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ABSTRACT 

Hydrological behavior of large scale mountainous catchment is difficult to model properly due to 

complex topographic and climatic conditions and the sparse available data especially in high elevation 

areas. Improving the reliability of modeling results has important implications for water management 

and hydrological hazard prevention in mountainous region. Therefore, this work aims to improve the 

application of Soil and Water Assessment Tool (SWAT) in alpine catchments. It focuses on investigating 

the major influencing factors, including precipitation, snow processes and hydropower plant operation, 

which complicate the modeling applications in many alpine catchments such as the Adige River Basin, 

Italy. The leading question is how to effectively utilize the data related to precipitation, snow, and 

hydropower plant operation during the modeling processes in order to improve the reliability of the 

SWAT model results.  

Evaluations have been performed to study the selection of the optimal precipitation input for SWAT, 

not only by comparing the performance of discharge estimations, but also by considering the parameter 

and output uncertainty propagated from different precipitation datasets. Indicated by the results, 

selecting an optimal precipitation input is of fundamental importance for SWAT applications in these 

Alpine catchments, since different precipitation inputs result in different model performances, parameter 

uncertainties and output uncertainties. These results can lead to distinct judgments about the most 

relevant hydrological processes and hence result in different water management strategies or policies. 

To cope with SWAT model structure, snow water equivalent (SWE) time series of both subbasin and 

point scales have been converted based on the snow depth measurements. Furthermore, the effects of 

involving SWE data into SWAT model calibration are investigated, by assessing different single 

objective calibration approaches and a multi-objective calibration approach. Revealed by the outcomes, 

involving snow information is important for constraining the snow parameters to respect the real snow 

behaviors of the Alpine catchments. Moreover, using the multi-objective calibration against both SWE 

and river discharge, SWAT model could obtain river discharge simulation that is composed of more 

reliable contributions of different hydrological components. 

For simulating the effect of hydropower plant operation, Support Vector Machine (SVM) has been 

jointly used with SWAT model to take use of energy price information that is relevant to hydropower 

plant operation but cannot be utilized by SWAT directly. As consequences, employing SVM improves 

the simulation of the affected river discharge by learning from the day of the week and the energy price 
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data which drive the operation of hydropower plant. This helps to fill the gap of SWAT model structure 

to model the hydropeaking effect by utilizing alternative data.  

To conclude, SWAT applications in Alpine catchments have been improved by rational utilization of 

the available data related to precipitation, snow and hydropower plant operation, considering the 

corresponding model structure. The selection of optimal precipitation input, utilization of snow data 

during model calibration, and consideration of energy price data and the day of the week to reproduce 

hydropeaking, have the common effect of reducing the uncertainty of model results by considering more 

observed information. This effect leads to improvement on the reliability of model results and could 

benefit the water management practices and even hydrological hazard forecast in Alpine catchments. 
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ZUSAMMENFASSUNG 

Das hydrologische Verhalten von mesoskaligen alpinen Einzugsgebieten ist aufgrund ihrer Komplexität, 

sowohl hinsichtlich der gegebenen Topographie als auch der klimatischen Bedingungen sowie der 

größtenteils spärlichen Datenlage, schwierig zu modellieren. Speziell die Heterogenität von 

Niederschlägen, Schneeprozessen und der Betrieb von Wasserkraftanlagen erschwert die Anwendung 

hydrologischer Modelle in solchen Gebieten. Um jedoch wichtige Erkenntnisse, sowohl für die 

Wasserwirtschaft, als auch zur Prävention von hydrologisch-bedingten Naturgefahren in alpinen 

Gebieten zu gewinnen, müssen die Modelle hydrologische Prozesse zuverlässig wiedergeben. Das Ziel 

dieser Arbeit ist es daher, die Anwendbarkeit des Soil and Water Assessment Tool (SWAT) in alpinen 

Flussgebieten, speziell im Einzugsgebiet der Etsch in Italien, zu verbessern. Dabei soll untersucht 

werden, wie Niederschlags-, Schnee- und der Betriebsdaten von Wasserkraftanlagen im Modell 

effektiver genutzt werden können, um die damit verbundenen natürlichen Prozesse besser abzubilden 

und somit die Zuverlässigkeit der SWAT-Modellergebnisse zu verbessern. 

Zunächst wurden verschiedene Niederschlagsdatensätze in das SWAT-Modell integriert und die 

simulierten Abflüsse bezüglich ihrer Parameter- und Ergebnisunsicherheit verglichen und ausgewertet. 

Die Auswahl eines optimalen Niederschlagsdatensatzes für SWAT-Anwendungen in alpinen 

Einzugsgebieten ist von grundlegender Bedeutung, da verschiedene Niederschlagsdatensätze stark 

unterschiedliche Modellgüten, Parameterwerte und Ergebnisunsicherheiten verursachen. So können die 

Modellergebnisse zu verschiedenen Simulationen der hydrologischen Prozesse und anschließend zu 

unterschiedlichen Wassermanagementstrategien oder –richtlinien führen. 

Anschließend wurden die Schneetiefenmessungen der Schneestationen sowohl für die jeweiligen 

Messpunkte, als auch für Teileinzugsgebiete in Schneewasseräquivalente (SWÄ) umgerechnet und in 

die Modellstruktur von SWAT integriert. Darüber hinaus wurde durch die Verwendung verschiedener 

‚single objective‘-Kalibrierungsansätze und eines ‚multi-objective‘- Kalibrierungsansatzes untersucht, 

wie sich die Einbeziehung von SWÄ-Daten im Kalibrierungsprozess auf die Modellergebnisse auswirkt. 

Die Ergebnisse zeigen, dass die Integration von Schneedaten im Modellevaluierungsprozess 

unabdingbar ist, um die tatsächlich stattfindenden Schneeprozesse in alpinen Einzugsgebieten adäquat 

zu berücksichtigen. Durch eine ‚multi-objective‘-Kalibrierung für SWÄ und Abfluss konnten 

schließlich zuverlässigere Abflussszeitreihen im SWAT-Modell generiert werden. 

Energiepreisinformationen gelten als guter ‚predictor‘ für den Betrieb von Wasserkraftanlagen. Da diese 

jedoch nicht direkt von SWAT verwendet werden können, wurde im letzten Schritt der Dissertation eine 

Support Vector Machine (SVM) mit dem SWAT-Modell gekoppelt, um die Auswirkungen des Betriebs 
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von Wasserkraftanlagen auf das Abflussverhalten zu simulieren. Es konnte gezeigt werden, dass die 

Simulationsergebnisse des von der Wasserkraft beeinflussten Abflusses durch die Berücksichtigung des 

Energiepreises verbessert wurden. Diese gekoppelte Verwendung der SVM hilft, die Lücke der SWAT-

Modellstruktur zu füllen und alternative Daten zur Modellierung des Hydropeakingeffekts zu verwenden. 

Zusammenfassend kann gesagt werden, dass die Anwendung des SWAT-Modells in alpinen 

Einzugsgebieten durch die intelligente Nutzung von verfügbaren Niederschlags-, Schnee- und 

Wasserkraftbetriebsdaten und unter Berücksichtigung der entsprechenden Modellstruktur verbessert 

wurde. Die Auswahl eines optimalen Niederschlagsdatensatzes, die Nutzung von Schneedaten während 

der Modellkalibrierung und die Berücksichtigung von Energiepreisinformationen zur Simulation des 

Hydropeakingeffekts tragen dazu bei, die Unsicherheit der Modellresultate zu reduzieren. Dies 

wiederum führt zu einer allgemeinen Verbesserung der Zuverlässigkeit von Modellergebnissen und kann 

die Planung wasserwirtschaftlicher Maßnahmen, sowie die Vorhersage hydrologisch-bedingter 

Naturgefahren in alpinen Einzugsgebieten verbessern.
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Mountainous catchments (e.g. Alpine catchments) are vital sources of fresh water for agricultural 

production and drinking water of all continents (Farinotti et al., 2012; Fatichi et al., 2015; Nepal et al., 

2014; Shrestha et al., 2004; Viviroli et al., 2007; Zierl and Bugmann, 2005). They play an important role 

in regulating regional water cycle and seasonal water resource distributions and maintaining sustainable 

conservation of the regional ecosystem (Shrestha et al., 2004; Verbunt et al., 2003; Viviroli et al., 2007). 

The topography and climate conditions of mountainous regions are complex and highly variable in both 

time and space (Bertoldi et al., 2010; Gurtz et al., 2003; Laghari et al., 2012; Moussa et al., 2007; Nepal 

et al., 2014). These complicated topography and climate characteristics lead to complex behaviors of 

different hydrological processes and make it difficult to quantify the interactions in-betweens (Chauvin 

et al., 2011; Tobin et al., 2011; Verbunt et al., 2003). What is more, erosion, flood and drought are not 

uncommon hydrological phenomena in mountainous areas. In particular, ascribed to the impact of 

climate change and global warming, they have become prevalent in recent decades and brought 

noticeable damages and threatens to water security, economy, and the regional ecosystem (Blöschl et al., 

2017; Bohm et al., 2015; Fatichi et al., 2015; Iida et al., 2012; Meißl et al., 2017; Moussa et al., 2007; 

Poulenard et al., 2012; Schaefli et al., 2007; Van Loon and Laaha, 2015; Zappa and Kan, 2007). 

Therefore, it is necessary to model hydrological processes in mountainous areas, which will facilitate 

the formulation of reasonable water management strategies and policies for hydropower operation, 

drinking water supply and agriculture activity of the region (Farinotti et al., 2012; Tobin et al., 2011). In 

addition, the model results could also offer reliable and timely references to forecast hydrological 

hazards including flood, drought, and erosion (Blöschl et al., 2017; Poulenard et al., 2012; Van Loon 

and Laaha, 2015). 

 A successful hydrological modeling work starts with appropriate understandings of the key influence 

factors. In mountainous catchments such as the Alpine regions, precipitation, snow processes (snow 

accumulation and snowmelt) and hydropower plant operation play crucial roles in affecting the regional 

water resources. Precipitation is a major component and a key driving force for hydrology cycle (Masih 

et al., 2011; Price et al., 2014), having decisive impacts on the total water quantity. Therefore, reliable 

precipitation data are important bases to investigate hydrological processes. Impacted by orographic 

effect and specific local climate condition such as wind effect (Tobin et al., 2011), precipitation is 

complex and highly variable in both temporal and spatial scales with large uncertainty in mountainous 

region (Moussa et al., 2007; Tobin et al., 2011; Tuo et al., 2016). Due to the orographic effect, high 

elevation areas generally receive much higher precipitation than the lower areas (Horton et al., 2006; 

Laghari et al., 2012; Shinohara et al., 2009; Tuo et al., 2016). However, in mountainous catchments, in 

particular, in the Alpine catchments, climate stations are generally sparse compared to the scale of the 

area and they are normally located at low elevation areas and rarely available at high elevation parts. As 
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a consequence, precipitation in mountainous region is normally underestimated by the observed data. In 

other words, the precipitation data of mountainous catchments cannot represent the real regional total 

precipitation. Large uncertainty is expected in the hydrological information derived from these data. In 

addition to precipitation, snow is another important hydrological components of the water cycle in high 

mountains, mainly affecting the seasonal distribution of water quantity in space and time (Farinotti et 

al., 2012; Horton et al., 2006; Shinohara et al., 2009; Shrestha et al., 2004; Warscher et al., 2013). It 

brings delays in runoff by storing water through snow accumulation and later releases water through 

snowmelt (Zierl and Bugmann, 2005). Similar to precipitation, snow processes of the mountainous 

region are also highly variable in both time and space (Chauvin et al., 2011; Warscher et al., 2013), due 

to the impact of the complex topography such as shadowing effect (Tobin et al., 2011) and the influence 

of local climate like wind effect (Hiemstra et al., 2002). Snow information is normally available in terms 

of snow depth data with sparse spatial distribution. Moreover, snowmelt data are rare in large scale 

catchments. These snow depth data are valuable and should be handled properly for deriving useful 

information of the snow processes.  

Apart from the impacts of these natural driving forces, the water cycle of mountainous regions also gets 

affected by hydropower plant operation. Hydropower is one major water use in the mountainous regions, 

benefiting from large elevation differences of the topography. The operation of hydropower plant 

interrupts the natural behaviors of streamflow, which impacts the available water quantity downstream 

and threatens the ecosystem (Person, 2013). The operation information is therefore very important for a 

reliable description of water resources in the mountainous regions (Majone et al. 2016). Furthermore, a 

reasonable understanding about the regional water cycle in return helps to formulate a reasonable 

hydropower plant operation strategy to cope with different hydrological situations properly. However, 

operation data are normally not publically available and kept as commercial secret by hydropower 

company. Fortunately, since the operation of major hydropower plants now generally depends on the 

fluctuations of energy price, the energy price data could be an alternative reference to imply the operation 

information and they are generally open access.  

Based on their important implications for the water resources of mountainous regions, precipitation, 

snow processes and the effect of hydropower plant operation require primary attentions during the 

hydrological modeling applications. Well understanding and reliable representation of these principal 

factors indicate a successful grasp of general hydrological behaviors.  

Hydrological models have been developed and applied to simulate and estimate the hydrological 

processes such as precipitation and snow dynamics and the effect of hydropower plant operation in 

mountainous catchments. These models, e.g. J2000 (Nepal et al., 2014), ModSpa (Modèle Spatialisé) 
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(Moussa et al., 2007), PREVAH (Precipitation-Runoff-Evapotranspiration-Hydrotope model) (Laghari 

et al., 2012), RHESSys (Regional Hydro-Ecologic Simulation System) (Zierl and Bugmann, 2005), 

SWAT (Soil and Water Assessment Tool) (Arnold et al., 1998), Topkapi (Topographic Kinematic 

Approximation and Integration) (Fatichi et al., 2015), and WASIM (Wasserhaushalts-Simulations-

Modell) (Warscher et al., 2013), differ from each other in model structure, e.g. distinct representations 

of processes and different temporal resolutions and spatial scales, depending on the application purposes. 

Among them, SWAT is one of the most frequently used around the world (Abbaspour et al., 2015; Dile 

et al., 2016; Francesconi et al., 2016; Golmohammadi et al., 2017; Monteiro et al., 2016; Shen et al., 

2012), because of its catchment scale based structure, diverse modules, relative low data requirement, 

user friendly interface, and the consideration of physical processes as well. The SWAT model is a 

comprehensive, time-continuous, semi-distributed, process-based model developed by the Agricultural 

Research Service of the United States Department of Agriculture (Arnold and Fohrer, 2005; Arnold et 

al., 1998). It divides river basins into subbasins and subsequently into Hydrologic Response Units 

(HRUs), characterized by different combinations of land use, soil characteristics, and topography. The 

hydrological cycle is calculated based on water balance, which is controlled by climate inputs such as 

daily precipitation and maximum/minimum air temperature. Using daily input time series, SWAT 

simulates the daily, monthly and yearly fluxes of water and solutes in river basins.  

Although SWAT is originally developed to quantify the effect of land management practices in 

agricultural catchments, it has also been frequently applied in hydrological modeling researches in the 

mountainous regions (Ahl et al., 2008; Grusson et al. 2015; Rahman et al., 2014; Troin and Caya, 2014; 

Wagner et al., 2012). Because SWAT’s catchment scale based structure matches the current data 

availability of mountainous catchments, and its diverse modules such as nutrient transport and water 

management help to predict the local water quality dynamics and to explore the effects of different 

driving forces such as water use on the regional hydrological system. However, the aforementioned key 

factors (precipitation, snow processes and hydropower plant operation) play decisive roles in affecting 

the performance and reliability of the SWAT modeling applications (Debele et al. 2010; Rahman et al., 

2013; Shen et al., 2012; Shope and Maharjan, 2015; Troin and Caya, 2014; Zhang et al., 2011). Handling 

them properly during the modeling applications has fundamental implications for improving the SWAT 

model performance in mountainous catchments, with the necessity and feasibility discussed below:  

1) Reliable precipitation data are important inputs for SWAT (Galván et al., 2014; Monteiro et al., 

2016; Strauch et al., 2012). Since SWAT only uses data from one precipitation gauging station 

that is nearest to the centroid of each subbasin (Galván et al., 2014; Masih et al., 2011), the sparse 

and heterogeneous spatial distribution of rain gauges at mountainous regions often results in 
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inaccurate/unrepresentative precipitation inputs for SWAT. Without representative precipitation 

for the subbasins, the hydrological simulations of SWAT cannot be accurate and are highly 

uncertain. Therefore, evaluating and taking use of different available precipitation inputs which 

consider regional spatial variations could be a useful way to increase the reliability of SWAT 

modeling results (Tobin and Bennett, 2009). Evaluation of precipitations inputs for SWAT has 

been attempted (Shen et al., 2012; Shope and Maharjan, 2015; Vu et al., 2012; Wagner et al., 

2012; Zhang and Srinivasan, 2009), but only a few case studies have investigated mountainous 

catchments with high elevation gradients (Shope and Maharjan, 2015; Xu et al., 2010). Besides, 

the choice of the best precipitation input data for SWAT models is basin-specific and unusual in 

Alpine region. More importantly, the uncertainties propagated from precipitation inputs to model 

parameters and outputs are rarely evaluated. A systematic investigation considering different 

available precipitation datasets for SWAT model in Alpine catchments is useful.  

2) The influence of snow processes on the hydrological cycle of mountainous catchments has been 

frequently evaluated by SWAT models (e.g. Ahl et al. 2008, Debele et al. 2010, Grusson et al. 

2015, Rostamian et al. 2008, Troin and Caya 2014). Most of the previous studies estimated snow 

dynamics with large model uncertainty, mainly owing to snow data scarcity and the lack of 

utilization of snow data during model calibration. In fact, SWAT adopts a specific approach to 

describe snow processes: the same Snow Water Equivalent (SWE) value is assigned to all HRUs 

in a subbasin, and this value is derived from the weighted sum of the SWE computed for each 

elevation band in a subbasin. Therefore, output time series of SWE are available at two spatial 

scales: for the entire subbasin (the average subbasin SWE) and for each elevation band. Only a 

few studies have taken these two snow outputs into account to evaluate the performance of the 

SWAT snow module (Fu et al., 2014; Fu et al., 2015; Grusson et al., 2015; Pradhanang et al., 

2011) and no study has included the snow information of subbasin and elevation band scales into 

model calibration processes. Most of the previous studies assigned a unique set of snow 

parameters to an entire basin (e.g., Fu et al. 2014, Fu et al. 2015, Rahman et al. 2013), although 

snow distribution can be highly heterogeneous (Egli and Jonas 2009). More importantly, in 

snow-dominated catchments, SWAT model parameters are generally estimated using discharge 

records alone (e.g., Levesque et al., 2008; Rahman et al., 2013; Wang and Melesse, 2005), but 

snow data, which are very important information in snow-dominated catchments to represent 

snow dynamics, have rarely been used for calibration, ascribed to the typical lack of SWE time 

series. Because river discharge is the combination of the contributions of different hydrological 

components, calibration based on discharge alone can easily lead to the problem of model 

equifinality (Beven, 2006; Hanzer et al., 2016). Therefore, snow based calibration would be 
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helpful to get representative snow parameters according to the real snow information. Moreover, 

a multi-objective model calibration, involving river discharge observation and available snow 

information of different spatial scales that fit the specific snow outputs of SWAT, could be a 

promising approach to increase the reliability of SWAT modeling results in mountainous region. 

3) SWAT model has been successfully applied in several case studies to reproduce the hydrograph 

impacted by hydropower plant operation (e.g., Zhang et al., 2011; Rahman et al., 2013; Rahman 

et al., 2014), However, data availability is one of the main challenges in reproducing streamflow 

when considering reservoir operation for hydropower production (Gaudard et al., 2014), because 

SWAT needs detailed operation data, such as inflow/outflow from the dams, to reproduce the 

impact such as hydropeaking. Unfortunately, as discussed above, reliable operation data are 

normally not accessible. Energy price is an alternative available dataset closely related to 

hydropower plant operation, but it cannot be used by SWAT model. Without considering the 

operation information, the simulations of SWAT are not reliable. Therefore, involving the 

relevant data (i.e. energy price and the day of the week) could be helpful to reduce the uncertainty 

of the simulations and improve the SWAT model results. Instead of complicate source code 

modification, a simpler and feasible way is to couple SWAT with machine learning methods 

which have been highlighted as a valuable and accurate tool for modeling complex river basin 

systems in support of water management information demands (Karamouz et al., 2009; Khalil et 

al., 2005; Ticlavilca and McKee, 2011). 

In this work, we aimed to improve the SWAT modeling applications in large scale Alpine catchments, 

based on the consideration of both model structure and available data. The Adige River Basin located in 

North-East Italy was selected as a study area. As a feasible solution, the concept is to utilize the important 

data available at hand in a suitable way that matches the model structure so as to reduce the model 

uncertainty and hence increase the reliability of the model results. The major uncertainty sources 

affecting SWAT model results are 1) input data, 2) model parameters, 3) model structure (Abbaspour et 

al., 2007; Nepal et al., 2014). To clarify, standard methods are available to perform uncertainty analysis 

for modeling approaches (e.g. GLUE (Beven and Binley, 1992)), but we are not aiming at implementing 

statistical uncertainty analysis. What we concern is about how to improve the practical SWAT model 

application under the limitation of model structure and available data. Based on their important impacts 

on alpine hydrology aforementioned, we consider precipitation, snow processes and hydropower plant 

operation as the major factors which complicate hydrological modeling in alpine catchment and increase 

uncertainty of model results. The specific research questions are: 
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1) How can we select the suitable precipitation input that leads to less uncertainty for SWAT modeling 

in an alpine catchment? 

2) How can we take use of the snow data in a reasonable way that matches the model structure of SWAT 

to improve the reliability of the results?  

3) How can we take use of relevant data to improve the streamflow simulations affected by hydropower 

plant operations?  

To address these questions, this work explored the possibility of improving reliability of SWAT 

simulations in alpine applications by: selecting the suitable precipitation dataset considering the 

uncertainty propagated from precipitation inputs to model parameters and outputs; involving snow data 

for calibration to constrain the parameters; and introducing an additional tool to take into account 

hydropower relevant data so as to fill the model structure gap.  

