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Abstract

Analyzing microglial morphology can reveal information about mechanisms in the
brain e.g. during injury, neurodegeneration or aging. However, this is challenging as
manually tracing microglia from scans is error-prone and tedious.

In this thesis we introduce a new approach to automatically extract microglia from
volumetric confocal microscopy scans. First we first segment somas, then we extract
processes and finally we combine the obtained structures complete cells. By visual
evaluation our approach provides a new level of accuracy for extracted microglia.

Applying our tracing framework to scans of mouse brain tissue, we extract nearly 3000
microglia cells and analyze their morphology in classification, clustering and regression
experiments. In various ways we quantify the morphology of microglia in different
activation states and show a continuous morphological transition between the microglia
cells close to an injury site and those further away. In this way we demonstrate that
microglial morphology can be used to predict injury severity.
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1 Introduction

Microglia are immune cells in the central nervous system and are responsible for
a broad range of maintaining and protective cellular responses. Microglia typically
consist of one soma in the center of the cell and tree-shaped processes emanating from
the soma. The primary purpose of these processes is to scan the surrounding tissue.
During development, homeostasis and disease microglia appear in altering phenotypes,
something which is also linked to their functionality [CB17]. For example, in healthy
tissue the cells usually have small somas and long, thin processes. Conversely, activated
cells around an injury are typically characterized by enlarged somas and thick, but
very short processes. Beyond these common cases, studies have observed a range of
in-between phenotypes of microglia for different circumstances and injury states [CB17].
The left image of Fig. 1.1 depicts for example a scan of microglia which are neither
completely ramified nor fully activated.

Figure 1.1: Examples for microglia in different shapes (as max-projection in the left
image) and corresponding morphological classes (color-encoded in the
right image) that are found by clustering a large amount of automatically
extracted microglia.
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1 Introduction

Thus, analyzing microglial morphology can reveal information about mechanisms
in the brain e.g. during injury, neurodegeneration or aging. However, such studies
are very challenging for the following two reasons: First, microglial outlines are very
difficult to extract from scans, since they appear in highly complex and varying shapes.
Even for a human expert it is hardly possible to identify unambiguously all microglial
processes from a scan. Second, a large amount of cells is needed to do comprehensive
and statistically significant analysis on microglial phenotypes. Generating a sufficiently
sized dataset for such analysis by manual tracing is very tedious and time consuming.

Both of the above reasons motivate us to automate the extraction and analysis of
microglial cells. A computer can process multidimensional data more easily and is
able to capture more complex characteristics than a human. Furthermore it is capable
to scale up to large amounts of input data in a straightforward way. The right image
of Fig. 1.1 for example shows morphological classes of microglia that are obtained by
clustering a large amount of automatically extracted cells.

Existing approaches for automatically extracting microglia from volume scans are
limited in the quality of the images they work with and in the accuracy of the computer-
vision algorithms that they use [Din+17; Xu+16; Meg+15]. In this thesis we address
those limitations and introduce a new approach to extract microglial morphology
from confocal scans of mouse brain tissue in an automated way. Subsequently, we
demonstrate that microglia cells which are extracted by our tracing framework are
applicable to a broad range of analyses.

1.1 Contributions

In the first part of the thesis we combine various state-of-the-art computer vision
algorithms to segment and trace microglia from volumetric confocal microscopy scans.
In the second part we apply our tracing framework to scans of microglia in mouse
brains and analyze the morphology of extracted cells. The scanned tissue is treated
by the uDISCO tissue clearing protocol [Pan+16], a new and highly effective tissue
clearing procedure. More precisely, we contribute in the following way to the research
about microglia:

• We develop an accurate method to segment the somas of microglia from volumet-
ric images, building upon a method for neurons from [KL16].

• We extract process outlines by regression similar to [Sir+16]. Following our
methodology, ground truth training data is automatically deduced from input
images. Thus, microglia do not have to be traced manually.
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1 Introduction

• We obtain extractions of individual microglia cells by combining the results of
the previous steps and refining them based on an approach from [Tür+16].

• In classification experiments we analyze the morphological classes of "ramified",
"partially activated" and "fully activated" microglia.

• Applying clustering techniques to extracted cells we detect new morphological
classes of microglia.

• In regression experiments we use microglial morphology as a predictor of injury
severity by relating it in a continuous way to the distance to an injury site.

1.2 Outline

Fig. 1.2 illustrates the main steps of our microglia tracing and analysis framework.
Capturing the shape of microglia from 3D scans is split up into two consecutive tasks.
Firstly, somas are segmented from the data. Secondly, we extract the process outlines
from the scans and combine the results to complete extractions of microglia cells. The

Soma seg-
mentation

Process
extraction

Feature
extraction

Analysis

Figure 1.2: Outline of the main steps in this thesis to trace and analyze microglia.
The first two steps deal with extracting microglia from volumetric scans.
Subsequently, we analyze the morphology of extracted cells in the remaining
two steps.

successive analysis of microglial morphology also consists of two parts. Firstly, features
are extracted from the traced cells to capture their shapes numerically. Secondly, the
obtained data is analyzed in classification, clustering and regression experiments.

The ordering of Fig. 1.2 is followed in all subsequent chapters of the thesis. In the
next part we give an overview about related work. Following that, in Chapter 3 we
explain our methodology in detail. Concrete experiments and results are presented
in Chapter 4. Finally, we conclude the thesis with a summary and an outlook about
possible follow-up projects in the last Chapter 5.
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2 Related work

Previous work on extracting biological structures from brain scans mainly focuses on
neurons and vessels. However, since microglia and neurons have similar shapes and
involve tasks like segmenting tubular structures and tracing tree-shaped cells, existing
approaches can be also adopted for this purpose. This chapter gives a summary of how
the topics of soma segmentation, process extraction, feature extraction and analyzing
microglia are addressed in literature.

2.1 Soma segmentation

The purpose of soma segmentation is to distinguish soma voxels from the background
or other structures in the scan. In the following, two recent approaches originally
designed for neurons are presented. [Ozc+15] processes two-dimensional neuron
images obtained by projecting three-dimensional scans into the x-y-plane. In a first step,
a support vector machine is used to segment neuronal structures from the background.
Then, a measure of isotropy called directional ratio is evaluated to distinguish blob-
shaped somas from thinner processes. This method works really well for voxels within
a soma, but fails to accurately grasp the soma border. Therefore, in a third step the
initial soma localizations are refined by the level set method [OF02] to better fit to the
actual soma edges. In [KL16], this approach is improved. In particular, the orientable
filters used within the directional ratio are reformulated, enabling a fast implementation
by separable convolution.

The most recent approach in literature for soma segmentation uses deep learning. In
[Wan+17] a cascaded convolutional neural network is trained to segment mouse brain
nuclei. An initial network learns a first probability mapping between the image and the
intended cell segmentations. The output from the network is used to generate contextual
features. A second convolutional neural network learns the final segmentations from
both the image signal and the generated contextual features. By combining image and
contextual features, the learning method can detect varying object shapes and is robust
against inhomogeneities in the data, e.g. introduced by increased noise in confocal
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scans on deeper z-levels.

2.2 Process extraction

A further central challenge for analyzing the morphology of microglia is to accurately
extract their processes. As the spatial outline of processes is critical for the morphol-
ogy, process extraction aims at capturing their progression instead of segmenting the
branches voxel by voxel. Incorporating that, an extracted process is modeled as a
tubular structure. It is represented as a centerline proceeding along the middle of a
branch and a radius for each point on the centerline describing the width.

In related literature, process extraction is usually accomplished in two steps. First, the
appearances of processes are captured by a tubularity score. Such score values are
calculated for all voxels in a scan and indicate the spatial progression of centerlines.
Second, a network of centerlines is traced from a calculated tubularity image. In combi-
nation with the corresponding soma localizations, the extracted structures represent
reconstructions of complete cells.

