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Abstract

In mobility markets – especially vehicle for hire markets – drivers offer individual
transportation by car to customers. Drivers individually decide where to go to pick
up customers to increase their own utilization (probability of carrying a customer)
and utility (profit). The utility drivers retrieve from customers comprises both costs
of driving to another location and the revenue from carrying a customer and is thus
not shared between different drivers. In this thesis, I present the Vehicle for Hire
Problem (VFHP) as a generalization of the Kolkata Paise Restaurant Problem (KPRP) to
evaluate different strategies for drivers in vehicle for hire markets. The KPRP is a multi-
round game model presented by Chakrabarti et al. in which daily laborers constitute
agents and restaurants constitute resources. All agents decide simultaneously, but
independently where to eat. Every restaurant can cater only one agent and agents
cannot divert to other resources if their first choice is overcrowded. The number of
agents equals the number of resources. Also, there is a ranking of restaurants all agents
agree upon, and no two resources yield the same utility. The VFHP relaxes assumptions
on capacity and utility: Resources (customers) are grouped in districts, agents (drivers)
can redirect to other resources in the same district. As the distance between agent and
resource reduces the agent’s utility and the location is not identical for all agents, the
utility of a given resource is not identical for all agents. To study the impact of the
different assumptions, I build four different model variants: Individual Preferences
(IP) replaces the shared utility of the KPRP with uniformly distributed utilities per
agent. The Mixed Preferences (MP) model variant uses the utility assumption of the
VFHP, but the capacity of all districts remains 1. The Individual Preferences with
Multiple Customers per District (IPMC) model variant groups customers in districts,
and uses the uniform utilities introduced in the IP model variant. Mixed Preferences
and Multiple Customers per District (MPMC) implements all assumptions of the VHFP.
In this thesis, I study different strategies for the KPRP and all variants of the VFHP to
build a foundation for an incentive scheme for dynamic matching in mobility markets.
The strategies comprise history-dependent and utility-dependent strategies. In history-
dependent strategies, agents incorporate their previous decisions and the utilization of
resources in previous iterations in their decision. Agents adapting utility-dependent
strategies choose the resource offering the highest utility with a given probability.
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1. Introduction

Mobility markets, or in particular vehicle for hire markets, comprise all modes of
shared, but individual transportation with a driver, in particular with a short-term
focus (e.g., taxis, Lyft, and Uber). In mobility markets, drivers individually decide
where to look for customers. However, the average idle time of taxis is about 25–50% in
most cities where data is available [2, 3, 4]. Though excess capacity can partially explain
these numbers, utilization could be increased, if drivers would be distributed across
the city more efficiently. In contrast to underutilization, passengers have to wait for
more than 20 minutes in approximately every third case in other cities [5], suggesting
that the drivers are not at the locations where they are needed.

To address these inefficiencies in vehicle for hire markets, coordinators could instruct
drivers where to wait for customers. In current business models, however, this is
not possible, since drivers are not employees of the coordinators. Hence, they try
to maximize their individual profits by deciding independently where to look for
customers without considering the social welfare or utilization of other agents. In
practice, there are approaches like ‘surge pricing’ (price adapts dynamically to changes
is demand and supply with the goal to influence demand and supply, e.g. increase
supply by increased price) to respond to expected peaks in demand, though literature
on the efficiency of different driver strategies is limited [6, 7, 8]. One, therefore, has
to turn the attention to the coordination amongst drivers: Drivers maximize their
individual utility, but their utility inversely depends on the number of agents selecting
the same option. Thus, drivers benefit if there are less other drivers in the same district
than available customers, thus, deciding against the crowd is beneficial. Alternatively,
one could construct a game model derived from the College Admission Problem or Stable
Marriages Problem [9, 10, 11, 12]. In these problems, agents try different matches until
an optimal match is found. Yet, in vehicle for hire markets, I assume that redirecting to
another resource, if the preferred resource is not available, is not an option, because of
the costs and time constraints of redirecting (requires the agents to drive to another
location consuming time and fuel).

To analyze the fundamental underlying problem, I propose a repeated non-cooperative
game model to investigate different strategies in the coordination problem among dri-
vers. It is a generalization of the Kolkata Paise Restaurant Problem (KPRP) [1] where
agents repeatedly compete for a set of resources. As a foundation to be able to as-
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1. Introduction

sess coordinators’ incentives like ‘surge pricing’, one first needs to understand the
fundamental impact of different driver strategies. I contribute to this research field
by game model, relaxing assumptions of the KPRP. In contrast to existing research, I
address both individual agent preferences and different resource capacities. Besides
the game model, the contributions of this research are different mixed strategies for the
model and an analysis of their impact on car utilization and driver utilities in different
settings. These insights constitute building blocks for a characterization of favorable
agent behavior to design incentive mechanisms to distribute drivers efficiently.

1.1. The Vehicle for Hire Problem and its Model Variants

In this thesis, I cover five different, but related model variants: The Kolkata Paise
Restaurant Problem (KPRP) and four relaxations suited for mobility markets comprising
the Vehicle for Hire Problem (VFHP).

In Kolkata, there were very cheap and fixed-rate ‘Paise Restaurants’,
popular among the daily laborers in the city. During lunch hours, the
laborers used to walk down (to save the transport costs) to any of these
restaurants and would miss the lunch if they arrived at a restaurant where
their number is more than the capacity of the restaurant for such cheap
lunch. Walking down to the next restaurant would mean failing to report
back to the job in time! Paise means the smallest Indian coin and there were
indeed some well known rankings of these restaurants as some of them
would offer more tastier items compared to the others. [1, p. 2421]

The (KPRP) was first presented by Chakrabarti et al. [1]. In this model, N agents (that
is daily laborers) aim at having lunch at one of the N restaurants. All agents gain the
same utility from some restaurant, and all restaurants have mutually different utilities.
Every agent aims at getting lunch at his preferred restaurant, but every restaurant can
only cater a single agent. Thus, if more than 1 agent goes to some restaurant, some
agents will not get lunch, as they cannot divert to another restaurant that same day.
The KPRP is a repeated game with an infinite number of iterations.

In mobility markets, drivers i ∈ I constitute agents and customers j ∈ J (located in
districts k ∈ K) constitute resources. Agents drive to resources. Agents carry resources
(up to the capacity limit). For this thesis I relax two main assumptions: Agents no
longer retrieve identical utility from a given resource, but one agent can prefer resource
j and another agent can prefer resource j′ 6= j (with the highest utility determining
preference). I present two different models: In the Individual Preferences model (IP),
utilities are uniformly assigned to resources (customers). Thus, agent preferences
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1. Introduction

are independent of each other. In the Mixed Preferences model (MP), utilities are
calculated as a weighted average of an individual component (that is distance between
agent and customer) and a shared component (that is the payoff). I further model
increased capacity: Clustering customers j ∈ J in districts k ∈ K allows agents to
divert to other customers inside the district they drove to. The average number of
customers per district is ϕ, and the customers randomly “choose” the district they
belong to, the number of customers per district is thus Gaussian distributed around ϕ.
The Individual Preferences with Multiple Trips per Customer model (IPMC) combines
the IP model with the clustering concept: Agents gain random utilities from customers
and customers belong to districts. In the Mixed Preferences with Multiple Trips per
Customer model (MPMC), the utility is obtained as a weighted average of an individual
component to model the distance and a shared component to model the payoff. The
distance (and thus the individual component) is equal for all customers belonging to
one district.

1.2. Outline of this Thesis

The remainder of this thesis is organized as follows: I first discuss related work in
chapter 2, I then present the strategies (chapter 3). The successive chapters present the
individual model variants and assess the performance of aforementioned strategies.
Chapter 4 focuses on the KPRP, chapter 5 presents the IP model variant, chapter 6
gives insight in the MP model variant, chapter 7 concerns the IPMC model variant, and
chapter 8 evaluates the MPMC model variant. To improve the reader’s understanding,
chapters 4-8 can be read independently from each other, as key concepts are presented
in each of them. Chapter 9 discusses the results from chapters 4-8, and chapter 10
concludes this thesis.

3



2. Related Work

To my knowledge, no paper extends the KPRP for mobility markets. Relevant research
is conducted in three fields: First, I give an overview of relevant game models in
other application areas, in particular coordination games. Second, there is literature in
optimization and operations research in the field of vehicle for hire markets. Third, I
introduce basic literature of dynamic mechanism design.

2.1. Congestion Games

The presented model is a type of congestion game, a model for games in which
agents should choose different alternatives to succeed first described by Rosenthal [13].
Mathematically, congestion games can be identified by their potential function and
thus their pure-strategy Nash-equilibria; Congestion games are therefore also Potential
games [14, 15]. Yet, such a Nash equilibrium is usually inefficient, as Correa et al. [16]
prove. Other congestion game models are the El Farol Bar Problem [17], the KPRP [1],
the Crowding Game [18], and the minority game [19].

The El Farol Bar Problem is a game model with N agents (scientists) and one resource
(the bar in Santa Fe during Karaoke night). All agents aim at maximizing their profit. If
more than 0.6 · N agents go to the bar, it becomes overcrowded, and the agents would
enjoy themselves more at home. If fewer agents go to the bar, they enjoy themselves
more than if they stayed at home. Agents, therefore, coordinate themselves such that as
many agents as possible (but less than 0.6 · N) go to the bar [17].

The KPRP is the foundation game model for this thesis; the model is described in
chapter 4 in more detail. Chakrabarti et al. [1] and Ghosh et al. [20] introduce strategies
for increasing the utilization of the KPRP. Yang et al. [21] study a generalization of
the KPRP which is also aimed at dynamic markets: As a relaxation of the KPRP they
study whether an agent should divert to another district or stay in the current one with
different capacities for different districts. Agents are being replaced by others (which
do not have the same prior knowledge) following a Poisson distribution. They prove
the existence of a Mean Field Equilibrium [22] for the Threshold Strategy (if a capacity
threshold is exceeded at time t, agents stochastically divert to other districts) [21]. This
thesis on the opposite compares different strategies. Agarwal et al. [23] generalize the
KPRP to a Majority Game, in which they study convergence behavior given only few
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2. Related Work

prior knowledge. In difference to the KPRP, capacity is not restricted, and in difference
to the problem in mobility markets agents have no internal utility ranking, they aim at
choosing with the herd.

The Crowding Game is a game model in which the utility of agents only depends on
the number of agents also selecting the same option. If more agents select one option,
the utility decreases [18]. The VFHP game model is similar to the Crowding Game as
the number of agents decreases the utility (as the expected utility is divided among all
agents selecting some resource), but this model also uses a basic utility which is not
shared among agents.

The Minority Game is a game with N agents and two resources, and the utility for
those agents choosing the resource with the lower occupancy is higher than the utility
for those agents in the crowded resource (i.e. roads) [19]. In a recent study, “treatments”
(which differ in the information given to participants) for the Minority Game were
studied with experiments. The authors state that changing from one option to the other
is not recommended regardless of prior knowledge [24]. Because the Minority Game
only allows two different payoffs from two different resources, I cannot directly transfer
this insight to the Kolkata Paise Restaurant Problem in mobility markets.

2.2. Vehicle for Hire Market

There is only limited research work available on optimal distribution of drivers in
vehicle for hire markets. Several studies focus on assigning drivers an optimal district
where they await passengers [25, 26]; though, in most business models, drivers decide
independently. Yang et al. [27] study a model with varying demand and supply. Taxi
drivers individually decide when to enter the market and when to leave it, resulting
in a market equilibrium. This work does not study utility, but only utilization. Kim
et al. [28] propose an agent-based model incorporating real-world passenger travel
pattern to predict the highest possible utility. Their model also incorporates districts
(“areas”) and varying utility functions over time, but tests for different criteria: Whilst I
analytically derive utilization and utility for different strategies in a large environment,
Kim et al. studies a setting with five nodes and retrieves utilization and passenger wait
time for varying fleet sizes. Wong’s primary criterion is reduced vacant mileage for
taxis [29]. He uses a two-step approach in which taxis can only divert to adjacent zones
rather than all others. Trigo et al. [30] uses Multi-Agent Markov Decision Processes
to model drivers transporting passengers. This paper uses a cover story which is
highly similar to ours, but rather than using stochastic strategies, Trigo et al. use a
two-layered learning process. This thesis aims at improving the taxi allocation with
respect to utilization fraction or utility assuming choice at discrete time steps. Li [31]
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on the opposite studies strategies to minimize passenger waiting time or travel time,
taxi idle time or non-live mileage with drivers deciding asynchronously. This thesis
studies a large variety of strategies, Li restricts himself to three simple strategies. The
paper concludes that returning to hotspots after serving a trip can increase all studied
parameters. Similar results can also be seen in this thesis, as the utilization fraction
increases after introducing multiple trips per district.

Li et al. [32] present a model which predicts whether agents should wait for passen-
gers stationary or continue driving to “hunt down” customers. They use data mining
techniques with data on time, location, and strategy (hunt or wait). In the VFHP, all
agents decide where to drive to (yet, the location might not change). Thus, the strategy
of the VFHP dictates where to go rather than if to go to another location. The model
by Li et al. [32] cannot predict where taxi drivers should drive. Ge et al. [33] build a
recommender system to reduce the travel distance before carrying the next customer.
This behavior is reflected by the VFHP game model, as the individual utility models
distance. Yuan et al. [34] extend the work by Ge et al. [33] by also recommending
optimal passenger behavior.

Alonso-Mora et al. [35] postulate that it should be possible to replace 13,000 cabs
in New York City by only 3,000 on-demand vehicles for ride-sharing, which would
both reduce wait time and traffic congestion. Their calculations suggest that a better
utilization fraction of cabs can be achieved, though ride-sharing is not considered in
this thesis. Furthermore, using graph traversals for optimal distribution and routing of
taxis is a solution a single driver cannot adopt, but only dispatchers.

Shi and Lian [36] study the taxi transportation market from the opposite side as
this thesis paper does: Passengers can decide whether or not they are queueing for a
taxi (depending on the “queue length” (number of passengers) and the “buffer size”
(number of cabs) at the taxi stand). The authors compare strategies of selfish and social
passengers and options for the government to interfere.

Furthermore, there are several papers in the field of operations research which focus
on the influence of regulation (taxi medallions, fixed rates) on the market [37, 38]. In
the VFHP game model, I assume that there are sufficient agents to carry every customer
and sufficient customers such that every agent can carry a customer.

2.3. Dynamic Mechanism Design

There is early stage work on dynamic mechanism design in matching markets: If there
is a dispatcher, he can make agents wait for a better suited trip. Kurino [39] gives a
dynamic version of the House Allocation Problem. Bloch and Houy [40] periodically
redistribute items between agents.

6
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If agents are allowed to choose independently from a dispatcher, waiting time
might influence their choice, reducing welfare. In this component – choosing the best
individual option reduces social optimality – the problem described by Leshno [41]
is highly similar to the KPRP. Yet, unlike environments described in the paper (e.g.,
nursing homes, subsidized housing), there are no “overloaded waiting lists” (demand
tremendously exceeds supply) in the taxi industry, as passengers usually have other
means of transportation to choose from.

Social Welfare (benefit for the entire group) in transportation markets has been
studied at the example of Rotterdam Port: Transportation tasks inside the port are
assigned to trucks which are waiting for departure. The authors claim that a higher
number of participants in general increases social welfare (as it is easier to adapt to peak
load times), but agents might not continue participating if they assumed that the game
put them at a disadvantage in comparison to other players. They, therefore, postulate
an algorithm which ensures that agents are equally utilized [42, 43]. In the KPRP on the
opposite, I assume that the number of customers always equals the number of agents
(agents will always participate), but agents are not assigned their trip.

Chen and Hu [44] conduct research on market design in a market place with buyers
and sellers such as Uber: In such markets, buyers wait for lower market prices while
sellers wait for higher market prices. They conclude that fast changes in the market
price (set by an intermediary) and price surges are not recommended, as participants
might leave the market temporarily. This thesis on the opposite assumes myopic agents,
who only plan ahead few time steps.

7



3. Strategies

In this thesis I consider seven strategies: No Learning (NL), Rank Dependent Choice
(RD), Limited Learning (LL), One Period Repetition (OPR), Crowd Avoiding (CA),
Stochastic Crowd Avoiding (SCA), and Stochastic Rank Dependent Choice (SRD). NL
and RD are baseline strategies which represent basic behavior. RD, LL, OPR, and SRD
incorporate the resource’s utility in the agents’ choices and are therefore utility-based.
LL, OPR, CA, and SCA require knowledge about previous iterations and are therefore
history-based.

The NL strategy dictates agents to randomly choose a resource in every iteration,
regardless of history (hence the term “No Learning”) or resource utility. Resources
are either customers or districts (or restaurants in the KPRP). The strategy was first
presented by Chakrabarti et al. [1] in which restaurants comprise resources.

