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In practical networked control systems (NCS), such as smart grids, cooperative robotics, and sensor
networks, often multiple control applications share a communication infrastructure, requiring a smart and
efficient scheduling mechanism to coordinate the access to the capacity-limited communication medium.
In this article we consider the problem of event-based scheduling design for NCSs consisting of multiple
control loops over a shared communication medium. We extend the notion of Try-Once-Discard (TOD),
which is one of the basic deterministic event-based scheduling protocols for resource constrained NCSs,
to the case of multiple stochastic control systems coupled via a shared communication medium subject
to capacity limitation and stochastic packet delivery failure. Showing that the overall network-induced
error is a homogeneous Markov chain in our stochastic setup, we first study stability properties of such
networked systems under the TOD scheduling scheme employing the concepts of stochastic stability.
Then, we derive sufficient stability conditions under the TOD rule assuming that the communication
channel is not ideal, i.e., a scheduled data packet for transmission might be lost in the communication
channel with a non-zero probability. Furthermore, we derive analytic performance bounds by finding
uniform upper-bounds for an average quadratic cost function. The numerical simulations are performed
for variety of system parameters and NCS setups to strengthen our stability claim as well as illustrating
performance bounds. Additionally, we show that the TOD scheduling rule outperforms the conventional
time-triggered, and uniform and non-uniform random channel access arbitration mechanisms, in terms
of efficient coordination of channel access in stochastic NCSs.

Keywords: Try-Once-Discard (TOD), Markov chain, stochastic stability, network-induced error,
performance bound, event-triggered sampling

1. Introduction

Classical control theory is typically premised on digital control systems associated with periodic
sampling and time-triggered control schemes. The emergence of networked control systems (NCSs)
as the integration of multitude of spatially distributed control entities across a shared communi-
cation network, however exposed several weaknesses of the traditional control approaches when
applied in such NCS setting. The day-by-day increase of data volume which needs to be intelli-
gently exchanged between the distributed parts of a networked system calls for advanced design
methodologies and sampling approaches aiming at more efficient usage of costly resources such as
energy and bandwidth (R. Gupta & Chow, 2010; Liu, Wang, He, & Zhou, 2014). Moreover, control
over shared communication channels often imposes challenges ranging from capacity limitations
and network congestion to time-varying latency and data loss, which need to be carefully considered
(R. Gupta & Chow, 2010; Hespanha, Naghshtabrizi, & Xu, 2007; Murray, Åström, Boyd, Brockett,
& Stein, 2003; Zhang, Gao, & Kaynak, 2013). Numerous works over the last decade show that it
is often beneficial to sample the control signals upon occurrence of specific events rather than only
after elapsing a fixed temporal period (Åström & Bernhardsson, 2002; Heemels, Sandee, & Van
Den Bosch, 2008; Henningsson, Johannesson, & Cervin, 2008; Lunze & Lehmann, 2010; Tabuada,
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2007). Further research shows that event-triggered sampling may also be applied successfully on
networked systems wherein the control signals are transmitted through a shared communication
channel (Al-Areqi, Grges, & Liu, 2015; Dimarogonas & Johansson, 2009; Molin & Hirche, 2013;
Ramesh, Sandberg, & Johansson, 2013; Vilgelm, Mamduhi, Kellerer, & Hirche, 2016). The afore-
mentioned results suggest that event-based sampling significantly reduces the resource consumption
while achieving the same control performance, compared to periodically sampled systems (Cervin
& Henningsson, 2008; Heemels et al., 2008; Molin & Hirche, 2014a, 2014b; Rabi, Moustakides, &
Baras, 2012; Wang & Lemmon, 2011).
Most of the available works address the event-trigger synthesis for single-loop networked systems

under limited communication resources, where mainly the focus is on generating appropriate event
triggers to reduce the transmission rate and consequently communication cost and yet achieve the
required control performance including stability (Antunes, Heemels, & Tabuada, 2012; V. Gupta,
Dana, Hespanha, Murray, & Hassibi, 2009; Lunze & Lehmann, 2010; McKernan & Irwin, 2010;
Tabuada, 2007). In reality, however, often multiple networked control applications share the com-
munication infrastructure for closing the loop between the sensors and the controllers. Due to the
capacity constraints, only a limited number of those loops can be closed at a time. Compared to
the single-loop scenario, analysis of multiple-loop NCSs under communication constraints and de-
sign of efficient scheduling mechanisms have attained little attention in the literature so far, where
some notable exceptions can be found in (Al-Areqi et al., 2015; Blind & Allgöwer, 2011a, 2011b;
Molin & Hirche, 2014a, 2014b; Ramesh et al., 2013). The results in (Molin & Hirche, 2014a, 2014b)
suggest that the event-based approach can be effectively employed as a threshold policy to govern
the channel access in a networked control system with explicitly considered resource limit. It is
additionally shown in (Mamduhi, Tolic, & Hirche, 2015b; Mamduhi, Tolic, Molin, & Hirche, 2014)
that event-triggered scheduling is capable of coping with packet dropouts which is often caused by
erroneous network links, malfunctioning network hardware, or environmental disturbances.
Appropriate allocation of scarce communication resources is an active and still challenging re-

search area in the design of NCSs. Attempts have been recently focused on designing the scheduling
mechanisms intelligently such that the current situation of the control systems are taken into ac-
count when arbitrating the channel access (Mamduhi, Molin, & Hirche, 2014; Mamduhi, Molin,
Tolic, & Hirche, 2017; Molin & Hirche, 2014a; Nesic & Liberzon, 2009; Ramesh et al., 2013; Shi, Ep-
stein, Sinopoli, & Murray, 2007; Walsh, Ye, & Bushnell, 2002). Among all, Try-Once-Discard (TOD)
is one of the basic event-based scheduling mechanisms which dynamically prioritizes the channel
access among the sub-systems requesting for transmission, based on their real-time estimation error
(Walsh et al., 2002). Although, TOD is a centralized scheduler and thus not well applicable for
large-scale NCSs and multi-hop networks (Christmann, Gotzhein, Siegmund, & Wirth, 2014), it
is an efficient methodology to coordinate the channel access especially for dedicated networks and
industrial purposes. For large-scale NCSs and random access networks, distributed and decentral-
ized channel access policies are preferred, (Bauer, Donkers, van de Wouw, & Heemels, 2013; Gatsis,
Ribeiro, & Pappas, 2015; Mamduhi, Tolic, & Hirche, 2015a; Wang & Lemmon, 2011). This topic
however is still wide open and is currently under research.
Stability of NCSs under the deterministic TOD protocol is well investigated in the literature and

stability conditions are derived in form of lower bounds on the actual inter-transmission intervals.
Introducing the concept of Maximal Allowable Transmission Interval (MATI), it is shown that sta-
bility is guaranteed if the time difference between two consecutive transmissions is always shorter
than sufficiently small MATI (Carnevale, Teel, & Nesic, 2007; Donkers, Heemels, Bernardini, Be-
mporad, & Shneer, 2012; Nesic & Teel, 2004; Tabbara & Nesic, 2008; Tabbara, Nesic, & Teel,
2007; Walsh et al., 2002). In (Walsh et al., 2002), global exponential stability of multiple-packet
transmission NCSs consisting of linear time-invariant deterministic systems employing TOD policy
is addressed under three assumptions, i.e. the channel is error-free, no observation noise exists,
and no model disturbance deteriorates system dynamics. Time-varying transmission intervals and
delays, and packet dropouts are later considered in (Donkers et al., 2012; Donkers, Heemels, van de
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Wouw, & Hetel, 2011), where mean square stability is shown for an NCS of LTI sub-systems with
norm-bounded additive uncertainty, orchestrated by a quadratic scheduling protocol of which TOD
is shown to be a special realization. The authors of (Nesic & Teel, 2004; Tabbara et al., 2007) show
Lp stability holds for deterministic nonlinear NCSs under TOD with bounded model disturbances,
but for sufficiently small MATI. Lyapunov uniform global exponential stability (UGES) for nonlin-
ear deterministic NCSs with exogenous disturbances and stochastic model of dropouts is addressed
in (Tabbara & Nesic, 2008). In (Duc, Christmann, Gotzhein, Siegmund, & Wirth, 2015), stabil-
ity of TOD approach is investigated for undisturbed nonlinear NCSs wherein transmissions occur
through an unreliable communication channel subject to stochastic communication failure or packet
dropouts. In the presence of stochastic noise and exogenous disturbances modeled by continuous
random variables, the event triggers, i.e. the network-induced error used in the TOD rule, become
stochastic as well. Stochastic event-triggers imply that the channel access is arbitrated randomly
in event-based fashion. The concept of MATI however does not apply to stochastic event-triggers
and protocols because the time intervals between two consecutive transmissions of a sub-system
cannot uniformly be upper-bounded with probability one, therefore calls for employing appropriate
stochastic stability concepts. To the best of our knowledge, stability of NCSs composed of multiple
stochastically disturbed sub-systems under the event-based TOD scheduling rule with stochastic
event-triggers, in the presence of random packet dropouts, is not yet addressed in the literature.
In this article, we study stability and performance of the TOD scheduling rule for NCSs con-

