing the 
connections. 

part. In the simulator part, Python coded part, the decision is 
calculated using sensory inputs and connection information. 
Then the calculated Ctx and Str information is carried to the 
C++ coded part for getting reward and updating the connection. 
The two modules wait for the results of the other on real-time 
process of task. 

A. Real Time Implementation of Task on Humanoid Robot 

The task is evaluated as denoted in Figure 5. During task, 
robot tries to learn to associate sensory stimuli to the desired 
actions. So, it first recognizes the presented color with its 
embedded camera that is shown in Figure 5 on the lefts ide of 

figure. The color information is carried to the BTC model as a 
sensory stimulus to get the decision related to coming sensory 
information from Ctx. The selected action is determined from 
the mean firing rates of the channels of Ctx and if mean firing 
rates of all channels are below a certain threshold then the 
action is selected randomly. By doing this, humanoid robot is 
urged to try different actions to get a reward. After robot per­
forms the desired action corresponding to the present sensory 
information, the green card is presented as a reward. Since 
values of all We and W,.. connections are selected randomly, 
the robot doesn't know the associations at the beginning of the 
task. Therefore, robot expects nothing at the beginning. Getting 
reward while expecting nothing causes an expectation error, 
which is used to update the values of connections between 
neural structures of action selection model. Updating values of 
the connections changes the behaviour of dynamical system [4] 
and so the behaviour of the action selection model. Repeating 
the reinforcement process, robot is reinforced to associate the 
desired input-action pair by changing the connections. After 
robot successfully manages to associate a given sensory input 
to the desired action, the expectation error decreases to zero 
since the robot expects getting reward. However, if robot 
doesn't get reward when it expects to get, this causes a huge 
expectation error and robot tries to change the selected action 
when the sensory input is given. By this way, robot rearranges 
previously associated pairs and associate the sensory stimulus 
to a new action. 

IV. EXPERIMENTS AND RESULTS 

In this study, the humanoid robot is expected to select the 
desired actions when specific colors are presented. Thus, it is 
expected to learn to associate the sensory stimulus to an action 
by evaluating reward and also to rearrange the previously learnt 
pair for association to a new action. This task is achieved by 
updating the connections between sensory stimuli, Ctx and Str 
as explained in Section III. 

To show success of the model in real time learning task, 
two experiments are realized on humanoid robot. In the first 
experiment, the sensory inputs are associated to the desired 
actions in sequence and then the previously associated pair is 
rearranged. In the second experiment, the sensory inputs are 
presented to the robot in random order and association time 
and the strength of the connections are investigated. 

Results of the first experiment can be seen in Figure 6. 
The Figure 6-a shows the number of the presented input 
(first, second and third), which are red, yellow and blue 
colors respectively, and the channel of the selected action. 
The sensory input and the selected actions are indicated with 
red and blue lines, respectively. The Figure 6-b shows the 
expectation error, green line, and reward, red line. The Figure 
6-c shows the average firing rates of the each channel in the 
Ctx and red, yellow and blue lines indicate the channels re­
spectively. Through the experiment, the spiking neural network 
is simulated 200ms for each sensory input. The average firing 
rates of Ctx channels are calculated over the spikes in this 
200ms time interval. The simulated time of the spiking neural 
network last 15150ms for this experiment, but it takes 45 
minutes in real time, real time factor is approximately %0.6. 
This is due to the processor inside the robot being not suitable 
for a spiking neural network simulation in real time. 
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Fig. 6. a (upper figure): The selected actions (blue line) and the sensory inputs 
(red line). b (middle figure): Reward (red line) and expectation error (green 
line). c (lower figure): Average firing rates of Ctx channels. The simulated 
time of the spiking neural network last 15150ms for this experiment, but it 
takes 45 minutes in real time, real time factor (the proportion of simulation 
time to the real time) of which is approximately %0.6. 
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Fig. 7. The evolution of connections between sensory inputs (I) and Ctx 
channels (Ch) through the first experiment. 

During the experiment, the sensory stimuli are first asso­
ciated with the desired actions which are the first input (red 
color) to the first action (channel l), the second input (yellow 
color) to the second action (channel 2) and third input (blue 
color) to the third action (channel 3) as seen in Figure 6-a. At 
the beginning, the humanoid robot selects actions randomly, 
since there is no winner between Ctx channels until one of the 
average firing rates reaches to a certain value. After the colors 
are presented, the expectation error remains zero as far as the 
first reward to that input is given. This situation can be seen 
in Figure 6-b,c between the time intervals, 0 -1000ms and 
5000 -6500ms. 