The second baseline strategy is the strategy RD. Agents always drive to the resource
yielding them maximum utility. Agents thus receive maximum utility, if they carry a
customer. If there are several resources yielding equal utility, agents decide randomly
between all maximum utility resources. I introduce this strategy, as it mimics simple
behavior if limited information is available: If agents do not know about the preferences
or behavior of other agents, but assume that only a few agents share the same preference,
the most simple approach is to always head for the preferred resource. It requires
only very few computational power: Prior to the first iteration, agents calculate their
preferred customer by comparing the utility of all resources. After driving there, they
will remain in their position, requiring no recomputation at all. It also requires no
information except the own utilities or preferences, making it suitable for large problem
spaces.

Agents incorporating the LL strategy follow a two-step approach: (1) If an agent
carried a customer at time t, he will drive to the highest utility resource at time t + 1.
(2) If an agent did not carry a customer at time t, he will randomly choose any other
resource at time t + 1. (If an agent was successful at the highest utility resource, he will
return there in the next iteration). The LL strategy was presented by Chakrabarti et al.
[1] (named Limited Learning 1).

The OPR strategy requires agents to follow a three-step approach: (1) If an agent
carried customer j at time t (but not at time t− 1), he will return to this resource at
time t + 1 (return). (2) If an agent served the same resource j at time t− 1 and t, he will

8



3. Strategies

compete for the highest utility customer at time t + 1 (improve). (3) If an agent did not
carry any customer at time t, he will randomly choose any resource which was vacant
at time t in the next iteration (random). OPR was also introduced in Chakrabarti et al.
[1].

With the CA strategy agents only drive to resources which were vacant or had
remaining capacity at time t− 1. This strategy originates in a paper by Ghosh et al.
[20].

Agents using the SCA strategy stochastically decide whether to return to the same
resource or to randomly turn to another resource. If a resource j does not exceed its
capacity at time t, all agents driving to this resource j at time t will return there at time
t + 1. If the capacity is exceeded, all agents stochastically either return to j or drive
to any other (randomly chosen) resource at time t + 1 such that the expected number
of agents in j equals its capacity (let the capacity be cj and the number of agents at
the resource be oj: return with probability cj

oj
, randomly choose another resource with

probability 1− cj
oj

). The SCA strategy stems from Ghosh et al. [20].
The SRD strategies build upon the RD strategy, including some properties of the SCA

strategy: Let the capacity of a resource j be cj, and let the number of agents preferring
resource j be pj (agents who cannot retrieve higher utility from any other resource).
Agents drive to their preferred resource if its capacity is not exceeded, that is cj ≥ pj.
Otherwise, they stochastically drive to j with probability cj

pj
and redirect to another

resource with probability 1− cj
pj

. Thus, the expected number of agents preferring a
resource j driving to that resource j is cj, if at least cj agent prefer j, and pj otherwise.
The resource agents divert to can be one of the following: (SRD1) Any customer which
is noone’s first choice; (SRD2) any other customer; (SRD3) his second choice customer;
or (SRD4) the best customer which is noone’s first choice. SRD3 and SRD4 are an
extension of SRD2 and SRD1 respectively, increasing the average utility of successful
agents, that is agents carrying a customer. If the first preferences of different agents
are not independent, this likely also apply for the alternate preferences in SRD3 and
SRD4, decreasing the utilization fraction. All SRD strategies require information about
the first preferences of all other agents which can be acquired by a single iteration
of RD upfront. Then all agents know how many other agents share the same top
preference, making the second iteration identical (SRD2) or similar (SRD1, SRD3, SRD4)
to SCA, as all agents redirect based upon the number of agents in the chosen district
during the previous iteration. In addition to the number of agents preferring the same
resource, the SRD1 strategy also requires information about the number of agents
preferring all other resources which one could also retrieve in a single iteration of
RD upfront. Thus, the SRD1 strategy does not require too much information, if the
number of iterations is sufficiently high to compensate for a potentially very low utility

9



3. Strategies

during the first iteration. The SRD2 strategy requires less information than the SRD1
strategy, as it only incorporates the number of agents preferring the resource they prefer
themselves. It is thus beneficial if the information about other resources cannot be
determined easily. The SRD3 strategy also requires only very few information (as much
as SRD2), but the utility of successful agents is higher, as all successful agents receive
a high utility (maximum or second highest utility). If the agent utilities of different
agents are not stochastically independent, there can be a high number of resources
noone drives to, neither as first nor as second preference. In many cases, the second
preference of an agent is the first preference of another agent, thus not exploiting the
full potential. In SRD4, the second preference is only chosen, if no agent prefers this
resource. Thus, the set of first choice resources and the set of alternate choice resources
do not intersect, making it impossible that alternate choice agents carry a customer who
is preferred by another agent increasing the average utility. Yet, SRD4 requires more
information about the preferences of other agents than SRD3. Thus, the existence of all
strategies is justified by their different data requirements comparing to the expected
performance. The performance of the different strategies with respect to the metrics
utilization fraction and utility depends on the actual model variant.
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4. Kolkata Paise Restaurant Problem

In their paper, Chakrabarti et al. [1] discussed different strategies and provided simula-
tions.

In the following, I will briefly reproduce their results analytically.

4.1. The Model

In the KPRP cover story, daily laborers i ∈ I, |I| = N represent agents who select a
restaurant j ∈ J, |J| = N for lunch. Agents select (i.e. randomly) a restaurant to which
they drive. Formally, I use d (i, j) to represent that i goes to j.

d (i, j) =

{
1 if agent i goes to restaurant j

0 otherwise
(Definition 4.1)

∀j : oj = ∑
i∈I

d (i, j) (Definition 4.2)

Obviously, one agent can only go to one restaurant (∀i : ∑
j∈J

d (i, j) = 1). Every

restaurant j ∈ J can cater exactly one agent i ∈ I.

c (i, j) =

{
1 if agent i eats at restaurant j

0 otherwise
(Definition 4.3)

If no agent went to j, j does not cater any agent, if more than one agent goes

to restaurant j, only one will be served (∀j : c (i, j) = min
(

∑
i∈I

d (i, j), 1
)

). Agents

can only eat at restaurants they went to (∀i, j : c (i, j) ≤ d (i, j)). The utility u (i, j)
agents receive from eating at a restaurant is a random permutation and is identical
for all agents (resulting in a shared utility us (j)), that is ∀j : u (i, j) = us (j) and
∀j, j′ : us (j) 6= us (j′) ∨ j = j′). A daily laborer (agent) prefers a restaurant if no other
restaurant yields higher utility for him. The number of agents preferring a restaurant j
is denoted as pj.
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4. Kolkata Paise Restaurant Problem

p (i, j) =

{
1 if ∀j′ ∈ J \ {j} : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 4.4)

∀j : pj = ∑
i∈I

p (i, j) (Definition 4.5)

The utilization fraction f is given as the number of agents getting lunch divided by
the total number of agents. If an agent i gets lunch is given by f (i) which is 0, if i ate
at no restaurant, and 1 otherwise (as every agent can eat at maximum one restaurant).

f =
1
N
·∑

i∈I
f (i) (Definition 4.6)

f (i) = ∑
j∈J

c (i, j) (Definition 4.7)

The overall utility u is average utility per agent. The agent utility u (i) is u (i, j), if i
eats at j and 0 otherwise.

u =
1
N
·∑

i∈I
u (i) (Definition 4.8)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 4.9)

In experiments and simulations, I further assume N = 1000 (1000 agents and 1000
customers), and that customers are indexed by their utility (us (j) = j

N ). Thus, the
utility is uniformly distributed such that um = umax = 1 is the utility of agents eating at
their preferred restaurant, and uavg = 0.5 is the expected utility of agents eating at any
other restaurant.

4.2. Theoretic Foundations

The capacity of all restaurants is 1. All agents prefer the same restaurant jp. Thus, the
probability that j ∈ J is preferred by exactly pj agents is 1 for jp and pj = N and 0
otherwise.

4.3. No Learning

As a baseline comparison Chakrabarti et al. [1] give an entirely random selection: In
every iteration, every agent selects one of the restaurants at random.
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4. Kolkata Paise Restaurant Problem

In [1] they give the formula equation 4.1 as probability P
(
oj
)

for oj agents choosing
the same restaurant, if on average λ agents go to the same restaurant. Equation 4.2
simplifies equation 4.1 by setting λ = 1. With N → ∞, one can further simplify the
formula using the Poisson Limit Theorem.

P
(
oj
)
=

(
λN
oj

)
1
N

oj
(

1− 1
N

)λN−oj

=
λoj

oj!
e−λ (4.1)

=

(
N
oj

)(
1
N

)oj
(

1− 1
N

)N−oj

=
1

oj!
e−1 (4.2)

Therefore, P(0) gives the probability of a restaurant being unoccupied any evening
using this random stategy, making 1− P(0) ≈ 63.2% the average utilization.

I, therefore, expect a Gaussian distribution around f = fNL = 63.2% for the utilization
fraction. As agents on average receive average utility (if they are successful), I conclude
that the utility is u = f · uavg = 0.316 · umax.

4.4. Rank Dependent Choice

Agents i ∈ I incorporating the RD strategy always turn to the restaurant j that yields
them the highest utility (d (i, j) = 1 ⇐⇒ ∀j′ : u (i, j) ≥ u (i, j′)).

In the KPRP, the restaurant with the highest utility and thus the first preference
restaurant is identical for all agents (∀i, i′ ∈ I : u (i, j) = u (i′, j)). Thus, all agents i ∈ I
go to the same restaurant j. This restaurant can only cater a single agent, resulting
in a utilization fraction of f = 1

N . For N = 1000, I, therefore, expect f = fRD = 0.1%.
The (single) successful agent receives maximum utility, resulting in u = 0.001 · umax on
average.

4.5. Limited Learning

With this strategy, all agents choose a restaurant at random the first night. The
utilization therefore is Gaussian distributed around 63.2%. During successive nights,
all agents base their choice on whether they got dinner the previous day [1]:

• If some agent got food at time t, he will choose the highest ranking restaurant
at time t + 1. (If an agent was successful at the highest utility restaurant, he will
return there in the next iteration)

• If some agent did not get food at time t, he will randomly choose any other
restaurant at time t + 1.
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The first case is irrelevant for the KPRP, as the utilization fraction for this part is
fRD = 1

N (with fRD as the utilization fraction of the RD strategy or fraction of carried
customers by an agent preferring them), with N → ∞ the utilization fraction gets
negligibly small (or fRD = 0.1% for N = 1000). The second case is given by λ = 1− f
in equation 4.1 (the ratio between agents and restaurants is (1− f ) : 1). Chakrabarti
et al. give the following recursion relation:

ft+1 = 1− e−λt ; λt = 1− ft (4.3)

In a more generalized fashion, I write:

ft = ft−1 · fRD︸ ︷︷ ︸
first try best

+
(

1− e−(1− ft−1)
)

︸ ︷︷ ︸
random or return

(4.4)

If one assumes that f converges as ft+1 = ft, the utilization will be Gaussian
distributed around an average value of f = 43.3% and u = f · uavg = 0.212 · umax.

4.6. One Period Repetition

All agents choose the restaurant randomly the first evening.

• If some agent got dinner at restaurant j at time t (but not at time t− 1), he will
return to this restaurant at time t + 1 (return).

• If some agent got dinner at the same restaurant j at time t − 1 and t, he will
compete for the highest utility restaurant at time t + 1 (improve).

• If some agent did not get dinner at any restaurant at time t, at time t + 1 he will
randomly choose any restaurant which was vacant at time t (random).

In their paper, Chakrabarti et al. [1] both give the distribution and simulation results.
The probability distribution of utilizations is given by equation 4.6 with xt being the

fraction of agents returning to the same restaurant at time t + 1, and thus the fraction
of agents eating at a randomly chosen restaurant at time t. As all agents who do not
eat at a restaurant at time t− 1 choose a restaurant randomly and are successful with
probability fNL, Chakrabarti et al. [1] assume that xt = (1− xt−1) · fNL. xt is also the
fraction of agents improving at t + 2 (in this case, the expected utilization is fRD = 1

xt N ,
it can therefore be ignored if N → ∞).
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4. Kolkata Paise Restaurant Problem

ft = xt−1 + (1− xt−1) ·
(

1− e−1
)

(4.5)

ft+1 = (1− xt) ·
(

1− e−1
)
+
(

1− (1− xt) ·
(

1− e−1
))
·
(

1− e−1
)

(4.6)

In their paper, Chakrabarti et al. conclude that the fixed point of this right half of
both equations in 4.6 is at x ≈ 0.38 or f ≈ 0.77, a result I cannot replicate in simulations.

Their original formula is not replicable: It only considers those agents who are not
eating at their preferred restaurant (the utilization fraction for these agents is added in
the second term). From the remaining (1− fRD) · N agents, a fraction of xt−1 agents
returns to the previously chosen restaurant, and a fraction xt−2 tries eating at the highest
utility restaurant (yet unsuccessful, as all successful agents contribute utilization via
the second term). Thus, a fraction of (1− xt−1 − xt−2) of all agents randomly chooses a
restaurant. These agents are successful with probability fNL = 1− e−1. Chakrabarti
et al. do not deduct xt−2, as these agents are unsuccessful. In the next iteration, those
agents who successfully randomly choose a restaurant ((1− xt−1 − xt−2) · fNL), become
xt. Assuming that xt converges to a stable state (xt = xt+1 = xt+2), I can drop subscript
t, resulting in a fraction x. The corrected formula is given in equation 4.7.

f = (x + (1− 2 · x) · fNL) · (1− fRD)︸ ︷︷ ︸
random, return, and improve

+ fRD︸︷︷︸
best

(4.7)

The fraction x is given by x = (1− 2x) ·
(
1− e−1) ≈ 27.9%, and ft decreases to

f = 55.8%. The utility is given as u = 0.279 · umax.
Yet, one should notice that this strategy is promising for vehicle for hire markets:

The best (highest utility) resources are different for different agents, thus, this share is
not “lost”, but will be added.

4.7. Crowd Avoiding

Agents using the CA strategy only choose restaurants which did not serve customers
the previous evening.

The probability P (0) of a restaurant being vacant at time t = 1 after being empty
at time t = 0 is given by equation 4.8. As the number of restaurants to choose from
at time t = 1 is reduced from 1 to 1− f , the average number of agents per restaurant
needs to be set to λ = 1

1− f to cater for this change (in equation 4.1).

P (0) = e−λ = e−
1

1− f (4.8)
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4. Kolkata Paise Restaurant Problem

Incorporating f = 1− P (0) and the fact that only 1− f restaurants are available into
equation 4.8, yields the following equation:

f = (1− f )
(

1− e−
1

1− f
)

(4.9)

Equation 4.9 has two solutions at f1 ≈ 0.457 and f2 ≈ 1.872, the latter being discarded
as the utilization fraction cannot exceed 1. The utilization fraction is therefore f = 45.7%.
As all agents who eat at any restaurant receive average utility, I conclude that the utility
is u = 0.229 · umax.

4.8. Stochastic Crowd Avoiding

Ghosh et al. [20] also introduced another strategy in which the probability of returning
to some place inversely depends on the number of agents choosing this restaurant
(retj (t) = 1

oj(t−1) with retj the probability of returning to restaurant j and oj (t− 1) the
number of agents at restaurant j at time t− 1). Alternatively, this agent will choose any

other restaurant with equal probability oj(t−1)−1
oj(t−1) ·

1
N−1 .

In their paper, Ghosh et al. give an expected utilization fraction of f ≈ 80%. My
simulations give an average utilization fraction of f̄ = 0.735. This is still better than
random (the only better than average strategy), but it is not as good as expected.

Ghosh et al. define that ai is the share of restaurants with i agents (in our model, i is
oj) and ai = 0 ∀i > 2. Thus, a0 + a1 + a2 = 1 (number of restaurants), and a1 + 2 · a2

(number of agents). In every iteration, the share of vacant restaurants (a0) is newly
calculated, it comprises those restaurants which were empty the previous iteration
(prev), minus those restaurants to which some agent drives to who went to an a2

restaurant the previous iteration (new) and those a2 restaurants in which both agents
from the previous iteration divert and no agent goes to (both leave).

a0 = a0︸︷︷︸
prev

− a0 · a2︸ ︷︷ ︸
new

+
a2

4
− a2

a2

4︸ ︷︷ ︸
both leave

(4.10)

I assume that the difference emerges from the fact that the authors ignored that more
than two agents can head for in the same restaurant. They state that the influence of ai
for i > 2 is negligibly small), yet, using a0 = a2 + 2 · a3 + 3 · a4 + . . . the accumulated
impact grows. In simulations with N = 1000 agents, I observed oj = 3 in 3.39% of all
restaurants and oj = 4 in 0.42% of all restaurants, oj = 5 to oj = 10 occurred seldom,
but still affected the final result.

