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Abstract

Multicore system-on-chip architectures are dominant in all domains, such as desktop

and server computers, smartphones and embedded devices. In tiled many-core system-

on-chip architectures a large number of processor cores are replicated in a regular struc-

ture. Tiles contain one or multiple processor cores and other resources such as memories.

The inter-tile communication is based on the network-on-chip methodology. The inter-

face between the tiles and the network-on-chip is the network adapter. The very basic

functionality of the network adapter is the packetization of data and protocol bridg-

ing. Sometimes the network adapter implements flow control above the network level

or synchronization primitives. Generally, the work related to on-chip network adapters

focuses on improvements on the level of the network-on-chip. Anyhow, complex software

stacks become increasingly important on the computing side of network adapters. Those

stacks add for example high-level message passing which abstract from the underlying

hardware, and device sharing by software tasks running on top of an operating system.

The network adapter shares similarities with network interface cards (NIC), espe-

cially in high performance computing (HPC). This thesis investigates the adoption of

concepts from inter-node communication in HPC to on-chip communication and the

co-optimization of the many-core architecture and programming model. The central

contribution is the concept of a Network Adapter for Message Passing (NAMP).

Motivated by the demands of aforementioned complex software stacks, the work fo-

cuses on features in the following areas: 1) Offloading higher-level protocol processing

into the network adapter, 2) bypassing the operating system by virtualization, and 3)

efficient event notification to the tasks. The NAMP addresses those areas with an of-

fload of the message passing protocol handling into hardware, including the capability

for collective communication between multiple tiles. It can be shared transparently by

multiple task as a self-virtualized device. Furthermore, the NAMP concept includes a

novel idea for efficient task notification, hardware-based operating system queue manip-

ulation (HW-OSQM), that allows for elimination of all overhead by interrupts and can

be easily generalized for arbitrary devices. Finally, the thesis contributes a concept for

the migration of the communication channels during task migration as an integral part
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Abstract

of NAMP. The NAMP concept allows for flexible configuration and composability of the

proposed features.

The NAMP features are evaluated with event-based simulations or analytically. For

example, compared to an implementation that is assisted by an RDMA controller the

NAMP offload of the message passing protocol to hardware reduces the overhead by

48% in case the message can be transferred immediately and 64% if messages need on

average one re-transmission. On this baseline other features show for example a decrease

in overhead of a multicast operation to 8 destinations of up to 84%. The virtualization of

the NAMP interface allows for a saving of up to 62% of overhead in the sender software.

Beside the evaluation of the proposed improvements, the concept is validated with a

prototype implementation. This implementation is used to validate the basic NAMP

functionality with synthetic benchmarks in a cycle-accurate RTL simulation. Further-

more, the implementation is synthesized for an FPGA and an ASIC target to evaluate

the impact on the hardware utilization. Five typical configurations using different sets

of features are evaluated. The hardware overhead is moderate: A simple variant only

adds 14,000 gates to the ASIC design, while a fully fledged NAMP takes approximately

46,000 gates. Finally, two example systems are implemented in FPGAs to demonstrate

the use of NAMP in different scenarios: The first is a system with four cores in four tiles

that targets at baremetal use cases, and the second is a system with 64 cores in 16 tiles

that targets at flexible use cases with a full software stack.

To the best of my knowledge, work presented in this thesis is the first that compre-

hensively analyzes on-chip message passing with a full system stack, and contributes

a configurable, scalable concept for a network adapter that enables efficient inter-tile

communication in tiled many-core system-on-chip.
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Zusammenfassung

Mehrkern System-on-Chip-Architekturen dominieren in allen Bereichen, wie Desktop-

und Server-Computer, Smartphones und Embedded Systems. In gekachelten Vielkern-

System-on-Chip-Architekturen wird eine große Anzahl von Prozessorkernen in einer

regulären Struktur repliziert. Kacheln enthalten einen oder mehrere Prozessorkerne und

andere Ressourcen wie Speicher. Die Kommunikation zwischen den Kacheln basiert auf

Network-on-Chip. Die Schnittstelle zwischen den Kacheln und dem Network-on-Chip ist

der Netzwerkadapter. Allgemein übernimmt der Netzwerkadapter die Paketierung von

Daten und Protokollüberbrückung. Manchmal implementiert der Netzwerkadapter auch

Flusskontrolle oberhalb der Netzwerkebene oder Synchronisierung zwischen Kacheln.

Im Allgemeinen konzentrieren sich Beiträge im Bereich der on-chip Netzwerkadapter

auf Verbesserungen auf der Ebene des Network-on-Chip. Gleichwohl werden kom-

plexe Software-Stacks innerhalb der Kacheln immer wichtiger. Diese Stacks beinhalten

beispielsweise Message Passing auf höheren Protokollschichten und die gemeinsame Ver-

wendung der Hardware durch Software-Tasks, die auf einem Betriebssystem ausgeführt

werden.

Der Netzwerkadapter weist Ähnlichkeiten mit Netzwerkschnittstellenkarten (Network

Interface Cards, NIC) auf, insbesondere im Hochleistungsrechnen (High Performance

Computing, HPC). Diese Arbeit untersucht die Übernahme von Konzepten von der

Kommunikation zwischen Knoten in HPC zu On-Chip-Kommunikation und die Co-

Optimierung der Vielkern-Architektur und des Programmiermodells. Der zentrale Beitrag

ist das Konzept eines Netzwerkadapters für Message Passing (NAMP).

Motiviert durch die Anforderungen der oben genannten komplexen Software-Stacks

konzentriert sich die Arbeit auf Features in folgenden Bereichen: 1) Entlastung der

übergeordneten Protokollverarbeitung durch die Netzwerkadapter, 2) Umgehung des

Betriebssystems durch Virtualisierung und 3) effiziente Ereignisbenachrichtigung an die

Applikationen. Der NAMP adressiert diese Bereiche mit einer Entlastung der Mas-

sage Passing Protokollbehandlung in Hardware, einschließlich der Fähigkeit zur kollek-

tiven Kommunikation zwischen mehreren Kacheln. Er kann transparent von mehreren

Aufgaben als selbst-virtualisiertes Gerät geteilt werden. Darüber hinaus enthält das
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NAMP-Konzept eine neuartige Idee für eine effiziente Applikationsbenachrichtigung,

eine hardwarebasierte Betriebssystemwarteschlangenmanipulation (hardware-based op-

erating system queue manipulation, OSQM), die den gesamten Overhead durch In-

terrupts eliminiert und leicht für beliebige Geräte verallgemeinert werden kann. Ab-

schließend wird ein Konzept zur Migration der Kommunikationskanäle bei der Taskmi-

gration als integraler Bestandteil von NAMP vorgestellt. Das NAMP-Konzept ermöglicht

eine flexible Konfiguration und Zusammensetzbarkeit der vorgeschlagenen Features.

Die NAMP-Features werden mit ereignisbasierten Simulationen oder analytisch un-

tersucht. Im Vergleich zu einer Implementierung, die von einem RDMA-Controller un-

terstützt wird, reduziert der NAMP-Offload des Message Passing Protokolls in Hard-

ware den Overhead um 48% für den Fall, dass die Nachricht sofort übertragen wer-

den kann, und 64%, wenn Nachrichten im Durchschnitt eine Wiederaufnahme benötige.

Auf dieser Grundlage zeigen andere Feature beispielsweise eine Verringerung der Over-

heads einer Multicast-Operation auf 8 Ziele von bis zu 84%. Die Virtualisierung der

NAMP-Schnittstelle ermöglicht eine Einsparung von bis zu 62% des Overheads in der

Sendersoftware.

Neben der Untersuchung der vorgeschlagenen Verbesserungen wird das Konzept mit

einer Prototypimplementierung validiert. Diese Implementierung wird verwendet, um

die grundlegende NAMP-Funktionalität mit synthetischen Benchmarks in einer zyklus-

genauen RTL-Simulation zu validieren. Darüber hinaus wird die Implementierung für

ein FPGA- und ein ASIC-Target synthetisiert, um die Auswirkungen auf den Hardware-

Verbrauch zu bewerten. Fünf typische Konfigurationen, die verschiedene Sets von Fea-

tures verwenden, werden bewertet. Der Hardware-Overhead ist moderat: Eine ein-

fache Variante fügt dem ASIC-Design nur 14.000 Gatter hinzu, während ein vollwertiger

NAMP ungefähr 46.000 Gatter benötigt. Schließlich werden zwei Beispielsysteme in FP-

GAs implementiert, um den Einsatz von NAMP in verschiedenen Szenarien zu demon-

strieren: Das erste ist ein System mit vier Kernen in vier Kacheln, das auf Barmetal-

Anwendungsfälle zielt, und das zweite ist ein System mit 64 Kernen in 16 Kacheln und

zielt auf flexiblen Anwendungsfällen mit einem vollen Software-Stack.

Meines Wissens nach sind die Beiträge, die in dieser Arbeit vorgestellt werden, die

ersten, die On-Chip Message Passing mit einem vollständigen Software-Stack umfassend

analysiert und ein konfigurierbares, skalierbares Konzept für einen On-Chip Netzw-

erkadapter beisteuert, der eine effiziente Kommunikation zwischen den Kacheln in Many-

core System-on-Chip ermöglicht.
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1 Introduction

The development of computer architecture took an astonishing pace in the recent decades.

Moore’s “Law” [150] – that actually was an early observation – describes how the in-

tegration density in semiconductor devices led to roughly a doubling of the number of

transistors per chip every two years. Beside twice the number of transistors available for

computations, shrinking transistor dimensions allowed for ever increasing clock frequen-

cies. Hence, the performance increases of cores in the 1980s and 1990s were dominated

by rapid development of two factors:

Micro-architecture improvements The goal of a good micro-architecture can be ab-

stracted as converting the number of extra transistors into more software instruc-

tions completed per clock cycle. Starting from execution of one software instruction

after the other, further improvements are achieved by exploiting parallelism and

speculation. Most importantly, instruction level parallelism and data level paral-

lelism of the software have enabled significant improvements.1

Aggressive frequency scaling With shrinking transistor dimensions the frequency of a

circuit can be increased. Beside this, pipelining techniques in the micro-architecture

further allow increasing processor frequencies. The number of clock cycles per sec-

ond hence increased significantly.

Roughly speaking, those were the two major sources of steady performance increases,

where processor performance can be sketched as executed software instructions per sec-

ond (IPS):

instructions

second
=
instructions

cycle
× cycles

second

The first component, instructions per cycle (IPC), is influenced by improvements of the

micro-architecture, for example by exploiting parallelism and speculation. The second

part is the frequency of the processor core.

1This is of course an abstracted view on the topic of computer architectures. For a deeper insight into
this fascinating topic I refer the reader to the standard text book of Hennessy and Patterson [100].
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(a) Intel Core 2 Duo,
2006 [163]

(b) Xeon E7 8890 v3, 2015 [151] (c) TI OMAP 5430, 2013 [202]

Figure 1.1: Evolutionary milestones of multi-core architectures

Around the year 2000 further scaling both of those factors became increasingly harder.

As the power dissipation cubically grows with the frequency, the “power wall” started

limiting further frequency increases beyond 3 GHz. Despite the vast amount of ex-

tra transistors, micro-architecture improvements rapidly stopped delivering much extra

instructions per cycle.

A solution to this problem is to spend the extra transistors on replicating the pro-

cessor core. Such multi-core system-on-chip or chip multi-core processors (CMP) allow

execution of multiple instruction streams in parallel. For N processor cores, the chip

executes N -times the number of instructions per cycle. Scaling back the frequency to

reduce the power consumption, multi-core system-on-chip are thus capable of deliver-

ing increasing performance with lower power consumption. Figure 1.1 shows a rough

overview of common patterns that have become dominant in the evolution of commod-

ity multi-core system-on-chip since then [212]: early dual core processors (Figure 1.1a),

today’s desktop and server processors (Figure 1.1b) and heterogeneous system-on-chip

in embedded systems and smartphones (Figure 1.1c).

Processor cores can be replicated in a scalable way. The methodology of packet-based

network-on-chip has been a key enabler of scalable many-core system-on-chip that in-

tegrate hundreds or even a thousand simple reduced instruction set cores (RISC) in

massively parallel platforms (see Table 2.1 for an extensive overview). The cores, local

memory and peripherals are grouped in tiles and connected via a network-on-chip in

a regular structure. This organization is referred to as tiled many-core system-on-chip.

There are two classes of tiled many-core system-on-chip: Tightly-coupled many-core

2



(a) EZ-Chip Mx-100, 2015 [63] (b) Adapteva Epiphany-III
16-core, 2013 [2]

Figure 1.2: Commercial many-core system-on-chip

system-on-chip can be described as descendants of the Transputer [222]. The cores di-

rectly move small data items to their next neighbors with a small latency. This works

best with algorithms often described as “embarrassingly parallel” from application do-

mains such as media processing or machine learning. Graphical processing units (GPU)

are widespread examples for such platforms too. Another class of many-core system-

on-chip can be described as loosely-coupled : The communication is between any tiles in

the system and not only neighbors and generally asynchronous. Two commercial many-

core system-on-chip from this class are sketched in Figure 1.2. The Mellanox Tile-Gx

platform (formerly Tilera and EZ-Chip) [63] is prominently deployed in cellular base sta-

tion and network routers, while the Adapteva Epiphany platform [2] targets embedded

systems.

So, why not simply replicate thousands of simple, low power processor cores? The

answer is quite straight-forward: Because they have to be programmed efficiently. The

sequential processor performance (instructions per cycle) is much better for highly opti-

mized, larger processor cores. Hence, the software must be parallel to benefit from the

parallel execution. Some algorithms are embarrassingly parallel, making this task easier,

but generally the possible degree of parallelization is limited by the sequential parts of

the software (“Amdahl’s law”). Beside the software parallelization – which is beyond

the scope of this thesis – the different parts (“tasks”) of the software need to commu-

nicate. This synchronization and data exchange between tasks can quickly become the

bottleneck.

3
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HPC (Infiniband) On-Chip Communication

CPU Clock Rate 2 GHz to 3 GHz 100 MHz to 2000 MHz
Memory size at node > 4 GB 8 kB-1 MB
Protocol Robustness Requirements High Low
Latency 10 µs (20k cycles) 20 ns to 400 ns (10-100 cycles)
Bandwidth 1,000-16,000 MB/s 400-32,000 MB/s

Table 1.1: Communication comparison

The problem of efficient inter-tile communication becomes more dominant with the

increasing number of cores, which are grouped into tiles. In this thesis I focus on loosely-

coupled many-core system-on-chip which are comparable to multi-computer networks.

Anyhow, important communication conditions are compared in Table 1.1. It can be

observed that on-chip communication is much more performant and easier to handle

due to two orders of magnitude difference in the latency and the significant difference

in the achievable bandwidth. Furthermore, on-chip communication needs less attention

to physical and protocol robustness as the error probability is much lower on a chip

(although increasingly important as discussed later).

It can therefore be concluded that on-chip communication generally has different

conditions and capabilities. Architecture and message passing protocols from multi-

computer systems can be transferred to tiled many-core system-on-chip, but need con-

ceptual adaption to the changed boundary conditions.

There are generally two methods of communication between software tasks running

on different processors: Shared memory communication implicitly keeps data coherent

in the memory hierarchy. Beyond that, synchronization primitives are required, for

example locks. Shared memory platforms face scalability issues with rising number of

processors. Message passing communication is favorable instead for a large number of

processor cores: The communication between the software tasks is explicit by exchanging

data items in messages.

The structure of tiled many-core system-on-chip favors message passing due to the

macro-architecture organization. They can therefore be seen as supercomputers-on-a-

chip. While there are certain similarities, the boundary conditions between them are

different with respect to latencies, bandwidth and the macro-architecture at each node2.

2for a discussion of the differences see the respective section in [102]
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Figure 1.3: The message passing stack

1.1 Problem Statement

The bridge between computation resources and communication resources is the network

adapter (NA). A variety of network adapters are found in commercial products and

in research nowadays, but their optimization mostly focuses on the network-on-chip

interface. On the tile side they are bound to simple use cases, for example without

efficient device sharing. Beside that message passing can be implemented with those

network adapters, but only a few research proposals consider a network adapter that

implements parts of the protocol handling in hardware to improve performance.

Figure 1.3 shows the software stack including an operating system. I anticipate a

further integration of such complex stacks in many-core system-on-chip. As depicted in

Figure 1.3 the message transfer may start from the task which runs in the userspace. The

message gets handled by the operating system which interacts with the message passing

protocol. Via memory mapped I/O the message is then send to the network adapter,

which generates the network-on-chip packets. On the receiving side the network-on-

chip packets are received by the network adapter which processes them and forwards

the messages to the message passing protocol in the operating system, usually by an

interrupt. The operating system then transfers the message to user space and wakes up

the task. Although not all scenarios may involve the entire stack, it will become more

important. When considering this whole stack it becomes apparent that not only the

physical transfer of messages contributes to the end-to-end latency and throughput of

messages, but that the entire stack and the interfaces between the layers need to be

efficient.
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(a) Overheated tile (b) Migrate task (c) Switch communica-
tion channel

Figure 1.4: Task migration as a method for thermal management

State-of-the-art network adapters with limited hardware capabilities impose a lot of

overhead in software processing in this whole process. It is therefore desirable to reduce

this overhead.

While the system performance is significantly improved by such techniques another

problem of inter-task communication arises in future system-on-chip: System depend-

ability becomes an issue due to the ever shrinking technology dimensions. Power dissi-

pation densities and variability exposures lead to soft errors, device aging and thermal

hotspots. Technologies have been introduced to manage power, dark silicon (power off

parts of a chip) and temperature. Thermal hotspots can occur due to power imbalances.

One common approach to mitigate thermal hotspots in tiled many-core system-on-chip

is task management and task migration. As sketched in Figure 1.4, the basic idea is to

migrate a task either pro-actively or as a result of measured errors at thermal hotspots.

Once such a situation is detected (Figure 1.4a), the critical task gets migrated by the

runtime system (Figure 1.4b). It is important that the migration occurs transparently

and with minimal overhead.

1.2 Contribution

Motivated by the lack of efficient network adapters for the increasingly complex software

stacks in tiled many-core system-on-chip architectures, this thesis presents a holistic ap-

proach to improve the application end-to-end communication in on-chip message passing.

The contributions of this thesis are summarized in the following.

The key contribution of this work is the concept of a network adapter for effi-

cient inter-tile communication: The Network Adapter for Message Passing (NAMP).

The concept targets the entire communication stack. Known approaches from multi-
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computer systems, such as programmable network interface cards (NICs), need adop-

tion or be re-thought with the changed boundary conditions. Specifically the following

proposals are developed, evaluated and validated:

Hardware offloading of the progress engine The progress engine is the central part

of the protocol handling that performs the protocol actions. While the idea to offload

it to a programmable network interface card is well-established in multi-computer sys-

tems, a full hardware implementation is viable under the boundary conditions of on-chip

communication. Related work is limited in this field, because most of the research has

focused on the network-on-chip. Known similar approaches [52, 110] are very limited

in the supported communication types and are only suitable for static communication

relations. The concept of a NAMP presented in this thesis instead is flexible with respect

to the communication types (connection-less and connection-oriented). Beyond that it

is suited to handle mixed criticality workloads of varying data sizes between dynamic or

static communication partners.

Collective Communication An important feature of message passing in high perfor-

mance computing is collective communication. The four functions multicast, scatter,

gather and reduction enable efficient workload sharing between multiple tasks. While

only multicasting is addressed by some network-on-chip implementations, efficient sup-

port for all four operations on the level of the message passing protocol by the presented

NAMP-CC yields significant performance boosts.

Communication Virtualization The concept of self-virtualization recently gained a lot

of traction in computer systems. In the scope of this work the goal is to share the

network adapter between multiple user tasks transparently. For that the NAMP pro-

vides user tasks the exclusive view of a unique network adapter via virtual interfaces by

Self-Virtualization (NAMP-SV). As the state-of-the-art approaches require an operating

system to multiplex access to the network adapter, the NAMP-SV is a novel concept in

the context of on-chip inter-task communication and provides significant performance

improvements over traditional approaches.

Efficient Event Signaling There are two traditional ways of notifying a software task of

hardware events, such as the completion of a message send operation or the arrival of a

new message: polling and interrupts. Both these approaches have significant drawbacks

with respect to the common software performance. Approaches like interrupt coalesc-
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ing [113] only soften this performance impact. This thesis presents Hardware-based

Operating System Queue Manipulation (HW-OSQM), a generic concept for transparent,

zero overhead event signaling to kernel and user tasks. While such events can be many-

fold, the focus in this thesis is on the tight integration with NAMP for task wake-up on

message arrival or availability of resources.

Dependable Communication Migration Finally, the NAMP concept provides support

for the migration of communication channels. This concept is applied to pro-active

task migration to mitigate thermal hotspots. The derived hardware-assisted on-chip

protection switching (NAMP-PS) supports task migration efficiently by transparent

migration of communication relationships during and around the migration.

Finally, the NAMP concept is transformed into a configurable, scalable reference

implementation of NAMP. The NAMP module can be configured at design time to

include the aforementioned features independent from each other. This reference imple-

mentation (i) serves the validation of the concept, (ii) delivers a real world device for

synthetic performance benchmarks on different data points, and (iii) is used for the eval-

uation of the hardware overhead introduced by the new functionalities and describes the

trade-offs. Five typical configurations are presented that serve common usage scenarios

of the NAMP. Finally, two FPGA-based example platforms are presented.

1.3 Organization

The contributions of the thesis are reflected in the thesis structure. It is organized

as follows: Chapter 2 presents further technical context of this work and outlines the

necessity for a network adapter for efficient message passing. It provides an overview

of state-of-the-art in a broader context and closely related to this work. In Chapter 3

the NAMP is presented and evaluated. Chapter 4 describes the actual implementation

of the NAMP. Finally, Chapter 5 summarizes the findings and concludes this thesis. It

furthermore gives an outlook of potential for future work, extensions and optimization.
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2 State-of-the-Art

This chapter gives technical background and motivation of the work presented in this

thesis. I briefly present the reasons and challenges of the advent of many-core system-

on-chip in Section 2.1, closing with a brief survey on research and industrial many-core

system-on-chip in Section 2.1.3. After that the general space of inter-task communica-

tion is outlined in Section 2.2. Section 2.3 then segues from a more general presentation

of the background into the most relevant related work. Section 2.4 provides a classifi-

cation of network adapters from academic literature and commercial platforms. Based

on this classification I position the work presented in this thesis and elaborate on the

key differences and improvements compared to the state-of-the-art. The concepts for

acceleration of message passing that are covered in the following Section 2.5 are only

insufficiently covered by work on on-chip message passing, but widely deployed in other

contexts. Hence, I describe common approaches that are for example known in com-

puter networking, and relate them to the conceptual adaption in the proposed network

adapter. Finally, Section 2.7 concludes this chapter with a summary.

2.1 Evolution and Trends of Many-Core System-on-Chip

This work was introduced with a brief overview of the challenges that the development

of single core processor faced around 2000. The relevant background will be elaborated

in the following.

Figure 2.1 shows a quantitive comparison of Intel’s processor cores over time. Basically

it can be observed that until the year 2005 the number of transistors (“Moore’s Law”) and

the processor frequency increased exponentially. But the problem is that the frequency

cubically increases the power dissipation. The critical power density is also depicted

in Figure 2.1. Dennard et al. [58] observed that voltage and current can be reduced

with the shrinking of the transistors. Therefore, it was possible to operate a circuit at a

higher frequency with the same power. But despite this so called Dennard Scaling, the

leakage current and the threshold voltage become more important, which can be seen as

9
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Figure 2.1: Moore’s Law: Data points for Intel CPUs over time1

the operational baseline of the processor. With the ever increasing transistor densities,

the power density hence increases and there is a practical limit of processor frequencies.

Around the year 2000 the power density reached the value equally to inside the noz-

zle of a rocket. Cooling a chip at this power density becomes critical and a further

increase would make it even impossible. Hence, the frequency scaling inevitably had to

stop and power management techniques became increasingly important. Thereby, one

important driver of the performance increases ceased and also the improvement of the

micro-architecture was decreasing. It became a lot harder to turn extra transistors into

an extra performance improvement: the ratio of performance increase to required extra

chip area dropped significantly. For example, Müller et al. [152] evaluated the area over-

head of the Tomasulo scheduler [205] for out-of-order execution to nearly 100%, while

the performance increase is around 15% on average.

Finally, both micro-architecture improvements for sequential code with data-level par-

allelism and aggressive frequency scaling ended effectively around the year 2000 and

thread-level parallelism (TLP) became the dominant way to turn extra transistors into

performance. TLP can be exploited with multi-thread processor cores, where the se-

quential instruction streams of two or more software threads are executed interleaved.

But there are certain limits with the shared resources of the processor core. Actually, the

TLP is nowadays exploited with at maximum two to eight hardware-supported threads.

Hence, the most efficient way of exploiting TLP is replication of the processor cores.

1You can find the raw data at http://github.com/wallento/mooreandmore. Note that the drop in
the power density in the early 1980s results from the transition from bipolar logic to CMOS logic.
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2.1 Evolution and Trends of Many-Core System-on-Chip

The effects are best summarized by the chief architect for Sun Microsystems’ Scalable

Systems Group, Marc Tremblay: “We could build a slightly faster chip, but it would

cost twice the die area while gaining only 20 percent speed increase”[79]. An overview

of the efforts of the major seminconductor companies to switch multi-core processors for

the desktop and server market is well summarized by Geer [79].

The basic idea of a multi-core processor is that multiple simpler cores can deliver

the same computational performance as a single, complex core at a lower operating

frequency. An algorithm may be “embarassingly parallel”, meaning it is in itself parallel

and has limited dependencies between the parallel parts. On the other hand a software

program may not allow any parallelism. This trade-off was formalized by Amdahl [7] as

Amdahl’s law : Each program can be split in a parallel part (p) and a sequential part (s).

The maximum speedup S of a program running on N processor cores is then limited as
1

S
= s +

p

N
, which means that the sequential part always limits the performance gain.

The serial parts of a program are one part of the problem. But other effects such as

thread imbalance, synchronization overhead or the thread management often limit the

achievable multi-core speedup as for example analyzed by Fuerlinger and Gerndt [76].

Such limitations and practical problems are key in answering the question why multi-

core processors do not simply contain hundreds of simple, power-efficient processor cores.

One solution to the aforementioned problems is to run multiple programs in parallel,

but the number of parallel programs is often limited. Summarizing, it is important that

programmers and their tools are capable of efficiently exploiting the parallel parts of

their programs. If they are able to do so, they can benefit significantly from multi-core

processors.

Desktop computers and server computers are nowadays driven by the trade-off be-

tween single-core performance and the power advantages of multi-core. The number of

cores steadily increases, but even single-threaded programs must execute equally good or

better between the generations. Even in the smartphone market the number of processor

cores steadily increases and as of early 2018 the system-on-chip of the flagship devices

contain eight cores.

Anyhow, computer systems composed of many processing nodes have been deployed

for several decades already: In High Performance Computing (HPC, also supercomput-

ing) processing resources are connected at a computer level to large systems of up to

ten million processor nodes [82]. Such HPC clusters of computers are perfectly suited

for compute intense applications. While the interconnect of such clusters has reached

multiple Gigabits from node to node with improved latency, they still favor applications

that can be partitioned to independent computation nodes at a certain granularity.
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In the 1985 the Transputer has been introduced as a processing platform for parallel

programs [222]. The Transputer contains processing nodes that are connected to four

neighbors and allows to exchange small items between neighbors with low latency. So it

is for example possible to process a data item, then push it out to the next neighbor and

in the next cycle process another data item. This tightly-coupled platform configura-

tion between multiple Transputer chips on a PCB favors communication-intense parallel

processing.

Those room-scale or PCB-scale concepts have been transfered to system-on-chip even

before general purpose processors were “forced” by the limitations of Moore’s law. The

general idea is to integrate many simple, power-efficient processing cores.

Currently, the most commercially successful approach of such massively parallel system-

on-chip platforms are Graphics Processing Units (GPU). The graphics output of desktop

computers has gained a significant importance not only for gaming and video output,

but also for tasks as design, architecture, etc., and an improved user experience. GPUs

execute are massively parallel operations, e.g., applying filter to multiple pixels or pro-

cessing basic objects in parallel. GPUs are hence designed specifically to be suited for

such tasks. The recent Nvidia Pascal GP100 GPU for example includes 3840 processing

cores and 240 specialized texture units [158]. Due to their high processing power the use

of GPUs are nowadays not limited to image and video processing. Instead they have

become a more generic computing platform too [127, 156], often referred to as General

Purpose GPUs (GPGPU). Nowadays, GPUs are even integrated into the main SoC, and

they are used for computing intense, but embarrasingly parallel applications such as

deep learning [228]. GPGPUs have a very regular structure and cores are grouped into

clusters. Multiple of such clusters are connected with an efficient interconnect.

The concept of massively parallel processing has been generalized in multiple platforms

over the last 15 years (see Section 2.1.3 for an extensive survey of prominent many-core

platforms). The basic idea is massive replication of simple processing elements with

an efficient interconnect. Such platforms are best suitable for embarrassingly parallel

application, but can also execute multiple dynamic applications. Commercially, well

established examples are graphics and video processing, communication devices such as

cellular base stations and deep learning.

In the following I briefly introduce the specifics of such many-core system-on-chip and

then present a brief survey of academic and commercial implementations of many-core

system-of-chip.
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(a) Network-on-chip topologies connecting the
endpoints (blue) via point-to-point connections
between routers (orange).

(b) Basic network-on-chip router
anatomy.

Figure 2.2: Basic NoC components

2.1.1 Network-on-Chip

The fundamental technology that enables many-core system-on-chip are so called network-

on-chip. The basic idea is to replace “ad-hoc global wiring structures” and “facilitate

modular design” [53]. Network-on-chip are mostly packet-based networks of routers that

are connected by point-to-point connections. In their original work, Dally and Towles

[53], Hemani et al. [97] and Benini and Micheli [21] outline the most important aspects

and research challenges of the network-on-chip paradigm:

• Network-on-chip improves the structure of communication by making it an orthog-

onal aspect of a design contrary to wiring between parts of the design.

