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Abstract. This paper investigates the feasibility of using heterogeneous
computing for future advanced driver assistance systems (ADAS) appli-
cations. In particular, we take lane detection algorithm (LDA) as a test
case. The algorithm is customized into FPGA-GPU heterogeneous imple-
mentations which can be executed in either workload constant or bal-
anced scheme. Then the heterogeneous executions are evaluated in view
of performance and energy consumption, and further compared with the
single-accelerator run. Experiments show that the heterogeneous exe-
cution alleviates both the performance and energy bottlenecks caused
when only using a single accelerator. Moreover, compared with the sin-
gle FPGA execution, the workload balance scheme increases the perfor-
mance by 236.9% and 42.9% on our two tested platforms respectively,
while ensuring the low energy cost.

Keywords: Advanced Driver Assistance Systems (ADAS) + OpenCL -
FPGA - GPU

1 Introduction

For the automotive industry, advanced driver assistance systems (ADAS) are
born to take full advantage of massive multi-sensor information so as to improve
in-car and on-road safety. However, the input database space for ADAS appli-
cations is so large that it poses a big challenge for software developers to design
both real-time and highly efficient algorithms. For these applications, time con-
straint and reliability guarantee are vital, due to the critical personal and prop-
erty safety.

To flatten the real-time bound, commercial-off-the-shelf (COTS) hardware
accelerators are used to precipitously shorten the execution time of the on-vehicle
applications. For instance, since 2014 Nvidia has launched Jetson series [14] for
GPU-accelerated parallel processing in the mobile embedded system market.
Nevertheless, together with the high performance benefited from GPU also comes
the inevitable significant energy consumption. Meanwhile, due to the low energy
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cost, FPGA as another mainstream accelerator, is widely used in integrated
embedded systems.

Aiming at high performance computing (HPC) applications in embedded
systems, heterogeneous computing emerges as it leverages different accelera-
tors, such as FPGAs and GPUs, to strengthen the advantages of the individual
counterpart. Moreover, this type of reconfigurable computing framework is very
compatible with portable platforms because of its high flexibility and scalability.
From 2008, open computing language (OpenCL) arises and turns out to be an
ideal heterogeneous programming framework as it enables to scale computations
among CPUs, GPUs and FPGAs without changing the source code. However,
the performance portability on different COTS components cannot be guaran-
teed due to the diverse OpenCL implementations by respective board vendors.
Moreover, to our best knowledge, it is still unknown to what extent the hetero-
geneous context could be used for the automotive applications.

This paper uses typical lane detection as case study to probe the feasibil-
ity of using FPGA-GPU heterogenous architecture for ADAS applications. Lane
detection algorithm (LDA) is a well-tested technique and commonly used on con-
ventional electronic control units (ECUs) to assist better driving. We adopted
the algorithms developed by [10]. In [10], the authors proposed a particle-filter
based algorithm that can detect and track on-road lane markings real-timely.
However, the algorithm was only tested in view of performance, while using a
single FPGA or GPU. We customized this algorithm into a data-level parallel
program to enable its execution in heterogeneous context. Afterwards the pro-
gram was deployed and executed on two heterogeneous platforms which were
equipped with different COTS hardware accelerators. Furthermore, based on
the workload constant scenario, we developed a lightweight workload balance
scheme that could dynamically identify and adjust the workloads on FPGA and
GPU. Experiments showed that the heterogeneous execution resolved both the
performance and energy bottlenecks caused when only using a single FPGA or
GPU. The workload balance scheme could further reduce the time cost to a
large extent, while ensuring the low energy cost. Besides, the proposed scheme
can robustly adjust and stabilize the workload according to the computation
capacity of each computation device. The main contribution of this paper lies in:

— We use a real-life LDA as the test case and propose a time and energy efficient
heterogeneous implementation of this widely-used automotive application.

— Based on the heterogeneous design, we give a lightweight workload balance
scheme that can increase the performance by 236.9% and 42.9% on our two
test platforms respectively, while ensuring the low energy cost. What’s more,
the scheme can robustly adjust the workload in diverse road scenarios, based
on the computation capacity of each accelerator in use.