In chapters 2 and 3, we answered the research question 1). First, due to their advantage of availability, 

eight remoted sensed precipitation data were collected and compared with ground observations in daily, 

monthly and yearly scale.  As results, the remote sensed precipitation products that are closest to the 

ground observations are selected as inputs for SWAT models.  Furthermore, SWAT models were set up 

with different precipitation inputs (observation of rain gauges, IDW (inverse distance weighting) data 

and the remote sensed products). The model performances were evaluated and compared in terms of 

output uncertainty, parameter uncertainty and performances of the best simulations. In this way, we 

aimed at improving the SWAT applications at the studied Alpine catchments by selecting the best 

precipitation input that results in both good reproduction of river discharge and less uncertainty of 

parameter and output.  

In chapter 4 and 5, snow processes were investigated to address the research question 2).  Considering 

the SWAT model structure that produces SWE outputs of subbasin and elevation band scales, we 

computed two types of SWE data based on snow depth observations: the mean subbasin scale SWE and 

the SWE of each station. To calculate the subbasin scale SWE values, daily snow depth measurements 

were first interpolated using a simple power law model to establish a correlation between snow depth 

and elevation. The interpolated values were then used to compute a mean subbasin snow depth, and 

finally these values were converted into SWE data using the equation suggested by Pistocchi (2016). 

For calculating the SWE for each station, snow depth observations were multiplied by temporal 

evolution of snow density (Pistocchi, 2016). These SWE data were applied in snow model calibration 

of SWAT first to evaluate the feasibility of such snow data based procedure. Furthermore, the SWE data 

were utilized together with discharge data as a multi-objective calibration approach to constrain the snow 
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parameters, which was compared with the common used discharge-based calibration approach. The 

performances of discharge, subbasin averaged SWE, and elevation band scale SWE simulations were 

evaluated and compared, as well as the simulated major water components including precipitation, 

snowmelt, and streamflow. We aimed to investigate the possibility of increasing model result reliability 

by constraining parameters according to both snow data and discharge information. 

In chapter 6, we focused on improving the simulation of streamflow under the impact of hydropower 

plant operation, which addressed the research question 3).  The streamflow affected by hydropower plant 

operation was firstly simulated by SWAT model. However, the simulated streamflow time series was 

highly uncertain, because the operation input required by SWAT is not available and other relevant 

information cannot be considered by SWAT due to the lack of certain components in the model structure. 

To fill this gap of SWAT model, Support Vector Machine (SVM) tool was introduced to reproduce 

hydropeaking based on the SWAT modeling results and the available information (energy price and the 

day of the week) closely related to operation of hydropower plant. By coupling SVM and SWAT, we 

aimed to improve simulation of the streamflow affected by hydropower plant operation, when specific 

data required by SWAT are missing but additional relevant data that cannot be handled by SWAT are 

available. 

 



 

 

 

Chapter 2   

Evaluation of eight high spatial resolution gridded precipitation products in 

Adige Basin (Italy) at multiple temporal and spatial scales1  

This study provides a comprehensive evaluation of eight high spatial resolution gridded precipitation 

products in Adige Basin located in Italy within 45-47.1°N. The Adige Basin is characterized by a 

complex topography, and independent ground data are available from a network of 101 rain gauges 

during 2000-2010. The eight products include the Version 7 TRMM (Tropical Rainfall Measuring 

Mission) Multi-satellite Precipitation Analysis 3B42 product, three products from CMORPH (the 

Climate Prediction Center MORPHing technique), i.e., CMORPH_RAW, CMORPH_CRT and 

CMORPH_BLD, PCDR (Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks-Climate Data Record), PGF (Global Meteorological Forcing Dataset for land surface 

modeling developed by Princeton University), CHIRPS (Climate Hazards Group InfraRed Precipitation 

with Station data) and GSMaP_MVK (Global Satellite Mapping of Precipitation project Moving Vector 

with Kalman-filter product). All eight products are evaluated against interpolated rain gauge data at the 

common 0.25° spatial resolution, and additional evaluations at native finer spatial resolution are 

conducted for CHIRPS (0.05°) and GSMaP_MVK (0.10°). Evaluation is performed at multiple temporal 

(daily, monthly and annual) and spatial scales (grid and watershed). Evaluation results show that in terms 

of overall statistical metrics the CHIRPS, TRMM and CMORPH_BLD comparably ranks as the top 

three best performing products, while the PGF performs worst. All eight products underestimate and 

overestimate the occurrence frequency of daily precipitation for some intensity ranges. All products tend 

to show higher error in the winter months (December-February) when precipitation is low. Very slight 

difference can be observed in the evaluation metrics and aspects between at the aggregated 0.25° spatial 

resolution and at the native finer resolutions (0.05°) for CHIRPS and (0.10°) for GSMaP_MVK products. 

This study has implications for precipitation product development and the global view of the 

performance of various precipitation products, and provides valuable guidance when choosing 

alternative precipitation data for local community. 

1 Duan Z., Liu J., Tuo Y., Chiogna G., Disse M., 2016. Evaluation of eight spatial resolution gridded precipitation 

products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of The Total Environment, 573: 

1536-1553. DOI: 10.1016/j.scitotenv.2016.08.213 
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2.1 Introduction 

Precipitation is a major component of the hydrological cycle and is a crucial forcing data for many 

applications such as hydrology, weather forecasts, meteorology and agriculture (Ebert et al., 2007). 

Precipitation is characterized by a significant variability both in time and space, and accurate 

precipitation data at high spatial and temporal resolution is highly desirable (Duan and Bastiaanssen, 

2013). Conventional observations from rain gauge stations can generally provide the most direct and 

most accurate measurements at the gauge locations. As a drawback, the relatively sparse distribution of 

rain gauges often leads to poor spatial representation of precipitation patterns (Javanmard et al., 2010). 

Besides, due to the frequent occurrence of gaps and inhomogeneities in precipitation time series 

collected at rain gauges (Brunetti et al., 2006), it is difficult to force hydrological models that require a 

continuous time-series of precipitation data. 

In contrast, satellite remote sensing data offers a new way in detecting spatial and temporal variability 

of precipitation at high spatial and temporal resolutions (Xie and Xiong, 2011). Regardless of the 

processing methods used, satellite-based precipitation estimates use either mainly the infrared (IR) 

information frequently measured from geostationary satellites, the microwave (MV) information less 

frequently measured from low earth orbiting satellites, or a combination of IR and MV information. 

Overviews of principles and various techniques in use for satellite-based precipitation estimation can be 

found in the review by Kidd and Huffman (2011). A brief introduction is given here as follows: In 

general, the IR information can be used to derive the cloud-top information which is used to estimate 

precipitation using the established relationship between cloud-top temperature and rainfall. One typical 

algorithm using IR information for estimation of precipitation is detailed in Arkin and Meisner (1987). 

The MV information is able to present more information about cloud through different layers and is 

more physically related to precipitation, and different retrieval algorithms (e.g. emission-based, 

scattering-based) can be applied to convert the MV information to precipitation estimates (Ferraro, 1997; 

Wilheit et al., 1994). Precipitation estimates from IR (frequent sampling and at high resolution, but less 

accurate) and MV (more accurate, but at coarse resolution and infrequent sampling) are often combined 

to complement each other to achieve a better estimate at high temporal and spatial resolution and 

coverage. For this purpose, various combination techniques have been developed, but they can be 

essentially classified into two categories: (1) using the MV-based precipitation estimates to calibrate the 

IR-based precipitation estimates; (2) using the derived cloud motion from IR data to propagate MV-

based precipitation estimates (Kidd and Huffman, 2011). Evaluation studies showed the satellite 

precipitation estimates can still contain substantial biases and errors, and a further merging or blending 

satellite precipitation estimates with rain gauge data can result in improved precipitation products (Ebert 

et al., 2007; Xie and Xiong, 2011).   
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Over the past decades, great efforts have been made to generate gridded precipitation products, thereby 

leading to the increasing availability of precipitation datasets at different spatial and temporal resolutions 

over the global or quasi-global scale (Tapiador et al., 2012). They can be broadly classified into four 

categories: (1) gauge-only products that build only on observations from rain gauge stations using 

different interpolation methods, these widely used products for example include the Global Precipitation 

Climatology Centre (GPCC) monthly precipitation product (Schneider et al., 2014; 2015), the Climatic 

Research Unit (CRU) monthly precipitation (Harris et al., 2014) and the Climate Prediction Center (CPC) 

unified gauge-based analysis of global daily precipitation (Chen et al., 2008). These products are often 

available at a coarser spatial resolution than 0.5°; (2) precipitation products from numerical weather 

predictions or atmospheric models that uses a combination of satellite and in-situ observations of various 

atmospheric properties as inputs (Ebert et al., 2007), these products include for example reanalysis 

products from National Centers for Environmental Prediction–National Center for Atmospheric 

Research (NCEP–NCAR) (Kalnay et al., 1996) and  European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Balsamo et al., 2015); (3) satellite-only products that builds on using IR, MV or 

IR-MV combined information; (4) satellite-gauge products that combine two individual (gauge-only and 

satellite-only) products together through different bias correction or blending procedures. Products 

belonging to the latter two categories include for example the TRMM (Tropical Rainfall Measuring 

Mission) multi-satellite precipitation analysis (TMPA) (Huffman et al., 2007), the CMORPH (CPC 

MORPhing technique) (Joyce et al., 2004), PERSIANN (Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks) (Hsu et al., 1997), and such products are often 

available at the spatial resolution of 0.25° or finer. It is particularly worth noting that the recently released 

“satellite-gauge” type CHIRPS product (Climate Hazards Group InfraRed Precipitation with Station data) 

provides precipitation at the finest spatial resolution of 0.05° (Funk et al., 2015). Since merged 

precipitation products generally have a more improved quality than individual dataset (Xie and Xiong, 

2011), different merged precipitation products (reanalysis-gauge and satellite-gauge) are increasingly 

being developed.  

The available gridded precipitation products have global (or quasi-global) orientation, and their 

performance could vary from region to region. Evaluation of these precipitation products with reliable 

and independent measurements is important for both product developers and users. For developers, 

evaluation results provide beneficial feedback which enables them to identify the problems and direction 

for development of improved products; for local users, evaluation results enable users to take into 

account the possible uncertainty associated with a particular product and make the appropriate choice of 

a suitable product for specific applications in a given study area. Recognizing the importance of product 

evaluation, many studies have been carried out to evaluate a single or multiple precipitation products in 



Chapter 2: Evaluation of eight high spatial resolution gridded precipitation products 

 

12 

 

scales from the global or quasi-global (Yong et al., 2015), continental (Awange et al., 2016; Negrón 

Juárez et al., 2009), country-wide (Prakash et al., 2015; Shen et al., 2010; Tan et al., 2015; Tian et al., 

2010), regional (Duan et al., 2012, Khandu et al. 2015), and basin scales (Liu et al., 2015; Yong et al., 

2010). A few evaluation studies have been conducted in Italy. For example, Lo Conti et al. (2014) 

evaluated six satellite precipitation products (CMORPH, two products of TMPA and three products of 

PERSIANN) in the island of Sicily. Nikolopoulos et al. (2013) evaluated three products (TRMM 3B42, 

CMORPH and PERSIANN) for a single major flood event in the Friuli-Venezia Giulia region. Mei et 

al. (2014) evaluated four products (two products of TMPA, CMORPH and PERSIANN) in the upper 

Adige Basin with focus on only the heavy precipitation events, and evaluation was made only at the 

basin-average scale. Compared to Mei et al. (2014), our current study covers almost the whole Adige 

Basin and evaluates eight precipitation products at a range of spatial and temporal scales, thereby 

providing new insights into the overall performance of various precipitation products in the Adige Basin.  

Most available satellite-only and satellite-gauge gridded precipitation products have the quasi-global 

coverage (latitude bands of 50° N-S or 60° N-S). More evaluation of precipitation products in the high 

latitude and elevation areas are particularly needed to gain more insights into the global view of the 

performance of various precipitation products (Yong et al., 2010). Therefore, the objective of this study 

is to evaluate eight high resolution gridded precipitation products in the Adige Basin, Italy with dense 

rain gauge data. The Adige Basin is located with 45-47.1° N latitude and characterized by complex 

topography, which serves as a representative and a good testing site. The evaluated eight precipitation 

products are Version 7 TRMM 3B42, three different products of CMORPH, PERSIANN-CDR (Climate 

Data Record) (Ashouri et al., 2015), GsMaP-MVK (Global Satellite Mapping of Precipitation Moving 

Vector with Kalman-filter product) (Ushio et al., 2009), PGF (the Princeton Global Forcings) (Sheffield 

et al., 2006) and CHIRPS. This study conducted the comprehensive evaluation of these precipitation 

products at various spatial resolutions (0.25° all eight products, and additional original finest resolution 

of 0.10° for GsMaP_MVK and 0.05° for CHIRPS) and temporal resolutions (daily, monthly and yearly) 

for the period 2000-2010. The eight products represent a wide range of advanced retrieval algorithms 

and data availability at high spatial resolution. Each of them has been found with good performance in 

some other study areas (e.g. Maggioni et al., 2016; Tan et al., 2015). It is therefore relevant and 

interesting to evaluate these products in Adige Basin. We aim at identifying the products with best 

performance that can be merged with available rain gauge data to achieve a better quality than individual 

dataset. Such improved precipitation dataset is essential for many ongoing research and operational 

applications in Adige Basin such as hydrological modeling, sediment and pollutant transport modeling, 

and water resources assessment and management (Chiogna et al., 2016). It is particularly worth noting 

that because of recent (2015) availability of the CHIRPS product, very few studies have been done to 
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evaluate and compare this product against other products. Katsanos et al. (2016) compared only the 

correction between the CHIRPS product and rain gauge data over Cyprus at monthly and annual 

temporal scales and only one spatial scale, and they found good correction between the two datasets. In 

this study, we extend the evaluation of the CHIRPS product besides other seven products to the Adige 

Basin for the first time in a more comprehensive way in terms of evaluated aspects and temporal and 

spatial scales.  

The remainder of this paper is organized as follows: Section 2.2 introduces the study area and provides 

a brief description of the eight evaluated gridded precipitation products and used rain gauge station data. 

The evaluation methods and statistical metrics are also presented in Section 2.2. Section 2.3 presents the 

evaluation results and discussion. Finally, the conclusions drawn are summarized in Section 2.4.  

2.2 Materials and methods 

2.2.1 Study area  

The Adige Basin is located in the northern part of Italy within the latitude of 45°-47.1° N and longitude 

of 10.2°-12.5° E (Figure 2.1). The Adige is the second longest river in Italy, with a length of 410 km 

and a drainage area of 12000 km2 and is one of the six study sites investigated in the FP7 GLOBAQUA 

Project (Navarro-Ortega et al., 2015). The Adige Basin has a complex topography with elevation ranging 

from -7 to 3865 m above the mean sea level. The north part of Adige Basin belongs to the central and 

southern Alps. Climate in the Adige Basin is characterized by dry winter, snowmelt in the spring and 

humid summer and fall. Because of its morphology and humid climate, the river basin is well suited for 

hydroelectric production, and to date 30 major reservoirs exist in the catchment, with a total storage 

capacity of 571 106 m3 (8.5% of the long-term mean annual runoff). Streamflow is severely impacted by 

hydropower production, particularly at intermediate and low flow regimes (Zolezzi et al., 2009). Earlier 

snow melting is already affecting the Adige Basin reducing water resources availability during the 

irrigation period (roughly June-August), while the higher temperature recorded in the summer months 

in the last decades is expected to cause an increase of water demand in this period. This is expected to 

increase the deficit of water resources in summer, when agricultural and recreational uses reach the 

highest demand, thereby exacerbating the conflict between different uses of water resources (Majone et 

al., 2016). More details about Adige Basin and its hydrological, chemical and ecological status can be 

found in (Chiogna et al., 2016).  
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Figure 2.1 Locations of the Adige Basin and rain gauge stations. The dashed rectangle represents the 

0.25° x 0.25° grid.  

2.2.2 Datasets and preprocessing  

This section briefly describes the eight high resolution gridded precipitation products evaluated in this 

study and the reference rain gauge data available. Table 2.1 summarizes the spatial and temporal 

resolutions, available periods and coverage of the eight products.   

Table 2.1 Summary of eight gridded precipitation products to be evaluated in this study. 

Dataset Period Spatial  

resolution 

Finest 

temporal 

resolution 

Coverage Category 

TRMM 3B42  1998-present 0.25°  3-hourly  50°N-50°S Satellite-gauge 

CMORPH_RAW 1998-present 0.25°  3-hourly 50°N-50°S Satellite-only 
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CMORPH_CRT   

CMORPH_BLD  

1998-2015 

1998-2015 

0.25° 

0.25° 

3-hourly  

Daily 

50°N-50°S 

50°N-50°S 

Satellite-gauge 

Satellite-gauge 

PCDR 1983-present 0.25°  Daily 60°N-60°S Satellite-gauge 

PGF 1948-2010 0.25° 3-hourly 90°N-90°S Reanalysis-

gauge 

CHIRPS 1981-present 0.05° Daily 50°N-50°S Satellite-gauge 

GSMaP_MVK 2000-present 0.10° 1-hourly 60°N-60°S Satellite-only 

2.2.2.1 TRMM 3B42  

The TRMM 3B42 product is one type of the TMPA (TRMM Multi-satellite Precipitation Analysis) 

products (Huffman et al., 2007). TRMM 3B42 product provides 3-hourly precipitation at a spatial 

resolution of 0.25° for the quasi-global coverage of 50° N-50° S from 1998 to present. The latest product 

version is Version 7 and the applied algorithm is the TMPA algorithm that combines precipitation 

estimates from microwave and infrared satellites, as well as the GPCC monthly gauge analysis. Passive 

microwave data from a number of satellites are collected and converted to precipitation estimates at 3-

hourly time scale using the Goddard Profiling Algorithm (Kummerow et al., 2001). The microwave 

precipitation estimates are combined and calibrated to the TRMM Combined Instrument (TCI) estimate 

(TRMM product 2B31). The infrared-based precipitation estimates from multiple geostationary satellites 

are computed through histogram matching of monthly microwave precipitation estimates. Then the 

microwave and the infrared-based precipitation estimates are merged with infrared-based estimates 

being used only to fill in the missing data where microwave estimates are not available. The merged 3-

hourly precipitation estimates are then added up to monthly totals and further combined with GPCC 

monthly rain gauge analysis products using the inverse error variance weighting to generate the monthly 

best precipitation product (TRMM 3B43). Finally, all the 3-hourly precipitation estimates are adjusted 

for each month to make their sums equal to the TRMM 3B43 monthly value. The adjusted precipitation 

time series are the final TRMM 3B42 product. More details about TMPA algorithms can be found in 

Huffman et al. (2007) and Huffman and Bolvin (2015). All TRMM products including 3B42 are 

available from Goddard Earth Sciences Data and Information Services Center at 

http://mirador.gsfc.nasa.gov. Two types TRMM 3B42 product are available: 3-hourly and daily 

accumulated products. The daily accumulated TRMM 3B42 product for the period 2000-2010 were used 

in this study. The TRMM 3B42 product belongs to the “satellite-gauge” category. 

 

 

http://mirador.gsfc.nasa.gov/
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2.2.2.2 Three different products from CMORPH 

The CMORPH product stands for the precipitation product estimated by the NOAA Climate Prediction 

Center MORPHing technique. This technique is a flexible method to combine existing passive 

microwave-based precipitation estimates from multiple low orbit satellites and the infrared data from 

multiple geostationary satellites (Joyce et al., 2004). This technique uses the infrared data to firstly derive 

the cloud system advection vectors (CSAVs). The CSAVs are then used to propagate the passive 

microwave-based precipitation estimates in two directions (forward and backward) in time for periods 

when passive microwave data are not available at a location. The two propagated precipitation estimates 

are finally computed using a time-weighting. More details about CMORPH technique can be found in 

Joyce et al. (2004). Initially, no bias correction and no rain gauge data were used in the CMORPH 

technique for previous Version 0.x product. The latest (Version 1.0) CMORPH products include three 

different products: the raw satellite-only precipitation product (CMORPH_RAW), bias corrected 

product (CMORPH_CRT) and satellite-gauge blended product (CMORPH_BLD).  The CRT product is 

generated through adjusting the RAW product against the CPC unified daily gauge analysis over land 

and the pentad GPCP over ocean using the probability density function (PDF) matching bias correction 

method (Xie et al., 2011). The CRT product is further combined with the gauge analysis through an 

optimal interpolation (OI) technique to generate the BLD product (Xie et al., 2013). The RAW product 

belongs to the “satellite-only” category while the CRT and BLD products belong to the “satellite-gauge” 

category. All the three products provide precipitation for the quasi-global coverage of 60° N-60° S from 

1998 to a slightly different ending period (2016 for RAW, 2015 for both CRT and BLD). For RAW and 

CRT products, three combinations of spatial-temporal resolutions are available, that is, 8 km-30 min, 

0.25°-3 hourly, and 0.25°-daily. The BLD product is available only at the 0.25°-daily resolution, and the 

definition of a day (daily ending time) is different from country to country due to the limitation in the 

input gauge data. All three products are available at ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/. 

By design, the BLD is considered as the product with the best quality followed by CRT and RAW. In 

this study, all the three products at the 0.25°-daily spatial-temporal resolution for the period 2000-2010 

were evaluated and compared.  

2.2.2.3 PERSIANN-CDR (PCDR) 

The PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks) Precipitation Climate Data Record (PCDR) provides daily precipitation estimates at the 

spatial resolution of 0.25° for the quasi-global coverage of 60° N-60° S from 1983 to present. The 

product is available at ftp://eclipse.ncdc.noaa.gov/pub/cdr/persiann/files/. The construction of PCDR 

uses mainly the stage IV radar data, gridded satellite infrared data (GridSat-B1), the GPCP monthly 

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
ftp://eclipse.ncdc.noaa.gov/pub/cdr/persiann/files/
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precipitation data at 2.5° degree. The main algorithm is the PERSIANN algorithm that uses an artificial 

neural network (ANN) model to convert the infrared information into rain rates in which the ANN model 

is trained using concurrent infrared-based and passive microwave-based precipitation estimates from 

multiple satellites (Hsu et al., 1997). The trained model parameters using the stage IV radar data are kept 

fixed and then used to estimate precipitation (called as PERSIANN-B1) using the GridSat-B1 data as 

inputs. The estimated PERSIANN-B1 data are further adjusted through a bias removal procedure using 

the GPCP 2.5° monthly precipitation data to generate the PCDR product. Therefore, the PCDR maintains 

the consistency with the GPCP precipitation at the monthly and 2.5° scales. More details about this 

product can be found in (Ashouri et al., 2015). Because the precipitation gauge data product from the 

Global Precipitation Climatology Centre (GPCC) are used as inputs to the development of GPCP 

monthly precipitation (Adler et al., 2003), the PCDR product belongs to the “satellite-gauge” 

precipitation estimate category. In this study, the PCDR daily precipitation product at the 0.25°spatial 

resolution for the period 2000-2010 were used.  