• With network-on-chip architectures the timing improves because the communica-

tion paths are segmented. Contrary to different wire lengths crossing the entire

chip, short wires enable higher clock speeds.

• System-on-chip platforms based on the network-on-chip paradigm are better com-

posable and provide more modularity due to the clear and defined interfaces of a

network-on-chip implementation.

• The network-on-chip paradigm enables a layered approach similar to OSI for large

scale networking. While the traversal of a packet is managed by the actual network,

complex protocols can be built on top of it.

A network-on-chip is built of the following basic components:

Network Adapters They are the bridge between the network-on-chip and the computa-

tional resources (processor cores, memory, I/O blocks, etc.).

13
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Routers Similar to off-chip, large-scale networks those packets traverse the netwrok

through routers. At arrival at a router input port, the output port is calculated and

then forwarded in that direction (distributed routing), or the packet is forwarded

based on routing information in the header (source routing).

Topology The topology describes how routers are distributed and connected (see Fig-

ure 2.2a). Popular topologies are for example mesh, ring, star and hybrid combi-

nations of them.

Packets Communication endpoints exchange control information and data in the form

of standardized packets.

The essential research challenge that arose for network-on-chip architectures was how

to map the chip design with custom point-to-point wires to this new paradigm. The

approaches are essentially highly optimized network-on-chip routers as for example pro-

posed by Bertozzi and Benini [26]. One important property needed for a variety of

applications is the different handling of guaranteed services and best effort services as

emphasized by Goossens et al. [86]. To maximize performance, the design of a network-

on-chip for application-specific and domain-specific system-on-chip has been in research

focus [27, 86]. With AMBA AXI an interface standard that favors implementation with

network-on-chip architectures has become the standard for system-on-chip design [22].

While the presented approaches target at optimizing the network-on-chip to a certain

application or domain, the 2D mesh and derivations of it are popular topologies for gen-

eral purpose network-on-chip research [195] and favorable for scalable massively parallel

many-core system-on-chip [91].

This work focuses on such general purpose, scalable many-core system-on-chip archi-

tectures. The network-on-chip paradigm is a huge research topic and there have been

manyfold approaches to optimize the throughput on the level of the network-on-chip.

The work presented in this thesis instead focuses on the layers above, specifically where

the network-on-chip itself interfaces the computational resources: the network adapter.

This network adapter will be in the focus of the thesis. More detailed discussions of

network-on-chip research and directions in general are given for example by Bjerregaard

and Mahadevan [29] and Owens et al. [161].

2.1.2 Many-Core Platform Organization

Resources are commonly organized as tiles in many-core system-on-chip. Each tile con-

tains either one or more cores, other procesing elements, memory, I/O device etc. Tiles
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(a) Loosely-coupled (b) Tightly coupled

Figure 2.3: Tiled manycore system-on-chip integration variants

group resources in a hierarchical manner. All wiring is limited to the boundaries of the

tile.

Nearly all modern multi-core system-on-chip architectures can be described as based

on tiles. For example a modern Intel server multi-core processor contains multiple tiles

of each a processor core and a local cache hierarchy, with all tiles connected via a ring

interconnect. Anyhow, the tiled structure becomes more apparent and dominant with

scaling the number of processing elements to many-core system-on-chip, occasionally also

referenced as “sea of cores”. Most often tiled many-core system-on-chip are organized as

meshes due to the 2D nature of a chip (see Figure 2.3) or as 3D meshes for 3D stacked

SoCs.

Tiled many-core system-on-chip can be further differentiated by how tightly the cores

are actually integrated with each other and the network-on-chip.

Tightly-coupled As sketched in Figure 2.3b, the processor cores are connected as “sys-

tolic arrays” of processor cores by point-to-point connections between cores. The basic

property is that software directly interacts with a neighbor via the core interface. This

concept can be found for off-chip multi-core in the popular Transputer [222] and the

iWarp architecture [33]. Waingold et al. [216] have proposed a first on-chip many-core

processor that tightly couples processor cores and a network that is dynamically switched

by the processors with extra information emited by the compiler. Prominent examples

of many-core system-on-chip with a broader use case are for example TRIPS [184],

ADRES [143], REMARC [148], Micronmesh [110], Loki [19] and Invasic TCPA [95]. A

tightly-coupled structure can also be found in GPUs.
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Loosely-coupled This is the more generic intergration variant that covers a lot of pos-

sible platform layouts. One example is sketched in Figure 2.3a. The key difference is

which communication channels are possible. While in tightly-coupled platforms com-

munication is essentially limited to the next neighbors, loosely-coupled tiled many-core

system-on-chip allow more flexibility in communcation up to arbitrary communication

relations.

While this roughly describes loosely-coupled many-core system-on-chip, their actual

layout, organization and parameters can vary largely. In the example in Figure 2.3a

processor cores are grouped in tiles of four cores, each with a local memory and global

memory and I/O resources.

Loosely coupled many-core system-on-chip can have a heterogeneous tile layout, but

often expose a regular structure, for example the positioning of memory tiles or I/O

devices follows a pattern. Platforms generally differentiate by:

Processing tiles Those tiles integrate a varying number of processor cores. Numbers

from single cores per tile [31] up to 16 cores [55] are found in prominent platforms.

They are interconnected by a bus and can share local resources, such as caches,

accelerator IP blocks or similar. Beside that, they share their interface to the

global interconnect, either as an explicit network adapter device or implicitly by

the cache hierarchy.

Memory and I/O tiles There are usually other tiles that provide access to some shared

global memory, such as a last level cache or DRAM directly. Similarly, I/O devices

are attached to the system, but can also be part of specialized processing tiles. The

memory and I/O tiles can sometimes appear not as tiles in the regular structure

but as directly attached to links at the outline of a mesh or similar.

Memory hierarchy The memory hierarchy is an important difference, which manifests

in the way how software running on the cores sees memory. The most prominent

differentiation is between shared memory and distributed memory. In the former

the software doesn’t even know about the platform architecture and when running

on different tiles, software may “only” observe the platform layout by varying

memory access latencies (non-uniform memory access, NUMA). In the latter, the

software is in opposite usually aware of the platform layout. I go into further

details of this in the next sections (see Section 2.2.1).

Summarized, loosely-coupled many-core system-on-chip are a rather broad class of

platforms and the actual implementations can vary a lot. The communication latencies
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are usually higher and vary much more for loosely-coupled platforms. Hybrids of loosely-

coupled and tightly-coupled many-core system-on-chip are also possible [184, 95]. In

the following I focus on loosely-coupled tiled many-core system-on-chip. While the

programming and design of tightly-coupled many-core system-on-chip is challenging too,

they do not expose the challenges addressed by this thesis.

2.1.3 Brief Survey of Many-Core System-on-Chip

Over the last 15 years tiled many-core system-on-chip have found increasing interest

in academic research and industry and gain importance with the continuing dimension

shrinking. In the following I give a brief survey of many-core system-on-chip, focusing

on the most prominent projects and products.

There have been predecessors to many-core system-on-chip, that are integrated on

board level. Those were necessary because the integration did not yet allow on-chip

integration of tens or even hundreds of processor cores. As mentioned before, the Trans-

puter was one of the first steps [222]. Around the same time, Annaratone et al. [9]

proposed a similar multi-chip systolic array, named Warp. iWarp [33], was proposed

as an extended implementation of the Warp multi-chip systolic arrays. Beside a higher

computation and communication performance and lower cost, it introduces the concept

of other, specialized topologies and a the communication on a coarse-gain: Not only

direct neighbors can communicate, but communications can pass several nodes.

The RAW processor [216] and REMARC [148] extended this multi-hop communication

for systolic processor arrays with different degrees of freedom of communication relations.

The Piranha platform [16] was again a multi-chip design, but the first that looks quite

similar to what we nowadays see as loosely-coupled many-core system-on-chip: Each chip

node is a multi-core chip that share local memory and an interface to the board-level

interconnect.

Starting from those, research on many-core system-on-chip flourished since the year

2000. The most prominent examples are discussed in the following and summarized in

Table 2.1. The first research platforms which reached a wider perception was the TRIPS

paltform introduced by Sankaralingam et al. [184]. It was platform with a loosely-

coupled tiled system with tightly-coupled processor arrays as tiles. 16 small processing

elements formed a core in TRIPS and in the reference platform four of those cores

are connected together with distributed memory units coupled to memory controllers.

In their followup work together with Intel and IBM [37, 88, 89, 185, 120] the TRIPS
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Table 2.1: Comparison of Research and Commercial Many-Core System-on-Chip, focusing on
loosely-coupled platforms and the most prominent and recent examples.
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architecture was further evolved the concept of a composable architecture where simple

processing elements can be composed to larger cores.

Around the same time of the orginal TRIPS work a commercial platform was release,

the picoChip [64]. The chip contained four classes of tiles, each with one core: Control

cores for the system, cores with extra memory, cores with a multiply-accumulate unit

and standard cores, a layout that was optimized for the CDMA algorithm. PicoChip

found its way into basestations and the company was finally acquired by Intel.

Generally, it can be said that cellular network basestations are a common use case

for many-core system-on-chip, along with other networking applications or multimedia

processing. Another successfull company that has penetrated such markets is Tilera [3].

It evolved from the RAW research group around 2007 and is the first commercial platform

that deploys a loosely-coupled many-core system-on-chip based on a packet switched

mesh network. The first Tilera processor integrated 64 tiles with each one processor

core.

In 2010, Intel introduced the “Single-chip Cloud Computer (SCC)” [104]. It was a

research chip, based on their previous work for general purpose GPUs (Larrabee, Seiler

et al. [189]). While the processor cores in Larrabee were connected by a ring, the SCC

was based on a 2D-mesh. Each of the 24 tiles integrated two processor cores. The cores

share a message passing buffer for efficient on-chip communication. Beside that each

core has a cache for shared memory accesses.

After that the research around tiled many-core system-on-chip reached its peak. The

main research hypothesis that established around that time is that tiled many-core

system on chip can be the scalable solution to build flexible computing platforms. The

P2012 platform introduced by Benini et al. [23]. It integrates a flexible number of

clusters that are connected through an asynchronous interconnect making it a globally

asynchronous, locally synchronous (GALS) design. Inside a cluster a flexible number of

processor cores share local resources inside one clock domain, while the clock domains

between the clusters vary.

From the P2012 concept the PULP platform evolved [50]. As with the P2012 platform

the PULP platform allows to set voltage and clock dynamically for clusters of multiple

cores. It has recently (2016) become an open source platform The “Open Tiled Many-

Core System-on-Chip (OpTiMSoC)” which I also base my work on was introduced as

an open source many-core system-on-chip [218]. It is similar to Pulp with respect to

the platform layout: Tiles integrate a variable number of processor cores and those tiles

can be clocked independently (while that is not the usual use case). By employing

tiles with different number of cores that all operate with “symmetric multiprocessing

19



2 State-of-the-Art

(SMP)” it allows heteregenous platforms by thread-level parallelism. Contrary to PULP,

OpTiMSoC was never demonstrated in a chip tapeout.

The research project “Invasive Computing” [99] generally builds on a similar tiled

many-core layout as discussed so far, but provides more heterogeneity between the tiles.

Some tiles integrate multiple homogeneous cores while other tiles integrate specialized

cores. Finally, even tiles that contain tightly-coupled processor arrays are part of the

concept. Beside that the approach differs in the programming models where the running

applications organically share the resources of the system. There is also no chip tapeout

of an invasive computing system so far.

The NanoMesh project [207] goes into a different direction than the other discussed

projects by building an asynchronous logic which is supposed to lead to much better

performance results. The design is centred around the network-on-chip routers and

eight tiles are connected to a router, additionally to eight directions where packets can

be routed.

The SpiNNaker project [77] builds an entire supercomputer based on 57.600 many-core

system-on-chip. Each of those contains 18 cores that are connected by one network-on-

chip to communicate with each other and with another network-on-chip to communicate

with other nodes. Each of the chips has an SDRAM directly attached to it. The

communication units are very simple packets of a few bytes and the interconnect between

the SpiNNaker nodes is arranged so that the entire machine should mimic the operation

of a neural network as part of the Human Brain Project.

Around the same time (2013) commercialization of more mainstrean architectures

took place. For example, Adapteva commercialized the Epiphany-III which integrates

16 tiles with each one core in a 4x4 mesh, that can be connected with other chips

to form a 1024-core system. The successor, Epiphany-IV integrated up to 4096 cores.

While the Epiphany architecture was similar to the Tilera platform, the Kalray MPPA

architecture [55] integrated tiles of each 16 cores. Each tile integrates shared memory

for the 16 cores, while tiles communicate with each other using DMA transfers. A data

flow programming language is used to program the system. Alternatively shared memory

programming can be used to program the software in a tile and DMA transfers transport

data between tiles.

In 2014 Intel commercialized its many-core research as part of the Many Integrated

Core (MIC) architecture, commercially known as the Xeon Phi. It connects up to

72 cores with a ring interconnect. It is intended as a massively parallel co-processor.

While it provides the traditional shared memory view to the user, it nevertheless needs
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special care to gain its actual performance by the programmer and programming tools

respectively.

The currently fastest supercomputer in the world, Sunway TaihuLight, is based on

40,960 nodes. Each node is a many-core system-on-chip, the SW26010 [75]. It integrates

260 processor cores and the cores are organized in four groups. Each group contains

a mesh of 64 simple processor cores and one auxiliary core. The groups are connected

via a packet-switched network-on-chip, while the mesh inside the groups is considered

tightly-coupled.

Most recently more research projects have evolved around scalability and programma-

bility of tiled many-core system-on-chip. The Kilocore [31] takes a different approach

with respect to memory than most other many-core system-on-chip: It does not integrate

any caches to mitigate the coherency problems (see Section 2.2.1.1 below). It integrates

1000 cores at low energy arranged in a mesh.

Jeffrey et al. [107] introduce the SWARM architecture that has 16 tiles with each

4 cores. They focus on the parallel programming of algorithms that expose ordered

irregular parallelism, which is a shift away from the embarassingly parallel algorithms

usually considered. Similarly, Balkind et al. [14] published the OpenPiton platform that

is based on thousands of single-core tiles, but with a cache hierarchy and cache coherency.

The implications of the memory hierarchy and the programming model are discussed

in the following.

2.2 Inter-Task Communication

While Amdahl’s Law formulates the theoretical limit of the computational speedup, the

efficient programming of the parallel part of a program is critical. The pre-dominant

software languages, development flows and even programmers’ minds follow the sequen-

tial execution model. In accordance to the single processor execution instructions are

issued one after the other and the micro-architecture has to be optimized to exploit

implicit parallelism. The programming of the explicitly parallel part is challenging and

requires different programming models, a topic widely discussed in high-performance

computing. Diaz et al. [59] for example give a good overview about the prefered pro-

gramming models and their different use cases. In the following I give a rough overview

about the two dominant parallel programming models and their popular variants and

relate them to on-chip communication.
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(a) Shared Memory (b) Distributed Memory

Figure 2.4: Abstracted view on different memory hierarchies and common inter-processor com-
munication techniques

2.2.1 Memory Hierarchy and Programming Model

Before going into the details of parallel programming models it is important to under-

stand different physical memory hierarchies and how they influence the programming

model for software. Figure 2.4 illustrates the two dominant approaches to arrange mem-

ories in a computer system in an abstract fashion.

Shared memory systems (Figure 2.4a) have a global address space that is shared by all

processor cores. This means that each data item has the same physical memory address

on all processor cores. This has the obvious advantage of simplicity:

• The communication between tasks is implicit by writing to shared data items

• Moving a software task from one processor core to another does not require changes

of the task and its data

Distributed memory systems (Figure 2.4b) instead don’t share an address space. Each

processor has its own dedicated address space. This is most often a dedicated local

memory as illustrated in Figure 2.4b, but another well-established method is partitioned

global address space (PGAS): In PGAS the cores share a global memory physically, but

the address spaces are logically partitioned. Compared to shared memory, distributed

memory is characterized by:

• The communication between tasks is explicit by transferring data items between

memories.

• Moving a software task from one processor core to another requires moving the

data along with the task
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(a) Cache Coherency (b) Synchronization (c) Consistency

Figure 2.5: Challenges with Shared Memory

2.2.1.1 Shared Memory, Coherency, Synchronization and Consistency

As motivated before, shared memory programming is prefered by most programmers.

The abstract illustration in Figure 2.4a highlights the ease of programming from a user

perspective. Anyhow, the problems come with reality. For improving the performance

the average memory access latency time is a key component and computer systems have

integrated caches. A cache stores the most recent memory regions because temporal and

spatial locality of the software makes it beneficial to have the data near to the processor

core. A directly integrated cache (level 1) only needs one or a few clock cycles to access

a data item from the set of recently accessed memory regions, while a DRAM memory

access can easily take up to tens or hundreds of CPU cycles.

The problem with caches is depicted in Figure 2.5a: Each core can have an individual

local copy of a data item. As long as they only read that seems okay, but it becomes

problematic once software on one core writes to this data item. The data needs to stay

coherent between caches and the main memory. So a protocol is needed to exchange

information about the accesses to data items: a cache coherency protocol. Those pro-

tocols assign a sharing state to cache blocks and certain communication is required on

state transitions.

One part of the problem of concurrent accesses is synchronization (Figure 2.5b): If

software from two different cores read a data item and then write another value back,

which of those should become visible? Mutexes, semaphores and other software mech-

anisms to ensure atomicity of code regions rely on the underlying hardware to ensure

it. Finally, the problem of consistency (Figure 2.5c) arises when software running on

different cores relies on assumptions about a certain order of read and write operations.
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As mentioned, the memory hierarchy does not necessarily imply the only valid pro-

gramming model. For example, it is easily possible to treat the shared global address

space similar to distributed memory from software. By not sharing data in a physically

shared memory it logically has the properties of a distributed memory system then.

Without going into the deep details of this topic, shared memory can become critical

when it comes to scalability. There are often certain scalability issues projected for shared

memory for tens or even hundreds of processor cores [116, 48, 104], mainly due to the

hardware overhead in directories. Also the latencies and thus the average memory access

time can suffer with a high sharing degree. Those concerns are supposedly mitigated by

novel approaches as for example summarized by Martin et al. [137].

2.2.1.2 Distributed Memory

As illustrated in Figure 2.4b communication between processor cores in distributed mem-

ory system is explicit. This means that data items are moved from one memory to another

by software operations. In multi-computer distributed shared memory systems, data is

typically exchanged via a the network interface card over a network. This concept is

transferred to many-core system-on-chip accordingly.

Message passing is the predominant programming model for distributed memory sys-

tems, but there are some alternatives and building blocks for it that are introduced in

the following. Those approaches directly lead up to higher level protocols for efficient

programming, such as message passing.

2.2.1.3 Distributed Shared Memory

From the beginning of scaling clusters of computers there was the desire to provide the

programmer the experience of shared memory programming on a distributed memory

system as distributed shared memory (DSM). DSM has emerged in the early 1980s for

multi-computer network clusters and was a vivid research topic until the mid 1990s [157,

171]. DSM is strongly connected to the memory consistency model and ensures the

shared memory view based on underlying replication and migration strategies [171].

Generally, three levels of distributed shared memory can be identified [157]: (i) the

compiler emits primitives for coherency and consistency for shared data access. This

often goes in hand with language extensions or restrictions. Midway [25] for example uses

such language extensions. ii) libraries and the operating system use the virtual memory

subsystem and consistency model to provide a shared memory abstraction. There have

been pure software implementations on user-level [8], by language extensions [39, 13] or
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with a modified operating/runtime system [126, 24, 25]. iii) Hardware implementations

focus on caching techniques and can for example be seen as shared memory systems

where the memory is distributed among multiple computers (CC-NUMA) [57, 125].

Other approaches such as proposed by Hagersten et al. [93] only consist of caches and

are actually shared memory system without a shared memory but dynamically managed

locality of data. Finally, reflective memory approaches [73, 106] manage the locality of

data in distributed memory on another granularity level.

Those concepts are not very relevant for many-core system-on-chip. This is mainly

because the platforms deployed either focus on cache coherency, which is easier to handle

on-chip for a relatively large number of cores (a few tens), and because the boundary

conditions are slightly different and favor more light-weight approaches. Stemming from

that, DSM also exists for many-core system-on-chip. But it defines a memory hierarchy

and the fundamental difference between distributed shared memory in many-core system-

on-chip and multi-computer systems is the ease of access to remote memory. In on-chip

DSM all tile local memories are globally addressed. This remote memory access (RMA)

is characterized by the fact that it is a one-sided operation that does not invoke the

remote processor. The memory hierarchy and network-on-chip must provide the required

consistency model as for example the Æthereal [86] network-on-chip provides.

The OSCAR multi-core system-on-chip [121] integrates hardware extensions along

with compiler extensions to ensure consistency between tiles. Similarly, Chen et al. [47]

propose a microcoded controller for the use of globally distributed shared memory and

the synchronization primitives. The commercial Adapteva Epiphany platform [2, 214]

and the InvasIC [225] platform provides a similar layout and hardware support. Overall

those distributed shared memory approaches are similar to the implicit cache coherency,

but managed explicitly and thus lowering the overhead of cache coherency operations. Fi-

nally, other approaches go beyond the exchange and synchronization of data. Monchiero

et al. [149] for example propose a distributed dynamic memory management unit.

2.2.1.4 Remote DMA

Similar to the RMA approach described before, remote direct memory access (RDMA)

is a method to move data to a remote memory. As RMA it also does not involve the

remote processor. But additionally it offloads the local processor by directly copying

data from the local memory to the remote memory. Direct memory access (DMA) is a

well-established method for shared memory systems and suitable to transfer bulk data

between memory regions or between a device and the memory. A DMA controller is

even often deployed in shared memory systems to offload the task of data transfers. The
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(a) One-sided communication
without synchronization

(b) One-sided communication
with active synchronization

Figure 2.6: One-sided communication and synchronization

approach of RDMA is well adapted in multi-computer and supercomputing systems. For

example, RDMA is a very popular feature in the Infiniband interconnect standard [12,

166, 129]. In tiled many-core system-on-chip remote DMA controllers copy data from a

memory address in one tile to the a memory address in another tile, such as for example

in InvasIC [225].

2.2.1.5 Synchronization

Both memory access methods, remote memory access and remote direct memory access,

are often described as one-sided communication. As briefly introduced before, the prob-

lem arises that data transfer from one tile to another tile itself is not sufficient: The

sender and the receiver need to synchronize about a data transfer. For example it must

be sure that the receiver can receive the data, the sender does not overwrite data from

a previous iteration, etc.

The problem and a common solution are sketched in Figure 2.6. As depicted in

Figure 2.6b the sender and receiver exchange messages around the data transfer. Bar-

riers are often used for this purpose, for example in MPI, that does provide a set of

one-sided communication functions too. This synchronization introduces a significant

overhead [109, 203] and efficient protocols are proposed, such as by Gerstenberger et al.

[81].

2.2.1.6 Distributed Memory Summary

In this section I have given a comparative overview of shared memory and distributed

memory. The memory architecture and the programming model usually correlate, but

distributed shared memory in the form as NUMA plus inter-tile synchronization are
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popular. Based on the primitives of remote (direct) memory access a communication

infrastructure can be build, while synchronization is an important aspect. Anyhow,

building applications and providing a generic processing runtime system can quickly

become challenging. In the following I hence present the message passing programming

model that is the most popular distributed memory programming model. It is commonly

built on top of the same primitives, but provides extra layers of functionality.

2.2.2 Message Passing

This chapter has so far been building up the motivation for message passing in many-

core system-on-chip. It can be summarized that a distributed memory architecture is

more promising to scale, and other distributed memory programming models are better

suited in specialized cases.

Essentially, message passing programming is the exchange of messages between com-

munication partners in an explicit fashion: One communication partner, the sender,

calls a send() function with the target where to send a message and data to deliver to

this receiver, which finally retrieves it by calling a receive function. The underlying

software and hardware system must ensure that each of those messages at some point

reaches its destination intact. It is up to the application to interpret the messages.

In this section I briefly introduce the Message Passing Interface (MPI) which dom-

inates multi-computer and supercomputer programming. After that I go through the

different aspects of message passing and highlight the differences between message pass-

ing on multi-computer systems and on-chip message passing. From that I derive the

sensible design space for message passing on many-core system-on-chip.

2.2.2.1 The Message Passing Interface for Multi-Computers

Message passing was the dominant programming model in supercomputing from the

beginning. Several approaches for a unified API have been proposed in the 1980s [167,

132, 98]. Around 1992 the Message Passing Interface (MPI) has emerged and been the

de-facto standard ever since [217, 62]. The original standard contianed the following

essential features [217]:

• Routines for point-to-point communincation in different communication modes and

blocking modes
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• The abstract concept of a communicator, which is roughly the grouping of processes

on different cores, along with topologies that describe the communication relations

between processes

• Collective functions for one-to-many and many-to-one communication

• Specialized data types to ease the exchange of data

In 1996 it was extended to the current MPI-2 standard [80]:

• Dynamic process management to allow the application to start new processes and

manage them

• One-sided communication in the form of remote memory access (see Section 2.2.1.2

• Extensions to the collective functions

While MPI is clearly focused on massively parallel supercomputers, it serves as the

reference for the following considerations. It becomes clear that one cannot simply

compile MPI for a many-core system-on-chip, but adoptions are needed. One of the

most prominent implementations of the MPI standard is OpenMPI [78] and I use this

as a reference for the following discussion.

Beside the interface and its implementation the hardware ecosystem plays an impor-

tant role. Infiniband [166] is among the most deployed communication infrastructures

and its features and capabilities are of relevance for the contributions of this thesis.

2.2.2.2 Communication Partners

Before getting into the details of the message passing stack it is important to under-

stand how applications communicate with each other. This does not mean the technical

method, but the patterns in that parts of an application exchange data.

First of all, the application needs to be partitioned into discrete tasks (often also

“process”). Stepping back from the application as code itself, this means that the

problem needs to be decomposed so that i) the work is well distributed among the tasks,

and ii) that the communcation between tasks is minimized. The latter is apparently the

most efficient way of message passing – not exchanging more messages than necessary.

The problem of task partitioning is a challenging. Often the programmer can manually

partition the problem or the algorithm can favorably be formulated in that way. Beyond

that there is a lot of research in the field of automated or guided task partitioning, such
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(a) Embarassingly parallel
application

(b) All-to-all (c) Data flow graph

Figure 2.7: Tasks graphs for partitioned parallel problems

as [45, 17, 90]. The question of how to partition a problem into tasks is beyond the

scope of this thesis. More important in this context is the outcome: a task graph that is

mapped to the platform (again the mapping is an interested research topic but beyond

the scope of this thesis).

Figure 2.7 sketches three selected task graphs from the variety of different task graphs.

One example for such a task graph in Figure 2.7a can be refered to as embarrassingly

parallel. All communication is between neighbours and if the computation is well bal-

anced and communication minimized such a task graph is well mapped to tiled many-core

system-on-chip. Similarly, an application may be charachterized by all-to-all communi-

cation relationships (Figure 2.7b).

While the communication in supercomputers composed of hundreds of thousands of

processors can often be characterized as a complex variant of communicating task graphs

of that shape, another algorithm description is very popular for system-on-chip appli-

cations: Data flow graphs [54, 115]. Here, tasks communicate in a regular fashion by

producing and consuming data (also “tokens”) at a certain rate. A similar description

are Kahn Process Networks (KPN) [124, 42].

Figure 2.7c sketches a data flow graph. Buffers between the tasks are depicted to

highlight the decoupling of the tasks. Those channels between tasks are buffered point-

to-point relations. Throughout this thesis I use this model of describing applications

without loss of generality, because it best matches the application programming in

system-on-chip.
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Figure 2.8: Packetization and protocol overhead

2.2.2.3 Packetization & Protocol Layers

Message passing was introduced as the transfer of data from a sender to a receiver. As

mentioned the interpretation of those user messages is up to the application. But the

transmission from the user task in one tile to the user task in another tile involves a

detailed protocol.

The protocol involves packetization and the “contract” of the implementation how

messages are reliably transfered. The main part of this thesis is concerned about im-

proving the protocol. It is important to understand that there are different levels of

a protocol. Except for the rare, simplefied case of a point-to-point connection with

sender and receiver directly connected, all computer communication is described by the

ISO/OSI layer model [230]. On switching level, there is the routing information which

applies to the network-on-chip communication. As depicted in Figure 2.8 the data that

is transmitted physically between the sender and the receiver over the network-on-chip

is divided into chunks of data, each with the essential routing information, that is at

least the destination of the data packets. This packetization involves in smaller packets,

where the packet size is optimized with respect to network contention.

With resource sharing on different levels (as specifically object of this thesis) each

packet’s header contains further hierarchical specific information, such as a data stream

identifier and sequence number of a packet in the case the network does not guarantee

strict ordering.

Beside this low-level packetization that has the purpose to transfer a chunk of data

from the sender’s position to the receiver’s position, there is other protocol information

of the other layers with adds to the actual user data during the transmission processes.

This is the end-to-end application infromation, that are further described in this thesis.

2.2.2.4 Flow Control & Communication Modes

The protocol messages in message passing protocols are generally classified as either

eager protocols or rendezvous protocols as sketched in Figure 2.9a and Figure 2.9b. In

eager implementations the messages are sent from the receiver without knowledge about

the receiver state. This means that the receiver must be able to receive the message
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(a) Eager Protocol (b) Rendezvous Protocol (c) Credit-based Flow Protocol

Figure 2.9: Eager vs. Rendezvous Message Passing Protocols

and store it in a buffer, otherwise it can lead to backpressure on the network. This is

mostly used for small messages. In rendezvous protocols the sender knows or discovers

the receiver state and can hold a message back until the receiver is ready.

Figure 2.9b depicts a rendezvous protocol with all possible control messages. Essen-

tially, rendezvous protocols care that the sender knows that the receiver is ready to

receive a message. In the example further control messages, such as that the completion

is signaled and the completion of the receive function is signaled. Other variants of the

rendezvous protocol use credits (see Figure 2.9c): The receiver reserves a certain amount

of buffers for the sender, the sender can post as many messages as it has credit, and

finally receives new credit from the receiver. To reduce the number of control messages,

the receiver often updates the credit only below a certain threshold.