The utility is u = f · uavg = 0.368 · umax.
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4.9. Stochastic Rank Dependent Choice

Agents using the SRD strategy stochastically either eat at the highest-utility restaurant
jp or turn to another restaurant j ∈ J. As all N agents share the same first preference,
the probability that some agent i goes to jp is 1

N .
In the SRD1 strategy, the other agents turn to all restaurants except jp. On average,

N − 1 agents turn to N − 1 restaurants, yielding an average utilization fraction of
1− e−1 (for those N − 1 diverting agents). The total utilization fraction is therefore
f = 1

N + N−1
N ·

(
1− e−1) = 63.2% and the utility is u = 0.316 · umax.

In the SRD2 strategy, redirecting agents turn to all restaurants j ∈ J (including jp).
On average, N − 1 agents turn to N restaurants, with N → ∞ this yields and average
utilization fraction of 1− e−1 for diverting agents and an overall utilization fraction of
f = 63.2% and a utility of u = 0.316 · umax.

In the SRD3 strategy, diverting agents turn to their second choice (that is the restau-
rant yielding second highest utility). As all utilities are identical for all agents, this
second preference is shared among all agents. Thus, all diverting agents go to the same
restaurant j′, resulting in a total utilization fraction of f = 2

N = 0.2% for N = 1000 and
a utility of u = 0.002 · umax.

The SRD4 strategy is identical to the SRD3 strategy for the KPRP, as the best vacant
restaurant assuming all agents prefer the same restaurant is the restaurant that yields the
second highest utility. I, therefore, conclude that the utilization fraction is f = 2

N = 0.2%
for N = 1000 and that the utilility is u = 0.002 · umax.

4.10. Results

Table 4.1 comprises analytical and simulation results of the previous sections (simulation
for SCA, analytical otherwise).

For the KPRP, utilization fraction and utility are linearly dependent for most strategies
(u = f · uavg). RD, SRD3 and SRD4 have u = f · umax, but the performance with respect
to utilization fraction or utility of these strategies is insufficient. All strategies exceed
the baseline comparison RD, but only SCA outperforms the baseline NL. SRD1 and
SRD2 are as good as NL, but cannot outperform it. SRD1 and SRD2 as well as SRD3
and SRD4 perform pairwise equally well, as the alternate choice is identical for the
KPRP.
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4. Kolkata Paise Restaurant Problem

Strategy utilization f utility u

NL 63.2% 0.316
RD 0.1% 0.001
LL 43.3% 0.212

OPR 55.8% 0.279
CA 45.7% 0.229

SCA 73.5% 0.368
SRD1 63.2% 0.316
SRD2 63.2% 0.316
SRD3 0.2% 0.002
SRD4 0.2% 0.002

Table 4.1.: KPRP: Comparing Strategies
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5. Individual Preferences

In this chapter, I will apply the strategies introduced in chapter 3 to the IP model
variant. Some of the aforementioned strategies do not draw upon the actual ranking; I
can therefore safely assume that the utilization will be the same as in the KPRP with
the given adjustments.

5.1. The Model

I formally define the IP game as follows:
The utility agents i ∈ I, |I| = N receive from carrying some customer j ∈ J, |J| = N is

uniformly distributed, that is every agent associates every utility level between 0 and 1
with 1

N step size with some customer, but different agents may receive different payoff
from the same customer. I assume strict utility levels (no two customers are associated
with the same utility by some agent) and are therefore able to derive a preference
ranking.

Every agent i ∈ I drive to exactly one customer j ∈ J (∀i : ∑
j∈J

d (i, j) = 1). I denote

that i drives to j as d (i, j) = 1. The number of agents driving to some customer j is its
occupancy oj.

d (i, j) =

{
1 if i drives to j,

0 otherwise.
(Definition 5.1)

∀j : oj = ∑
i∈I

d (i, j) (Definition 5.2)

Every agent drives to exactly one customer (∀i : ∑
j∈J

d (i, j) = 1). If more than one

agent drives to some customer j, only one of the agents will be able to carry j; all others
will run empty. I denote that agent i carries customer j as c (i, j) = 1.

c (i, j) =

{
1 if i carries j,

0 otherwise.
(Definition 5.3)
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Obviously, an agent i can only carry a customer j, if he drives to j (∀i, j : c (i, j) ≤
d (i, j)), A customer j is carried by at most one agent, and if there is an agent i that

drives to j, this customer will be carried (∀j : c (i, j) = min
(

∑
i∈I

d (i, j), 1
)

). Agents can

either randomly or deterministically choose the customer they drive to. Every agent
prefers one customer over all others, as it returns the highest utility for him (if no other
agents were driving to the same customer). This customer j yields a higher utility than
all other agents. The number of agents preferring some customer j is denoted as pj.

p (i, j) =

{
1 if ∀j′ ∈ J \ {j} : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 5.4)

∀j : pj = ∑
i∈I

p (i, j) (Definition 5.5)

The utilization fraction is derived from the average number of agents carrying a
customer.

f =
1
N
·∑

i∈I
f (i) (Definition 5.6)

f (i) = ∑
j∈J

c (i, j) (Definition 5.7)

The utility is given as the average utility of all agents. The individual utility u (i, j) an
agent i receives from carrying a customer j is a random permutation for every customer
(∀i : ∀j, j′ : u (i, j) 6= u (i, j′) ∨ j = j′).

u =
1
N
·∑

i∈I
u (i) (Definition 5.8)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 5.9)

In numerical experiments and simulations I use |I| = |J| = N = 1000 agents and
customers, and a uniformly distributed utility (between 1

N ≈ 0 and umax = 1). Agents i
carrying their preferred customer (∀j : c (i, j) = p (i, j)) receive an expected maximum
utility um = umax, agents carrying another (not preferred) customer ( ∑

j∈J
c (i, j) = 1∧ ∀j :

p (i, j) = 1⇒ c (i, j) = 0) receive uavg.
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5.2. Theoretic Foundations

The capacity of all customers is 1. The agent preferences are randomly distributed,
Thus, the probability that pj agents prefer customer j is Poisson distributed around 1.

Pre f
(

pj
)
=

1
pj!
· e−1 (5.1)

5.3. No Learning

One of the best strategies for the Kolkata Paise Restaurant Problem with respect to the
utilization fraction was to choose a restaurant randomly at every evening. I will
therefore adopt this strategy for mobility markets.

With this strategy, every driver randomly selects the customer (independent of
his individual preference ranking and the history). Thus, the utilization fraction is
calculated as f = 1− e−1 and is therefore f = fNL = 63.2%.

As agents choose randomly, on average every driver can expect utility uavg . As only
63.2% of all drivers can expect payoff (the others do not get a customer), only those
can get payoff. The average utility is therefore given by equation 5.2. In the given
experiment with N = 1000 agents, I, therefore, expect a Gaussian distributed utility
around an average of u = 0.316 · umax.

u = uavg · f = uavg ·
(

1− e−1
)

(5.2)

5.4. Rank Dependent Choice

The RD strategy is a second baseline comparison in addition to the NL strategy. Whilst
the RD strategy was outperformed with respect to both metrics by all other strategies in
the KPRP, the high number of distinct first preference resources makes it a reasonable
choice in the IP model variant.

Assuming a random preference ranking, it would be beneficial to always try to get
the maximum payoff, which – on average – should also yield an average utilization of
f = fRD = 63.2% = 1− Pre f (0) = 1− e−1 with Pre f (0) being the probability that a
customer is noone’s first choice (pj = 0). The expected average utility for successful
agents – that is agents carrying a customer – increases from uavg to umax. In our example,
this would be u = 0.632 · umax.
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5.5. Limited Learning

Using the LL strategy, agents choose a customer randomly at time t and go to their
highest utility customer at time t + 1, if they got a tour at time t, otherwise they choose
randomly again.

The utilization fraction can be given by the following formula:

ft = ft−1 · fRD︸ ︷︷ ︸
first try best

+
(

1− e−(1− ft−1)
)

︸ ︷︷ ︸
random or return

(5.3)

The left summand of the equation models all those agents which chose their top
priority customer at time t after successfully choosing randomly (at time t − 1 or
earlier). The success rate for these agents is fRD which is the utilization fraction of the
RD strategy. The second summand of the equation comprises all those agents which
choose randomly or which successfully chose their top priority at time t− 1 and return
there. Using this equation, the utilization fraction is f = 70.2%.

One has to differentiate between those agents who return to their prioritized customer
and those agents who randomly choose a customer, as both belong to the second
summand of equation 5.3. Let’s assume that all those agents who do not share their
top priority with any other agent will be able to return there. The fraction of returning
agents is, therefore, given as r = Pre f (1) = e−1 (probability that pj = 1 agents prefer a
customer j).

The utility is given by 5.4 which results in a utility of u = 0.620 · umax for N = 1000
for the IP model.

u = f · fRD · um +
(

1− e f−1
)
·
(
r · um + (1− r) · uavg

)
(5.4)

5.6. One Period Repetition

Though the average utilization fraction was quite low for the One Period Repetition
strategy in the KPRP, it can be a good solution for mobility markets: In the KPRP with
identical rankings, the fraction of agents which headed for the best possible resource
was usually lost (only one of them got dinner). This does not happen in mobility
markets, as agents turn to different customers when going to their preferred resource.

Drawing upon the conclusions for the One Period Repetition in equation 4.7, I can
assume that the new average utilization fraction is given by equation 5.6. Over time, all
customers who are someone’s first preference will be carried (second summand). fRD
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is the utilization fraction of the RD strategy and, therefore, the fraction of customers
carried by an agent preferring them. All other customers (1− fRD = e−1) will be
serviced during the random step and the improve step.

f =
(

x + (1− 2x)
(

1− e−1
))
· (1− fRD) + fRD (5.5)

=
(

x + (1− 2x)
(

1− e−1
))
· e−1 +

(
1− e−1

)
(5.6)

Solving equation 5.6 yields an average utilization fraction f = 83.7%.
The average utility is given by equation 5.7, in this formula, all those customers who

are some agent’s first preference will be serviced with maximum utility and all others
will be serviced resulting in average utility for the respective agent. The result for this
equation is u = 0.728 · umax.

u =
(

x + (1− 2x)
(

1− e−1
))
· e−1 · uavg +

(
1− e−1

)
· um (5.7)

5.7. Crowd Avoiding

The strategy CA is identical to the one given in section 4.7 for the KPRP: All agents go
to customers j ∈ J who were vacant the previous iteration (oj = 0 at time t− 1).

As this is strategy is independent of the rank, the expected utilization fraction is
f = 45.7% from equation 4.9, and the utility is u = f · uavg = 0.229 · umax for N = 1000
agents.

5.8. Stochastic Crowd Avoiding

Like in the CA strategy (section 5.7), the strategy SCA for mobility markets works
exactly like the one for the KPRP in section 4.8: The probability of returning to a
customer the successive day is inversely dependent on the number of agents at this
customer the previous day.

This strategy is also independent of the actual utility resulting in expected utilization
fraction of f̄ = 0.735 and a utility of u = f · uavg = 0.368 · umax for N = 1000 agents.

5.9. Stochastic Rank Dependent Choice

Assuming every agent knows the number of agents pj with an identical highest-ranking
customer, agents could head for this customer with a probability of 1

pj
and head for

either
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5. Individual Preferences

• any customer which is noone’s first choice (SRD1)

• any other customer (SRD2)

• his second choice customer (SRD3)

• the best customer which is noone’s first choice (SRD4)

with a probability of 1− 1
pj

.
The expected utilization fraction f is the sum over the utilization given pj agents

preferring some customer j for all possible values of pj. F
(

pj
)

is the expected fraction
of customers being carried both in this customer and by switching to another customer
(a more detailed description will follow in this section). Pre f

(
pj
)

is the probability that
some customer is preferred by pj agents and is given by equation 5.1.

f =
N

∑
pj=1

Pre f
(

pj
)
· F
(

pj
)

(5.8)

The fraction of agents servicing a customer given the number of agents preferring
this customer pj depends on the number of agents rj switching (“redirecting”) to
another customer. Every rj is associated with a probability D

(
pj, rj

)
that rj out of pj

agents divert to other customers. Every agent that switches to another customer yields
utilization with probability s (success rate). In total r′j/r′′j agents receive this payoff. If at
least one agent remains at this prioritized customer, this agent (or one of these agents)
i will receive utilization f (i) = 1. (In SRD2 and SRD3 it is possible that redirecting
agents turn to a customer in which at least one agent remains. In this case, diverting
agents can “bully out” other agents. This is included in the success rate s.)

F
(

pj
)
=

pj

∑
r′j=1

D
(

pj, r′j
)
· s · r′j +

pj−1

∑
r′′j =0

D
(

pj, r′′j
)

(5.9)

The probability that rj out of pj agents redirect to another customer is given by
D
(

pj, rj
)
. Agents service their top priority customer with p = 1

pj
, otherwise they

redirect. For larger rj and pj, one can apply the Poisson Limit Theorem.

D
(

pj, rj
)
=

(
pj

rj

)(
1
pj

)pj−rj
(

1− 1
pj

)rj

(5.10)

=
1(

pj − rj
)
!
· e−1 (5.11)
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The average utility is given by adapting equation 5.8. The utilization fraction for pj
agents preferring the same customer is replaced by the utility U

(
pj
)

which gives the
corresponding utility.

u =
N

∑
pj=1

Pre f
(

pj
)
·U
(

pj
)

(5.12)

U
(

pj
)

modifies F
(

pj
)

by introducing different expected utilities for successful agents:
If an agent switches to another customer, he can only expect average utility ualt, whilst
staying with the top priority yields optimal utility um.

U
(

pj
)
=

pj−1

∑
r′j=0

D
(

pj, r′j
)
· s · r′j · ualt +

pj

∑
r′′j =1

D
(

pj, r′′j
)
· um (5.13)

The success rate s and the utilities um and ualt depend on the behaviour of diverting
agents. Table 5.1 lists these parameters, and they are discussed in the following sections.

Strategy s um ualt f u

SRD1 0.623 1.00 0.50 79.5% 0.678
SRD2 0.347 1.00 0.50 69.0% 0.626
SRD3 0.347 1.00 1.00 69.0% 0.690
SRD4 0.623 1.00 1.00 79.5% 0.795

Table 5.1.: IP: SRD Choice Strategy – Variables

5.9.1. Noone’s First Choice (SRD1)

The success rate s is given by on average e−1 agents switching over to other (vacant)
customers. On average, e−1 customers are vacant.

s =
(

1− e−1
)

(5.14)

I, therefore, derive f = 79.5% and u = 0.678 · umax.
I further assume um = umax = 1 and ualt = uavg = 0.5, as agents redirect to a

randomly selected customer.

5.9.2. Any Other Customer (SRD2)

The success rate s for redirecting agents changes in comparison to the previous strategy:
If an agent frequents a customer who is someone else’s first preference, I cannot assume
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5. Individual Preferences

that the utilization is increased. On average, e−1 · N agents divert to other customers,
and there are N customers these agents can divert to. The success rate is the probability
that a diverting agent carries a customer j who is not preferred by any other agent
(pj = 0). On average, e−1 customers are not preferred by any agent. The probability
that a customer j with pj = 0 is not carried by another diverting agent is e−λ with λ

the average number of diverting agents driving to a customer (λ = 1
e−1 ). Thus, the

probability that at least one agent drives to some customer j is 1− e−
1

e−1 . The success
rate is, therefore, given by equation 5.15.

s = e−1 ·
(

1− e−
1

e−1
)
≈ 0.347 (5.15)

The expected maximum utility um is derived from the probability that a = pj − rj
agents remain with their shared first priority customer and another b agents get to
this customer when selecting any other but their preferred customer. a agents remain
if rj = pj − a agents divert which is given by D

(
pj, pj − a

)
from equation 5.11. The

probability that b agents choose this customer randomly is given by equation 5.17 (swap
to customer j). On average, e−1 of all agents divert to another customer, they choose
from all N customers, thus, λ = 1

e−1 = e.

um =
N

∑
a=1

N

∑
b=1

D
(

pj, pj − a
)
· P (b swap) · a · umax + b · ualt

a + b
= 0.922 (5.16)

P (b swap) =
λb

b!
· e−λ, λ = e (5.17)

The utilization fraction is, therefore, given as f = 69.0% and the utility is u =

0.626 · umax.

5.9.3. Second Choice Customer (SRD3)

In this strategy, every agent who knows that other agents share the same #1 priority
decides to go to his #2 priority with probability pj−1

pj
(with pj from Definition 5.5).

Success rate s = 0.347 and expected utility for successful non-diverting agents
um = 1.0 remain unchanged with respect to SRD2, but ualt for successful diverting
agents increases to um. In the numerical experiment, the top priority customer yields a
utility of 1.0, the second best had a utility of 0.999. Thus, the payoff is always either 1
oder 0.999 (And, therefore, f · 0.999 < u < f · 1). With N → ∞ I can assume ualt = umax.

The utilization fraction is f = 69.0% and the utility is u = 0.690 · umax.
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5.9.4. Best Vacant Customer (SRD4)

Rather than choosing any vacant customer (like in the first case), or always the second
best (regardless of other agents choosing this customer as #1) an agent chooses the best
possible customer in which no other agent might be serving with maximum utility.