2.2.2.4 Princeton Global Forcings product (PGF) 

The Princeton Global Forcings (PGF) is the short name of the Global Meteorological Forcing Dataset 

for land surface modeling developed by Princeton University. Details about the development of this 

product are presented in Sheffield et al. (2006). This product provides precipitation and other 

meteorological variables including surface air temperature, radiation, surface air pressure, specific 

humidity, wind speed for the global coverage at the spatial resolutions of 0.25°, 0.5° and 1.0° and 

temporal resolutions of 3-hourly, daily and monthly for the period 1948-2010. An updated version 

(Version 2) of PGF product is currently available for an extended time period 1901-2012, but the finest 

spatial resolution is at 0.5°. The PGF product is available at http://hydrology.princeton.edu/data.pgf.php. 

The PGF product is constructed by merging the National Centers for Environmental Prediction–National 

Center for Atmospheric Research (NCEP–NCAR) reanalysis (referred to as the NCEP reanalysis 

hereafter) and a suite of global observation-based datasets. For the construction of the final PGF 

precipitation product, four datasets NCEP reanalysis, the Climatic Research Unit (CRU) monthly 

precipitation data, GPCP daily precipitation data, and TRMM 3-hourly real-time data are used in a 

number of processing procedures including correction of rain day anomaly, spatial and temporal 

downscaling and monthly bias correction to make the monthly totals of PGF precipitation match those 

of the CRU data (Sheffield et al., 2006). Since CRU monthly precipitation data are based on analysis of 

rain gauge data (Harris et al., 2014), thus PGF precipitation product belongs to “reanalysis-gauge” 

category. It should be noted that the use of satellite product (TRMM) in the generation of the PGF 

product make it inevitably vulnerable to all uncertainties that could affect satellite products. The nature 

of longest time period, the high resolution and global coverage clearly makes PGF product have many 

http://hydrology.princeton.edu/data.pgf.php
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potential applications, thus it is interesting to evaluate the performance of PGF and compare with other 

products. In this study, the PGF daily precipitation data at the spatial resolution of 0.25° for the period 

2000-2010 were used.  

2.2.2.5 CHIRPS 

The CHIRPS product stands for the Climate Hazards Group InfraRed Precipitation with Station data. 

The CHIRPS product provides daily precipitation data at spatial resolution of 0.05° for the quasi-global 

coverage of 50°N-50°S from 1981 to present. The latest product is the Version 2.0 product that was 

released in February 2015. The CHIRPS product and its supporting data are available at: 

http://chg.geog.ucsb.edu/data/chirps/. The main used datasets for the construction of CHIRPS product 

include the monthly precipitation climatology (CHPclim) that is created using rain gauge stations 

collected from FAO and GHCN, the Cold Cloud Duration (CCD) information based on thermal infrared 

data archived from CPC and NOAA National Climate Data Center (NCDC), the Version 7 TRMM 3B42 

data, the Version 2 atmospheric model rainfall field from the NOAA Climate Forecast System (CFS), 

and the rain gauge stations data from multiple sources. First, the CCD data are calibrated with TRMM 

3B42 to generate the 5-daily CCD-based precipitation estimates which are further converted to the 

fractions of the long-term mean precipitation estimates. The fractions are then multiplied with CHPclim 

data to remove the systematic bias and the derived product is called CHIRP product. Finally, the CHIRP 

product is blended with rain gauge stations data using a modified inverse distance weighting algorithm 

to produce the CHIRPS. All the processing mentioned above are performed at the 5-daily timescales. 

The daily CCD data and daily CFS data are finally used to disaggregate the 5-daily products to daily 

precipitation estimates using a simple redistribution method. More detailed information on CHIRPS can 

be found in Funk et al. (2015). CHIRPS product belongs to the “satellite-gauge” category. Daily CHIRPS 

products at the spatial resolution of 0.05° and 0.25° are available from the downloading website 

mentioned above. CHIRPS products at both 0.05° and 0.25° for the period 2000-2010 were used and 

evaluated in this study, which enables us to investigate the effect of spatial resolutions on the 

performance of the products.  The evaluate results were referred to as “CHIRPS005” and “CHIRPS025”, 

respectively. 

2.2.2.6 GSMap_MVK product 

The GSMaP refers to the Global Satellite Mapping of Precipitation project that aims to develop precise 

high resolution global precipitation product from passive microwave and infrared satellites. The 

GSMaP_MVK product stands for the GSMaP Moving Vector with Kalman-filter product. The 

GSMaP_MVK product provides hourly precipitation at the spatial resolution of 0.10° for the quasi-

global coverage of 60° N-60° S. At the time of writing, the GSMaP_MVK product is at the transition of 

http://chg.geog.ucsb.edu/data/chirps/
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two versions, the Version 5 product covers the period from March 2000 to November 2010 and the latest 

Version 6 product starts from March 2014 to present. The GSMaP_MVK product at hourly and daily 

timescales and others are available at http://sharaku.eorc.jaxa.jp/GSMaP/. The creation of 

GSMaP_MVK product uses two main data sources: the infrared data archived by CPC from multiple 

geostationary satellites, and the passive microwave-based precipitation estimates from multiple satellite 

sensors. The GSMaP_MVK uses the hourly infrared data to compute the moving vectors using the same 

morphing technique as in CMORPH. The derived vectors are then used to propagate forward and 

backward the passive microwave-based precipitation estimates, and the propagate estimates are further 

refined using the Kalman filter based on the relationship between infrared brightness temperature and 

surface precipitation rate. The two propagated precipitation estimates are then weight averaged to 

generate the final precipitation estimate for the area and time where passive microwave data are not 

available. More details on GSMaP_MVK can be found in Ushio et al. (2009). The GSMaP_MVK 

belongs to the “satellite-only” category. The daily accumulated (00Z-23Z) GSMaP-MVK product at the 

spatial resolution of 0.10° for the period 2000-2010 were used and evaluated in this study, the evaluated 

result at this 0.10° resolution was referred to as “GSMaP_MKV010”. The 0.10° daily GSMaP_MVK 

product was aggregated by pixel averaging (simply the area-weighted integral of all 0.10° grids that 

intersect a targeted 0.25° grid) to the same spatial resolution of 0.25° for inter-comparison with other 

products in this study, and the evaluated result was referred to as “GSMaP_MKV025”.  

2.2.2.7 Rain gauge data 

A relatively dense network of rain gauge stations are maintained by the meteorological surveys of the 

Autonomous Province of Trento (data available at www.meteotrentino.it) and of the Autonomous 

Province of Bolzano (data available at http://www.provincia.bz.it/meteo/home.as) in the Adige Basin. 

The daily measured rainfall data from a total number of 101 stations with complete temporal coverage 

for the period 2000-2010 were finally used in this study. The rain gauge data have gone through the 

quality control checks. Distributions of these 101 stations are shown in Figure 2.1. Rain gauges are 

particularly sparse over the southern part near the outlet of Adige Basin. This highlights the need for 

reliable alternative precipitation datasets to enhance understanding of water-related aspects of the whole 

river basin, which is one motivation of this current study. As described above, most gridded precipitation 

products to be evaluated incorporate the rain gauge data from a variety of sources and use different 

algorithms, namely the GPCC monthly rain gauge analysis (used for TRMM 3B42, PCDR), CPC unified 

daily gauge analysis (used for CMORPH_CRT and BLD), and CUR data (used for PGF) and rain gauge 

data from multiple sources used for CHIRPS. In order to achieve an independent evaluation, it is 

important to ensure that rain gauge stations used as ground truth should not be used in the creation of 

the products to be evaluated. The rain gauge-based data mentioned above provide the number of used 

http://sharaku.eorc.jaxa.jp/GSMaP/
http://www.meteotrentino.it/
http://www.provincia.bz.it/meteo/home.as
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stations for each grid, although the locations of used rain gauges are usually not available. We have 

checked the number of rain gauge stations within each grid in the respective rain gauge-based data (at 

their finest spatial resolutions) used in the seven precipitation products. We found that for grids covering 

the Adige Basin for the period 2000-2010, on average the number of used rain gauges is around 10, 7, 1 

and 3 for GPCC, CPC, CRU and CHIRPS, respectively. Therefore, more than 90% (at least) of our 101 

stations are not used in the creation of each of the eight precipitation products to be evaluated, justifying 

the independent evaluation in this study.  

2.2.3 Evaluation methods  

There is a typical scale mismatch issue between point-based rain gauge data and the gridded precipitation 

products. The common practice in the evaluation studies is to upscale the point-based rain gauge data to 

the same grid scale with the precipitation products. Many interpolation techniques have been used to 

achieve this upscaling, such as simple algorithmic averaging (Xie and Xiong, 2011), the Thiessen 

polygon (Liu et al., 2015), the inverse distance weighting (IDW) (Hu et al., 2014; Yong et al., 2010), 

and the Kriging method (Khandu et al., 2015). Each interpolation method has its advantages and 

disadvantages, and its performance depends on various factors (Hofstra et al., 2008) and also varies from 

region to region. It is therefore practically impossible to identify an optimal method applicable in all 

study areas. A detailed comparison of different interpolation methods for interpolation of precipitation 

can be found for example in (Hofstra et al., 2008). It is interesting to investigate the effect of the different 

interpolation methods used in upscaling rain gauge data on the evaluation of gridded precipitation 

products; this is a topic that remains not well understood and is one of our ongoing studies. In this study, 

the IDW method was used because it is relatively easy to implement and its popular application in 

evaluation studies (Hu et al., 2014; Yong et al., 2010). The daily rain gauge data was first interpolated 

by IDW to the finer 1 km grid scale which is then aggregated to the larger grid scales (0.25°, 0.10° 0.05°) 

through spatial pixel averaging following (Hu et al., 2014). The interpolated 0.25° gridded precipitation 

data from rain gauge data were used as ground truth to evaluate all gridded precipitation products at the 

common 0.25° grid, while the interpolated gridded precipitation data from rain gauge data at 0.10° and 

0.05° were used to evaluate the GSMaP_MVK and CHIRPS at their original finer grid scale, respectively. 

For evaluation at all three grid scales (0.25°, 0.10° and 0.05°), only grids containing at least one rain 

gauge were considered. We evaluated the performance of selected precipitation products at three 

temporal scales (daily, monthly, and annual). For each temporal scale, evaluation was conducted at two 

spatial scales: the grid scale and the watershed scale. It should be noted that the averaged gridded 

precipitation (from either interpolated from rain gauge data or gridded precipitation products) from all 

grids containing at least one rain gauge was considered to represent the watershed precipitation during 

the evaluation at watershed scale.  
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For evaluation purpose, eight commonly used statistical metrics were computed following (Liu et al., 

2015; Tan et al., 2015; Yong et al., 2010). The equations and optimal values of the eight metrics are 

summarized in Table 2.2. The coefficient of determination (R2) describes the degree of collinearity 

between rain gauge data and gridded precipitation product and also describes the proportion of the 

variance in rain gauge data explained by the gridded precipitation product. The four metrics describing 

the error and bias are the relative bias (BIAS), mean error (ME), mean absolute error (MAE) and root 

mean square error (RMSE). The last three are contingency table metrics: the probability of detection 

(POD), false alarm ratio (FAR) and critical success index (CSI). The POD describes the fraction of the 

observed precipitation events detected correctly by the evaluated product. The FAR describes the 

fraction of events detected by the product but not observed. The CSI describes the overall skill of the 

product relative to observed precipitation. Calculation of these three metrics is well explained in 

AghaKouchak and Mehran (2013). The occurrence frequency of precipitation with different intensities 

is an important feature and has significant effects on surface runoff and flooding modeling (Tian et al., 

2007). Therefore, in this study the occurrence frequency for the daily precipitation was also computed 

to evaluate the probability of different rainfall intensities for rain gauge data and each gridded 

precipitation product. Daily precipitation were classified into seven categories with different rain 

intensity following the World Meteorological Organization (WMO) standard, namely 0-1; 1-2, 2-5, 5-

10; 10-20, 20-50, and ≥ 50 mm/d (Tan et al., 2015).  

Table 2.2 List of the statistical metrics used in the evaluation of precipitation products. 

Statistical metric Equation Optimal value 
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False Alarm Ratio (FAR) 
FH

F


FAR  0 

Critical Success Index (CSI) 
FMH

H


CSI

 1 

Notation: n refers to the number of samples; Gi means observed precipitation from rain gauge stations, 

Pi means the precipitation estimates from the evaluated products; H refers to the number of observed 

precipitation correctly detected by respective products; M means the number of the precipitation 

observed by rain gauge stations but not detected by products; F means the number of the precipitation 

detected by the products but not observed by rain gauge. 

2.3 Results and discussion 

2.3.1 Evaluation at daily scale 

Scatterplots of daily precipitation from all selected gridded precipitation products against rain gauge data 

at the grid scale and watershed scale are shown in Figure 2.2 and Figure 2.3, respectively. Large scatters 

in Figure 2.2 and Figure 2.3 clearly show the poor agreements between all gridded precipitation products 

and rain gauge data for the daily precipitation. As described in Section 2.2, all eight gridded products 

are generated using multiple datasets and a number of different procedures for combination, blending 

and/or bias correction. Therefore, poor agreements between evaluated products and rain gauge data are 

attributed to several factors including satellite sampling error, errors in algorithms for estimation of 

precipitation from individual platforms (satellite, weather prediction model, rain gauge analysis), errors 

in algorithms for combing or blending individual estimates (Shen et al., 2010), errors in bias correction 

algorithms and the unrepresentative of gauge data used in the bias correction (the very limited number 

(less than 10) of rain gauges used in the relevant gauge analysis datasets for Adige Basin, see Section 

2.2.7). Improvements in the error sources mentioned above are needed to adapt remote sensing 

precipitation data to the Adige Basin and increase the accuracy of all eight gridded precipitation products 

at the daily scale.  

Table 2.3 summarizes the statistical metrics for daily precipitation. At the grid scale, the 

CMORPH_BLD product had the highest R2 value (0.48), followed by TRMM and CHIRPS025 with the 

same value of 0.15. The lowest R2 value of 0.01 was observed for PGF product. Overall, four products 

(CHIRPS, TRMM, PCDR, PGF) overestimated precipitation with a BIAS value ranging from 0.04 to 

0.63, while all three different products from CMORPH and the GSMAP_MVK025 underestimated 

gauge precipitation with a BIAS ranging from -0.11 to -0.55. The results are consistent with other studies 

that have found similar overall overestimation by TRMM and underestimation by CMORPH across 

Europe (Maggioni et al. 2016). The CHIRPS025 showed the lowest ME of 0.09 mm/d. and lowest BIAS. 

The lowest MAE (1.86 mm/d) and RMSE (4.43 mm/d) values were achieved by the CMORPH_BLD 
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product. It is worth noting that among three different products from CMORPH, the RAW was 

consistently the worst performing product and improvements were achieved by CRT and further 

remarkably by BLD. This confirms the effectiveness of used bias correction and blending algorithms 

using daily rain gauge analysis by CPC. The PGF product had the worst performance in terms of all 

seven statistical metrics except the POD and CSI for which it can be ranked the second worst performing 

product.  

All eight products had quite small FAR value ranging from 0.02 to 0.08, indicating that all products 

detected a very limited number of unrealistic precipitation events. The GSMaP_MVK025 showed the 

highest POD (0.67) and CSI (0.64), and moderate FAR (0.06), suggesting the better performance in 

capturing daily precipitation events than other products. Tian et al. (2007) also found that 

GSMaP_MVK025 had slightly higher POD than TRMM 3B42, PERSIANN and other evaluated 

products over the contiguous United States. They attributed this better performance to two aspects in the 

GSMaP_MVK algorithm: effective application of infrared interpolation technique and the rain/no-rain 

classification scheme in the microwave algorithm. However, it should be noted that GSMaP_MVK 

product had missing values for several days and grids, this resulted in 4% less data points than other 

products during evaluation which will add slight uncertainty for computation of statistical metrics. In 

addition, as shown in Figure 2.2, the GSMaP_MVK product had extremely high daily precipitation (> 

200 mm/d) for several days (less than 10 days) during the whole period, while in reality the maximum 

daily precipitation from interpolated gauge data were not larger than 150 mm/d. The CHIRPS025 had 

the lowest POD (0.34) and CSI (0.33). Since none of the products is consistently the closest to perfect 

value for all eight metrics, it is not easy to conclude which product is the best performing one. The 

CMORPH_BLD product had the values that are closest to the perfect values in four metrics (R2, MAE, 

RMSE and FAR), and this product perhaps could be considered as the most favorable product compared 

to the others. The generation of CMORPH products, indeed, used daily rain gauge analysis and all bias 

correction and blending algorithms were conducted at the daily scale directly, while all other products 

conducted bias correction with rain gauge analysis at the coarser temporal scale (5-daily or monthly) if 

any. Similar better performance in daily precipitation of bias-corrected CMORPH product than other 

products (TRMM 3B42 and PERSIANN) was reported in China by Liu et al. (2015). It is worth noting 

that after recognizing the large portion of precipitation with intensity of 0-1 mm/d (shown later in Figure 

2.4), all products were evaluated also by considering only precipitation greater than 1 mm/d. We found 

that the overall metrics were slightly worse than those presented in Table 2.3 but the relative performance 

of each product is the same as mentioned above (results not shown). 
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At the watershed scale, as expected, the statistical metrics for all precipitation products are closer to their 

corresponding perfect values than those at the grid scale, but the relative performances of all precipitation 

products are similar to those at the grid scale. The CMORPH_BLD product still had the values that are 

closest to the perfect values for four metrics, while the PGF product still had the worst performance with 

values that are most deviated from the optimal values for six metrics.  

As already mentioned in Section 2.3, we also evaluated the CHIRPS and GSMaP products at their native 

finer spatial resolutions 0.05° and 0.10°, respectively. The scatterplots are included in Figure 2.2 for the 

evaluation at the grid scale and Figure 2.3 for the evaluation at watershed scale, the statistical metrics 

are also summarized in Table 2.3. For evaluation at both grid and watershed scales, there are very slight 

differences in the statistical metrics between the results at the aggregated spatial resolution 0.25° and 

their original finer resolutions, suggesting that the effect of spatial resolution on evaluation of products 

is very little.   
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Figure 2.2 Scatterplots of daily precipitation from all gridded products against the interpolated rain gauge 

data at the grid scale. 
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Figure 2.3 Scatterplots of daily precipitation from all gridded products against the interpolated rain gauge 

data at the watershed scale. 
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Table 2.3 Summary of statistical metrics for evaluation of gridded precipitation products at the daily 

temporal scale for both grid and watershed scales.  

Scale Product R2 
ME 

(mm/d) 

MAE 

(mm/d) 

RMSE 

(mm/d) 
BIAS POD FAR CSI 

Grid 

TRMM 0.15 0.32 3.3 6.65 0.13 0.49 0.05 0.48 

CMORPH_RAW 0.06 -1.38 2.69 6.45 -0.55 0.43 0.05 0.42 

CMORPH_CRT 0.09 -0.77 2.97 6.8 -0.3 0.42 0.05 0.41 

CMORPH_BLD 0.48 -0.47 1.86 4.43 -0.19 0.54 0.02 0.53 

PCDR 0.08 0.69 3.64 6.9 0.27 0.61 0.07 0.58 

PGF 0.01 1.59 5.37 11.84 0.63 0.38 0.08 0.37 

CHIRPS025 0.15 0.09 3.31 7.24 0.04 0.34 0.05 0.33 

GSMaP_MVK025 0.07 -0.29 3.16 7.56 -0.11 0.67 0.06 0.64 

CHIRPS005 0.11 0 3.41 7.91 0 0.23 0.05 0.22 

GSMaP_MVK010 0.07 -0.37 3.16 7.83 -0.14 0.5 0.04 0.49 

Watershed 

TRMM 0.24 0.32 2.85 5.21 0.13 0.88 0.08 0.82 

CMORPH_RAW 0.1 -1.39 2.47 5.59 -0.55 0.82 0.07 0.77 

CMORPH_CRT 0.15 -0.77 2.62 5.44 -0.3 0.82 0.07 0.77 

CMORPH_BLD 0.64 -0.47 1.54 3.4 -0.19 0.92 0.06 0.87 

PCDR 0.11 0.69 3.39 6.14 0.27 0.89 0.09 0.82 

PGF 0.01 1.59 4.89 9.35 0.63 0.77 0.09 0.72 

CHIRPS025 0.21 0.09 2.95 5.9 0.04 0.63 0.06 0.61 

GSMaP_MVK025 0.12 -0.27 2.84 5.88 -0.11 0.95 0.09 0.88 

CHIRPS005 0.21 0 2.88 5.77 0 0.56 0.06 0.54 

GSMaP_MVK010 0.12 -0.32 2.76 5.84 -0.13 0.92 0.08 0.85 

Figure 2.4 shows the occurrence frequency of daily precipitation with seven different intensity ranges 

for the interpolated rain gauge and evaluated eight gridded precipitation products at both the grid and 

watershed scale. The first class daily precipitation with intensity range (0-1 mm/d) is plotted separately 

in the left panel of Figure 2.4 for a more clear inter-comparison. At the grid scale, 69% of daily 

precipitation from the interpolated rain gauge data falls in the intensity of 0-1 mm/d. For this intensity 

range, the largest overestimation was from the CMORPH_RAW product (82%), and the overestimation 

was reduced for CMORPH_CRT (76%) and further for BLD (70%) product. The four products (BLD, 
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GSMaP_MVK, CHIRPS and PGF) had very close occurrence frequency to the interpolated rain gauge. 

The PCDR product (49%) considerably underestimated daily precipitation within this intensity range, 

and a relatively slight underestimation was observed from the TRMM product (59%). Similar large 

underestimation in the light precipitation (0-1 mm) by the PCDR product was also reported in Malaysia 

(Tan et al., 2015) and in the contiguous United States (Ashouri et al., 2015).  