In MPI flow control is only partly supported by the underlying hardware [128]. In-

stead implementation usually employ a user-level credit-based flow control. Due to the

characteristics of the underlying transport protocols, MPI implementations rendezvous

protocols are often implemented in a high performance fashion such as using RDMA

[129, 199, 198]. This apparently needs to be reconsidered in the context of many-core

system-on-chip as i) the access latencies between the network interface, the processor

core and memories are very small, and ii) the main location of buffering is the local

memory.

Generally, buffers play a critical role in the scalability of MPI implementations [35,

190]. There are two main issues with buffers: With up to millions of nodes in a super-

computer the provisioning of sufficient buffers for arbitrary communication can become

critical. Also, the bandwidth of network communication has approached the memory

bandwidth [35]. Thus it is desirable to get rid of any extra copying operation. A so
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called zero-copy protocol implementation transfers data from one user space to another

user space.

If buffers are used, an implementation has further design decisions [178]: It can either

transfer the data from the sender (push) or from the receiver (pull). Furthermore, the

management of buffers and memory in general has a lot of degrees of freedom.

Finally, the MPI exposes different buffering schemes to the programmer by four vari-

ants of the send() function: i) ready: only sends when the matching receive was called,

ii) standard: posted send, no flow control guaranteee, iii) buffered send: copy to local

buffer and forget, iv) synchronous: returns after receive was also called.

As highlighted, the boundary conditions and the tight integration of the network and

protocol layer with very high bandwidth and minimum latency ease the considerations

for on-chip message passing significantly as discussed in the following.

2.2.2.5 Progress Engine

In message passing the progress engine is responsible for handling the sender requests

and deliver incoming messages to the receiver. In MPI it is commonly implemented in

software and a lot of effort is put into providing a thread-safe efficient progress engine.

Traditionally, the progress engine of MPI implementations often relied of calls to API

functions. As part of function call the implementation then triggers the progress engine

to check for example outstanding operations, timers, unexpected incoming messages etc.

This is contrary to the MPI standard that actually guarantees asynchronous progress

without calling the API functions. Performance and resource advances anyhow made

asynchronous progress with an extra thread common.[194]

Finally, there is a trend to offload the MPI progress engine in multi-computer systems

into the network interface card (NIC). Modern NICs deploy a programmable embedded

processor for this kind of protocol processing [36]. For example the Quadrics network

interface [165] provides a programmable subsystem to offload the progress engine. The

idea is to offload a significant share also from the operating system to a “network oper-

ating system” on the NIC. Similarly, Cray Red Storm contains an embedded 500 MHz

PowerPC at each node [34].

Underwood et al. [210] have identified that the offloading should not only focus on the

sending and receiving operations, because this could negatively impact the throughput

when many outstanding or unmatched messages are encountered. They therefore pro-

pose associative matching structures. Tanabe et al. [200] propose a mechanism that is

integrated into the memory path and also improves the handling of unexpected messages.
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2.3 Message Passing APIs in Many-Core System-on-Chip

As mentioned before, message passing in multi-computer systems and on-chip message

passing face different boundary conditions with respect to latency, bandwidth, memory

space and integration between the protocol engine and the network. While MPI is the

de facto standard in multi-computer programming of up to millions of cores, there is no

established standard API for on-chip many-core programming.

Due to the wide acceptance of the MPI standard there have been proposals to down-

strip MPI for embedded platforms. McMahon and Skjellum [142] for example compared

two approaches to this idea with respect to the memory limitations of embedded systems:

In a top down approach they took the MPICH implementation and stripped features like

the MPI send modes and reducing code size. In a bottom-up approach they identify the

most critical functions and add some further convenient features to create a configurable

subset of MPI. Similarly, TMP-MPI [182] is a small subset of MPI including 11 func-

tions. It is focused on softcores and custom accelerators among multiple FPGAs. They

decided for a rendezvous protocol that sends request envelopes to the destination and

the receiver then sends a message once it is ready to receive the data. It maintains one

message queue at the receiver side that contains all pending requests. On a MPI RECV()

call the implementation than checks if a send is pending. The SoC-MPI [135] library also

focuses on multi-FPGA systems of softcores and defines a subset of 18 functions from

MPI. RampSoC-MPI [84] and ocMPI [72] is similar in this respect. Kohler et al. [122]

propose another subset of MPI, but with a different target architecture. They target the

Intel Single Chip Cloud Computer (SCC) and use the point-to-point message passing

capabilities to build a reduced MPI around it.

While those approaches are doing well in reducing the size of the MPI implementation,

they leave aside a thorough consideration of adding or modifying functions due to the

different boundary considerations. In this respect. Another approach is to define an own

message passing API. Poletti et al. [169] for example define a rather low level API that

is limited by targeting a distributed shared memory platform.

Finally, there is an consortium approach to define a message passing API for embed-

ded systems: The Multicore Association Communications API (MCAPI) [153]. Despite

the specification has stalled and is not an open standard, it has found a reasonable ac-

ceptance. Matilainen et al. [138] for example implement the MCAPI for FPGA-based

multi-core system-on-chip. A closer look between the downstripped MPI and MCAPI

reveals that there is a vast overlap of provided functionality. MCAPI has a few concep-
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(a) Adressing and communca-
tion modes

(b) Connection-less protocol (c) Connection-oriented protocol

Figure 2.10: Details of the message passing protocol used in this thesis

tual ideas that better fit the boundary conditions and communication patterns described

in Section 2.2.2.2, specifically data flow graphs specifically targeted.

Without loss of generality I hence chose MCAPI as baseline. It is characterized by

the following features:

Adressing Scheme MCAPI uses the notion of domains, nodes and endpoints. Domains

are the tiles in this context, while nodes are tasks running on a tile. Each node

can have multiple endpoints for communication, each uniquely addressed by the

<domain,node,port> tuple. Examples for this hierarchy are sketched in Fig-

ure 2.10a. This is different to the MPI rank-based addressing.

Channel Communication This is connection-oriented communication, which means that

two endpoints are connected to each other and only messages from the sender end-

point are accepted by the receiver enpoint (see Figure 2.10a). This eases flow

control and such a communication mode does not exist in MPI.

Message Communication This is connection-less communication, which means that

each endpoint can send messages to each other endpoint (see Figure 2.10a). This

is like in MPI.

Blocking and Non-Blocking API Functions Both MPI and MCAPI define blocking and

non-blocking variants of the send and receive functions. A non-blocking function

call allows the software to perform other operations while the message passing

operation completes (overlapping computation).
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Dynamicity MCAPI willfully does not define dynamicity in a way of node discovery

etc. This is a static view of a system, but as motivated before this work focuses on

flexible, next-generation many-core system-on-chip that run userspace applications

and not only baremetal systems.

The underlying protocol has to support two basic modes: Figure 2.10b shows the

simple rendezvous protocol for connection-less communication. As the sender is not

sure if the receiver is ready to store the message it queries for a slot in the buffer. Once

this becomes available it receives the address. The base protocol for connection-oriented

message passing is depicted in Figure 2.10c. In case credits are available, the sender can

just send data to the next message buffer slot. Once it runs out of credits, the sender

has to wait for the receiver to grant new credits.

The message passing API that is co-developed with the NAMP concept in this thesis is

based on MCAPI and the aforementioned basic principles of a protocol implementation.

2.4 Network Adapter

It has been outlined how on-chip message passing differs from large-scale multi-computer

message passing such as MPI. One of the key differences is the interface between com-

putation and communication. In multi-computer systems this is the Network Interface

Card (NIC). There is a trend to offload as much of the protocol processing to the NIC.

The NIC thereby often integrates a processing element that can be even more powerful

than the actual processor core in a tile in a many-core system-on-chip.

The link between the network-on-chip and the tiles is the network adapter (NA), also

refered to as network interface (NI). The network adapter is the critical element to

properly complement communication and computation, and has a similar role as the

NIC in multi-computer systems. Its role and style of integration is more flexible than for

a NIC. It is essential to understand the difference of the concepts between data transfers

in the computation domain (tile) and the communication domain (NoC). For a detailed

introduction into the differences between network-on-chip and busses see the white-paper

of [11].

Figure 2.11 visualizes the difference between the pin level protocols and flow control

and highlights the role of the network adapter in this. At a first glance the difference

in number of different signals and total amount of wires can generally be observed. But

more importantly is the protocol nature: Bus transfers are generally organized in cycles.

In the sketch in Figure 2.11 there is a write transfer, where the acknowledge in the next
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Figure 2.11: The network adapter as the interface between computation and communication
and the different pin level protocols.

cycle overlays with a next read access. Each access is initiated by the master and gets

a reply in the next cycle.

As introduced in the previous chapter, the flow control protocols are much easier in

NoCs as channels are unidirectional there. Data transfers are performed with a hand-

shake protocol, where the master side assigns a data item (flit) and a valid signal, while

the slave assigns the ready signal whenever it accepts data. Traditional bus transfers are

translated to a de-coupled sequence of request and response messages, similar to data

transfers in the networking domain. While this is a bit simplified, network adapters com-

monly integrate with two such interfaces. In the following common network adapters

are classified and compared to the proposed solution.

2.4.1 Classification

As mentioned, the actual integration point is manyfold, ranging from deep in the pro-

cessor core, directly in the cache or as bus slave. Also, the style of access differs be-

tween transparent translation and memory-mapped device accesses. Generally, network

adapters can be roughly categorized as depicted in Figure 2.12. For the sake of com-

pleteness, the classification includes also network adapters not directly related to the

work presented in this thesis.

Cache-Integrated Network Adapter For example, shared memory platforms have a

cache and directory infrastructure that directly interfaces the network-on-chip, as sketched

in Figure 2.12a. Piranha [16] was one of the first research projects in the direction of
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(a) Cache-Integrated (b) Pipeline-Integrated (c) Memory Mapped Buffer

(d) Remote Memory Access (e) Controller

Figure 2.12: Classification of Network Adapters (Note: Arrows denote a master to slave rela-
tionship)

loosely-coupled many-core system-on-chip. While it was still a multi-chip solution, it

already addressed many conceptual aspects of simple processing nodes relevant in this

field. It used the shared memory programming model and contained a specialized hard-

ware network adapter. This network adapter is micro-programmable to execute a coher-

ence protocol. While being, conceptually interesting it faces performance bootlenecks of

shared memory coherency.

Commodity multi-core system-on-chip often implement cache coherency by interfacing

the cache and directory directly with a (bufferless) ring. The first Intel Xeon Phi co-

processor [49] with 57 to 61 cores used a ring interconnect that directly interfaces the

caches. Recent versions of it [192] moved to a mesh interconnect. Finally, state of the

art research such as the Piton platform [141] do a similar integration of caches and the

mesh interconnect. Also the Tilera platforms [221] integrate two of their five networks

with the cache hierarchy for the cache coherency.

With respect to message passing, exchanging messages over the main shared memory

suffers from performance and scalability issues due to the coherency protocol. Beside

that the major task is to move large blocks of data in the main shared memory. Gu et al.

[92] propose a “Direct Memory Manager” that offloads the message passing protocol to

hardware and takes care of moving the large data blocks in the memory. Chatterjee

et al. [46] propose a messaging controller that offloads the data movement in a similar
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way. Software implementations such as proposed by Poletti et al. [169] can benefit from

such hardware improvements.

Such approaches may significantly improve the performance of message passing over

shared memory. But they are still limited by the fact that data has to traverse the

memory hierarchy instead of directly move data from one point to the other. While

operations are offloaded from the software and the CPU caches, the latencies and also

the power consumption are still significantly higher.

Finally, other approaches integrate explicit remote memory access functionality into

the caches. For example, Kavadias et al. [114] propose to integrate remote memory

access and remote DMA capabilities within the cache. Cache blocks can be configured

to either serve as caches, access to remote memory or be part of remote DMA regions.

Pipeline-Integrated Network Adapter The second class of network adapters depicted

in Figure 2.12b are those that are integrated into the pipeline of the processor core.

This design is very common with tightly-couple many-core system-on-chip, because the

communication relations are more static. Such an integration was also proposed early

with multi-computer systems: Henry and Joerg [101] propose a register-mapped message

interface that packetizes small messages and transfers them via a buffer.

As a more recent example, the Loki platform integrates configurable buffers into the

processor pipeline so that software can directly read and write to the buffers of other

cores [20, 18, 19]. All accesses are blocking so that a pipeline is stalled when a buffer is

empty on receive or full on send. The Tilera platform is very similar [221]. But com-

pared to most tightly-coupled many-core system-on-chip, the Tilera platform provides

a software abstraction layer which allows either direct exchange of scalars with a few

cycle overhead and latency. Beside that it allows for buffered transfer of larger memory

blocks and messages. Similarly, ocMPI [72, 40, 41] proposed to interface a buffer for

inter-tile communication into the pipeline. Their work added extensions to the ISA,

which is mostly useful when blocking for messages, but in this case its mostly aliases for

accesses to a register map.

Memory-Mapped Buffer Network Adapter The majority of approaches in loosely-

coupled many-core system-on-chip chooses a different integration of buffers. Here some

hardware message buffers are available via a memory map as depicted in Figure 2.12c.

The network adapter is accessed by the processor via the standard data path and usu-

ally addressed as a standard device on the bus. This has two major advantages: The

network adapter can be very easily shared among multiple processor cores, and the net-
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(a) Remote Memory Access (RMA) (b) Remote Direct Memory Access
(RDMA)

Figure 2.13: RMA vs. RDMA

work adapter is independent of the processor core and can be integrated with other

implementations easily.

Similar to pipeline-integrated the buffer is used to exchange raw network packets be-

tween the processor and the network-on-chip. This means that the packets are formed

and parsed in software. The TMD-MPI network adapter [182, 183] connects the pro-

cessor cores and the routers with standard buffers. Multiple messages are either pushed

one after the other into a buffer, which in the case of TMD-MPI is simple because

the packet length is encoded in the header. Similarly, Marchesan Almeida et al. [136]

prepend the destination address and packet size to each packet. Other approaches, such

as MEDEA [44, 206], write a sequence number to each flit. A different approach is to

integrate multiple buffers that only can hold one message with respective control and sta-

tus register. Fernandez-Alonso et al. [71] for example claim to support two outstanding

messages with dual buffering, without clearly describing the message format.

Multiple messages are also used by Heisswolf et al. [96]: Different buffers are used

for different Quality-of-Service demands. Guaranteed service buffers are connected to

reserved paths with guaranteed throughput, and best effort buffers can be freely used.

Remote Memory Access Network Adapter As part of Section 2.2.1.3 I have introduced

the concept of remote memory access as a programming concept. As a hardware concept,

the basic idea is that the entire memory of the system-on-chip is accessible from each

processor as sketched in Figure 2.12d. This means that the memories are mapped into

the memory map of the processor core. A slave element is attached to the bus or

integrated into the data path of the processor then. It translates the memory addresses

to network packets as depicted in Figure 2.13a. The corresponding counter part then

translates this into a memory access and the response.
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Bhojwani and Mahapatra [28] for example integrate this functionality in an extendible

softcore and evaluate different packetization strategies in software, the core or a core

peripheral. Bjerregaard et al. [30] present their network adapter that transfers requests

of the “Open Core Protocol” (OCP) interface specification. The Aethereal network-on-

chip integrates network interface “kernels” that similarly packetize interconnect accesses

from different interface standards to network-on-chip packets [172, 60]. Modern AXI-

based interconnects and interconnect generators contain similar modules, as they are

internally based on flexible packet-based network-on-chips. Such works usually focus

on heterogeneous network-on-chip. More in the direction of loosely-coupled many-core

system-on-chip, the network interface proposed by Zaib et al. [225] provides access to

other tiles memory via a “Remote Load/Store Unit”.

Among the industry platforms, Intel’s research platform SCC [140] provides a special

kind of memory access, the “Message Passing Buffer Type (MPBT)”. Such accesseses

are either to a local message passing buffer SRAM region or a remote memory access.

Each tile of two cores shares a message passing buffer. Beside that each core has a

globally accessible test-and-set register. Similarly, the commercial Adapteva platform

provides remote memory access via the memory map [2]. Beside that it provides a

synchronization instruction that forces all cores on the chip to finish all outstanding

transactions (barrier).

Network Adapter as Active Controller Finally, there are network adapters that act as

active controllers. They are configured as a device by memory-mapped control registers

(see Figure 2.12e. That means that an access to an address of those network adapters

does not correspond to a memory address, but instead can store a value, trigger an

operation or provide status. Two of the other network adapters we have discussed so far

can be partly categorized here too: A memory-mapped buffer and the synchronization

operations that accompany remote memory access network adapters can have a similar

interface. But what differentiates this class from them is an increased complexity and

offload capabilities that are in focus here.

A popular class of such a network adapter is based on “Remote Direct Memory Access

(RDMA)” controllers to provide RDMA capabilities (see Section 2.2.1.4). As sketched

in Figure 2.13, an RDMA controller directly transfers data between tile memories. This

is generally more efficient than the remote memory access method, especially with an

increasing data size. Many platforms contain DMA capabilities, often additionally to

other features. Adapteva [2] for example provides RDMA additionaly to RMA. Similarly,

the Kalray MPPA [56] includes a DMA controller in each cluster of 16 cores, that can
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transfer data inside the cluster SRAM or between the SRAM and the NoC. Han et al.

[94] go well beyond that and propose a memory subsystem based on memory-to-memory

transfers that goes beyond the basic DMA engines with scheduling.

Ly et al. [133] propose a message passing engine that uses DMA transfers. This

functionality goes beyond the functionality of a pure DMA, because it knows the notion

of messages. In a similar direction, the Resource Network Interface as proposed by

Minhass et al. [146] that provides an interface to a buffer and the interface to connect

to destinations and exchange messages. The Hydra network interface [213] provides

DMA capabilities and program control capabilities. Finally, the Micronmesh [110, 113,

111, 112] provides capabilities beyond the raw data transfer, but integrates the message

passing protocol.

2.4.2 Network Adapter for Message Passing

Previously, I classified network adapters, where the most relevant in the context of this

thesis are memory-mapped buffers, remote memory access and active controllers. Those

are essential building blocks and are often deployed in varying combinations. A message

passing implementation is build on such features. The API and progress engine can

generally be implemented using them and a varying degree of extra software.

Both RMA and RDMA transfers are limited by that they don’t provide built-in syn-

chronization. Hence, the RDMA is just one building block of the efficient message

passing network adapter presented here. Other works build around DMA differently.

FUNCAPI [138] for example is a full MCAPI message passing implementation that

wraps around DMA transfers, but without giving much details of how synchronization

is implemented. Fu et al. [74] and Ly et al. [133] similarly implement an MPI subset

with DMA with the same lack of discussion of end-to-end flow control.

The RMA features of Intel’s SCC can be used to implement a message passing proto-

col [179, 180]. The discussion by Rotta [179] demonstrates the complexity of transmitting

simple messages. Finally, it doesn’t address the concerns of this thesis because it focuses

on the low level message interaction only. Ziavras et al. [229] take a different approach

and propose a reduced MPI implementation that only features the one-sided MPI prim-

itives. This shifts the flow control issues to the user, which is not very flexible and error

prone. Marchesan Almeida et al. [136] build the message passing infrastructure around

memory-mapped buffers. The software formats the NoC packets and a flexible message

passing protocol with flow control would induce a lot of software overhead.

Summarized, the aforementioned proposals do all address the low level, bare-metal

transfer of messages, but don’t give an extensive insight about application level end-
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Figure 2.14: Baseline network adapter

to-end flow control. This problem is properly addressed by da Rosa et al. [52]. They

propose a hardware extension to an RDMA that includes end-to-end flow control. It uses

the MCAPI as programming API. Buffers are addressed by their <node,port> tuple and

the software configures the controller to find the proper buffers in the tile local memory.

The flow control is then maintained by the hardware. Micronmesh [110, 113, 111, 112] is

a similar approach, but with their own message passing API which is similar in its core.

The message descriptors are written to FIFOs and point to buffers, the hardware called

Micronswitch Interface. Both proposals are the closest related work to the contribution

of this thesis. But as the other works introduced above they focus on low level message

passing for the bare-metal domain, but ignore the entire upper stack. First of all,

the work presented in the remain of this thesis includes a better scalable and flexible

hardware offload of the progress engine. Beside that it improves the overall message

passing performance from one user task to another user task with concepts that are

briefly introduced in the following.

Figure 2.14 summarizes the most relevant parts of this related work in a blueprint net-

work adapter that combines the fundamental concepts. State-of-the-art message passing

implementations focused on using the basic building blocks RDMA and buffers. Explicit

protocol handling (MP) has only been deployed in the few aforementioned approaches

and there is a huge potential to extend and optimize this. This thesis hence focuses on

the optimization of the hardware-based protocol handling for flexible use cases. Beside

that concepts are adopted and developed to efficiently support the whole software stack.

2.5 Concepts for Message Passing Acceleration

As mentioned before, the work presented in this thesis integrates efficient and flexible

message passing support by the network adapter and concepts known from other do-
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(a) Broadcast (b) Scatter (c) Gather (d) Reduction

Figure 2.15: Collective communication operations

mains. In the following I briefly introduce those concepts that are either adopted or

conceptually developed in the main part of the thesis.

2.5.1 Collective Communication

Collective communication operations involve more than one sender and one receiver in

a communication. They are one-to-many or many-to-one operations for distributing

and recombining data. Figure 2.15 shows the standard four collective communication

operations, such as also defined by the MPI standard.

Broadcast (Figure 2.15a) transfer the input data to multiple receivers and all of them

receive the same data items. Scatter (Figure 2.15b) and gather (Figure 2.15c) are a

pair of operations. Scatter distributes a data vector to multiple receivers so that each

of them receives a chunk of the data. Gather is the opposite operation where multiple

senders transfer a chunk of data to one receiver that combines it to one data vector.

Finally, the reduction operation (Figure 2.15d) can be seen as the inverse operation of

a broadcast: Multiple senders send equally sized data vectors that are merged into one

vector of the same size at the receiver. To merge the multiple data vectors into one a

reduction operation is applied to the individual elements such as a sum of all items.

Scatter and gather are well known operations in the context of DMA controllers and

memory interfaces. There those operations help to efficiently utilize the interfaces. An

example for such a DMA controller is ARM’s PL080 [10]. Similarly, the Impulse memory

controller [227] adds an additional virtual memory hierarchy and applies scattering and

gathering operations to dense data transfers to the external memory.

As mentioned, collective communications are an essential part of MPI, because many

algorithms contain those patterns. There are a lot of proposed algorithms and hardware

extensions proposed for them [118, 164]. For example in the IBM BlueGene/L super-

computer, collective communication is supported with separate communication networks

and a dedicated arithmetic and logic unit (ALU) for reduction operations [5]. Also com-
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(a) System Virtualization (b)

Figure 2.16: System Virtualization and I/O Virtualization

mon Infiniband network interface cards include hardware support. For example Con-

nectX [196, 87, 215] enables tweaks of the protocol handling of collective communication

by the programmable embedded processor.

In the system-on-chip context, collective communication is mostly tackled on the level

of the network-on-chip. Ma et al. [134] for example propose multicast support for the

network-on-chip, which is not only helpful to implement broadcasts but also for cache

coherency operations. In the Æthereal NI [172] so called shells provide support for

multicasts and simple narrowcasts.

The proposed network adapter goes beyond this basic support and can be configured

to autonomously execute all four types of collective communication operations. Contrary

to the work in high performance computing this is narrowed down to the restricted set

of communication partners in typical scenarios.

2.5.2 Communication Virtualization

Virtualization generally refers to the abstraction of resources [181]. Its goal is to provide

an entity the illusion of exclusive access to a resource. For example, virtual memory

in computer architecture provides each user process the illusion of a large contiguous

memory. Accesses are actually transparently translated to physical memory addresses.

One of the key aspects is the seperation of entities so that they cannot interfere. System

virtualization [85, 176] has been an increasingly important topic over the last decades. It

allows multiple “virtual machines” to share one physical hardware platform. The major

concern are the processor operations that alter the processor state and break the separa-

tion. Hence, system virtualization needs methods to enforce the separation, most notably

binary translation [177], para-virtualization[15] and hardware virtualization [209].

Even with efficient virtualization support for user processes or entire operating sys-

tems, the I/O operations can become a bottleneck. Devices are shared between multiple
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entities and each of them has the illusion of exclusive access. In the context of multiple

processes/tasks this means that the access takes place without invoking the operating

system (OS bypass) . Therefore in early stages the approach to I/O virtualization was

to emulate drivers [197] or use para-virtualization [170].

The state of the art for efficient I/O virtualization are self-virtualized devices [173].

The concept enables sharing and of a device by multiple entities by providing each a

virtual interface and separate the accesses in the hardware device. In the context of high

performance computing, the virtual interface architecture [65] was he first appearance of

this concept despite it does not precisely describe the hardware architecture. With the

appearance of programmable NICs, the idea arose to offload the functionality from the

operating system kernel to the NIC [191]. RiceNIC [223] for example implemented this

concept of a self-virtualized NIC based on an FPGA prototype. Liu et al. [130] discuss

typical OS bypass with Infiniband and present a nested “VMM bypass” Infiniband NIC.

The concept of the RiceNIC [223] has focused on integration of control and data

path operations in the firmware of a micro-processor running in the NIC. Rauchfuss

et al. [175] proposed to replace the generic micro-processor that is in the critical path of

packet processing. Instead, they propose to offload the processing to a set of configurable

finite state machines to better suit the needs of embedded systems (ES-VNIC). The

approach shares similarities to the work presented in this thesis in the way that it offloads

virtualization and parts of the control and data path into hardware. The differences of

on-chip message passing as presented in the main part of this thesis is in the complexity

of the protocols they handle and thereby the complexity of the hardware FSMs. For

example the task of header parsing is much less complex in the case of on-chip message

passing, or the task of scheduling is much less critical as each operation of the NAMP

is only a few clock cycles.

The work of the ES-VNIC was conceptually extended to integrate with a network

adapter in a tile [174]. This integration focuses on the partitioning of the functionality

and integration with the NIC. The work presented in this thesis is complementary to it

and can be integrated in a way that the VNIC contains buffers that are endpoints in the

message passing communication interface via the NAMP.

2.5.3 Event Signaling

While OS bypass removes the bottleneck from the user application to the shared device,

event signaling concerns the other direction. Namely the question in this context is how

to efficiently notify a task of an arrived message. Two methods are established: Polling is

the repeated wakeup of the task to check if the event (message arrived) already occured.
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(a) Polling (b) Interrupt-based

Figure 2.17: Timing diagrams for the dominant event signaling techniques

As sketched in Figure 2.17a this involves context switches to the waiting task (light

blue) for a rather simple operation. This can be improved by having the kernel actually

check for the occurrence, but it still has a significant impact if the number of waiting

tasks grows. The more widespread approach are interrupts. As depicted in Figure 2.17b

the task is not scheduled while waiting and the event interrupts the current execution.

The operating system wakes the task up and it can later continue execution. A larger

amount of interrupts can become problematic here.

Langendoen et al. [123] investigated the tradeoff between polling and interrupts for

multi-computer systems. They propose an adaptive technique that switches between

polling and interrupts depending on the event rate. In the state of the art interrupt-based

event signaling dominates as it has a lower latency and the reduced overhead. To reduce

the impact of the interrupt handling, interrupt coalescing has been introduced [226]:

Multiple events are queued up and signaled with a single interrupt. For example network

interface cards store several packets before raising an interrupt, such as by Goglin and

Furmento [83]. For on-chip communication MSIQ [113] is an on-chip message passing

adapter that coalesces interrupts. Scheler et al. [187] presented an approach to order

interrupt requests by a programmable microcontroller targeted at real-time systems.

While the overhead of the interrupt handling decreases, the contribution of this thesis

is the complete elimination of event signaling overhead.

The technique applied to achieve this goal is novel and involves the direct interaction of

the network adapter with the operating system task queues. The manipulation of those

queues has been researched especially for hard real-time systems. Such hardware assists

are often programmable. OSIP [43] for example is an application-specific instruction set

processor that handles the OS task scheduling. HW-RTOS [154] implements a scheduler

where threads are woken up when communication events occur. Nevertheless, HW-

RTOS as other hardware operating systems is very limited in its flexibity. Similarly,

the Transputer implemented a wake up mechanism controlled by the hardware [105,

p. 32]. It automatically notifies waiting threads of external or internal events by putting
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them back to the scheduler queue. Anyways, that was a rather complex microcoded

subsystem.

Summarized, the proposed operating system queue manipulation and its integration

with the network adapter hence goes a new path with the ambitious goal to eliminate all

overhead related to event notification. The key contribution is a configurable, yet lean

queue manipulation that differs from the complex state-of-the-art solutions discussed

before.

2.6 Dependability of Many-Core System-on-Chip

With the ever increasing feature size shrinking of CMOS devices dependability of such

systems becomes an important topic. Examples for errors that can occur in the field

are:

• transient faults such single event upsets caused by exposure to radiation [147],

• process variation due to challenges in the fabrication of small feature sizes [155],

• accelerated aging due to thermal hotspots, so called negative bias temperature

instability [188]

Those error can manifest in a variety of effects, ranging from that they are not observed

to a crash or security flaws [103]. One goal is to react to errors or ideally anticipate

failures. Beside functional errors the management of tight power constraints can limit

the utilization of the system-on-chip [70]. Running a large many-core system-on-chip at

maximum frequency and utilization hits another power wall. Management of tasks and

resources is needed.

Thermal gradients and similar effects can be reduced by task migration. The basic idea

is migrate tasks from hotter to colder tiles. Thermal management with a distributed,

agent-based runtime system is a scalable solution [108, 66, 68, 67]. TAPE [68] for example

trades ’power units’ between tiles. Power units are used to ’buy’ tasks from other parts

of the system. Such management approaches demand robust, seamless and transparent

task migration. The downtime during a task migration is challenging in distributed

memory systems. Two basic approaches are differentiated [38, 69]: Task replication is

the permanent availability of each task’s program code in multiple tiles. Migration is then

the migration of the task state. Task recreation instead copies both the state and the code

during migration. The focus of this thesis is on the communication migration, because

the redirection of communication channels is an integral part of task migration. Some
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approaches pause all tasks in one application during migration and the full state transfer

ensures consistency. Alternatively, a few approaches use reduced checkpoints [1, 168,

186], Finally, Tendulkar and Stuijk [201] for example specifically address the network-

on-chip communication, but also pause the entire application during migration. Cannella

et al. [38] finally propose a “forwarding” scheme. Here, the application is not paused

entirely and the communication migration is more flexible. However, their work on

communication migration is only discussed on a broad level and in a limited scope. The

approach presented in this thesis is much more elaborated and covers a wider spectrum

of communication methods and conditions.