2.2.1 Measuring tubularity

State of the art methods to measure tubularity can be classified into two techniques.
One option is to use hand-crafted, often Hessian-based filters such as the Frangi filter
[Fra+98] or the multi-directional oriented flux (MDOF) filter [Tür+13]. These filters
give tubularity measures for all voxels of a scan and produce maximal responses on the
respective centerlines of vessels or cell processes. Since they are designed for ideally
round tubes, they work only to a limited extent for irregular structures and give weaker
responses at bifurcations. A big advantage of such filters is that they can be applied to
any data without the need of preprocessing. Taking only local image information, they
require few computational resources and can be parallelized easily.

A second and more recent technique is to learn the characteristics of relevant tubular
structures from ground-truth data. Most of the successful learning approaches for-
mulate centerline extraction as a regression problem and outperform filter methods.
In [DH16] vessel segmentation is tackled amongst others using structured regression.
Since tubular structures are not explicitly modeled as centerlines, this is however not
directly applicable in this thesis. [Sir+16] trains regressors on multiple scales to learn
the inverse distance transform to the closest centerline using gradient boosted trees. The
output of the regressors can then be interpreted as a tubularity score. Applied to a test
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image, centerlines appear as maximal ridges, which can be extracted by non-maximum
suppression. Both filter and regression approaches can be applied to multiple scales
and thereby allow us to capture the information of processes with different radii.

2.2.2 Tracing

As the second part of process extraction, a network of centerlines is traced from the
obtained tubularity measures. Whereas finding the appearances of processes in the
previous step operates independently of intended cell structures, shape constraints as
for example a tree structure are enforced in this tracing step.

The review paper [ASI16] gives an overview of automated state-of-the-art tracing
techniques for neurons. Different methods vary considerably with respect to the
algorithms that they deploy and the information they incorporate into their decision
making. Related algorithms can be classified into local and global approaches. Local
methods follow greedy strategies and grow processes or cell parts step by step using
only local image information. As a consequence, they allow on the one hand fast and
efficient implementations, but on the other hand are very sensitive to errors caused by
noise and discontinuities in the data.

Global methods usually yield more robust solutions. They aim at finding an optimal
result for a whole cell or volume simultaneously. Tracing is formulated on a more
abstract level as a global optimization task. Frequent techniques in literature are Markov
Chain Monte Carlo algorithms or graph-based approaches like finding the minimum
spanning or shortest path tree.

A very innovative approach for obtaining an accurate centerline network from a
tubularity image is presented in [Tür+16]. After extracting an over-complete graph
from the tubularity responses, an optimal subgraph is found by integer programming.
In this sense, the final centerline network is obtained by pruning an initially over-
complete solution. The information about which parts of the graph best represent
the underlying structure and which ones should be pruned is encoded in weights.
These weights can be defined not only on single edges, but also on longer paths in
the graph. The underlying probabilistic model allows us to incorporate structural
constraints in a very flexible way. When solving the integer program, a weighted
sum of the introduced weights is optimized while enforcing the defined constraints.
In summary, the introduced method provides an advanced formulation of tracing
and outperforms other state-of-the-art approaches on several public datasets. This
integer linear programming (ILP) formulation has also been applied for vascular
networks [Rem+15], vascular labeling [Rob+16] and artery-vein separation [Pay+16].
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[RAM16] investigates various formulations of the connectedness constraint in such an
ILP framework and their scalability. [MTF17] integrates the approach into an active
learning framework.

2.3 Feature extraction and Analysis

Features are deduced from extracted cells to capture their morphology numerically. In
related literature, microglial features are defined in several ways. For example, different
arbor properties are quantified, the spatial extent of the cells is measured and fractal
scores of the extracted cells are considered.

Studies on a large number of automatically extracted cells in literature involve either
classification or clustering techniques. While classification approaches aim at analyzing
and predicting known phenotypes of microglia, clustering algorithms are used to detect
unknown structures in the data and find new morphological classes of microglia. In
the following, we give a summary of three recent and state-of-the-art publications
performing analyses on microglial morphology based on automatically extracted cells.

[Xu+16] compares confocal scans of healthy and injured rat brain tissue. 136 features
are defined and calculated for approximately 7700 traced microglia cells. Most of the
features are L-measures [SPA08] and describe the morphology of a cell on different
levels. Furthermore convex hull features and measurement from ellipsoids, fitted to the
cells are added. The obtained data is clustered using a infinite Gaussian mixture model
[Ras00]. In this way, six distinct phenotypes of microglia are extracted. Mapping the
found clusters back to the tissue scans reveals insights about the spatial distribution of
different phenotypes in healthy and injured tissue.

In [Meg+15], a similar approach is applied, though using a harmonic co-clustering
algorithm and extracting four different shape appearances. In [Din+17], microglia are
extracted from healthy and Alzheimer’s mouse brains in the following four activation
states: Resting, partially ramified, slightly ramified and activated. A support vector
machine with a Gaussian Radial Basis Function kernel is used to classify the extracted
cells. Hereby, the authors do not only consider fractal and Fourier features that are
deduced from the cell extractions, but also include Gabor features, which they calculate
directly from the grayscale images. Classification accuracies of around 94% are achieved
by fractal features. The grayscale features could not capture any information about the
different morphologies of the cells.
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3 Methodology

In this chapter we explain the methodology for all tasks in this thesis, following the
outline of Fig. 1.2.

Most accurate methods for soma segmentation and process extraction in literature
rely on machine learning techniques. However, due to highly complex and varying
appearances of microglial structures in scans, it is not feasible to extract manually
sufficiently accurate ground truth data. Even a human expert cannot unambiguously
identify all microglial soma edges and processes from a scan.

In this thesis we solve this problem as follows: For soma segmentation we apply a filter
approach and do not require training data. For centerline extraction we use ground
truth data that is generated from filter responses. We describe our method in the
remainder of this chapter.

3.1 Soma segmentation

Somas usually appear as spherical and intensity-based dense blobs in the volumetric
confocal scans. Therefore, our core strategy for soma segmentation is to detect isotropic
and dense objects. All involved steps of the presented approach are outlined in Fig. 3.1.

Anisotropic
diffusion

Directional
ratio

filtering

Local
thickness
filtering

Refinement
by super-

voxels

Size-based
filtering

Figure 3.1: Outline of the main steps for segmenting somas. The presented approach
bases on filters that detect isotropic and intensity-based dense objects.

In a first step, we preprocess input images by anisotropic diffusion [KSM10] to remove
noise. Then, directional ratio filtering from [KL16] is applied to localize somas and
suppress processes. This is a state-of-the-art technique for isotropy-based detection
and works well in related literature [Ozc+15]. The directional ratio is defined as the
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3 Methodology

quotient of two Shearlet transformations [KL12] and provides for each voxel a measure
of isotropy between 0 and 1. By thresholding the acquired isotropy image, elongated
and anisotropic processes can be filtered out from more ellipsoidal shaped somas with
larger directional ratio scores.

Subsequently, these initial, yet over-complete and noisy detections are improved further
by considering density. Local thickness scanning [HR97] measures for each pixel in a
binary mask the maximal radius of a sphere, which contains the pixel and covers only
non-zero grid points. Applying the local thickness algorithms to the directional ratio
output from the previous step yields density measurements for all voxels in the scan
and allows to distinguish between dense structures, which are more likely to be somas,
and thin processes. The concrete decision of what is considered to be a soma is again
made by an appropriately chosen threshold.