The CMORPH_CRT and CMORPH_RAW products almost consistently underestimated the daily 

precipitation beyond 1 mm/d, thereby resulting in quite large negative values for the metric BIAS for 

these two products (Table 2.3). The CMORPH_BLD product had very close occurrence frequency for 

daily precipitation with intensity of 1-10 mm/d to that from rain gauge data, but it showed 

underestimation for daily precipitation beyond 10 mm/d. The PCDR product considerably overestimated 

the precipitation within 1-20 mm/d intensity and underestimated the precipitation beyond 20 mm/d. 

Similar overestimation of daily precipitation within 1-20 mm/d intensity was also found for the TRMM 

product, but this product showed underestimation for precipitation between 20 and 50 mm/d. The PGF 

product underestimated precipitation with intensity of 1-5 mm/d and overestimated precipitation beyond 

5 mm/d, thereby leading to the largest positive BIAS of 0.63 among all precipitation products. The 

largest underestimation in the light daily precipitation (1-2 mm/d) was found for the CHIRPS025 product, 

but this product showed quite close occurrence frequency for precipitation within 1-50 mm/d and showed 

moderate overestimation for precipitation beyond 50 mm/d. In general, the GSMaP_MVK025 showed 

similar result with the BLD except for the precipitation beyond 50 mm/d, overall the two products 

present the closest occurrence frequency to that of rain gauge data for the daily precipitation beyond 1 

mm/d. At watershed scale, basically all products had similar relative performances in capturing the 

occurrence frequency with those at the grid scale. Some distinct exceptions are that the TRMM product 

became the one that showed the largest underestimation in the light precipitation, followed by the PCDR 

product.   
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Figure 2.4 The occurrence frequency of daily precipitation with different intensity for interpolated rain 

gauge and eight evaluated gridded precipitation products at the grid and watershed scales.  

We also computed the occurrence frequency of daily precipitation with different intensities for the 

product CHIRPS and GSMaP_MVK at their native finer spatial resolution 0.05° and 0.10°, respectively, 

and corresponding interpolated rain gauge data. For a clear inter-comparison, the occurrence frequencies 

of daily precipitation at all three spatial resolutions (the aggregated 0.25° and the original finer spatial 

resolution at the grid scale are presented in Table 2.4. As spatial resolutions aggregate from 0.05 to 0.25°, 

the rain gauge data showed reduced frequencies of the daily precipitation with intensity of 0-1 mm/d 

and beyond 20 mm/d while elevated frequencies of daily precipitation with intensity of 1-20 mm/d. 

When comparing the agreement in the computed occurrence frequency between the product and 

corresponding interpolated rain gauge data at different spatial resolutions, the product showed the same 

trend for underestimation or overestimation in the same daily precipitation intensity ranges. Identical to 

the results of CHIRPS025, the CHIRPS005 overestimated the precipitation with intensity of 0-1 mm/d 

and beyond 10 mm/d, and showed underestimation for precipitation with intensity of 1-10 mm/d. The 

same statement is also true for the GSMaP_MVK010 product except for the intensity 0-1 mm/d where 

GSMaP_MVK025 showed slight underestimation while GSMaP_MVK010 showed slight 

overestimation. Similar findings were also valid for results at the watershed scale. Therefore, taken 
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together it can be concluded that the spatial resolutions of products to which evaluation was conducted 

had almost no effect on their performance in terms of statistical metrics and precipitation occurrence 

frequency. The differences in the occurrence frequency of precipitation among the eight products would 

have significant implications for hydrological modeling and sediment and pollutant transport modeling 

due to the nonlinearity in the related processes (Tian et al. 2007). Our follow-up hydrological modeling 

study with the SWAT model found that different occurrence frequency of precipitation may lead to 

considerably different performances in streamflow simulation (Tuo et al., 2016). Thus, it is important to 

have a comprehensive understanding about the occurrence frequency of precipitation of these 

precipitation products before applying them for modeling-related applications.  

Table 2.4 The occurrence frequency (%) of daily precipitation intensities for interpolated rain gauge and 

gridded precipitation product CHIRPS and GSMaP_MVK at the aggregated 0.25° and their original 

finer (0.05° and 0.10°) spatial resolution at the grid and watershed scale. “Gauge005” refers to 

interpolated rain gauge data at the same 0.05° grid with the CHIRPS at the finer resolution 

“CHIRPS005”; “Gauge010” refers to interpolated rain gauge data at the same 0.10° grid with the 

GSMaP_MVK at the finer resolution “GSMaP_MVK010”; “Gauge025” refers to interpolated rain gauge 

data at the same 0.25° grid with the CHIRPS and GSMaP_MVK at the common aggregated resolution 

“CHIRPS025” and “GSMaP_MVK025”. Details can be found in Section 2.2.2 and 2.2.3. 

Evaluation 

scale 
Product 

Daily precipitation intensity (mm/d) 

0-1 1-2 2-5 5-10 10-20 20-50 ≥50 

Grid Gauge005 72.23 5.57 8.18 6.16 4.92 2.72 0.21 

Gauge010 70.55 6.24 8.99 6.43 5.03 2.62 0.15 

Gauge025 68.77 6.83 9.78 6.76 5.11 2.63 0.13 

CHIRPS005 78.54 1.53 5.49 5.94 5.12 3.05 0.33 

CHIRPS025 73.37 3.78 7.64 6.68 5.17 3.05 0.3 

GSMaP_MVK010 72.01 6.55 9.19 5.78 4.17 2.12 0.19 

GSMaP_MVK025 68.32 8.59 10.56 6.16 4.12 2.09 0.17 

Watershed Gauge005 65.95 8.06 11.40 6.92 5.28 2.36 0.02 

Gauge010 65.88 8.01 11.57 6.92 5.25 2.34 0.02 

Gauge025 65.78 7.69 11.72 6.99 5.40 2.39 0.02 

CHIRPS005 66.08 7.52 11.50 7.52 5.00 2.31 0.07 

CHIRPS025 64.34 7.89 12.12 7.99 5.25 2.34 0.07 

GSMAP_MVK010 61.78 13.22 13.27 6.38 3.80 1.48 0.08 

GSMAP_MVK025 58.98 14.37 14.32 6.80 4.03 1.45 0.05 
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2.3.2 Evaluation at monthly scale 

The daily precipitation data were accumulated to monthly total precipitation for the interpolated rain 

gauge data and all gridded precipitation products, and then similar evaluation were conducted at both 

the grid scale and the watershed scale. Figure 2.5 and Figure 2.6 show scatterplots of monthly total 

precipitation from all selected gridded precipitation products against interpolated rain gauge data at the 

grid scale and watershed scale, respectively. The statistical metrics are presented in Table 2.5.  

Better agreements with the interpolated rain gauge data were observed for all products with improved 

metrics at both grid and watershed scales than those of daily precipitation. The PGF product was still 

the worst performing product with the largest errors and bias. At the grid scale, the CHIRPS025 had 

values that are closest to the perfect values for all five metrics except the R2 (0.68) which is just slightly 

smaller than the best value (0.70) achieved by the TRMM product. Compared to the CHIRPS025, the 

TRMM and CMORPH_BLD products had higher or equal R2 and just slightly larger MAE and RMSE 

values. At the watershed scale, CHIRPS025, TRMM and CMORPH_BLD showed quite similarly good 

performance with very slight difference in the statistical metrics. Therefore, these three products could 

be reasonably considered as the top three products for the monthly total precipitation. Similarly, there is 

very slight difference in the statistical metrics between evaluation results at the original finer spatial 

resolutions (CHIRPS005, GSMaP_MVK010) and the aggregated 0.25° spatial resolution (CHIRPS025, 

GSMaP_MVK025) for both CHIRPS and GSMaP_MVK products.  
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Figure 2.5 Scatterplots of monthly precipitation from all gridded products against the interpolated rain 

gauge data at the grid scale. 



Chapter 2: Evaluation of eight high spatial resolution gridded precipitation products 

  

33 

  

 

Figure 2.6 Scatterplots of monthly precipitation from all gridded products against the interpolated rain 

gauge data at the watershed scale. 

 

 

 



Chapter 2: Evaluation of eight high spatial resolution gridded precipitation products 

 

34 

 

Table 2.5 Summary of statistical metrics for evaluation of gridded precipitation products at the monthly 

temporal scale for both grid and watershed scales.  

Scale Product R2 
ME 

(mm/mon) 

MAE 

(mm/mon) 

RMSE 

(mm/mon) 
BIAS 

Grid 

TRMM 0.7 9.74 23.93 32.16 0.13 

CMORPH_RAW 0.17 -42.13 51.05 70.59 -0.55 

CMORPH_CRT 0.25 -23.44 44.38 62.8 -0.3 

CMORPH_BLD 0.68 -14.39 22.67 34.54 -0.19 

PCDR 0.64 21.06 32.57 39.46 0.27 

PGF 0.18 48.46 61.5 75.47 0.63 

CHIRPS025 0.68 2.83 22.3 31.19 0.04 

GSMaP_MVK025 0.16 -8.8 40.18 61.15 -0.11 

CHIRPS005 0.59 0.14 26.07 37.98 0 

GSMaP_MVK010 0.17 -10.85 40.16 62 -0.14 

Watershed 

TRMM 0.88 9.74 17.13 20.66 0.13 

CMORPH_RAW 0.21 -42.13 46.35 64.24 -0.55 

CMORPH_CRT 0.37 -23.44 33.7 48.69 -0.3 

CMORPH_BLD 0.86 -14.39 16.56 25.46 -0.19 

PCDR 0.81 21.06 27.3 31.44 0.27 

PGF 0.32 48.46 57.02 66.16 0.63 

CHIRPS025 0.84 2.83 16.92 22.35 0.04 

GSMaP_MVK025 0.22 -8.8 32.81 50.52 -0.11 

CHIRPS005 0.84 0.02 15.02 20.81 0 

GSMaP_MVK010 0.25 -11 30.35 47.37 -0.14 



Chapter 2: Evaluation of eight high spatial resolution gridded precipitation products 

  

35 

  

 

Figure 2.7 Seasonal variation of mean monthly precipitation during the period 2000-2010 and their 

relative mean absolute error (%MAE) for the Adige Basin at the watershed scale. 

Figure 2.7 presents the mean temporal pattern of monthly precipitation (right Y-axis) from interpolated 

rain gauge data and all eight evaluated products at the watershed scale during the whole period 2000-

2010, as well as temporal patterns of the mean absolute error (MAE) in relative percentage (%MAE, left 

Y-axis) for evaluated products. The %MAE was computed as the ratio of MAE value to the mean value 

from corresponding interpolated rain gauge data, and thus the %MAE enables us to make inter-

comparisons among different months by taking into account the monthly variations of precipitation 

(Duan and Bastiaanssen, 2013). From interpolated rain gauge data, mean monthly precipitation in the 

Adige Basin is characterized by two peaks with a higher peak occurring in November and the other in 

August, and the winter months (December-February) received low precipitation with the lowest 

precipitation occurring in February. Snowfall will account for a larger portion of precipitation during the 
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October–April months (Mei et al., 2014), and rain gauge stations have higher possibility of under-

sampling snowfall, resulting in underestimating of precipitation. The seasonal pattern with two peaks 

can be captured by most products except GSMaP_MVK, CMORPH_RAW and CMORPH_CRT which 

showed only one peak in August. For those products capable of capturing two peaks, the highest peak 

occurred in August rather than in November, suggesting that all eight products underestimated 

precipitation in November. Considering the %MAE, all eight products showed higher error in the winter 

months when precipitation is low while lower error in the summer and autumn months when 

precipitation is relatively high. Among all factors affecting the accuracy of evaluated precipitation 

products mentioned in Section 2.3.1, the consistent higher error in the winter months could be attributed 

to two factors: (1) winter precipitation in Adige Basin is often from non-convective systems and 

associated with shallower cloud, and such precipitation is difficult to be detected by satellite algorithms 

(Eber et al., 2007; Tian et al., 2007; Mei et al., 2014). On the other hand, satellite algorithms performed 

better in detecting precipitation in warm seasons that is often from convective systems; (2) more ice and 

snow would cover land surfaces in cold winter months, and the presence of ice and snow cover added 

more difficulties and errors in microwave-based precipitation retrievals from satellites because they 

produced strong disturbing signals to those of ice particles in the atmosphere (Eber et al., 2007; Tian et 

al., 2014).  Comparatively, the CHIRPS product at both 0.05° and 0.25° spatial resolution performed 

best in reproducing the temporal pattern of monthly precipitation, followed by TRMM and 

CMORPH_BLD. All the three products CHIRPS, TRMM and CMORPH_BLD had comparably lower 

error in the 12 month with the mean value of %MAE being 25%, 23% and 27%, respectively. The PGF 

product had %MAE larger than 50% in 11 months and %MAE even higher than 100% in January-April 

months, resulting in the PGF having the largest error with the mean %MAE of 92%.  

2.3.3 Evaluation at annual scale 

The accumulated monthly total precipitation data were further accumulated to annual total precipitation. 

The annual precipitation data from all gridded precipitation products are plotted against those from the 

interpolated rain gauge data at the grid scale in Figure 2.8 and at the watershed scale in Figure 2.9. The 

statistical metrics are summarized in Table 2.6. The large deviation from the 1:1 line is clearly shown in 

Figure 2.8. At this grid scale, the agreement with interpolated rain gauge data were not improved but 

rather reduced with lower R2 for most precipitation products as the temporal scale aggregates from 

monthly to annual. This suggests that the errors in daily and monthly precipitation were neither 

symmetrical nor random, yet they are characterized by a bias with dominant negative or positive errors. 

Thus temporal aggregation did not cancel each other and not improve the match between rain gauge data 

and gridded precipitation products. For example, large positive errors (overestimation) are clearly shown 

for the products PCDR and PGF while negative errors (underestimation) are clearly shown for the 
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CMORPH_BLD. The largest R2 was just 0.57 which was achieved by the CMORPH_BLD, but this 

product showed consistent underestimation. The CHIRPS025 had the best values for four metrics ME, 

MAE, RMSE and BIAS. The TRMM product had second best values for MAE and RMSE, followed by 

the CMORPH_BLD. Other products showed relatively larger errors with the PGF product having the 

largest errors.   

In contrast, at the watershed scale, the agreement with interpolated rain gauge data were improved with 

higher R2 for most precipitation products as the temporal scale aggregates from monthly to annual. For 

all precipitation products, the errors were reduced compared to those at grid scale. The relatively 

performance of precipitation products are the same with those at the grid scale. The CHIRPS025 had the 

lowest MAE and RMSE, followed by the TRMM and CMORPH_BLD products. Similarly, very slight 

differences were observed in the statistical metrics between evaluation results of CHIRPS005 and 

GSMaP_MVK010 and the aggregated 0.25° spatial resolution (CHIRPS025, GSMaP_MVK025). 

Figure 2.10 shows the spatial pattern of average annual precipitation over the Adige Basin during 2000-

2010 from interpolated rain gauge data and eight evaluated products at the common spatial resolution of 

0.25°. From the interpolated rain gauge data, the average annual precipitation ranged from 668 to 1152 

mm/y and showed a general decreasing pattern from southeast to northwest. Overall, all evaluated 

products except PCDR, PGF and GSMaP_MVK captured the decreasing pattern but all products could 

not adequately reproduce the magnitude of average annual precipitation with overestimation and 

underestimation occurring in different places.  The PGF product showed an opposite decreasing pattern. 

Comparatively, TRMM and CHIRPS025 had the spatial pattern that is closest to that of the interpolated 

rain gauge data. These results indicate that care should be taken when using these gridded precipitation 

products to study the spatial patterns of precipitation (Ji and Chen, 2012), and more researches on the 

spatial errors of precipitation should be conducted to further improve these products (Chen et al., 2013).  
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Figure 2.8 Scatterplots of annual precipitation from all gridded products against the interpolated rain 

gauge data at the grid scale. 
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Figure 2.9 Scatterplots of annual precipitation from all gridded products against the interpolated rain 

gauge data at the watershed scale. 
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Table 2.6 Summary of statistical metrics for evaluation of gridded precipitation products at the annual 

temporal scale for both grid and watershed scales.  

Scale Product R2 
ME MAE RMSE 

BIAS 
(mm/y) (mm/y) (mm/y) 

Grid 

TRMM 0.42 116.91 171.57 229.83 0.13 

CMORPH_RAW 0.3 -505.59 509.02 550.36 -0.55 

CMORPH_CRT 0.24 -281.28 332.85 403.13 -0.3 

CMORPH_BLD 0.57 -172.69 194.69 240.2 -0.19 

PCDR 0.54 252.76 270.07 301.53 0.27 

PGF 0.01 581.5 606.07 694.72 0.63 

CHIRPS025 0.47 33.96 141.22 183.93 0.04 

GSMaP_MVK025 0.01 -103.2 233.06 304.48 -0.11 

CHIRPS005 0.42 1.66 172.48 222.88 0 

GSMaP_MVK010 0.05 -126.53 235.92 304.69 -0.14 

Watershed 

TRMM 0.90 116.91 116.91 131.73 0.13 

CMORPH_RAW 0.39 -505.59 505.59 527.95 -0.55 

CMORPH_CRT 0.31 -281.28 291.83 334.19 -0.3 

CMORPH_BLD 0.91 -172.69 172.69 182.67 -0.19 

PCDR 0.89 252.76 252.76 263.69 0.27 

PGF 0.66 581.5 581.5 592.6 0.63 

CHIRPS025 0.86 33.96 90.66 104.28 0.04 

GSMaP_MVK025 0.01 -103.2 181.51 220.1 -0.11 

CHIRPS005 0.84 1.53 83.3 94.92 0 

GSMaP_MVK010 0.02 -126.61 174.09 218.39 -0.14 
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Figure 2.10 Spatial distribution of mean annual precipitation for the period 2000–2010 from (a) 

interpolated gauge station at the spatial resolution of 0.25 degree for grids which have at least one gauge 

station located inside covering Adige Basin.  

2.4 Conclusions 

In this study, we conducted a comprehensive evaluation of eight high resolution gridded precipitation 

products in the Adige Basin, Italy using measurements from 101 rain gauges during 2000-2010. Since 

most of satellite-based precipitation products have a quasi-global coverage (latitude bands of 50° N-S or 
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60° N-S), thus the nature of Adige Basin (located within 45-47.1° N latitude and characterized by 

complex topography) makes it a representative high-latitude site for assessing performances of various 

available products. This study presents a new contribution to the global view of the performance of 

various precipitation products. The evaluated eight products are the TRMM 3B42, CMORPH_RAW, 

CMORPH_CRT, CMORPH_BLD, PCDR, PGF, CHIRPS and GSMaP_MVK. All eight products were 

evaluated against interpolated rain gauge data at the common 0.25° spatial resolution, and additional 

evaluations at finer spatial resolution were also conducted for CHIRPS (0.05°) and GSMaP_MVK 

(0.10°). Evaluation was performed at various temporal (daily, monthly and annual) and spatial scales 

(grid and watershed).  

Our evaluation found that considering all evaluation metrics and aspects, in general the CHIRPS (slight 

overall overestimation with BIAS < 0.05), TRMM (overall overestimation with BIAS of 0.13) and 

CMORPH_BLD (overall underestimation with BIAS of -0.19) can be considered to comparably perform 

better than others, while the PGF product performed worse with large overall overestimation with BIAS 

of 0.63. Among three different products from CMORPH, the CMROPH_RAW was consistently the 

worst performing product and improvements were achieved by CMROPH_CRT and further remarkably 

by CMROPH_ BLD. This confirms the effectiveness of the bias correction and blending algorithms used 

in CMORPH products. Consistent improved evaluation metrics are observed as the evaluation spatial 

scale increases from grid to watershed and the temporal scale increases from daily to monthly, but 

metrics for annual precipitation are worse than those at monthly scale. Evaluation metrics and aspects 

were only slightly different between them at the original finer spatial resolutions (0.05° and 0.10°, 

respectively) and the aggregated 0.25° spatial resolution for both CHIRPS and GSMaP_MVK products, 

suggesting the little effect of spatial resolution at which evaluation is performed on the evaluation results. 

All eight products presented different occurrence frequency of daily precipitation for some intensity 

ranges compared to rain gauge data, such differences are expected to have significant effects on 

hydrological modeling and sediment and pollutant transport modeling applications. As far as the 

performances in temporal and spatial distribution of precipitation are concerned, all eight products tend 

to show higher error in the winter months (December-February) when precipitation is low; all eight 

products except PCDR, PGF and GSMaP_MVK reproduced a general southeast-northwest decreasing 

spatial pattern with TRMM and CHIRPS performing better, while PGF captured an opposite spatial 

pattern. 

This study has implications for precipitation product development and guidance to alternative choice of 

precipitation data for the local community. The findings clearly show that there is still room for 

improvement for all eight gridded precipitation products particularly at daily and finer temporal scales. 
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It is worth noting that the recent CHIRPS product available at the finest spatial resolution spatial 

resolution (0.05°) has shown the smallest bias and relatively better performance than other products, 

which favors its application in hydrological studies at small basin scales. Our follow-up study has shown 

that using the CHIRPS product as input to SWAT model resulted in satisfactory performance in 

simulating streamflow in all three tested headwater subbasins in the Adige Basin (Tuo et al., 2016). 

From the local perspective for the Adige Basin, one interesting future study could be to construct a 

further improved precipitation dataset at fine spatial resolution by merging the available rain gauge data 

with CHIRPS using similar effective blending algorithm used in CMORPH products, which will be 

beneficial to many studies identified within the GLOBAQUA project such as sediment and pollutant 

transport modeling and water resources assessment and management. Snowfall is of great significance 

during winter months in the Adige Basin and other basins of the Alps. However, accurate snowfall 

detection and quantification is still a challenging task for both ground and satellite remote sensing 

measurements (Lettenmaier et al., 2015), thus there is a need for improving the quantification of snowfall 

and its contribution to the total precipitation and further its effects on the seasonal hydrological balance 

in these study regions in future studies. The recently launched Global Precipitation Measurement (GPM) 

satellite mission (http://www.nasa.gov/mission_pages/GPM/overview/index.html) is expected to 

particularly improve the quantification of snow worldwide. The 0.25° spatial resolution of most available 

gridded products is still relatively coarse for applications in smaller basins. Spatial downscaling 

techniques can be performed to obtain precipitation at higher spatial resolution (e.g. 1 km). Various 

spatial downscaling techniques have been developed, but most of them are focused on monthly and 

annual scales (Duan and Bastiaanssen, 2013; Chen et al., 2015). An important focus for future work 

could thus be the development of robust spatial downscaling methods for precipitation at daily and finer 

time scales.   