2.7 Conclusions

In this chapter I have given a broad overview of the development of multi-core and many-

core system-on-chip architectures and covered the challenges that come with them. On

the one hand this gave a comprehensive understanding of relevant concepts, and on the

other hand it pinned down the relevance of the contributions of this thesis. After this

overview, the basic functionality of network adapters has been introduced and the state-

of-the-art has been classified. A large number of existing network adapters allows the

access to remote memory or the transfer of data from one tile’s memory to another tile.

While those basic building blocks may suffice to build arbitrary complex message passing

protocols, there is only a very small number of network adapters that integrate protocol

handling for message passing. But even those related concepts are operating on a low

level and with a very limited scope with respect to supported communication modes,

concurrent operations and flexibility. The proposed “Network Adapter for Message

Passing (NAMP)” that is presented in this thesis covers message passing on a much

broader baseline. Finally, the key contribution of this work is the integration of novel

concepts for on-chip message passing. The presented concepts are well established in

other domains or contexts, but this thesis discusses the proper adoption and integration

of those concepts for efficient, resource-limited inter-tile message passing. The resulting

network adapter improves the overhead at several critical interfaces and functionalities

in more extensive software stacks beyond bare-metal programming. In the following

those concepts are applied to the boundary conditions of on-chip communication and

co-designed with the message passing protocol.
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Efficient Inter-Task Communication

In the previous parts of this thesis I have motivated the need for a network adapter for

efficient inter-task communication that enables high-throughput and low latency com-

munication. The demands and potential areas of improvement have been discussed:

i) hardware offloading of the progress engine, ii) operating system bypassing (self-

virtualization), and iii) event notification. The state-of-the-art network adapters for

inter-tile communication in many-core system-on-chip focus mostly on the network-on-

chip. Their interface and functionality is designed for simple bare-metal software and do

not support the higher level message passing protocol or interaction with an operating

system. There is a lot of potential for improvement for the higher layers. Motivated by

the deficiencies of the state-of-the-art this chapter presents the key contribution of this

thesis: The concept of the Network Adapter for Message Passing (NAMP). It is targeted

at area-constrained, massively parallel many-core system-on-chip. The major features

of the NAMP concept are:

• The scalable and flexible NAMP concept with basic progress engine offload (see

Section 3.2). The key features are offload of parts of the data path and control path

to hardware, keeping data structures in memory, allowing non-blocking operation

and thread-safe buffer integration.

• The basic NAMP supports different communication modes: connection-oriented

vs. connection-less messages for different degrees of connectivity and throughput

between cores. The software can transfer arbitrary data from memory or from

a local software buffer to another. Finally, it is possible to either setup a single

transfer or configure the NAMP to autonomously transfer data from a software

buffer (continuous communication mode). This allows the software to not interface

the NAMP and instead send data into a simple software buffer.
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• The NAMP-CC feature which enables efficient collective communication (see Sec-

tion 3.3). This is the full set of operations: multicast, scatter, gather and reduction

operation.

• A self-virtualization feature that allows tasks to use a virtual network adapter

(NAMP-SV) without interaction with the operating system (see Section 3.4). It

transparently maps virtual endpoint identifiers to physical addresses.

• A method for efficient event notification that is directly integrated into NAMP

(see Section 3.5). This hardware operating system queue manipulation (HW-

OSQM) performs the wake-up of threads into the operating system ready queue

autonomously.

• Support for protection switching of communication channels with the NAMP (see

Section 3.6). This allows for dependable task migration with minimal impact on

the communication relations of the migrated task.

In this chapter the basic message passing offload of NAMP and the features that

improve critical parts of the software stack are discussed conceptually. This includes

the derivation of the basic properties and functionalities. The key improvements of the

concepts are validated with an evaluation framework that is presented in Section 3.1.

Important trade-offs are discussed with respect to their impact on an implementation,

but the conceptual discussion abstracts from an implementation sensibly. In Chapter 4

the actual prototype implementation is presented and used to estimate the impact on

hardware area and timing. The NAMP features are composable, meaning they can be

added individually in an implementation.

This chapter is organized as follows. In Section 3.1 I first present the evaluation

framework and evaluation metrics that are utilized in this chapter. After that I introduce

the basic NAMP concept in Section 3.2, followed by the features which are presented in

Sections 3.3-3.6. Finally, this chapter closes with a summary of the findings.

3.1 Exploration Framework

In the following the proposed concept of an efficient network adapter needs to be vali-

dated. The goal is to derive estimates how much improvement can be expected. Beside

that variations of the design space need to be explored and evaluated. For that I use

a simple analysis framework that focuses on the end-to-end invocations of software and

hardware elements in the message passing protocols.
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(a) Software-dominated (b) Hardware-dominated

Figure 3.1: The LogP model of message delivery

3.1.1 Evaluation Metrics

To evaluate different design points it is necessary to define the optimization objectives:

• The overhead of protocol processing in software should be minimized. If

protocol optimizations don’t lead a further reduction, offloading parts of the pro-

tocol helps to further reduce this overhead. This leads to the availability of the

processor or device for other computational tasks. For example another thread may

be executed, or further processing overlap the hardware operation. Furthermore,

hardware implementations are generally more power efficient.

• The bandwidth is the upper limit to the number of bytes that can be transferred

from one software task to the other software task. It is important that this is the

net throughput, which contains all packetization and other effects.

• The latency is the time individual messages need to traverse from the source task

to the destination task. In this work I consider the end-to-end latency as the time

from invocation of the send() call until the completion of the matching receive()

call which is the effective end-to-end latency of a message. The predictability of

this objective (mostly as an upper bound) is critical to real-time constraints.

The work presented in this thesis targets to optimize with respect to these three

objectives. The objectives relate to each other. This relation is best captured with the

so called LogP model [51] and its extensions LogGP [4] and PLogP [119]. The LogP

model is named after its four parameters:

Latency L is the latency over the communication infrastructure
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Overhead o is the overhead induced on the processor by sending and receiving

Gap g is the time required between two invocation of a send or receive operation. It is

often described as the inverse of the bandwidth

Number of processors P is the number of tiles

The LogP model has originally been developed to provide a model of a platform

and message passing implementation that can be used for estimation and optimization

of algorithms. But beyond this it has become a well-established tool to describe an

implementation and present its result.

Variable Definition In the context of this thesis I use the LogP model parameters as

measurement results. Those can serve for calibration of a model, but more importantly

they are here used for a quantitative analysis of the proposed improvements. As depicted

in Figure 3.1 the sender side and receiver side are differentiated for the overhead and

gap as os, gs, or and gr. Furthermore, the message size is a differentiating parameter

of a message transaction. Similar to the parameterized LogP model presented by Kiel-

mann et al. [119], I use the message size as a key parameter to analyze the elasticity

of the proposed concept. Figure 3.1 sketches the relation of the analysis variables: L is

the traversal time after the software handed the message to the network adapter until

it arrives at the receiver software. os and or are the times that the software occupies

the processor cores on send and receive operations. The gap is the time that elapses

between the actual invocations. It differs between software-dominated implementations

(Figure 3.1a) and hardware-dominated implementation (Figure 3.1b). In a hardware-

dominated implementation the software is stalled to wait until the hardware becomes

available again or can perform useful operations, while in a software-dominated imple-

mentation the overhead and gap are equivalent.

The Role of the Network-on-Chip As discussed before, the network-on-chip has been

the focus of a lot of research for on-chip communication. Anyhow, I have introduced

that it only is one puzzle piece in the end-to-end communication which involves a much

larger stack. The network-on-chip influences the analysis in two ways: The topology

and the placement of the sender and the receiver directly derives a lower boundary of

the traversal latency as lnoc,min = #hops × cycles
hop . The second influencing factor is the

contention which can become very critical. The contention can be understood as the

traffic in the network and it manifests in the acceptance rate at which the network
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(a) Events & timing annotation (b) Simulation model

Figure 3.2: Principle of discrete event simulation

adapter can inject packets into the network-on-chip. This rate strongly depends on the

topology of the network and the other traffic. The contention influences the sender gap

gs and thus the bandwidth in a hardware-dominated infrastructure. A highly contended

network-on-chip furthermore can significantly increase the latency, especially for packets

traversing many hops. In a network-on-chip with dozens or hundreds of nodes the

variance in the latency can therefore be multiple orders of magnitude. There have been

many approaches to model network-on-chip throughput and latencies [32, 162, 117]. But

all models rely on a lot of parameters and an in-depth exploration does not add much

to the considerations here. In the following, I mostly abstract from this and only use

some average cases of network-on-chip contentions where it makes a difference.

The described set of metrics are in the following used to quantitatively compare the

proposed concepts and evaluate their parameters. They are furthermore similarly in the

focus of the performance evaluation as part of the presentation of implementation results

in Chapter 4.

3.1.2 Discrete Event Simulation

This chapter presents concepts and evaluates them. Only simple cases allow for an

analytical evaluation. Due to the inherent parallelism and overlaps a simple discrete

event simulation is used to evaluate a concept or explore its parameters with respect to

the metrics.

The basic idea of discrete event simulation is sketched in Figure 3.2a: Parts of the

functionality are abstracted and only those events that change the state of the simulation

are considered. Such state changes are generally interactions between modules or events

relevant to the exploration (such as completion events). The events are discrete in

the time domain and the times between events can be abstracted which reduces the

simulation time significantly. Internal processing between events is modeled with delays

and communication between models with events on the interfaces.
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In this thesis I use a model based on the SimPy [139] discrete event simulation frame-

work. Here the functional units and modules are modeled as simulation objects as

depicted in Figure 3.2b. The modules communicate via generic interface to exchange

data with annotated delays. This model allows it to rapidly prototype the protocol flow

and data exchanges. As shown in Figure 3.2b the simulation modules can easily be

exchanged to explore implementation alternatives.

Parameterization The abstract discrete event simulation that used in this chapter is

calibrated with parameters. Those parameters either could be easily derived or are

calibrated with the baseline implementation described in Chapter 4. Without loss of

generality the parameter values represent the class of loosely-coupled many-core system-

on-chip described before.

3.2 NAMP: Network Adapter for Message Passing

As motivated before, the very basic approach to lower the overhead of a message passing

protocol on the processor is to improve the protocol, most importantly reduce the number

of messages. The protocol used in this work is based on the Multicore Association

Communication API (MCAPI) [153]. MCAPI defines an interface and that is optimized

for embedded systems and on-chip communication. But as an API it apparently doesn’t

define the protocol itself. In the following I derive a basic protocol, that can be integrated

with MCAPI. A few extensions to the MCAPI interface are proposed to make efficiency

improvements better accessible by the programmer. It is important to highlight that the

basic protocol and the proposed NAMP are not specific to MCAPI. Instead, it serves as

an industry-standard reference.

After deriving the base protocol, the performance of it is evaluated for state-of-the-art

hardware support. Derived from this evaluation, the hardware offload of the protocol is

discussed as a highly-optimized “Network Adapter for Message Passing (NAMP)”. This

is namely the implementation of the progress engine in hardware which are the basic

algorithms to send and receive messages.

3.2.1 Message Passing API

The message passing protocol can be easily mapped to MCAPI and a few extensions

are added. The basic MCAPI interface functions are prefixed with mcapi and proposed

extensions are in the following prefixed with mcapix . As said, the API itself does not
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propagate an implementation in itself. In fact the reference implementation of MCAPI

is implemented for shared memory platforms.

Due to the asynchronous nature of the message passing protocol, the task may have

to actively wait for a certain amount of time on invocation until a message from a

remote tile arrives. As other message passing protocols, MCAPI includes non-blocking

function calls that are identified with the commonly used i suffix. The return after the

request started and the task can then overlap the waiting time with other computations

and later check the result using the mcapi test(), mcapi wait(), mcapi wait any() or

mcapi cancel() functions. Blocking functions instead return only after the operation

completed.

3.2.1.1 Basic API Functions

MCAPI defines a set of basic functions for initialization and introspection. The functions

mcapi initialize() and mcapi finalize() are used to initialize the environment.

The initialization can take implementation-specific node attributes that are highlighted

throughout this thesis when needed. Two helper functions mcapi domain id get() and

mcapi node id get() allow to read the <domain,node> tuple this instance was config-

ured for. Finally, node attributes are (re-)initialized mcapi node init attributes().

Individual attributes are modified and queried with mcapi node set attribute() and

mcapi node get attribute() respectively.

These functions essentially create, manage and destroy some lists and other data

structures. They don’t imply any inter-tile communication per se and most importantly

they are called rarely (once), so that there is not much gain by offloading them to

hardware.

3.2.1.2 Endpoints API

After a node instance has been initialized, the actual message passing functions can be

called. A message passing interaction first needs to setup the endpoints that form the

communication relation. The software differentiates between local and remote endpoints.

Manage a local endpoint The function mcapi endpoint create() allocates the lo-

cal buffers and data structures for a given port number. This endpoint can then be

addressed as <domain,node,port> globally. The endpoint data structures are outlined

in Figure 3.3: The endpoint contains its own address, pointers to buffers and some

state. The state is more important with the NAMP features discussed later in this
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(a) Local endpoint data structure (b) Buffer data structure (c) Remote end-
point data
structure

Figure 3.3: Endpoint data structure

(a) Blocking retrieval (b) Non-Blocking retrieval (c) Channel connect

Figure 3.4: Remote endpoint management and channel connect

chapter. First it is essentially used to capture the life-cycle of an endpoint (ready,

deleted). An endpoint can point to one or two buffers, because the sending buffer is

optional (see below). As sketched in Figure 3.3b, each buffer is configured to hold a

maximum number of messages (size) and pointers to the next write and read position in

the buffer. Each message has a size and data, more details on the implementation of the

buffer are given in Section 4.2.2. The functions mcapi endpoint set attribute() and

mcapi endpoint get attribute() are used to change this and other properties such

as the size of buffers and maximum size of individual messages. The MCAPI exten-

sion mcapix endpoint create() is added that takes such attributes and it optimizes

the creation process of an endpoint. Finally, mcapi endpoint delete() is called to de-

construct an endpoint. All of the local endpoint management functions do not involve

any interaction with other tiles.

Retrieve a remote endpoint A handle of a remote endpoint is needed locally, most

importantly at the receiver side of communication. Locally this handle is stored in a
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data structure as sketched in Figure 3.3c. It contains the endpoint address tuple and the

memory address in the remote tile, which there points to a local endpoint data structure

as described above (see Figure 3.3a). The setup of this data structure is part of the

mcapi endpoint get() function. In the presented implementation it queries the remote

tile for the remote address of the endpoint data structures as depicted in Figure 3.4a.

The non-blocking variant is also sketched in Figure 3.4b, but is only given for other

functions if needed in the following.

Channel Setup Channels are the communication medium for connection-oriented com-

munication. As motivated before they are commonly used in the embedded system

domain where a data flow programming model runs on top of a message passing infras-

tructure. In channels only one sender can transmit messages to the receiving endpoint.

Figure 3.4c shows the common case where a connection is established by the sender by

calling mcapi pktchan connect i(). The receiver acknowledges the connection request

if eligible and returns a credit to the sender. The credit determines how many messages

the sender can send on this channel before waiting for new credit. Before communica-

tion starts, both communication partners must call mcapi pktchan send open i() and

mcapi pktchan recv open i(). The open is decoupled from the connection because it

is generally allowed that the connection is established from a third party and the details

are out of scope of this thesis.

3.2.1.3 Connection-less Communication

Once the communication is set up, messages can be exchanged. As introduced, two types

of communication can be used. In connection-less communication (or “messages” in the

MCAPI nomenclature) the protocol requires a rendezvous-style allocation of a message

buffer before sending it. As mentioned in the introduction the protocol alternative

to eagerly send the message has the risk of backpressure on the network-on-chip that

significantly impacts the performance, or alternatively has much higher memory demands

that outweigh the benefits. The function pair mcapi msg send() and mcapi msg recv()

or their non-blocking variants mcapi msg send i() and mcapi msg recv i() are used

to exchanges message. mcapi msg available() can be used by the receiver to check for

incoming messages.

Figure 3.5a shows the protocol for a connection-less message transmission. The proto-

col engine sends a message allocation request for the remote endpoint to the destination

(1) and either a NACK message or the message of the allocated message are returned

(2). The remote protocol handling checks if the receive buffer at the addressed endpoint
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(a) Connection-less Message Transfer (b) Connection-oriented message trans-
fer

Figure 3.5: Basic message passing protocol

can receive a packet and then returns the message address. The size of an allocated

message buffer is set to 0 until the message is complete. The sender then generates

network-on-chip packets for the message (3) and sends them as protocol messages to the

receiver (4). At the destination, the message chunk is stored in the message buffer (5).

This is repeated until the message is complete. Each of the messages contains the offset

of the data chunk in the message. After the last message a completion message is sent

containing the overall sent data size (6).

Receiving a message is much simpler. If a message is available, it is copied to the

buffer provided by the user. After that, the buffer data structure is updated and the

read pointer is moved forward.

3.2.1.4 Connection-oriented Communication

Connection-oriented communication is only allowed with endpoints that were previously

connected as a channel. Also the polarity (sender vs. receiver) needs to match the chan-

nel setup. The sender can then call mcapi pktchan send() or mcapi pktchan send i()

to transmit a message on this channel. As depicted in Figure 3.5b it first checks for suf-

ficient credits. If there are no credits left it has to wait for the receiver to send new
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(a) Buffer-based NA (b) Remote Memory Access (c) Remote Direct Memory Ac-
cess

Figure 3.6: Data flow using different basic network adapters

credits. After that, the message transfer is identical to the connection-less case. The

advantage is apparently that the allocation phase can be skipped as it is clear that the

receiver can accept new messages. The latter has two significant properties: First, the

sender has to constantly retry in the case of an allocation failure. Second, this protocol

exchange is a critical protocol roundtrip. Commonly, some dead time arises until the

answer arrives.

After the message is complete, the receiver can pick it up using mcapi pktchan recv()

or mcapi pktchan recv i(). The receiver does not supply a buffer to copy the data to,

but instead the zero-copy concept is standardized: The system returns a pointer to a

system buffer and the receiver mandated to release this buffer after the data is not

needed anymore using mcapi pktchan release().

3.2.2 Evaluation of the Base Protocol

Now that the base protocol is established, it is analyzed for implementations with the

state-of-the network adapters introduced in Section 2.4. For that I derive sketches of the

message sequence charts, analyze the involved delays and interactions and compare the

implementations. This directly serves as a comparison baseline for the proposed NAMP

in the following. Figure 3.6 sketches the data flow of the bulk message data from the

buffer of the source endpoint to the buffer of the source endpoint.

3.2.2.1 Buffer-based Progress Engine

As depicted in Figure 3.6a the entire communication protocol is handled by software,

including the message generation. Packetization and de-packetization are performed

in software. The protocol is sketched in Figure 3.7 for connection-less communication

59



3 NAMP: Design of a Network Adapter for Efficient Inter-Task Communication

(a) Connection-less Message Transfer (b) Connection-oriented Message Transfer

Figure 3.7: Basic message passing protocol

(Figure 3.7a) and connection-oriented communication (Figure 3.7b). The main message

transmission is identical, but the flow control apparently differs.

In the case of connection-less communication the software forms a buffer allocation

message with the endpoint as parameter. The software writes flit per flit to the network

adapter which stores them into a buffer. Once the packet is complete, the transfer starts.

This waiting is necessary to keep up with the network speed and being able to transmit

one flit of the packet after the other if the packet allows. Otherwise, serious contention

can significantly impact the network-on-chip. After traversing the network on-chip the

network adapter on the receiver side raises an interrupt to trigger the progress engine

on the CPU. It reads the protocol message and performs the operation. It sends the

reply to the sender (the address of the reserved message buffer position). The sender

actively waits for this reply and then sends the message payload over the network. As

the payload is usually larger than the maximum packet length in the network on chip,

it needs to be split up into multiple packets. For each packet the CPU is involved to

read it and copy the data to the buffer. With the first packet it involves the interrupt

handler. But as the next packets are supposed to arrive in a time frame smaller than

the interrupt handling, it waits after that.
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For connection-oriented communication the actual message transfer is identical and

the costly remote buffer allocation is not necessary. The sender can continuously send

messages as long as it has sufficient credit on the channel. The receiver has to update the

credit periodically. There is a trade-off involved for the threshold when to send credits:

Sending them after each receive involves a lot of messages, while the backpressure can

impact the sender when sending them only after used up. A sensible threshold is in after

half of the credits have been used.

From the message sequence chart the evaluation model can be derived. As mentioned,

the basic operations are calibrated with numbers gathered from the prototype imple-

mentation. The operations depicted in Figure 3.7 are composed of basic operations.

The model results can be found in Figure 3.8. The metrics are plotted with the message

size as the variable. Beside that it is parameterized for different network-on-chip max-

imum packet lengths l (in flits, here 4 bytes per flit). The latter influences the number

of packets sent for the bulk message data. The number of packets sent varies between

different lengths. As each transfer contains h header flits (here h = 2) the total number

of transmitted flits increases with lower maximum packet sizes: P = d S
l−he is the number

of packets, where S is the message size.

Figure 3.8 plots the overhead and latency of the software on the processor core for

connection-less communication. Beside the aforementioned parameters the plot contains

spans for each individual result that show the variation depending on the network-on-

chip contention. As mentioned before, this evaluation is orthogonal to the network-

on-chip latency, but the contention has a significant impact here. Backpressure from

the network-on-chip manifests in the software execution time. The lower bar shows no

significant traffic in the network-on-chip, while the upper bar shows a very contended

network-on-chip. The contention here is modeled as the service time of the network-on-

chip interface.

Interpretation As already visible in the message sequence chart in Figure 3.7 the mes-

sage passing is largely dominated by the software overhead. The network traffic can

influence the overhead by two orders of magnitude. Two effects influence the overhead:

The number of packets that are generated by the software are dominating the overhead

for large packets. But until a packet size of around 128 byte the remote buffer allocation

dominates the overhead and latency as a basic offset, and only after that the overhead

diverges for larger l. The receiver overhead has a similar pattern, but an offset due to

the impact of the number of interrupt service routines can be observed. Finally, the end-

to-end latency also follows a similar pattern. Due to averaging effects the influence of
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Figure 3.8: Evaluation of message passing with a simple buffer-based progress engine

the network contention is more limited than for the send overhead where the interaction

of wait times and concurrent message transfers becomes visible.

3.2.2.2 RMA vs. RDMA

The massive overhead due to message handling of a simple buffer-based network adapter

with software protocol engine can be mitigated with offloading. The most apparent and

simple is offload of the data path. Figure 3.6 highlights the difference between buffer-

based, RMA-based and RDMA-based network adapters. The basic idea of RMA is to

get rid of the invocation of the remote CPU in the data path. The remote invocation is

in general an expensive interrupt service routine. But RMA still has a similar impact on

the sender software, because the data path still goes through the CPU (see Figure 3.9a).

In RDMA the data path is handled entirely by hardware (see Figure 3.9b).

Figure 3.10 plots the evaluation metrics for RMA-based and RDMA-based implemen-

tations and compares them to the basic buffer-based implementation. In this plot and
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(a) RMA (b) RDMA

Figure 3.9: Basic message passing protocol using Remote Memory Access and Remote Direct
Memory Access – shortened connection-oriented protocol
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Figure 3.10: Evaluation of message passing based on RMA and RDMA
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throughout the remaining thesis the network-on-chip packet length is fixed to 32 words

which are assumed to be 4 Byte each without loss of generality. The error bars again de-

note the variation due to network contention. Figure 3.10 furthermore plots the overhead

for the sender for the buffer-based implementation, RMA and RDMA. The evaluation

here and in the remain of the chapter assume that the software can do something dif-

ferent useful while waiting for replies or a controller to complete. As also depicted in

the message sequence charts an interrupt is used to notify about those completions. As

a comparison the plot also contains an RDMA implementation that does busy waiting

(RDMAbw). The receive overhead are plotted where RMA and RDMA are identical.

The end-to-end-latency is finally depicted in Figure 3.10.

Interpretation As expected from the discussion, RMA and RDMA only induce a con-

stant overhead for the receiver. The perform only the allocation operation and the finish

operation, which are both independent of the packet size. Similarly, the sender overhead

becomes constant for RDMA. The RMA overhead on the sender side is higher than the

buffer-based implementation, because packetization and number of network packets is

higher (one packet per word, multiple headers per packet). Also, the RMA implementa-

tion is therefore less robust against variations in the network contention. The RDMAbw

implementation can be seen as a combination of RDMA and buffer-based implementa-

tion, each time the worse for the packet size. This again motivates to not wait actively

for completion of operations. Finally, the trend of the latency shows a combinations of

the described effects on the packet delivery time.

3.2.3 NAMP Basic Concept: Full Progress Engine Offload

The previous analysis has shown that the implementation of message passing protocols

can benefit a lot from offloading the data path to a remote DMA engine and a bit less

from a remote memory access engine. Anyhow, there is quite a high impact of the control

path operations. There have been a few approaches to offload control path to hardware

too [110, 52]. But those approaches are very limited in their scope and functionality.

They typically only target one specific method for message passing (e.g., connection-less

vs. connection-oriented, buffered, etc). While they are interesting candidates for one

data point in the design space of message passing, the proposed Network Adapter for

Message Passing (NAMP) tackles this design space in a much broader scope by providing

a large variety of communication modes along with an efficient baseline concept.

Figure 3.11 depicts the basic concept of NAMP. It replaces the control path operations

in software (see Figure 3.6) with a hardware-implemented protocol engine. Those are
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Figure 3.11: Basic overview of control and data flow with the Smart Network Adapter

the bottom line contributors to overhead and latency. As mentioned, the most critical

is the turnaround allocation message for connection-less messages, because the sender

is either idly waiting or needs to be interrupted (with the high cost of the interrupt

handling). Even for connection-oriented communication the invocation of software at

credit update messages is significant.

Beyond the imminent advantage to the processing of one message transfer, the benefit

of offloading the control path processing to the hardware is even higher in the presence

of multiple outstanding operations. The impact of waiting for a retry of buffer allocation

and handling of credit messages – the progress engine – can sum up significantly with

multiple outstanding operations.

The basic NAMP approach covers the following features:

Data Path and Control Path Offload The performance critical parts of the protocol

are executed in hardware, which are the message transfer operations. Enumer-

ation and connection management are still handled by software as described in

Section 3.2.1.

Data Structures in Memory Data buffers and endpoint descriptors are stored in the

tile local memory. Thereby it provides greater flexibility and less impact on the

hardware area.

Configurable Number of Slots Each slot represents one ongoing transfer. The slot en-

codes the state of the transfer, for example a slot progress can be stalled due to a

pending allocation response or while the data is transfered.

Non-Blocking Progress Engine The protocol message between two communication part-

ners are non-blocking, which means that the receiver side always immediately
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replies to a protocol message from the sender. Thereby, the receiver itself is state-

less.

Connection-oriented and Connection-less messages Both message types are supported

by NAMP with a common software interface. As mentioned there is a major over-

lap in functionality for both message types.

Thread-Safe, Non-Blocking Circular Buffer Design The buffer data structure is de-

signed in a way it can be efficiently interfaced by software and hardware. It can

allow multiple concurrent readers and multiple concurrent writers. It is imple-

mented as a non-blocking data structure, which means for example that there is

no impact of stalled threads on the other readers and writers (no locks).

Receiver-Buffered and Dual-Buffered Messages are always delivered to a remote buffer.

This decouples the hardware from the software. On the sender side data can be

either send from a memory address or from a buffer. This eases the software

handling of memory addresses in concurrent outstanding operations.

Message Completion and Continuous Communication Mode In the basic NAMP de-

sign the completion of a message operation can be configured to be signaled by

an interrupt or via polling. The HW-OSQM concept presented in Section 3.5 im-

proves the event signaling beyond that. Finally, a NAMP slot can be configured

to continuously transfer messages from a sender buffer to a receiver buffer.

3.2.3.1 Evaluation of Full Progress Engine Offload

Figure 3.12 sketches the message passing protocol variants when the control flow is also

offloaded to the network adapter as in NAMP. After starting a message passing transfer,

the software immediately configures the network adapter to handle the transfer and can

then return to other processing. The protocol engine takes care of flow control and then

configures the actual bulk data transfer. The overhead is thus constant.

Figure 3.13 shows the sender overhead of the NAMP and compares it to RDMA, both

for connection-less communication. As another variable it adds the number of retries

for an allocation message. This is modeled as a poisson process which is a common

statistical process in queuing theory. It has the parameter λ and different parameters

are evaluated here. Figure 3.13 also compares the latency accordingly.

Interpretation Figure 3.13 plots the evaluation comparison between RDMA and NAMP,

with a reduced x axis compared to the previous plots for more detail on the interesting
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(a) Connection-less Message Transfer (b) Connection-oriented Message Transfer

Figure 3.12: MSCs of NAMP-based message passing protocols
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Figure 3.13: Evaluation results of NAMP compared to RDMA at different waiting times
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part. Essentially two results are interesting: First, the configuration times required to

setup the RDMA and NAMP respectively, and the protocol handling for allocation and

finish in case of RDMA. It can be observed that the overhead for NAMP is smaller than

for RDMA as it only needs to setup a single descriptor and then is notified once the

transfer completes. Second, the difference grows with mean waiting time for an alloca-

tion (poisson process with mean λ), which the NAMP configuration is independent of.

The latency is again dominated by the bulk data transfer delay and the time needed

for allocation. As the NAMP hardware equally needs to wait and retry allocations, the

general shape of the plot is similar but the latency is overall smaller.

3.2.4 NAMP Buffer Features

In the following I derive some important features around the role of buffers in the message

passing system.

3.2.4.1 Non-Blocking Circular Buffer

All buffers are stored in the local memory in the tile. They are interfaced by both the

hardware and the software. Thus the buffer data structure is designed in a way that

it can be efficiently accessed and modified by hardware and software. The basic buffer

data structure as depicted in Figure 3.3b for example requires proper alignment for easier

calculation of offsets. Beside that the index counters should wrap at boundaries that

are power of two, which is the size of the buffer and the maximum message size.