In a last step, the detections are refined again. Supervoxels [HD14] adhere to the
locally most dominant image edges and can thus be used to fit the segmentations to
the borders of the underlying soma signal more precisely. For that, supervoxels on
multiple granularity levels are calculated. Likelihood scores for belonging to a soma
are obtained for all supervoxels by their overlaps with the soma segmentations so far.
Averaging the scores of different supervoxel levels yields a combined likelihood image.
Thresholding this image reveals the final segmentation.

In combination with size-based filtering at the end to avoid small false detections,
the explained steps yield the soma locations of a scan. Fig. 3.2 illustrates the soma
segmentation algorithm with intermediate results for the directional ratio and local
thickness measurements.

A huge advantage of the presented method is that is does not require ground truth data
an can be applied to any new scans instantly. On the other hand, the drawback of such
a non-learning method is that parameters have to be adjusted manually for changing
data. For example, all three thresholds mentioned above have to be set to appropriate
values depending on the noise level and the magnification of the scan. However, if the
parameters are adjusted for a specific imaging scenario, they are robust against varying
cell shapes in the data and work for activated as well as non-activated cells.

3.2 Process extraction

The goal of process extraction is to capture the spatial outlines of processes in a scan
and to combine these outlines with the soma segmentations to extractions of complete
microglia cells. The presented methodology consists of three parts. First, we capture
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(a) Max-projection of input volume (b) Directional ratio response

(c) Local thickness response (d) Supervoxel refinement

Figure 3.2: Main steps for segmenting somas: a) Max-projected confocal scan of mi-
croglia. b) Directional ratio response that measures isotropy in the scan.
c) Local thickness response of the thresholded directional ratio output to
detect intensity-based dense objects. d) Final segmentation (in green) ob-
tained by thresholding the result from the local thickness algorithm, refining
the detection with supervoxels and filtering small detections (in red). The
original scan is underlaid for a visual evaluation of the results.
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the process appearances during centerline extraction. Second, we partition the found
structures into separate cells. Third, we refine these cells and remove spurious parts
from the extracted centerlines by pruning.

3.2.1 Centerline extraction

Extracting the centerlines of microglial processes is a challenging task. Highly complex
shapes, varying appearances of different activation states and weak signal to noise
ratios make it difficult even for human experts to identify unambiguously all branches
in a scan. The most accurate automatic detection frameworks for tubular structures are
based on learning and require ground truth data. However, as explained previously
such training data cannot be obtained manually for microglia. We overcome this
obstacle by introducing a framework in which centerlines obtained from filters are
used as ground truth. An overview of the presented method for centerline extraction is
illustrated in Fig. 3.3.

Following the approach from [Sir+16], we formulate centerline extraction as a multi-
scale regression task. For each scale, we train a regressor that outputs the inverse
distance transform to the closest centerline. The required multi-scale ground truth cen-
terlines to train the regressors are obtained by multi-directional oriented flux (MDOF)
[Tür+13] and Frangi [Fra+98] filters. After these filters are applied to prospective
training images, ground truth centerlines are extracted by binarizing and skeletonizing
[LKC94] the filter responses. The radius of each centerline voxel is specified by the
scale of the corresponding maximal filter response.

The presented way of generating ground truth can be interpreted as learning a combined
generalization of various filters. Due to irregular shapes and noise, a hand-crafted filter
working on local image information cannot capture all tubular structures, but returns
an incomplete subset of all branches. By feeding the obtained centerline fragments into
the regressor, it can incorporate information from multiple image locations and learn
more general characteristics of tubular structures in the data. Since different filters
(in the concrete case MDOF and Frangi filters) capture different branch fragments, it
improves the performance to incorporate multiple of them into the framework.

Even though we obtain incomplete ground truth data, we have enough training images
to compensate missing parts. Rather than having complete training data, the precision
of (possibly incomplete) ground truth centerlines is crucial for the accuracy of the
presented centerline extraction approach. The regressors can only learn the correct
appearances of relevant structures, if the found ground truth data precisely matches
with true centerlines in the scans.
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Input volumes Ground truth

centerlines

Train multi-scale regressor

Volumentric tubularity responses

Final centerline extractions

Apply tubularity filters and skeletonize responses

Apply trained regressor to scans

Hysteresis thresholding

Figure 3.3: Methodology to extract process centerlines from volumetric confocal scans
of microglia. Ground truth training data is automatically deduced from
the input images by filters and does not have to be obtained separately.
Exemplary image crops are depicted as max-projections.

12



3 Methodology

As MDOF and Frangi filters are specifically designed to capture tubular structures
and to return maximal values for voxels on the respective centerlines, the fragmented
ground truth centerlines deduced from those filters are sufficiently accurate. Manually
obtained ground truth data on the contrary fails to outline true centerlines in the scan
with a similar precision.

Applying the trained regressors to a test volume results in a four-dimensional out-
put with three spatial and one scale dimension. Taking the maximum over the last
dimension combines all scales to a volumetric tubularity output. The final skeleton
is obtained by binarizing and skeletonizing the tubularity response volume using
hysteresis thresholding [Xie] and medial axis thinning [LKC94]. In Fig. 3.4 we give
an example of extracting the centerlines from a volume with our approach and show
intermediate results of all core tasks.

A strength of our presented approach is that it is highly generic and and can be applied
easily to any data. Since the ground truth is generated in an unsupervised way, no
manual centerline extraction is required. The only data-dependent parameters are the
scales, which can be found easily by inspecting the data visually, and the thresholds
to skeletonize the filter responses with. These thresholds are quite robust and can be
chosen rather restrictive for a sufficient amount of training images.

3.2.2 Partitioning

Having extracted an over-complete skeleton of process centerlines, we further refine
the results to obtain accurate extractions of individual cells. In this section, the process
centerlines are merged with the corresponding soma detections and partitioned into
separate cells. In the next section, the partitioned cells are pruned.

A significant attribute of microglia is their hierarchical structure. Taking the soma as
root node, each microglia cell forms a tree-shaped network. In order to model this tree
structure, we merge the skeleton from the centerline detection with the corresponding
soma segmentations and then transform it into a graph. Bifurcations and end points
in the skeleton become nodes; direct connections between two nodes are modeled
by edges. Nodes representing a soma are labeled as root nodes. All subsequent
partitioning and pruning steps are applied on the resulting graph.

We extract individual cells by partitioning the graph into multiple components con-
taining exactly one root node each. Since the extracted graph is considered to be an
over-approximation of the underlying microglial structures, graph components with
no root node are discarded. Connected components with more than one root node
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(a) Max-projection of input volume (b) Ground truth centerlines from filters

(c) Regressed tubularity scores (d) Extracted centerlines

Figure 3.4: Example for centerline extraction: a) Max-projected confocal scan of mi-
croglia. b) Fragmented ground truth centerlines obtained by MDOF filters
(green) and Frangi filters (red). Overlaps are marked in yellow. c) Tubu-
larity response of the trained regressor. d) Extracted skeleton from (c) by
hysteresis thresholding.
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are partitioned by topology. Each edge in the component is assigned to the root node
that provides the lowest topological score. Ties are resolved randomly. The topological
score of a root node to an edge in this context is defined as the number of edges on the
shortest path from the root node to one of the two edge nodes. Formulated differently,
we assign edges to the closest root node on an equidistanced graph.