sisting of multiple heterogeneous LTI stochastic controlled sub-systems over shared error-prone
communication channel with limited capacity. Each sub-system is disturbed by an independent
and identically distributed (i.i.d.) stochastic process selected from the Gaussian distribution with
infinite support. Consequently, the local estimation errors, which are considered as the event-
triggers, are driven by the random process. This results in having the transmissions in a biased
random fashion. We show that the aggregate network-induced error, which is indeed a stochas-
tic network state, is an aperiodic, irreducible, and homogeneous Markov chain evolving in the
uncountable multi-dimensional state-space R

n. We show stochastic stability of the resulting multi-
loop NCS in terms of f -ergodicity of the underlying error Markov chain. In addition, we derive the
necessary and sufficient condition under which f -ergodicity is preserved in case the in-transmission
data packets are subject to dropout possibilities through the communication channel. Next, we de-
rive analytic uniform upper-bounds for a given average quadratic cost function. Simulation results
validate our stability claims and performance bounds and illustrate the superiority of the TOD
approach compared to the related time-triggered, random access, and event-based policies.
In the reminder of this article, Section 2 presents the problem of interest and provides prelimi-

naries regarding stability of stochastic processes. In Section 3, stability of stochastic NCSs under
the TOD policy is addressed. Stability results are then extended considering packet dropouts. Per-
formance analysis is presented in Section 4, and numerical results are followed in Section 5. The
proofs for the main theorems are brought in details in the Appendix.
Nomenclature: In this article, the Euclidean norm, conditional expectation, and conditional

probability are denoted by ‖ · ‖2, E[·|·], and P[·|·], respectively. The trace operator is represented
by tr(·). The ceiling operator determines the smallest following integer of a real number, and is
denoted by ⌈·⌉. A random vector X chosen from the multivariate Gaussian distribution with mean
vector µ and covariance matrix W > 0 is represented by X ∼N (µ,W ). A sequence of random
variables xk evolving in time is shown by {xk}

k, for all k ≥ 0. Superscripts and subscripts for
state vectors indicate the belonging sub-system, and the time instance, respectively. For matrices
though, subscripts indicate the corresponding sub-systems, while a superscript denotes the matrix
power. Lastly, we define an augmented vector as (x, y) := [x⊤ y⊤]⊤ to simplify the notation.
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2. Problem Statement

The NCS considered in this article consists of N heterogeneous physically independent control
loops which are coupled via a shared communication channel subject to capacity limitations. Each
control loop i∈{1, . . . , N} is composed of an LTI stochastic process Pi and a control unit including
a state estimator and a feedback controller Ci, (see Fig. 1). The updated state information from a
sub-system is sent for its corresponding control unit if the access to the communication channel is
provided. Channel access is governed by a schedule-based medium access controller to resolve the
contentions. The process Pi is described by the following LTI discrete stochastic difference equation

xik+1 = Aix
i
k +Biu

i
k + wi

k, k ≥ 0, i ∈ {1, . . . , N}, (1)

where, xik ∈R
ni , uik ∈R

mi , Ai ∈R
ni×ni and Bi ∈R

ni×mi describe the ith sub-system state vector,
control input, system matrix, and input matrix, respectively. For each sub-system i, pair (Ai, Bi)
is assumed to be controllable. System disturbance wi ∈ R

ni is presumed to be an i.i.d. random
sequence with realization wi

k ∼ N (0,Wi), at each time-step k. The initial state xi0 is supposed to
be randomly selected from an arbitrary distribution with bounded second moment. The aggregate
initial state x0, together with the aggregate stochastic disturbance sequence wk, generate the
probability space (Ω,A,P), where Ω is the set of all possible outcomes, A is a σ-algebra of events
with probabilities determined by the function P. At each time-step k, the binary variable δik ∈{0, 1}
represents the scheduler’s decision whether the channel is assigned to a sub-system i, as follows

δik =

{

1, xik sent through the channel,

0, xik blocked.
(2)

The selected data packets are sent through the communication channel. We assume to have a TCP-
like channel, therefore, a successful transmission (i.e., the pertaining packet is not dropped) can be
acknowledged, and the acknowledgement signal is represented by the binary variable γik ∈ {0, 1} as

γik =

{

1, xik successfully received,

0, xik dropped.
(3)

Based on the scheduling and dropout variables δik and γik, the signal received at the ith controller is

zik =

{

xik, if δikγ
i
k = 1,

∅, otherwise,

Each sub-system i is controlled by a state-feedback controller updated at every time-step k by either
the true state value xik (if δikγ

i
k = 1), or by the state estimate x̂ik (if δikγ

i
k = 0). It is assumed that

sensor and controller of the ith sub-system have local knowledge of Ai, Bi, Wi and the distribution
of xi0. Thus, control law ϑi is described by measurable and causal mappings of the past observations:

uik = ϑik(Z
i
k) = −Lix̂

i
k = −LiE

[

xik|Z
i
k

]

, (4)

where, Zi
k = {zi0, . . . , z

i
k} is the ith controller observation history, and Li is an arbitrary stabilizing

feedback gain. In accordance with emulation-based approach, we assume that each loop is stabilized
in case of ideal communication, i.e. for δikγ

i
k = 1 for all time-steps k ∈ {1, 2, . . .}. In case of a failed

transmission, i.e. δikγ
i
k = 0, a model-based estimator at the controller side computes the state
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estimate based on the local system parameters Ai, Bi and Li and state observation history. Thus

x̂ik = E
[

xik|Z
i
k

]

=

{

xik, if δikγ
i
k = 1,

(Ai −BiLi) E
[

xik−1|Z
i
k−1

]

, otherwise,
(5)

with E
[

xi0|Z
i
0

]

= 0. The estimator (5) is well-behaved since any stabilizing gain Li ensures that
the closed-loop matrix (Ai −BiLi) is Hurwitz. Accordingly, we define the one-step ahead network-
induced estimation error eik∈R

ni as eik , xik−E
[

xik|Z
i
k−1

]

, with Zi
k = Zi

k−1∪{δik, γ
i
k, δ

i
kγ

i
kx

i
k}. From

(1)-(5), and the definition of eik, the dynamics of the system state and error state are as follows:

xik+1 = (Ai −BiLi) x
i
k +

(

1− θik
)

BiLie
i
k + wi

k, (6)

eik+1 =
(

1− θik
)

Aie
i
k + wi

k, (7)

where, θik , δikγ
i
k indicates whether the ith-loop is closed at time k. Since various decisions are

made within one time period k, it is worth specifying the causal ordering of the events, as follows

· · · → xk → ek → δk → γk → zk → uk → xk+1 → ek+1 → · · ·

This specifies that the scheduler first determines δk utilizing the information available at the sched-
uler at time-step k. Afterwards, the error at time-step k + 1 attains a value according to (7).
It follows from (6) that if the ith-loop is closed at time k, i.e. θik = 1, the stabilizing gain Li

ensures the closed-loop matrix (Ai −BiLi) is Hurwitz. We define (xik, e
i
k) as the aggregate state

of sub-system i. Expression (7) indicates that the evolution of eik is independent of the system
state xik, and control input uik. Therefore, the existence of stabilizing control gains Li does not
imply that the network-induced error state eik is asymptotically converging. In presence of the
communication constraints, however, given a stable closed-loop matrix (Ai −BiLi), it is sufficient
to show asymptotic convergence of eik to achieve stability of a sub-system i with the aggregate state
(xik, e

i
k). This property enables us to design the scheduler independently from the control law uik.

The scheduling law in this article follows the TOD scheme (Walsh et al., 2002) which is a
deterministic and dynamically prioritizing channel access controller. Let the channel capacity be
constrained such that not all sub-systems can simultaneously transmit at a time-step, i.e.