Mathematically, choosing this alternative customer is identical to randomly choosing
any vacant customer (there are e−1 · N vacant customers, as the customers are assigned
as a random permutation, one could also randomly draw these customers). Therefore,
the success rate of diverting agents is s = 1− e−1 like in SRD1 (equation 5.14). The
utilization fraction is, therefore, f = 79.5%.

If an agent approaches his top priority customer and is the only one there, the utility
will be given by umax. If the agent diverts to another customer, the expected utility is
slightly lower. The highest utility customer cannot be the best vacant customer. The
second best customer is vacant with probability e−1. The customer with the third
highest utility is vacant with probability e−1, but only is the best vacant customer, if the
customer wiht the second highest utility is not vacant (with probability 1− e−1). The l
best customer is the best vacant customer if all l − 2 customers (all customers yielding
a higher utility except the first preference customer) are not vacant and customer l is
vacant. Customer l then yields a utility of 1− l

N .

ualt =
N

∑
l=2

(
1− l

N

)
· e−1 ·

(
1− e−1

)l−2
= umax −

1.7183
N

(5.18)

For N = 1000, the utility of the alternate choice is ualt = 99.8%. With increasing N,
this deviation becomes negligible (ualt ≈ umax). The utility is, therefore, u = 0.795 · umax.

5.10. Results

Table 5.2 lists utilization fraction and utility for all strategies in this setting.
The two baseline comparison strategies NL and RD perform equally well with respect

to f , but RD outperms NL by orders of 2 concerning u, as all successful agents receive
um (utility for agents carrying their preferred customer) rather than uavg (average utility
for agents carrying any customer). Except for CA, all strategies outperform NL and RD
with respect to f (and NL with respect to u), but LL, SCA, and SRD2 fall behind RD
with respect to utility, as agents receive a lower utility if they are successful (due to the
fact that agents frequently choose a random customer). OPR performs best with respect
to utilization but is outperformed by SRD4 regarding the utility. SRD1 and SRD4 as
well as SRD2 and SRD3 show equal utilization, as the success rate is identical, but SRD3
and SRD4 outperform their counterparts on utility, as all agents receive (almost) umax.
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Strategy utilization f utility u

NL 63.2% 0.316
RD 63.2% 0.632
LL 70.2% 0.602

OPR 83.7% 0.728
CA 45.7% 0.229

SCA 73.5% 0.368
SRD1 79.5% 0.678
SRD2 69.0% 0.626
SRD3 69.0% 0.690
SRD4 79.5% 0.795

Table 5.2.: IP: Comparing Strategies
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6. Mixed Preferences

This section evaluates the performance regarding utilization and utility for the strategies
defined in chapter 3 for the MP model: The distance to a customer is modeled as
individual component in the utility of a customer, the payoff is modeled as the shared
component.

6.1. The Model

The MP game is defined as follows: Agents i ∈ I, s.t. |I| = N drive to customers
j ∈ J, s.t. |J| = N (d (i, j) = 1), agents try to carry the customer they drive to (c (i, j) = 1),
but one customer can only be carried by one agent (∀j : c (i, j) = min ∑

i∈I
d (i, j), 1).

Every agent drives to exactly one customer (∀i : ∑
j∈J

d (i, j) = 1), and oj agents drive to

customer j (occupancy of j). An agent i can only carry a customer j, if i drives to j
(∀i, j : c (i, j) ≤ d (i, j)). The customer j that yields the highest utility for some agent i is
preferred by i (denoted as p (i, j) = 1). The number of agents preferring some customer
j is denoted as pj.

d (i, j) =

{
1 if i drives to j,

0 otherwise.
(Definition 6.1)

∀j : oj = ∑
i∈I

d (i, j) (Definition 6.2)

c (i, j) =

{
1 if i carries j,

0 otherwise.
(Definition 6.3)

p (i, j) =

{
1 if ∀j′ ∈ J \ {j} : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 6.4)

∀j : pj = ∑
i∈I

p (i, j) (Definition 6.5)
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The utility an agent i receives from a customer j u (i, j) is determined as the weighted
average of two components: The individual utility ui (i, j) represents the inverse distance
between agent and customer. The shared utility us (j) is the utility which is identical
to all agents i ∈ I. ui (i, j) is a uniform distribution in the range between 0 and 1
independently calculated for every agent, us (j) is a uniform distribution in the range
between 0 and 1.

u (i, j) = α · ui (i, j) + (1− α) · us (j) , 0 ≤ α ≤ 1 (Definition 6.6)

The utilization fraction is calculated as the average number of agents carrying a
customer (given by f (i) = 1) divided by the total number of agents N. The agent
utilization f (i) denotes if agent i carries any customer. The utility u is given by the
average agent utility u (i) which is 0 if agent i does not carry any customer and is u (i, j)
if i carries customer j.

f =
1
N
·∑

i∈I
f (i) (Definition 6.7)

f (i) = ∑
j∈J

c (i, j) (Definition 6.8)

u =
1
N
·∑

i∈I
u (i) (Definition 6.9)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 6.10)

For numerical experiments and simulations I assume that there are N = 1000 agents
and customers. I further assume that α = 0.5, resulting in the same influence for shared
and individual utility. The individual utility is uniformly distributed between 1

N and
umax = 1. Every agent that is successful at the preferred customer receives on average
um and every agent successful at a randomly chosen customer receives on average
uavg = 0.5. Without loss of generality, I further assume that customers are indexed by
their shared utility (us (j) = j

N ). Though deterministic rather than random, this does
not influence numerical results (the index j is no more than a theoretical construct
which one can fit to the utilities). It simplifies calculations, as one can easily iterate
through all customers with a higher (or lower) shared utility.
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6.2. Theoretic Foundations

The maximum utility an agent can achieve may be lower than umax = 1 as the utility is
built as the weighted sum of two uniformly distributed variables with maximum umax.

6.2.1. Probability of a Customer with a given Shared Utility yielding
Maximum Utility

It is possible that there is no longer a single customer yielding maximum utility, but
there can be multiple customers with the same utility. A customer is part of the set of
top customers for some agent if there is no customer who returns a higher utility for
this agent.

For simplicity, I first consider random integers for the individual component rather
than a random permutation for the shared component (no duplicates). With this
simplification, the probability that the utility retrieved from one customer is higher
than the utility retrieved from another customer is independent of the utility yielded
by all other customers (otherwise, one had to ensure that no duplicates occurred).

I denote the probability Π (j) that some customer j with shared utility component
us (j) is among the customers with highest utility for any agent i ∈ I. Assuming
that u (i, j) = α · ui (i, j) + (1− α) · us (j) (Definition 6.6) and that ui (i, j) is random, I
conclude that this probability only depends on the customer j.

Π (i, j) = Π (j) = P
(
∀j′ : u (i, j) ≥ u

(
i, j′
))

(6.1)

Without loss of generality, one can assume that us (j) = j
N . In the following I

will use j as us (j) · N. Numerically, I assume that every individual utility between
1
N and 1 is equally likely, I use q ∈ 1 . . . N to model all possible individual utilities
(q = ui (i, j) · N). I separately calculate the probability that another customer yields
higher utility for those customers with a higher (Πh (j, q)) and a lower (Πl (j, q)) shared
utility component. The total number of customers considered in Πl (j, q) and Πh (j, q)
is N − 1, customers jl < j are considered in Πl (j, q), customers jh > j are considered in
Πh (j, q).

Π (j) =
1
N

N

∑
q=1

Πl (j, q)Πh (j, q) (6.2)

To derive the formulas for Πl (j, q) and Πh (j, q), I first consider a basic example: In an
environment with N = 5 customers and agents, there is a customer j = 3 with shared
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utility us (j) = 3
N and an agent i assigning an individual utility ui (i, j) = 3

N , q = 3
to j. What is the probability that a customer with a lower shared utility jl ∈ {1, 2}
or a higher shared utility jh ∈ {4, 5} is preferred over j by agent i? Agent i can
assign any individual utility 1

5 , 2
5 , 3

5 , 4
5 , 5

5 to these customers j′ ∈ {1, 2, 4, 5} (resulting
in q′ ∈ {1, 2, 3, 4, 5}). For every customer j′ one determines the probability that this
customer does not reach a higher utility than u (i, j) = α · ui (i, j) + (1− α) · us (j) = 3

N .
In table 6.1 I display the (combined) utility of j′ (multiplied by N for readability) and
whether j or j′ reaches a higher utility for agent i (→ j and → j′), depending on its
individual utility q′ that an agent i can derive from j′ (left-most column). The last row
gives the probability that j′ does not exceed j. As none of the other customers must
reach a higher utility, I multiply the probabilities (that is 5

5 ·
4
5 ·

2
5 ·

1
5 = 8

125 ) to retrieve
the probability that customer j reaches the highest utility for agent i, if agent i assigned
him an individual utility of q

N = 3
5 . Obviously, one has to calculate the probability that

j is the highest utility customer for all possible individual utilities, that is all values of
q ∈ {1 . . . N}.

Lower Higher
Indiv. Utility q′ = ui (i, j′) · N j′ = 1 j′ = 2 j′ = 4 j′ = 5

1 1→j 1.5→j 2.5→j 3→j
2 1.5→j 2→j 3→j 3.5→j′

3 2→j 2.5→j 3.5→j′ 4→j′

4 2.5→j 3→j 4→j′ 4.5→j′

5 3→j 3.5→j′ 4.5→j′ 5→j′

prob. u (i, j) ≥ u (i, j′) 5
5

4
5

2
5

1
5

Table 6.1.: MP: Highest Utility Customer (Example)

Πl (j, q) is 1 if customer j has the lowest shared utility (j = 1) as there is no customer
with a lower shared utility who could exceed the utility of customer j. Thus, j yields a
higher utility than all customers with a lower shared utility. Otherwise, it is the product
of the probabilities that the utility of j exceeds the utility of all customers j′ = j− jl
with a lower shared utility. The probability of exceeding any given other customer is
given by q+jl

N , but at most 1 ( N
N ). If a customer j′ has a jl lower shared utility than j, its

individual utility must be at least jl + 1 higher than the individual utility of j (q) to
exceed j. I, therefore, calculate the probability that the individual utility of the other
customer j′ is not more than q + jl .
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Πl (j, q) =


j−1
∏

jl=1

min(N,q+jl)
N , if j > 1

1 otherwise
(6.3)

Πh (j, q) is 1 if customer j has the highest shared component as no customer with a
higher shared utility component exceeds the utility of j. Otherwise, it is the product of
the probabilities that the utility of j exceeds every customer j′ = j + jh with a higher
shared utility. The probability of exceeding a given other customer is given by q−jh

N , but
is always non-negative. If a customer j′ has a shared utility that is jh higher than the
one of j, its individual utility must be at most jh − 1 lower than the individual utility of
j (q). j′, therefore, requires an individual utility of q− jh + 1 to exceed the utility of j.
The combined utility is higher for j, if the individual utility of j′ is at most q− jh.

Πh (j, q) =


N−j
∏

jh=1

max(0,q−jh)
N , if j < N

1 otherwise
(6.4)

Incorporating equations 6.3 and 6.4 in equation 6.2 yields:

Π (j) =



1
N ·

N
∑

q=1

j−1
∏

jl=1

min(N,q+jl)
N

N−j
∏

jh=1

max(0,q−jh)
N , if 1 < j < N

1
N ·

N
∑

q=1

N−1
∏

jh=1

max(0,q−jh)
N , if j = 1∧ N 6= 1

1
N ·

N
∑

q=1

N−1
∏

jl=1

min(N,q+jl)
N , if j = N ∧ N 6= 1

1 otherwise

(6.5)

This equation 6.5 can be transformed to the random permutation case by decreasing
the denominator as the number of options for the individual component of the other
customer is reduced by the assignment to the first customer. This also decreases the
numerator of the fraction in Πl .
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Π (j) =



1
N ·

N
∑

q=1

j−1
∏

jl=1

min(N−1,q+jl−1)
N−1

N−j
∏

jh=1

max(0,q−jh)
N−1 , if 1 < j < N

1
N ·

N
∑

q=1

N−1
∏

jh=1

max(0,q−jh)
N−1 , if j = 1∧ N 6= 1

1
N ·

N
∑

q=1

N−1
∏

jl=1

min(N−1,q+jl−1)
N−1 , if j = N ∧ N 6= 1

1 otherwise

(6.6)

Given this approach, it might happen that two customers yield the same utility. The
probability that the highest utility is shared among different customers decreases with
N → ∞. For N = 1000, approximately 3.9% of all agents prefer more than one customer
(given by the sum of probabilities Π (j) for all j).

With the above equation with N = 1000, I expect that 4.03% of all agents prefer the
customer with the highest shared utility (that is max (j)). For those 70 customers with
the highest shared component the probability of an agent preferring them is greater
than 0.1%, thus, on average, there is an agent for whom this customer yields the best
possible utility.

6.2.2. Expected Number of Agents Sharing a Top Priority

The number of agents sharing the same top priority customer depends on the shared
component of this customer. The customer with the highest possible shared utility will
be chosen more often than the customer with the lowest shared utility.

Pre f
(

pj
)
=

(
N
pj

)
(Π (j))pj (1−Π (j))N−pj (6.7)

=

(
NΠ (j)

pj

)(
1
N

)pj
(

1− 1
N

)NΠ(j)−pj

(6.8)

=
(Π (j))pj

pj!
e−Π(j) (6.9)

6.2.3. Expected Number of Distinct Top Priorities

With the equation 6.9, it is now possible to calculate the probability that a customer is
noone’s first preference (Pre f (0) for pj = 0) and the expected number of customers
which are noone’s preference (as the average probability).
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I ignore duplicate first preferences and assume that a customer is selected with his
associated probability of being first preference.

no. of not preferred customers = N −∑
j∈J

1− Pj (0) (6.10)

The expected number of customers who are not preferred by any agent for N = 1000
is, therefore, 923 (or alternatively: I expect approximately 77 distinct first preferences).

6.2.4. Expected Utility of Top Priority Customers

The expected utility of a randomly selected customer is straight-forward: The average
of two random numbers between 1

N and 1 is uavg = 0.5 (for sufficiently large N). The
expected utility for the first preference customer um is more elaborate: um = umax = 1
can only be reached, if both the shared and the individual utility are maximum for an
agent i and a customer j. Otherwise, the maximum agent utility is a weighted sum
of 1

N ·
j+q

2 weighted by the probability that a customer yielding shared utility j
N and

individual utility q
N (for agent i). For simplicity, I only consider the case 1 < j < N;

equation 6.11 needs to be adjusted accordingly to equation 6.6 to cater for j = 1 and
j = N. For the defined numerical assumptions, the expected utility of top priority
customers is um = 0.92.

um =
1
N

N

∑
q=1

j−1

∏
jl=1

min (N − 1, q + jl − 1)
N − 1

N−j

∏
jh=1

max (0, q− jh)
N − 1

· j + q
2

(6.11)

6.3. No Learning

Agents incorporating the NL strategy randomly choose where to drive to. Thus, the
number of agents per customer is Poisson distributed around 1. The number of agents
carrying a customer equals the number of customers who are carried by some agent
which is N minus the number of agents who are not carried by any agent ( ∑

i∈I
c (i, j) = 0).

As the number of agents driving to some customer j is Poisson distributed, I conclude
that the number of agents who do not carry any agent is

(
1− e−1) · N, resulting in a

utilization fraction of f = fNL = 63.2% and a utility of u = f · uavg = 0.316 · umax.
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6.4. Rank Dependent Choice

Obviously, only those customers who are some agent’s first preference will be served
with the RD strategy.

The utilization fraction is, therefore, given by equation 6.10 ( f = fRD = 7.7%
for N = 1000). Those 7.7% of all agents will receive maximum utility, resulting in
u = f · um = 0.075 · umax (with um = 0.92 from equation 6.11).

6.5. Limited Learning

In the LL strategy, agents decide randomly on a customer until they are able to serve
one. After that, agents try their preferred customer. If they are being “bullied” out,
they return to selecting randomly. Those customers who are preferred by some agent
(j ∈ J|∃i ∈ I : p (i, j) = 1) will be carried in all iterations unless they did not carry
any customer in the previous iteration t− 1 ( ft−1 · fRD). Agents who do not drive to
their preferred customer randomly select any customer, resulting in

(
1− e ft−1−1) as the

number of agents in this phase is lower than the number of customers to choose from.

ft = ft−1 · fRD +
(

1− e ft−1−1
)

(6.12)

f = lim
t→∞

ft (6.13)

u = f · fRD · um +
(

1− e f−1
)
·
(
r · um + (1− r) · uavg

)
(6.14)

Derived from equation 6.13 and 6.14 (with fRD the number of customers who are
preferred by some agent (or the utilization fraction of the RD strategy), um = 0.97 and
r = ∑

j∈J
Π (j) · e−Π(j) = 0.01), I deduce that the utilization fraction is f = 45.5% and that

the average utility is u = 0.246 · umax.