Another important property is that the operations on the buffer only involve one

variable that needs concurrency protection. This enables the circular buffer as a non-

blocking data structure. Instead of using a locking mechanism between the software and

hardware this leads to a progress guarantee for the operations.

The buffer implementation and operations are further detailed in Section 4.2.2 as part

of the prototyping discussion.

3.2.4.2 Buffered vs. Unbuffered Data Sending

As mentioned before, there is always a buffer on the receiver side. Each message transfer

involves the pushing of the message into the buffer. This is different on the sender side.

As depicted in Figure 3.14 a sender can either configure the NAMP to send an arbitrary

block of data from the memory (Figure 3.14a) or from a buffer (Figure 3.14b). In the

following I briefly introduce the options and compare them.
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CPU Memory NAMP

T
①

②
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(a) Unbuffered Send (b) Buffered Send

Figure 3.14: NAMP Send Features

Unbuffered Send The software writes the data to be transferred to an arbitrary address

in memory. After that it configures a NAMP slot to send data from that address and

the size of the data, along with the destination endpoint (not sketched in Figure 3.14a.

The NAMP then handles the message protocol (connection-less or connection-oriented)

and transfers this block of data to the destination. Once the NAMP is done, the sender

can re-use the data block or free it. It requires notification of the NAMP as discussed

above, and the slot remains reserved for a certain amount of time until the task received

the completion notification.

Buffered Send The software allocates a buffer for the sender operation. After writing

data to the buffer it configures the NAMP slot with the buffer address and the index it

wrote the data to. The NAMP then first reads the data base address from the buffer

and calculates the address of the data block. After completion of the data transfer, it

frees the buffer element. It is not necessary to notify the software, because it implicitly

communicates with the NAMP via the buffer.

Please note that the usage of the buffer differs in that case from the description above.

The read index is not used at all, which is okay as the NAMP is the only reader and

executes on a per-index basis. Using buffered send is advantageous when one task sends

connection-less to multiple remote tasks. This has limitations if the delivery latencies

vary a lot because a pending send can block new transfers while the buffer is nearly

empty. In such cases, multiple, very small buffers are better suited as the memory

overhead of the data structure is small.

Table 3.1 summarizes the differences between the buffered sender mode and the un-

buffered sender mode. The apparent advantage of the unbuffered mode is that it does

not require extra memory. The software can just use a variable and send it to the re-

mote. In the buffered case the data must be pushed into the buffer. This usually requires

69



3 NAMP: Design of a Network Adapter for Efficient Inter-Task Communication

Unbuffered Buffered

Memory require-
ments

Low, data only High, data structure and
buffer elements

Data items Arbitrary Buffer element

Notification Explicit Implicit

Release slot Explicit, by software Implicit, on completion

Table 3.1: Comparison of Buffered and Unbuffered Send

copying data from a the original data field to the buffer. Alternatively, the software can

perform the reservation function mp cbuffer reserve() from Listing 4.2 and assemble

the data directly into the buffer. The second important difference is in the port-transfer

handling, namely notification and the slot life cycle. In case of non-buffered send the

slot gets into a “complete” state and the software gets somehow notified about the com-

pletion (notification is discussed subsequently). Hence, the slot cannot be used again

immediately. With the buffered send the NAMP immediately clears the slot after freeing

the buffer element. The software is not directly involved, but implicitly can re-use the

NAMP slot in other contexts.

3.2.4.3 Continuous Communication Mode

The aforementioned buffered send mode is designed can be useful to increase the through-

put under certain circumstances. As discussed, this is predominantly for connection-less

messages. There is another mode which is primarily designed for connection-oriented

messages but not limited to it. The basic idea of the continuous communication mode

is similar to the buffered send mode. The software writes to a buffer and the NAMP

transfers data from the buffers and interfaces the buffer data structure. The continuous

communication mode goes one step further and doesn’t release the slot as soon as a

transfer is done. Instead it is configured to continuously send data from the buffer to

a remote endpoint. For connection-less messages this is useful when only one remote is

addressed (such as multiple-to-one) and for connection-oriented it is the channel.

As depicted in Figure 3.15 the software initially configures the NAMP to perform a

continuous communication mode operation from a send buffer to the remote endpoint.

After that the software only interacts with the buffer and pushes data into it whenever

the buffer is ready. The NAMP also only interacts with this buffer and sends data as

soon as it becomes available. This has a massive advantage as it removes all interaction

between the NAMP and the software. The software virtually just writes into software

buffers on one end and reads from software buffers on the other end.
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Figure 3.15: NAMP continuous communication mode

In continuous communication mode the NAMP operation is more complex, because

it does not only involve a single indirect addressing, but also needs to implement the

buffer pop operation (move the read index). Figure 3.15 sketches the data flow from the

software writing to the buffer using the defined interface and the NAMP reading from

the buffer accordingly. More details on the complexity of the continuous communication

mode can be found in subsequent discussions.

3.2.5 NAMP Design

In this concluding section I discuss the design of the NAMP in a conceptual way. The

actual implementation is presented in Chapter 4.

3.2.5.1 Functional Partitioning

The NAMP concept can be separated in two parts: The initiator side is responsible for

the protocol progress and setup of the data transfer via RDMA. The target side responds

to the protocol messages generated by the initiator side.

Initiator The initiator provides the concept of slots. Each slot corresponds to one

outstanding message transfer. Hence, slots are a shared resource if the software wants

to transfer multiple messages concurrently as there are slots. A sensible design point for

the number of slots requires on the application scenario and is discussed as part of the

implementation evaluation in Chapter 4. Each slot consists of two parts: The message

configuration registers that are set by the software and describe the message transfer.

Beside that each slot has a state that encodes progress of the message.

This state of a slot mostly to a message lifecycle as sketched in Figure 3.16. The

lifecycles of connection-less and connection-oriented messages can be derived from the

message sequence charts in Figure 3.12. The lifecycle diagrams do not describe the

conditions and actions for transactions, which is derived in the following. Generally,
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Figure 3.16: Lifecycles of messages during protocol handling at the sender

a connection-less message (Figure 3.16a) needs to generate an allocation message and

wait for the response. If the response is a successful allocation, the allocated buffer

slot address is stored. Otherwise a timer is set before retrying the allocation, because

sending it too fast after the first most probably leads to the same result. In the case

of connection-oriented messages (Figure 3.16b) the message can generally be sent when

credit is available. Otherwise it requires waiting for a credit update. In both cases the

RDMA is configured once the target is ready to receive the message. After the RDMA

transfer is completed, the message is done.

Apparently not all transitions in the lifecycle are triggered by the progress engine

itself, but also responses from the receiver can transfer the state: On arrival of an

allocation response the connection-less message state transfers either to data processing

or activates the timer. Similarly, the arrival of new credit triggers the transfer from

waiting to data transmission for connection-oriented messages. Finally, there is one

other class of messages: credit updates. They are generated on the receiving side and

they are technically sent using the initiator path.

Target As introduced before, the target side does not need to keep track of the state of

individual messages. All transfers are controlled by the sender side and the receiver only

reacts to the protocol messages from the sender. It means that it can process incoming

protocol messages immediately at any time. This is an important property in avoiding

deadlocks and performance bottlenecks.

Figure 3.17a gives an overview of the functional blocks that form the NAMP. As

mentioned before, the NAMP does not offload the setup phase operations as they occur

rarely. Hence, the NAMP still contains buffers and the software can directly exchange

network-on-chip packets via them. For the actual message passing transfer operations
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(a) Design overview (b) Functional partitioning

Figure 3.17: NAMP design overview and functional partitioning

the second slave interface on the bus is for the slot configuration, as described above. The

progress engine handles the message transfers from the slots and tracks their individual

progress in the slot state. The progress engine also sends and receives messages on

the network-on-chip interface, the protocol messages. Finally, the NAMP contains an

RDMA controller for the bulk data transfer.

The central element of the NAMP is the progress engine. Figure 3.17b sketches the

functional partitioning between the sending and receiving operations around the progress

engine. Apparently, the sender part is more complex than the receiver part. The func-

tional partitioning also reflects in the assignment of network-on-chip channels. To miti-

gate message-dependent deadlocks two channels are used (for example see [193]). Those

channels can be separate physical networks or virtual channels in the network-on-chip.

The sender generates protocol messages on the request channel (req), which are at an-

other tile’s receiver part are the incoming messages. The receiver then sends its responses

on the response channel (resp).

On the initiator side two FSMs are used: The egress FSM is responsible for the

protocol handling and generates the protocol requests. It is triggered by changes in the

slot table and performs protocol actions for one of the slots at a time. It generates

messages and updates the slot table according to progress. Beside that it can access the

bus to get further data from the data structures in the tile local memory. Finally, it

interfaces the remote DMA controller to set up data transfers. The initiator ingress FSM

is triggered by response messages and updates the slot table according to the responses.

Beside that it accesses the memory.
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The target part of NAMP is straight forward. The FSM is triggered by incoming

protocol requests. It then accesses the data structures in the tile local memory and

assembles protocol response messages as needed.

While this is a bird’s view on the NAMP design, it gives an impression about where

the complexity is in the design. In the course of this section I develop the NAMP engine

based on the lifecycle and this functional partitioning.

3.2.5.2 Bus Interface & Operation Atomicity

The progress engine has two bus master interfaces which are most probably multiplexed

inside the NAMP: One for the initiator accesses and one for the target accesses. The

NAMP does not depend on a specific bus interface. An implementation needs to provide

very essential read and write accesses and atomic read-modify-write operations.

Initiator As depicted in Figure 3.17b both the egress FSM and the ingress FSM access

the bus interface. The egress FSM for example needs to look up the endpoint data

structures and credit information, or manipulate a sender buffer. The ingress FSM

receives responses from the target, which may require an update of the endpoint data

structure.

Target The target accesses the bus to perform the requested operations. Actually all

target operations involve a bus access, to manipulate the buffer or update a credit.

Operation Atomicity The interaction with the buffers requires atomic operations to

guarantee data integrity. As long as there is only one NAMP engine, only the receiver

side may require atomic access. If there are no software threads that can write to the

same buffer, atomicity is essentially not needed. In an implementation as presented in

Chapter 4 support for atomic operations may therefore be configurable.

Figure 3.18a depicts an example for a read-modify-write cycle of the NAMP. When

pushing data to the receiver buffer and the potential of software thread interference, the

NAMP has to manipulate the index atomically. It reads the current index to check if

the buffer is full (compare Listing 4.2) and then tries to atomically increment that index.

For that it first reads the index again and checks if it still matches the old value. It

then conditionally modifies the value and conditionally writes it back. The bus is held

during the entire operation1 and only released after the write or if the comparison fails.

Figure 3.18a also depicts how the actual idx is extracted from the stored value as the

1Interconnects that aren’t shared medium, such as AXI, have extensions that resemble this.

74



3.2 NAMP: Network Adapter for Message Passing

(a) Read-modify-write (b) Notification options

Figure 3.18: Read-modify-write example and notification options

lower bits of the value, where the number of bits is the capacity field value (modulo by

power of two).

3.2.5.3 Notification

There are two events that the software may get notified about. First, when a send

operation is completed the software for one can resume on a blocking call. Beside that

the software knows that the NAMP slot can now be re-used and potentially that the sent

data block can be reused or freed. Second, the software may wait for a blocking receive

operation. The basic NAMP supports configurable notification for both cases that is

briefly discussed in the following. As a major improvement to the basic state-of-the-art

methods I present an improved method for efficient, zero-overhead event notification in

Section 3.5.

Send Notification As depicted in Figure 3.18b there are three ways of signaling the

completion of a completed message. When a sender buffer is used, the software may not

be notified at all, but instead implicitly note that a buffer element was removed, i.e.,

the buffer can hold a new element. This can be queried in a form of so called polling :

The software repeatedly reads the state until it changes, possibly with getting to sleep

in between checks. In the absence of a sender buffer the software can instead poll the

slot for completion of the transfer. Finally, the NAMP may be configured to raise a

hardware interrupt when any of the slots is complete so that the software can handle

the completions.
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Description

0 Flags (see Table 3.2b)

1 Remote endpoint

2 Depends on mode

3 Depends on mode

(a) Parameters

Name Description

CoM Credit update (1) or Message (0)

CON Connection-oriented/-less

BUF Buffered/Unbuffered

CCM Continuous Communication Mode

IEN Raise interrupt on completion

VALID Transfer valid

DONE Transfer completed (read only)

(b) Flags

Mode CoM/CON/BUF/CCM Parameter 2 & 3

Credit 1/0/0/0 2: credit amount, 3: –

Unbuffered 0/CON/0/0 2: data pointer, 3: size

Buffered 0/CON/1/0 2: local buffer, 3: offset

Continuous Com-
munication Mode

0/CON/1/1 2: local buffer, 3: –

(c) Transfer Modes

Table 3.2: Slot configuration interface

Receive Notification On the receive side there again is the obvious choice to signal a

new message by the change of the buffer fill level. As there is generally no state stored

in the receiver side, the software needs to track all expected messages in an expect queue.

An interrupt is now asserted on a new message arrival and the software checks the expect

queue. To avoid race conditions between the interrupt signal, its reset by the software

and new incoming messages, the NAMP counts up a register whenever it receives a new

message and the software decreases it with every match. A positive counter value raises

the interrupt level.

Finally, on both sides, the interrupts can be configured to be only risen when a flag

is set in the endpoint (dashed example on the receive side in Figure 3.18b). Those

notification options are useful for all use cases, but also serve as a motivation for the

improvements of event signaling in general proposed in Section 3.5 due to the overhead

they impose.

3.2.5.4 Slot Configuration Interface

The slot configuration interface is the memory-mapped interface for the software to setup

message transfers and credit updates. Table 3.2 shows the interface as seen from the

software that is used to configure the NAMP transfers. The configuration parameters
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(see Table 3.2a) map to configuration registers and there use varies with type of transfer.

The transfer mode is defined by the flags outlined in Table 3.2b while only a limited

number of modes are possible spanned by the introduced feature set. They are summa-

rized in table 3.2c. Credit messages are a special case and are triggered in the receive

logic of the software. All other transfer modes relate to the transferal of data to a remote

endpoint as described above. Each of those modes can be used for connection-less or

connection-oriented messages.

Finally, there is a flag that enables an interrupt once a transfer completes. Beside

that the life cycle of a transfer can be controlled and monitored via the VALID and DONE

flag. The former triggers a start of a transfer. The other parameters must be configured

before. After NAMP signaled completion with the DONE flag, the software can finalize

the transfer by resetting VALID. There is only one specialty with the policies to write the

CCM flag: While in CCM, the software can set CCM=0 to leave CCM. The NAMP then

completes the current CCM transfer.

3.2.5.5 Message Transfer States and Progress Engine

From the described behavior I can now derive the transfer states and actions of the

progress engine. The basic transfer states for connection-less and connection-oriented

messages have been introduced in Figure 3.16 along the basic functional partitioning in

Figure 3.17.

First, it is important to derive the states of an individual transfer. To maximize

performance the NAMP obviously serves multiple transfers in parallel, because there

are wait states in the progress of an individual transfer. Hence, the transfer state has to

be encoded per NAMP slot. Finally, the different transfer modes have overlapping, but

slightly different states and state transitions.

Figure 3.19 shows the flow diagram of a single transfer from the software creating the

transfer until completion. There are certain persistent states that are drawn as dark

boxes. Those are the points in the state diagram where the transfer is stalled for an

event from remote or by the local software. The NAMP can serve another slot while the

transfer is in this state. Hence this transfers’s state is encoded in some extra flags per

slot. Beyond that some extra registers are needed to store persistent look up information.

If the transfer is a credit update, then the NAMP just sends out the credit and the

transfer is finished. For messages there are multiple paths the transfer can traverse the

state diagram depending on the type of transfer. If it is a CCM transfer it checks for a

message in the local endpoint buffer. If no message is ready for transfer, it waits until
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Figure 3.19: State diagram of the protocol handling with respect to one message lifecycle
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it becomes available. Once data is ready it takes the same flow as the other transfers.

The actual transfer is split into two phases:

The first phase is the flow control. In case of connection-less communication the

NAMP tries to arbitrate a remote buffer space before continuing. It has to wait for the

response, where the NAMP can then serve other slots. In case the buffer allocation was

successful it continues, otherwise set a timer and enter a persistent state again until the

timer expired. In case of a connection-oriented transfer the NAMP checks if sufficient

credit is available and proceed to the second phase if that is the case. Before that it

updates the credit atomically. In case there is no credit available the transfer is stalled

until credit becomes available and another slot can be served.

The second phase is the actual data transfer. The NAMP configures the RDMA to

perform this transfer. After the RDMA is configured the message progress is stalled until

this RDMA transfer completes. Once it completes the message transfer is complete. In

case of CCM it gets back to transfer the next transfer, otherwise the transfer is finished.

The actions and conditions of the progress engine are defined with the flow diagram

(Figure 3.19) and the persistent states. As mentioned, the progress engine continuously

serves NAMP slots that have met a condition to leave a persistent state and thereby

advances the message transfer. The state machine of a NAMP progress engine can thus

be derived as an arbitration policy that selects the next slot to be served and then

performing the action for this slot according to Figure 3.19. The following arbitration

policies are proposed:

Least Recently Served (LRS) The NAMP slot that has not been served for the longest

duration is selected.

Quality-of-Service Priorization (QoS) The progress engine selects a NAMP slot based

on a priority class.

Most Advanced Priorization (MAP) The progress engine selects the NAMP slot that

is most advanced, because it advances toward completion and not generate new

load on the Network-on-Chip, the NAMP subsystem and the system overall.

A NAMP implementation can provide a mix of those criteria and a certain degree of

runtime configurability. In Chapter 4 I evaluate the design points for different arbitration

policies.
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3.2.5.6 Protocol Message Details

The NAMP concept may seem complex at this point. But although there is a large

number of message transfer modes defined, they only break down to a different handling

in the local tile and only a limited number of protocol messages are needed between

the tiles. The bulk data transfer is configured as a RDMA transfer, so that only sig-

naling messages for flow control remain. The three protocol messages are defined in the

following.

Buffer Allocation This is the flow control message for connection-less communication.

Local action: Lookup remote tile (destination) and remote endpoint

address

Request message: Remote endpoint address

Remote action: Check if endpoint buffer has space and atomically lock

if available

Response message: NACK on failure, id and data address of buffer space

otherwise

Credit update This is the flow control message for connection-oriented communication.

It is sent from the remote tile to the sender tile.

Local action: Lookup connected remote tile (destination) and re-

mote endpoint address

Request message: Remote endpoint address, credit to add

Remote action: Atomically update credit

Response message: –

Message Finalization The bulk data transfer is performed using RDMA, but the com-

pletion needs some extra signaling. This protocol message updates the reserved buffer

space and marks the transferred data as ready.

Local action: Lookup remote tile (destination) and remote endpoint

address

Request message: Remote endpoint address, buffer space id

Remote action: Mark buffer space as completed

Response message: –
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3.2.6 Summary

In this section I have introduced the basic NAMP concept. The evaluation has shown

great potential of this concept and I have therefore derived a set of properties and

features that makes NAMP a valuable concept for a broad range of applications. Based

on the derived functionalities, the prototyping in Chapter 4 yields actual data points

with respect to area utilization and performance improvements.

The base message passing capabilities of the NAMP presented in this chapter con-

tribute a significant improvement in the reduction of the message passing protocol over-

head in software. The message passing protocol layer of the stack in Figure 1.3 has been

partly offloaded into the hardware. In the following the NAMP concepts for improvement

of the other criticial interfaces and actions are presented and discussed.

3.3 NAMP-CC: Collective Communication Acceleration

The basic NAMP concept focuses on simple one-to-one communication. It allows to

use endpoints in one-to-many or many-to-one relations, but only on the granularity of

communication relations. The concept of collective communication is well-adopted in

high performance computing and other areas and instead works on the granularity of

individual messages.

Basically, collective communication is about efficient work-sharing. The operations

are used to compose algorithms with distributed workers. As introduced in Section 2.5.1

four operations are generally part of collective communication: i) broadcast to distribute

a data set to multiple recipients, ii) scatter to split a data set and distribute the subsets

to recipients, iii) gather to combine multiple data subsets from different senders to a

large data set at a single recipient, iv) reduction to merge equally sized data sets from

multiple senders at one recipient by applying an arithmetic operation to the data sets.

There are basically three requirements to support collective communication in the

NAMP concept:

• A basic platform capability to enable collective communication is a scatter/gather-

capable DMA controller. In our case the RDMA is required to support this feature

whose operation is detailed below.

• The message passing data structures and API need extensions to support collective

communication.

• The NAMP progress engine needs to support collective communication.
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(a) Software handling (b) NAMP-CC feature

Figure 3.20: Comparison of SW-based multicast handling and HW-assisted multicast handling

In the following I first evaluate the impact of those operations when using the basic

NAMP approach and handle the operations in software. After that the required exten-

sions to the buffer and message data structures are presented in the form of attributes

for those data structures. Attaching those attributes to buffers and messages lowers the

impact on extra hardware registers while adding look up operations in hardware, which

is discussed after that.

3.3.1 Evaluation of Multi-Message Communication

The collective communication operations can be implemented in software using the

NAMP. In the following the parameters and message sequence charts are derived and

evaluated using the evaluation model. The overhead of the collective communications is

not only message handling in software, but also the number of buffers and data copying

operations are critical.

3.3.1.1 Broadcast and Multicast

In the context of this thesis broadcast operations are performed on a logical level between

endpoints of an application. This is different from what a reader may know as a network

broadcast. Instead it is the delivery of bulk data to multiple recipients that are spread

over the system-on-chip. So, on the one hand the broadcast is physically a multicast

operation and on the other hand the approach can then address logical multicast directly.
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Basically, a multicast message can be characterized as the bulk data transfer as before

and a list of receivers instead of a single destination. The naive approach to implement is

to implement the multicast in software. Figure 3.20a depicts how the software configures

a transfer for each of the destinations individually. Both important metrics can be

addressed by offloading the multicast handling to the NAMP hardware as sketched in

Figure 3.20b:

• The overhead os is reduced as the software is not involved with the continuous

setup of the transfers. There is a slight overhead introduced with the setup of the

multicast list on the configuration, but it is supposed to be over-compensated by

the wake-up of the software to setup the next thread.

• Figure 3.20 drastically depicts the other huge impact on the latency L. By con-

currently handling the progress of multiple message transfers, the extra latency for

control flow delays does not block the other transfers. Instead the hardware can

handle other transfers in parallel.

Figure 3.21 depicts the evaluation comparison of the SW-based multicast handling

and the HW-assisted multicast that handles the operation. As described before, there

are two fundamental effects that make the HW-assisted multicast efficient. One effect

is the offloading of the iteration of the multicast destinations. As Figure 3.21 shows

this overhead rises linearly when the multicast is implemented as a software function,

while there is only a single setup phase for HW-assisted multicasts, independent from

the number of destinations. The second effect was introduced before and stems from the

fact that a software implementation configures each transfer one after the other. The

gap is the time between two consecutive transfers. In this case (see the message sequence

chart) this interleaves with the individual send operations. The gap is defined by the

start and end of the transfer handling by the NAMP.

Figure 3.21 plots the gap for a variation of number of destinations. In comparison, the

hardware offload is shown in comparison. It becomes obvious that the ability to post

multiple concurrent operations in parallel can help reducing the gap. Anyhow, with

increasing packet size beyond roughly 256 bytes this effect gets dominated by the actual

data transfer again. The difference becomes more apparent when the messages can on

average not be delivered immediately. A waiting process with poisson distribution and

λ = 1 does not only increase the average gap as depicted in Figure 3.21. Instead it also

introduces a high variation in the gap as depicted by the error bars. Again, Figure 3.21

shows the average gap is equally low as before for a hardware-based multicast. But
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Figure 3.21: Evaluation comparison of a SW-based and HW-assisted multicast handling with
different number of targets N .
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Figure 3.22: Mapping of a matrix to memory and scather/gather parameters

additionally, the variation is much smaller due to the fact that delays are hidden by

other transfers. Finally, the effects vanish for large message sizes as they are dominated

by the data transfer again. Hardware-assisted multicasts can therefore be a significant

improvement.

3.3.1.2 Scatter

The scatter operation is to some extent comparable to a multicast, but instead of dis-

tributing the same data to a number of destinations it splits the data up and sends

subsets to the individual destinations. Figure 3.22 visualizes the approach at the ex-

ample of a two-dimensional matrix where vectors are distributed to different recipients.

The given example also visualizes the four parameters:

• base is the initial offset in the data,

• size is the size of the single data elements to be scattered,

• num is the number of those elements to send, and

• stride is the offset from one element to the next

The receiver receives the data as a contiguous data space. So, in the given exam-

ple the data set is A[16] and the vector a1 should be sent to recipient one. num=4,

stride=4, size=1 are constants to all transfers and the recipient 1 has base=1. Hence,

the recipient receives the vector a1[4] = {A[1], A[5], A[9], A[13]}. num and stride are

generally constant for a scatter operation, while base always varies between the recipi-

ents and size can vary. Sending the horizontal vector works similar: num=1, size=4 and

base=0,4,8,12 sends chunks of the data, while stripe is always irrelevant if num=1.

The comparison of the SW-based scatter handling and the HW-assisted scatter han-

dling in the NAMP is comparable to the multicast handling (Figure 3.20) with the

difference that the data transfer operations are smaller. Figure 3.23 shows the evalu-

ation results for scatter handling. It can again be seen that the gap follows a similar
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Figure 3.23: Evaluation comparison of a SW-based and HW-assisted scatter handling.
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(a) Software handling (b) NAMP-CC feature

Figure 3.24: Comparison of SW-based gather handling and HW-assisted gather handling

trend for increasing packet sizes. But especially for smaller packet sizes it is significantly

smaller and more robust against waiting times during allocation (λ = 1). The send

overhead remains static independent from the packet size. But for hardware-assisted

scatter it is also independent from the number of destinations.

3.3.1.3 Gather

The gather operation is the inverse operation to the scatter operation: Multiple senders

have their linear data set and at the destination this is gathered into one data set. The

straightforward solution is to have multiple endpoints at the receiver and perform the

operation as usual. Figure 3.24a sketches the data transfer by three senders. Imple-

menting the gather operation in software requires to copy the data from the individual

endpoint buffers and copy them into the expected data set. This operation follows the

same semantics as the previously scatter operation, just in the opposite direction. This

operation can introduce a large overhead when entirely done in software. Utilizing a lo-

cal scatter/gather-enabled DMA controller can help here. Anyhow, there is a significant

impact on latency and overhead.

The NAMP-CC feature for the gather operation allows the multiple senders to all

transfer their data into one endpoint. The gather operation (according to a configured

base, size, num and stride) is performed directly with this operation. When the last

data item has arrived, the transfer is complete and the software receives it as if it was
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Figure 3.25: Comparison of receive overhead for gather operations

coming from one sender. Figure 3.24b visualizes this significant improvement in overhead

and latency.

Figure 3.25 plots the receive overhead in clock cycles for gather operations depending

on the number of sending endpoints (N). The impact of the software moving of the data

from one endpoint to the final endpoint can be seen, with some static contribution by

the interrupt handling and endpoint operations. The receiver gap is identical between

the software-based gather handling and NAMP-CC. The sender side is not significantly

influenced as the configuration of the DMA is just extended with one read from the local

memory.

Finally, it has to be highlighted that the memory footprint of the operation is signif-

icantly higher with software-based handling because there needs to be N extra buffers.

Each of the buffers is of 1/N size relative to the final destination buffer. The software-

based hence has double the memory footprint in buffers, plus extra bytes for the data

structures.

3.3.1.4 Reduction

Finally, the reduction can be seen as a mix of the gather and an inverse multicast

operation: Multiple senders send data sets that are merged to one data set of equal

size at the receiver. For merging the data, an operation is defined. Such an operation is

often an addition, multiplication, averaging or other arithmetic operations. The message

sequence charts are comparable to the ones for the gather operation (see Figure 3.24).

The data transfer operations are longer apparently, and with software-based handling

the reduction can again take significantly longer.

An offload to the NAMP operation is again desirable, but gets much more complex.

The other collective communication operations are about calculating addresses to store
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Figure 3.26: Comparison of receive overhead for reduction operations, N = 4

data items properly. Reduction instead needs to apply an arithmetic or logical operation

to each data item in the data path of the NAMP, which is the DMA. The DMA controller

hence needs to enhanced with the capability to: i) Read the current data item in the

buffer, ii) apply an operation to the data item and the received value, and then iii) write

it back to the buffer.

Figure 3.26 plots the evaluation results for the reduction operation for N = 4. Its

trend regarding the number of senders (N) is generally similar to the gather operation.

Another aspect of variation here is the actual reduction operation and the data type

it is applied on. Arithmetic and logical operations are by default supported by most

processor cores, as also here. But when no support for packed vector operations (Single

Instruction Multiple Data, SIMD) is present, there are extra operations required for

operations smaller than the word size (here: byte). Finally, minimum and maximum

operations are supported as presented in the following. Here, the operation itself is not

generally provided by the hardware and hence it adds to the receive overhead.

The receive overhead for the NAMP is always constant, because it only involves no-

tifying the receiver. Also the gap is ideally constant as long as the operations can be

executed in one clock cycle in hardware.

3.3.2 Transfer Setup and Data Structures

I have previously introduced the NAMP concept as a lean, yet efficient method for on-

chip message passing. Introducing other concepts into the NAMP should not impact this

basic goal. Hence the collective communication feature should integrate smoothly into

the NAMP concept and not introduce any significant overhead to the basic functionality.

There are three parts that are proposed to support collective communication: The first

part is to reduce the influence on the basic interface that was presented in Table 3.2. As
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(a) When the CC flag is set (gray), the remote
endpoint parameter points to a different
data structure.

(b) Multicast data structure

(c) Scatter (d) Gather

Figure 3.27: NAMP interface integration and data structures for collective communication.

sketched in Figure 3.27a the proposed change to the interface is minimal: An additional

flag (CC) signals that the transfer is a collective communication transfer. The seman-

tics of the “remote endpoint” parameter changes then. It does not point to the data

structure of the remote endpoint as defined in Figure 3.3. The second proposed part are

data structures specific to collective communication that it points to instead. The data

structure varies between the operations and are discussed in the following. Based on

those extensions, the modifications to NAMP hardware are then presented after that.