∑N

i=1
δik = c < N, k ∈ {0, 1, . . .}, (8)

where, we assume to have c dedicated channels assuring c parallel transmissions. According to the
TOD rule, each sub-system i reports the Euclidean norm of its one-step ahead estimation error at
the current time-step k, i.e. ‖eik‖2, to the scheduling unit to check if the sub-system is in priority for
transmission at that time-step. Having the constraint (8), from all N sub-systems, c sub-systems
with the largest error values are selected by the scheduler for transmission, while the other N − c
sub-systems are discarded and should try to transmit at next time-steps with updated error values.
Having the TOD scheduler described, the transmission decision for sub-system i is taken as follows:

δik =

{

0, if ‖eik‖2 < ‖ejk‖2 at least for c sub-systems j 6= i

1, if ‖eik‖
2
2 > ‖ejk‖2 at least for N − c sub-systems j 6= i

(9)

In addition, we assume that a data packet which is scheduled for transmission might be dropped
out in the communication channel with a non-zero probability. The dropout probability is assumed
to follow the Bernoulli distribution. The binary variable γik ∈ {0, 1} represents whether the trans-
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Figure 1. A multi-loop NCS with a shared communication channel and error-dependent scheduler.

mission of a selected sub-system i at time-step k, for which δik = 1, has been successful (see Fig.
1). We comprehensively address the problem of data loss in Section 3.2.1.
In the interest of article brevity, we assume only one sub-system transmits at a time, hence,

∑N

i=1
δik = 1, ∀k ≥ 0. (10)

The results of this article can be straightforwardly extended to
∑N

i=1 δ
i
k = c < N , where c > 1.

We define the aggregate one-step ahead estimation error ek ∈ R
n = ∪N

i=1R
ni at time-step k by

stacking the local estimation error vectors eik ∈ R
ni from all sub-systems i ∈ {1, . . . , N}, i.e.

ek =
(

e1k, . . . , e
N
k

)

, (11)

According to the expression (7), the sequence {ek}
k is controlled by the scheduling variable δik at

each time k. Moreover, the scheduling law (9) indicates that the decision on δik is made depending
only on the most recent one-step ahead estimation error eik. Since e

i
k’s are noise-driven according to

(7), the triggering times of the scheduling events are randomly determined. Moreover, the process
noise wi

k in (7) has a continuous everywhere-positive density function at any element eik of the
overall state ek, i.e., there is a positive probability to reach any subset of Rn. This implies the
existence of a transition probability P associated with σ-algebra A such that for any event E ∈A

P (ek+t ∈ E|em,m < k, ek) = P t(ek+t ∈ E|ek),

where, P t(ek+t ∈ E) denotes the probability that ek enters a set E after t transitions, and m is any
time index before time k. Since the scheduling law (9) does not incorporate the error states em,
m < k when deciding on δik, and thus the process {ek}

k is a δk-controlled Markov chain. Under each
specific binary-valued sequence δk = {δ1k, . . . , δ

N
k }, the expression (7) is time-invariant. In addition,

the noise realizations wi
k’s are i.i.d. for each sub-system i at any time k which implies the state

transition probability is homogeneous. Moreover, δk is ek-measurable as it deterministically depends
on ek, hence, for a given ek, δk is known, and the process {ek}

k is a homogeneous δk-controlled
Markov chain. Since the noise distribution is absolutely continuous with an everywhere-positive
density function, every subset of the state-space is accessible within one transition (d-cycle is one),
concluding that {ek}

k is an aperiodic and ψ-irreducible Markov process, where ψ is the unique
maximal irreducibility measure on the σ-algebra A. Irreducibility guarantees that the entire state
space is reachable via a finite number of transitions, regardless of the initial state.
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2.1 Preliminaries

Stability analysis of Markov processes in uncountable state-spaces requires additional attention
compared to the well-developed stability concepts for those over countable spaces. Stability concept
employed in this article is the stochastic notion of f -ergodicity. In what follows, we revisit some
preliminaries on Markov chains including the concepts of ergodicity, irreducibility, and recurrence.

Definition 1: (Feller, 1971) A random process is called ergodic if the time-average of its events
over one sample sequence of transitions represents the process behavior over the entire state-space.

Definition 2: (Hernandez Lerma & Lasserre, 2001) Let the Markov chain Φ = (Φ0,Φ1, . . .) evolve
in state-space X , with individual random variables measurable with respect to some known Borel
σ-algebra B(X ). Then Φ is said to be positive Harris recurrent (PHR) if

(1) There exists a σ-algebra measure ν(B) > 0 for a set B ∈ B such that for all initial states
Φ0 ∈ X , P (Φk ∈ B, k <∞) = 1 holds, where P (·) is the transition probability kernel.

(2) Φ admits a unique invariant probability measure.

Intuitively, if a state of a PHR Markov chain leaves a subset B ∈ B with non-zero probability,
then the state returns to the set B after a finite number of transitions, with probability one.
Next, ergodicity of a Markov chain w.r.t. a function f , which could be Markov state-dependent,

is defined. This is crucial in analyzing the behavior of (7), as the event triggers are error-dependent.

Definition 3: (Meyn & Tweedie, 1996) Let f ≥ 1 and f : Rn → R. A Markov chain Φ is said to
be f -ergodic, if

(1) Φ is positive Harris recurrent with the unique invariant probability measure π,
(2) the expectation π(f) :=

∫

f(Φk)π(dΦk) is finite
(3) limk→∞ ‖P k(Φ0, .)− π‖f = 0 for every initial value Φ0 ∈ X, where ‖ν‖f = sup|g|≤f |ν(g)|.

Now we introduce the notion of Markov chain gradient with respect to a real-valued function of
states, (Meyn & Tweedie, 1996). Assume V : Rn → [0,+∞) is a real-valued function and Φ is a
Markov chain. The drift operator ∆ is defined for any non-negative measurable function V as

∆V (Φk) = E[V (Φk+1)|Φk]− V (Φk), Φk ∈ R
n. (12)

In the followings, first we define the notion of irreducibility, and then summarizes the notion of
f -ergodicity for Markov chains in general state-spaces.

Definition 4: (Meyn & Tweedie, 1996) Let the Markov chain Φ be defined on (X ,B), where X
is an uncountable space with σ-algebra B(X ). Let ϕ be a measure on B(X ). Then Φ is said to be
ϕ-irreducible, if for every x ∈ X and a subset B ∈ B(X ), ϕ(B) > 0 implies P(τB < ∞) > 01.
Additionally, If a Markov chain Φ is ϕ-irreducible, then a unique maximal irreducibility measure
ψ≻ϕ exists on B(X ) such that for any B ∈ B(X ), ψ(B) > 0 implies P(τB <∞) > 0.

Theorem 1 (f -Norm Ergodic Theorem): Suppose that the Markov chain Φ is ψ-irreducible and
aperiodic and let f (Φ)≥ 1 be a real-valued function in R

n. If a petite set D and a non-negative
real-valued function V exists such that ∆V (Φ)≤−f(Φ) for every Φ∈R

n\D and ∆V <∞ for Φ∈D,
then the Markov chain Φ is f -ergodic, (Proof in (Meyn & Tweedie, 1996, Ch. 14)).

1Let X be an uncountable space equipped with σ-algebra B(X ) and Φ = (Φ0,Φ1, . . .) is a Markov chain. Then for any B ∈ B(X ),
the measurable function τB : Ω → Z

+ ∪ {∞} is called return time and denotes the first return time to the set B by Φ, i.e.

τB := minn≥1 {Φn ∈ B}.

7



March 2, 2018 International Journal of Control tCONguide

Remark 1: (Meyn & Tweedie, 1996) All compact subsets of linear state-spaces are small sets2

and a small set is also petite.

In summary, showing a controlled Markov process is f -ergodic confirms that the Markov state
evolves according to an invariant finite-variance measure over entire state-space. This ensures that
the Markov chain is a stationary process, and guarantees if the Markov state leaves some subsets
of σ-algebra B(X ), it can be steered to return to these subsets in finite time with probability one.

Remark 2: For the sake of simplicity in this article, we assume that the measurements, that are
communicated to the scheduler and controllers, are perfect copies of state vectors xik’s, without
additive measurement noise. The results of this work are repeatable in case of having noisy mea-
surements presuming the observability condition, and employing Kalman filters and state observers
at each controller side. It is worth noting that stochastic measurement noise invalidates the Markov
property of the aggregate error state ek. Therefore, appropriate alternatives, e.g. Lyapunov mean
square stability, need to be employed for stability analysis, (Mamduhi, Kneissl, & Hirche, 2016).