Applied to a connected component with n root nodes, the presented approach results
in n partitions with exactly one root node per partition. Each of these partitions is a
connected subgraph of the initial structure and describes one microglia cell. In contrast
to cutting the graph, a big advantage of subdividing in this way is that no edges are
removed from the graph. Instead, neighboring partitions in the result share common
nodes. In Fig. 3.5 we visualize cell separation for a synthetic graph. On the top a
subgraph of a component with two root nodes is given. Edge weights in red and blue
provide the topological distances from the first and the second root nodes in the graph.
The second drawing below shows the resulting partitions after each edge is assigned to
the root node, which provides the lowest topological distance. Thereby, the assignment
of the edge, whose distances to both root nodes have the value 3, is resolved randomly.
Nodes in black represent touching points of the two resulting components.

root1 root2
1/5

2/5

2/4

3/4

3/3

4/3 5/2

4/2 5/1

root1 root2
1/5

2/5

2/4

3/4

3/3

4/3 5/2

4/2 5/1

Figure 3.5: Synthetic example for cell separation based on topology. Top: Subgraph of a
component with two root nodes. Edge weights in red and blue provide the
topological distances to both root nodes. Bottom: Resulting partitions after
each node has been assigned to the root node, which provides the lowest
topological distance. One tie is resolved randomly; touching points of the
components are labeled in black.

In real tissue microglia cells might appear very close to each other, but are not connected.
This fact is ignored in our presented approach for cell separation. Nevertheless, we can
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justify an output of the partitioning algorithms, in which extracted cells touch each
other (as for example the two cells in Fig. 3.5 at the black nodes), by the following
reasoning: One possibility is that a shared node represents two disconnected but very
close process endpoints, which the centerline extraction method could not distinguish.
In such a case it is reasonable that the node is part of two partitions, since it actually
models two very close nodes. Considering the two partitions as disconnected separates
the cells successfully. As a second possible situation, one of the links to the common
node might be spurious. If this scenario takes place and one of the edges has been
detected falsely, the subsequent pruning step resolves the issue.

3.2.3 Pruning

Finally, the obtained graphs are pruned to remove spurious links and cycles. Having
extracted separate graphs for all microglia cells, this is done individually for one cell at
a time.

Analogous to [Tür+16], pruning is formulated as a integer programming task. As-
suming one root node per graph, the involved constraints enforce a tree-shaped and
thus acyclic structure of the graphs. Solving the individual integer programs of all
partitions returns optimally pruned microglia cells based on affinity weights of their
graph edges. These affinities model for all edges the likeliness of representing a true
process in the underlying scan. As source for that information the image intensities, the
response of the centerline regressor and the local thickness score of the scanned volume
as a measure for the radius are taken. Concrete values are computed by averaging the
respective signals along the outlines of the graph edges. The affinity scores of the three
different signals are combined to the final affinity weights by a weighted sum.

Exemplary illustrations of the partitioning and pruning steps are given in Fig. 3.6.

3.3 Feature extraction

We use various properties to describe the morphology of extracted microglia. More pre-
cisely, we distinguish in this thesis between L-measure, spatial extent and hierarchical
features.

The software tool L-Measure [SPA08] is originally designed to characterize neuronal
morphology, but works also well for microglia in related literature [Xu+16; Meg+15].
Using the library, a large number of mostly arbor measures are computed from the
extracted cells on compartment, branch, bifurcation and cell level. A compartment
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(a) Extracted somas and centerlines (b) Partitioned graph

(c) Affinities for pruning (d) Extracted cells after pruning

Figure 3.6: Example for partitioning and pruning: a) Max-projection of the results from
soma segmentation and centerline extraction before pruning. In order to
keep the images uncluttered, we only show a subset of 60 slices of the
volume. Disconnected components are labeled in red and will be discarded
immediately. The original scan is underlaid for a visual evaluation of the
results. b) Partitioned graph calculated from all connected components in (a).
Thicker parts of the skeleton represent nodes. c) Projection of the combined
affinity scores, which are used to prune the graph from (b). Weights for
edges in (b) are calculated by averaging the scores along their outlines. d)
Resulting cells after pruning (b) with affinity weights deduced from (c).
Seemingly loose fragments in the image are connected to a soma in slices
that are outside of the shown range.
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represents the smallest unit of a detected process and corresponds to one centerline
voxel in a volumetric scan. A branch consists of all compartments lying between two
bifurcation points or between one bifurcation and a termination point. Properties on
sub-cell levels are transformed to features for a whole cell by calculating the sum,
minimum, maximum, average and standard deviation of the measured values. An
overview about all L-measures is given in Table 3.1. In total, 178 features are defined in
this way.

Nr. Feature name Level

1 Soma surface compartment
2 Number of processes per soma cell
3 Number of bifurcations cell
4 Number of branches cell
5 Number of terminal endpoints cell
6 Width cell
7 Hight cell
8 Depth cell
9 Diameter compartment
10 Diameter pow compartment
11 Length compartment
12 Surface compartment
13 Section area compartment
14 Volume compartment
15 Euclidean distance to soma compartment
16 Path distance to soma compartment
17 Branch order compartment
18 Terminal degree compartment
19 Terminal segment cell
20 Burke taper branch
21 Hillman taper branch

Nr. Feature name Level

22 Branch path length branch
23 Contraction branch
24 Fragmentation branch
25 Daughter Ratio branch
26 Parent daughter ratio branch
27 Partition asymmetry branch
28 Rall power branch
29 Pk branch
30 Pk classic branch
31 Pk 2 branch
32 Bifurcation angle local bifurcation
33 Bifurcation angle remote bifurcation
34 Bifurcation tilt local bifurcation
35 Bifurcation tilt remote bifurcation
36 Bifurcation torque local bifurcation
37 Bifurcation torque remote bifurcation
38 Last parent diameter branch
39 Diameter threshold branch
40 Diameter Hillman threshold branch
41 Helix compartment
42 Fractal dimension branch

Table 3.1: L-measures. Properties on sub-cell levels are transformed to features for
a whole cell by calculating the sum, minimum, maximum, average and
standard deviation of all measured values. A more detailed documentation
of all listed L-measures is given in [Pol].

As the L-measure library does not define features on complete paths from the root
to leaf nodes, such measures are computed separately. In this way another type of
hierarchical information is added to the feature space. Table 3.2 gives an overview
about the considered properties. Summed up, 13 hierarchical features are defined.

Spatial extent features are added to capture the shape and elongation of extracted cells
more precisely. Since somas as well as processes appear differently in microglia of
altering activation states, we define these features twice: On the one hand for the whole
cell and on the other hand for the soma separately. Volume and surface measures
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Nr. Feature name Level

1 Topological depth path
2 Number of paths cell
3 Number of child nodes path
4 Geodesic length path

Table 3.2: Hierarchical features. All measures defined on path level are transformed
to features for a whole cell by computing the minimum, maximum, average
and standard deviation of all measured values.

are deduced from their convex hulls and their boundary points [Mat]. Shape-related
size measures are obtained from two ellipsoids fitted to the soma and the whole cell.
Table 3.3 lists in its first 13 lines all spatial extent features, which are calculated for
somas and cells. By setting the computed values for the whole cell in proportion to the
ones for the soma, additional spatial extent descriptors are obtained. In this way, the
last two features of Table 3.3 are defined, yielding 28 spatial extend features in total.

Nr. Feature name Level

1 Convex hull volume cell and soma
2 Boundary volume cell and soma
3 Ratio boundary volume and convex hull volume cell and soma
4 Convex hull surface cell and soma
5 Boundary surface cell and soma
6 Ratio of convex hull surface and boundary surface cell and soma
7 Volume of fitted ellipsoid cell and soma
8 First ellipsoidal radius cell and soma
9 Second ellipsoidal radius cell and soma
10 Third ellipsoidal radius cell and soma
11 Ratio of first and second ellipsoidal radius cell and soma
12 Ratio of first and third ellipsoidal radius cell and soma
13 Ratio of second and third ellipsoidal radius cell and soma
14 Ratio of convex hull volume of the whole cell and the soma cell
15 Ratio of boundary volume of the whole cell and the soma cell

Table 3.3: Spatial extent features. Most of the features are computed for the whole cell
and the soma separately.