 

http://www.nasa.gov/mission_pages/GPM/overview/index.html


 

 

 

Chapter 3   

Evaluation of precipitation input for SWAT modeling in Alpine catchment: A 

case study in the Adige River Basin (Italy)2 

 

Precipitation is often the most important input data in hydrological models when simulating streamflow. 

The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of 

data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is 

eventually corrected using the elevation band method. This leads in general to inaccurate representation 

of subbasin precipitation input data, particularly in catchments with complex topography. To investigate 

the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13 

years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), 

IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with 

Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model 

performances (comparing simulated and measured streamflow data at the catchment outlet) as well as 

parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation 

bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are 

better than those obtained using the other datasets in terms of both model performance and prediction 

uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, 

suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the 

performance of SWAT models using different precipitation datasets is therefore important in data-scarce 

regions. This study has shown that, precipitation is the main source of uncertainty, and different 

precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated 

parameters. This has important implications for the interpretation of the simulated hydrological 

processes.  

 

2 Tuo Y., Duan Z., Disse M., Chiogna G., 2016. Evaluation of precipitation input for SWAT modeling in Alpine 

catchment: A case study in the Adige river basin (Italy). Science of The Total Environment, 573: 66-82. DOI: 

10.1016/j.scitotenv.2016.08.034 
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3.1 Introduction 

Quantitative hydrological models are useful tools to support the development of new water resource 

management policies and assess water quality issues (Abbaspour et al., 2015; Beven, 2011). Among 

these models, the Soil and Water Assessment Tool (SWAT) (Arnold and Fohrer, 2005; Arnold et al., 

1998) has been widely used for river basins around the world (Guse et al., 2016; Malagò et al., 2016; 

Nerantzaki et al., 2015; Schmalz et al., 2015; Song et al., 2011). Over the last decades, this open source 

model has been continuously improved by integrating modules that evaluate the effects of various 

hydrological and chemical processes (Gassman et al., 2007). SWAT is frequently used by both the global 

academic community and the practitioners. Over 2500 peer-review papers have been published (Scopus, 

till 31 July 2016) using modeling results obtained applying SWAT. This model has been proven to be 

an effective tool for simulating hydrological processes, contaminant transport, soil erosion and for 

assessing the effects of climate change, land use change, and water management practices in diverse 

environmental conditions (Abbaspour et al., 2015; Abbaspour et al., 2007; Ayana et al., 2015; Dile et 

al., 2016; Guo et al., 2008; Rahman et al., 2013; Schuol and Abbaspour, 2006; Woznicki et al., 2016; 

Yang et al., 2016). It has also been used to support the implementation of environmental directives such 

as the Clean Water Act in the United States (Gabriel et al., 2014) or the European Water Framework 

directive (Volk et al., 2009). A new version (SWAT+) that is under development, will implement a 

landscape unit approach to improve the processes distribution and allocation of management operations 

in landscapes (Bonumá et al., 2014; Rathjens et al., 2015) and will be more flexible in watershed 

discretization and configuration so as to represent the physical characteristics of a watershed as 

realistically as possible (Bieger et al., 2017).  

Precipitation is a major driving force of hydrological processes, sediment and chemical fluxes (Cho et 

al., 2009; Masih et al., 2011; Price et al., 2014), and therefore reliable precipitation data are important 

inputs for SWAT (Galván et al., 2014; Monteiro et al., 2016; Strauch et al., 2012) and other hydrological 

models (Andréassian et al., 2001; Bárdossy and Das, 2008; Mei et al., 2016a). Therefore, an accurate 

representation of the temporal and spatial variability of precipitation is of importance to achieve an 

accurate river basin model. In other words, physically based hydrological models such as SWAT cannot 

generate accurate predictions of hydrological processes without adequate representations of the regional 

precipitation distribution. Subsequently, without an accurate simulation of hydrological processes, 

reliable predictions of other relevant behaviors such as water quality and erosion cannot be achieved 

(Chaplot et al., 2005).   

The sparse and heterogeneous spatial distribution of rain gauges often results in inaccurate precipitation 

inputs for SWAT, especially when modeling large river basin or basins with complex heterogeneous 
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terrains like mountainous regions (e.g. Alpine catchments) where the assumption of spatially uniform 

rainfall is not valid (Cho et al., 2009). Furthermore, the current method of representing precipitation in 

the SWAT model is simplistic, since it only uses data from one precipitation gauging station that is 

nearest to the centroid of each subbasin (Galván et al., 2014; Masih et al., 2011). Therefore, improved 

precipitation inputs which consider regional spatial variations are crucial for achieving reliable modeling 

results with SWAT (Tobin and Bennett, 2009). 

Numerous methods are available for processing precipitation data in order to consider spatial effects. 

Among these methods, interpolation methods based on ground measurements (e.g., Inverse distance 

weighting, IDW) and satellites precipitation estimates (e.g., Tropical Rainfall Measuring Mission, 

TRMM; Climate Hazards Group InfraRed Precipitation with Station data, CHIRPS) have been 

considered in the present work. IDW-based interpolated precipitation and TRMM have been shown to 

be useful for obtaining satisfactory model performance in case of spatially varied precipitation patterns 

(Li et al., 2012; Ly et al., 2011; Shen et al., 2012; Wagner et al., 2012) in particular when used as input 

data for SWAT models  (Galván et al., 2014; Masih et al., 2011; Shen et al., 2012; Strauch et al., 2012; 

Tobin and Bennett, 2009; Wagner et al., 2012). The CHIRPS dataset has a higher spatial resolution 

compared to TRMM (0.25°) and is expected to capture more representative precipitation features, 

because the recently released “satellite-gauge” type CHIRPS product has the finest spatial resolution of 

0.05° (Funk et al., 2015). 

Comparing with the previous works (Shen et al., 2012; Shope and Maharjan, 2015; Vu et al., 2012; 

Wagner et al., 2012; Zhang and Srinivasan, 2009), we can state that the choice of the best precipitation 

input data for the SWAT models is basin-specific. More importantly, few case studies have investigated 

catchments with high elevation gradients (Shope and Maharjan, 2015; Xu et al., 2010) and none of them 

refer to SWAT applications in the South-eastern Alps. Therefore, investigations about the optimal 

precipitation input dataset to model Alpine catchments with SWAT are limited. Furthermore, SWAT 

utilizes elevation bands to simulate precipitation variability in a subbasin due to orographic effects 

(Neitsch et al., 2011). Only a few studies have tried to assess the effectiveness of the elevation band 

approximation and the results may be case-specific (Grusson et al., 2015; Rahman et al., 2013; Strauch 

et al., 2012). This study aims at comparing different precipitation inputs for SWAT in Alpine headwater 

catchments belonging to the Adige river basin.  

The specific objectives of this study are to: 1) analyze the impact of four different precipitation data 

sources on SWAT modeling without elevation correction; 2) evaluate the effect of the elevation band 

method on the performance of SWAT models in alpine catchments; 3) estimate parameter and prediction 
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uncertainties considering the four precipitation inputs in the three study areas; 4) investigate the 

exportability of the result of this study to other Alpine catchments. 

3.2 Materials and methods 

3.2.1 Study areas 

The Adige river basin is located in North-East Italy and has a drainage area of 12,100 km2 (Figure 3.1). 

It is the second longest river and third largest catchment in Italy and it was selected as one of the research 

catchments in the FP7 project GLOBAQUA (Navarro-Ortega et al., 2015). Streamflow generation in the 

catchment is expected to change due to climate change in the area, with important consequences for 

water management, in particular for its headwaters (Chiogna et al., 2016; Majone et al., 2016). Hence, 

climate change has been identified as one of the main stressors affecting the Adige river basin. Further 

environmental stressors in the basin are the occurrence of hydropeaking related to hydropower 

production, and pollution associated with touristic fluxes especially in mountain areas, and pollutants 

transported within the river basin due to agricultural activities. The role played by particle-facilitated 

transport of contaminants is also under investigation (Navarro-Ortega et al., 2015), and therefore erosion 

could also be listed among the most relevant environmental stressors. To propose adequate management 

solutions to alleviate the effect of these stressors, it is necessary to have an accurate representation of 

flow and transport processes at the catchment scale. SWAT can be a useful tool to achieve these goals.  
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Figure 3.1 The Adige river basin and three studied mountainous alpine subbasins (Aurino, Rienza and 

Passirio). 

The SWAT model has been set up for the entire Adige basin with 43 subbasins delineated in Figure 3.1. 

In this work, we focus on the results of three subbasins representing headwaters of the Adige river basin 

(Figure 3.1): Aurino (subbasin 1), Rienza (subbasin 7) and Passirio (subbasin 9). The three 

subcatchments are part of the larger SWAT model for the Adige river basin. Therefore, the three study 

areas have not been further subdivided into smaller subcatchments. These three subbasins were selected 

because they are headwaters of the basin and hydropower production does not exert a significant 

influence on their streamflow. This allows us to investigate the influence of different precipitation 

datasets on streamflow generation in mountainous catchments where high elevation gradients are present. 

The three subbasins are located near each other and belong to the same Alpine region. The climate of 

the region is characterized by snowmelt in spring, humid summers and autumns, and dry winters 

(Chiogna et al., 2016). According to the ground observations of the climate stations, the mean annual 
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precipitation is 909 mm, 767 mm and 1074 mm for the Aurino, Rienza and Passirio subcatchments, 

respectively; the mean daily average temperature is 3.6 °C, 6.0 °C and 8.5 °C for the Aurino, Rienza and 

Passirio subcatchments, respectively. According to the local soil investigation (Costantini et al., 2004), 

the major soils of three subbains are the same: the main types are Lithic Cryosols, Lithic, Mollic, Eutric, 

and Rendzic Leptosols, Eutric and Calcaric Cambisols, and Eutric Fluvisols. The main land use types of 

the three subbasins are forest, grassland, and barren land, which account of 49.2%, 14.6% and 22.2% in 

the Aurino subbasin, 64.6%, 9.3% and 14.1% in the Rienza subbasin, 49.0%, 23.9% and 12.6% in the 

Passirio subbasin, respectively. The land use map of the three subbasins is provided in the 

Supplementary material (Figure S3.1). The mean slope of the region is 51% (Costantini et al., 2004) and 

the slope map of each subbasin is offered in the Supplementary material (Figure S3.2). The elevation for 

Aurino, Rienza and Passirio ranges between 851-3429 m, 1095-3088 m, and 477-3353 m, respectively 

(Figure S3.3). The area of these three subbasins are 408 km2, 259 km2 and 338 km2, respectively (Figure 

3.1).   

3.2.2 SWAT model 

The SWAT model is a comprehensive, time-continuous, semi-distributed, process-based model (Arnold 

et al., 2012a). It was developed by the Agricultural Research Service of the United States Department 

of Agriculture (Arnold et al., 1998). SWAT can be used to model changes in hydrological processes, 

erosion, vegetation growth, and water quality in large river basins and evaluate the effects of climate 

change and water resources management (Abbaspour et al., 2015; Dile et al., 2016; Yang et al., 2016). 

It divides the river basin into subbasins and subsequently into Hydrologic Response Units (HRUs), 

characterized by different combinations of land use, soil characteristic, topography, and management 

schemes. The hydrological cycle is calculated based on water balance, which is controlled by climate 

inputs such as daily precipitation and maximum/minimum air temperature. Using daily input time series, 

SWAT simulates the daily, monthly and yearly fluxes of water and solutes in river basins. Simulations 

start by calculating the quantity of water, sediment and contaminants loading from land of each subbasin 

to the main channel. Then, these loads are transported and routed through the streams and reservoirs 

within the basin. More information about the model are provided in the literature (Arnold et al., 2012a; 

Arnold and Fohrer, 2005; Arnold et al., 1998; Gassman et al., 2007) and are available in the official 

model documentation (Neitsch et al., 2011).  

3.2.3 Model setup 

ArcSWAT 2012, with an interface in ArcGIS, was used to setup the model in this work. The datasets 

used in the model are listed in Table 3.1. Daily precipitation data come from 101 rain gauges (89 rain 

gauges inside the basin and 12 rain gauges within 25 km outside the entire Adige Basin boundary, see 
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Figure 3.1) for the period 1998-2010. This dataset has been used also for the IDW interpolation to 

generate an IDW-based precipitation dataset. Regarding the three subbasins of this study (Figure 3.1), 

three rain gauges with elevation of 1080 m, 1450 m and 1562 m are available at Aurino; three gauges 

with elevation of 1131 m, 1219 m and 1285 m are available at Rienza; four gauges with elevation of 644 

m, 1147 m, 1618 m and 1716 m are available at Passirio. In this study, a total of twenty-four models 

have been set up for three Alpine subcatchments (Aurino, Rienza and Passirio) by inputting four different 

precipitation datasets into two types of SWAT programs: one with the elevation band method, the other 

without. The models considered a timeframe of thirteen years, from 1998 to 2010.  

Table 3.1 Data source and description. 

Data type Scale Data source 

DEM 90 m × 90 m 
Shuttle Radar Topography Mission (SRTM) produced by 

Consortium for Spatial Information (CGIAR-CSI) 

Land use 100 m × 100 m 
Corine Land Cover 2006(CLC2006) from European 

Environment Agency 

Soil 1 : 1,500,000 Food and Agriculture Organization (FAO)  

River  

network 
 

EU-DEM product http://www.eea.europa.eu/data-and-

maps/data/eu-dem. 

Climate  

Autonomous Province of Trento 

( http://www.meteotrentino.it) and Autonomous Province 

of Bolzano (http://www.provincia.bz.it/meteo/home.as) 

River 

discharge 
 Autonomous Province of Bolzano  

3.2.4 Precipitation datasets 

In the present work, four precipitation datasets covering 1998-2010 have been used as SWAT input 

datasets. They can be classified into three categories: 1) Observed precipitation data from ground rain 

gauges; 2) IDW-based interpolated data, which were used as one representative of the datasets by 

interpolation techniques (Ly et al., 2011); 3) two satellite precipitation products: CHIRPS (Funk et al., 

2015), which represents one of the latest products from remote sensing community and TRMM 3B42 

(Huffman et al., 2007), which represents one of the frequently applied products from the remote sensing 

community. The two satellite precipitation products have been selected because they performed best in 

the Adige river basin among eight satellite precipitation products (Duan et al., 2016). The empirical 

cumulative density function (CDF) of the daily precipitation distribution during 1998-2010 has been 
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computed for the four datasets. The corresponding cumulative frequency has been evaluated based on 

the rainfall intensity classification of the World Meteorological Organization (WMO) standard (Tan et 

al., 2015): (1) rain < 1 mm (no/tiny rain), (2) 1 mm ≤ rain < 2 mm (light rain), (3) 2 mm ≤ rain < 5 mm 

(low moderate rain), (4) 5 mm ≤ rain < 10 mm (high moderate rain), (5) 10 mm ≤ rain < 20 mm (low 

heavy rain), (6) 20 mm ≤ rain < 50 mm (high heavy rain), and (7) rain ≥ 50 mm (violent rain).  

3.2.4.1 Ground rain gauge dataset 

All available precipitation data collected by pointed-based ground rain gauges have been directly used 

as input to SWAT. This represents the most widely used manner in which the rain gauge data are used 

in the SWAT model among all existing publications. However, SWAT only uses the data of the rain 

gauge closest to the centroid of each subbasin, disregarding all other stations (Galván et al., 2014; Masih 

et al., 2011). Therefore, only data from one single point has been utilized for the entire subbasin without 

considering any spatial heterogeneity. This precipitation dataset will hereafter be referred to as OP 

(observed precipitation) and accordingly the model result will be referred to as SWAT model using OP 

input (OP model). 

3.2.4.2 IDW-based precipitation dataset 

A huge variety of methods have been developed in the past to spatially interpolate precipitation datasets 

(Ly et al., 2011; Wagner et al., 2012; Zhang and Srinivasan, 2009). Babak and Deutsch (2009) state that 

“Variants of kriging are often proposed as statistical techniques with superior mathematical properties 

such as minimum error variance; however, the robustness and simplicity of IDW interpolation motivate 

its continued use in practice.” The IDW method is probably one of the simplest interpolation methods 

and it does not rely on particular statistical assumptions. It is a widely used geometric interpolation 

method and is considered in most intercomparison studies focusing on the effect of different precipitation 

inputs on hydrological outputs (Chu et al., 2012; Di Luzio et al., 2008; Ly et al., 2011; Ly et al., 2013; 

Shen et al., 2012; Shope and Maharjan, 2015; Shope et al., 2014; Tuppad et al., 2010; van der Heijden 

and Haberlandt, 2010; Wagner et al., 2012; Yang et al., 2015; Zhang and Srinivasan, 2009). IDW 

estimates values at unknown points by the weighted average of observed data at neighboring points:  

𝑧(𝑥𝑜) = ∑ 𝜆𝑖
𝑛
𝑖=1 ∙ 𝑧(𝑥𝑖)  (3.1) 

𝜆𝑖 =
|𝑑𝑜𝑖|

−𝑑

∑ |𝑑0𝑖|
−𝑑𝑛

𝑖=1

 , 𝑑 > 0  (3.2) 

where z(xo) represents the rain data of the unknown point, z(xi) is the rain data of the rain gauge i; 𝜆𝑖 is 

the weight as defined in Eq. (3.2), doi is the distance between the unknown point and the rainfall station 

i. The parameter d was set to 2, according to the recommendation of Ly et al. (2011). 
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IDW therefore depends only on the distance between stations and not on their elevation or on direction. 

This method is based on the assumption that points close to each other are more correlated than points 

at larger distances (Ly et al., 2011). This interpolation scheme has been chosen for its simplicity, without 

excluding the possibility that more complex interpolation schemes could improve the results obtained 

using IDW.  

In this work, thirteen years (1998-2010) of daily measured data have been interpolated using the IDW 

tool in ArcGIS considering the 12 closest stations for each interpolated grid (100 m ×100 m). The number 

of stations was set as 12 by following the recommendations provided in previous works (Babak and 

Deutsch, 2009; Ly et al., 2011) and also considering the morphology of the catchments. Averaged IDW 

daily values for the subcatchment have been calculated and used as precipitation input at the centroid of 

the subbasin, which, in this way, consider the spatial heterogeneity in precipitation patterns. This IDW-

based precipitation dataset will hereafter be referred to as IDW, and the corresponding SWAT model 

will be referred to as the IDW model. 

3.2.4.3 CHIRPS dataset  

The CHIRPS product provides daily precipitation data at spatial resolution of 0.05° for the quasi-global 

coverage of 50°N-50°S from 1981 to near present. The latest product is the Version 2.0 dataset that was 

completed and released in February 2015. The daily precipitation data from CHIRPS were downloaded 

at: http://chg.geog.ucsb.edu/data/chirps/. The CHIRPS product is based on integration of various 

datasets: the monthly precipitation climatology (CHPclim) that is created using rain gauge stations 

collected from FAO and GHCN, the Cold Cloud Duration (CCD) information based on thermal infrared 

data archived from CPC and NOAA National Climate Data Center (NCDC), the Version 7 TRMM 3B42 

data, the Version 2 atmospheric model rainfall field from the NOAA Climate Forecast System (CFS), 

and the rain gauge stations data from multiple sources. Since rain gauge data are used for bias correction 

in the product, the CHIRPS product belongs to the “satellite-gauge” category. More detailed information 

on CHIRPS can be found in Funk et al. (2015). For each subbasin, daily averaged subbasin CHIRPS 

datasets for the period 1998-2010 have been calculated by averaging all effective 0.05° daily CHIRPS 

grids within the subbasin boundary, which were then used to force the SWAT model in this study (the 

CHIRPS model).  

3.2.4.4 TRMM 3B42 dataset 

The TRMM 3B42 product is one type of the TMPA (TRMM Multi-satellite Precipitation Analysis) 

products (Huffman et al., 2007). The TRMM 3B42 product provides 3-hourly precipitation at the spatial 

resolution of 0.25° for the quasi-global coverage of 50°N-50°S from 1998 to 2015. The latest product 

version is Version 7 and the applied algorithm is the TMPA algorithm that combines precipitation 

http://chg.geog.ucsb.edu/data/chirps/
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estimates from microwave and infrared satellites, as well as the GPCC monthly gauge analysis. More 

details about TMPA algorithms can be found in Huffman et al. (2007). The TRMM 3B42 daily 

precipitation data were obtained from Goddard Earth Sciences Data and Information Services Center at 

http://mirador.gsfc.nasa.gov. The mean daily accumulated TRMM 3B42 data during 1998-2010 have 

been calculated for each subbasin and used as the SWAT inputs in this study. The TRMM 3B42 

precipitation data will hereafter be referred to as TRMM, and the corresponding SWAT model will be 

referred to as the TRMM model.  

3.2.5 Elevation bands  

To consider the orographic effects on precipitation and temperature in mountainous areas, SWAT uses 

the elevation bands method which allows for up to ten elevation bands in each subbasin. In this work, 

five elevation bands have been applied. As shown in Eqs. (3.3) and (3.4), the method modifies the 

regional precipitation by weighting the elevation difference between the band of the rain gauge and the 

bands. 