3. Stability Analysis

In this section, we study stochastic stability of multiple-loop NCSs described in (1)-(7) over shared
communication channels subject to the constraint (10), under the event-based TOD scheduling
policy (9). As previously discussed, assuming that the emulation-based control laws are pre-designed
according to (4), the overall NCS stability will be achieved if the overall network-induced estimation
error ek is stationary. To that end, we employ Theorem 1 to analyze dynamics of the δk-controlled
Markov process {ek}

k∈R
n. We first select the following non-negative function V :Rn→R≥0:

V (ek) =
∑N

i=1
ei

T

k e
i
k =

∑N

i=1
‖eik‖

2
2. (13)

Due to the characteristics of the selected function (13) and the capacity constraint (10), f -ergodicity
of the Markov process {ek}

k cannot always be guaranteed independent of initial conditions, for
general parameters Ai, Wi, and c, employing the drift ∆V in (12) defined over one transition step.
We illustrate this observation by computing the one-step drift (12) for a descriptive NCS setup.
Example 1: Let two identical scalar LTI sub-systems compete for the sole shared channel slot at

each sampling time k. For the sake of illustrative purposes, assume that the communication channel
is perfect, i.e. no packet drop out occurs. At an arbitrary time-step k, let |e1k| < |e2k|, therefore,
δ2k = 1 according to the TOD rule (9), and consequently from (7) we have e2k+1 = w2

k. Employing

(13) with ek = (e1k, e
2
k), the drift operator (12) yields the following:

∆V (ek) = E[V (ek+1)|ek]− V (ek)

= E
[

|e1k+1|
2 + |e2k+1|

2|e1k, e
2
k

]

− |e1k|
2 − |e2k|

2

= E
[

|A1e
1
k + w1

k|
2|e1k

]

+ E
[

|w2
k|

2
]

− |e1k|
2 − |e2k|

2

= |A1|
2|e1k|

2 +W1 +W2 − |e1k|
2 − |e2k|

2 =
(

|A1|
2 − 1

)

|e1k|
2 +W1 +W2 − |e2k|

2,

which is not always negative for general A1, W1, and W2, hence violating the ergodicity condition
in Theorem 1. In fact the drift might be negative only for certain initial conditions e1k and e2k, but
not generally. As Theorem 1 provides only sufficient ergodicity condition for a Markov process,
a positive drift does not ensure that {ek}

k is not ergodic. Therefore, as we will discuss it in the
following section, with employing an alternative approach we may still certify ergodicity.

2A subset C ∈ B(X ) of the measurable space (X ,B) is called ν-small if a non-trivial measure ν on B(X ) and k > 0 exists such
that for all x ∈ C, and B ∈ B(X ), P k(x,B) ≥ ν(B) holds.

8
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3.1 Stability analysis using multi-step drift

we aim to analyze the behavior of the overall networked system under the TOD scheduling law,
which is an online medium access controller. This emphasizes that the current situation of each sub-
system is decisive in the eventual transmission order. Note that, noise realization wi

k, in addition
to the system parameter Ai, affects the triggering law (9). Therefore, internally stable sub-systems
may transmit ahead of unstable ones due to having a large noise realization. It is then theoretically
possible that an unstable sub-system has to wait for multiples of time-steps to transmit. Therefore,
considering only a one-time-step transition to verify stability might result in conservative condi-
tions. To take this stochastic effect into account, we propose a less conservative stability test which
employs the drift criterion over an interval of multiple time-steps. This time interval, over which
the drift operator ∆V is defined, guarantees that all sub-systems in the NCS have non-zero prob-
abilities of having at least one transmission. It should however be noted that, non-zero probability
of transmission never guarantees an eventual transmission for a certain sub-system. Depending
on the number of sub-systems N , and the channel capacity c < N , we first derive the minimum-
length of such time interval, and then discuss that convergence of the Markov process {ek}

k over
shorter intervals will only be achieved via conservative conditions on initial conditions and system
parameters. Before that, we define the multi-step drift operator over an interval [k, k+l], as follows:

∆V (ek, l) = E[V (ek+l)|ek]− V (ek), ek ∈ R
n. (14)

To ensure convergence of the Markov chain {ek}
k over an interval, a Lyapunov candidate V (ek)

needs to be always drifting inward, i.e. the drift is negative over the considered time interval.
Consider N

c
> 1, which implies the integer ⌈N

c
⌉ ≥ 2. Let the Markov process {ek}

k evolve over an

interval of length l ≤ ⌈N
c
⌉− 1, over which cl transmission possibilities exist. It is easy to show that

cl ≤ c

(⌈

N

c

⌉

− 1

)

< N. (15)

We conclude from (15) that at least one sub-system will not be allowed to transmit over the interval
with length l, due to capacity limitations, (at worst, N − c sub-systems might not transmit, if the
same c sub-systems transmit subsequently at every time-step). Recall that the policy (9) makes
scheduling decisions based on both local system parameters, and random noise realizations. Thus,
there exist non-zero probabilities for each one of sub-systems to be discarded from transmission.
Let sub-system i with arbitrary initial state (xi0, e

i
0) be the system that does not certainty transmit

over the interval [0, l]. Computing E
[

‖eil‖
2
2

]

at the final time-step of the interval [0, l] results in:

E
[

‖eil‖
2
2

]

= ‖Al
i e

i
0‖

2
2 + tr(Wi) + E

[

‖Al−1
i wi

0 +Al−2
i wi

1 + . . .+Aiw
i
l−2‖

2
2

]

.

Calculating the drift (14) over the interval [0, l] certifies convergence of {ek}
k only for certain values

of ‖Ai‖, Wi, and e
i
0, which shows conservativeness of the considered analysis tool. To avoid such

conservativeness, we define the multi-step drift operator over time intervals with minimum length
⌈N

c
⌉. Showing that the δk-controlled Markov process {ek}

k is convergent (see Theorem 2) ensures

that it is an ergodic state. Having ergodic {ek}
k together with the existence of the stabilizing

controllers uik guarantee stochastic stability of the overall NCS over the entire state-space.
Therefore, in the followings we investigate f -ergodicity of the Markov chain {ek}

k under the ca-
pacity constraint (10), by investigating the drift operator (14) over any interval of length ⌈N

c
⌉ = N ,

i.e. initiating from time-step k, over the interval [k, k+N ]. It is worth reminding that convergence
over an interval implies convergence over longer intervals which include the original interval (refer
to (Meyn & Tweedie, 1996, Ch.19) for discussions on ergodicity over multi-step intervals).

9
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3.2 f-ergodicity of stochastic NCS

To infer f -ergodicity, we employ multi-step drift operator defined in (14), over the interval [k, k+N ]:

∆V (ek, N) = E[V (ek+N )|ek]− V (ek), ek ∈ R
n. (16)

In the followings, we first study stochastic stability of the described NCS assuming ideal commu-
nication channel, i.e. no packet is dropped while being transmitted through the channel. Then, we
extend the results for the non-ideal case by considering non-zero probability of packet dropouts.

Theorem 2: Consider an NCS consisting of N heterogeneous LTI stochastic sub-systems modeled
as (1), and a transmission channel subject to the constraint (10), and the control, estimation and
scheduling laws given by (4), (5) and (9), respectively. Assume that all scheduled data packets are
successfully transmitted, i.e. γik = 1, for all i ∈ {1, . . . , N} and at all time-steps k. Then, the
described NCS with the overall network state (xk, ek) := (x1k, . . . , x

N
k , e

1
k, . . . , e

N
k ) is f -ergodic.

Proof. We briefly describe the proof idea, while a detailed proof is provided in Appendix A.1. We
show that the described NCS with the overall state (xk, ek) is f -ergodic over the entire state space,
independent of the initial conditions. Knowing that the overall system state xk is convergent by the
stabilizing gains Li’s, we calculate the N -step drift (16) considering all possible path transitions of
{ek}

k ∈ R
n over the interval [k, k+N ]. Showing that ∆V (ek, N) satisfies the conditions of Theorem

1, the existence of a compact set, so called D1, is ensured towards which the controlled Markov
chain ek is expected to converge with probability one, at least once over every time interval of
length N . This proves the Markov chain is stationary, and stability then readily follows.

Remark 3: The compact set D1 is an n-dimensional set which is composed of N compact sub-sets
with dimensions ni, where each sub-set is attractive for the corresponding local error state eik. In
fact, Theorem 2 shows that if the Markov chain {ek}

k evolves outside the compact set D1 ⊂ R
n,

it converges inside the set in finite time under the TOD scheduling law (See Appendix A.2.).
Intuitively, if the parameters N, ‖Ai‖’s and tr(Wi)’s increase, then D1 becomes proportionally
larger in order to satisfy the condition f ≥ 1 for ek /∈ D1, (see Theorem 1). Hence, it concludes
that if the channel capacity is fixed, size of the compact set D1 strictly increases by increasing N ,
‖Ai‖, and tr(Wi), which intuitively implies that the Markov chain {ek}

k converges to a larger set.

Remark 4: In (Walsh et al., 2002, Theorem 1), global exponential stability (GES) for NCSs con-
sisting of LTI non-disturbed sub-systems under the TOD scheme is shown by the introduction of
MATI and placing conservative bounds on the transmission deadline. In the present work, however,
such an approach cannot be followed due to the existence of unbounded stochastic disturbances
which imply the event-triggers to be stochastic as well. Unlike the results in (Walsh et al., 2002,
Lemma 1), the maximum growth of the network-induced error (7) between two consecutive trans-
missions cannot be uniformly upper-bounded, because random disturbances take arbitrary values.
As a result, an upper-bound for the transmission deadline cannot be obtained as a function of
system parameters, because transmissions are determined additionally as function of disturbance
realizations at each time-step. The notion of f -ergodicity in this work is in fact a more general
stability criterion than GES, i.e., GES implies f -ergodicity. Moreover, unlike (Walsh et al., 2002)
which assumes that the network-induced error satisfies a linear growth bound and therefore treats
the error as a vanishing perturbation (see (Khalil, 2002), p. 340), f -ergodicity guarantees con-
vergence of {ek}

k to a small set with the boundaries defined by the system parameters and noise
variance, (See Section 4.). This means that f -ergodicity provides stability margins which are not as
tight as GES. On the other hand, as it is shown in Theorem 2, f -ergodicity is guaranteed without
requiring a transmission deadline, i.e. no necessity of a transmission over every MATI is needed.