Combining all listed properties yields a 219-dimensional feature space. Since some
of the defined features describe similar properties, feature selection is performed to
select a subset of relevant measures. As a first advantage, a smaller feature space
reduces the computational cost of the subsequent analyses. Secondly, removing noisy
features allows an algorithm to focus on relevant properties and may improve the
performance. Amongst all methods compared in [Rof+17], Minimum Redundancy
Maximum Relevance (mRMR) feature selection performs best for the data of this thesis.
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3.4 Analysis

Experiments in the thesis are subdivided into three parts: Firstly, we study well-known
phenotypes from literature by classification. Secondly, we apply clustering techniques
to the extracted microglia to discover new morphological classes. Finally, we use
microglial morphology as a predictor of injury severity by regressing the distance to
the brain injury site.

In the first part, extracted cells are classified into the three activation states "ramified",
"partially activated" and "strongly activated". These classes are typically mentioned in
literature and represent well-accepted microglial phenotypes at a coarse level. They
are easily identified by human experts and thus make it possible to generate labeled
training data for the classification. For the experiments, we use standard classifiers
from the Matlab toolbox "prtools" [PD]. In order to cover a broad range of different
techniques and approaches, we choose the following set of classifiers: Fisher’s linear
least square classifier (fisherc), linear Bayes normal classifier (ldc), quadratic Bayes
normal classifier (qdc), random forest classifier (randomforestc), k-nearest neighbor
classifier (knnc) and support vector machines using several polynomial kernels (linSVM,
p2SVM, p3SVM, p5SVM, p7SVM) as well as a Gaussian radial basis function kernel
(rbfSVM).

In the second part of the analysis we apply clustering techniques to discover more
precise microglial phenotypes. Using the k-means algorithm, Gaussian mixture models
and spectral clustering we try to to discover any structure (i.e. clusters) in the feature
space of the extracted cells. This is because additional phenotypes will naturally
manifest as clusters in the feature space.

The k-means algorithm divides the data into k clusters by minimizing the sum of
squared Euclidean distances of all data points to their closest cluster center. The
method represents a very simple approach and fails to capture complex non-spherical
cluster shapes. The Gaussian mixture model overcomes this limitation by modeling
the data as a mixture of k Gaussian distributions with separate parameters for the
means and the variances. In this way clusters can have ellipsoidal shapes. Beyond
Gaussian mixture models we apply spectral clustering, as the method is not restricted
to ellipsoidal shapes and can detect non-intersecting clusters of any shape. In spectral
clustering the data is partitioned based on a similarity measure. A Laplacian matrix is
deduced from the similarity matrix of the data. Then, a standard clustering technique
as for example k-means is used to cluster the data in the transformed space spanned
by the Laplacian.

In the third type of analysis, we apply regression and predict the distance to a brain
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injury from microglial morphology. Instead of classification and clustering approaches
that operate on nominal classes, we quantify in this way a continuous shape progression
between microglia cells close to an injury and those further away. From a more
abstracted point of view, predicting the distance to the injury can be considered as
estimating injury severity of a scanned area.
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In this chapter we present our results from applying the introduced methodology. At
the beginning, we give an overview about the scanning modalities and the structure
of the processed data. Next, we evaluate the introduced methodology for extracting
microglial structures from confocal scans. Ultimately, we analyze extracted microglia
by classification, clustering and regression experiments in the last part of the chapter.

4.1 Datasets

The volumetric data for the experiments in this thesis are obtained from mice expressing
green fluorescent proteins. Traumatic brain injury in the controlled cortical impact
model is caused in two severity degrees to analyze microglial morphology in various
activation states. Injuries with a depth of 2 mm are considered as severe, injuries with
a depth of 1 mm as mild. Brain tissue is cleared using the uDISCO tissue clearing
protocol [Pan+16] and is scanned by a confocal microscope. All tasks related to
animal treatment, tissue clearing and imaging have been executed by members of the
Acute Brain Injury Research Group at the Institute for Stroke and Dementia Research,
Ludwig-Maximilian-Universität München.

All retrieved scans have a resolution of 1024 × 1024 × (150 − 200) voxels (the exact
depths vary in the scans). Before we process the scans with our tracing framework, we
resize all scans to the half of their original size and adjust their voxel spacing to be
isotropic. Finally, all scans have a resolution of 512 × 512 × (150 − 500) voxels. Using
the methodology introduced in Chapter 3, we extract microglia from the volumetric
confocal scans. In this way, we generate the following two datasets:

A first dataset is generated from 38 scans of three healthy, one severely injured and one
mildly injured mouse brains. The voxel size during imaging is 0.1038× 0.1038× 0.5 µm3,
so that one scan covers an area of approximately 106 × 106 × 100 µm3 of the tissue.

Scans are obtained in all brains from the same region on the injury site, allowing to
compare the data of different animals to each other. Since the locations and distances
to the injury are approximately equal for all captured microglia cells, we can label their
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current morphology by the injury degree of the respective mouse. In scans of healthy
tissue microglia are resting and appears ramified. A mild injury leads to partially
activated cells in the surrounding tissue at the lesion site, a severe injury to fully
activated cells. Based on this reasoning, a labeled dataset with the classes "ramified",
"partially activated" and "fully activated" is generated from microglia of healthy, mildly
injured and severely injured tissue. Exemplary scans from the dataset are shown in
Fig. 4.2 of the subsequent evaluation section.

A second dataset is obtained from one severely injured brain. Scans are imaged with
a lower magnification of 0.2012 × 0.2012 × 0.5 µm3 per voxel. Thus, one tissue scan
covers a larger area of approximately 206 × 206 × 100 µm3.

Depending on the distance to the injury, microglia appear in altering shapes in the
severely injured brain of dataset 2. Therefore, we can image a transition between
different phenotypes of microglia close to and further away from the injury. To
capture these morphological changes, scanning is started at the injury and continued
perpendicularly to the opposite end of the lesion site in the brain. We obtain scans in
regular intervals approximately 600 µm, 1200 µm, 1800 µm, 2400 µm and 3000 µm away
from the injury. Imaging four neighboring tile scans for each of the five distance levels
return in total 20 scans for dataset 2. As one tile has a width of approximately 200 µm,
there is a gap of around 400 µm between two subsequent distance levels. Fig. 4.1 shows
all scans of dataset 2 as max-projections.

Table 4.1 summarizes the scanning modalities and the extracted microglia cells of the
two datasets.

Dataset 1 Dataset 2

Number of scans 38 20
Approx. volume of a scans 106 × 106 × 100 µm3 206 × 206 × 100 µm3

Number of extracted cells 1143 1849
Additional property Activation state:

- Ramified (260 cells)
- Partially activated (185 cells)
- Fully activated (698 cells)

Distance to injury:
- 600 µm (434 cells)
- 1200 µm (455 cells)
- 1800 µm (383 cells)
- 2400 µm (323 cells)
- 3000 µm (254 cells)

Table 4.1: Summary of the two datasets we use in our analyses.
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Figure 4.1: Max-projection of the scans from dataset 2. Scanning is started at the injury
site and continued perpendicularly to the opposite end of the lesion site
in the brain in regular intervals approximately 600 µm, 1200 µm, 1800 µm,
2400 µm and 3000 µm away from the injury. We image four neighboring tile
scans for each of the five distance levels.
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4.2 Evaluation

As there is no manual ground truth available, we cannot evaluate our microglia
extractions numerically. Nevertheless, visual inspection provides sufficient evidence
about how meaningful and correct microglia are captured. Fig. 4.2 shows extracted
microglia in scans of healthy, mildly injured and severely injured tissue from dataset 1.

In the following we first evaluate the tasks of soma segmentation and centerline
extraction individually. Then, we discuss the combination of their results to complete
cell extractions during partitioning and pruning.