— Taking real-life road scenarios as input, we conduct a series of experiments on
two heterogeneous platforms, on which different pairs of FPGA and GPU are
equipped. Experimental results demonstrate the necessity of utilizing FPGA-
GPU combined heterogeneous architecture for future ADAS.
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The rest of this paper is organized as follows: Sect.2 is related work and
Sect. 3 overviews the procedure of the tested LDA. Section4 presents the het-
erogeneous design and the workload balance scheme. Section 5 gives experimental
analysis and Sect. 6 concludes the paper.

2 Related Work

Lots of previous research has compared the performance of using FPGA and
GPU in different areas, like deep learning [13], information security [5] and
image processing [3,6,7]. These studies present the distinct characteristics that
FPGA and GPU show in their computing competence. Generally, FPGA is adept
at floating-point arithmetic operations and GPU shows better performance on
matrix manipulations. Due to these features, researchers attempt to explore het-
erogenous architecture to accelerate scientific computing applications. Authors
in [1] proposed a heterogenous FPGA-GPU-CPU platform for a sport real-time
locating system. The platform is task-level parallel as FPGA is used for data
acquisition and GPU is mainly for object tracking. In their design, FPGA is used
more as a data gathering processor than a computation accelerating device. Sim-
ilarly, authors in [12] used the combined FPGA-GPU architecture to perform
cardiac physiological optical mapping. In this system, the FPGA is responsible
for camera data capture and the GPU mainly disposes fast fourier transform
(FFT), inverse fast fourier transform (IFFT) and filtering operations.

Among the aforementioned research, GPU always handles the major com-
putation workload and the performance of FPGA and GPU cannot be directly
compared since the task granularity on each device is apparently different.

Several other research is also emerging to compare the performance of FPGA
and GPU in the field of real-time processing. Authors in [7] presented a system-
atic approach to compare FPGA and GPU with five case study algorithms.
Their work focused on the algorithmic, data and hardware characteristics of the
applications and finally gave a throughput performance of the target devices. In
[8], the authors used the roofline model [16] to identify the appropriate accel-
erator for candidate applications and then performed the comparison based on
a pedestrian recognition application called fastHOG. Their work concentrated
on the task distribution between different accelerators. Both of the studies in
[7,8] do not involve the energy evaluation. Authors in [15] gave a thorough com-
parison of FPGA and GPU for computer vision algorithms, using a case study
of threaded isle detection. Their evaluations are rather comprehensive, includ-
ing performance, hardware cost, power efficiency and integratability. However,
their work cannot reveal the impact of OpenCL on FPGA and GPU, since the
algorithms are individually implemented using different programming languages.
The most related work to this paper is [4]. In [4], pedestrian detection applica-
tions are implemented on a heterogeneous FPGA-GPU-CPU platform and then
the authors compared the power, speed and accuracy of several different sce-
narios, where either FPGA, GPU or both are used for the computation. The
difference to our work is that they also used the task-level parallelism like [1]
and [12], among the accelerators.
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Different to all the work mentioned above, we adopt the data-level paral-
lelism for FPGA and GPU devices so that their performance characteristics can
be directly and intuitively compared. Thereupon the heterogeneous designs are
evaluated in consideration of time and energy consumption to demonstrate the
advantage of using heterogeneous architecture for ADAS applications.

3 Particle-Filter Based LDA

3.1 Algorithm Overview

This section briefly describes the naive design of the LDA and the procedure
is shown in Fig. 1. The algorithm mainly consists of three modules (the slash
boxes in Fig. 1), namely pre-processing, lane detection and lane tracking. The
algorithm analyzes the video stream captured by a moving vehicle and attempts
to extract the exact positions of the lane markings highlighted in the output
stream.

Input Stream 4@ N Pre-processing ‘@

v |
! Y
1 Lane Detection
. Position of
[Output StICdIIl]" _____ lane markings
Lane Tracking N

Fig. 1. Flow chart of LDA.