𝑅𝑏𝑎𝑛𝑑 = 𝑅𝑑𝑎𝑦 + (𝐸𝐿𝑏𝑎𝑛𝑑 − 𝐸𝐿𝑔𝑎𝑢𝑔𝑒) ∙
𝑝𝑙𝑎𝑝𝑠

𝑑𝑎𝑦𝑠𝑝𝑐𝑝,𝑦𝑟∙1000
, 𝑅𝑑𝑎𝑦 > 0.01  (3.3) 

𝑅𝑑𝑎𝑦 = ∑ 𝑅𝑏𝑎𝑛𝑑 ∙ 𝑓𝑟𝑏𝑛𝑑
𝑏
𝑏𝑛𝑑=1                                          (3.4) 

where Rband is the precipitation in the elevation band (mm), Rday is the precipitation recorded at the rain 

gauge (mm), ELband is the mean elevation at the elevation band (m), ELgauge is the elevation at the 

recording gauge (m), plaps is the precipitation lapse rate (mm/km) and 𝑑𝑎𝑦𝑠𝑝𝑐𝑝,𝑦𝑟is the average number 

of days of precipitation in the subbasin in a year, 𝑓𝑟𝑏𝑛𝑑 is the fraction of the subbasin area within the 

elevation band and b is the total number of elevation bands in the subbasin. Notice that in addition to 

Eqs. (3.3) and (3.4) SWAT imposes the following condition: if Rband <0, then Rband =0. This means that 

if ELgauge > ELband and 𝑎𝑏𝑠((𝐸𝐿𝑏𝑎𝑛𝑑 − 𝐸𝐿𝑔𝑎𝑢𝑔𝑒) ∙
𝑝𝑙𝑎𝑝𝑠

𝑑𝑎𝑦𝑠𝑝𝑐𝑝,𝑦𝑟∙1000
)> Rday, precipitation of that band is set 

equal to 0. This condition prevents the elevation band method from being a constant adjustment of the 

input precipitation data. Galván et al. (2014) has pointed out that this method generally either 

underestimates or overestimates precipitation due to the difference between the altitude of the subbasin 

and the elevation of the rain gauge. In addition, they found that plaps is erroneously introduced in mm/m 

instead of mm/km as indicated. Although it has some intrinsic limitations, this method has been proven 

to be useful in several Alpine catchments (Grusson et al., 2015; Rahman et al., 2013) 

3.2.6 Model calibration, evaluation and uncertainty analysis 

The first three years (1998-2000) have been used as the warm up period to mitigate the effect of initial 

conditions. For each SWAT model, monthly simulated stream flow of the three alpine subbasins have 

http://mirador.gsfc.nasa.gov/
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been calibrated separately using the time period 2001-2005 and then validated in the period 2006-2010, 

based on the measured discharge records of stations Aurino-Caminata, Rienza-Monguelfo and Passirio-

Saltusio for Aurino, Rienza and Passirio, respectively (Figure 3.1).  The automatic calibration and 

validation were performed by using the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) 

(Abbaspour et al., 2004; Abbaspour et al., 2007) in the SWAT-CUP tool package (Abbaspour, 2015). 

Snow parameters can be very influential in SWAT (Grusson et al., 2015). Before calibration, we 

therefore applied snow parameters available in the literature for neighboring regions (Adler et al., 2015; 

Rahman et al., 2013; Zanotti et al., 2004) to avoid the potential interference of snow processes on the 

interpretation of the results obtained using different precipitation inputs. The sensitivity analysis has 

been performed by the one-at-a-time procedure of SWAT-CUP (Abbaspour, 2015) for several common 

sensitive hydrological parameters (Table 3.2) to select the sensitive hydrological parameters for each 

subbasin. This procedure tests the model sensitivity by changing one parameter while keeping all other 

parameters constant. Furthermore, starting with the initial ranges of parameters shown in Table 3.3, the 

models were calibrated with four iterations. The initial parameter ranges are qualified to physically 

reasonable intervals according to the literature (Grusson et al., 2015; Vu et al., 2012) and SWAT official 

documentation (Arnold et al., 2012b). For each iteration, 1500 simulations were run. After each iteration, 

the ranges of the parameters have been modified (normally narrowed down) according to both the new 

parameters suggested by the program (Abbaspour et al., 2004; Abbaspour et al., 2007) and their 

reasonable physical limitations. More details about the protocol to calibrate the model can be found in 

Abbaspour (2015) and Abbaspour et al. (2015). 

Table 3.2 Hydrological parameters considered for sensitivity analysis (‘‘a__’’, ‘‘v__’’ and ‘‘r__’’ means 

an absolute increase, a replacement, and a relative change to the initial parameter values, respectively). 

Parameters Description Range Defualt 

a_SOL_AWC().sol 
Available water capacity of the soil layer[mm 

H
2
O/mm soil] 

0/0.9 Soil layer specific 

a_SOL_K().sol Saturated hydraulic conductivity[mm/hr] -10/10 Soil layer specific 

r_SOL_BD().sol Moist bulk density[g/cm3] -0.5/0.5 Soil layer specific 

a_CN2.mgt SCS runoff curve number -20/20 HRU specific 

v_ESCO.hru Soil evaporation compensation factor 0/1 0.95 

v_EPCO.hru Plant uptake compensation factor 0/1 1 

a_HRU_SLP.hru Average slope stepness [m/m] -0.2/0.4 HRU specific 

a_SLSUBBSN.hru Average slope length [m] -9/130 HRU specific 

a_OV_N.hru Manning's "n" value for overland flow 0.01/29 0.1 
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v_CH_K2.rte Effective hydraulic conductivity [mm/hr] 0/400 0 

v_CH_N2.rte Manning's nvalue for main channel 0/0.3 0.014 

a_GWQMN.gw 
Threshold depth of water in the shallow aquifer 

required for return flow to occur [mm] 
-500/500 1000 

a_REVAPMN.gw 
Threshold depth of water in the shallow aquifer for 

"revap" to occur [mm] 
-500/500 750 

v_GW_REVAP.gw Groundwater "revap" coefficient 0.02/0.2 0.02 

v_GW_DELAY.gw Groundwater delay [days] 0/300 31 

v_ALPHA_BF.gw Baseflow alpha factor [days] 0/1 0.048 

Several metrics are available in the literature to evaluate model performance (e.g., Bennet et al., 2013). 

In this work, we follow the approach suggested in Abbaspour et al. (2015) where model performance 

was evaluated taking into account the parameter uncertainties and 95% prediction uncertainty (95PPU) 

of the outputs by using SUFI-2 (Yang et al., 2008). The Nash–Sutcliffe coefficient (NS) (Nash and 

Sutcliffe, 1970) and the coefficient of determination (R2) have been used as the goodness of fit indicators 

for the best simulation. NS measures the quantity difference between the predictions and the observed 

data, with NS = 1 being the optimal value. R2 ranges from 0 to 1 and represents the trend similarity 

between the observed data and the simulated ones, with higher R2 values indicating better model 

performance. The model performance has been classified using the NS value according to the work of 

Moriasi et al. (2007): unsatisfactory performance (NS≤ 0.50), satisfactory performance (0.50<NS≤0.65), 

good performance (0.65<NS≤0.75) and very good performance (0.75<NS≤1.00). 

As described by Abbaspour (2015) and Abbaspour et al. (2007), uncertainty in parameters are expressed 

as the final ranges of the parameter sets with which the model reached the satisfactory result. Hence, 

these parameter uncertainties lead to the output uncertainty 95PPU which is calculated at the 2.5% and 

97.5% levels of the cumulative distribution of an output variable generated through the propagation of 

the parameter uncertainties using Latin hypercube sampling. The uncertainty analysis of SUFI-2 is based 

on the theory that the model performance is represented by an envelope of good solutions expressed by 

the 95PPU, generated by certain parameter ranges, rather than a single signal.  

To quantify the prediction uncertainties, two indices were introduced (Abbaspour et al., 2004): P-factor 

and R-factor. The P-factor is the fraction of measured data enveloped by the 95PPU band. It ranges from 

0 to 1, in which 1 is optimal and indicates 100% bracketing of the observed data within model prediction 

uncertainty. The R-factor is the thickness of the 95PPU envelop, which means the ratio of the average 

width of the 95PPU band and the standard deviation of the measured variable. For discharge, P-
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factor >0.7 and R-factor<1.5 are considered acceptable in terms of prediction uncertainty (Abbaspour, 

2015). 

Table 3.3 Initial parameter ranges for calibration. Final calibrated ranges for the different precipitation 

products are available in the Supplementary material (Figure S3.4-S3.6). 

Parameters Default Calibration range 

Aurino   

v__PLAPS.sub 0 0/0.15 

a__SOL_AWC().sol 0.01─0.06 0/0.9 

a__CN2.mgt 55─94 -20/4 

v__ESCO.hru 0.95 0/1 

a__SLSUBBSN.hru 9.146─15.244 -9/130 

a__GWQMN.gw 1000 -300/300 

a__REVAPMN.gw 750 -300/300 

v__GW_REVAP.gw 0.02 0.02/0.2 

v__GW_DELAY.gw 31 0/300 

v__ALPHA_BF.gw 0.048 0/1 

v__CH_K2.rte 0 0/400 

Rienza   

v__PLAPS.sub 0 0/0.15 

a__SOL_AWC().sol 0.06 0/0.9 

a__CN2.mgt 55─60 -20/38 

v__ESCO.hru 0.95 0/1 

a__SLSUBBSN.hru 9.146─18.293 -9/130 

a__HRU_SLP.hru 0.183─0.719 -0.2/0.4 

a__GWQMN.gw 1000 -300/300 

v__GW_REVAP.gw 0.02 0.02/0.2 

v__GW_DELAY.gw 31 0/300 

v__CH_K2.rte 0 0/400 

Passirio   

v__PLAPS.sub 0 0/1 

a__SOL_AWC().sol 0.01─0.06 0/0.9 

a__CN2.mgt 55─84 -20/14 

v__ESCO.hru 0.95 0/1 

a__SLSUBBSN.hru 9.146─18.293 -9/130 

a__GWQMN.gw 1000 -300/300 

v__GW_REVAP.gw 0.02 0.02/0.2 

v__GW_DELAY.gw 31 0/300 

v__CH_K2.rte 0 0/400 

3.3 Results and discussion 

3.3.1 Comparison of the four different precipitation datasets 



Chapter 3: Evaluation of precipitation input for SWAT modeling 

 

57 

  

Considering the Aurino subbasin (Figure 3.2), the four products display different probability of 

occurrence of dry days (rain=0 mm/d), which are 57%, 31%, 67% and 45% for OP, IDW, CHIRPS and 

TRMM, respectively. The largest difference in the CDFs of the four products occurs for precipitation 

events smaller than moderate rain (< 2 mm/d): particularly, for the occurrence of tiny rain, the 

probabilities are 12%, 35%, 4% and 5% for OP, IDW, CHIRPS and TRMM, respectively. OP, IDW and 

CHIRPS show great similarity for low moderate rain (8%, 9%, and 7%, respectively), while TRMM 

displays a larger probability (18%). Results show negligible differences (less than 2%) of occurrence 

rates for rainfall larger than 5 mm/d between the four precipitation datasets. At Rienza (Figure 3.3), the 

occurrence of dry days shows the largest variability among the four datasets (62% for OP, 31% for IDW, 

67% for CHIRPS, and 58% for TRMM). The occurrence of tiny rain presents the largest discrepancy 

and the probabilities are 10%, 31%, 4% and 3% for OP, IDW, CHIRPS and TRMM, respectively. For 

other precipitation events including light, moderate, heavy and violent rain, OP, IDW and CHIRPS 

datasets are quite similar, while TRMM has relative higher CDF values than the other three products for 

values up to 40 mm/d.  In the Passirio subcatchment (Figure 3.4), the probabilities of dry day are 65%, 

30%, 70% and 40% for OP, IDW, CHIRPS and TRMM, respectively.  The largest difference of the four 

datasets occurs for the tiny rain (7% for OP, 38% for IDW, 4% for CHIRPS and 5% for TRMM). As 

shown in Figure 3.4, the CDF of the TRMM dataset evidently deviates from the others: higher 

cumulative rates in light, low moderate, and heavy rains.  

 



 Chapter 3: Evaluation of precipitation input for SWAT modeling 

 

58 

 

Figure 3.2 Distribution of daily precipitation values of the four precipitation inputs (OP, IDW, CHIRPS, 

TRMM) at Aurino: a) distribution of all precipitation values; b) distribution of precipitation <10 mm; c) 

distribution of 10 mm ≤ precipitation < 50 mm. 

 

 

Figure 3.3 Distribution of daily precipitation values of the four precipitation inputs (OP, IDW, CHIRPS, 

TRMM) at Rienza: a) distribution of all precipitation values; b) distribution of precipitation <10 mm; c) 

distribution of 10 mm ≤ precipitation < 50 mm. 



Chapter 3: Evaluation of precipitation input for SWAT modeling 

 

59 

  

 

Figure 3.4 Distribution of daily precipitation values of the four precipitation inputs (OP, IDW, CHIRPS, 

TRMM) at Passirio: a) distribution of all precipitation values; b) distribution of precipitation <10 mm; 

c) distribution of 10 mm ≤ precipitation < 50 mm. 

In general, IDW datasets have the largest occurrence probability of days with tiny rain (35%, 31% and 

38% for the Aurino, Rienza and Passirio subcatchments, respectively), which is ascribed to the effect of 

the interpolation method. In fact, the precipitation value at a given point of the interpolated dataset is 

influenced by the nearest 12 observation stations (Figure 3.1). Hence, the IDW dataset of each subbasin 

is influenced also by stations outside the subbasin which may have recorded local precipitation events. 

The results of a set of two-sample Kolmogorov-Smirnov tests at the 5% significance level show that the 

four precipitation inputs have different statistical distributions in the three subcatchments.  In particular, 

as shown in Figure 3.5, their monthly precipitation patterns throughout the period 2001-2010 are not 

identical, and hence they represent four different input datasets for the hydrological model. The mean 

standard deviation (i.e., standard deviation of the four precipitation datasets computed at the monthly 

time scale and averaged over the 10 years considered) is 31mm, 27 mm and 30 mm for the Aurino, 

Rienza and Passirio subcatchments, respectively. 
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Figure 3.5 Monthly precipitation of the four precipitation datasets in the three Alpine catchments: a) 

Aurino, b) Rienza, and c) Passirio. 

3.3.2 Model performance without elevation band 

As shown in Figure 3.6, it is evident that the four precipitation inputs fail in promoting the model to 

reproduce the discharge records at all three subbasins. In particular, the peak flow in summer is 

underestimated by more than 50%. According to the model performance classification of Moriasi et al. 

(2007), the only model which achieves satisfactory performance(0.50<NS≤0.65) is the one for the 
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Aurino subcatchment using the CHIRPS precipitation input. All the other models achieve unsatisfactory 

results (NS≤ 0.50).  

 

Figure 3.6 Calibration results of the three subbasin without elevation band correction: a) Aurino, b) 

Rienza, c) Passirio. The results represent monthly stream flow data of the best simulation, i.e., highest 

NS and R2 values obtained in a set of 1500 simulations (red lines), and observed stream flow data (blue 

lines), along with the prediction uncertainty (P-factor and R-factor). 

A rough calculation of the ratio of annual observed streamflow to annual precipitation leads to 

anomalously large values: mean values computed for the period 2001-2010 using OP dataset are 

1.24±0.20 for Aurino, 0.91±0.16 for Rienza, and 1.02±0.26 for Passirio; mean values using IDW based 

dataset are 1.29±0.21 for Aurino, 0.84±0.14 for Rienza, and 1.07±0.25 for Passirio; mean values using 

CHIRPS dataset are 0.89±0.13 for Aurino, 0.84±0.15 for Rienza, and 1.11±0.26 for Passirio; mean 

values using TRMM dataset are 1.04±0.14 for Aurino, 0.62±0.15 for Rienza, and 1.00±0.20 for Passirio. 

All four datasets often underestimate the total precipitation of the studied subbasins. The 

underestimation is most likely due to the poor representation of the spatial variability of precipitation 

patterns in the region, thereby leading to the high ratio of streamflow-to-precipitation and results shown 

in Figure 3.6. Since the IDW model is driven by interpolated data, its results depend on the ground 

observations. Therefore, since the ground observations systematically underestimate the total 
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precipitation in the study area, the interpolated data will also underestimate it. Moreover, the 

underestimation of precipitation in the two remote sensing datasets CHIRPS and TRMM could be 

attributed to the fact that the topographic effects have not been considered in the bias correction using 

rain gauge analysis. Additionally, satellite precipitation estimates have their own uncertainties (Duan et 

al., 2016). Therefore, as a consequence of the underestimation of precipitation, it is not possible to close 

the water balance for the three subbasins considering the available products. We conclude that the four 

tested precipitation products considerably underestimate the amount of precipitation over a large part of 

the Adige headwaters. Such underestimation is common in Alpine catchments (Isotta et al., 2014). 

Indeed, the high variability in the morphology and orography of Alpine catchments, leads to a high 

heterogeneity in precipitation patterns and intensity (Panziera et al., 2015). Ground observations, used 

also for the validation of satellite products, are normally located at low elevations (below 2000 m a.s.l.) 

and are not representative for the entire catchment (Duan and Bastiaanssen, 2013; Javanmard et al., 

2010). Only 3% of the rain gauges are located at elevations higher than 2000 m a.s.l. in the upper part 

of the Adige river basin, while more than 30% of the Adige river basin closed at Bronzolo is above 2000 

m a.s.l. (Adler et al., 2015).  Mei et al. (2016a) also found streamflow/precipitation ratios larger than 1 

in several subbasins (Aurino, Passirio, Isarco, Rienza) of the Adige river basin. Furthermore, Mei et al. 

(2014; 2016b) also identified the critical role of precipitation input for this region in case of flood 

protection and assessed the quality of some available satellite products for this region. Our work 

therefore complements the current knowledge about these catchments involving different precipitation 

inputs, different spatial scales and different hydrological models. 

3.3.3 Model performance with elevation band method 

SWAT is designed to cope with the aforementioned underestimation problems related to precipitation 

input using elevation bands (Eq. (3.3) and (3.4)) which modulates the amount of precipitation depending 

on the orography of the catchment.Figure 3.7, Figure 3.8 and Figure 3.9 show evident improvements in 

the performances of the model for all three subbasins.  

For the Aurino subbasin (Figure 3.7), all models driven by the four different precipitation input datasets 

well reproduce the measured streamflow. Using the performance classification of Moriasi et al. (2007), 

the model using OP as precipitation data achieves good performance in the calibration period and very 

good performance in the validation one, while the models utilizing IDW, CHIRPS and TRMM data 

attain very good performance. The IDW model reaches the highest NS (0.91) and R2 (0.91) values in the 

validation period.  For the Rienza subcatchment (Figure 3.8), during the calibration period, the use of 

OP and CHIRPS data lead to satisfactory model performance. The IDW model attains the level of good 

model performance, while TRMM model does not achieve satisfactory model performance. During the 
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validation period (Figure 3.8), NS and R2 increase for all precipitation datasets. The IDW and OP model 

achieve very good model performance, while CHIRPS model does not exceed satisfactory performance. 

The best simulation obtained using the TRMM dataset improves to the level of good performance. In 

the Rienza subcatchment, considering both calibration and validation periods, the IDW model reaches 

the best performance; OP and CHIRPS model show a consistent satisfactory performance in reproducing 

streamflow. For the Passirio subcatchment (Figure 3.9), during the calibration period, the IDW model 

attains good model performance, the CHIRPS model obtains satisfactory performance, while the 

performances of OP model and TRMM model are unsatisfactory. During the validation period, all 

models obtain higher NS and R2 values: the IDW model reaches very good performance, the CHIRPS 

model improves to good performance, while the OP model achieves satisfactory performance. The 

performance of TRMM model is still unsatisfactory. 
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Figure 3.7 Calibration (2001-2005) and validation (2006-2010) results of subbasin Aurino with elevation 

band method. The results represent monthly stream flow data of the best simulation, i.e., highest NS and 

R2 values obtained in a set of 1500 simulations (red lines), and observed stream flow data (blue lines), 

along with the prediction uncertainty (P-factor and R-factor). 
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Figure 3.8 Calibration (2001-2005) and validation (2006-2010) results of subbasin Rienza with elevation 

band method. The results represent monthly stream flow data of the best simulation, i.e., highest NS and 

R2 values obtained in a set of 1500 simulations (red lines), and observed stream flow data (blue lines), 

along with the prediction uncertainty (P-factor and R-factor). 
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Figure 3.9 Calibration (2001-2005) and validation (2006-2010) results of subbasin Passirio with 

elevation band method. The results represent monthly stream flow data of the best simulation, i.e., 

highest NS and R2 values obtained in a set of 1500 simulations (red lines), and observed stream flow 

data (blue lines), along with the prediction uncertainty (P-factor and R-factor). 

In summary, the introduction of elevation bands, despite the limitations discussed in the method section, 

greatly improves model performance regardless of which precipitation input is used. We can see in Table 

3.4 that elevation bands have a large effect (increase in precipitation between 10% and 103% by the 

elevation band method) on all precipitation products, although CHIRPS and TRMM consistently show 

the need for a lower correction in comparison to OP and IDW. However, we can observe differences in 
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the effect of elevation bands among different subcatchments, which prevents the generalization of the 

conclusions obtained for a specific catchment to other Alpine catchments. Despite the model 

performance improvements, clear differences are still present in the model results depending on the 

precipitation dataset applied for the different case studies. Models utilizing IDW data have the best 

performance in terms of NS and R2. Concerning satellite products, the CHIRPS dataset is a feasible 

choice with at least satisfactory model performances at all subbasins.  

Table 3.4 Average increase ratio (i.e., relative amount of precipitation added to the original value using 

elevation band method) of precipitation with elevation band method in order to obtain the best 

simulations over the calibration period for each subbasin shown in Figure 3.7-3.9.   

 OP IDW  CHIRPS TRMM 

Aurino 0.78±0.12 0.91±0.11 0.32±0.02 0.47±0.11 

Rienza 0.49±0.07 0.45±0.05 0.39±0.03 0.10±0.02 

Passirio 1.03±0.24 0.89±0.20 0.87±0.16 0.70±0.20 

The best performance of models with IDW is probably caused by the distinct behavior of the IDW 

datasets that have a larger occurrence probability of rainfall days (Figure 3.2-3.5). As a result of 

interpolation, IDW precipitation time series have more rainfall days than the other datasets in form of 

tiny rain and more than 80% of them have intensity larger than 0.01 mm/d (Figure 3.2-3.5). According 

to the equation of the elevation band method (Eq. (3.3) and (3.4)), daily precipitation data will be 

modified only when they are larger than 0.01 mm/d. A larger amount of days corrected with the elevation 

band method increases the probability of obtaining a better model result for IDW models (Figure 3.10) 

as discussed in the following section in details. Besides, the similarities in the CDF of OP, IDW and 

CHIRPS products lead to the at least satisfactory performance of the best model simulations obtained 

using these three input datasets.  The differences in the daily rainfall distribution of TRMM data in 

comparison to the other three datasets lead to unsatisfactory model performance (Figure 3.8-3.9). 