4.2.1 Soma segmentation

The introduced approach for soma segmentation is able to capture somas in various
activation states. Fig. 4.2 demonstrates that the method segments somas in altering
shapes, ranging from small spherical somas in healthy tissue to bigger, highly irregular
and sometimes protracted somas in injured tissue.

As a non-learning method, our algorithm requires its parameters to be tuned manually
and is sensitive to changes in the data as e.g. the signal-to-noise ratio or the magnifi-
cation of the scan. Having adjusted the method appropriately for a given dataset, it
reliably extracts somas. However, while the approach works well for the majority of
the cells, it still has limitations. Fig. 4.3 depicts common errors of the algorithms.

Found segmentations do not always fit exactly to the signal boundaries in the scans.
In some situations the algorithm fails to detect the soma edge but includes parts of
attached processes to the segmentation. An example is given in Fig. 4.3a.

The exact opposite can happen in scans with low signal-to-noise ratios, as for example
depicted in Fig. 4.3b. Here, the found segmentation does not completely cover the soma
structure in the image signal. Such a situation often raise further negative consequences
during centerline extraction. For the one thing, uncovered parts of the soma may
cause false centerline detections. For the another thing, a too small soma may lead to
disconnected processes, which are then discarded.

So far discussed limitations alter some features of affected cells, but do not change their
morphology fundamentally. In contrast, the errors depicted in Fig. 4.3c and Fig. 4.3d in-
troduce more problematic situations. As somas are segmented by considering isotropic
and solid structures, thick processes and bifurcations are sometimes detected falsely.
An example is shown in 4.3c. Though it is possible to leverage between false and
missing detections by filtering small somas after the segmentation, such situations
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Figure 4.2: Exemplary extractions of microglia from healthy tissue (top), mildly in-
jured tissue (middle) and severely injured tissue (bottom). All volumes are
visualized as max-projections in the x-y-plane.
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(a) (b) (c) (d)

Figure 4.3: Limitations of soma segmentation: Exemplary visualizations.

cannot be prevented completely.

Another problematic situation is shown in Fig. 4.3d. Here, the soma segmentation
algorithm cannot distinguish the two neighboring somas in the scan but segments them
as one. As activated microglia cells move closer to each other and appear in highly
ramified shapes, this is more likely to happen in tissue close to an injury. These two
lastly mentioned kind of faults are especially problematic because they affect multiple
cells. As they accumulate during partitioning, consequences are discussed in detail in
the subsequent Section 4.2.3.

4.2.2 Centerline extraction

Our approach for centerline extraction based on regression works well for the pro-
cessed data. Tubular structures are enhanced and produce maximal responses on their
centerlines. Intensity inhomogeneities along processes are compensated, resulting in
smooth tubularity responses. We observed visually that the algorithms is robust against
noise and can be easily transferred to different data. In the zoomed regions of Fig. 4.2
we give an impression of precision of extracted centerlines.

In Fig. 4.4 we demonstrate the effectiveness of our presented method to enhance tubular
structures. The first image (Fig. 4.4a) shows a projected scan of a microglia cell with a
very weak signal intensity; the second image (Fig. 4.4b) the corresponding regression-
based tubularity response. For comparison, the MDOF filter output of the scan is given
in as well (Fig. 4.4c). While the result from the MDOF filter only contains fragments of
the processes, the approach of this thesis can boost all tubular structures of the scan.

Although our approach can deal with noise and weak signals, it cannot compensate all
limitations of scanning. Strong flaws as for example gaps in the signal along tubular
structures are propagated and lead to missing parts in the extracted centerlines. We give
an example for this in Fig. 4.4d, depicting the skeleton extracted from the tubularity
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(a) (b) (c) (d)

Figure 4.4: Evaluation of centerline extraction: a) Projected scan of microglia cell. b)
Regression-based tubularity score of the methodology in this thesis. Almost
all tubular structures from (a) are boosted. c) MDOF tubularity response that
only captures fragments of all processes from (a). d) Extracted centerlines
by skeletonizing the tubularity response from b).

response of Fig. 4.4b. Almost all processes are captured by centerlines. However, since
there are spots with almost no intensity in the underlying scan, the extracted structure
also contains gaps at those positions.

4.2.3 Partitioning and Pruning

The introduced partitioning approach works reliably and yields visually reasonable
results. If two or more somas are connected to each other by the detected processes, the
algorithm separates them into topologically similarly sized partitions. As our method
does not cut connections, no additional errors are introduced in this way.

However, during the partitioning step we combine the results from soma segmentation
and centerline extraction. Thereby, also the mistakes from these previous steps are
propagated and accumulate.

Soma detections are taken as root nodes to separate multiple cells in a scan based on
topology. Therefore, in the case of a false detection as shown in Fig. 4.3c, the single
cell in the scan is partitioned into two separate structures. In this way, the extracted
morphology changes fundamentally.

A similar situation occurs if two soma segmentations are merged accidentally as
illustrated in 4.3d. Then, two microglia cells in the scan are represented as one
structure, leading again to a significant difference between the extracted shape and the
true outlines of the cells in the underlying scan.
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(a) (b)

Figure 4.5: Limitation of the introduced approach for process extraction that accu-
mulates during the partitioning step: a) Projected tubularity measure of
microglia cell. b) Reconstructed cell in yellow. Disconnected components in
red are discarded, since they do not connect to the soma.

A second type of inaccuracy that accumulates in the partitioning step affects the
processes of microglia. If there are small gaps in the extracted centerlines, the resulting
disconnected components are not included in any extractions but are ignored. Picking
up the exemplary cell of Fig. 4.4, its discarded components are highlighted in red in
Fig. 4.5. For comparison, the tubularity response of the regressor is shown as well.

The pruning algorithm we use works directly on information from the imaged data.
We observe that our presented method is robust against small flaws that are introduced
during scanning and does not cause additional errors.

4.3 Classification

We perform classification to gain insights into the morphology and characteristics of
ramified microglia in healthy tissue, partially activated microglia in mildly injured
tissue and fully activated microglia in severely injured tissue. As the cells from dataset 1
contain labels for these nominal classes, classification techniques are directly applicable.
We train a range of standard classifiers to distinguish the three classes "ramified",
"partially activated" and "fully activated" microglia. Evaluation is performed by leave-
one-out cross-validation.

The classification errors of all approaches are summarized in Fig. 4.6. We can suc-
cessfully distinguish the three classes with accuracies up to 95%. As a linear Bayes
classifier performs best, the classes seem to be linearly separable. This is confirmed by
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Figure 4.6: Classification errors for distinguishing extracted microglia from dataset 1
into ramified, partially activated and fully activated cells. We show our
results of experiments with all features (blue) and with a subset of 100
features selected by mRMR (yellow).

a linear support vector machine (SVM) that achieves an accuracy score of 94%. Various
polynomial SVMs can approximate linear functions and thus as well achieve high
accuracy scores of 94 − 95%. Fisher’s linear least square classifier, a random forest and
a SVM with a Gaussian kernel also gain acceptable classification scores of 92 − 93%.
The quadratic Bayes and the k-nearest neighbor classifiers model the data insufficiently
and produce significantly worse results.

We can illustrate the linear separability of the three classes in a scatter diagram. Fig. 4.7
plots the average process diameter of all cells against the standard deviation of their
fragmentation score (number of compartments between two bifurcations or a bifurcation
and a termination point). It reveals that the classes can be roughly distinguished by
lines using only these two features. Ramified microglia have relatively thin branches
with strongly varying fragmentation scores. Activated cells on the contrary consist of
thicker processes and deviate less in their fragmentation scores.

Since approximate classes can already be deduced from a scatter plot of two features,
we apply feature selection. Fig. 4.8 demonstrates that using more than 100 features
found by Minimum Redundancy Maximum Relevance (mRMR) feature selection does
not significantly improve the classification accuracy of the linear Bayes classifier any
more. Utilized for all classifiers in Fig. 4.6, the computational costs of the algorithms
can be reduced significantly, while the error rates increase only marginally.