6.6. One Period Repetition

Using the OPR strategy, agents drive to their preferred customer after being successful
with some randomly chosen customer for two iterations.

fRD · N agents carry the customer they prefer ( fRD is the utilization fraction of the
RD strategy). All other agents follow the three-step approach ((1) random, (2) return,
and (3) improve). In every iteration a fraction 1− 2x agents chooses randomly (x =

(1− 2x) ·
(
1− e−1) successful), x agents return, and x agents drive to their preferred

customer (which is already occupied by another agent, therefore not increasing the
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6. Mixed Preferences

utilization). For N = 1000 and, therefore, fRD = 0.077, the utilization fraction is
f = 56.6%.

f = fRD + (1− fRD) ·
(

x + (1− 2x) ·
(

1− e−1
))

(6.15)

The utility is calculated analogously, those fRD agents carrying their preferred
customer receive um = 0.97, the other agents carry a randomly selected customer and,
therefore, receive uavg. This results in u = 0.320 · umax.

6.7. Crowd Avoiding

Agents who follow the CA strategy randomly choose any customer who was not
carried during the previous iteration. Thus, there are N agents driving to (1− ft−1) · N
customers.

ft = (1− ft−1) ·
(

1−
(

N
0

)
·
(

1− 1
(1− ft−1) · N

)N
)

= (1− ft−1) ·
(

1− e−(1− ft−1)
)

(6.16)

I, therefore, conclude that f = 45.7%. As all successful agents drive to a randomly
chosen a customer, I assume that these agents receive uavg. Thus, the utility is u =

0.229 · umax.

6.8. Stochastic Crowd Avoiding

Using the SCA strategy, agents either return to the same customer or drive to any
other customer depending on the number of agents driving to the customer they drove
to in the previous iteration. If at time t− 1 agent i drove to customer j (d (i, j) = 1)
and the occupancy of customer j is oj = 1, agent i returns to customer j at time t. If
agent i drove to customer j at time t− 1 and the occupancy oj > 1, i returns there with

probability 1
oj

and randomly chooses any other customer at time t with probability oj−1
oj

.
In simulations with N = 1000, umax = 1 and uavg = 0.5 I observe a utilization fraction

of f = 73.5% and a utility of u = 0.368 · umax.

6.9. Stochastic Rank Dependent Choice

With this strategy, the probability of driving to the top customer depends on the number
of agents which share the same top priority.
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6. Mixed Preferences

Analytically, one can assume that the function of the utilization fraction has to incor-
porate the no longer random number of agents preferring some customer. Pre f

(
pj
)

is
the probability that a customer j is preferred by exactly pj agents (derived from equation
6.9). F

(
pj
)

is the expected utilization, if pj agents prefer customer j. As Pre f
(

pj
)

is

used to weight F
(

pj
)
, one has to divide by ∑

j∈J

N
∑

pj=1
Pre f

(
pj
)
= ∑

j∈J
Π (j) ≈ N.

f =
1

∑
j∈J

Π (j) ∑
j∈J

 N

∑
pj=1

Pre f
(

pj
)
· F
(

pj
) (6.17)

F
(

pj
)

includes the probability that rj agents divert to other customers (with probabi-

lity D
(

pj, rj
)
=
((

pj − rj
)
!
)−1 · e−1).

F
(

pj
)
=

pj

∑
r′j=1

D
(

pj, r′j
)
· s · r′j +

pj−1

∑
r′′j =0

D
(

pj, r′′j
)

(6.18)

The average utility is calculated by adapting equations 6.17 and 6.18 such that it
incorporates different utility levels regarding on the agent’s type of choice (remain with
their top priority resulting in um or diverting to alternative resources resulting in ualt).

u =
1

∑
j∈J

Π (j) ∑
j∈J

 N

∑
pj=1

Pre f
(

pj
)
·U
(

pj
) (6.19)

U
(

pj
)
=

pj−1

∑
r′j=0

D
(

pj, r′j
)
· s · r′j · ualt +

pj

∑
r′′j =1

D
(

pj, r′′j
)
· um (6.20)

s, um, and ualt depend on the actual strategy. Table 6.2 compares the variables for
SRD1 and SRD2.

Strategy s um ualt f u

SRD1 0.632 0.92 0.46 89.8% 0.521
SRD2 0.661 0.92 0.50 88.0% 0.512

Table 6.2.: MP: SRD Strategy – Variables
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6. Mixed Preferences

6.9.1. Noone’s First Choice Customer

In this strategy, agents choose those customers who are not preferred by any agent
(j ∈ J, s.t. ∑

i∈I
p (i, j) = 0).

As the number of diverting agents on average equals the number of customers who
are not preferred by any agent, I can assume that a fraction of s = 0.632 of all diverting
agents successfully carries another customer (success rate). The utilization fraction
is, therefore, f = 63.8%. The utility of diverting agents (alternate utility) is ualt. One
cannot assume ualt = 0.5, as only those customers with a lower shared component
and therefore a lower utility are being selected as noone’s preference. For N = 1000, I
assume ualt = 0.46, as on average 77 of the highest utility customers cannot be selected.
The expected maximum utility is um = 0.92, according to equation 6.11, the utility is
thus u = 0.326 · umax.

6.9.2. Any Other Customer

The SRD2 strategy dictates diverting agents to choose any other customer, regardless
of the preferences of other agents or own preferences. The success rate s = 0.611
therefore derived from equation 4.1 with λ = 1− fRD as (1− fRD) N agents divert to N
customers. fRD is the utilization fraction of the RD strategy and can be interpreted as
the fraction of customers who can carry their preferred customer in the SRD strategy.

s = (1− fRD) ·
(

1− e−
1

1− fRD

)
(6.21)

Thus, the expected utilization fraction is f = 61.9%. All agents carrying their
preferred customer (i ∈ I, s.t.∀j ∈ J : c (i, j) = p (i, j)) can expect um = 0.92 (as in
equation 6.11). Diverting agents can expect ualt = 0.462. The expected average utility is
u = 0.330 · umax.

6.9.3. Second Choice Customer

In the SRD3 strategy, diverting agents drive to the customer yielding them the second
highest utility. For this strategy, the utilization rises only slightly in comparison to
the RD strategy, as those 92.3% of all agents who randomly choose not to service the
top ranked customer will go to the second ranked customer, which in most cases is
someone else’s top priority or overlaps with another agent’s second priority.

The number of distinct second preferences is around 93 for N = 1000. Yet, many
of these customers are some other agent’s first preference. The expected number of
customers which are either first or second preference is, therefore, ≈ 94 (in simulations).
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6. Mixed Preferences

Simulations suggest a utilization fraction of f̄ = 9.4% and an average utility of
u = 0.091 · umax.

6.9.4. Best Vacant Customer

A similar explanation holds for the strategy SRD4 (Best Vacant Customer): Even if
agents only turn to customers who are noone’s first preference, they will most likely be
competing there, as those customers will also be much alike.

The total number of distinct customers in the best vacant customer choice is approx.
74 with N = 1000. With ≈ 77 distinct first preference customers, there are around 151
customers the agents choose from.

The actual utilization is lower, as agents do not distribute themselves uniformly. In
simulations, the utilization fraction was f̄ = 12.1% and the utility was u = 0.115 · umax.

6.10. Results

Strategy utilization f utility u

NL 63.2% 0.316
RD 7.7% 0.075
LL 45.5% 0.246

OPR 56.6% 0.320
CA 45.7% 0.229

SCA 73.5% 0.368
SRD1 63.8% 0.326
SRD2 61.9% 0.313
SRD3 9.4% 0.091
SRD4 12.1% 0.115

Table 6.3.: MP: Comparing Strategies

The utilization fraction and utility for all considered strategies can be found in table
6.3.

All strategies which do not incorporate the utility (NL, CA, SCA) are obviously not
affected by mixed utilities. LL, OPR, RD, and SRD on the opposite worsen (moderately
to dramatically) in comparison to the Individual Preferences setting. Only one of the rank
dependent strategies outperforms both baseline comparisons: SRD1 (and with respect
to utility OPR as well). As the redirection option for SRD3 and SRD4 is correlated to the
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6. Mixed Preferences

first choice, and due to the low number of distinct first preferences, those strategies fall
behind SRD1 and SRD2. With the decreased performance of rank dependent strategies
(most “first preference selections” do not increase utility and utilization), SCA becomes
the best strategy concerning both utilization fraction and utility.
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7. Individual Preferences with Multiple
Customers per District

In this model variant I assume that there are several customers in one district, thus, an
agent always has several customers from which he can carry one even if the preferred
one is not available. I assume that every district on average has the same number of
customers, but as customers randomly spawn in some district, there can also be less
or more customers in a district. Agents select a customer and drive to the district in
which the selected customer is located in.

7.1. The Model

In the IPMC model variant, customers are located to districts. Agents i ∈ I, |I| = N
drive to their preferred customer and are able to divert to other customers in the same
district at no cost. I denote that some customer j ∈ J, |J| = N is located in a district
k ∈ K, |K| = D = N

ϕ as b (j, k) = 1 (j “belongs to” k). Every customer j belongs to
exactly one district k (∀j : ∑

k∈K
b (j, k) = 1), and ck customers are located in district k

(capacity of k).

b (j, k) =

{
1 if j is in k

0 otherwise
(Definition 7.1)

∀k : ck = ∑
j∈J

b (j, k) (Definition 7.2)

Agents drive to customers. I denote this relation as d (i, j) = 1. Every agent drives
to exactly one customer (∀i : ∑

j∈J
d (i, j) = 1). As agents are able to divert to other

customers in the same district, I extend d (i, j) = 1 as the notion that agent i drives
to customer j to d (i, k) = 1 to denote that agent i drives to the district k that j is
located in (d (i, j) = 1 ∧ b (j, k) = 1 ⇒ d (i, k) = 1). As the customer j that agent i
originally drove to exactly one district k, I conduct that every agent drives to exactly
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7. Individual Preferences with Multiple Customers per District

one district (∀i : ∑
k∈K

d (i, k) = 1). The number of agents driving to some district k yields

the occupancy ok.

d (i, j) =

{
1 if i drives to j

0 otherwise
(Definition 7.3)

∀j : oj = ∑
i∈I

d (i, j) (Definition 7.4)

d (i, k) =

{
1 if i drives to k

0 otherwise
(Definition 7.5)

∀k : ok = ∑
i∈I

d (i, j) (Definition 7.6)

Agents can carry any customer that awaits a ride in the district k that agent i drove
to. I denote that agent i carries customer j as c (i, j) = 1. One customer can only be
carried by one agent (∀j : ∑

i∈I
c (i, j) ≤ 1) and one agent i can carry at most one customer

(∀i : ∑
j∈J

c (i, j) ≤ 1). Agents can only carry customers located in the district they drove

to (c (i, j) ≤ ∑
k∈K

d (i, k) · b (j, k)). If agents are able to carry any customer, they prefer

carrying him over not carrying anyone. Thus, the total number of customers carried
from one district k is the minimum of the number of customers in k (capacity ck) and
the number of agents driving to k (occupancy ok) (∀k : ∑

i∈I
j∈J

c (i, j) · b (j, k) = min (ck, ok)).

c (i, j) =

{
1 if i carries j

0 otherwise
(Definition 7.7)

Agents can either drive to their preferred customer or district or randomly choose a
resource. I use p (i, j) = 1 to denote that i prefers j (j yields more utility for i than any
other customer). This is the case if no other customer j′ results in a higher utility. The
number of agents preferring j is given as pj. Analogously, I define pk as the number of
agents preferring any customer that are located in district k.

p (i, j) =

{
1 if ∀j′ : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 7.8)

∀j : pj = ∑
i∈I

p (i, j) (Definition 7.9)
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7. Individual Preferences with Multiple Customers per District

∀k : pk = ∑
i∈I
j∈J

p (i, j) · b (j, k) (Definition 7.10)

u (i, j) is a random permutation individually assigned for every agent (∀i ∈ I :
∀j, j′ ∈ J : u (i, j) = u (i, j′) ⇒ j = j′). As agents who select their preferred resource
choose whichever customer results in the highest utility for them and drive to the
corresponding district, I define that the utility of a district k is determined by the
highest utility of any customer in k.

∀k : u (i, k) = max
j∈J

(u (i, j) · b (j, k)) (Definition 7.11)

One calculates the utilization fraction as the share of successful agents, that is agents
who carry some customer. The utility is the average of all agent utilities u (i). u (i) is
the utility agent i receives. If i does not carry any customer, the agent utility is u (i) = 0,
otherwise it is the utility u (i, j) of the customer j that agent i carries.

f =
1
N
·∑

i∈I
f (i) (Definition 7.12)

f (i) = ∑
j∈J

c (i, j) (Definition 7.13)

u =
1
N
·∑

i∈I
u (i) (Definition 7.14)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 7.15)

In simulations and numerical experiments, I assume that there are N = 1000 agents
and customers in D = 200 districts (on average ϕ = 5 customers per district), that the
utility is uniformly distributed between 1

N and umax = 1. Every agent that is successful
in the preferred district receives on average um and every agent successful at a randomly
chosen district receives on average uavg = 0.5.

7.2. Theoretic Foundations

7.2.1. Capacity: Number of Customers per District

In theory, there can be 0 . . . N customers in one district, though both extremes are highly
unlikely. Assuming that there are ϕ customers on average per district (N = ϕD), the
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7. Individual Preferences with Multiple Customers per District

probability C (ck) for capacity ck is given by equation 7.1. In this case ϕ is the average
number of customers per district (in numerical experiments and simulations: ϕ = 5).

C (ck) =

(
ϕD
ck

)
·
(

1
D

)ck

·
(

1− 1
D

)ϕD−ck

=
ϕck

ck!
· e−ϕ (7.1)

7.2.2. Occupancy: Number of Agents per District (based upon Capacity)

As agents choose a customer and then drive to the corresponding district, the probability
that ok agents drive to district k depends on its capacity ck. With N agents and N
customers, the number of agents in district k with ck customers is Gaussian distributed
around ck.

O (ok, ck) =
ck

ok

ok!
e−ck (7.2)

7.2.3. Same First Preference

The probability that a district with capacity ck is preferred by pk agents is calculated
as a Gaussian distribution around ck, as agents randomly “choose” their preferred
customer.

Pre f (ck, pk) =
cpk

k
pk!
· e−ck (7.3)

7.2.4. Expected Utility of Top Priority Customers

The expected maximum utility depends on the capacity ck: If an agent i enters a district
with ck customers and he carries any customer in this district, there is a 1

ck
chance that

the customer j that i carries is his preferred customer yielding a utility of umax and a
1− 1

ck
chance that i carries any other customer, yielding a utility of on average uavg.

um (ck) =
1
ck
· umax +

ck − 1
ck
· uavg (7.4)

The expected maximum utility um in random processes is calculated by weighting
um (ck) by the probability of ck and the expected number of successful agents ok ≤ ck. I,
therefore, conclude um = 0.59 if ck of district k is unknown.
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7.3. No Learning

In this strategy, every agent randomly decides which district he will go to by randomly
selecting a customer j and driving to the district k that j is located in. The agent is
then randomly assigned a customer from the selected district. If there are less or equal
agents than customers (ok ≤ ck), every agent will be assigned a customers. Otherwise,
there is a ck

ok
probability for every agent to actually be assigned a customer.

Agents select customers and drive to the corresponding districts rather than districts
directly, as this increases the utilization fraction and utility, as every district is – on
average – chosen by as many drivers as it can cater (instead of ϕ drivers on average per
district). In the appendix I calculate the utilization fraction and utility for district-based
choice (C.1). To derive the utilization fraction, I calculate the expected number of not

carried customers for every possible capacity ck (
ck−1
∑

ok=0
O (ok, ck) (ck − ok)) and derive the

number of carried customers from it. The probability of capacity ck is derived from
equation 7.1 and the probability of occupancy ok is derived from equation 7.2.

f =
1
ϕ

N

∑
ck=1

C (ck) ·
(

ck −
ck−1

∑
ok=0

O (ok, ck) (ck − ok)

)
(7.5)

=
1
ϕ

N

∑
ck=1

ϕck

ck!
e−ϕ ·

(
ck −

ck−1

∑
ok=0

cok
k

ok!
e−ck (ck − ok)

)
(7.6)

The utilization fraction is, therefore, f = fNL = 83.0%. With average utility for all
successful agents, the expected utility is u = f · uavg = 41.5% for N = 1000.

7.4. Rank Dependent Choice

I now consider the strategy in which every agent drives to the district which provides
him with the best possible utility that is the district containing the customer yielding
the highest utility. There are different possible approaches to choosing the best district:
Choose the district with the highest average utility from all customers in this district
or choose the district which contains ones (individual) #1 priority customer. The first
corresponds to selecting a district in No Learning, the second to selecting a customer. I
only consider the latter as it results in a higher utilization and utility. Yet, one can find
some insight on the first in the appendix (C.2).