Finally, the third part are properties that are attached to each buffer slot. Those are

used at the remote side of an operation to track the progress.

Both the collective communication data structure and the buffer extensions are created

and configure at connection setup. In the following I discuss the data structures for the

different collective communication operations. This then leads to the integration with

the basic NAMP hardware in Section 3.3.3.
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3.3.2.1 Multicast

The multicast operation is the only collective communication operation that is available

for connection-less and connection-oriented message transfers. Figure 3.27b depicts the

data structure used for multicasts. As described, it is the one that the entry in Fig-

ure 3.27a. It essentially points to two lists, each with length num which is the number

of multicast destinations. One of the lists contains the pointers to the individual re-

mote endpoints to send the data two. This is the missing data for the interface, but

beyond that the progress engine needs a second list: To allow for an arbitrary number

of destinations the individual progress for each remote endpoint and to allow for the

aforementioned parallelism, the NAMP needs to store the progress state for each of the

destinations. I get into more details about that below.

3.3.2.2 Scatter

Both the scatter operation and the gather operation are only allowed on connection-

oriented endpoints. This is because the endpoints are part of a complex setup and the

operations must not mix with other arbitrary messages.

The data structure for the scatter operation (Figure 3.27c) is similar to multicasting.

It adds the two constant parameters count and stride to the basic data structure and

the list of recipients does not only contain pointers to the remote endpoints but also the

base and size of the remote endpoints data set. The NAMP progress engine uses this

data to configure the RDMA scatter operation. Finally, there is a progress list that is

used by the NAMP to track the individual progress for each recipient.

3.3.2.3 Gather

For the gather operation the data structure is an indirection to the single remote end-

point, but with the gather parameters associated to it (see Figure 3.27d). This is used

by the NAMP to setup the RDMA gather.

Beyond that at connection setup each buffer slot at the receiving endpoint needs an

extension to track the progress of a gather operation, as sketched in Figure 3.27d. This

is required to track the completeness of a gathered message. For that a bit field per

buffer space is proposed, so that the messages can be tracked by the NAMP on i) the

allocation operation, and ii) the finalization operation. This is discussed in more details

below.
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(a) Endpoint data structure

ADD Arithmetic addition

BOR, BAND, BXOR Bitwise or/and/xor

LOR, LAND, LXOR Logical or/and/xor

MAX, MIN Maximum/minimum el-
ement

U8, U16, U32 Unsigned integers

S8, S16, S32 Signed integers

(b) Proposed operations and types

Figure 3.28: Extensions to the endpoint data structures and proposed operations for the re-
duction operation

3.3.2.4 Reduction

Similar to the gather operation, the endpoint data structure for the reduction operation

is a redirection to the remote endpoint data structure with data attached to it (see

Figure 3.28a). This extra data is again an identifier and then the reduction op and the

basic data type. Both the latter parameters are used to configure the DMA transfer.

As mentioned, the DMA controller needs extra functionality in its data path to perform

the reduction operations on-the-fly. Two parameters are therefore transferred with each

DMA transfer: The operation (op) defines the operation to execute on each data item,

and the type sets the basic unit inside the data stream.

Table 3.28b lists the proposed operations. They are adopted from the MPI standard

with the exception of multiplication due to the hardware overhead and the supported

types. The types can also be found in the table and are typical integer types. Support-

ing multiplication for integer numbers fast leads to problems with the precision, hence

multiplication is explicitly excluded. The remaining operations and data types replicate

a reasonable set of typical operations found in signal processing, video processing or data

mining applications.

3.3.3 NAMP Hardware Integration

The previous evaluation has shown that collective communication support in the NAMP

is advantageous. Some basic assumptions about the hardware implementation were made

there, that are further elaborated in the following. The data structures and extensions

discussed before have to be properly considered by the NAMP to achieve the projected

benefits.
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3.3 NAMP-CC: Collective Communication Acceleration

The hardware integration is twofold: As shortly introduced before, the scatter and

gather operation have to be supported by the DMA engine. Beside that the progress

engine needs to process the provided data structures to set up the DMA engine and

handle multiple parallel transfer for one NAMP slot. In the following, the hardware

integration is presented on a conceptual level, while again the prototype implementation

is discussed in Chapter 4.

3.3.3.1 DMA Extensions

As mentioned before, a basic functional extension to the DMA controller is required to

effectively support collective communications. The DMA transfer has to support the

scatter and gather operations. Those allow to either scatter data from the memory

region to a smaller contiguous memory region or to gather from a contiguous memory

data region into a scattered region. This capability most basically requires an adoption

of the address generation logic. Beside that the headers of the packets between the DMA

controllers need to be adopted to carry the necessary information. Those extensions are

briefly elaborated in the following in accordance to the interface extension described in

Figure 3.27.

Scatter For the scatter operation the message to the remote does not require changes.

The operation is focused on the local operation which is reflected in the data structure

described in Figure 3.27c: The DMA is for each destination configured to read with base,

size, stride and count. The local address generation is initialized to point to the proper

base as normal transactions. The total transfer size is configured to size*count and

the two extra parameters size and stride are provided to step through the memory.

Gather The situation is the opposite for the gather operation. The baseline for com-

parison is to generate one DMA transfer for each chunk. Apparently, this would create

a large number of transfers for small chunks which leads to an increased number of flits

and thus traffic. In a gather DMA version the local address generator is not modified,

but both the packets sent to remote and the remote address generator need modification

as sketched in Figure 3.27d. This is only useful as long as at least two chunks fit into

one transfer. Note: I only consider stateless DMA transfers here. Keeping state in the

receiver allows for a better packetization of the network packets, but adds a huge amount

of complexity and hardware overhead.

Both approaches are compared in Figure 3.29. It plots the required number of flits

for both approaches against the size of chunks in a gather operation for a transfer size
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Figure 3.29: Total number of flits for a gather operation with plain DMA and scatter/gather-
extended DMA

of S = 4kB. I only consider those transfers where the chunk size s is smaller than half

the packet size (s < p−h
2 ). For plain DMA transfers the number of packets per chunk is

d s
p−2e and the number of packets is roughly Np =

⌈
S
s

⌉
. The total number of flits can

thus be derived as:

N =

⌈
s

p− h

⌉
· h ·

⌈
S

s

⌉
+ S

Here, a plain DMA header size of 2 is assumed. For a gather DMA operation multiple

chunks are packed into one transfer packet. The packet header gets larger (here a header

size of 5 is assumed). The number of chunks per packet is then c = bp−5
s c. Total number

of chunks is Nc = S
s and the number of packets Np = Nc

c .

N = Np(h+ cs) =
Nc

c
(h+ cs) =

S

s

⌊
p− h
s

⌋(
h+

⌊
p− h
s

⌋
s

)
Three plots for different, usual network-on-chip packet sizes (which limit the DMA

transfer size) are plotted. The comparison only considers chunk sizes that fit at least
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two chunks into a transfer. For chunk sizes beyond that point, plain DMA transfers

are always better. From the plots it can be derived that a special gather DMA reduces

the number of packets significantly for small chunk sizes. Beyond a certain point plain

DMA transfer are preferable. This motivates adding support for gather DMA transfers,

potentially with dynamic selection to use either transfer type depending on the chunk

size.

3.3.3.2 Integration with NAMP Progress Engine

During the introduction of the NAMP concept the state diagram for individual transfer

was sketched in Figure 3.19. This is not the implementation-specific NAMP state ma-

chine, but the progress of an individual slot. As described before, a NAMP checks the

slots based on certain criteria and tries to progress them while other slots are waiting

on events.

Generally, the NAMP-CC feature does not fundamentally change this, but add an

extra dimension. When the CC flag is set, the parts credit handling, alloc handling and

DMA handling are executed for different transfers inside a slot. This follows the interface

extensions as described in Figure 3.27. The NAMP implementation thus needs an extra

level of progress handling where it scans the lists for progress.

3.3.4 Summary

In this section I have presented the concept of NAMP-CC which is a modular feature of

the NAMP. NAMP-CC is designed so that the hardware overhead is minimal and the

basic operation is not influenced negatively when NAMP-CC is not used. The evaluations

have shown a huge potential improvement for the four types of collective communication.

In Chapter 4 the actual implementation is presented to verify the assumptions about

hardware usage and evaluation calibration.

3.4 NAMP-SV: Self-Virtualized Network Adapter

So far the NAMP concept was discussed for software running directly on the proces-

sor, often referred to as baremetal software. There is a common misconception that

baremetal software is simple code, but in fact baremetal software can be multi-threaded

and arbitrarily complex. Contrary to the plain baremetal mode, an operating system in

most cases adds the concept of resource sharing and strong separation. The idea is that

tasks running on top of the operating system don’t know about other tasks or interfere
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(a) Overview (b) Message Sequence Chart

Figure 3.30: NAMP Virtualization by Software Emulation

with them. Instead each task has the view of running on the hardware exclusively. This

is enabled with the concept of memory virtualization. Here, a processor provides a mem-

ory management unit (MMU) which transparently maps virtual addresses to physical

addresses.

A problem arises when the tasks want to access a shared device. One simple approach

is to assign the device exclusively to a task, but this is limited to such devices that

themselves cannot access memory. If the latter is the case the strong separation property

is violated. Beyond that, devices as network interfaces and the NAMP are desired to

be shared between tasks. The most straightforward approach is device emulation in

software, where the operating system performs the device access on behalf of the tasks.

In the following this approach is analyzed with respect to the NAMP. Starting from

this, the concept of self-virtualization of the NAMP is presented. A key element is the

concept of virtual interfaces that is described for this NAMP-SV concept. This section

closes with a description how this concept reflects in the message passing API.

3.4.1 Analysis of Software Emulation

In case the hardware does not provide any means to support virtualization by itself, the

standard approach to virtualization is to emulate the device access in software. There

is a degree of freedom in where to implement the majority of the driver and how much

of it can be re-used, a topic I abstract from for the sake of simplicity. On an abstract

level the software emulation is responsible for multiplexing the access to the device.

A generic overview of how software emulation may be implemented using the basic

NAMP is sketched in Figure 3.30a. Virtual memory basically consists of a page table

(PT) that is maintained by the operating system and maps virtual addresses to physical
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addresses. As mentioned before, the memory management unit (MMU) of the CPU is

responsible for mapping memory accesses of the currently running task transparently

and according to this page table.

Once a task T creates an endpoint, the operating system ensures that the virtual

address the task operates on maps to the physical address of the endpoint in memory

(À). This is a standard operation provided by an operating system. It does not make

a difference if the operating system allocates the data structures and maps them to the

task or if the task does the same on virtual addresses. When the task accesses the

endpoints the MMU maps the addresses (Á). Once the task wants to send a message,

it triggers the operating system (Â). The method for doing this are system calls. A

system call transfers control from the task to the operating system kernel and contains

parameters. The system call to send a message is equivalent to the API call. The

operating system then performs the operations to configure the NAMP by first looking

up the corresponding physical addresses to the virtual addresses that the task passed

with the system call (Ã). It then configures the NAMP as described before (Ä) that

then finally accesses the correct data via their physical address (Å).

As mentioned before, this is one way of implementing this, but the overall flow is

always similar. Figure 3.30b sketches the message sequence chart. The actual message

transfer is identical to the base NAMP and the operating system (OS) configures the

NAMP (NA) that handles message transfer to the receiver (R). The only difference is

that the task has to transfer to the OS with a system call (the task and CPU are running

on the same processor). There are two components that increase the overhead compared

to the baseline NAMP. First, the translation adds extra operations inside the OS. Second,

the system call from the task to the OS does not come for free: The system call is a

context switch that comes with the cost of at least saving and restoring processor state.

Especially for small messages this can become an important overhead. The performance

of this approach is analyzed and compared to the NAMP-SV in the following.

3.4.2 NAMP Self-Virtualization

Device self-virtualization is the offload of the translation operations to the device, so

that each task talks to the device as if it was the only user. One approach is to make

the NAMP aware of the translation and perform the MMU operations in the NAMP

too (so called IO-MMU). This has the advantage that in the end the task can run the

unmodified driver can be run either in baremetal or as a task in an operating system.

But it comes with the drawback of the complexity of memory management in the critical

path of the NAMP state machine. Each memory access needs to be translated if the
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(a) Overview (b) Message Sequence Chart

Figure 3.31: NAMP Self-Virtualization

slot is used by a task. The translations can be cached to a certain degree, but overall

the concept of self-virtualized device as described in the following is much more elegant.

The concept of NAMP-SV starts from the other side of the operation: The API is

the entry point for a message transfer. The design goal is to define a so called virtual

interface in a way that:

• multiple tasks can use multiple virtual devices in a dynamic way,

• the operating system can efficiently map tasks to slots and configure their opera-

tion,

• the operating system is only involved during setup and destruction of those rela-

tionships, and

• the message passing API is efficiently mapped to the virtual device interface with

minimal overhead.

Figure 3.31a depicts the NAMP-SV concept. Basically, the operating system allocates

a slot for the task and maps it along with the data structures into the page table of the

task (À). As before, the task can then access the endpoint and buffer data structures

using the virtual memory subsystem (Á). When it wants to send a message it can access

the allocated slot via the virtual memory subsystem too (Â). A simple virtual interface

is used to configure the transfer and the NAMP then uses the configured data structure

(Ã). The last two steps differ significantly from the default NAMP interface and the

virtual interface is discussed subsequently. Figure 3.31b sketches the message sequence

chart of NAMP-SV, where the task is able to bypass the OS during the send operation.
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(a) Setup phase, once per task (b) Send phase, bypass OS

Description

ET BASE Base address of the end-
point table

ET BOUNDS Number of addressable
endpoints (table size)

(c) Setup registers (accessible only by OS)

Description

FLAGS see Table 3.2b, no BUF)

REMOTE Remote endpoint (vID)

LOCAL Credit/local endpoint (vID)

IDX Buffer index

(d) Transfer registers (accessible by task)

Figure 3.32: NAMP-SV Virtual Interface

3.4.3 NAMP-SV Virtual Interfaces

The design goals for the NAMP-SV Virtual Interface (VIF) are as follows:

• It must be composable, meaning it should be easy to configure it for each slot

statically and dynamically,

• it interfaces a standard NAMP slot as described above,

• on the bus side it must not be configured with any virtual addresses to spare any

MMU operation, and

• apparently it must be able to send messages without any interference with the

operating system.

Figure 3.32 depicts the role of the virtual interface, its interfaces and components.

There are essentially two sets of configuration registers that are configured in two dif-

ferent phases: the task configuration registers that is configured by the kernel once per

setup and the task interface registers that are set by the task to control the individual

message transfer operations.

Setup Phase (Figure 3.32a) Once a task wants to use the NAMP-VIF it raises a sys-

tem call with this request (À). The operating system maintains an extra data structure
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in physical memory, the Endpoint Table (ET). As mentioned, whenever the task creates

a local endpoint or retrieves a remote endpoint, it has to invoke the operating system.

As a side effect of each of those operations the kernel maintains the ET by adding new

endpoints to the ET (Á). This assigns each endpoint a virtual ID (vID) that is used by

the task in the following. During the setup phase it now allocates a virtual interface for

the task. It then writes the base address of the ET into the task configuration register

(Â). Along with the base address it writes the bound for the index to guarantee the task

does not address out of bounds. The two setup registers are summarized in Table 3.32c.

Finally, the OS maps the virtual interface into the virtual memory space of the task.

Send Phase (Figure 3.32b) During the normal operation2 the task does not commu-

nicate with the OS at all (OS bypass). Instead, it normally operates on the data set as

described before (À). Once the message is ready to be transferred it accesses the vir-

tual interface by its virtual address (Á). The interface is described in Table 3.32d. It is

roughly equal to the physical interface described in Table 3.2a. The essential difference

is that the virtual interface addresses endpoints by their virtual identifier (vID) instead

of their physical address. As a result of that the unbuffered transfer mode (BUF=0) is not

supported for NAMP-SV. Once the VALID flag is set, the virtual interface is triggered

and configures the physical interface. The FLAGS and potentially the credit are copied,

while the vIDs are transparently translated to physical addresses (Ã). This involves a

lookup into the ET. Finally the virtual interface triggers the NAMP to start the physical

message transfer.

3.4.4 Summary

In this section I have presented the self-virtualization subsystem of the NAMP, which is

essentially the virtual interface. This virtual interface can be mapped into the address

space of a task by the operation system, and there can be multiple virtual interfaces per

NAMP. The virtual interface transparently translates the virtual endpoint identifiers into

the physical addresses. The task can neither interfere with the translation nor modify

the physical addresses. This enables strong isolation of the communication between

tasks. The NAMP-SV concept is entirely new for on-chip inter-task communication.

2Note: As throughout the entire thesis I here assume that there are more message transfers than initial
setup operations.
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(a) Polling (b) Interrupts
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(c) Polling Analysis
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(d) Interrupt Analysis

3.5 HW-OSQM: Hardware-based Operating System Queue

Manipulation

The notification of the software when a task is done was briefly introduced in Sec-

tion 3.2.5.3. There I have described how a software can poll the NAMP (sending) or

the endpoint (sending and receiving) to check for events. Alternatively, the standard

approach of interrupting was introduced too. One of the major issues with interrupts is

that they add overhead on the processing by the interrupt service routine.

In the following I briefly analyze the impact of both polling and interrupting on the

task processing and present the so-called Hardware-based Operating System Queue Ma-

nipulation as a generic method. This method was originally presented in [219]. Finally,

I briefly describe how the method is integrated with the NAMP concept.

3.5.1 Analysis

Both the classical methods add to the sender overhead os and receiver overhead or.

For example polling requires to repeatedly check for the completion of a transfer or the

interrupt service routing (ISR) for interrupts introduces a lot of extra cycles. Anyhow,

the overhead depends on the application characteristics and parameters of the operating

system. The basic building blocks of the overhead are the specific operations, which

can be assumed to be constant for each implementation. A polling operation takes Tpoll
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cycles and the time for the interrupt service routine is Tisr respectively. Both add up

with operating system specifics, such as the context switch duration TCS. Furthermore

the time slice length Tslice is a parameter of the kernel: The longer the time slices are the

lower the impact of the context switches. But a longer time slice can increase the latency

until an event becomes visible to a task. Beyond that an application characteristic is the

average event rate revent, which is the number of events generated events per second.

The impact of both methods on the processing overhead can be evaluated analytically,

without the complex event-based simulation framework of the NAMP. I used the same

setup to calibrate the basic building blocks as described before and derive a steady-state

analysis for that. Figure 3.33a shows the impact of polling on the performance. Each

waiting task has to be activated to performed its polling operation before it yields in

case of no success. This takes away processing time from tasks that could actually run.

The rate of events and the mean time between events (MTBE) determine the number

of waiting tasks as Nwait = revent · TMTBE. The overhead is then

opolling =
Nwait · (Tpoll + TCS)

Tslice +Nwait · (Tpoll + TCS)

Figure 3.33c plots the overhead depending on the numbers of average waiting threads

Nwait and typical time slice lengths Tslice. Even long time slices lengths can have an

overhead of 10% for 8 waiting threads, while two waiting threads already induce an

overhead in that order at a shorter time slice length.

For interrupting only the event rate revent is relevant as sketched in Figure 3.33b. Both

the number of waiting tasks and the time slice length do not influence the overhead. The

overhead is thus linear:

ointerrupting = revent · Tisr

Figure 3.33d plots the overhead. Event rates around 25kHz already lead to an over-

head of 10%. So while novel message passing concepts such as NAMP allow to efficiently

transfer small messages, the many events generated by those can have a significant im-

pact on the overhead.

3.5.2 HW-OSQM Concept

The basic idea of HW-OSQM is to delete all overhead related to event signaling. Polling

is generally not a good method to check the occurrence of an event, except in the case

of very short delays between the start of the waiting and the event. When interrupts
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are used the operating system takes care of waking up a task waiting for the event. The

basic scheduling unit of an operating system in the context of this thesis is generally a

thread and not a task. Tasks can consist of multiple threads, for example a common

pattern is to use a “communication thread” that handles the device interaction. So, in

the following I refer to threads.

As mentioned before, the concept presented in the following is not focused on the

NAMP or network adapters in general. Instead it applies to all device notification. The

normal operation of such event signaling with interrupts serves as reference and can be

described as:

1. The thread configures the device and sets an “interrupt enable” flag or similar. The

device driver and/or operating system track the association between the thread and

the device.

2. The thread is suspended, which means it cannot be scheduled any more until

explicitly woken up.

3. Once the event occurs, the device raises an interrupt. The software interrupt

handler is then triggered. It looks up the thread associated with the event.

4. The thread is then resumed by the operating system which means it can be sched-

uled again.

5. The thread returns from the blocking call once it is scheduled again.

An operating system generally operates on a so called ready queue (RQ). This is

commonly a linked list and elements are put into the list at the end of a time slice or on

thread resume. The scheduler then gets the next element from this queue and schedules

the thread. In the following I briefly discuss the operation of appending a thread to the

ready queue in two popular operating systems that are often found in systems relevant

to this thesis.

Amazon FreeRTOS FreeRTOS is a real-time operating system that has recently been

adopted by Amazon as IoT operating system for constrained devices [6]. It provides

multiple priority levels and maintains one ready queue for each priority level. A thread

is then scheduled by calling a list manipulation function3:

3see https://github.com/aws/amazon-freertos/blob/6620031aed80bd411c87baeef501ac884cfd1b1a/
lib/FreeRTOS/list.c#L74
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(a) Basic OSQM operation

Description

QUEUE Pointer to ready queue

THREAD Pointer to thread queue element

TYPE Single or Double Linked List

DIR Insertion direction (front/back)

Q LAYOUT Layout of queue (offsets)

E LAYOUT Layout of queue elements

(b) Configuration flags and registers

Figure 3.33: Basic operation of the OSQM and Configuration

void vLi s t Inser tEnd ( L i s t t ∗ const , L i s t I t e m t ∗ const ) ;

The function takes a pointer to the list and a pointer to a list item specific to the

thread and appends the latter to the former.

seL4 Microkernel seL4 is a secure, formally verified microkernel operating system [204].

It also maintains multiple priority levels and a queue of type tcb queue4 for each priority.

A thread is then scheduled with the tcbSchedEnqueue5 function that adds the thread

to the front of the queue (the scheduler picks from the end of the queue):

i f ( ! queue . end ) { /∗ Empty l i s t ∗/
queue . end = tcb ;

addToBitmap (SMP TERNARY( tcb−>t c b A f f i n i t y , 0 ) , dom, pr i o ) ;

} e l s e {
queue . head−>tcbSchedPrev = tcb ;

}
tcb−>tcbSchedPrev = NULL;

tcb−>tcbSchedNext = queue . head ;

queue . head = tcb ;

Those two examples are chosen to show that a thread wake-up is a rather regular

task that involves the adding of a thread-specific scheduling item to its ready queue.

One important aspect is that those operations must be atomic operations to support

multi-core operation.

The basic idea of HW-OSQM is now to asynchronously assist the operating system in

hardware in adding threads to the ready queue. Figure 3.33a shows the basic operation

4see https://github.com/seL4/seL4/blob/ee28936d489fd8d37cf5f767fd380838aad8580a/include/

object/tcb.h#L27
5see https://github.com/seL4/seL4/blob/8639dbcaea2afe2370e86db08ffc78afb94ebcab/src/

object/tcb.c#L87
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of HW-OSQM. The device is configured with the pointers to the ready queue and the

thread element to add to the queue. This configuration is usually done per independently

configured unit, such as NAMP transfer slots or DMA transfer descriptors etc. Once

the event occurs, the HW-OSQM looks up the ready queue and from there the tail of

the queue (À). It then links the current tail to the thread’s queue element (Á) and back

from there (Â). Finally, it updates the queue’s tail (Ã).

3.5.2.1 Configuration & Flexibility

The two operating system examples showed that the way thread scheduling and resuming

of suspended threads are handled is similar among a number of operating systems.

Anyhow, there are a few variants of which kind of queue is used and how the data

structures are organized. Figure 3.33b shows the fundamental configuration parameters

of HW-OSQM. The first two items (QUEUE and THREAD) are used per OSQM event as

sketched in Figure 3.33a. They are configured for each tracked event by the operating

system and are in most cases tied to a device descriptor, slot etc.

The other four configuration items in Figure 3.33b are operating system-specific and

configured once per OSQM instance: TYPE configures if the queues are single-linked

lists or double-linked lists. DIR is the end where list elements are added, front or back.

Finally, Q LAYOUT and E LAYOUT configure where the pointers are located in the data

structures. QUEUE and THREAD point to data structures that are in general different

among the operating systems and the layout configuration items set the offset of the

required pointers in those data structures. Q LAYOUT hence contains the offset of the

head and tail pointers in the queue data structure and E LAYOUT contains the offset in

the thread list element data structure. Many operating systems place the latter pointers

in the thread control block, such as seL4 in the example above.

Finally, the configuration items specific to operating system may be set statically if

the platform is build for a specific operating system. But in the common case those are

runtime-configurable options, that allow to use the OSQM functionality for a variety of

operating systems and have more flexibility in the usage.

3.5.2.2 HW-OSQM Extra Features

The basic OSQM method described before allows for usage with a broad range of oper-

ating systems, far beyond the two operating systems used as examples before. Anyhow,

the basic concept may fit a specific operating system or device conditions. Hence there

are a few proposed extensions that I briefly discuss in the following.
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Critical Events & Demand Interrupting The HW-OSQM concept is ideally to reduce

any overhead related to event signaling. Anyhow, it has one drawback: The resuming

of a thread occurs transparent to the operating system and there may be certain events

that need to be handled immediately. This is not the average case and one could argue to

simply use interrupting for such a device. But HW-OSQM can be extended to support

critical events in multiple ways. For one, the device itself could just bypass HW-OSQM

and raise an interrupt if certain conditions are met. Another option is that the HW-

OSQM itself resumes the thread, but then also raises an interrupt so that the operating

system can schedule the operating system immediately. The latter option is further

elaborated in the following when HW-OSQM is applied to the NAMP concept.

Signaling with Ready Flag One class of schedulers is not very common, but can also

easily be supported: bitmap schedulers. They don’t use a linked list of runnable threads,

but instead a single data field with one bit per runnable thread. That limits the number

of threads that the operating system can execute to a statically configured number of

threads. Anyhow, HW-OSQM can easily support them by using QUEUE as a pointer to

the bitmap and THREAD as an offset into the bit field.

Separate Queue from Operating System In some cases HW-OSQM may still not

be flexible enough, despite even Linux can be able to use HW-OSQM. Anyhow, if the

target operating system has a ready that is too different or if there are other operations

involved at thread wake-up, an alternative is desirable. For such cases I propose to use

HW-OSQM in conjunction with a separate wakeup-queue. HW-OSQM is configured to

add threads to this queue and the operating system then empties this queue for example

when the scheduler is invoked the next time or the kernel is entered. HW-OSQM then

has the advantage that it already presents the wake-up threads in the scheduler format

and thereby abstracts from the nature of the event. This method is supported implicitly

by HW-OSQM and is still a valuable alternative to standard event signaling methods

like interrupting.

3.5.3 HW-OSQM for NAMP

In Section 3.2.5.3 I have briefly discussed the basic notification methods. Especially

the receive side requires the software to keep track of expected messages that have an

interrupt activated. HW-OSQM is orthogonal to the basic notification methods, but

the NAMP prototype implementation for example makes them optional if HW-OSQM

is present.
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Figure 3.34: Integration of HW-OSQM with NAMP

Figure 3.34 shows the integration of HW-OSQM with the basic NAMP data structures.

The OSQM itself is not depicted, it just adds another functional block on both the egress

path and the ingress path. On the sender side (egress) the HW-OSQM is part of the

slot configuration. The software can set two extra registers in the slot to get resumed

after the transfer is completed. After that the software can safely suspend and continues

transparently after the successful transfer. In the presence of a virtual interface this

feature can only be configured by the kernel, so that the flow slightly differs: The the

thread starts the operation and it may decide to suspend, but it is by far not required.

A thread may do other computations, prepare the next message etc. If it blocks, the

kernel configures the HW-OSQM for the slot.

On the receiver side there is still no state encoded in the NAMP (see Figure 3.34.

Instead, the ingress path is a state machine that handles incoming network packets.

During finalization of a message it then checks the endpoint data structure (ep) for two

extra fields that contain pointers to the ready queue and thread queue element.

3.5.4 Summary

In this section I have discussed the problems with traditional event signaling and pre-

sented the HW-OSQM concept to mitigate the impact of event signaling on thread

execution. The HW-OSQM does not tackle the event signaling by reducing the event

rate or similar, but instead the result of the event: It wakes up a thread by putting it

back into the ready queue of the operating system. The analysis has shown the improve-

ment that can be gained by that and a flexible, configurable HW-OSQM feature in the

NAMP has been developed.
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3.6 NAMP-PS: Hardware-assisted Protection Switching

As discussed in Section 2.6 the main challenge in task migration is to minimize the

downtime. The downtime influences the productive processing of the task on the one

hand, but on the other hand also directly concerns the communication relations of the

task. The migration process can induce significant backpressure on the tasks sending to

the migrated task. This can influence the overall system performance. It is therefore

desirable to keep the migration time of a task due to the data and code migration at

a minimum, which is not in the focus of this thesis. But it is also required that the

communication relations are efficiently transferred.

In the following I briefly discuss the issues with task migration and its influence on

the communication layer. After that I present how the concept of protection switching

can be applied to on-chip message passing. A software implementation of the proposed

method is then presented, before I present the integration of protection switching with

the NAMP.

3.6.1 Task Migration and Influence on Communication

Once a task migration is triggered the involved communication channels also need to

be migrated by the communication subsystem. Three different strategies for the general

layout of a task migration have been proposed where the choice depends on the task

criticality [174]: Cold standby denotes that a new task is started and the communication

is newly configured too. With hot standby in opposite a task copy already runs at the

destination and is capable of taking over instantly. Finally, in warm standby a new task

and the communication channels are prepared and the task state can then be transferred

incrementally or in one transfer. After that the communication channels are switched.

The process of switching the communication channels is challenging as mentioned before,

especially with increasing number of communication channels.

The conventional approach is to pause all communication during the migration. Due

to the backpressure, packets are accumulating at the sender(s) during the migration.