Pre-processing module includes four steps successively applied to the orig-
inal image. First a region of interest (ROI) is cropped from the raw image and
only this ROI is further processed. Then the ROI is transformed into grayscale
space where each pixel reflects the intensity of the pixel in original image. After
grayscaling, the edges of the lane markings are slightly obvious since they are
substantially brighter than the streets and roads around. To enhance this con-
trast of pixel intensity, a Sobel filter is applied to the grayscaled image to detect
pixel variations and extract edges. Finally, a threshold is used to tune the inten-
sity of all pixels in the image to avoid noise influence.

Lane detection module generates a set of candidate lines via assigning
random values from a normal distribution to form the candidate line set. For
each candidate line, a weight is calculated to reveal how close the line is located
to the real lane. Given this weight set, the line with the highest weight is chosen
as the best line and certain number of candidate lines are reserved as good lines,
which would be further used in the lane tracking module.

Lane tracking module adopts a particle filter to predict the positions of the
lane markings, using both the ROI of the current frame and the best line and
good lines of the previous frame. The particle filter consists of three steps:
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1. The prediction update step amends previous good lines with a normal distrib-
ution N(u,o?), with mean u = 0 and standard deviation o > 0. u = 0 means
no shift is expected in optimal case, while 0 > 0 reveals a deviation in real
scenarios. The updated lines are seen as prior probability distribution of the
lane markings in current frame.

2. The importance weight update step recalculates the weights of the particles
via Gaussian function

1
N oV 2m

where N is the particle number, 1y indicates the best line in previous frame
and oy expresses the noise that accounts for a possible error in case the
position of the lane marking does not change within two frames. Then the
importance weight of each particle is normalized to obtain the updated weight
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3. Based on the importance weights, the resampling step selects particles from
the newly updated set to prevent a degeneration of the particle set.

Finally the redetection checking step verifies whether the detected positions
reasonably conform to the physical properties of the lane markings. If not, addi-
tional detection step is triggered to seek the lane markings again. The criteria of
redetection is as follows: (i) Lane markings do not cross. (ii) There exists a mini-
mum distance between each two detected lane markings. This value is adjustable
and can be small when lots of lanes have to be detected. (iii) There should be
a minimum percentage of the lane marking within the ROI. This parameter is
flexible and can be user-defined.

3.2 Initial Design

In the basic version, each of the modules depicted in Sect. 3.1 is programmed
as an OpenCL kernel which will be executed on the hardware accelerator. For
simplicity, KERNEL_PRE, KERNEL_LD and KERNEL_PF are used as their individual
kernel names. Note that both lane detection and tracking require normally dis-
tributed random numbers to process their following tasks. Hence these numbers
should be generated by a random number generator. Therefore another kernel
called KERNEL_RNG is required. With above four kernels, the flow chart in Fig. 1
is abstracted as the pseudo-code shown in Algorithm 1, where the red lines (lines
2,4, 6, 9 in Algorithm 1) represent the kernel tasks.

4 Heterogeneous Design

4.1 Data-Level Parallelism

The heterogeneous version of the application tries to distribute the kernel tasks
among different accelerators. From Algorithm 1 it is seen that for each input
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Algorithm 1. LDA (basic version)
Input: raw camera-captured video stream
Output: video stream with lanes marked

1: initialization

2: random number generation //KERNEL_RNG
3: while not the end frame do

4:  ROI image pre-processing //KERNEL_PRE

5:  if redetection then

6: lane detection //KERNEL_LD

T candidate line generation

8: else

9: lane tracking //KERNEL_PF

10: good line resampling

11: end if

12: best line extraction and mark lanes in current frame

13: end while

video stream, random number generation (KERNEL_RNG) is run only once and the
other three kernels are executed repeatedly inner the frame loop. For this reason,
KERNEL_RNG can be performed on every accelerator since its time cost is rather
small, while the other kernels should be scattered across the accelerators as they
are the main tasks.

Meanwhile, it is worth noting that two layers of data dependencies exist
here: (i) both the executions of KERNEL_LD and KERNEL_PF use the output of
KERNEL_RNG and KERNEL_PRE, and (ii) if the current frame is the first tracking
frame, then it will need the detected positions of lane markings in the previous
frame, in this case the execution of KERNEL _PF relies on the output of KERNEL_LD.
Consequently, task-level parallelism for these three kernels is not desirable as it
requires the indirect Device—Host—Device data transfer, which is considerably
time-consuming due to the lack of state-of-the-art commercial direct FPGA-
GPU data communication mechanism.