The utilization fraction is the same as for the NL strategy (given by equation 7.6), as
the preferred customer is randomly selected (resulting in f = fRD = 83.0%). The utility
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increases slightly in comparison to No Learning, as the probability of serving the top
priority customer is increased.

u =
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck

∑
ok=0

O (ok, ck) (ck − ok)

)
· um (ck) (7.7)

For N = 1000 and ϕ = 5 this results in an average utility of u = 0.495 · umax.

7.5. Limited Learning

In the LL strategy, every agent first chooses a customer at random and – after carrying
a customer – continues with the highest ranked district. With multiple customers in
a district, one has to choose which district one deems #1 priority (district containing
highest utility customer).

The utilization fraction f depends on the fraction of agents servicing their top district
for the first time and the fraction of agents who either randomly choose a district or
return to the best possible district. From equation 7.6 I derive fRD = 83.0% which is the
fraction of customers carried by an agent preferring them, ft is calculated iteratively. On
average (1− ft−1) · N customers are not carried by first agents choosing their preferred
customer the first time (and thus belong to the first summand of the equation). Thus,
on average λ = (1− ft−1) customers per district are not carried by agents belonging to
the left summand of the equation.

ft = ft−1 · fRD︸ ︷︷ ︸
first try best

+
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
︸ ︷︷ ︸

random or return

(7.8)

f converges towards f = 85.2% for fRD = 0.830.
To calculate the utility u, I adapt equation 7.8 to incorporate whether agents expect

maximum utility um (ck) or average utility uavg. All those agents who carry a customer
from their highest utility district receive on average um (ck). As the right half of the
equation comprises both those agents who randomly choose any resource and those,
who return to their highest utility customer, I have to differentiate between those
groups by introducing r as the fraction of agents returning to their highest utility
resource. r is calculated as the fraction of customers in not overutilized districts

(r =
N
∑

ck=1

ck

∑
pk=0

Pre f (pk, ck) = 0.621). Thus, I derive u = 0.500 · umax.

47



7. Individual Preferences with Multiple Customers per District

u = f · fRD · um (ck) +

+
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
·
(
r · um (ck) + (1− r) · uavg

)
(7.9)

7.6. One Period Repetition

Agents applying the OPR strategy choose the district containing their top priority
customer after returning once to a successful random district choice.

Drawing upon the results from section 5.6 I calculate the utilization fraction and the
utility as follows. fRD agents carry a customer from their preferred district, all other
agents follow a three step approach: (1) random choice (with a success probability of
fNL), (2) return to the same district (certainly successful, that is f (i) = 1, as randomly
choosing agents only drive to previously not carried customers), and (3) try best district
(with a success rate of 0, as the agent would otherwise belong to those fRD agents who
are constantly successful). In every iteration, a share x of all agents is in step (2) and
(3), and a share of 1− 2x is in step (1) (successful with probability fNL, resulting in
x = (1− 2x) · fNL ≈ 0.312). fRD is the utilization of the RD strategy and fNL is the
utilization of the NL strategy.

f = (x + (1− 2x) · fNL) · (1− fRD) + fRD (7.10)

u = (x + (1− 2x) · fNL) · (1− fRD) · uavg + um · fRD (7.11)

Thus, I expect a utilization fraction of f = 93.6%. The average utility is u =

0.547 · umax.

7.7. Crowd Avoiding

Using the strategy CA, agents only choose from customers which have not been carried
the previous time step and drive to the district the selected customer is located in.
This yields a weighted selection of the districts with too few agents. The number
of customers which can be chosen at some time t is the number of customers not
chosen at time t − 1. Those remaining customers are located in different districts.
On average, a fraction of λ = 1

1− f of all customers remain vacant. I assume that
these remaining customers are Gaussian distributed across districts, resulting in λ · ck
customers remaining per district.
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f = (1− f ) ·
(

N

∑
ck=1

C (ck) ·
(

ck −
ck−1

∑
ok=0

O (ok, λ · ck) · (ck − ok)

))
(7.12)

With the above assumptions, one can derive f = 49.7%. As all agents randomly
decide upon a resource, I conduct u = 0.249 · umax.

7.8. Stochastic Crowd Avoiding

With this strategy, agents deterministically return to the same district, if the capacity
of district was not exceeded in the previous iteration. Otherwise, agents stochastically
return to the same district or drive to any other district.

There are two different choice mechanisms: Returning if the customer is not taken by
others or returning if the district has remaining capacity. In appendix C.3, I introduce a
customer-based decision but will continue with a district-based decision in this chapter.

If the number of agents in a district does not exceed the number of customers, this
agent will return there. Otherwise, the agent will move towards another customer
with p = 1− ck

ok
and return to the same district with p = ck

ok
. The customer is then

chosen at random from all available customers. In simulations, the utilization fraction
is f̄ = 93.8%. The utility is average for all agents serving a customer that time step and,
therefore, u = 0.469 · umax for N = 1000.

7.9. Stochastic Rank Dependent Choice

This strategy vastly builds upon the strategy Rank Dependent Choice. Yet, all those drivers
who prefer an overcrowded district will not carry a customer with a given probability.
With Stochastic Rank Dependent Choice, these drivers are now diverted to another district
with some probability p = ck−pk

pk
. The district to divert to is either a district which

has remaining capacity, any other district, the #2 district, or the highest utility district
which has remaining capacity. The overall utilization fraction f is calculated as a
generalization of equation 5.8.

f =
N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f (pk, ck) · F (ck, pk) (7.13)

u =
N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f (pk, ck) ·U (ck, pk) (7.14)
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Pre f (pk, ck) is the probability that pk agents prefer a district with capacity ck (equation
7.3). C (ck) is the probability that the capacity of some district k is ck (given by equation
7.1). The utilization fraction function F (ck, pk) calculates the expected utilization, if
pk agents prefer a district k with capacity ck (including rk agents redirecting to other
districts with probability D (ck, pk, rk)).

F (ck, pk) =


pk if pk ≤ ck

ck

∑
rk=0

D (ck, pk, rk) · (s · rk + ck)

+
pk

∑
rk=ck+1

D (ck, pk, rk) · (s · rk + (pk − rk)) otherwise

(7.15)

D (ck, pk, rk) =

(
pk

rk

)
·
(

pk − ck

pk

)rk

·
(

1− pk − ck

pk

)pk−rk

=
(pk − ck)

rk

rk!
· eck−pk (7.16)

The success rate s depends on the strategy and its associated behavior in case of
swapping.

The utility function U (ck, pk) is given by adapting equation 7.15 accordingly to
equation 5.12:

U (ck, pk) =



pk · um if pk ≤ ck
pk

∑
rk=0

D (ck, pk, rk) · (s · rk · ualt + ck · um)

+
pk

∑
rk=0

D (ck, pk, rk) · (s · rk · ualt + (pk − rk) · um) otherwise

(7.17)

Table 7.1 lists the variables s, umax, and ualt for the different SRD strategies.

Strategy s um ualt f u

SRD1 0.595 0.59 0.50 89.8% 0.521
SRD2 0.442 0.59 0.50 88.0% 0.512
SRD3 0.442 0.59 0.59 88.0% 0.519
SRD4 0.595 0.59 0.59 89.8% 0.530

Table 7.1.: IPMC: SRD Strategy – Variables
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7. Individual Preferences with Multiple Customers per District

In strategies SRD1 and SRD4, I assume that s = 0.595 as given by equation 7.18. On
average 0.17N = (1− 0.83) N agents divert to other districts. Thus, 0.17N customers
are not being serviced by an agent to whom they are first preference. I furthermore
assume that these customers are Gaussian distributed across all districts.

s =
N

∑
ck=1

ϕck

ck!
· e−ϕ

ck−1

∑
ok=0

cok
k

ok!
· e−ck , ϕ = 5 · 0.17 (7.18)

In strategies SRD2 and SRD3, the success rate is s = 0.442. In this case, I calculate
the expected number of previously not serviced customers (c′k = ck − ok + rk) and the
probability that these customers are serviced by r′k agents who divert to district k.

s =
N

∑
ck=1

ck

∑
c′k

P
(
c′k
)c′k −

c′k−1

∑
r′k=0

((1− fRD) · ck)
r′k

r′k!
· e−((1− fRD)·ck)

 (7.19)

The utility um is derived from section 7.2.4. In strategies SRD3 and SRD4 I also use
this value um for ualt (the alternative choice utility), for SRD1 and SRD2 I set ualt = uavg.

7.10. Results

Table 7.2 lists utilization and utility for all disussed strategies for the IPMC model
variant.

Strategy utilization f utility u

NL 83.0% 0.415
RD 83.0% 0.495
LL 85.2% 0.500

OPR 93.6% 0.547
CA 49.7% 0.249

SCA 93.8% 0.469
SRD1 89.8% 0.521
SRD2 87.2% 0.508
SRD3 87.2% 0.515
SRD4 89.8% 0.530

Table 7.2.: IPMC: Comparing Strategies

In the IPMC setting, OPR outperforms all other strategies regarding the utility and is
outperformed by SCA concerning f by only a slight margin. All strategies except CA
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7. Individual Preferences with Multiple Customers per District

exceed the utilization of the baseline comparisons NL and RD, with respect to utility,
SCA also falls behind RD (and RD outperforms NL). I assume that a higher average
number of customers per district ϕ further increases the numbers for utilization and
utility, this comparison is, therefore, purely relative. In comparison to the previously
presented IP and MP model variants, the utility values for different strategies in the
IPMC models are close to each other, as average utility and expected utility of a top
priority customer are rather close.
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8. Mixed Preferences with Multiple
Customers per District

8.1. The Model

In the MPMC model, customers are located in districts (“belong to”) and the utility
consists of a customer-specific (“shared”) component and an “individual” component
that is based on customer and agent. The shared utility models the payoff an agent
receives from carrying a customer. All agents would receive the same payoff if they
carried this customer. The individual component models the costs to get to the pickup
location which is identical for all customers in one district but varies between different
agents.

In the MPMC model, customers j ∈ J, |J| = N are “clustered” in districts k ∈ K, |K| =
D = N

ϕ . One average ϕ customers await a driver in one district. As customers are
located in a randomly drawn district, the number of customers in a district is Gaussian-
distributed around ϕ. Customers j ∈ J belong to the district k ∈ K in which they await
a driver. Let’s denote this as b (j, k) = 1. Every agent is located in exactly one district
(∀j : ∑

k∈K
b (j, k) = 1) and the number of customers that are located in a district k is its

capacity ck.

b (j, k) =

{
1 if j is in k

0 otherwise
(Definition 8.1)

∀k : ck = ∑
j∈J

b (j, k) (Definition 8.2)

Agents i ∈ I, |I| = N select customers j ∈ J (d (i, j) = 1) and drive to the district k
that j is located in. Every agent drives to exactly one customer (∀i : ∑

j∈J
d (i, j) = 1), and

the number of agents driving to customer j is denoted as occupancy oj. In the MPMC
model, agents can divert to other customers that belong to the same district at no cost; I,
therefore, extend d (i, j) to d (i, k) to denote that agent i drives to district k. Every agent
i drives to exactly one district k (∀i : ∑

k∈K
d (i, k) = 1). If an agent drives to a customer j,
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he also drives to the district k that j belongs to (d (i, j) = 1∧ b (j, k) = 1⇒ d (i, k)). The
occupancy ok of district k is the number of agents i driving to k.

d (i, j) =

{
1 if i drives to j

0 otherwise
(Definition 8.3)

∀j : oj = ∑
i∈I

d (i, j) (Definition 8.4)

d (i, k) =

{
1 if i drives to k

0 otherwise
(Definition 8.5)

∀k : ok = ∑
i∈I

d (i, j) (Definition 8.6)

As agents independently decide upon the customer or district they drive to, distri-
butions in which too many agents drive to some customers and too few customers
drive to some other agents can and do frequently occur. I further introduce the notion
c (i, j) = 1 to denote that agent i carries customer j. An agent i can carry a customer
j, if i drives to the district k that j belongs to (c (i, j) ≤ ∑

k∈K
d (i, k) · b (j, k)). One agent i

can carry at most one customer j (∀j : ∑
i∈I

c (i, j) ≤ 1) and one customer j can be carried

by at most one agent i (∀i : ∑
j∈J

c (i, j) ≤ 1). In every district, agents carry as many

customers as possible, no agent refuses to carry a customer remaining at this district.
Thus, the number of customers carried per district is either capacity ck or occupancy ok
(∀k : ∑

i∈I
j∈J

c (i, j) · b (j, k) = min (ck, ok)).

c (i, j) =

{
1 if i carries j

0 otherwise
(Definition 8.7)

Agents can either drive to their preferred customer or a randomly drawn customer
(given by the strategy). For every agent i there exists a customer j whom he prefers
over all other customers, as this customer yields the highest utility for him. A customer
j is preferred by pj agents. Agents prefer the district their preferred customer belongs
to. A district k is preferred by pk agents.

p (i, j) =

{
1 if ∀j′ : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 8.8)
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∀j : pj = ∑
i∈I

p (i, j) (Definition 8.9)

∀k : pk = ∑
i∈I
j∈J

p (i, j) · b (j, k) (Definition 8.10)

The utility an agent i can gain from carrying customer j depends on both an indi-
vidual and a shared utility component (ui (i, j) , us (j) = us (i, j) ∀i). Both utilities are
uniformly distributed between 0 and 1.

u (i, j) = α · ui (i, j) + (1− α) · us (j) , 0 ≤ α ≤ 1 (Definition 8.11)

∀j, j′ ∈ J : ∀k ∈ K : b (j, k) = b
(

j′, k
)
⇒ us (j) = us

(
j′
)

(Definition 8.12)

In the MPMC game model, the individual utility is identical for all customers which
are located in a given district as the driving distance between agent and customer is
identical for all customers in the same location (district).

∀k ∈ K : ui (i, j) = ui (i, k) ∨ b (j, k) = 0 (Definition 8.13)

I define that the utility of a district k is given by the utility of the customer yielding
the highest utility (see Proposition 8.1). The highest utility customer is defined as
b1 (j, k) = 1. Obviously, the “best” customer j (customer with highest utility) must be
located in district k, and there must not be any other customer j′ that also belongs to k
that yields a higher shared utility.

∀k : u (i, k) = max
j∈J

(u (i, j) · b (j, k)) (Definition 8.14)

b1 (j, k) =

{
1, if b (j, k) = 1∧ (us (j) ≥ us (j′) ∨ b (j′, k) = 0 ∀j′)
0, otherwise

(Definition 8.15)

The utilization fraction is calculated as the average of all agent utilizations. The
agent utilization f (i) defines whether an agent i carries any customer. The utility is
calculated as the average of all agent utilities u (i). u (i) is 0, if i does not carry any
customer and the utility of the customer j that i carries (u (i, j)) otherwise.

f =
1
N
·∑

i∈I
f (i) (Definition 8.16)

f (i) = ∑
j∈J

c (i, j) (Definition 8.17)
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u =
1
N
·∑

i∈I
u (i) (Definition 8.18)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 8.19)

For numerical experiments and simulations I assume that there are N = 1000 agents
and customers in D = 200 districts (on average ϕ = 5 customers per district), that
α = 0.5, that the individual utility is uniformly distributed between 1

N and umax = 1
(with step size 1

D , as the individual utility is calculated on a district basis) and every
agent that is successful at the preferred customer receives on average um and every
agent successful at a randomly chosen customer receives on average uavg = 0.5, and
that customers are indexed by their utility (us (j) = j

N ).

8.2. Theoretic Foundations

8.2.1. Capacity: Number of Customers per District

The capacity ck that is the number of customers belonging to district k is given as
a Gaussian distribution around the average number of customers per district ϕ, as
customers randomly choose the district they belong to. Thus, the probability for
capacity ck is calculated as follows:

C (ck) =

(
ϕD
ck

)
·
(

1
D

)ck

·
(

1− 1
D

)ϕD−ck

=
ϕck

ck!
· e−ϕ (8.1)

8.2.2. Highest Utility Customer and District

Proposition 8.1. In the MPMC partial game model, agents only prefer the customer j with the
highest shared utility in district k. If another customer j′ who belongs to the same district k has
a higher shared utility, j is not preferred by any agent.