For some classifiers, feature selection even improves the classification result. Selecting
a subset of relevant features can decrease noise in the data and contribute in this way
to higher classification accuracies. Taking the optimal number of 170 features for the
linear Bayes classifier reduces for example its error rate from 5% to 4%.
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Figure 4.7: Two-dimensional scatter plot of the extracted microglia from dataset 1.
The plot reveals that the classes "ramified", "partially activated" and "fully
activated" are nearly linearly separable by considering only two features.
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Figure 4.8: Illustration of the classification error of the ldc classifier as a function of the
number of features selected by the mRMR feature selection. Considering
more than 100 features does not significantly improve the classification
performance any more.

We deduce further insights from the per-class classification errors illustrated in the
Fig. 4.9. Whereas fully activated microglia are detected almost perfectly, partially
activated and ramified cells are misclassified with error rates of approximately 8% and
20%. These inaccuracies do not considerably influence the overall classification score
because the respective classes are three to four times less frequent than the partition of
fully activated cells.

However, the per-class classification errors reveal that extracted cells from healthy and
mildly injured tissue have a partially similar morphology and can only be distinguished
up to a limited extent. According to the confusion matrix in Table 4.2 the two classes
are mixed up with each other evenly during classification.

As of yet, all analysis is done on cells from dataset 1. Having trained a classifier on that
data, it is further possible to apply it to the second dataset. Since dataset 2 contains
cells roughly 600 µm, 800 µm, 1200 µm, 1800 µm, 2400 µm and 3000 µm away from the
injury, we can relate the three known classes to these distances. Using a linear Bayes
classifier trained on dataset 1, we classify the 1849 cells from the second dataset into
1198 fully activated, 109 partially activated and 542 ramified cells.

Fig. 4.10 summarizes the relative frequencies of predicted classes in relation to their

32



4 Results

Estimated labels
True labels ramified partially fully Totals

ramified 239 16 5 260
partially 21 151 13 185

fully 1 1 696 698

Totals 261 168 714 1143

Table 4.2: Confusion matrix of the linear Bayes classifier from leave-one-out cross-
validation. Ramified and partially activated microglia are mixed up with
each other evenly during classification.
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Figure 4.9: Per-class classification errors when using 100 features selected by mRMR.
Ramified and partially activated cells are misclassified with considerably
higher error rates than fully activated microglia.
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Figure 4.10: Quantification of predicted classes in dataset 2 relative to the distance to the
injury. The class frequencies coincide perfectly with expected occurrences
of ramified, partially activated and fully activated microglia.
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distance to the injury. The classification results coincide perfectly with expected
occurrences of ramified, partially activated and fully activated microglia. Within a
distance of 600 − 1200 µm away from the injury fully activated microglia are dominant.
As the distance to the injury goes to 2400 µm, the partition of partially activated cells
increases as well. Even further away at the other end of the brain (2400 − 3000 µm away
from the injury) microglia are mostly classified as ramified.

In
ju

re
d

ar
ea

600 − 800µm 1200 − 1400µm 1800 − 2000µm 2400 − 2600µm 3000 − 3200µm

Class distribution at 600 microns

Ramified Partially Fully

Activation degree

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
cl

as
s 

fr
eq

ue
nc

y

Class distribution at 1200 microns

Ramified Partially Fully

Activation degree

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
cl

as
s 

fr
eq

ue
nc

y

Class distribution at 1800 microns
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Figure 4.11: Spatial class distribution in dataset 2 obtained by a classifier which is
trained on dataset 1. The histograms at the bottom show the class distribu-
tions at all distance levels, pointing out an abrupt change between 1800 µm
and 2400 µm.

The spatial distribution of the three classes in dataset 2 is illustrated in Fig. 4.11.
Additionally, the figure displays separate histograms of the class distributions at all
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distance levels. These histograms point out an abrupt change in the predicted classes
between 1800 µm and 2400 µm. The histograms of 2400 µm and 3000 µm are roughly
identical. In the scans at 1800 µm and closer to the injury the class distributions are
also relatively similar, although there is some difference visible.

The absolute class frequencies reveal furthermore that fully activated cells appear most
often. We explain this with the following two reasons: First, as a severe brain injury
affects the whole brain in a serious way, it is from a biological perspective reasonable
that a majority of the microglia is activated, also cells further away from the injury.
Second, activated microglia cells have shorter processes and can thus appear closer to
each other. As there are more cells in scans close to the injury, which are more likely to
contain activated microglia, the classifier predicts more activated than ramified cells.
Scans of dataset 2 with a distance to the injury of 600 µm and 1200 µm contain for
example in average 110 cells per scan, whereas scans, which are 2400 µm and 3000 µm
away from the injury, consist of only 72 cells in average.

4.4 Clustering

Apart from visually distinguishable classes in microglial morphology, studies assume a
range of in-between phenotypes [CB17]. We apply clustering techniques in this section
to analyze the structure of the obtained datasets more detailed and possibly discover
new morphological classes. For that, cells from both datasets are considered together.

Using Gaussian mixture models we partition the extracted microglia into 3 − 7 clusters.
The mixture model with three components detects the same classes as the classifica-
tion experiments in the previous section have revealed. Clustering with five mixture
components separates the extracted microglia visually into most distinct and precise
morphological classes. Fig. 4.12 illustrates the five found clusters. The rows in the de-
picted matrix represent individual cells in the feature space and are grouped according
to the detected classes. In this way, all five clusters appear as notably homogeneous
blocks.

The relative frequencies of the found clusters are summarized in Fig. 4.13. For dataset
1 the frequencies are measured in relation to the known classes "ramified", "partially
activated" and "fully activated"; for dataset 2 the clusters are quantified in relation to
the distance to the injury. The plot of dataset 1 reveals that three of the five components
from the Gaussian mixture model mainly cover activated cells. The other two clusters
mostly consist of ramified cells. This differentiation emerges in a weaker manner also
from the relative cluster frequencies of dataset 2. However, the classes change smoothly

35



4 Results

Clustered microglia in feature space

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

100 features selected by mRMR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.12: Visualization of the five morphological classes of microglia found by a
Gaussian mixture model. The rows in the depicted matrix represent indi-
vidual cells in the feature space and are grouped according to the detected
classes. In this way, all five clusters appear as notably homogeneous blocks.
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Figure 4.13: Relative frequencies of five classes detected by a Gaussian mixture model
in the two datasets. In dataset 2 the classes change smoothly throughout
the different distances and appear intermixed.
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throughout the different distances of the dataset and appear more intermixed.
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Figure 4.14: Spatial class distribution in dataset 2 obtained by clustering with a Gaussian
mixture model with five mixture components. The per-distance class
distributions depicted in the histrograms do not only allow us to clearly
distinguish the different distance levels, but further point out a roughly
continuous transition of the class distributions from 600 µm to 3000 µm.

The spatial distribution of five found clusters in dataset 2 is shown in Fig. 4.14, revealing
a strong correlation between the distance level of the scans and the classes of the
microglia that they contain. This connection is highlighted in histograms showing the
relative class distributions at all distance levels. These histograms do not only allow us
to clearly distinguish the different distance levels, but further point out a continuous
transition of the class distributions from 600 µm to 3000 µm. Especially the clusters 3
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(yellow), 4 (green) and 5 (purple) indicate such a progression. Analogous to Fig. 4.11,
the class frequencies change less homogeneously between the scans at 1800 µm and
2400 µm.