10
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3.2.1 Stability of Stochastic NCSs Subject to Packet Dropouts

In this section, we study stochastic stability of NCSs described in (1)-(7) under the TOD scheduling
policy (9) considering that every transmitted data packet might be dropped in the communication
channel. As already introduced in (3), an acknowledgement signal of the binary form γik ∈ {0, 1}
represents that a transmission correspond to sub-system i at time-step k has been successful or
not. The dynamics of the error state eik then depends on both variables δik and γik as follows:

eik+1 =
(

1− δikγ
i
k

)

Aie
i
k + wi

k, (17)

Conventionally, we assume that packet dropouts are modeled by a Bernoulli process. Thus, a trans-
mitted packet is successfully received with probability p, or dropped with probability 1− p, i.e.

P
[

γik = 1|δik = 1
]

= p , P
[

γik = 0|δik = 1
]

= 1− p. (18)

Considering the packet loss probability (18), the constraint (10) will be modified as follows:

∑N

i=1
δikγ

i
k ≤ 1, ∀k ≥ 0. (19)

In the following theorem, we derive a lower bound on successful transmission probability p such
that stochastic stability of the described NCS is guaranteed under the TOD scheduling policy (9).

Theorem 3: Consider an NCS consisting of N heterogeneous LTI stochastic sub-systems modeled
as (1) transmitting information over a shared communication channel subject to the constraint (19),
and the control, estimation and scheduling laws given by (4), (5) and (9), respectively. Assume that
the scheduled data packets are dropped with probability 1− p, as described in (18). Let

p > 1−
1

∑N
i=1 ‖Ai‖2N2

, (20)

then the NCS with the overall network state (xk, ek) :=(x1k, . . . , x
N
k , e

1
k, . . . , e

N
k ) is f -ergodic.

Proof. The idea of this proof is similar to that of Theorem 2, however the dropout probability is
associated in computing the N -step drift (16). Since the overall NCS is not stochastically stable for
all values of p ∈ (0, 1), we derive the necessary and sufficient stability condition, in form of a lower
bound on successful probability p. Then, the existence of a compact set, denoted as D2, is ensured
toward which the Markov process {ek}

k converges. (See Appendix A.2 for the detailed proof.)

Remark 5: The result of Theorem 2 is achievable from Theorem 3 by setting p = 1. Note that in
case p∈(0, 1), size of the compact set D2 is expectantly greater than that of the set D1. Intuitively,
when a packet is dropped none of the local error states is reset. In expectation, this increases in the
overall error norm, and consequently, implies larger convergence set. Moreover, the upper-bound
(20) is strictly decreasing with decreasing ‖Ai‖ and N . This observation is expected since dropouts
may have greater negative effects on the stability margins if the number of sub-systems increases
while the capacity is fixed, or if there exist sub-systems with larger system matrix spectrum.

4. Performance Analysis

In this section, we evaluate the overall NCS performance under the TOD scheduling policy (9). By
introducing a per-time-step cost function, we derive analytic uniform upper-bounds for the average
cost function. We discussed in Section 2 that the control and scheduling laws are independently

11
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designed. This property allows us to evaluate control performance and scheduling performance
also independently. In this article, our attention is focused on evaluating performance of the TOD
scheduling policy. Therefore, we define the per-time-step cost function Jek : R

n → R≥0, as follows:

Jek ,
1

N

∑N

i=1
ei

T

k e
i
k =

1

N

∑N

i=1
‖eik‖

2
2. (21)

According to (21), there is no penalty on the control-related signals uik and xik. However, due to
the independence of the control inputs from the scheduling policy, terms involving uik and xik can
readily be added to the cost (21). A potential minimization of such terms would directly affect the
design of control gain Li, (Molin & Hirche, 2011). This is however out of scope of this article.
From the per-time-step cost function (21), we define the average cost function Jave as

Jave= lim
T→∞

sup
1

T

∑T−1

k=0
E [Jek ] . (22)

For the purpose of brevity, we only obtain performance bounds for the case without packet
dropout, i.e. p=1. The results are readily extendable for the scenario with packet loss, i.e. 0<p<1.

Theorem 4: Consider an NCS described in (1)-(7), with the individual control loops exchanging
data over a shared communication channel subject to the constraint (10). Assume that the data
packets are scheduled for transmission according to the TOD policy given in (9) and assume p = 1
in (18). Then the average cost (22) is uniformly bounded by the following upper-bound:

Jave ≤
∑N

i=1

∑N−1

r=0
tr(Wi)‖Ai‖

2(N−r−1)
2 . (23)

Proof. See Appendix A.3.

The uniform upper-bound (23) is an strictly increasing function w.r.t. increasing ‖Ai‖, tr(Wi),
and N for all i ∈ {1, . . . , N}. This is expected since the per-time-step cost function Jek is dependent
on the quadratic form of the error, which for a fixed capacity increases by increasing ‖Ai‖, tr(Wi),
and N . Moreover, (23) does not expose the dependency on channel capacity c, since the capacity
c is assumed to be 1, according to (10). Expectantly, considering c > 1 provides the possibility of
having more than one transmission at each time-step, leading to a tighter performance bound.

Corollary 1: Consider the NCS setup described in Theorem 2. Let D ⊂ R
n, n =

∑N
i=1 ni, be a

given measurable subset with the Lebesgue measure λ(D), such that for a non-negative real-valued
function V (ek), and f(ek) ≥ 1, ∆V (ek, N) ≤ −f for ek /∈ D, and ∆V (ek, N) <∞, for ek ∈ D. If

λ(D) ≥
∑N

i=1
tr(Wi)

1

2

(

∑N−1

r=0
‖Ai‖

2(N−r−1)
2

)
1

2

, (24)

then, {ek}
k exp
−−→ D as k → ∞, for all ek /∈ D, where,

exp
−−→ denotes the convergence in expectation.

Proof. According to the Theorem 2, the Markov process {ek}
k is f -ergodic, and hence a stationary

process, under the TOD scheduling law. Moreover, according to the Theorem 4, we can derive

E[‖ek+N‖2]=
∑N

i=1 E[‖e
i
k+N‖2]≤

∑N
i=1 tr(Wi)

1

2

(

∑N−1
r=0 ‖Ai‖

2(N−r−1)
2

)
1

2

. This guarantees that {ek}
k

converges in expectation to a Lebesgue measurable compact set D, with probability one, at most
every N time-steps, if the Lebesgue measure3 λ(D) satisfies the inequality (24). It guarantees
asymptotic convergence of {ek}

k to D in expectation, and the proof then readily follows.

3Remind that for every Borel measurable set, the Borel and the Lebesgue measures coincide.
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Table 1. NCS simulations parameters.

Ai Bi Li = AiB
−1

i
xi

0 wi

k

Class cl1 with Nu
∗ unstable sub-systems 1.25 1 1.25 0 i.i.d. with N (0,Wi)

Class cl2 with Ns
∗ stable sub-systems 0.75 1 0.75 0 i.i.d. with N (0,Wi)

∗ Total number of sub-systems in an NCS equals N , where N = Ns +Nu.

From corollary 1 one concludes that in the presence of stochastic system disturbances, the Markov
process {ek}

k does not generally converge to zero, but to a compact set with the boundaries
dependent on tr(Wi), ‖Ai‖, and N . However, the result of (Walsh et al., 2002), Lemma 1, can
be deduced from the expression (24). In fact, in the absence of stochastic disturbances, the error
asymptotically converges to the origin with zero Lebesgue measure, i.e. the error is a vanishing
perturbation. In addition, from the corollary 1, we can determine the system parameters tr(Wi),
‖Ai‖, and N in order to achieve a desired performance. Additionally, for given parameters, we can
determine the minimal compact set towards which the error is converging. It is worth reminding
that the provided lower-bound (24) is only a sufficient condition and is moderately conservative.