From the above, data-level parallelism of the basic LDA is used for the hetero-
geneous context and Fig. 2 gives the overall processing procedure. In general, the
host utilizes an installable client driver (ICD) loader to coordinate the tasks exe-
cuting on FPGA and GPU. When invoking OpenCL API functions, the program
runtime passes kernel parameters to the ICD loader and then the ICD loader
calls FPGA- and GPU-specific functions with fpga- and gpu-specific parameters
respectively.

The host side is responsible for (i) kernel parameters initialization and raw
image I/O when the program begins, and (ii) result collection, weight updating
and line resampling during the frame loop. On each hardware accelerator, the
ROI of the image is preprocessed and then the detection kernel (KERNEL_LD) sam-
ples a set of candidate lines and calculates their intensity weights individually.
As shown in Fig. 2, KERNEL_LD processes n lines on the FPGA and m lines on the
GPU, and subsequently returns the intensity weights to the host. On the host,
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Fig. 2. Execution of LDA in heterogeneous context overview. Red and blue items
are distributed tasks on the FPGA and GPU. The italic items show the transfer of
parameters. (Color figure online)

after extracting a series of good lines and one best line, the lane detection opera-
tion outputs the position of the lane markings as the form of best line. Similarly
for lane tracking kernel (KERNEL_PF), a group of particles are extracted from the
output data of KERNEL_LD. Again these particles are scattered and processed on
the two accelerators. Here n’ and m’ particles are respectively disposed on the
FPGA and GPU. When the importance weights of the particles are finished cal-
culating, they are returned back to the host side and new particles are resampled
based on the aggregated results to step into the new iteration.

4.2 ‘Workload Balance

To get the optimal execution, the workload of KERNEL_LD and KERNEL_PF on GPU
and FPGA needs to be dynamically assigned since GPU and FPGA show distinct
computation capacities in consideration of different types of data manipulations.
This is especially important when the application is intended to be scaled across
different platforms, where different FPGA and GPU boards are used. Since time
and energy costs are two of the most important indicators when monitoring
ADAS applications, this paper gives a time optimization based workload balance
scheme for the heterogeneous LDA and the energy cost is afterwards investigated.

Algorithm 2 briefs the workload balance scheme. Here funcRNG, funcPRE,
funcLD and funcPF are corresponding kernel functions, from which the timing
information can be profiled. The details of function funcAdjust WL are shown in
Algorithm 3. Assume that the input is the initial task load for FPGA and GPU
devices (i.e., m, n, m', n’ in Fig. 2), and the output is the time-optimal executions



40 X. Wang et al.

Algorithm 2. Workload balance scheme

Input: m, n, m’, n/

Output: trerner

1: trng, « funcRNG(m +n), trng, «— funcRNG(m + n)
2! trernel — max(trngf,tmgg)

3: while not the end frame do

41 Apre, — funcPRE(m), tpre; « funcPRE(n)

3 tpre < tpres + lprey

6: trhernel < tkernel + tpre

7:  if redetection then

8 tia, — funcLD(m), tig, — funcLD(n)

9: tkernel < tkernel + maz(tzdf 5 tldg)

10: m, n — funcAdjustWL(tia,,tia,, m,n)
11:  else

12: tpf, < funcPFE(m'), tpf, < funcPF(n’)
13: Lrernel < tkernel +mazx(tys, tpf,)

14: m', n' — funcAdjustWL(tys,,tp,,m',n’)
15:  end if

16: end while

Algorithm 3. Function funcAdjustWL in Algorithm 2
Input: tf, ty, Wy, Wy
Output: Wy, W,
1ep e Vi o0 Wy
N f tf » ~g tg

2: Wy — C;chg(Wf + Wy), Wy «— CchgCg(Wf + Wy)

of the program (indicated as kernel execution time ¢gerne;). The idea is that
the workload for a device should be proportional to its computation capacity,
i.e., its throughput. Hence, after each frame is processed complete, the kernel
execution time on each device is recorded (lines 1, 4, 8, 12 in Algorithm 2) and
the throughput is calculated. Then the total work load is re-assigned based on
the current throughputs of the computing devices (lines 10, 14 in Algorithm 2).
This scheme assumes that for each frame, the execution times of KERNEL_LD and
KERNEL_PF are proportional to their current task load.