As the conducted analysis in this section is exploratory, results are difficult to evaluate.
Without ground truth data we cannot unambiguously evaluate the quality obtained
clusterings. A method to assess different clusterings numerically is presented in the
next section. In regression experiments we try to capture the transition in the class
distributions of different scans numerically. The Gaussian mixture model with five
components achieves thereby the best scores and outperforms other clusterings obtained
by the k-means algorithm, spectral clustering or a different number of clusters.

4.5 Regression

The found clusters in dataset 2 imply a continuous morphological change of the
processed microglia. In the regression experiments of this section we quantify this
transition and use microglial morphology to predict the distance to the injury site. In
this way we demonstrate that it is possible to deduce properties of the injury from
the morphology of microglia. The distance to the injury site, which is used in our
experiments, can be considered from a more abstract point of view as a measure for
the injury severity in a processed scan.

Fig. 4.13 and Fig. 4.14 indicate that the frequencies of the five classes that are found by
the Gaussian mixture model change smoothly throughout the distance levels of dataset
2. Therefore, we link these two properties in a first regression experiment. Randomly
and separately for all distance levels, we partition the cells of dataset 2 into subsets of
size 80 and compute the class distributions of these subsets. This can be interpreted as
generating subsamples from the histograms of Fig. 4.14 with respectively 80 cells. Then,
we train a regressor to predict the distances of the obtained subsets (i.e. histogram
subsamples) from their class distributions.

We evaluate the regression performance by measuring the mean absolute error during
leave-one-out cross-validation. In order to be resilient against the randomness that is
introduced by the sampling step, we repeat all experiments 100 times. The presented
error rates are calculated by averaging the individual results of all repetitions.

Using linear regression we achieve a mean absolute regression error of 175µm. Detailed
results are summarized in Table 4.3 and visualized in Fig. 4.15 (blue bars). More
complex regression models as for example regressors with a polynomial or a radial
basis function kernel return comparable or worse results.
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Measurement Global value Values broken down for all distances
600 µm 1200 µm 1800 µm 2400 µm 3000 µm

Number of samples 24 6 6 5 4 3
Mean absolute regression error 175 µm 123 µm 124 µm 166 µm 260 µm 285 µm

Table 4.3: Summary of regressing the distance to the injury in dataset 2 from the
distribution of five classes that are detected by a Gaussian mixture model.

Considering that the scans have a width of approximately 200 µm and are taken with
gaps of 400 µm between two distance levels, a mean absolute regression error of 175 µm
yields an acceptable degree of accuracy. Interestingly, the regression errors are not
similar for all of the five distance levels. While the samples of the distances until
1800 µm are regressed correctly with an mean absolute error of 136 µm, the distances
of the samples at 2400 µm and 3000 µm are approximated poorly with an average error
of 271 µm. A likely reason for that is the discontinuity of the class distribution between
2400 µm and 3000 µm, which is also visible in Fig. 4.13 and Fig. 4.14.

Obtained regression errors can be also used to numerically evaluate different clustering
solutions. The lower the regression error with a specific clustering is, the better it
models the morphological transition between activated cells close to the injury and
ramified cells further away. Applying the same regression experiment to the classes
that we obtain by classification (Fig. 4.10 and Fig. 4.11) returns an mean regression
error of approximately 350 µm. Likewise, other clustering solutions that we obtain by
the k-means algorithm, spectral clustering or a different number of clusters also lead to
significantly higher errors.

In our second type of regression experiment, we predict the distances to the injury in
dataset 2 in a more direct way. Instead of abstractly capturing microglial morphology
by class distributions, regression is performed directly on the features of the extracted
microglia. Again, the cells of dataset 2 are divided randomly into batches of 80 cells
with the same distance to the injury. Considering these batches as individual samples,
we then train a regressor to predict the distances of the batches to the injury from the
mean feature values of their cells.

As summarized in Table 4.4, this approach improves the regression accuracies for all
distance levels significantly. In total, the error of the linear regressor goes down to
128 µm. Fig. 4.15 visualizes the total and the per-distance regression errors of the
experiment (yellow bars) and compares them to the results from the first regression
experiment. Unlike the class distributions in the first experiment, regressing from mean
feature vectors allows us to predict all distance levels with a similar precision. All
per-distance error rates are within an acceptable range of 117 − 149 µm. In this way we
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Figure 4.15: Comparison of the total and per-distance regression errros when regressing
the distance to the injury from class frequencies of five classes detected
by a Gaussian mixture model (blue) and from averaged morphological
features that are deduced from the extracted cells (yellow).

show a linear progression in the shape features of the extracted microglia from dataset
2.

Measurement Global value Values broken down for all target distances
600 µm 1200 µm 1800 µm 2400 µm 3000 µm

Number of samples 24 6 6 5 4 3
Mean absolute regression error 128 µm 124 µm 126 µm 149 µm 117 µm 123 µm

Table 4.4: Summary of regressing the distance to the injury in dataset 2 from averaged
morphological features that are deduced from the extracted microglia cells.

In summary, the conducted regression experiments reveal a linear progression of mi-
croglial morphology from scans close to the injury to scans further away. We can
quantify this transition in two way: Firstly by analyzing the distribution of morpho-
logical classes that are obtained by clustering techniques; secondly by regressing from
averaged morphological features that are directly deduced from extracted microglia.
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5 Conclusion and Outlook

In this thesis, we introduce an accurate and robust framework to automatically trace
microglia from volumetric confocal microscopy scans. We segment somas by using
filters that detect isotropic and intensity-based dense objects. We implement process
extraction as a multi-scale regression task, in which ground truth training data is
automatically obtained by filters. In this way we overcome the obstacle of manually
acquiring microglial tracings to train from. Finally, after partitioning and pruning
found structures we obtain extractions of individual microglia cells. Our approach
provides very accurate cell extractions by visual evaluation and can scale up to large
amounts of input data in a straightforward way.

In the second part of the thesis, we demonstrate that cells traced by the presented
framework are applicable to a broad range of analyses. Analyzing nearly 3000 extracted
cells by classification, clustering and regression experiments reveals interesting insights
about microglial morphology. We successfully classify processed microglia into "rami-
fied", "partially activated" and "fully activated" cells. Furthermore we show that the
three classes are linearly separable. Applying clustering techniques we detect new
morphological classes of microglia. We demonstrate that their distribution in the tissue
can be related to the distance from the injury site or similarly, the severity of the injury.
Using regression we quantify a roughly linear morphological change between activated
microglia close to an injury and more ramified cells further way. That means we can
use microglial morphology as a predictor of injury severity by regressing the distance
to the brain injury.

Our work can be extended in various ways. Addressing the limitations explained in
Section 4.2, a first option is to improve the presented tracing framework. In particular
soma segmentation has potential for improvement that considerably impacts the success
of subsequent analyses. As soma segmentation is implemented using a filter-based
approach, which only relies on local image information and requires its parameters to
be adjusted repeatedly for different scans, soma detection is the least robust component
of the introduced framework. Segmenting somas by a learning method could reduce
the importance of parameter tuning and thus improve accuracy as well as robustness.

Secondly, the presented results motivate to continue and scale up studies on microglial
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morphology. The found insights of this thesis suggest to extend the simple regression
of the injury distance to more elaborate tasks. Modern tissue clearing and imaging
techniques make it possible to obtain scans of a whole brain in a quality, that can be
processed by the introduced tracing framework. Thereby, microglial morphology can
be quantified in larger brain regions, which might give new insights about mechanisms
in the brain.

Another possible course of research is to extend the presented microglia extraction
framework by deep learning techniques. Instead of tracing complete microglia cells,
a "deep" classifier (i.e. a convolutional neural network) might already be able to
distinguish different types of microglia based on the image patch around the cell.

The overall aim our research about microglia is the use of the cells as biological
markers. This could yield completely new ways for investigating brain functionality
and predicting brain injuries, diseases or stroke. In this thesis we present initial
investigations and findings to achieve that.
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