5. Simulation Results

In this section we validate the theoretical claims made in this article through simulating multi-loop
NCSs with different parameter settings. To highlight the efficacy of the event-triggered channel ar-
bitration, we compare the performance of the TOD scheduler with some of the conventional policies
such as time-triggered TDMA, static random MAC, and event-based uniform access arbitration.
To account for the system heterogeneity, each sub-system in an NCS belongs to one of the two

classes of sub-systems, namely {cl1, cl2}, where in one class the systems are homogeneous. The
class cl1 includes unstable sub-systems, and the class cl2 contains stable sub-systems. For the sake
of illustrations, we consider scalar sub-systems in the simulations, with the parameters summarized
in Table 1 for each class. Each individual sub-system i is steered by a dead-beat control law with
stabilizing gain Li=AiB

−1
i . Recalling the closed-loop dynamics (6), the dead-beat control incurs

the dynamics to be solely error dependent, i.e. xik+1 = (1− θik)Aie
i
k +wi

k, which exactly resembles
the error dynamics in (7). Therefore, it is sufficient to simulate the dynamic behavior of the error
state. We conduct Monte Carlo simulations for each NCS setup with 105 samples, and confidence
intervals are computed over 10 runs. As {ek}

k is a random sequence with Gaussian-distributed
random components eik, we look at the variance of the distribution of ek . To demonstrate the
numerical results comprehensively, we conduct the simulations for different sets of system-related
and channel-related parameters. In below, we provide comparisons for the two discussed scenarios:
1) ideal communication channels, and 2) error-prone channels with possibility of packet loss.

5.1 Ideal communication

Consider an NCS consisting of 100 scalar LTI sub-systems with 50 sub-systems belonging to each
class cl1 and cl2, i.e. Nu=50 and Ns=50. Let p=1, i.e. scheduled data packets are not dropped
out. The simulative aggregate error variances versus different ratios c

N
={0.05, 0.1, 0.2, 0.3, 0.4, 0.5},

(i.e. for varying number of parallel transmission slots c = {5, 10, 20, 30, 40, 50}) are depicted in
Fig. 2 (a). Additionally, the variances are plotted in Fig. 2 (a) for Gaussian disturbances with
various second moments W = {0.5, 1, 2, 3, 4}. As expected, the aggregate variances decrease by
increasing the channel capacity c. In addition, the more uncertain the process disturbance is, i.e.
greater W , the higher the aggregate error variance becomes. In case the channel capacity is quite
scarce, e.g. c

N
= 0.05 in Fig. 2 (a), the aggregate error variance becomes largely sensitive to
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the process disturbance. This observation can be explained by noting that the local error states
of unstable sub-systems grow rapidly if they do not transmit often enough, which occurs when
resource scarcity increases. Since local errors are marred by random disturbances, more uncertain
disturbance distributions yields even faster growth rate for local errors. This observation is also in
accordance with the theoretic results of Theorem 2 (see the expression (A6) in the Appendix A.1.).
In Fig. 2 (b), the comparisons are made between scenarios with different number of unstable

sub-systems Nu = {60, 70, 80, 90, 100}, in an NCS with N = 100, while the variance of the process
noise is set to be fixed at W = 1. The aggregate error variances are plotted versus the ratios
c
N

= {0.1, 0.2, 0.3, 0.4, 0.5}. As it can be seen, the aggregate error variances conceivably increase
with increasing Nu. However, the gap is more evident when the channel capacity is quite limited, see
e.g. for c

N
= 0.1. For higher transmission possibilities though, the gap decays drastically, see e.g. the

negligible gap between different curves for c
N

= 0.5. The reason is, waiting time for a transmission
is expectedly shorter for unstable sub-systems when c

N
increases, which prevents the corresponding

errors to be increased exponentially. In fact, Fig. 2 (b) illustrates that the event-based scheduling is
hugely beneficial for stochastic NCSs in case communication resources are moderately scarce. This
can be seen by comparing the error variances for two cases Nu=60 and Nu=100, when c

N
= 0.5.

5.2 Binary erasure channel – Packet loss

Next, we evaluate the effects of packet loss on the overall NCS performance. In Fig. 3 (a), the
aggregate error variances are shown versus different ratios of c

N
= {0.1, 0.2, 0.3, 0.4, 0.5} for various

dropout probabilities. The total number of sub-systems equals 100 and W = 1. A fixed success
probability p is assigned to each sub-system and γik is determined as the outcome of the Bernoulli
distribution such that γik = 1 w.p. p, and γik = 0 w.p. 1 − p. As it is illustrated in Fig. 3 (a), the
error variances increase with decreasing p. However, the gap becomes narrower as c

N
increases.

Fig. 3 (b) provides performance comparisons between the TOD scheduling scheme and TDMA,
static uniform MAC, and the event-triggered threshold policy, for NCSs with different number of
sub-systems N ∈{2, 4, 6, 8, 10, 20}, subject to the capacity constraint (19). Each stable and unstable
class include N

2 sub-systems. To have a fair performance comparison between TOD and TDMA,
we derived optimal transmission pattern for the latter periodic scheme by brute force search over a
finite time window. Remind that finding the optimal TDMA pattern in infinite horizon is NP-hard.
Thus, we numerically search for TDMA pattern which results in the minimum error variance over
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a finite time window for each set-up with N ∈ {2, 4, 6, 8, 10, 20}. This search is however utterly
exhaustive for more sub-systems and over longer time windows (The search for N=4 over 9 time-
steps lasts nearly 11 hours on a 3.90 GHz 4690 Core i5 CPU). Moreover, the optimal pattern
changes sensitively w.r.t. the system parameters, hence not an appropriate design method for large
scale NCSs. We also compare performance of the TOD approach with static scheduling which is a

non-prioritized channel arbitration with pre-given transmission chance of A2

i∑
N

j=1
A2

j

for a sub-system

i at every time-step. (This is an improvement to the standard CSMA with access probability 1
N
).

Fig. 3 (b), shows the static protocol results in acceptable variance only up to N=4, while for N=6
it takes the value with magnitude 8×103. This is an expected observation due to the static nature
of resource allocation which may result in long non-transmission windows for unstable systems.
We additionally compare the performance of TOD with the event-triggered threshold-based

scheduling approach, proposed in Molin and Hirche (2014a) (green dotted curve in Fig. 3 (b)).
According to this approach, a sub-system is qualified for transmission if a function of its state
exceeds some pre-given thresholds, otherwise it is excluded. In case the number of qualified sub-
systems is greater than the channel capacity c, the scheduler randomly selects c sub-systems of the
qualified ones uniformly while the rest are expelled. Fig. 3 (b) shows that, for p=1, TOD approach
outperforms all mentioned schemes, especially when the size of the NCS increases. Since packet
dropout is not considered for the other protocols, it is fair to compare them with TOD only for
p = 1. The two blue and purple dotted curves represent the performance of TOD with successful
transmission probabilities 90% and 80%, respectively. It concludes that the theoretical lower bound
for the success probability p in (20) is excessively conservative. According to (20), for the given NCS
parameters, success probability to guarantee stability can be computed for N = {2, 4, 6, 8, 10, 20}
which results in p > {0.6374, 0.9175, 0.9771, 0.9930, 0.9977, 0.9999}, respectively. However, Fig. 3
(b) shows, e.g. for p = 0.8 and N = 20, the aggregate error variance is still well-bounded.

6. Conclusion

In this article, we employ the event-based TOD scheduling scheme as the governing unit to allocate
the scarce communication resources among multiple stochastic LTI sub-systems in an NCS.We then
address stochastic stability and analyze performance of the described networked system considering
that the communication channel is subject to probabilistic transmission failure in form of random
data packet loss. Showing that the resulting overall network state has Markovian property, stability
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properties of such networked systems under the TOD scheduling scheme is investigated within the
stochastic concept of f -ergodicity. In the presence of Bernoulli-distributed random packet dropouts,
sufficient stability conditions are derived to guarantee the overall NCS stability. Furthermore,
a uniform analytic performance bound for an average social cost function is derived under the
employment of the TOD rule. Comprehensive numerical analysis validate our stability claim and
show boundedness of the aggregate error variance with and without possibility of packet loss. In
addition, we show a major performance improvement, in case the TOD approach is employed, in
comparison with related time-triggered, event-triggered, and randomized scheduling policies.
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Appendix A. Technical Proofs

A.1 Proof of Theorem 2

Proof. Remind that existence of the stabilizing control gains Li’s ensure that xk = (x1k, . . . , x
N
k ) is

mean square stable, and consequently f -ergodic, if θik=1 for all i∈{1, . . . , N} and k∈{0, 1, . . .}. In
the presence of the constraint (10), f -ergodicity of the error process {ek}

k ensures the convergence
of the overall network state (xk, ek). As discussed, we analyze convergence of {ek}

k over an interval
with length N under the TOD policy (9). First, we define two complementary and disjoint sets G
and Ḡ, such that set G contains the sub-systems which have transmitted at least once over [k, k+N ],
and set Ḡ includes those with no transmission over the same interval. Clearly, |G|+ |Ḡ| = N , where
| · | denotes the cardinality operator. Since p = 1, exactly one successful transmission occurs at each
time-step implying that |G| ≥ 1. The N -step drift (16) can accordingly be separated as follows:

∆V (ek, N) =
∑

i∈G
E
[

‖eik+N‖22
∣

∣ek
]

+
∑

j∈Ḡ
E

[

‖ejk+N‖22
∣

∣ek

]

− V (ek). (A1)

For notation convention, let i and j be the indexes of sub-systems belonging to the sets G and Ḡ,
respectively. Recalling γi

k̄
=1, for all k̄ ≥ 0, eik+N can be correlated to a previous error eik+r′i

, as

eik+N =
∏N−1

d=r′i

(

1− δik+d

)

A
N−r′i
i eik+r′i

+
∑N−1

r=r′i

[

∏N−1

d=r+1

(

1− δik+d

)

AN−r−1
i wi

k+r

]

, (A2)

where, r′i ∈ [0, N − 1], d is the scheduling variable counter, and we define
∏N−1

d=N (·) , 1.
Let time-step k+ ri denote the latest time that the estimation error of sub-system i ∈ G is reset

over the interval [k, k +N ], where ri ∈ [1, N ]. This means δik+ri−1 = 1 and hence eik+ri
= wi

k+ri−1,

18



March 2, 2018 International Journal of Control tCONguide

according to (7). Therefore, δik+r̄i
= 0, for all r̄i ∈ [ri, N − 1]. We can then express eik+N as follows

eik+N = AN−ri
i eik+ri

+
∑N−1

r=ri
AN−r−1

i wi
k+r

= AN−ri
i wi

k+ri−1 +
∑N−1

r=ri
AN−r−1

i wi
k+r =

∑N−1

r=ri−1
AN−r−1

i wi
k+r. (A3)

As stochastic disturbance process is i.i.d at every time-step, employing (A3) for all i ∈ G yields

∑

i∈G
E

[

‖eik+N‖22|ek
]

=
∑

i∈G
E

[

∑N−1

r=ri−1
‖AN−r−1

i wi
k+r‖

2
2

]

≤
∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22, (A4)

Now, assume |Ḡ| = m, where m ∈ [0, N−1]. If m = 0, then all N sub-systems transmit over the
interval [k, k+N ] each exactly once, and (A4) is valid for all sub-systems. In case m>0, then there
exists at least one sub-system, say q ∈G, which has transmitted more than once over [k, k+N ].
Assume k+rq and k+rqq are the two latest reset times of sub-system q, where rq < rqq ≤N , i.e.
δqk+rq−1= 1 and δqk+rqq−1= 1. This implies that eqk+rq

= wq
k+rq−1. From (A2), the following holds

eqk+rqq−1 =
∏rqq−2

d=rq

(

1− δqk+d

)

Arqq−rq−1
q eqk+rq

+
∑rqq−2

r=rq

[

∏rqq−2

d=r+1

(

1− δqk+d

)

Arqq−r−2
q wq

k+r

]

= Arqq−rq−1
q wq

k+rq−1 +
∑rqq−2

r=rq
Arqq−r−2

q wq
k+r =

∑rqq−2

r=rq−1
Arqq−r−2

q wq
k+r. (A5)

As δqk+rqq−1=1, for all j∈Ḡ we have ‖eqk+rqq−1‖2>‖ejk+rqq−1‖2. We also have from (A2) for a j∈Ḡ

ejk+N = A
N−rqq+1
j ejk+rqq−1 +

∑N−1

r=rqq−1
AN−r−1

j wj
k+r,

Since sub-systems j∈Ḡ never transmit, δj
k̄
= 0 for all k̄ ∈ [k, k +N ]. Therefore, we simply obtain

E

[

‖ejk+N‖22
∣

∣ek

]

= E

[

‖A
N−rqq+1
j ejk+rqq−1 +

∑N−1

r=rqq−1
AN−r−1

j wj
k+r‖

2
2

∣

∣ek

]

≤ ‖A
N−rqq+1
j ‖22 E

[

‖eqk+rqq−1‖
2
2|ek

]

+
∑N−1

r=rqq−1
tr(Wj)‖A

N−r−1
j ‖22 (A6)

≤ ‖A
N−rqq+1
j ‖22

∑rqq−2

r=rq−1
tr(Wq)‖A

rqq−r−2
q ‖22 +

∑N−1

r=rqq−1
tr(Wj)‖A

N−r−1
j ‖22. (A7)

Having (A4) and (A7), the N -step drift operator (A1) reduces to

∆V (ek, N) ≤
∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22 +

∑

j∈Ḡ

∑N−1

r=rqq−1
tr(Wj)‖A

N−r−1
j ‖22

+
∑

j∈Ḡ
‖A

N−rqq+1
j ‖22

∑rqq−2

r=rq−1
tr(Wq)‖A

rqq−r−2
q ‖22 − V (ek).

Define the real-valued function f1 = ǫ1V (ek)− ξ, with ǫ1∈(0, 1] and bounded variable ξ > 0 as

ξ=
∑

i∈G

N−1
∑

r=ri−1

tr(Wi)‖A
N−r−1
i ‖22 +

∑

j∈Ḡ



‖A
N−rqq+1
j ‖22

rqq−2
∑

r=rq−1

tr(Wq)‖A
rqq−r−2
q ‖22 +

N−1
∑

r=rqq−1

tr(Wj)‖A
N−r−1
j ‖22



.
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We can then find a small set D1 and ǫ1 such that f1 ≥ 1, and ∆V (ek, N) ≤ −f1, for ek /∈ D1,
which confirms the conditions in Theorem 1, under the TOD scheduling rule, assuming no packet
loss. This proves f -ergodicity of {ek}

k and consequently of the overall network state (xk, ek).

A.2 Proof of Theorem 3

Proof. To take the dropouts into account, re-define the set G to be containing sub-systems which
are transmitted, either successful or unsuccessful, at least once over the interval [k, k+N ]. Assume
|Ḡ| = m. According to the law of iterated expectations, and from expressions (A2) and (A4), for a
sub-system i∈G with δik+ri−1 = 1, i.e., the latest time a transmission is scheduled, we obtain:

E
[

‖eik+N‖22|ek, γ
i
k+ri−1

]

= pE
[

‖eik+N‖22|ek, γ
i
k+ri−1 = 1

]

+ (1− p)E
[

‖eik+N‖22|ek, γ
i
k+ri−1 = 0

]

≤ p
∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22 + (1− p)E

[

‖AN
i e

i
k +

∑N−1

r=0
AN−r−1

i wi
k+r‖

2
2|ek

]

≤ p
∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22 + (1− p)

[

‖AN
i ‖22‖e

i
k‖

2
2 +

∑N−1

r=0
tr(Wi)‖A

N−r−1
i ‖22

]

. (A8)

If m>0, then there exists at least one sub-system q∈G with more than one transmission attempt
over [k, k+N ]. Let time-steps k + rq and k + rqq be defined as in the proof of Theorem 2. This

implies ‖eqk+rqq−1‖2>‖ejk+rqq−1‖2 for all j∈ Ḡ, according to (9). Recalling (A6), together with the

associated dropout probability 1−p to each scheduled transmission, we have at time-step k+rqq−1

E

[

‖eqk+rqq−1‖
2
2|ek, γ

q
k+rq−1

]

= pE
[

‖eqk+rqq−1‖
2
2|ek, γ

q
k+rq−1=1

]

+(1−p)E
[

‖eqk+rqq−1‖
2
2|ek, γ

q
k+rq−1=0

]

≤ p
∑rqq−2

r=rq−1
tr(Wq)‖A

rqq−r−2
q ‖22 + (1− p)E

[

‖Arqq−1
q eqk +

∑rqq−2

r=0
Arqq−r−2

q wq
k+r‖

2
2|ek

]

.