4.3 Performance and Energy Evaluation

In our context, totally four scenarios are involved, namely, single FPGA execu-
tion (singleFPGA), single GPU execution (singleGPU ), work-load-constant
(heteroConstant) and work-load-balanced (heteroBalanced) heterogeneous
execution. In work-load-constant scenario, the whole task is partitioned in
advance and then fed to FPGA and GPU devices. Thus the task proportions
on FPGA and GPU are always constant. While in work-load-balanced scenario,
with given partitioned task, the workload balance scheme tunes the task pro-
portions on FPGA and GPU during the processing of each frame.
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To reveal the tradeoffs between these situations, we record the execution time
of all the four implementations to evaluate their real-time performance over the
energy cost. In order to calculate the energy cost, we construct the runtime envi-
ronment where both FPGA and GPU cards are working in full load mode, so
that the peak power consumption can be reached. To fulfill this, we use extremely
large computation task load since the particle filter is highly scalable and con-
sequently the larger the particle number is, the more the computation task load
would be. During the evaluation, the execution time of each run is measured to
calculate the real-time performance. We use the same power estimation method
as [9] and Altera PowerPlay power analyzer [11] is used to estimate the power
consumption of running each OpenCL kernel on FPGA. As for the power esti-
mation of GPU and CPU, we use data from official specifications of the COTS
components.

5 Experiment and Analysis

5.1 Experimental Setup

The applications are run in two different heterogeneous contexts listed in Table 1.
Both platforms contain one FPGA and one GPU board. For contrast, they are
equipped with two groups of boards which show rather different computation
capacities. Platform #1 is deployed with a Terasic Arria 10 FPGA and an AMD
W7100 GPU, while a Nallatech pcie385n FPGA and an Nvidia Quadro K600
are used on platform #2. Note that the computation capacities of the FPGA
and GPU boards on each platform are rather different. AMD W7100 presents
an obviously superior performance than Arria 10, while Nallatech pcie385n and
Quadro K600 have comparable computing capacities. The purpose of this is to
demonstrate the robustness of our applications in heterogeneous contexts where
accelerators have unbalanced computation competence.

Table 1. Detailed specification of the hardware platforms

Platform #1 #2

Host CPU Intel Xeon E31225 @ 3.10 GHz Intel Core 2 Quad Q9300 @ 2.50 GHz
Thermal Design 95 W 95 W

Power

Device FPGA GPU FPGA GPU

Model Terasic Arria 10 AMD W7100 Nallatech 385 Quadro K600
Architecture Arria 10 AX FirePro Stratix V GS Kepler GK

OpenCL SDK Intel FPGA SDK 16.0/AMD APP SDK 3.0|/Intel FPGA SDK 13.1|CUDA 8.0
version
Peak GFLOPS |1366 3379.2 294.7 336.4

Peak board 95 150 25 40
power (W)
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To demonstrate the high availability of using the tested LDA for real-life
driving conditions, we use video streams from different data sets with differ-
ent scenarios. The detailed information of these videos is listed in Table2, of
which cordoval, cordova2, washingtonl and washington2 are from Caltech
lanes dataset [2], while the others are self-recorded. These videos are captured
in different resolutions and the frame numbers have a great range from 232
(washington2) to 4992 (night_land_car). Moreover, these videos represent var-
ious road situations including in day and night, with heavy traffic, with blurred
and broken lines, in street and highway, in urban and rural areas, etc. The pur-
pose of this is to obtain as actual results as possible.