The transfer of the task state includes unprocessed messages in the endpoints. After the

task state is transferred, the task is resumed at the destination. This approach has been

implemented on the prototype platform using the simple buffer-based message passing.

The example scenario is sketched in Figure 3.35a. An external I/O interface forwards

incoming data to task A. Task A generates data that is consumed by task B and C,

which both then send data to task D. Due to some previous platform state, task C is

placed in relatively large distance and the system now decides to migrate it to the new
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(a) Evaluation scenario
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Figure 3.35: Evaluation of transient behavior for pausing during task migration [220]

(a) 1. Pre-migration (b) 2. Alternative 1:
Forwarding

(c) 2. Alternative 2:
Dualcast

(d) 3. Switchover

Figure 3.36: Protection switching

position (C’). The transient behavior of the migration is plotted in Figure 3.35b. After

the task migration starts first the buffer fill level between A and C starts increasing.

As D is waiting on data from C it follows soon and pauses consuming data from B too.

When the migration completes the buffers drain again as it is a well balanced application.

Anyhow it can be seen that the end-to-end latency of the individual data items spikes

after the migration, an effect that may cause trouble in soft real-time applications or

similar.

3.6.2 Communication Migration with Protection Switching

In the following alternative approaches on the migration of the communication channels

are discussed, that are dependable and have minimal impact on the application perfor-

mance. A basic property is that the task migration and the communication migration

are separated and handled mostly independently from each other. During migration

109



3 NAMP: Design of a Network Adapter for Efficient Inter-Task Communication

Pausing Protection Switching

I

< replicate communication structure
suspend incoming channels < dualcast/forward incoming channels

< wait until not distributed packets
are processed

II

stop task
suspend outgoing channels

migrate communication structure &
buffers

> sync receive buffers

move control to destination
remap task on local communication structure

resume outgoing channels
resume task

III resume incoming channels < switch-over incoming channels

Table 3.3: Migration sequence of different methods for communication migration. The individ-
ual steps are compared with respect to their analyzed complexity.

both layers prepare the switchover concurrently. Instead of pausing the communication

during switchover, protection switching maintains a consistent and active communica-

tion subsystem. Two protocols have been proposed that are briefly discussed in the

following. Figure 3.36 shows both alternatives for the previously introduced scenario.

Forwarding With forwarding, the idea is basically that the communication subsystem

forwards incoming data transparently to the new destination. After the switchover the

sender is then updated to send directly to the new destination. One major drawback

is that it creates extra traffic at a critical part of the system that can easily form a

bottleneck. Furthermore it is important to properly synchronize once the task takes

over.

Dualcasting With the dualcast alternative the sender instead transfers the messages to

both the old task location and the new task location concurrently. After switchover the

sender has to switch to the new channel. Again, it is important to properly synchronize

between both communication channels after switchover.

3.6.2.1 Comparison of Migration Phases

The different phases of the migration are listed in Table 3.3. The actions in the different

phases are executed either in the current location or in the new location. Table 3.3 out-
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lines a comparison between the traditional pausing and protection switching. The table is

organized along the three phases of a migration: I) pre-migration, II) switchover, and III)

post-migration. The phases are centered around the actual task migration in switchover

phase. The communication migration does not play a role in this phase with protection

switching: The buffer synchronization is significantly faster than the migration of the

entire communication state. In exchange the communication migration performs more

actions during the pre-migration phase and the post-migration phase. There are two

aspects to protection switching now: First, the goal is to perform those extra operations

with minimum impact. Second, the fundamental improvement is that the migration is

moved out of the critical switchover phase and performed asynchronously. The phases

are briefly discussed in the following.

Pausing In phase I the incoming channels are suspended by sending control messages

to the sending tasks. Phase II is the full task switchover that included suspension of the

outgoing channels. The migration of communication is then the transfer of all data struc-

tures and pending messages related to the communication. The control is transferred to

the destination, where the task is mapped back and both outgoing communication and

task are resumed. Phase III triggers the resuming of the incoming channels then.

Protection switching Phase I consists of more steps when using protection switching.

The communication structure gets replicated at the new destination. The endpoint and

buffer configuration is transferred, but the original endpoints and buffers stay active.

Now the new packets are either forwarded to the destination or the predecessors are

triggered to perform dualcasts. The new endpoints are configured in a special mode,

where they drop messages on overflow and the flow control still occurs with the original

tile. For consistency the previous packets must be processed or ultimately migrated. This

synchronization is executed during switchover. Finally, in phase III the predecessors are

instructed to send to the new task making the new communication channels active.

3.6.3 Analysis of Software-based Protection Switching

The concept of protection switching for on-chip message passing has been validated with

a software-based implementation on our platform (see Chapter 4). A simple three task

chain is evaluated where the middle task is migrated. The software impact and the

latencies of packets are measured.
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Figure 3.37: End-to-end latency of communication migration, software implementation [220]

End-to-end latency Figure 3.37a plots the end-to-end latencies for all three migration

alternatives in a transient plot. It is generally consistent with the analysis from before.

While protection switching lead to a smaller peak latency, the number of affected packets

increases. The reason that the peaks of protection switching are higher than expected

lies in the fact that in this simulation the software handles all operations related to the

communication.

Impact on Processor Execution Beside the latency, Figure 3.37 furthermore shows

the relative time spent in the thread and in protocol handling at the original tile. It

is clear that the overall share is similar with all three approaches, but the transient

behavior of the relative times nicely replicates the aforementioned operations (see Ta-

ble 3.3): For protection switching the impact of the pre-migration phase is visible. The

migration operations temporarily suppresses the task execution. This also manifests in

extra increases of the latency. Before switchover the task processing regains processor
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(a) connection-less

(b) connection-oriented

Figure 3.38: NAMP integration for forwarding during migration

time. With forwarding the extra message handling at the original task location becomes

visible, too.

3.6.4 NAMP Integration

The concept of protection switching for on-chip message passing shows good potential in

analysis and simulation. Probably the most important factor is that it deskews the load

on the current task position during switchover. Instead it performs migration operations

before and after the switchover phase, separated from the actual task migration. One of

the major issues with the software presented previously implementation is that the load

on the current position is yet high due to the operations performed in software. Hence,

those operations are a good candidate for hardware offloading and in the following I

present the low complexity NAMP feature, but yet have the potential to significantly

lower the impact of communication migration.
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3.6.4.1 Forwarding/Relocating

The previous discussion suggested forwarding as protection switching mechanism. For-

warding pessimistically assumes that the message arrives at the current task position as

a clear separable unit. With the NAMP concept this does not hold, because for the bulk

data transfer it utilizes a potentially existing DMA controller and eager transfers are

not supported. Only a limited number of protocol messages are required beyond this.

Beyond this aspect it is generally favorable to not transfer a message twice. So the

path that NAMP-PS takes is using endpoint relocation instead of message forwarding.

This essentially involves a relocation update on the sender side so that it sends to the

new location. Figure 3.38 shows two NAMP-PS integrations for endpoint relocation,

one for connection-less communication and one for connection-oriented communication.

For connection-less communication (Figure 3.38a) the notification about the re-

location is propagated during the message allocation phase as the number and origin

of messages is generally unknown in connection-less communication. For that the local

endpoint data structure (see Figure 3.3a) is extended with a field for relocation infor-

mation. There is no relocation as long as it is zero. After that it points to the new

remote endpoint. Once the pre-migration phase starts (near to the actual switchover)

the operating system sets this field to a new data structure for the newly created remote

endpoint at the new destination (À). When a new allocation request now arrives (Á) the

NAMP target state machine checks for this field and finds that the endpoint is relocat-

ing (Â). It then replies with a NAK RELOC message (Ã). Beyond the status, this message

contains the new (reloc) remote endpoint data. The initiator NAMP then updates its

own data structure atomically (Ä). After that it will only send data to the new location

and the current transfer is restarted.

For connection-oriented communication (Figure 3.38b) there are two main dif-

ferences. First, there is no allocation message so that the protocol does not work in this

case. But on the other hand it has the advantage that the communication partner is

known. So, in this case there is a relocation message that signals an update to an end-

point location (remote tile and address). There is no extension required to the endpoint

data structures for this method. As depicted in Figure 3.38b the relocation message

is furthermore sent directly by the operating system (À). As the operating system is

already running there is no significant overhead and saves extra hardware area. So the

operating system sends the message with the basic buffer. Once the message arrives at

the sender it again atomically updates the remote endpoint data structure (Á). Finally,

there may be messages still in transfer to the remote endpoint. To avoid inconsistencies
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Figure 3.39: NAMP integration for dualcasting during migration

the current update is send to the remote endpoint with a special RELOC CREDIT message

(Â).

3.6.4.2 Dualcasting

For the second protection switching method the required hardware integration is again

limited, because the NAMP already includes dualcasting capabilities via the NAMP-CC

multicast feature. As depicted in Figure 3.39 the required feature is again a message

triggered by the operating system once the pre-migration phase starts (À). Multicasting

requires a different remote endpoint data structure (see Figure 3.27b). If an endpoint is

connected to a communication partner that may be relocated (worst case all) it therefore

needs this data structure instead of the default remote endpoint. Anyhow, it only wants

to dualcast when needed.

So the proposed feature involves a reserved memory area that can hold the multicast

data structure for two targets where one target is initialized to the original task location.

Beside that the normal remote endpoint data structure is extended by a pointer to this

data structure. Once the MIGRATE message arrives it contains the updated endpoint

location. The NAMP then updates the multicast data structure (Á). In the following

the NAMP software driver and the continuous communication mode (CCM) handling

need to perform a dualcast operation instead (Â).

3.6.5 Summary

In this section the impact of task migration on the communication infrastructure has

been investigated. The impact of the migration of the endpoint metadata and actual

buffer content on the overall task migration can be significant. Protection switching

is a concept to separate the communication migration from the task migration. Two

methods have been introduced: Forwarding/relocation redirects the arrival of new data
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to the updated task position while buffer data is still drained at the original position.

With dualcasting the sender transfers data to both positions during the migration. Both

concepts have been introduced as NAMP features.

3.7 Summary

In this central chapter of this thesis I have developed an efficient “Network Adapter

for Message Passing (NAMP)” for on-chip communication in tiled many-core system-

on-chip. The potential of a hardware offload was evaluated and compared to state-of-

the-art approaches. The basic functionality of NAMP was developed throughout the

chapter. Features that improve the usage of NAMP in many-to-many communication

and a self-virtualization interface for elegant usage by isolated userspace tasks have

been introduced. The wake-up of threads by HW-OSQM was presented as a significant

improvement of event signaling between the NAMP and threads waiting for send or

receive operations. Finally, protection switching has been introduced as a method for

communication migration.

This chapter focused on the presentation and discussion of the basic concepts. An eval-

uation framework served for quantitative estimation of the improvement of a function-

ality in an abstracted way. Beside that the evaluation framework played an important

role in validation of the protocol.

While the estimated improvements clearly indicate that NAMP dominates currently

dominating approaches, there is a trade-off: On the one hand the platform designer can

expect a certain performance improvement by the NAMP hardware assist. On the other

hand the extra hardware contributes to the chip area and power profile. Hence, the

a prototype of the concept will in the following be evaluated and validated. Based on

those results, the design points of performance improvement and extra area can serve

the decision process to integrate NAMP.
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In the previous chapter I have introduced the concept of the Network Adapter for Mes-

sage Passing (NAMP). The discussion abstracted from an implementation where sen-

sible, but with many ideas that define the hardware implementation. The NAMP was

validated against an analysis framework that models the functionality composed of basic

building blocks. Those building blocks were calibrated based on the prototype frame-

work used in this chapter. But on the one hand it is important to validate an actual

implementation, and on the other hand there is always a trade-off. While the evalua-

tion metrics (overhead, gap and latency) are all significantly improved for each of the

proposed extensions, they don’t come for free. In this chapter I present the prototype

implementation of the NAMP. It is used to derive estimates for hardware area and tim-

ing, and for the concept validation. The features and configurable parameters of the

NAMP are evaluated in a sensitivity analysis where they lead to differences. A set of

typical configurations is used to define NAMP instances for common use cases.

The syntheses in this chapter have been performed for two targets:

FPGA For the measurement of resource utilization and timing, the modules are synthe-

sized for a Xilinx Kintex 7 UltraScale (xcku035-1), which is an FPGA device of the

newest generation with average performance and size. The example system designs

are targeted at devices of typical FPGA boards and noted where introduced. The

synthesis tool is Xilinx Vivado 2017.4.

ASIC The designs are synthesized for a state-of-the-art TSMC 40nm low power pro-

cess. The design area is converted into gate equivalents (NAND2 gate size). The

synthesis tool is Synopsys Design Compiler L-2016.03-SP3 and only a frontend

synthesis is performed. This already gives a very good estimate of the timing and

is generally precise with respect to the number of gates.

This chapter is organized as follows: In Section 4.1 I present the many-core system-

on-chip prototype which was developed essentially for this thesis. The prototype is

designed to be a generic platform that mimics an average layout and behavior. The
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Figure 4.1: Basic OpTiMSoC Layout

NAMP implementation in this prototype is then presented and validated in Section 4.2.

In Section 4.4 I then conclude the discussion with a presentation of typical configurations

and their area and timing.

4.1 Many-Core System-on-Chip Prototype

Around my work presented in this thesis a many-core system-on-chip prototype was

developed: the “Open Tiled Manycore System-on-Chip (OpTiMSoC)” [218, 160]. It is

made publicly available as open source project and can be used for many related research

topics. OpTiMSoC is not a single system-on-chip, but instead the set of basic building

blocks, composite modules and tools to configure and build tiled manycore system-on-

chip. The main components are:

OpenRISC mor1kx The main processor is a 32-bit CPU with a 6-stage pipeline. It has

SMP extensions to support multiple instances in one tile.

Tiles A number of tile modules are available. The most important one is the compute

tile: It contains a configurable number of processor cores, local SRAM memory, a

boot ROM and the network adapter. Other important tile types are memory tiles

that provide access to DDR memory and I/O tiles that allow access to external

devices.

Network-on-Chip A basic network-on-chip router with configurable input and output

buffers is the basis for each instances network-on-chip. The router’s basic proper-

ties are that it is packet-based, wormhole and uses distributed dimension routing.

The network-on-chip of an OpTiMSoC instance is automatically generated from
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those routers and it is configurable to build multiple physical networks or one

network with virtual channels.

Support Libraries and Runtime System Libraries with the necessary drivers and a sim-

ple runtime system are part of OpTiMSoC to allow the user a simple quick start

into programming of tiled many-core system-on-chip architectures.

Debug Infrastructure A modern trace-based debug infrastructure that allows the plat-

form designer and application developer to observe the execution of software and

state of the hardware. It has been spawned into a separate project “Open SoC

Debug” [159] recently and is also used in other projects [131].

Figure 4.1 sketches the basic elements and hardware structure of an OpTiMSoC in-

stance. The tiles are organized in a regular structure and the compute tiles contain a

configurable number of processors. This allows tasks running in the tile spawning multi-

ple threads to exploit fine-granular parallelism. The local memory allows for maximum

locality and inter-tile communication is enabled by the network adapter. All components

are configurable and the NAMP as default network adapter will become an integral com-

ponent for efficient programming of OpTiMSoC platforms. In the remain of this chapter

the NAMP implementation will be presented and discussed.

4.2 NAMP Implementation

In Chapter 3 I have presented the NAMP concept. In the following the prototype

implementation of the NAMP is presented. I first present the NAMP module and its

integration, followed by a presentation of the buffer implementation. This section then

concludes with an overview of the individual components of the NAMP.

4.2.1 NAMP Module Overview

As mentioned before, the NAMP is a single self-contained module that contains the

described features in a configurable way. Figure 4.2 shows the NAMP module and

its components. There is not a one-to-one correspondence of features to components,

because the majority of the features extend the main modules. There are two modules

that are common in the state-of-the-art network adapters: the NoC buffers and RDMA

modules are common modules. The NAMP interfaces the network-on-chip, the tile bus

and and interrupt line that is fed to one of the cores.

119



4 Prototype Implementation

Figure 4.2: Overview of the NAMP Module

On the bus there are two interfaces: The slave interface is used to configure the NAMP

components and gather status and configuration information. It is also used to read flits

from the NoC buffers. The master interface has the same memory view as the processors.

It is used by the modules to access the local memory. The DMA copies data into the

memory and state machines from the other components use the master interface to read

and manipulate data items as described throughout this thesis.

The NAMP module accesses four network-on-chip channels. A set of two channels is

used for control messages as generated by the NAMP progress engone or injected via the

NoC buffers. Another set of two channels is used to transfer data between tiles. Each

of those two sets has a request and a response channel to mitigate message-dependent

deadlocks.

The central modules of the NAMP are the initiator and the target component. The

initiator component encapsulates the progress engine and generates message passing

protocol requests. The target receives those requests, performs the corresponding action

and sends the response.
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Each slot component configures one transfer and tracks its state. The initiator

selects a slot that can progress and performs the required (protocol) action and then

updates the slot status.

4.2.1.1 Configurable Features

The NAMP module is freely configurable to allow the use in a variety of scenarios. The

configuration settings (as Verilog parameters) allow to configure a NAMP instance by

either enabling components or features or as parameter. In the following I briefly discuss

the most important configuration settings.

SLOTS PHYS: Physical message passing slots This parameter configures the number

of slots mapped directly into the physical memory space. The NAMP instantiates that

many slot components.

SLOTS VIRT: Virtual message passing slots This parameters configures the number of

slots that are accessed via a virtual interface by a task. Each of those virtual message

passing slots instantiates a pair of the virtual interface component (vif) and a slot

component.

ENABLE CC MULTICAST: Enable multicast operations This parameter enables the mul-

ticast capability of the NAMP. The collective communication features can be indepen-

dently added, because a platform designer may choose to only add multicast.

ENABLE CC SCATTERGATHER: Enable scatter and gather operations This parameter

adds both the scatter and the gather collective communication operations. As they are

a pair of operations, I chose to keep them together as one feature.

ENABLE CC REDUCTION: Enable reduction operations This parameter enables the re-

duction collective communication operation.

ENABLE OSQM: Enable Operating System Queue Manipulation The OSQM feature

can be independently activated. It is important to note that it is not coupled to the

virtualization extensions, because also bare-metal operating systems or kernel threads

may use this feature.
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ENABLE PS: Enable Protection Switching This enables the protection switching oper-

ations described before.

There are some more parameters specific to components of the NAMP that are intro-

duced in the following when needed.

4.2.1.2 NAMP Memory Map

The NAMP can be accessed from software via its slave interface. This interface can

be mapped to any base address in the physical address space, as long as it is mapped

aligned to the address space size. The address space size is 4 MB (0x0-0x3fffff). The

memory map is shown in Table 4.1. The components are individually mapped into the

address. It is important to note that the address space is only sparsely populated. For

example only the first 12 addresses in the NAMP’s “basic status & configuration” space

are used, the remaining addresses all lead to a bus error when accessed.

The page size of the processor is 8 kB. This is mostly relevant for the “vif config” space,

because it has to be mapped into a thread’s virtual address space. Anyhow, all address

sub-spaces are of this size to allow even more mapping opportunities. The addresses of

the basic NAMP interface are used to query the configuration of the NAMP and gather

information about the currently active slots. The NAMP IRQ controller provides the

information which interrupts from the components are currently active and allows to

mask interrupts individually to ignore them. This is especially useful when the OSQM

feature is deployed.

There are two NoC buffers, one for requests and one for responses. Flits can be sent

or received on those buffers as memory mapped I/O. Each of the buffers is mapped

into one page. Again, this can be used for example allow mapping them to different

microkernel services. The DMA user slots are equally mapped, and a maximum of 128

DMA slots can be used. The number of slots can be queried from the “basic status

& configuration”. The slots used by the NAMP cannot be accessed from outside the

module.

Finally, the message passing transfers can be configured via the address space of the

NAMP slots. Each of the slots has the address space of two pages. This is due to the fact

that the lower addresses always access the slot configuration, while the upper addresses

are used by the virtual interface. A thread running in virtual memory thus has the upper

page mapped into its address space. The operating system kernel could still inspect the

physical addresses as configured in the slot or configure the OSQM registers in the slot.
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Address
Range

Description Module/
Function

0x000000 -
0x001fff

Basic status & configuration NAMP

0x002000 -
0x003fff

Interrupt interface (read pending, config-
ure masking, ..)

NAMP IRQ
Controller

0x004000 -
0x005fff

OSQM basic configuration (optional) OSQM

0x010000 -
0x011fff

Network-on-chip basic buffer 0

Buffers
0x012000 -
0x013fff

Network-on-chip basic buffer 1

0x100000 -
0x101fff

DMA slot 0 (optional)

DMA
0x102000 -
0x103fff

DMA slot 1 (optional)

...

0x1d0000 -
0x1fffff

DMA slot 128 (optional)

0x200000 -
0x200fff

NAMP slot 0, base interface

NAMP

0x201000 -
0x201fff

NAMP slot 0, vif config (optional)

0x202000 -
0x203fff

NAMP slot 0, virtual interface (optional)

0x204000 -
0x204fff

NAMP slot 1, base interface (optional)

0x205000 -
0x205fff

NAMP slot 1, vif config (optional)

0x206000 -
0x207fff

NAMP slot 1, virtual interface (optional)

...

0x3a0000 -
0x3affff

NAMP slot 128, base interface (optional)

0x3b1000 -
0x3b1fff

NAMP slot 128, vif config (optional)

0x3c0000 -
0x3fffff

NAMP slot 128, virtual interface (op-
tional)

Table 4.1: NAMP memory map
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In case of physical slots only the lower page is available, the upper page will raise a bus

error when accessed. There is space reserved for up to 128 NAMP slots.

4.2.2 Circular Buffer Design

Before I get into the details of the components of the NAMP module, I will elaborate on

the circular buffers that are interfaced by the NAMP and the software. It is important

that the circular buffers i) are non-blocking data structures, ii) can handle both concur-

rent read and write operations, and iii) can be accessed efficiently from hardware and

software. As introduced in Section 3.2.4.1, the circular buffers reside in the tile local

memory. To support efficient use of the circular buffer, it should support both multiple

producers and multiple consumers. By supporting multiple producers the buffer imple-

mentation allows first multiple software threads writing to one sender buffer, and second

local software threads writing to the same receiver buffer as the NAMP. By supporting

multiple consumers multiple software threads can read from the receiver buffer safely.

Having parallel write and read operations requires synchronization. Atomic operations

must guarantee that concurrent accesses are sequentialized to avoid inconsistent states.

A common approach to guarantee atomicity is using locks. Each producer or consumer

tries to set a lock and waits if not successfull. Only the one holding the lock may update

the data structure. After completion it then releases the lock and another entity can

resume. While this is a straight forward approach, it has problems even if producer

and consumer accesses are spli into two locks. Most importantly in the context of this

thesis, a thread could be paused while writing to the data structure. This would lock

out the NAMP to write to the buffer until the thread is resumed, which induces critical

backpressure to the network-on-chip. Of course a kernel (privileged) thread or baremetal

software could block interrupts to avoid this issue. But an important aspect in this thesis

is the availability of the message passing infrastructure to user level (non-privileged)

threads.

The solution – and generally favorable – are non-blocking data structures, which are

carefully implemented using atomic primitives such as compare-and-swap (CAS) [208,

145]. The CAS operation allows a thread to read a value, compare it to a value and

only swap it with a new value in case of a match. This operation is implemented by the

CPUs and the NAMP by a read-modify-write (RMW) cycle on the bus. Here those three

sub-operations are executed without interference from other parties. Non-blocking data

structures are now built by updating elements of the data structures by executing such

CAS operations, and thereby allow for efficient and fast concurrent access to the shared

data structure.
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1 s t r u c t mp cbuf fer {
2 u i n t 3 2 t capac i ty ; // b u f f e r capac i ty (2ˆ capac i ty )
3 u i n t 3 2 t max msg size ; // max element s i z e (2ˆ max msg size )
4 v o l a t i l e u i n t 3 2 t wr idx ; // next wr i t e index
5 v o l a t i l e u i n t 3 2 t rd idx ; // next read index
6 u i n t 8 t ∗data ; // data f i e l d ( s i z e=capac i ty ∗max msg size )
7 u i n t 3 2 t ∗ s i z e ; // f i e l d o f message s i z e s
8 } ;

Listing 4.1: Buffer data structure

The buffer is organized as introduced before in Figure 3.3b: The messages are stored

into a contiguous data block. A write index (wr idx) points to the position where the

next data will be stored and the a read index (rd idx) points to the position where the

next data will be read from. Listing 4.1 shows a reference implementation of such a

buffer. I chose a fixed size, pre-allocated circular buffer as it avoids dynamic memory

allocation that increases complexity of hardware implementations. The operations on

the buffer consist each of two steps briefly described in the following.

A write or push operation consists of two steps as sketched in Figure 4.3a. First,

the next buffer space is reserved by moving the write index forward. This has to be an

atomic operation so that only one producer is successful. After successful reservation the

data is written, which is now safe to do. Combining both steps is not possible. Finally, a

commit operation is a simple write operation that signals that this element is complete.

It writes the size of the written data to a metadata field. A receiver only reads a buffer

elements after that field is written.

At a first glance the described procedure seems to be sufficient to ensure thread-

safe concurrent access. But a problem arises due to the nature of non-blocking data

structures with CAS, often refered to as the ABA problem [211, 144]. If a producer

reads the index, a situation can occur where other producers increment and wrap the

index in a way that it has the same value as it read, for example because the thread was

paused. The CAS operation would then be successful, but the buffer can now be full as

depicted in Figure 4.4a.

Generally, the ABA problem is most often mitigated by using load-linked/store-

conditional operations or multi-word compare-and-swap, but they induce hardware re-

quirements beyond a simple CAS. Instead I chose an optimistic approach: The indices

are counted up to their maximum 32 bit value (or processor register size) and wrap

around auomatically. For addressing, only the relevant bits are used from the index as
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(a) Write Operation

(b) Read Operation (c) Full Buffer

Figure 4.3: Multi-Producer Multi-Consumer Buffer Operations

(a) Write (b) Read

Figure 4.4: ABA problem for circular buffers
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Figure 4.5: NAMP slot component

depicted in Figure 4.3a. The remaining bits are interpreted as a tag. Assuming sensible

values for the maximum number of messages in a buffer of 21 to 26 there need to be at

least 226 operations until the tag has the same value again. This is more then sufficient

to mitigate the ABA problem, but other software-based measured could be added to

ensure it to the maximum extend (which is beyond the scope of this thesis).

Listing 4.2 shows the software implementation of the push and pop operations. Using

powers of two for the number of elements and maximum message size (reserved chunk

of data) eases a hardware implementation significantly. Reading data from the buffer,

the pop operation similarly consists of two steps. First the index pointing to the next

element to read is moved forward. After data is read the element is then freed (see

Figure 4.3b). Listing 4.2 also shows the reference implementation of the pop operation.

Again, the implementation is hardware friendly which is a major goal of this thesis.

Finally, a circular buffer is empty (or not yet ready to read) when the currently pointed

to element has size 0 (see initial state in Figure 4.3a. It is full when the element that

the write index points to has (still) a size and hence not writeable (see Figure 4.3c.

Summarizing, the buffer implementation described above is a flexible, scalable concept.

It is designed to be integrated with software and hardware efficiently.

4.2.3 NAMP Components

As depicted in Figure 4.2 the NAMP module is composed of multiple components. The

NoC buffers and RDMA components form a typical state-of-the-art network adapter.

The NAMP adds the message passing progress engine, handling of concurrent transfers

and extra functionality added by the features discussed in this thesis. In the following I

will briefly describe the important components.

4.2.3.1 NAMP Slots

Each message passing transfer is configured with one NAMP slot. As depicted in Fig-

ure 4.5 each slot has a configuration slave interface that is addressed according to the
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1 // Push operat i on
2 i n t m p c b u f f e r r e s e r v e ( s t r u c t mp cbuf fer ∗buf , u i n t 3 2 t ∗ idx ) {
3 u i n t 3 2 t cur idx , new idx , rd idx ;
4 do {
5 cu r idx = buf−>wr idx ; // read cur rent counter
6 ∗ idx = cur idx % (1<<buf−>capac i ty ) ; // e x t r a c t index
7 rd idx = buf−>rd idx ;
8 i f ( (∗ idx == ( rd idx % (1<<buf−>capac i ty ) ) )
9 ( rd idx != cur idx ) ) re turn −1; // f u l l ( r e s e rved )

10 i f ( buf−>s i z e [∗ idx ] != 0) re turn −1; // f u l l
11 new idx = cur idx + 1 ; // c a l c u l a t e new counter
12 } whi le (CAS(&buf−>wr idx , cur idx , new idx ) != cur idx ) ;
13 re turn 0 ;
14 }
15
16 void mp cbuffer commit ( s t r u c t mp cbuf fer ∗buf , u i n t 3 2 t idx ,
17 u i n t 3 2 t s i z e ) {
18 buf−>s i z e [ idx ] = s i z e ;
19 }
20
21 i n t mp cbuf fer push ( s t r u c t mp cbuf fer ∗buf , u i n t 8 t ∗data ,
22 u i n t 3 2 t s i z e , u i n t 3 2 t ∗ idx ) {
23 i f ( m p c b u f f e r r e s e r v e ( buf , idx ) != 0) re turn −1;
24 memcpy( buf−>data + ∗ idx ∗(1 << buf−>max msg size ) , data , s i z e ) ;
25 mp cbuffer commit ( buf , ∗ idx , s i z e ) ;
26 re turn 0 ;
27 }
28
29 // Pop operat i on
30 i n t mp cbuf f e r read ( s t r u c t mp cbuf fer ∗buf , u i n t 3 2 t ∗ idx ) {
31 u i n t 3 2 t cur idx , new idx ;
32 do {
33 cu r idx = buf−>rd idx ;
34 new idx = cur idx + 1 ;
35 ∗ idx = cur idx % 2ˆ buf−>capac i ty ; // e x t r a c t index
36 i f ( buf−>s i z e [∗ idx ] == 0) return −1; // empty
37 } whi le (CAS(&buf−>rd idx , cur idx , new idx ) != cur idx ) ;
38 re turn 0 ;
39 }
40
41 void m p c b u f f e r f r e e ( s t r u c t mp cbuf fer ∗buf , u i n t 3 2 t idx ) {
42 buf−>s i z e [ idx ] = 0 ;
43 }
44
45 i n t mp cbuf fer pop ( s t r u c t mp cbuf fer ∗buf , u i n t 8 t ∗data ,
46 u i n t 3 2 t ∗ s i z e ) {
47 u i n t 3 2 t idx ;
48 i f ( mp cbuf f e r read ( buf , &idx ) != 0) re turn −1;
49 ∗ s i z e = buf−>s i z e [ idx ] ;
50 memcpy( data , buf−>data + idx ∗(1 << buf−>max msg size ) , s i z e ) ;
51 m p c b u f f e r f r e e ( buf , idx ) ;
52 re turn 0 ;
53 }

Listing 4.2: Circular buffer push and pop operation
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Figure 4.6: NAMP progress engine

memory map. Via this interface the software writes the configuration registers in the

slot. Beside that there are state registers that capture the progress of the transfer and

temporary data such as generated addresses.