Proof. Assume that j, j′ ∈ J are customers, k ∈ K is the district both customers belong
to such that b (j, k) = 1 and b (j′, k) = 1. Assume that j a higher utility than j′

(u (i, j) < u (i, j′)). An agent i chooses the district which yields the highest utility,
assume that this district is k (p (i, k) = 1). Thus, ∀k′ ∈ K \ {k} : u (i, k) ≥ u (i, k′). From
definition Definition 8.14 I know that the utility of a district is given by the highest
utility of any of the customers belonging to it. I assume that this customer is j.
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u (i, j) > u
(
i, j′
)

| with Definition 8.11

α · ui (i, j) + (1− α) · us (i, j) > α · ui
(
i, j′
)
+ (1− α) · us

(
i, j′
)

| with Definition 8.13

α · ui (i, k) + (1− α) · us
(
i, j′
)
> α · ui (i, k) + (1− α) · us

(
i, j′
)

| − α · ui (i, k)

us (i, j) > us
(
i, j′
)

The probability that a customer j yields the highest utility in his district k (is the “best”
customer) is denoted as B1 (j, ck) and is calculated as the probability that all customers
jh with a higher shared utility us (jh) > us (j) choose other districts (∀jh : b (jh, k) = 0),
j belongs to k (b (j, k) = 1) and exactly ck − 1 customers jl with lower shared utility
choose this district k. Without loss of generality, I assume that there are N− j customers
with higher shared utility and j− 1 customers with lower shared utility (one assigns
the identifiers j to customers based on their shared utility component). N is the number
of customers and the number of agents (|I| = |J| = N), and D is the number of districts
(|K| = D = N

ϕ ).

B1 (j, ck) =

(
j

ck

)
1
D

ck D− 1
D

j−ck

︸ ︷︷ ︸
jl≤j

D− 1
D

N−j

︸ ︷︷ ︸
jh>j

=

(
j

ck − 1

)
1
D

ck D− 1
D

N−j
=

(
j

D

)ck

(ck)!
· e−

j
D (8.2)

If the capacity of (another) district is unknown, one can use a generalization of
equation 8.2. B1 (j) ensures that all customers jh with a higher shared utility component
choose other districts and all those jl with lower shared utility component are being
ignored.

B1 (j) =
(

N − j
0

)
1
D

0 (
1− 1

D

)N−j

=
D− 1

D

N−j
=

N
ϕ − 1

N
ϕ

N−j

(8.3)

8.2.3. Same First Preference

In the MPMC model, the probability that district k yields maximum utility is no longer
equal for all k ∈ K, as the utility depends on a shared component all agents agree upon.
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The average number of agents choosing a district k with individual utility ui (k) =
ui (j) is denoted as ϕ ·Π′ (k). Π′ (k) is calculated as the product of probabilities that no
other customer jl , jh yields a higher utility u (i, jl), u (i, jh) for any agent i and is best in
his district for all customers j ∈ J.

Π′ (j) =
j−1

∏
jl=1

P

(
u (i, j) ≥ u (i, jl) ∨

D

∑
k=1

b1 (jl , k) = 0

)
·

·
N

∏
jh=j+1

P

(
u (i, j) ≥ u (i, jh) ∨

D

∑
k=1

b1 (jh, k) = 0

)
(8.4)

Numerically, I adapt equation 8.4 as follows: I iterate through all customers with
lower j′ = j − jl and higher j′ = j + jh shared utility component assuming ∀j ∈ J :
us (j) = ϕ k

D ∨ b (j, k) = 0, and weighting individual and shared utility component
equally (α = 0.5). A customer j′ = j − jl (shared utility is jl · 1

N lower if an agent
carries j′ than if he carried j) does not exceed the utility of j if its individual utility is
less than (jl − 1) · 1

ϕ higher. Assuming that individual utilities are represented by q
(ui (i, k) = ϕ · q · 1

N ), one can derive that the individual utility of the district k′ that j′

is located in must not be higher than ϕq + jl . Analogously, the individual utility of a
customer j exceeds the utility of j′ = j + jh (customer with higher shared utility) if the
individual utility is correspondingly lower that is lower by ϕ · q− jh. If j′ does not yield
the highest shared utility in its district, I do not consider it.

Π′l (j, ϕ, q) =
j−1

∏
jl=1


1− (B1 (j− jl))︸ ︷︷ ︸

j′ best

·

1− min (N, ϕ · q + jl)
N︸ ︷︷ ︸

u(i,j)≥u(i,j′)


︸ ︷︷ ︸

u(i,j)<u(i,j′)


︸ ︷︷ ︸

j′ not best or u(i,j)≥u(i,j′)

Π′h (j, ϕ, q) =
N−j

∏
jh=1

(
1− B1 (j + jh) ·

(
1− max (0, ϕ · q− jh)

N

))

Π′′ (j) =
D

∑
q=1

Π′l (j, ϕ, q) ·Π′h (j, ϕ, q)
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Π′ (j) =
D

N
∑

j′′=1
Π′′ (j′′)

·Π′′ (j) (8.5)

I, therefore, expect ϕΠ′ (j) = ϕΠ′ (k) (b1 (j, k) = 1) agents preferring the district k in
which j is the highest utility customer. Yet, the actual number of agents preferring k is
Gaussian distributed around ϕΠ′ (k). Pre f (pk, ϕΠ′ (j)) is the probability that district k
with the highest utility customer j is preferred by exactly pk agents.

Pre f
(

pk, ϕΠ′ (j)
)
=

(ϕΠ′ (j))pk

pk
· e−ϕΠ′(j) (8.6)

8.2.4. Occupancy

The occupancy of district k depends on the type of choice: If agents decide randomly,
the average number of agents in district k is its capacity ck, otherwise, it is the expected
number of agents preferring it (ϕΠ′ (k)). In the following, λk is the expected number of
agents driving to district k.

O (ok, λk) =
λok

k
ok
· e−λk (8.7)

8.2.5. Expected Utility of Top Priority Customers

In the MPMC setting, all agents agree upon the same “best” customer inside a district
(Proposition 8.1).

To calculate the expected agent utility, I assume that every customer in a district
with capacity ck and highest utility customer j yields on average ue (j, k) to the agent
carrying him. ūi (j) is the average individual utility of the district k that j is located in.

ue (j, k) =
1
ck

(us (j) + ūi (j)) +
ck − 1

ck
·
(

us (j)
2

+ ūi (j)
)

(8.8)

ūi (j) =
1

Π′ (j)
·

D

∑
k=1

ϕ · k︸︷︷︸
utility

·Π′l (j, ϕ, k) ·Π′h (j, ϕ, k)︸ ︷︷ ︸
if successful

(8.9)

The average utility of an agent who carries a customer from his preferred district
um = 0.785 is a weighted average of all possible ue (j, k) (weighted by the probability
B1 (j, ck)).
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8.3. No Learning

Using the NL strategy, all agents drive to a randomly selected customer. Thus, indivi-
dual utility levels are irrelevant. The utilization fraction depends on (1) the capacity
ck of district k (associated with probability C (ck)) and (2) the occupancy ok of district
k (associated with probability O (ok, ck)). C (ck) =

ϕc
k

ck ! · e−ϕ is the probability that ck
customers are randomly assigned the same district given an average of ϕ customers

per district. O (ok, ck) =
c

ok
k

ok ! · e−ck is the probability of ok agents randomly driving to
district k containing ck customers.

f =
1
ϕ
·

N

∑
ck=1

C (ck) ·

ck −
ck−1

∑
ok=0

O (ok, ck) · (ck − ok)︸ ︷︷ ︸
expected remaining capacity

 (8.10)

Thus, the utilization fraction is f = fNL = 83.0%. As all agents decide randomly
where to drive to, all successful agents will receive average utility uavg. The utility is,
therefore, u = 0.415 · umax.

8.4. Rank Dependent Choice

In the MPMC model, for every customer j, I calculate the average number of agents
driving there if this customer yields the highest utility of all customers in its district k
with ck customers.

The probability that a district is being selected utility-dependent only depends on
the customer with the highest shared utility component us (j) in this district and the
individual utility ui (i, k) of the district but is ignorant about the number of customers
in this district and all other customers’ shared utility component.

Bearing that in mind I define the utilization fraction f as follows. The probability
of being the customer with the highest utility is B1 (j, ck) and the average number of
agents driving to a district k containing customer j is ϕΠ′ (j). All agents drive to their
preferred customer (∀i, j : d (i, j) = p (i, j)).

f =
1
N
·

N

∑
j=1

j

∑
ck=1

B1 (j, ck) ·
(

ck −
ck−1

∑
pk=0

Pre f
(

pk, ϕ ·Π′ (j)
)
· (ck − pk)

)
(8.11)

60



8. Mixed Preferences with Multiple Customers per District

The utilization fraction of agents using the RD strategy is, thus, f = fRD = 30.6%.
The expected average utility u = 0.240 · umax is given by adapting equation 8.11 with
the expected utility ue (j, k) for all successful agents.

u =
1
N ∑

j∈J

j

∑
ck=1

B1 (j, ck) ·
(

ck −
ck−1

∑
pk=0

Pre f
(

pk, ϕΠ′ (j)
)
· (ck − pk) · ue (j, k)

)
(8.12)

8.5. Limited Learning

Using the strategy LL, agents first drive to the district a randomly selected customer is
located in. Agents who carried a customer at time t drive to their preferred customer at
time t+ 1. The utilization fraction for the MPMC model is calculated as follows: The left
summand comprises those agents who were successfully carrying a randomly chosen
customer in the previous iteration ( ft−1) and now drive to their preferred resource.
These agents are successful with probability fRD. fRD is the utilization fraction of the
RD strategy and thus the number of customers who are preferred by any agent. The
right summand comprises all other agents driving to the remaining districts. The
average number of customers per district is adapted to λ = ϕ (1− ft−1) as the expected
number of remaining customers is reduced.

ft = ft−1 · fRD +
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
(8.13)

For the expected utility one has to differentiate between randomly choosing agents
and those who return to their preferred district, as both groups are comprised in the
right summand of equation 8.13. Of these agents, a fraction of r̄ = 0.186 return to their
preferred district, 1− r choose randomly.

u = f · fRD · um +
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
·
(
r̄ · um + (1− r̄) · uavg

)
(8.14)

From equations 8.13 and 8.14 I derive f = 57.0% and u = 0.357 · umax.

8.6. One Period Repetition

Agents adopting the OPR strategy randomly choose a resource at time t, and return
there at time t + 1 if they were successful at time t. At time t + 2, agents drive to their
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preferred customer (after being successful at time t and t + 1).
The utilization fraction and utility are calculated as follows. x = (1− 2x) · fNL is the

fraction of agents who return to the same district and who improve by driving to their
preferred resource after returning to a random resource. 1− 2x agents randomly select
any customer, x = (1− 2x) · fNL of these agents are successful. fNL is the utilization
fraction of the NL strategy and, therefore, randomly behaving agents. Further, all
districts are utilized up to min (ck, pk), which comprises fRD. These fRD · N agents
constantly remain with their preferred district ( fRD is the utilization fraction of the RD
strategy).

f = (x + (1− 2x) · fNL) · (1− fRD) + fRD (8.15)

u = (x + (1− 2x) · fNL) · (1− fRD) · uavg + um · fRD (8.16)

With fNL = 0.830, and fRD = 0.308 this results in f = 73.9% and u = 0.457 · umax.

8.7. Crowd Avoiding

The CA strategy ignores the utility or “rank” of customers; agents only drive to
customers who were not carried in the previous iteration. On average, agents choose
from of λ = 1

1− f of all customers, resulting in λ · ck customers remaining per district.

f = (1− f ) ·
(

N

∑
ck=1

C (ck) ·
(

ck −
ck−1

∑
ok=0

O (ok, λ · ck) · (ck − ok)

))
(8.17)

I, therefore, conclude that the utilization fraction is f = 49.7%, and that the utility is
u = 0.249 · umax.

8.8. Stochastic Crowd Avoiding

Agents applying the SCA strategy either return to the same resource in the next iteration
or divert to other resources. An agent i remains at district k, if k’s capacity is not fully
used (ok ≤ ck), or with probability ck

ok
. If an agent i does not return to the same district,

he randomly selects any resource k ∈ K.
Simulations suggest a utilization fraction of f̄ = 93.8% and a utility of u = 0.469 · umax.
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8.9. Stochastic Rank Dependent Choice

The strategy SRD dictates that agents stochastically either drive to their preferred district
or any other district, depending on the number of agents with the same preference (pk
for p (i, k) = 1). Diverting agents drive to (1) any underutilized district, (2) any other
district, (3) the district yielding second highest utility, or (4) the underutilized district
that yields the highest utility.

The overall utilization fraction f for every strategy is calculated as a generalization
of equation 5.8.

The utilization fraction sums up the expected number of agents carrying a cus-
tomer (F (ck, pk)) for the number of agents preferring district k (pk with probability
Pre f (pk, ϕΠ′ (j))), the capacity of this district (ck with probability C (k)), and the custo-
mer yielding highest utility j. The utility function u analogously sums up all individual
utilities U (ck, pk) analogously.

f = ∑
j∈J

N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f
(

pk, ϕΠ′ (j)
)
· F (ck, pk) (8.18)

u = ∑
j∈J

N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f
(

pk, ϕΠ′ (j)
)
·U (ck, pk) (8.19)

The utilization function F (ck, pk) is pk, if the capacity is not exceeded by those agents
preferring district k. In this case, no agent diverts and thus all agents can carry a
preferred customer. Otherwise, one sums up the utilization retrieved from rk agents
redirecting for all rk ≤ pk weighted by the probability D (pk, ck, rk) that rk agents divert
in a district k containing ck customers that is preferred by pk agents and is calculated as
a Poisson distribution around pk − ck (D (ck, pk, rk) =

(pk−ck)
rk

rk ! · eck−pk ). min (ck, pk − rk)
agents remaining at district k carry a customer in this district. If less agents divert than
required, not all of them will be able to carry a customer, but all ck customers will be
carried. If more agents divert than required, all pk − rk agents carry a customer, but not
all customers are carried. Those rk agents who redirect to another district can increase
the utilization, if they are able to carry the customer they divert to. The probability
of carrying a customer as a diverting agent is given by success rate s. SRD2 and
SRD3 allow diverting agents to drive to fully capacitated districts. Yet, for calculating
the utilization fraction I assume without loss of generality that not diverting agents
favorably carry customers. Diverting agents receive a certain utilization depending on
the success rate s which varies depending on the strategy and its associated behavior
in case of swapping. The success rate factors in that diverting agents can only be
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8. Mixed Preferences with Multiple Customers per District

successful if no other agent is “bullied out” his preferred district.

F (ck, pk) =


pk if pk ≤ ck

ck

∑
rk=0

D (ck, pk, rk) · (s · rk + ck)

+
pk

∑
rk=ck+1

D (ck, pk, rk) · (s · rk + (pk − rk)) otherwise

(8.20)

The utility function U (ck, pk) is given by adapting equation 8.20 to cater for varying
utility levels. Agents carrying a customer from their preferred district receive on
average a utility of um (from section 8.2.5), diverting agents receive on average ualt if
they are successful. ualt depends on the strategy.

U (ck, pk) =



pk · um if pk ≤ ck
pk

∑
rk=0

D (ck, pk, rk) · (s · rk · ualt + ck · um)

+
pk

∑
rk=0

D (ck, pk, rk) · (s · rk · ualt + (pk − rk) · um) otherwise

(8.21)

Table 8.1 compares the variables s, um, and ualt for strategies SRD1 and SRD2. Strate-
gies SRD3 and SRD4 perform worse than random, as first preference and alternative
choice are not independent of each other (thus, diverting agents rk are not uniformly
distributed, making it impossible to analytically derive a success rate s). In simulations,
the utilization fraction of SRD3 is f̄ = 36.7%, and its utility is u = 0.283 · umax. The
utilization of strategy SRD4 is f̄ = 47.4%, and its utility is u = 0.366 · umax.

Strategy s um ualt f u

SRD1 0.866 0.79 0.50 78.5% 0.438
SRD2 0.850 0.72 0.50 77.3% 0.432

Table 8.1.: MPMC: SRD Strategy – Variables

In strategy SRD1, I assume that the success rate is s = 0.866 as given by equation
8.22. On average 0.697N = (1− 0.303) N agents divert to other districts. Thus, 0.697N
customers are not being carried by an agent to whom they are first preference. I
furthermore assume that these customers are Gaussian distributed across all districts,
resulting in on average λ = ϕ · 0.697 customers per district. The success rate s is
calculated as the utilization fraction of the NL strategy with a reduced number of
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8. Mixed Preferences with Multiple Customers per District

customers per district.

s =
N

∑
ck=1

λck

ck!
· e−λ

ck−1

∑
ok=0

cok
k

ok!
· e−ck (8.22)

In strategy SRD2, the success rate is s = 0.850. In this case, I calculate the expected
number of previously not carried customers (c′k = ck − ok + rk with probability P

(
c′k
)
)

and the probability that these customers are carried by r′k agents who divert to district
k.

s =
N

∑
ck=1

ck

∑
c′k

P
(
c′k
)c′k −

c′k−1

∑
r′k=0

((1− fRD) · ck)
r′k

r′k!
· e−((1− fRD)·ck)

 (8.23)

The utility um is the utility of strategy RD for those who are successful. I set
ualt = uavg, as the alternate choice is independent from the actual utility.

8.10. Results

Table 8.2 shows utilization and utility for the previously examined strategies in the
MPMC model.