However, it is not possible to unequivocally identify the direct impact of rainfall distribution on the 

model performance of simulating discharge in the above study areas. In fact, the relation between 

streamflow and rainfall is strongly nonlinear and a change in the precipitation input leads to the definition 

of different best parameter sets involved in streamflow generation.  

3.3.4 Evaluation of model performance 

Beside the evaluation of the best simulation achieved with each precipitation dataset, as described above, 

we have also evaluated the ensemble of all available simulations. We have calculated the frequency of 

NS values obtained for both final calibration (1500 simulations) and validation (1500 simulations) model 

results. In total, 3000 simulation results are available for each precipitation dataset. Figure 3.10 shows 



 Chapter 3: Evaluation of precipitation input for SWAT modeling 

 

68 

 

the NS distribution for the three subbasins. The performance classification of Moriasi et al. (2007) has 

been used as the reference for evaluation of the results.  

 

Figure 3.10 Nash-Sutcliffe coefficient distribution of the simulation results with elevation band method 

for three study catchments. 
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In the Aurino subbasin, all four models have good performance and most of model results reach at least 

a satisfactory level. Using IDW-based dataset, 77% of the model results reach at least a good level, while 

lower fractions are obtained using OP, CHIRPS, and TRMM (41%, 61% and 38%, respectively). 

Moreover, the IDW model displays the largest fraction of simulations having NS>0.75, which represents 

very good model performance. In the Rienza subbasin, the distribution of NS values is different in 

comparison to those of Aurino subbasin. The percentage of simulations with NS>0.5 are 75%, 49%, 44% 

and 5% for the IDW, OP, TRMM and CHIRPS models, respectively. Besides, the IDW model gets the 

highest percentage of NS larger than 0.75, which achieves very good model performance. In the Passirio 

subbasin, the IDW model consistently ranks first in occurrence rate of NS>0.5 (70%) in comparison to 

OP (9%), CHIRPS (47%) and TRMM (0.1%) models.  It also has the highest frequency of NS>0.75. 

Therefore, IDW is not only the precipitation dataset which leads to the best model run in terms of NS 

and R2 values, but it is the dataset that generally leads to the best set of model simulations. As described 

above, this better performance of the IDW model in NS distribution can be ascribed to the most frequent 

application of an elevation correction factor in the case of the IDW-based dataset. Regarding the other 

products, it is not possible to identify a consistent ranking among the three subbasins. This could be 

caused by the joint effects of multiple calibrated parameters (Guse et al., 2016).   

3.3.5 Parameter uncertainty 

The application of the elevation band method to correct the precipitation inputs improves the fitting 

between model results and observed streamflow data. However, the models have been able to reproduce 

the streamflow by adjusting other relevant hydrological parameters and converging to different optimum 

intervals of calibrated parameters.  

Among the selected parameters shown in Figure 3.11, CN2 is normally one of the most sensitive 

hydrological parameters and it indicates an influence of reducing the surface runoff caused by the 

precipitation (Strauch et al., 2012; Vu et al., 2012; Xu et al., 2010). Different precipitation inputs lead 

to different best CN2 values and ranges, among which the most apparent differences can be observed in 

the Passirio subbasin (the best fit values for a_CN2 range between -5.5 and 6.3). However, it is not 

possible to identify a common pattern for all basins and hence a correlation between the estimated CN2 

range with a specific precipitation input cannot be derived. SOL_AWC, responsible for available water 

capacity of the soil layer, displays a smaller variability compared to CN2 (the coefficient of variation of 

the parameter range for a_SOL_AWC is 0.16 while for a_CN2 is 0.33) in both best values and ranges 

for different subbasins and for considering different precipitation inputs. Therefore, in these three 

subcatchments, SOL_AWC is less affected by a change in the precipitation input than CN2. ESCO is an 

important parameter related to soil evaporation. The values of ESCO span over the entire physical range 



 Chapter 3: Evaluation of precipitation input for SWAT modeling 

 

70 

 

(0-1) not only for different precipitation inputs but also for different subbasins (Figure 3.11). GWQMN 

is responsible for base flow. Different precipitation inputs result in different best GWQMN values and 

ranges at each subbasin.  The variability in the estimated parameter is again basin-specific (the 

coefficient of variation of the best fit value is 6.4, 2.0 and 32.1 for Aurino, Rienza and Passirio, 

respectively).   

 

Figure 3.11 Calibrated parameter distributions of four global sensitive hydrological parameters for the 

four precipitation inputs within the initial parameter range (y-axis domain): green bars show the final 
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parameter ranges; red points represent the values of “best parameter”. “Δ” means an absolute increase, 

without “Δ” means absolute value. The analysis of the other calibrated parameters is provided in the 

Supplementary material (Figure S3.4-S3.6). 

In summary, no clear pattern emerges to correlate the ranges of the estimated parameters and their 

uncertainties with the precipitation products considered in this study. The results show that different 

precipitation inputs affect both the best estimate of a parameter as well as its uncertainty range. It is not 

possible to identify which precipitation datasets would generally have smaller or larger parameter 

uncertainties. Additionally, the sensitivity of a parameter towards a change in the precipitation input is 

catchment specific. Calibrated SWAT models with different precipitation datasets corrected using the 

elevation band method are able to reproduce the measured discharge. However, in order to fit the 

measured river discharge, SWAT-CUP adjusts the water volume of different hydrological components 

(e.g., surface runoff and groundwater contribution) by calibrating the parameters distinctly to cope with 

the different rainfall features of the four precipitation products (Figure 3.2-3.5). As shown in Table 3.5, 

despite the significant range of variability among the different fitted values and the different datasets, 

similar water volumes are assigned to the main hydrological compartments (evapotranspiration, 

percolation and base flow). Soil water and runoff display the largest variability depending on the applied 

precipitation input. This has a direct influence on erosion rates and contaminant transport (Neitsch et al., 

2011). Hence, it is important to constrain the model using streamflow data, and to validate it using other 

datasets such as soil moisture, evapotranspiration and snow coverage measurements (Grusson et al., 

2015).  

As a result, even though all the models might fit streamflow data well (e.g. the model performances in 

of Aurino subbasin shown in Figure 3.7), the redistribution of the single discharge components across 

different hydrological compartments is different. For example, at Passirio, the model calibrated using 

IDW-based dataset has higher optimal CN2 ranges than the other three models calibrated with OP, 

CHIRPS and TRMM data. This suggests that facing similar rainfall, the IDW model tends to produce 

more surface runoff than the other models. As a consequence, the IDW model might predict different 

soil erosion rates in comparison to the other models (Neitsch et al., 2011). At Aurino, the TRMM 

calibrated model has higher GWQMN values than the other three models. Hence, the TRMM model 

reflects a different groundwater processes in comparison to the other models, which subsequently would 

affect groundwater management practice. In the Rienza subcatchment, the model calibrated using 

CHIRPS data converges towards a range of ESCO values much lower than the models calibrated using 

the other three datasets. Consequently, the CHIRPS model would probably present higher soil 

evaporation, which could result in a different implication for water resources management plans in 



 Chapter 3: Evaluation of precipitation input for SWAT modeling 

 

72 

 

comparison to the other models. The parameter uncertainty caused by the use of different precipitation 

input therefore propagates to the uncertainties of predicted hydrological processes (Table 3.5) and then 

further propagates to subsequent processes controlled by hydrological drivers (Neitsch et al., 2011) and 

impact decision making processes (e.g., groundwater management and integrated water resources 

management). 

Table 3.5 Water volume of major hydrological processes simulated by the best simulation. Mean annual 

data for calibration period. 

 Evapotranspiration(mm) Soil water(mm) Percolation(mm) Runoff(mm) Baseflow(mm) 

Aurino      

OP 320 96 872 137 827 

IDW 367 201 707 83 611 

CHIRPS 451 106 806 170 702 

TRMM 333 134 927 96 851 

Rienza      

OP 406 82 645 31 601 

IDW 437 162 634 28 589 

CHIRPS 387 112 633 10 631 

TRMM 533 95 639 10 642 

Passirio      

OP 621 137 991 234 833 

IDW 506 105 896 258 748 

CHIRPS 502 38 884 182 784 

TRMM 422 91 730 78 602 

3.3.6 Prediction uncertainties 

Parameter uncertainties also contribute to the prediction uncertainties of the models (Abbaspour, 2015). 

The prediction uncertainties discussed here only refer to the prediction uncertainties of streamflow, 

which are reflected by the values of P-factor and R-factor of each model (Figure 3.7-3.9). 

In the Aurino subbasin (Figure 3.7), in the calibration phase, all the other models except OP obtain 

acceptable uncertainties, capturing more than 70% of the observations and having an acceptable 95PPU 

envelope narrower than 1.5 (Abbaspour et al., 2015). Among the models, the IDW model presents the 

smallest prediction uncertainties with the highest P-factor and smallest R-factor. Considering the 

validation period, the values of the P-factor of the four models are all within the satisfactory range 

(Figure 3.7). The values of the R-factor are satisfactory for all products, except CHIRPS (unacceptable). 

As suggested by a rough balance between P and R, all the models generally present good prediction 

uncertainty in the Aurino subbasin.  
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In the Rienza subbasin, the four models perform distinctly for what concerns prediction uncertainties. 

The P-factor and R-factor also vary between the validation and the calibration periods (Figure 3.8). The 

IDW model performs consistently well in reaching desirable uncertainties with acceptable values of P-

factor and R-factor (Figure 3.8). On the contrary, the other models have at least one factor with an 

unsatisfactory value either in the calibration or in the validation phase (Figure 3.8). Considering the 

entire period, a good prediction uncertainty is hence achieved by the SWAT model calibrated using the 

IDW datasets.  

In the Passirio subbasin, only the model calibrated utilizing the OP dataset achieves an acceptable P-

factor in both the calibration (0.80) and validation (0.86) periods. Considering the R-factor, only the 

model calibrated with the OP has a value above 1.5. It is evident that all models fail to achieve at a good 

balance between the P-factor and the R-factor, and therefore none of the models reach an acceptable 

prediction uncertainty (Figure 3.9).  

Only IDW models obtain consistently acceptable or non-acceptable P-factors and R-factors in both 

calibration and validation periods; this is not the case for the models using other three precipitation 

datasets. Therefore, IDW based precipitation dataset leads to more consistent prediction uncertainties 

than the other three precipitation datasets. Different precipitation inputs generate distinct prediction 

uncertainties in modeling streamflow. Also in this case, the results are heterogeneous and it is not 

possible to generalize the outcomes obtained in one subcatchment to another one, i.e., the prediction 

uncertainty of each precipitation product is basin-specific.  

3.3.7 Influence of the precipitation input on a model with fixed parameters 

In the previous sections, we showed the impact of different precipitation inputs on the calibrated 

parameters of the SWAT model. We showed that, despite the catchment similarities in terms of land use, 

major soil types, and slopes (see also Figure S3.1-S3.2 in the Supplementary material), calibrating the 

model using different precipitation inputs leads to significantly different model parameters (i.e., the 

optimal parameter ranges identified using different precipitation inputs may not overlap). We have also 

shown that the best four simulations for each subbasin (i.e., the simulation that achieves a maximum NS 

value for a specific precipitation input) have NS values that may vary by more than 40%. This means 

that the crucial input parameter is the precipitation dataset used.  

In this section, we define a fix set of parameters for each of the three subcatchments. The three sets of 

hydrological parameters have been defined for each subcatchment by averaging the parameter values 

obtained for the simulations that maximized NS using each precipitation dataset. This test is performed 

in order to focus on the effect of the precipitation input in a situation that is not biased by the auto-
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calibration effect. The hydrological parameters used in this section have been provided in the 

Supplementary material (Table S3.1). The elevation band parameters for each subbasin and each 

precipitation input have been reported in Table 3.6. 

Table 3.6 The elevation band parameters (PLAPS in Figure S3.4-S3.6 that maximized NS during 

calibration period) for each subbasin and each precipitation input. 

 

 

The results obtained using IDW-based precipitation data have the best performance in terms of NS and 

R2 (the only exception being the NS value computed for Rienza subcatchment) (Table 3.7). In the three 

case studies considered in this work, a simple interpolation algorithm coupled with the elevation band 

correction provides the best model results in terms of NS and R2 values. The result of the IDW model is 

particularly good for the Passirio subcatchment, where only the IDW model reaches NS and R2 values 

larger than 0.75, while the other models do not reach NS and R2 values larger than 0.55. CHIRPS models 

rank second in terms of NS and R2 values in the Aurino and in the Passirio subcatchments, while the 

performance is poor in the Rienza subcatchment.  

Table 3.7 NS and R2 coefficients for the four precipitation datasets considering fixed hydrological 

parameters for each subbasin. 

 OP  IDW  CHIRPS  TRMM 

 R2 NS  R2 NS  R2 NS  R2 NS 

Aurino 0.81 0.80  0.84 0.83  0.84 0.81  0.75 0.73 

Rienza 0.66 0.64  0.70 0.61  0.46 0.35  0.60 0.49 

Passirio 0.51 0.38  0.79 0.78  0.55 0.48  0.40 0.36 

Comparing the results presented in Table 3.7 with those shown in Figure 3.7 to 3.9, we can see that the 

Aurino subcatchment is the least sensitive to the applied parameters. In fact, NS and R2 values obtained 

using parameter sets specifically calibrated for a particular precipitation dataset are comparable with the 

one obtained using the computed mean parameter set. Results obtained using the IDW model show less 

variability in terms of NS and R2 values in comparison to the other precipitation input models. In fact, 

comparing the IDW results shown in Table 3.7 with those shown in Figure 3.7 to 3.9, we observe NS 

and R2 values that vary by less than 25%. 

3.4 Conclusions 

This study investigates the impact of four different precipitation inputs on streamflow predicted using 

SWAT in three Alpine catchments. We have analyzed the rainfall features, model performances, 

parameter uncertainty, prediction uncertainty and the potential relationships among the above 

 OP IDW CHIRPS TRMM 

Aurino 0.042 0.142 0.150 0.103 

Rienza 0.041 0.103 0.141 0.042 

Passirio 0.134 0.375 0.672 0.285 
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components. High elevation Alpine catchments are generally data-scarce regions. In particular, the 

problem for hydrological modeling is that precipitation data are poorly resolved in space and do not 

capture heterogeneous orographic effects (e.g., Le Moine et al., 2015). Most available meteorological 

stations are located at low elevations, which often leads to an underestimation of precipitation input 

(Adler et al., 2015; Isotta et al., 2014).  

SWAT uses the elevation band methods to consider the orographic effects on precipitation in 

mountainous areas. The elevation band method implemented in SWAT currently has some known 

limitations (Galván et al., 2014) and it is simplistic in comparison to other more physically based 

corrections (Bárdossy and Pegram, 2013). However, comparing the results obtained without any 

correction (Figure 3.6) with the results obtained using the elevation band method (Figure 3.7-3.9), there 

is an evident improvement in model performance (NS increases by at least 9%).  In this study, the 

application of this method to four different precipitation datasets (OP, IDW, TRMM and CHIRPS) has 

been found to greatly improve the match between simulated streamflow and measurements in three high-

elevation Alpine subcatchments of the Adige river basin (Aurino, Rienza and Passirio).  

We have investigated the influence of the different datasets on model performance and on the calibrated 

range of the estimated parameters. The four different precipitation inputs are different in terms of the 

amount and the temporal distribution of precipitation. The models with the IDW dataset coupled with 

elevation band method reach the best NS and R2 values in all three investigated catchments. This dataset 

is characterized by a greater number of rainy days in form of tiny rain (average 1646 days) resulting 

from the interpolation of 12 nearest rain gauges. The model with the CHIRPS dataset performs 

satisfactorily in simulating streamflow, and thus this satellite precipitation product can be a favorable 

choice for this Alpine region facing data scarcity. The TRMM dataset generally leads to unsatisfactory 

results when used as SWAT precipitation input for streamflow modeling in these Alpine catchments. 

The uncertainty affecting the estimated parameters and their calibrated range of variability changes when 

applying different precipitation inputs and it is catchment specific, which prevents the generalization of 

the outcomes achieved for a single case study. This has important consequences on the hydrological 

interpretation of the results, on the computation of processes driven by hydrological forcing such as 

erosion and solute transport, and on water management. 

We have also investigated the influence of the precipitation input on models with fixed parameters. The 

use of a precipitation input computed using a simple interpolation algorithm (IDW) allows us to obtain 

results which are less sensitive to the calibrated model parameters and have higher NS and R2 values 

than results obtained using satellite products or single ground observations. This conclusion is only valid 
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for the study areas investigated in this work and should be verified in other Alpine catchments to be 

generalized. 

In summary, selection of precipitation products has a crucial effect on model performance, model 

uncertainties and parameter uncertainties in streamflow simulations. Model simulations driven using 

different datasets can lead to different conclusions about the most relevant hydrological processes in a 

catchment. Moreover, this cascade of uncertainty then propagates towards processes such as erosion and 

contaminant transport, and in the end it would likely result in different water management strategies or 

policies. Nowadays, several precipitation datasets can be available for a single catchment. The 

uncertainty generated by the use of different precipitation inputs has then to be taken into consideration 

since it is at the base of the previously described cascade of uncertainty. 

 

  

 



 

 

 

Chapter 4   

Calibration of Snow Parameters in SWAT: Comparison of Three Approaches 

in the Upper Adige River Basin3 

 

The Soil and Water Assessment Tool (SWAT) model is generally applied in alpine catchments using a 

unique set of snow parameters for the entire basin, and calibration was based on discharge records only. 

This technical note presents three calibration procedures for snow parameters of SWAT considering 

snow water equivalent (SWE) values computed using a dense network of snow depth measurement 

stations available in the Upper Adige River basin. The first two procedures calibrate snow parameters 

according to the average sub-basin SWE: the first one defines a unique set of parameters for the entire 

basin, while the second allows for sub-basin variability. The last approach includes the elevation band 

SWE output in the calibration for each sub-basin and qualitatively compares it to the SWE computed 

from the available snow depth monitoring stations. This last method provides the best agreement 

between SWAT model results and SWE data.  

 

 

 

 

 

 

 

 

 

 

3 Tuo, Y., Marcolini, G., Disse, M., Chiogna, G., 2018. Calibration of Snow Parameters in SWAT: Comparison 

of Three Approaches in the Upper Adige River Basin. Hydrological Sciences Journal. DOI: 

10.1080/02626667.2018.1439172  
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4.1 Introduction 

Mountainous catchments are of vital importance for the freshwater supply all over the world, since they 

contribute to global discharge to a great extent (Viviroli et al. 2007, Viviroli et al. 2003). Due to the high 

elevation, snow is a dominant component of the hydrological cycle in alpine catchments, having a 

decisive impact on hydrology-related issues including water supply, erosion, hydropower management 

and flood control (Cunderlik and Ouarda 2009, Pradhanang et al. 2011, Rahman et al. 2013, Zampieri 

et al. 2013). Therefore, an accurate description of snow processes is of primary importance for 

hydrological research and water use in the alpine catchments. 

The Soil and Water Assessment Tool (SWAT) (Arnold and Fohrer, 2005) has been widely used by both 

the global academic community and practitioners for hydrological modeling studies of river basins 

worldwide (Abbaspour et al. 2015, Francesconi et al. 2016, Golmohammadi et al. 2017, Liu et al. 2016, 

Malagò et al. 2016, Tuo et al. 2016). This model has been frequently applied in mountainous catchments 

to investigate the influence of snow processes on the hydrological cycle (Ahl et al. 2008, Debele et al. 

2010, Grusson et al. 2015, Rostamian et al. 2008, Troin and Caya 2014). In particular, SWAT has been 

used to support regional water management practices like hydropower operation (Malagò et al. 2015, 

Rahman et al. 2013), flood protection (Yang et al. 2014) and policy formulation including climate change 

adaptation strategies (Pradhanang et al. 2011). The Snow module of SWAT is based on the temperature-

index approach (Hock 2003, Neitsch et al. 2011, Walter et al. 2005, Zhang et al. 2008). This approach 

has been proven accurate enough for SWAT applications (Debele et al. 2010, Luo et al. 2013, Meng et 

al. 2015). More complex and physically based snow modules included for example in GEOTOP 

(Endrizzi et al. 2006, Zanotti et al. 2004), Wasim (Warscher et al. 2013) and AMUNDSEN (Strasser 

2008) are preferable for hydrological distributed models, while the current structure of SWAT cannot 

take advantage of a more detailed description of snow processes (Debele et al. 2010, Meng et al. 2015).   

Even if modeling snow dynamics is of fundamental importance for SWAT application in alpine 

catchments, a systematic investigation to identify an optimal procedure to calibrate snow parameters is 

missing. Most of the previous studies assigned a unique set of snow parameters to an entire basin (e.g., 

Fu et al. 2014, Fu et al. 2015, Rahman et al. 2013), although snow distribution can be highly 

heterogeneous (Egli and Jonas 2009). Only a few works recently tried to evaluate the model performance 

by considering the spatial variability of snow parameters at different sub-basins (Omani et al. 2017). 

Moreover, snow parameters are often calibrated using streamflow observations alone (e.g., Levesque et 

al. 2008, Wang and Melesse 2005), instead of including the information derived by snow observations 

in the calibration process. Discharge integrates the contribution of all the different hydrological 

components and can hardly allow for distinguishing their specific contributions leading to model 
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equifinality (Beven 2006). Besides, discharge-based snow parameter calibration is not possible in 

ungauged catchments and it can be extremely challenging in many alpine river basins strongly influenced 

by hydropower production and other anthropogenic activities (Majone et al. 2016). 

In this technical note, we propose three methodologies to calibrate snow parameters in SWAT. 

Differently from the approaches used up to now in the literature, we explicitly consider snow 

observations in the calibration process. Snow observations are available in many alpine catchments 

mainly in terms of daily or subdaily snow depth values often with higher spatial resolution than river 

discharge gauging stations. Recently, simple regression equations have been proposed to convert snow 

depth data into snow water equivalent (SWE) (Grusson et al. 2015, Jonas et al. 2009, Pistocchi 2016, Qi 

et al. 2016, Zampieri et al. 2013). Besides, in SWAT all HRUs in a sub-basin receive the same SWE 

value. This value is derived from the weighted sum of the SWE computed for each elevation band in a 

sub-basin. We hence propose to apply these regression models to compute sub-basin scale SWE averages, 

and compare these results with the SWE values computed by SWAT on several spatial scales. The 

methodology has the advantage of using snow observations, by which the snow parameters can be 

quantified considering the SWAT snow module alone, without the need for discharge data. To the best 

of our knowledge no studies have taken this possibility into account, and only a few studies have tried 

to utilize the SWAT SWE output to evaluate the performance of the SWAT snow module independently 

of discharge records (Fu et al. 2014, Fu et al. 2015, Grusson et al. 2015, Pradhanang et al. 2011). 