Table 2. Detailed information of the test videos

Videos | Name Total frames | Resolution | Scenario

1 cordoval 250 640 x 480 | bus view

2 cordova2 406 640 x 480 | blur lane

3 washington1 337 640 x 480 | street shade

4 washington2 232 640 x 480 | blur lane

5 street 3056 640 x 480 | street road

6 day_highway 1718 640 x 480 | high way

7 Frontfacingobstacle 4601 480 x 360 | crossing lane
8 HighSpeedDrivingShort | 1871 1920 x 1080 | high way

9 clip2 1289 640 x 360 | rural

10 clip4 899 640 x 360 |dark

11 night_land_car 4992 640 x 480 | night

12 night_traffic 2654 640 x 480 | heavy traffic
13 oli4 2287 480 x 320 | broken lane
14 night_4 2799 640 x 480 | night highway
15 night_brokenlanes 1897 640 x 480 | broken lane
16 Weilerhemmen 4944 640 x 480 | light disturbance

During the experiments each video is run 10 times per platform and the
overall results are collected and averaged. To construct the large task load, we use
rather large numbers of particles to iterate over each generation of the line sets.
In details, during each run we use 2'2 good lines and 2'2 candidate lines to detect
2 best lines. As for the heterogeneous executions, the initial task proportion on
FPGA is set as the range from 1% to 99% and the rest part is executed on GPU.
When using the workload balance scheme, an initial task proportion is given and
afterwards both the task proportions of FPGA and GPU are recorded frame by
frame to present the real-time work load distribution.
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Note that for singleFPGA and singleGPU scenarios, the task proportions on
FPGA are constant 100% and 0%, respectively. Hence the results of single FPGA
and singleGPU are used as reference for evaluating the heterogenous executions.

5.2 Results and Analysis

Workload Balance Scheme. The objective of the workload balance scheme is
to minimize the kernel execution time (fxerner in Algorithm 2). To validate the
correctness and robustness of this scheme, (i) the kernel execution times of the
four designs are recorded and (ii) during the heteroBalanced run, the real-time
task rates on both FPGA and GPU devices are monitored. Figure 3 summarizes
the experimental results. Due to the page limit, Fig. 3(c) and (d) only show the
real-time task rates of washington2 and night_land car as they are the two
videos with the smallest and largest frame numbers.

(a) Kernel time on platform #1 (b) Kernel time on platform #2
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Fig. 3. Validity and robust test results of the workload balance scheme.

Figure 3(a) and (b) indicate that when compared with singleFPGA, both of
the heteroConstant and heteroBalanced implementations can shorten the ker-

nel execution time to a large degree. The kernel time cost of heteroBalanced
is 26.94% and 51.96% of singleFPGA, 177.76% and 59.49% of singleGPU on



44 X. Wang et al.

platform #1 and #2, respectively. It’s seen that the time costs of the heteroge-
neous executions on platform #1 are larger than the singleGPU case. This is
because the time cost of singleFPGA is an order of magnitude larger than that
of singleGPU. Therefore simply shifting the task a little from GPU to FPGA
would incur considerable latency. As can be oberserved, on both platforms the
kernel execution time of heteroConstant always surpasses heteroBalanced, which
verifies the validity of the workload balance scheme. In Fig.3(c) and (d), it is
seen that the real-time task proportions of both videos converge within 5 frames
and then keep relatively constant with minor fluctuations. What’s more, the
workload balance scheme can identify the optimal task distributions on FPGA
and GPU, regardless of the input video. To be specific, the optimal task rates on
the FPGA of platform #1 and #2 are around 2% and 41%, respectively. This
demonstrates the robustness of the workload balance scheme.

Performance. Figure4 depicts the performance of the four implementations
running on the two test platforms. From the figure we observe that on both plat-
forms the performance of single GPU outperforms single ’PG A and this is reason-
able due to the lower computation capacity of FPGA (refer to the peak GFLOPS
in Table1). Both of the heterogeneous runs gain a performance increase than
singleFFPGA, which without doubt benefits from the high performance GPU.