The configuration and the state registers are exposed to the progress engine that

resides in the NAMP initiator module. Once the VALID flag is written the progress

engine is triggered and performs actions according to the current state. After each time

the slot was served an update is triggered, that contains an update of the state registers.

Some of the state transitions trigger a timer that is also part of the slot. A tiny finite

state machine controls the implicit state transitions and timer. It also sets the READY

flag once the transfer is done. This also triggers the interrupt (irq) eventually.

4.2.3.2 NAMP Progress Engine

The NAMP progress engine is the main functionality of the NAMP. It implements the

control path of the message passing protocol. The main part of the NAMP progress

engine is the initiator which serves the slot requests at the sender side. The target at

the receiver side serves incoming requests, but has no state. As depicted in Figure 4.6

the network-on-chip channels complement via the network between the sender (initiator)

and the receiver (target).

As sketched in Figure 4.6 the initiator has two state machines: The egress FSM

serves the slots and generates the protocol messages, accesses the bus to read and write

endpoint data, and handles the slot state updates. It is the most complex part of the
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Figure 4.7: NAMP vif component

entire NAMP. The number of FSM states varies depending on the configured features.

Generally, the collective communication and protection switching mainly contribute to

the state machines in the progress engine. The ingress FSM serves incoming network-

on-chip packets and updates the slots accordingly.

Whenever idle the egress FSM uses a set of arbiters to select the next slot to process.

There is one arbiter for each progress state of a slot. The arbiters serve the slots fairly

and the egress FSM picks the from the arbiter that selected the most advanced slot. The

selected slot is then processed with its configuration and state and the slot state gets

updated by the egress FSM. It also configures the RDMA controller and processes the

completion of RDMA transfers to progress the associated slot.

The complexity of the FSM in the target module also depends on the configured

features. This is mostly which packet types it accepts and processes. Once a packet

arrives it accesses the addressed data structures in the tile memory via the bus. Based

on the performed action it then generates a reply for some of the requests, such as

allocation requests.

4.2.3.3 NAMP Virtual Interfaces

The NAMP virtual interface for all configured virtual slots. Figure 4.7 shows that the

virtual interface essentially is a transparent translation from the bus slave interface to the

slot interface. For the lower page addresses (see above) the virtual interface is bypassed.

This is useful for the kernel to access the slot and configure the OSQM once the thread

suspends.

As sketched in Figure 4.7 the upper page addresses are mapped to the virtual con-

figuration registers. Once the VALID flag is written, a state machine is triggered in the

virtual interface. It accesses the thread’s endpoint table as configured by the kernel.

The virtual identifiers are then translated to physical addresses and written to the slot
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Figure 4.8: NAMP OSQM module

interface. In the last step the virtual interface transfers the flags and thereby completes

the slot configuration.

Once the slot raises an interrupt, the virtual interface updates the READY flag in its

configuration register. Finally, it raises an interrupt itself if configured to do so.

4.2.3.4 HW-OSQM Component

The operating system queue manipulation is a separate module. It is only instantiated if

the feature is enabled. It can be triggered via two interfaces as depicted in Figure 4.8a:

The initiator can trigger an OSQM operation when a transfer is completed and the

target can trigger an OSQM operation when it delivered a message to an endpoint with

a waiting thread.

The OSQM module is configured by the operating system if dynamic configuration

is supported. A state machine is triggered by the requests from initiator and target.

It then performs the OSQM operations on addresses calculated from the trigger data

(thread and queue) and the offsets.

As described before, the offsets can be either configured statically (“in hardware”) or

dynamically during start-up of the operating system. Figure 4.8b compares the FPGA

resource utilization of the OSQM module for three configuration: The default configu-

ration is the dynamic setup which supports both double linked lists and single linked

lists, along with arbitrary offsets in the data structures. When configured statically the

resource utilization is lower: For a single linked list the combinational LUTs drop by 22%

and the registers drop by 32%. For a double linked list the LUTs are only reduced by 5%

and the saved configuration registers equally reduce the register count by 32%. Anyhow,
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(a) Simple 1-to-1 traffic (b) 1-to-N and N-to-1 traffic(c) Advanced traffic scenario

Figure 4.9: Traffic scenarios

these savings are more relevant when the OSQM concept is used in other contexts. In

the following I will use it in the default configuration, because of the flexibility.

4.3 Synthetic Benchmarks

The basic NAMP capability is in the following validated with synthetic benchmarks of

the prototype implementation. The validation is based on the simulation of the RTL

model of an entire platform. The platform is a platform of 16 tiles organized in 4 rows

and 4 columns. Each tile has one processor. The benchmarks are synthetic, meaning

that they are not realistic applications but are designed to trigger the important corner

cases. They allow to observe the performance metrics of the NAMP isolated from other

effects. The RTL model is 100% cycle accurate. As all communication is based on data

in the tile local memory, the timing is identical to the behavior of a timing accurate

model, FPGA or ASIC (assuming the timing of the SRAM is one clock cycle). The full

visibility of the system state allows to measure exact timings non-intrusively.

4.3.1 Basic connection-less message passing

In a first validation, the basic connection-less message passing is evaluated. In this

example one sender basically sends data to one receiver continuously.

Figure 4.10 shows the results for this synthetic benchmark for different scenarios. In

the most simple scenario there is one sender that continuously sends messages to one of

its next neighbors (see Figure 4.9a). In the second scenario the data transfer traverses

the maximum distance in the network-on-chip of six hops (also in Figure 4.9a). A first

observation is that the send overhead is constant and independent of the traffic scenario.

This is because it only is the device configuration and matches the evaluation as depicted

in Figure 3.13. The static offset in this simulation compared to the previous evaluation is

due to processor caching effects that were not part of the discrete event simulation model.
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Figure 4.10: RTL simulation benchmark results for connection-less message passing with
NAMP support
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Figure 4.11: RTL simulation benchmark results for connection-oriented message passing with
NAMP support

It can be observed that the latency matches the trend from the previous evaluation

accurately. Also, there is no significant difference between the communication with the

neighboring tile and the tile at maximum distance, due to the fact that the traversal

time of the NoC adds three times to the latency: one round trip for buffer allocation and

then once for the message transfer. Otherwise, the latency is dominated by the actual

buffer allocation operations for smaller message sizes and by the message size for larger

messages.

Additionally, the gap is depicted in Figure 4.10. As introduced before this is the

duration of protocol handling in hardware that one message transfer takes. Also here,

the network distance only has minor impact. The figure furthermore shows the average

effective throughput from the application. There is one major reason why the gap and

thereby the throughput do not benefit much from increasing message sizes: The receiver

is slower with processing the data, because it copies the data from the buffer when it
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Figure 4.12: Simulation benchmark results for advanced traffic scenarios

receives it. This amplifies with increasing message sizes. The plot also shows the average

number of retries by each transfer which significantly increases.

A third experiment in Figure 4.10 uses the functionality to receiving a message from

the buffer by a pointer into the buffer instead of copying (zero-copy). For this it can be

observed that the number of retries is similar to before for smaller message sizes, but

then lowers down to zero for large message sizes. Thereby latency, gap and throughput

improve significantly and can be seen as practical boundaries.

Anyhow, there is a last component that remains for connection-less messages: The

protocol handling in hardware actually is not one long operation as the gap may suggest.

As the message sequence chart in Figure 3.12 suggests, there are actually many delays

by the waiting for the allocation response and the DMA transfer completion. Especially

the former can effectively be used by other transfers. Hence, the fourth experiment

in Figure 4.10 shows the performance metrics for a scenario where the sender sends

to four receivers as sketched in Figure 4.9b. The message transfers are handled in
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parallel, so that the different progresses in the protocol handling overlap. For each

individual message the throughput is smaller than before, because of the serialization

of the protocol handlings in the NAMP. Anyhow, the aggregate of all four transfers

improves significantly over the previous scenarios, up to around 75% of the theoretical

limit of 4 bytes/cycle.

4.3.2 Basic connection-oriented message passing

In a second set of experiments the same experiments have been executed for connection-

oriented message passing. The overhead is still constant and therefore omitted here and

in the following.

Figure 4.11 shows the results for the simulations. It can be observed that connection-

oriented behaves similar to connection-oriented communication. But again, in the case

of this synthetic benchmark the receiver dominates the message transfer. In the case

of the connection-oriented communication this is even worse because the credit update

after the reception of the message is in the critical path, and hence defines a general

bottom to the gap.

4.3.3 Advanced traffic scenarios

As mentioned before, the absence of any computation and concurrent traffic is an as-

sumption for a synthetic benchmark. Hence, Figure 4.12 shows experiments for traffic

scenarios that add contention at the network level and the buffer level. The advanced

traffic scenario as depicted in Figure 4.9a has multiple parallel communication streams

crossing the chip and leading to contentions on the network. Some streams may conflict

with each other and the sensitivity range in Figure 4.12 gives a good indication of the

order of magnitude that gap and latency can differ.

The variation in gap and latency vary even more when the contention is at the desti-

nation buffer. In the last two experiments four senders send messages to one destination

as depicted in Figure 4.9b. Gap and latency are largely dominated with the ability of

the receiver to cope with the messages. Anyhow, it can be seen that for connection-less

communication the effects of concurrent arbitration and the round trips for that limit

the individual throughput significantly.
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baremsg S 0 3

barechan S 0 3 S S

bare S 0 3 3 3 3 3 S S S

svbase 1 S 3 3 3 3 3

svfull 1 4 3 3 3 3 3 S S S S

Table 4.2: Typical NAMP configurations. Configuration items marked with S are parameters
in the evaluation to cover all sensible design point.

4.4 Typical Configurations and Hardware Utilization

Now that the implementation of the NAMP and its components is described, the resource

utilization of the NAMP is of interest. As mentioned before, this resource utilization

is part of a trade-off: While the NAMP can deliver significant improvements for the

software, it adds extra hardware area.

Instead of doing a full sweep of all configuration parameters or measuring the com-

ponents and features individually, I have derived a set of typical configurations. Those

configurations replicate sensible usage scenarios. Table 4.2 contains this list of five typ-

ical configuration. The table shows the enabled features and parameter values for each

configuration. The configurations are themselves not fixed, but some settings are ex-

plored for each of the configurations (marked as S in the table cells). The synthesis

results presented in the following hence cover a broad range of sensible configurations

and it is easy to extrapolate estimates of other, less typical configurations from the

presented results.

In the following I discuss each of the configuration and explain the effect of the con-

figuration parameters from Table 4.2 accordingly. Both the NoC Buffers and the DMA

controller are mostly excluded from the synthesis results. They are assumed to be the

baseline that resembles the state of the art and hence present anyways. Those two

modules are large, because they include a variety of buffers, that are still mapped into

registers. But even SRAM wouldn’t reduce the size significantly. The NoC buffers sum

up to approximately 37 kGates in the ASIC technology and the standard DMA con-

troller (2 slots) has approximately 27 kGates. Those are also a good reference when

considering the extra hardware added by NAMP.
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Figure 4.13: Implementation details of NAMP baremsg configurations. The variants are dif-
ferent feature sets.

4.4.1 baremsg Configuration

The NAMP baremsg implementation is a simple bare-metal configuration. It is hence

limited to physically addressed slots and the impact of the number of slots is evaluated.

It only allows for connection-less communication, meaning the protocol handling and

state for allocation handling are included. It also does not integrate support for message

sending from buffers, and none of the advanced features. Its usage scenario is in sim-

ple tiled many-core system-on-chip platforms where only connection-less messages are

needed.

Figure 4.13 shows the resource utilization of the baremsg NAMP configuration with

the number of slots being the evaluated parameter. Unsurprisingly, the resource uti-

lization increases with the number of slots. The main contributor to the increase are

apparently the slots themselves (sum of all slots) and the extra NAMP resources in the

DMA which are slots too. Finally, there is a slight increase with the slots in the initiator
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component due to the arbitration and multiplexing. The toplevel is the sum of all glue

logic. It also scales with the number slots but only in the range of just a few gates.

Finally, the target module is of constant utilization because it does not depend on the

slots at all.

FPGA and ASIC synthesis generally show a similar trend and are more or less equal

for the registers and sequential gates respectively, which is not very surprising. The

relative increase in combinational resources is smaller with the FPGA synthesis because

the packing of logic into the six input lookup tables gets much better with increasing

slots.

4.4.2 barechan Configuration

The NAMP barechan configuration is similar as the baremsg targeted at bare-metal

use. Contrary to the latter it only supports connection-oriented communication. The

implementation thus includes the credit handling and leaves out the message allocation.

Furthermore, as depicted in Table 4.2 I evaluate the impact of adding buffer-based

sending. As an additional future the integration of the continuous communication mode

(ENABLE CCM) is evaluated. This NAMP configuration is a good candidate for example for

platforms that only support a data flow programming model (as Kahn Process Networks

or similar).

Figure 4.14 plots the resulting resource utilization for the barechan configuration.

The synthesis results are shown for instances with one slot and with four slots. For

each, three variants are shown: The default variant is the fully described NAMP. The

noccm variant does not have support for the continuous communication mode. Finally,

the nobuf variant does not have support to send from a buffer at all.

It can be seen that the FPGA and ASIC synthesis are more or less equal. The

barechan NAMP without support for buffers (nobuf) is roughly equally large as the

baremsg variant, but more distributed over the components. The difference by adding

buffer support (noccm) is around 15% in gates. Adding support for the continuous

communication mode (default) finally adds another 4% to the gates.

4.4.3 bare Configuration

The NAMP bare configuration is intended to be the full blown bare-metal variant. It

includes both connection-oriented and connection-less communication along with mul-

ticast support. Further collective communication support and support for protection

switching are configurable.

139



4 Prototype Implementation

def
au

lt1

nocc
m

1

nob
uf1

def
au

lt4

nocc
m

4

nob
uf4

0

1,000

2,000
#

L
U

T
s

FPGA LUTs

def
au

lt1

nocc
m

1

nob
uf1

def
au

lt4

nocc
m

4

nob
uf4

0

500

1,000

1,500

#
R

eg
is

te
rs

FPGA Registers

def
au

lt1

nocc
m

1

nob
uf1

def
au

lt4

nocc
m

4

nob
uf4

0

5,000

10,000

#
G

at
es

ASIC Combinational

def
au

lt1

nocc
m

1

nob
uf1

def
au

lt4

nocc
m

4

nob
uf4

0

2,000

4,000

6,000

8,000

#
G

at
es

ASIC Sequential

toplevel target initiator slots rdma (∆)

Figure 4.14: Implementation details of NAMP barechan configurations. The variants are dif-
ferent feature sets.

Figure 4.15 shows the synthesis results for different variants and a fixed slot number

of four.

4.4.4 svbase Configuration

The svbase configuration is the first one that supports self-virtualization. As listed in

Table 4.2 it has one slot that is only addressable in the physical address space. All

other slots are configurable as virtual interfaces. This NAMP configuration supports

multicast, but not the other collective communication operations.

Figure 4.16 shows the synthesis results for svbase for different number of slots. The

virtual interfaces now increment the number of gates. Compared to the slot itself a

virtual interface is smaller. It adds only 8% gates to the slot.
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Figure 4.15: Implementation details of NAMP bare configurations. The variants are different
feature sets.

4.4.5 svfull Configuration

Finally, the svfull configuration includes the missing features into the svbase configu-

ration. It delivers all performace gains described throughout this thesis.

Figure 4.17 shows the synthesis results for the svfull module. The full NAMP im-

plementation uses around 40 kGates in a 40nm ASIC.

4.5 Example Systems

Before concluding the discussion of the prototype implementation, I present two example

systems that target two different usage scenarios and FPGA boards.
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Figure 4.16: Implementation details of NAMP svbase configuration. Different number of slots
are evaluated.

4.5.1 Small baremetal platform

A small system of four tiles with each one processor core is generated to target the

Digilent Nexys4 DDR board [61]. It is a simple board with a small Xilinx Artix 7

FPGA. The NAMP is configured as follows:

• Base feature set only. No NAMP-CC, NAMP-SV, NAMP-PS and HW-OSQM.

• Connection-oriented communication only.

• Support for the continuous communication mode.

• Two NAMP slots.

This configuration can be useful for mapping KPNs to baremetal software. The soft-

ware then just directly interfaces the buffer in the tile local memory.
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Figure 4.17: Implementation details of NAMP svfull configuration. Different configurations
are evaluated.

The layout of the implemented design can be found in Figure 4.18. The four tiles are

colored differently and the network-on-chip is also highlighted. The base system utilizes

many resources because it uses DDR memory to emulate the tile local memory due to the

very limited number of block SRAM in the device. For one tile the individual interesting

components are highlighted. It can be seen that the core utilizes a relatively small part

of the tile. The network adapter instead is relatively large, but the NAMP itself is only

a medium sized part of it. “Other tile” logic is mostly the debug infrastructure.

For a better analysis of the implemented design, Table 4.3 summarizes the resource

utilization of the most relevant modules in a hierarchical manner. It can be seen that the

network adapter is significantly larger than the processor core. The role of the NAMP
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Figure 4.18: FPGA Layout of small baremetal platform

Module LUT Registers

System 85.5% of device 48% of device
NoC 8.4% of system 14.4% of system
Tile each 18.7% of system each 16.9% of system

Core 29.5% of tile 18.1% of tile
NA 44.5% of tile 59.8% of tile

NAMP 31.3% of NA 12.3% of NA
Buffers 20.2% of NA 36.5% of NA
DMA 42.2% of NA 48.6% of NA

Table 4.3: Resource utilization of small baremetal platform

144



4.5 Example Systems

Module LUT Registers

System 92% of device 41.5% of device
NoC 5.5% of system 10.4% of system
Tile each 5.7% of system each 5.4% of system

Core each 11.4% of tile each 8.8% of tile
NA 22.7% of tile 31.2% of tile

NAMP 44.1% of NA 19.7% of NA
Buffers 14.1% of NA 29.9% of NA
DMA 36.9% of NA 48.3% of NA

Table 4.4: Resource utilization of large platform

inside the network adapter is that it contributes much more to the look up tables than to

the registers. The majority of resources are utilized by the network-on-chip buffers and

the DMA controller. This is mostly due to the large number of buffered network packets.

This is a countermeasure against congestion in the network: Packets are generally only

transmitted one they are complete. This is an important property to decouple the

computation domain from the communication domain.

It has to be noted that the deployed processor core in OpTiMSoC is a very simple,

32-bit processor core without much optimization. A more sophisticated core that yields

better single thread performance could change the relations drastically.

4.5.2 Large platform with full NAMP

A second, much larger platform has been implemented on one of the largest FPGA

evaluation kits of Xilinx, the VCU108 board [224]. The system consists of 64 cores

organized in 16 tiles of each four cores. The NAMP is configured as follows:

• All features are supported (svfull).

• There are four NAMP slots, each with virtual interface support.

This kind of platform is intended to demonstrate the usage of NAMP in a realistic

scenario with a complex software stack.

Figure 4.19 visualizes the device resource utilization on the FPGA. The tiles are

colored in three different colors and the network-on-chip is also highlighted. For better

readability one tile is magnified. It can be seen that the relative size of the NAMP in

the tile is moderate, but its relative share in the network adapter is much higher.

Table 4.4 shows the relative resource utilization in the large system. The network

adapter occupies around 20% of the LUTs and 30% of the registers in the tile. The
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Figure 4.19: FPGA Layout of large platform (64 cores in 16 tiles)
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4.6 Summary

NAMP is the largest module in the network adapter with respect to LUTs for aforemen-

tioned reasons. The DMA and the buffers of it are the largest occupant of registers in

the design.

Those two systems gave an impression about the overall system layout and the impact

that NAMP has on it. Despite the fact taht the prototype implementation can be further

improved, it should be highlighted again that the performance gains are significant if

the NAMP is used.

4.6 Summary

In this chapter I have given insights into the implementation of NAMP. Based on the

described concept, the NAMP has been implemented and validated inside a prototype

tiled many-core system-on-chip platform. The results have shown that the extra gates

required by the NAMP-specific features are in the same order as the other two modules

DMA and NoC buffers. This makes NAMP a promising network adapter that delivers

significant performance gains at moderate area overhead.
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In this thesis I presented contributions to the inter-task communication in many-core

system-on-chip. The existing state-of-the-art network adapters for tiled many-core

system-on-chip platforms focus on the network-on-chip interface and bare-metal pro-

grams. The work presented here specifically contributed a network adapter whose func-

tional enhancements have been derived from a more holistic view of the entire software

stack. In the following I will summarize and conclude this thesis, and close with an

outlook.

5.1 Conclusion

The work in this thesis was motivated by the expectation that the software running

on processors in tiled many-core system-on-chip platforms will in the future be more

complex than the bare-metal programming that is dominant nowadays. Having a look

at the software stack of such platforms a lot of overhead is in the interfaces and certain

functionalities. Table 5.1 summarizes the most critical aspects, describes the state-of-

the-art and relates that to the future demand. The table furthermore references the

contributions of this thesis that covers all of the aspects in a number of features in the

proposed network adapter. This Network Adapter for Message Passing (NAMP) has

been conceptually developed and implemented as presented in this thesis.

Message Passing Support As summarized in Table 5.1 the existing network adapters

in academic proposals and commercial products focus mostly on the network-on-chip

interface of the network adapter. Some approaches exist that provide message passing

support, but they are limited in their capabilities to operate in different communication

modes and are narrowed to a specific use case. The fundamental feature of NAMP is

the offload of the progress engine for message passing communication in a variety of

modes, such as connection-less vs. connection-oriented, different buffering schemes and

the continuous communication mode.
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State-of-the-Art Future Demand Contribution

Message passing
support

Network-on-chip focus,
few (limited) bare-metal
message passing

Hardware acceleration,
flexible communication
modes

Basic NAMP
functionality
(Section 3.2)

Workload
sharing

Limited support for
hardware-assisted multi-
cast, software else

Hardware support for col-
lective communications

NAMP-CC
(Section 3.3)

Task isolation &
resource sharing

Bare-metal software or
operating system multi-
plexes devices

Isolation by operating sys-
tem and device virtualiza-
tion

NAMP-SV
(Section 3.4)

Event signaling Polling & interrupts, in-
terrupt coalescing

non-intrusive thread
wake-up

HW-OSQM
(Section 3.5)

Communication
migration

Pausing of communication
during task migration

Minimal impact of migra-
tion on communication

NAMP-PS
(Section 3.6)

Table 5.1: Expected trends and critical functions: coverage by thesis contributions

The baseline NAMP has been analytically compared to RMA-based and RDMA-based

message passing implementations which dominate the state-of-the-art. The analysis has

shown that the software overhead of the message passing is significantly reduced and

becomes static independent from the message size. In my event-based simulation model

at least 81% of clock cycles can be saved compared the RDMA-based implementation.

Synthetic benchmarks have been used to validate the base NAMP implementation in a

full-system cycle-accurate RTL simulation.

The baseline message passing forms the central parts of the NAMP implementation.

Variants with the NAMP as a baremetal device have been synthesized to approximately

24 kGates in a 40nm ASIC technology. So called slots store the transfer configuration

and its state and many slots can be instantiated in a NAMP. Each slots adds around 4

kGates. Finally, a configuration that only supports connection-oriented communication

saves 16% and one that only support connection-less communication saves 34% compared

to the baseline.

Collective Communication Support The support for workload sharing in the state-

of-the-art network adapters is limited to a few that support multicasts. As highlighted

in Figure 5.1 the NAMP progress engine offload can support the four basic collective

communication operations: multicast, scatter, gather and reduction. This support is for

one the extended progress engine engine of multiple concurrent operation. Beside that,

the RDMA controller has been extended to support scatter and gather, and reduction

operations have been added in the data path of the RDMA.
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The impact of hardware-based collective communication has been analytically com-

pared to full software-based implementations. The overhead at the sender is limited to

a one-time configuration that is independent from the number of nodes in a collective

communication. By that, a multicast operation to eight destinations for example faces

64% less overhead. Beside that, the concurrent behavior leads to a throughput increment

by 72% for 4 byte messages and 4% for 2048 byte messages.

Self-Virtualized Network Adapter As compared in Table 5.1 the support for resource

sharing of a network adapter for isolated tasks is limited to multiplexing by the operat-

ing system for existing network adapters. This means that tasks must use an operating

system driver to map virtual addresses to physical addresses and ensure the safe sharing

of the device. The NAMP self-virtualization (NAMP-SV) feature gives tasks the im-

pression of exclusive access to a network adapter without interaction with the operating

system. The virtual interface translates virtual endpoint identifiers to physical addresses

on the fly and can thus be mapped into the virtual address space of a task. With multiple

virtual interfaces several tasks hence in parallel have the view of their “own” network

adapter.

The NAMP-SV feature improves the setup of the transfer at the sender, because it

eliminates the path via the operating system. The hardware overhead of NAMP-SV is

limited to the virtual interfaces. The virtual interfaces only consist of the configuration

registers and a state machine, all other data structures are stored in memory, an essential

feature of NAMP in general. Each virtual interface for adds example x kGates in an

ASIC design.

Hardware Operating System Queue Manipulation One of the main contributors to

the overhead especially for small messages is the event signaling. As summarized in

Table 5.1 the two dominant methods for event signaling are polling and interrupts.

With increased number of waiting threads or increased event rate the impact of event

signaling on the performance can become significant. In the context of the NAMP the

effect of an event is that a thread is resumed that was either blocking on a send or

waiting for a message. Hence, the essential idea of HW-OSQM is to perform that task

instead of raising an interrupt and interfering with the software execution for that task.

The HW-OSQM is thus configured to re-insert a thread element back into an operating

system’s ready queue.
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Analysis has shown that this technique can easily save 15% for event rates around

20,000 per second, which corresponds to a throughput of 5 MB/s for an average packet

size of 256 kB. The saved overhead increases linearly with the event rate.

The OSQM is a separate module in the NAMP and triggered by both the initiator

and the target part. In its default configuration the OSQM synthesizes to 1.4 kGates.

By static configuration to one operating sytem (or a few) 32% can be saved, but with

losing the flexibility of the configuring the HW-OSQM at runtime to the data structure

layout of the operating system.

Communication Migration Task migration is an increasingly important feature in tiled

many-core system-on-chip architectures. This can be a functional task to reduce the di-

mensions of an application. But it is even more critical in dependability management

of the platform. A task migration may for example be triggered to mitigate thermal

hotspots. As noted in Table 5.1 the communication channels have to be migrated to-

gether with the task. This communication migration in the state-of-the-art generally

means to pause the communication, which can lead to performance degradation during

the migration. The analysis has shown that the proposed protection switching tech-

niques (NAMP-PS) can lead to a reduction of 12% in extra latency. The NAMP-PS

feature synthesizes to an extra x kGates.

Two example systems have demonstrated the usage of NAMP in the Open Tiled

Many-core System-on-Chip for different scenarios. A small and simple version targeted

on baremetal applications with connection-oriented communication has been shown for

a small system of four cores in four tiles. A large system with 64 cores in 16 tiles has

been used to demonstrate the use case of a larger version of the NAMP with a rich

feature set.

This overview summarized the contributions of this thesis and the related improve-

ments over the state-of-the-art. To the best of my knowledge, work presented in this

thesis was the first to comprehensively analyze on-chip message passing with a full system

stack and derive the concept for a message passing network adapter. The contributed

NAMP concept is a configurable, scalable concept for a network adapter that enables

efficient inter-tile communication in tiled many-core system-on-chip.
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5.2 Outlook

While the work in this thesis contributed a concept for a network adapter that reduces

overhead significantly, there are certainly areas for further investigations to improve the

presented NAMP.

The presented work did not cover functions related to management of endpoints and

connection channels, because those events are rare and thus the message transfers are a

better candidate for improvements. Only the migration of the communication channels

has been integrated into the NAMP concept. Anyhow, more dynamicity in the starting

and termination of tasks can be anticipated. The setup and management of the commu-

nication relations can have a significant impact on the performance, so that the NAMP

could also incorporate support for those operations. This allows for fast setup of tasks

and thereby more dynamic behavior.

The number of reduction operations is currently limited to a subset of MPI operations.

A thorough investigation of other operations that are more specific to the use case could

lead to other reduction operations worth adding. A micro-programmable reduction unit

could allow for custom reduction operations.

Another potential improvement to the NAMP concept is the offloading of the task

management and scheduling entirely to the NAMP. Together with the aforementioned

support for communication management functions, this can allow the hardware platform

to provide an interface for spawning many short-term stateless tasks. Such “microser-

vices” could be invoked by sending messages to a reserved communication channel. The

message on this channel would then trigger the start and lifecycle of the task.

Regarding the implementation of the NAMP there are three major fields of investi-

gation. First of all it is a prototype implementation and an analysis of the resource

utilization has shown that the requried area can be further reduced by optimizing the

mapping of temporary registers in the finite state machines so that the sharing of re-

sources like adders can be optimized. Beside that, there currently is a one-to-one relation

between NAMP slots and RDMA slots. With further elaboration of the load and aver-

age utilization of RDMA slots, a smaller number of RDMA slots could be shared. This

would reduce the required area accordingly.

Another potential improvement to the implementation is the elimination of registers by

SRAM. While each slot or virtual interface for itself does not include enough registers

to benefit from SRAM blocks instead, the sum of all registers certainly does. The

problem that arises is that the SRAM interface differs from the current random access
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to registers in the NAMP. Anyhow, the tradeoff between the access complexity and area

improvement could be investigated.
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