Strategy utilization f utility u

NL 83.0% 0.415
RD 30.6% 0.240
LL 57.0% 0.357

OPR 73.9% 0.457
CA 49.7% 0.249

SCA 93.8% 0.469
SRD1 78.5% 0.438
SRD2 77.3% 0.432
SRD3 36.7% 0.283
SRD4 47.4% 0.366

Table 8.2.: MPMC: Comparing Strategies

Of the two baseline comparisons, NL outperforms RD both with respect to utilization
and utility, as the number of districts containing a preferred customer is lower than a
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8. Mixed Preferences with Multiple Customers per District

random selection of districts. None of the rank dependent strategies (LL, OPR, SRD1-
SRD4) reach the utilization of the NL strategy, but OPR, SRD1 and SRD2 outperform
NL with respect to utility. SCA performs best both with respect to utilization and
utility.
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9. Critical Discussion

In the previous sections I observe that utilization fraction and utility of some strategy
vastly depend on the model variant: In general, one can state that using districts (IPMC,
MPMC) improves both optimization criteria. Obviously, if there was only a single
district (D = 1, ϕ = N) in which all customers are located, one can expect a utilization
fraction of f = 1 regardless of the implemented strategy, as all agents can divert to
other customers in the same district until every customer is carried. If there are no
districts, the utilization fraction is determined by the KPRP, or the IP and MP model
variant, depending on the other assumptions. I thus advise “clustering” the resources
(customers) based on proximity, for example by using taxi stands. They allow agents to
serve another customer in the same district if another agent already carries the selected
customer. I notice that all strategies always perform at least as good in IP and IPMC as
in their mixed preferences counterpart. Obviously, NL, CA and SCA are not affected, as
agents never deterministically drive to their preferred resource, but utilization fraction
and average agent utility for the other strategies decrease when introducing mixed
preferences as the number of distinct highest utility resources decreases. The number of
distinct highest utility resources depends on the probability that a resource is preferred
by any given customer which is not identical for all resources in the MP and MPMC
model variant but depends on the shared utility component. Due to this, exceeding
fNL with rank dependent strategies becomes difficult for α = 0.5. With increasing α

the number of distinct highest utility resources decreases, resulting in a decreasing
utility of all rank-dependent strategies, as shown in appendix B. Thus, I conclude that
high individual utility components are preferred by agents, as the probability of being
able to carry the preferred customer increases. In mobility markets – that is vehicle for
hire markets – I derive that one would prefer a high influence of the cost of driving
to the pickup location which can either be achieved by revenue in a small range or
by high distances to the pickup location. Alternatively, a coordination instance could
impose personalized incentives, causing agents to distribute themselves in balance with
customers.

I also observe that stochastic rank dependent strategies (SRD) outperform their
strict counterpart (RD). This is because a fraction of agents chooses its top preference,
whilst the other agents can receive utility from another resource. I observe that SRD1
(and SRD4 in IP and IPMC) perform best with respect to utilization fraction f (most
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customers are carried). SRD1 and SRD4 outperform SRD2 and SRD3 in the IP and
IPMC model variants of the VFHP, and SRD1 outperforms SRD2 in the MP and MPMC
model variants, as the success rate of redirecting agents is higher. In IP and IPMC,
SRD4 outperforms SRD1 with respect to utility, as agents always choose a district
yielding high utility. SRD4 performs poorly for mixed utility models (MP, MPMC), as
most agents share the same highest utility district with remaining utility. Yet, SRD2 and
SRD3 require less information about the preferences of other agents and are therefore
preferred in environments without full information.

The CA strategy outperforms the NL strategy in none of the models and is more
complex as it requires information about the occupancy rate of all resources, making it
unsuitable for implementation. The LL strategy is outperformed by the OPR strategy
in all models, making it less attractive for implementation. Yet, the two-step approach
is easier to establish in a larger group of agents. From comparing the strategies LL and
OPR I conclude that waiting for m periods before choosing the highest utility resource
further improves both optimization criteria (strategy m-Period Repetition, mPR). I
observe that OPR and SCA perform best regarding the utilization fraction and utility.
Yet, agents will not be able to carry their top priority customer with SCA in most cases
(probability 1

N ). My findings recommend that taxi drivers consider both history and
associated utility when choosing a customer or resource.

Yet, my model draws a rather theoretical picture of the reality: I assume that utilities
us (j) and ui (i, j) are uniformly distributed and random ( 1

N . . . 1 with step size 1
N ),

allowing for an analytical approach. In most cities, one would rather assume a majority
of customers returning a low or medium utility and only very few trips with very high
utility. Also, assuming Gaussian-distributed numbers of customer per district is a major
abstraction, in reality, a small number of hot spots such as airports or railway stations
draw more attention than a large number of residential neighborhoods. Yet, the VFHP
game model I discussed in chapters 5-8 can easily be adapted by exchanging C (ck)
by more suitable functions for the given distribution. In the MP and MPMC model
variants, I model the distance between agent i and customer j as ui (i, j). In real world
examples, ui (i, j) depends on the history, as agents move through the city. Also, two
adjacent resources will result in similar utilities for all agents which is not reflected
in the presented model. Though, my model allows for extensions addressing these
limitations.

In reality, the individual utility of agents – that is distance between agent and resource
– changes in every iteration, as agents drive to customers. Thus, the utility agents can
derive from customers has to be recalculated in every iteration. Yet, varying utilities do
not influence the general idea VFHP game model; one only had to retrieve information
about the preferences of all other agents in every iteration. Another abstraction concerns
the timing between agents: One cannot assume that all agents select a resource at the
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same time. One could impose a discrete time model assuming that every agent drives
to one customer per discrete time step, but as driving to a customer takes differently
long depending on the distance. In the VFHP game model, it is sufficient to assume
that the number of customers and agents is identical in all iterations, but several of
the history-dependent strategies (LL, OPR, SCA) will perform differently for agents
who did not participate in the previous iteration, as these agents will have to select a
random resource rather than using a more promising selection. For example, agents
implementing the OPR strategy receive a certain utilization of f (i) = 1 from customer
j in the “return” phase, as no other agent drives to this customer j if this resource was
occupied in the previous iteration. Yet, if agent i returns to a customer after pausing for
several iterations, it is possible that another agent chose this resource as well, reducing
utilization fraction and utility. Also, drivers who did not carry a customer will be
able to drive to another customer directly after, whilst agents carrying a customer first
have to finish this trip and are thus not available during the next iteration. One can
extend the VHFP game model with a “continue carrying” phase for agents, in which
they are utilized ( f (i) = 1) and the utility the carried customer yields is divided up
over the all iterations this trip takes. Customers disappear after being carried, and
new customers appear frequently. As the shared utility of customers is the expected
revenue, the VFHP game model can easily incorporate appearing and disappearing
customers. Also, the expected utility yielded by customers can be difficult to determine,
as individual behavior cannot be predicted precisely. It is possible to predict general
tendencies (e.g., customers at airports often travel downtown and thus quite far), but
for other locations, one cannot predict precise travel distances or patterns of customers
(e.g. in city centers, most customers travel short distance, but few customers need
longer transport, yet, it is difficult to predict when exactly customers require these
longer trips). The IP and IPMC model variant do not use shared utilities in terms of
customer revenue and are therefore more suited if the utility is unknown. In more rural
areas, the expected number of customers in a district can be below 1, but the VFHP
assumes discrete numbers of customers per district. Whilst rounding is reasonable for
larger numbers of customers per district, rounding will frequently result in no expected
customers in rural areas. There, vehicles for hire are usually called by phone. Thus, a
dispatcher sends a driver to pick up this customer. The VHFP on the opposite mimics
taxi hailing or calling a nearby taxi via app, if no dispatcher is available.

Despite the above limitations, the VHFP presents a suitable game model for agent
behavior in vehicle for hire markets and lays ground work for improving utilization
and utility in mobility markets.
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10. Conclusion and Future Work

In this thesis I analysed two different models for mobility markets, the Kolkata Paise
Restaurant Problem (KPRP) and four model variants of the Vehicle for Hire Problem
(VFHP). To adapt the KPRP for mobility markets, I gradually drop or alter the assump-
tions of the KPRP: Agents no longer agree upon the resources’ utilities (IP and MP
model variants), and resources are “clustered” in districts, allowing agents to deviate
from their first choice (IPMC and MPMC model variants). Further, I compared those
five models by testing for utilization fraction and utility for agents using one of seven
different strategies. Three of these strategies stem from Chakrabarti et al. [1], two furt-
her strategies were introduced by Ghosh et al. [20]. I developed the strategies RD and
SRD to specifically address the requirements of dynamic mobility markets. In dynamic
matching markets, the behavior of other agents in previous iterations cannot determine
the utility agents associate with resources in the future with absolute certainty as agents
and customers enter and leave the market at will, calling for history-independent
rank-dependent strategies.

Future research will be conducted on (1) behavior of agents, if two or more strategies
are implemented in one market and the influence on utilization fraction and utility, (2)
performance of the discussed strategies in practice, (3) incentive mechanisms and their
effect in practice, and (4) the influence of the rise of autonomous cars and successive
merge of the vehicle for hire and the car-sharing market.

If agents apply different strategies, the overall utilization fraction and utility might
increase or decrease. Also, the utility could be unevenly distributed. For example, if
N − 1 agents play NL in the KPRP and one agent plays RD, this agent can expect a
higher utility than the other agents (0.632 · umax vs. 0.316 · umax). Unilateral deviation
can therefore be beneficial for agents. In the CA strategy, unilaterally deviating agents
can implement a strategy in which they only choose from previously occupied resources,
if only one agent deviates, he is guaranteed a utilization of f (i) = 1. The OPR strategy
retrieves its high utility from agents not randomly choosing resources which were
served by other agents the previous iteration, including those agents who constantly
carry their preferred customer. Single agents implementing a NL strategy reduce the
number of agents returning to their preferred resource, decreasing the performance of
the OPR strategy.

This thesis focuses on the performance of several strategies in theoretical settings. As
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discussed in chapter 9, utilization and utility can vary as the assumptions of the VFHP
deviate from reality. With real world data on the location of customers during a given
time frame and the routes of drivers, one can evaluate whether the strategies improve
current driver behavior. With insight from this data analysis, one can improve the
strategies presented in this thesis and continue with incentive mechanisms to enforce
beneficial behavior.

One can use the knowledge about the theoretic (and real world) performance of
different strategies to incentivize behavior that is beneficial for the entire group. As
discussed in chapter 9, agents incorporating the strategy OPR achieve a high utilization
fraction and high utility in the IP and IPMC model. The strategy dictates a three-step
approach: A random choice of a resource, returning to this resource once, and driving
to the preferred resource. Yet, agents might be reluctant to wait for one iteration prior
to driving to the preferred resource (e.g. due to missing trust in other agents, bounded
rationality). For these agents, a coordination instance can offer incentives to return to
the same resource.

Developments in the field of autonomous cars will most likely result in the end of
vehicle for hire markets in its current setup, as drivers are no longer required, but cars
independently carry passengers. Another industry that develops towards autonomous
vehicles for passenger transportation is the car-sharing market in which passengers
can rent cars for a short period (i.e. for one-way trips in major cities). The vehicle for
hire market and car-sharing market steer towards offering the same service, if drivers
become obsolete. Obviously, strategies and algorithms to redirect agents will become
increasingly important; future research should therefore focus on improving the basic
strategies presented in this thesis.
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A. KPRP: Limited Learning 2

This strategy was also presented in the original paper [1].
Agents start with a random choice of restaurants the first day.

• If some agent gets dinner at restaurant j at time t, he chooses randomly from
those restaurants j′ ∈ J with u (j′) > u (j) at time t + 1 (improvement).

• Otherwise, he chooses randomly from those restaurants j′ ∈ J with u (j′) < u (j)
at time t + 1 (worsening).

Chakrabarti et al. give no formula by which the average utilization fraction is calcula-
ted or simulation results, only a value of f = 0.5. They argue that it should not make a
difference if the agent improves after getting dinner or after not getting dinner (and
worsening vice versa) and therefore conclude that the utilization should always be 50%.

In my simulations, I was not able to reproduce this result, I found an average
utilization of f ≈ 0.434 for N = 1000 agents and 106 time steps. Simulating with less
time steps or less agents both returned higher utilization fractions, which could explain
the result from [1].

One of the issues with this strategy is the imbalance of between the different restau-
rants: High ranking restaurants are often missed during the improvement step (red),
very low ranking restaurants are often missed during the worsening step (green). Me-
diocre restaurants are relatively seldomly missed. This result can also be seen in figure
A.1 which depicts the number of missed dinners per restaurant (during improvement,
during worsening, and in total (black)) on a logarithmic scale for N = 50 restaurants.

The correlation between the number of restaurants and the number of misses assu-
ming 10,000 time steps is shown in figure A.2. For this experiment, I simulate 101 to
105 agents and restaurants (x-axis).

The argument given in the paper that it should not make a difference which group
improves and which worsens (those who got dinner and those who did not) does not
hold, as it might happen that a restaurant is frequented by exactly one agent, who
improves (without anyone worsening) or more than two agents (one improving and
the other ones worsening). The argument that the number of people worsening and
improving should be identical only holds if every restaurant is frequented by exactly
two agents (or no agent at all).
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Figure A.1.: Missed Dinners per Restaurant
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Figure A.2.: Missed Dinners Compared to Number of Restaurants
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B. MP model: Influence of Mixing Ratio on
Number of First Preference Customers

From equation 6.10 we expect approximately 77 distinct customers with highest utility
for N = 1000. In simulations, this value varied from 69 to 83. The average probability
of the #1 priority of the shared preference ranking of being the #1 priority of some
agent is ≈ 4.0% (in comparison to 0.1% in the individual preferences case). Between the
#100 priority and #1 priority the probability grows overlinearily, the probability for
values around the #35 priority to be among the top priorities is still increased by a
factor of 10, whilst the probability that a customer which is 70th in the shared ranking
to be an individual top priority is approximately even to the probability of being the
top priority in the individual preferences case.

Figure B.1 depicts the influence of the mixing ratio between shared and individual
component on the number of distinct first preferences. If the individual component is
being neglected (ratio 0.0), there is exactly 1 first preference. If the shared component
is being neglected (ratio 1.0), there are approximately 632 different first preferences
(N ·

(
1− e−1)).
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Figure B.1.: Comparing the influence of mixing ratio between shared and individual
component for the Strict Rank Dependent Choice Strategy
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C. IPMC model: Type of Selection

C.1. No Learning: Selecting Districts

To calculate the number of missed customers or the number of agents who are not
assigned a customer (and therefore the utilization fraction), we have to distinguish
by the number of customers in a district. In theory, there might be 0 . . . N customers
in one district, though both extremes will get highly unlikely. Assuming that there
are 5 customers on average per district, the probability C (ck) for capacity ck is given
by equation C.2. In this case ϕ is the average number of customers per district (in
simulations: 5).

C (ck) =

(
ϕN
ck

)
1
N

c

k

(
1− 1

N

)ϕN−ck

(C.1)

=
ϕck

ck!
e−ϕ (C.2)

For every district, we now calculate the number of customers which are not being
served based on the capacity.

O (ok, ck) =

{
ϕok

ok ! e−ϕ, if ck > ok

0 otherwise
(C.3)

We now connect equations C.2 and C.3 to equation C.5.

f =
1
ϕ

N

∑
ck=1

C (ck) ·
(

ck −
ck−1

∑
ok=0

O (ok, ck) · (ck − ok)

)
(C.4)

=
1
ϕ

N

∑
ck=1

ϕck

ck!
e−ϕ ·

(
ck −

ck−1

∑
ok=0

ϕok

ok!
e−ϕ · (ck − ok)

)
(C.5)

For ϕ = 5 this results in an average utilization fraction of f = 75.09%. The utility is
given by average utility uavg for every agent who gets dinner, thus u = 0.379 · umax for
N = 1000 agents.
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C. IPMC model: Type of Selection

It shall be mentioned that setting ϕ = 1 does not reduce the problem to the No
Learning strategy in the Kolkata Paise Restaurant Problem, but yields f = 47.62%, as some
districts will contain no customers at all.

C.2. Rank Dependent Choice: Selecting the District with the
Highest Average Utility

In this sub-strategy, every agent chooses the district with the highest average utility.
In simulations, this strategy preferred districts with very few available customers

over larger districts (as there is a smaller probability of only having high values).
In simulations with N = 100 agents and ϕ = 5 customers per district, the utilization

was as low as f̄ = 46%, as one district with only one customer in it was preferred by 25
agents.

Thus, this strategy is not recommended for N → ∞.

C.3. Switch if Customer is Overcrowded

If there is more than one agent choosing the same customer, all of them will return
with probability 1

ok
and choose any other (randomly drawn) customer with probability

ok−1
ok

. Thus, agents might be appealed to choose another district even if their district is
not overcrowded.

The utilization fraction is f = 88.9%, which only slightly improves in comparison to
the basic Kolkata Paise Restaurant Problem. The utility is given by u = f N = 44.5% for
N = 1000.
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