When the red color, first input, is presented, the humanoid 
robot selects a random action until the average firing rate of 
the first channel reaches to a certain value. Until the first 

Fig. 8. The selected actions (blue line) and the sensory inputs (red line) of 
the second experiment. The first input is red color, the second is yellow color 
and the third is blue color. The sensory stimuli are presented in random order. 

Finng Rates of Each Channel 

Fig. 9. Average firing rates of Ctx channels through the second experiment. 

reward, the expectation error remains zero; this is why the 
connections and firing rates of channels remains same. This 
situation can be followed in Figure 6-c between the time 
intervals, 0 - 1000 ms and 5000 - 6500 ms. In Figure 
7, the evolution of connections between sensory inputs and 
Ctx channels through the experiment can be followed. At 
the beginning, the connections have a random value close 
to zero and evolve to values which build the associations 
between sensory inputs and desired actions in the way that the 
expectation error decrease to zero. After all sensory stimuli 
are associated with the actions, the first sensory stimulus is 
reassociated to the third action at the end of the experiment 
to show the realization of rearrangement of associations. After 
13000th ms the first sensory stimulus is associated to the third 
action by rewarding selection of the third action instead of 
the first. Therefore, the connections between the first stimulus 
and the first action decrease while the connections between 
the first stimulus and the third action increases (Figure 7). 
In Figure 6-c, it is seen that the average firing rate of the 
third channel increases due to the change in the connections. 
However, the connections between the first input and the first 
channel is still higher than the value at the beginning. So, they 
can be reassociated more easily considering the association at 
the beginning, which is also compatible to the reinforcement 
learning aspect. 

As a second experiment, the sensory inputs are presented 
in a random order seen in Figure 8. In the second experiment, 
the first input associated to the first action and so on. After 
all associations are accomplished the associated action of the 
first input is changed to be the third action. All processes are 
the same as the first experiment, but the orders of presented 
sensory stimulus are random. The average firing rates durin

R the second experiment can be seen in Figure 9. On the nooot 
ms all inputs are associated to the desired actions and the re­
arrangement of association of the first sensory stimulus begins 
after then. The second experiment is terminated after 15150 
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Fig. 10. The evolution of connections between sensory inputs (I) and Ctx 
channels (Ch) through the second experiment. 

ms, since the rearrangement is accomplished. In total, the task 
is accomplished in approximately same time interval in both 
of the experiments even the learning in the second experiment 
is realized in random order. The evolution of connections 
is presented in Figure 10 for the second experiment. Since 
the actions are selected randomly, when there is no winner, 
some of the connections are depressed in proportion to the 
expectation error because of not having expected reward. This 
situation happens for the connections between Il-Ch3 (green 
line), I3-Ch2 (cyan line) at the beginning of the experiment. 
The Il-Ch 1 connection (red line) also decreases after 10500th 
ms, but to a value close to one which makes a further 
association easier. 

V. CONCLUSION 

In this study, learning to build associations between the 
sensory inputs and actions are realized on a humanoid robot 
on a real time task. Through the task, an association of the 
visual sensory inputs to predefined actions are built up. The 
computational model in [2] is extended for this task with point 
neurons inside Ctx and reward modulated connections. Since 
embodiment of the computational models of neuronal circuits 
is an emerging way of investigating brain organisation, an 
environment for the realization of action selection circuit and 
learning is built to simulate the computational model in real 
time. Neural structures of the BG and the Ctx are modeled 
simple to decrease the computation need through the task, 
since the aim is to investigate the applicability of such model 
on the humanoid robot platform in real time. Despite these 
kind of humanoid robot platforms have high mobility abilities, 
they have low computation abilities for embodied simulation of 
neural circuits. As a result of this, the simulation of 300 point 
neurons and the dynamical system model has a 0.6 -1 % real 
time factor. One of the important aspect for the embodiment 
is that since the point neurons in Ctx are in relation with the 
BG and Thl structures which are modeled as mass model, the 
neuron parameters doesn't need to be optimized for a specific 
task. Therefore, despite the lack of model reality and detail 
in the computational models of BTC loop for action selection, 
this simple approach is sufficient from modeling aspect to show 
the action selection behaviour on Ctx in real time applications. 

As a future research, we aim to increase the real time factor 
of the model to be used on the humanoid robot platform. 
This development leads to enlarge the real time task to be 

more realistic and let the model to be used in search of brain 
organisation. 
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