Substituting the above expression in (A6), the following upper-bound for E
[

‖ejk+N‖22
∣

∣ek

]

follows:

E

[

‖ejk+N‖22
∣

∣ek

]

≤ p‖A
N−rqq+1
j ‖22

∑rqq−2

r=rq−1
tr(Wq)‖A

rqq−r−2
q ‖22

+ (1− p)‖A
N−rqq+1
j ‖22 E

[

‖Arqq−1
q eqk+

∑rqq−2

r=0
Arqq−r−2

q wq
k+r‖

2
2|ek

]

+
∑N−1

r=rqq−1
tr(Wj)‖A

N−r−1
j ‖22

≤ ζ>0 + (1− p)‖A
N−rqq+1
j ‖22‖A

rqq−1
q ‖22‖e

q
k‖

2
2, (A9)

where, ζ>0 = p‖A
N−rqq+1
j ‖22

∑rqq−2
r=rq−1 tr(Wq)‖A

rqq−r−2
q ‖22 +

∑N−1
r=rqq−1 tr(Wj)‖A

N−r−1
j ‖22 + (1 −

p)‖A
N−rqq+1
j ‖22

∑rqq−2
r=0 tr(Wq)‖A

rqq−r−2
q ‖22. Having (A8) and (A9), the N -step drift (16) becomes

∆V (ek, N) =
∑

i∈G
E
[

‖eik+N‖22
∣

∣ek
]

+
∑

j∈Ḡ
E

[

‖ejk+N‖22
∣

∣ek

]

− V (ek)

≤
∑

i∈G

[

p
∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22

]

+
∑

i∈G

[

(1− p)

[

‖AN
i ‖22‖e

i
k‖

2
2 +

∑N−1

r=0
tr(Wi)‖A

N−r−1
i ‖22

]]

+
∑

j∈Ḡ
ζ>0 + (1− p)‖A

N−rqq+1
j ‖22‖A

rqq−1
q ‖22‖e

q
k‖

2
2 − V (ek).

Then, we can rewrite the N -step drift operator ∆V (ek, N) as

∆V (ek, N) ≤ τ>0 +
∑

i∈G

[

(1− p)
[

‖AN
i ‖22‖e

i
k‖

2
2

]]

+
∑

j∈Ḡ

(1− p)‖A
N−rqq+1
j ‖22‖A

rqq−1
q ‖22‖e

q
k‖

2
2 − V (ek),
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where, τ>0 = ζ>0+
∑

i∈G

[

p
∑N−1

r=ri−1 tr(Wi)‖A
N−r−1
i ‖22 + (1− p)

[

∑N−1
r=0 tr(Wi)‖A

N−r−1
i ‖22

]]

. Con-

sidering the fact that V (ek) > ‖eik‖
2
2, for every i ∈ {1, . . . , N}, the above expression simplifies to

∆V (ek, N) ≤ τ>0 + (1− p)V (ek)





∑

j∈Ḡ

‖A
N−rqq+1
j ‖22‖A

rqq−1
q ‖22 +

∑

i∈G

‖AN
i ‖22



− V (ek).

In order to achieve a decreasing drift function, it is essential to satisfy the following inequality:

(1− p)





∑

j∈Ḡ

‖A
N−rqq+1
j ‖22‖A

rqq−1
q ‖22 +

∑

i∈G

‖AN
i ‖22



− 1 < 0.

Considering the worst-case scenario, i.e. ‖Aj‖2 > ‖Ai‖2 for all the m sub-systems j ∈ Ḡ and N−m
sub-systems i ∈ G, the lower bound for the success probability p can be derived as follows

p > 1−
1

∑

j∈Ḡ ‖Aj‖2N2 +
∑

i∈G ‖AN
i ‖22

.

The above lower bound depends on the time-varying sets G and Ḡ, thus we employ the inequality
∑N

i=1 ‖Ai‖
2N
2 >

∑

j∈Ḡ ‖Aj‖
2N
2 +

∑

i∈G ‖AN
i ‖22, leading to the time-invariant lower-bound (20).

Having (20) satisfied, we define f2 : Rn → R as f2 = ǫ2V (ek) − τ>0, with ǫ2 ∈ (0, 1]. Therefore,
small set D2 and ǫ2 can be found such that f2 ≥ 1, and ∆V (ek, N) ≤ −f2, for ek /∈ D2. This ensures
that the conditions in Theorem 2 hold for the network-induced error Markov chain {ek}

k under
the TOD scheduling rule, when the lower-bound (20) is satisfied. This guarantees the f -ergodicity
of estimation error sequence {ek}

k and the proof then readily follows.

A.3 Proof of Theorem 4

Proof. It should be mentioned first that, we search for an analytic and uniform (independent from
initial values) upper-bound on the average cost Jave due to the fact that computing the exact value
of Jave, considering the complex form of the event-based TOD scheduler, is generally infeasible. It
is proved in (Cogill & Lall, 2006) that for Jek :R

n→R, the following upper-bound exists:

Jave ≤ sup
ek∈Rn

{Jek + E [h (ek+1) |ek]− h (ek)} , (A10)

where, h :Rn →R, and h (ek)≥ 0 for all ek ∈R
n. Recall that we are interested in evaluating the

behavior of the Markov process {ek}
k over the intervals of length N , while (A10) refers to one-step

transition of the Lyapunov-like function h(ek). Due to the fact that {ek}
k is a ψ-irreducible Markov

process evolving in uncountable state space R
n, one can always generate a Markov chain that

samples the states of the original Markov chain at time instances {0, N, 2N, ...}. It is straightforward
to discuss that ψ-irreducibility and aperiodicity of the original Markov process are carried over
to the generated chain. Moreover, time-homogeneity of the original Markov chain implies time-
homogeneity of the constructed chain (Meyn & Tweedie, 1996, Chapter 1). Thus, we can replace
the original Markov chain {ek}

k in (A10) with the generated chain which has the same statistical
behavior to that of the original chain. Then the upper-bound (A10) can be re-expressed as follows

Jave ≤ sup
ek∈Rn

{Jek + E [h (ek+N ) |ek]− h (ek)} . (A11)
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We introduce the non-negative quadratic function h (ek) = 1
N

∑N
i=1 ‖e

i
k‖

2
2. Considering the cost

function (21), the upper-bound for the average cost (A11) is therefore reduced to

Jave ≤ sup
ek∈Rn

[

Jek + E [h (ek+N ) |ek]−
1

N

∑N

i=1
‖eik‖

2
2

]

= sup
ek∈Rn

[

1

N

∑N

i=1
‖eik‖

2
2 + E [h (ek+N ) |ek]−

1

N

∑N

i=1
‖eik‖

2
2

]

= sup
ek∈Rn

1

N

∑N

i=1
E
[

‖eik+N‖22|ek
]

(A12)

= sup
ek∈Rn

1

|G|

∑

i∈G
E

[

‖eik+N‖22|ek
]

+
1

|Ḡ|

∑

j∈Ḡ
E

[

‖ejk+N‖22|ek
]

(A13)

To derive the upper-bound for the average cost (A13) with p = 1, we recall from expressions (A4)
and (A7) that the followings hold for sub-systems i in G and sub-systems j in Ḡ, respectively,

∑

i∈G

E

[

‖eik+N‖22|e
i
k

]

≤
∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22,

∑

j∈Ḡ

E

[

‖ejk+N‖22
∣

∣ek

]

≤
∑

j∈Ḡ

‖A
N−rqq+1
j ‖22

rqq−2
∑

r=rq−1

tr(Wq)‖A
rqq−r−2
q ‖22 +

∑

j∈Ḡ

N−1
∑

r=rqq−1

tr(Wj)‖A
N−r−1
j ‖22.

Therefore, we have the following upper-bound for the average cost:

Jave ≤
1

|G|

∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22 (A14)

+
1

|Ḡ|

∑

j∈Ḡ
‖A

N−rqq+1
j ‖22

∑rqq−2

r=rq−1
tr(Wq)‖A

rqq−r−2
q ‖22 +

∑N−1

r=rqq−1
tr(Wj)‖A

N−r−1
j ‖22,

The upper-bound (A14) depends on the varying time instances rq and rqq. To have an upper-bound
depending solely on constant system parameters, we consider the worst case scenario which entails
that for all m sub-systems j ∈ Ḡ, and all N −m sub-systems i ∈ G, the conditions ‖Aj‖2 > ‖Ai‖2,
and Wj ≻Wi hold. Hence, ‖Aj‖2 > ‖Aq‖2 and Wj ≻Wq for any arbitrary j ∈ Ḡ and q ∈ G, yields

Jave ≤
1

|G|

∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22

+
1

|Ḡ|





∑

j∈Ḡ

∑rqq−2

r=rq−1
tr(Wj)‖A

N−rqq+1
j ‖22 ‖A

rqq−r−2
j ‖22 +

∑

j∈Ḡ

∑N−1

r=rqq−1
tr(Wj)‖A

N−r−1
j ‖22





≤
1

|G|

∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22

+
1

|Ḡ|

∑

j∈Ḡ
tr(Wj)

[

∑rqq−2

r=rq−1
‖Aj‖

2(N−r−1)
2 +

∑N−1

r=rqq−1
‖Aj‖

2(N−r−1)
2

]

≤
1

|G|

∑

i∈G

∑N−1

r=ri−1
tr(Wi)‖A

N−r−1
i ‖22 +

1

|Ḡ|

∑

j∈Ḡ

∑N−1

r=0
tr(Wj)‖Aj‖

2(N−r−1)
2

≤
∑N

i=1

∑N−1

r=0
tr(Wi)‖Ai‖

2(N−r−1)
2 . (A15)

The upper-bound (A15) is uniformly bounded, independent of the initial conditions.
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