160

(a) Performance on platform #1

" v ‘ T
@ 140} E"B‘W AT A 1
g 120 —singleFPGA
£ 100} V—singleGPU
& — heteroConstant
g 80 /A—4heteroBalanced
= 6ol !
g 40} 6
= 20 I I I I I I I I I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Task proportion on FPGA (%)
100 (b) Performance on platform #2
2 "7 T 77 [6—9singleFPGA — heteroConstant
= V—vsingleGPU A—AheteroBalanced
g 80} =
§ = KJ L | 1 | 'S I Sy
: o LA ’
g =TT
g 40 ]
g
=20

20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Task proportion on FPGA (%)

Fig. 4. Performance results overview.
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The heteroConstant execution displays a considerable fluctuation. This is
because when gradually increasing the task rate, due to the OpenCL specifi-
cation, the task load on FPGA shows a discrete step change, which greatly
influences the CPU—FPGA data transfer latency since direct memory access
(DMA) requires data alignment of the transmitted data. Intuitively, the perfor-
mance declines when more and more tasks are shifted to FPGA. As for heter-
oBalanced scenario, the performance turns out very stable since the task load is
dynamically allocated and the heterogeneous execution would rapidly converges
to equilibrium after several frames, which is verified in Sect.5.2. Moreover, on
platform #1 the balanced run could achieve a comparative performance over the
singleGPU run.

On the whole, using heterogeneous architecture improves the performance
when compared with the single’PGA lower bound. The workload balance scheme
reconciles the heterogeneous system and during all task rates, heteroBalanced
increases the performance by 236.9% and 42.9% on platform #1 and #2 respec-
tively, when compared with single FPGA.

Energy. Figureb shows the overall energy cost for the four different designs.
Figure 5(a) and (b) present the energy cost of the overall system, while Fig. 5(c)
and (d) give the results of the accelerator energy consumption.

a) Total energy cost on platform #1 (b) Total energy cost on platform #2
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Fig. 5. Energy consumption overview.
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As indicated by Fig.5(a) and (b), the system energy is much larger when
using a single FPGA, compared with the energy cost of singleGPU. This is
mainly because the overall execution time of singleFPGA is much longer than
singleGPU, which poses a huge increment of the CPU energy cost. However,
on both platforms our heterogeneous designs are able to consume almost as
less energy as singleGPU. The heteroBalanced implementation utilizes the least
energy on platform #1 and increases the energy by only 10.98% when compared
with singleGPU on platform #2.

With regards to the on-device energy cost (Fig.5(c) and (d)), the two plat-
forms exhibit different features. On platform #1, using a single GPU costs the
least device energy and we owe this to the huge speedup of the AMD W7100
card. The energy cost of FPGA is not able to outperform the GPU because the
low-power advantage of FPGA over GPU simply cannot compensate for the far-
behind performance gap. As the consequence, the device energy increases linearly
when tasks are migrated on FPGA, which is clearly observed via the heteroCon-
stant curve. Nevertheless, the heteroBalanced design commendably suppresses
the energy cost, as it manages to identify the power-performance tradeoff of
FPGA and GPU and subsequently always distributes more task load on GPU.
As for platform #2, the performance gap between Stratix V 385 and Quadro
K600 is much narrower and in this case FPGA fully displays its low-power char-
acteristic, when comparing the result of the singleFPGA and singleGPU curves.
Compared with the singleGPU upper bound, heteroConstant reduces the energy
cost to 89.49%.

In summary, the heterogeneous executions consume less energy, when com-
pared with the most-energy-cost single accelerator (i.e., singleFPGA in Fig. 5(a),
(b) and (c), singleGPU in Fig.5(d)). Using the workload balanced scheme not
only “smoothes” the heterogeneous execution, but also shortens the energy cost
regardless of the initial task rates. On both platforms, when using the hetero-
geneous architecture, the performance can be boosted while ensuring the low
energy cost.

6 Conclusion and Future Work

Heterogeneous computing is a promising solution for future ADAS since it is
able to regulate the performance and energy tradeoff in the system. This paper
used typical lane detection as case study to probe the feasibility of using FPGA-
GPU combined heterogenous architecture for ADAS applications. The perfor-
mance and energy costs were carefully evaluated among the heterogeneous and
single-accelerator executions. We demonstrated that the heterogeneous imple-
mentations could solve both the performance and energy bottlenecks caused
when only using a single accelerator. Moreover, the proposed workload balance
scheme can further boost the performance, while ensuring the low energy cost.

Our future work is to use more ADAS applications to verify the pros and
cons of the heterogeneous computing.
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