Moreover, although a new version of SWAT, named SWAT+, is currently under development, it seems 

that the snow module has not been modified yet (Bieger et al. 2016). Our study can therefore provide 

the developers with an interesting approach that could be automated and implemented into SWAT+ in 

order to improve model calibration in alpine catchments (Arnold et al. 2015, Bieger et al. 2016).  

To summarize, the specific objectives of this study are to: 1) propose a calibration procedure for the 

parameters used in the SWAT snow package based on sub-basin SWE values; 2) validate and assess the 

proposed procedure in the Upper Adige catchment, an important alpine basin in Northeast Italy; 3) test 

the spatial variability of SWAT snow parameters considering both basin-scale and sub-basin-scale 

calibration; 4) propose an improvement in SWAT to facilitate the use of snow measurements for model 

calibration. 

4.2 Material and method 

4.2.1 Study area  

The Upper Adige River basin closed at Bronzolo (6875 km2) is located in the Northeastern Italian Alps 

(Figure 4.1). It is a typical Alpine catchment characterized by steep slopes, sharp hydro-climatic 
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gradients and a large elevation variation ranging from 223 m a.s.l to 3865 m a.s.l. (Callegari et al. 2015). 

This river basin was selected as a case-study in the FP7 project GLOBAQUA (Navarro-Ortega et al. 

2015) to investigate a variety of stressors encountered in the Alpine region, in which snow processes are 

major driving forces of the hydrological cycle (Chiogna et al. 2016). This area is typically dominated by 

snowfall precipitation from late October to April, leading to an increase of the cumulative snow depth. 

Streamflow in the following spring period is dominated by snow melting (Mei et al. 2014, Mei et al. 

2016, Penna et al. 2014). The location of the precipitation and temperature stations are displayed in 

Figure S4.1 of the supplemental material.  

 

Figure 4.1 The Upper Adige River basin and the zoomed-in HRU map showing the locations of the snow 

stations in sub-basin 12 (inset). 
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4.2.2 Computation of sub-basin snow water equivalent values  

The dataset available for the Upper Adige catchment comprises 44 snow measurement stations (Figure 

4.1 and Table S4.1) for which daily snow depth values are recorded. The data have been provided by the 

Autonomous Province of Bolzano and represent a subset of the data used by Adler et al. (2015) to analyze 

climatic changes occurring in this region. The available time series have been quality checked and their 

homogeneity has been tested using the standard normal homogeneity test (Marcolini et al. 2017). The 

stations used in this study were selected based on data availability for the period 2005-2010.  

In order to make use of these data for SWAT model calibration, two steps have to be performed: first 

daily snow depth data (HS) are used to compute a mean sub-basin snow depth and then these values are 

converted in SWE data. 

4.2.2.1 Computation of mean sub-basin snow depth 

The HS measurements were used to calculate an average snow depth value for each of the 20 sub-basins 

of the catchment. López-Moreno and Nogués-Bravo (2006) provide an important intercomparison study 

between various local, geostatistical and global methods to interpolate snow depth data at the catchment 

scale. Their outcome is that global methods (e.g., linear regression and generalized additive models) 

have the best performance, and elevation is the most relevant parameter to be included in the model. The 

important correlation between snow depth and elevation at various spatial scales was also evidenced in 

Grünewald et al. (2014). In this study, we apply a simple power law model to establish a correlation 

between all available snow depth measurements in the catchment at a given day and elevation (h): 

𝐻𝑆_𝑟𝑒𝑔 = 𝑎 · ℎ𝑏  (4.1) 

The parameters a and b are computed for each day of the period considered in this study. Such a model 

does not reproduce the effect observed by Grünewald et al. (2014) in which snow depth increases with 

elevation up to a certain altitude where it displays a distinct peak followed by a decrease at the highest 

elevations. This effect is most likely present in the Upper Adige catchment, but the highest available 

station is located at 1915 m a.s.l. (Table S4.1) and therefore it is not possible to observe it. Several tests 

were performed comparing the results of Eq. (4.1) with the results obtained using a more complex 

regression model reproducing the behavior observed by Grünewald et al. (2014). These tests did not lead 

to important differences (i.e., larger than 20%) when computing mean snow depth values at the 

subcatchment scale. Despite the simplicity of the model proposed in Eq. (4.1), we obtained an average 

correlation coefficient of 0.65±0.12 (computed between 2005 and 2010) between modelled and 

measured values, which is comparable with the results obtained by López-Moreno and Nogués-Bravo 
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(2006). Eq. (4.1) is then used to compute the mean sub-basin snow depth <Sub_HS>, depending on the 

topography of the sub-basin: 

< 𝑆𝑢𝑏_𝐻𝑆 >= ∫ 𝐻𝑆_𝑟𝑒𝑔 ∙ ℎ̃
ℎ𝑚𝑎𝑥

0
(ℎ)𝑑ℎ  (4.2) 

where ℎ̃ is the probability density function of the elevation in each sub-basin and hmax is the maximum 

catchment elevation. 

4.2.2.2 Conversion of snow depth measurements into snow water equivalent values 

The conversion of observed HS [m] values for a single monitoring station into SWE [kg/m2] is 

performed by multiplying HS by the snow bulk density 𝜌 [kg/m3]: 

𝑆𝑊𝐸 = 𝐻𝑆 · 𝜌  (4.3) 

For single monitoring stations, measured values of 𝜌  can be available. However, in most cases 

continuous measurements of the snow bulk density are very rare (e.g., Pistocchi, 2016). Therefore, 

several empirical methods have been proposed to convert snow depth values into SWE values, 

developing regression equations representing the temporal variability of the snow bulk density at the 

basin or regional scale (e.g., Jonas et al. 2009, McCreight and Small 2014, Pistocchi 2016, Sturm et al. 

2010). Such models generally imply a positive correlation between snow density and the number of days 

since the beginning of the winter period and are specific for a given geographic region. Despite the 

intrinsic limitations associated with the use of such models in particular at the daily scale (McCreight 

and Small 2014), this simple approach can be applied whenever direct density measurements are scarce 

or not available (McCreight and Small 2014, Pistocchi 2016). The uncertainty in estimating SWE by 

applying such empirical models is about 13% and it is comparable to the within-site spatial variability 

(Pistocchi, 2016).  

For the Upper Adige catchment, Pistocchi (2016) derived the following empirical equation to estimate 

the temporal variability in snow bulk density, subsequently estimating SWE starting from snow depth 

observations: 

𝜌 = 200 + (𝐷𝑂𝑌 + 61)  (4.4) 

where DOY is a counter of the day of the year which is set to 1 on January 1st, with October 1st being -

92 to account for the winter season extending across two years in the northern hemisphere (Pistocchi 

2016). In spite of its simplicity, Eq.(4.4) aims at describing the seasonal dynamics of snow density and 

in particular its increase during the winter season (Jonas et al., 2009; Pistocchi, 2016). As recommended 

by Pistocchi (2016), Eq. (4.4) represents a reasonable first estimate when no density time series are 

available with adequate spatial and temporal resolution, which is the case of the Upper Adige catchment. 
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Therefore, we computed the mean sub-basin snow water equivalent (<Sub_SWE>) for each day 

according to the following equation: 

< 𝑆𝑢𝑏_𝑆𝑊𝐸 > = < 𝑆𝑢𝑏_𝐻𝑆 >· 𝜌  (4.5) 

The units of <Sub_SWE> were then converted in mm of H2O so they could be compared to SWAT 

model results. 

4.2.3 SWAT model 

The SWAT model is a comprehensive, time-continuous, semi-distributed, process-based model (Arnold 

et al. 2012a). It divides river basins into sub-basins and subsequently into Hydrologic Response Units 

(HRUs), characterized by different combinations of land use, soil characteristics, topography, and 

management schemes. The hydrological cycle is calculated based on water balance, which is controlled 

by climate inputs such as daily precipitation and maximum/minimum air temperature. Using daily input 

time series, SWAT simulates the daily, monthly and yearly fluxes of water and solutes in river basins  

4.2.4 Model setup  

ArcSWAT 2012 (version 664), with an interface in ArcGIS, was used to setup the model in this work. 

The datasets used in the model are listed in Table 4.1. The SWAT model was set up for the Upper Adige 

River basin with 20 sub-basins delineated in Figure 4.1. In most sub-basins, snow depth measurements 

are available for stations located at similar elevations (Table S4.1). However, at sub-basin 12 and sub-

basin 17, snow depth measurement stations are available for different elevations (Table 4.2). The 

elevations for sub-basin 12 and sub-basin 17 range between 883-3666 m and 261-3339 m, respectively 

(Figure 4.1). The areas of these two sub-basins are 654 km2 and 285 km2, respectively. We performed 

simulations at the daily scale. 

Table 4.1 Source of input data used in building up the SWAT model. Despite in this work we focus only 

on the snow module of SWAT we provide all required input to construct a complete hydrological SWAT 

model. 

Data type Scale Data source 

DEM 90 m × 90 m 
Shuttle Radar Topography Mission (SRTM) produced by 

Consortium for Spatial Information (CGIAR-CSI) 

Land use 100 m × 100 m 
Corine Land Cover 2006 (CLC2006) from European 

Environment Agency 
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Soil 1 : 1500,000 

Data provided in the framework of Globaqua Project 

(Navarro-Ortega et al. 2015) following the procedure 

described in (Meyer et al. 2016) 

River 

network 
 

EU-DEM product http://www.eea.europa.eu/data-and-

maps/data/eu-dem. 

Climate input  
Autonomous Province of Bolzano 

(http://www.provincia.bz.it/meteo/home.as) 

Snow 

measurements 
 Autonomous Province of Bolzano (Adler et al. 2015) 

Table 4.2 Elevation and Band distribution of snow stations. 

Station Elevation (m a.s.l) Band Elevation  range (m a.s.l) 

Sub-basin 12    

Marienberg 1310 1 883-1350 

ST. Valentin 1499 3 1499-1650 

Matsch 1570 3 1499-1650 

Schlinig  1690 4 1650-1800 

Ausserrojen 1833 5 1800-2050 

Melag 1915 5 1800-2050 

Sub-basin 17    

Stausee ST. Pankraz 810 1 261-950 

Stausee Zoggl 1142 2 950-1500 

Pawigl 1400 2 950-1500 

Weissbrunn 1900 5 1800-2050 

4.2.5 Snow package 

The snow module of SWAT provides snow output in forms of snowmelt and SWE defined as the water 

contents of the snow pack with identical units to precipitation (Pradhanang et al. 2011). The mass balance 

of the snow pack is calculated as: 

𝑆𝑊𝐸𝑖 = 𝑆𝑊𝐸𝑖−1 + 𝑅𝑑𝑎𝑦𝑖 − 𝐸𝑠𝑢𝑏𝑖 − 𝑆𝑁𝑂𝑚𝑙𝑡𝑖  (4.6) 

where SWEi is the snow water equivalent of the snow pack on day i (mm H2O), SWEi-1 is the snow water 

equivalent of the snow pack on the previous day (mm H2O), 𝑅dayiis the amount of precipitation in terms 

of snowfall on day i (mm H2O), 𝐸subi is the snow sublimation on day i (mm H2O), and 𝑆𝑁𝑂𝑚𝑙𝑡𝑖  is the 

amount of snowmelt on day i (mm H2O). 

The snowfall temperature (SFTMP (°C)) is used as a threshold to classify the precipitation as snowfall 

or rainfall. When the mean daily air temperature is lower than SFTMP, the precipitation is classified as 

snowfall and is added to the snow pack. Snow sublimation is computed as a function of potential 
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evapotranspiration in the evapotranspiration module (Neitsch et al. 2011). The snow pack will not melt 

until the snow pack temperature exceeds the threshold value: snowmelt base temperature (SMTMP (°C)). 

The snow pack temperature is calculated as: 

𝑇𝑠𝑛𝑜𝑤𝑖 = 𝑇𝑠𝑛𝑜𝑤𝑖−1(1 − 𝑇𝐼𝑀𝑃) + �̅�𝑎𝑣𝑖 ∙ 𝑇𝐼𝑀𝑃  (4.7) 

where 𝑇𝑠𝑛𝑜𝑤𝑖 and 𝑇𝑠𝑛𝑜𝑤𝑖−1 are the snow pack temperatures on the current day i and the previous day i-1 

(°C), respectively, �̅�𝑎𝑣𝑖is the mean air temperature on the current day i (°C), and TIMP is the snow 

temperature lag factor. 

When the snow pack reaches a higher temperature than SMTMP, it starts to melt. The amount of 

snowmelt is computed as: 

𝑆𝑁𝑂𝑚𝑙𝑡𝑖 = 𝑏𝑚𝑙𝑡𝑖 ∙ 𝑠𝑛𝑜𝑐𝑜𝑣𝑖 ∙ [
𝑇𝑠𝑛𝑜𝑤𝑖+𝑇𝑚𝑎𝑥𝑖

2
− 𝑆𝑀𝑇𝑀𝑃]  (4.8) 

𝑏𝑚𝑙𝑡𝑖 =
(𝑆𝑀𝐹𝑀𝑋+𝑆𝑀𝐹𝑀𝑁)

2
+
(𝑆𝑀𝐹𝑀𝑋−𝑆𝑀𝐹𝑀𝑁)

2
∙ 𝑠𝑖𝑛 [

2𝜋

365
(𝑖 − 81)]  (4.9) 

where  𝑆𝑁𝑂𝑚𝑙𝑡𝑖 is the amount of snowmelt on day i (mm H2O), 𝑏𝑚𝑙𝑡𝑖 is the melt factor for day i (mm 

H2O °C-1day-1), 𝑠𝑛𝑜𝑐𝑜𝑣𝑖 is the fraction of the HRU area covered by snow,  𝑇𝑚𝑎𝑥𝑖 is the maximum air 

temperature on the current day, SMFMX is the melt factor for June 21(mm H2O °C-1day-1), and SMFMN 

is the melt factor for December 21 (mm H2O °C-1day-1). As explained in the SWAT I/O files (Arnold et 

al. 2012b), SMFMX is the maximum melt factor in the Northern Hemisphere and the minimum melt 

factor in the Southern Hemisphere. Therefore, for our study area, SMFMX should be larger than 

SMFMN.  

In SWAT, either a unique set of snow parameters can be assigned to the entire basin or a different set of 

snow parameters can be defined for each sub-basin. In the latter case, the source code has to be modified. 

We noticed that negative and zero values of SFTMP and SMTMP are not allowed at the sub-basin scale 

(see the code files named as “readsub.f” and “readsno.f”). However, as described in the SWAT official 

documentation (Arnold et al., 2012b), it should be possible to define values between -5 °C and 5 °C for 

SFTMP and SMTMP (e.g. Grusson et al. 2015). Therefore, we did not consider it appropriate to apply 

this “above 0” limitation to the range of SFTMP and SMTMP values.  

In order to consider the orographic effects on precipitation and temperature in mountainous areas, SWAT 

uses the elevation bands method which permits defining up to ten elevation bands in each sub-basin (see 

supplemental material for a detailed description of the method). In this work, six elevation bands were 

applied and the bands were defined individually for each sub-basin according to the specific elevation 

distribution of the sub-basin. Using elevation bands has been proven useful and necessary in several 
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snow-dominated alpine catchments (Grusson et al. 2015, Luo et al. 2013, Malagò et al. 2015, Morán-

Tejeda et al. 2014, Omani et al. 2017, Pradhanang et al. 2011, Rahman et al. 2013, Zhang et al. 2008). 

SWAT output files provide SWE of the snow pack for each elevation band in the output.snw file. 

Snowmelt values and the SWE of the snow pack at the HRU scale are stored in the output.hru file. Since 

snowmelt measurements are very rare, we propose to calibrate snow parameters according to SWE data. 

In the following, we refer to the output available for each elevation band as EB-SWE. Since one elevation 

band covers an area with a range of elevations and since the SWE depends on the snow depth which is 

elevation dependent, the EB-SWE output cannot be calibrated to fit exactly with the data available for a 

single measurement point.  

The following exercise exemplifies the reason why the measurement of a single monitoring station 

cannot be used to calibrate the model output obtained at the HRU scale. We constructed a specific model 

in which a single and unique HRU was defined for the location of each snow station. The HRU map of 

sub-basin 12 is provided as an example in Figure 4.1. In sub-basin 12, there are six snow stations located 

at different elevations (Table 4.2) and each of them recorded different snow data. However, the SWAT 

model output for each HRUs of the six stations was practically the same (Figure S4.2) and was equal to 

SUM_EB (mm) - the weighting sum of the SWE computed for each elevation band: 

𝑆𝑈𝑀_𝐸𝐵 = ∑ 𝑆𝑊𝐸𝑏𝑎𝑛𝑑 ∙ 𝑓𝑟𝑏𝑛𝑑
𝑏
𝑏𝑛𝑑=1 = 𝑆𝑢𝑏𝑆𝑊𝐸  (4.10) 

where 𝑆𝑊𝐸𝑏𝑎𝑛𝑑 is the SWE value of each band (mm), 𝑓𝑟𝑏𝑛𝑑 is the fraction of the sub-basin area within 

the elevation band, and b is the total number of elevation bands in the sub-basin. Therefore, we can 

conclude that SWAT assigns the same SWE to all HRUs within one sub-basin, and this value represents 

the elevation weighted SWE value of the sub-basin. This sub-basin specific value can be used in 

calibration by comparing it to the sub-basin SWE computed using Eq. (4.5). This SWE output of SWAT 

is hereafter referred to as Sub-SWE. 

4.2.6 Model calibration and evaluation  

A time frame of 516 days (01/01/2005 - 05/31/2006) was used as a warm up period in order to mitigate 

the effects of the initial conditions for the 20 sub-basins. Calibration of snow parameters was performed 

during the time period 06/01/2006 - 05/31/2008, while the validation period starts on 06/01/2008 and 

lasts until 05/31/2010. The snow parameters to be calibrated are selected according to the sensitivity 

analysis of the one-at-a-time procedure in SWAT-CUP (Abbaspour 2015). In this work, all parameters 

used in the snow module (Eqs. (4.6) - (4.9)) except snow cover variables were identified as sensitive 

parameters. The snow parameters were calibrated such that the Sub-SWE output (Eq. (4.10)) fits the 

sub-basin average SWE as defined in Eq. (4.5). 
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Three calibration procedures were applied: I) the basin-scale snow parameters were estimated using an 

automatic calibration procedure to assign the same set of values to the entire basin; II) snow parameters 

were calibrated at the sub-basin scale to take the spatial variability of snow processes into account. 

Automatic calibration was first implemented, but an additional manual calibration was necessary when 

automatic calibration led to inconsistent parameter sets. For example, SMFMX values estimated using 

automatic calibration were often lower than SMFMN values, which is not correct for the Northern 

Hemisphere where the study basin is located; III) sub-basin-scale snow parameters were calibrated 

manually considering a qualitative comparison between EB-SWE and the SWE values computed for 

each monitoring station (the snow depth observations were converted into SWE values using Eq.(4.3) 

and Eq. (4.4)). 

Starting with the initial ranges of parameters shown in Table 4.3, the automatic calibration was 

performed first with the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) (Abbaspour et al. 

2004, Abbaspour et al. 2007) in the SWAT-CUP tool package (Abbaspour 2015) to narrow down and 

target the effective range of each parameter. SUFI-2 is a semi-automated inverse modeling procedure, 

which implements a combined calibration-uncertainty analysis. Detailed information and calibration 

procedures for the tool can be found in Abbaspour (2015). The initial parameter ranges are defined 

following the works of Grusson et al. (2015), Rahman et al. (2013) and the SWAT documentation 

(Arnold et al. 2012b). For each iteration, 1000 simulations were run. After each iteration, the ranges of 

the parameters were modified (normally narrowed down) according to both the new parameters 

suggested by the program (Abbaspour et al. 2004, Abbaspour et al. 2007) and their initial limitations.  

The goodness of fit between Sub-SWE and the sub-basin average SWE defined in Eq. (4.5) for each 

sub-basin was first calculated during both the calibration and validation periods. Furthermore, the 

simulated EB-SWE was qualitatively compared to the data of each station belonging to a specific 

elevation band. Results are provided for sub-basins 12 and 17, because in these subcatchments the 

measurement stations are located in more than one elevation band. The Nash-Sutcliffe efficiency (NSE) 

(Nash and Sutcliffe 1970) and the coefficient of determination (R2) were used as goodness of fit 

indicators for the best simulation (Eqs. (4.11) and (4.12), respectively): 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑊𝐸𝑠,𝑡−𝑆𝑊𝐸𝑜,𝑡)

2𝑇
𝑡=1

∑ (𝑆𝑊𝐸𝑜,𝑡−𝑆𝑊𝐸𝑜̅̅ ̅̅ ̅̅ ̅̅ )2𝑇
𝑡=1

  (4.11) 

𝑅2 =
[∑ (𝑆𝑊𝐸𝑜,𝑡−𝑆𝑊𝐸𝑜̅̅ ̅̅ ̅̅ ̅̅ )(𝑇
𝑡=1 𝑆𝑊𝐸𝑠,𝑡−𝑆𝑊𝐸𝑠̅̅ ̅̅ ̅̅ ̅̅ )]

2

∑ (𝑆𝑊𝐸𝑜,𝑡−𝑆𝑊𝐸𝑜̅̅ ̅̅ ̅̅ ̅̅ )2𝑇
𝑡=1 ∑ (𝑆𝑊𝐸𝑠,𝑡−𝑆𝑊𝐸𝑠̅̅ ̅̅ ̅̅ ̅̅ )2𝑇

𝑡=1
  (4.12) 

where 𝑆𝑊𝐸𝑜,𝑡 is the observed SWE at time t, 𝑆𝑊𝐸𝑠,𝑡 is the simulated SWE at time t, 𝑆𝑊𝐸𝑜̅̅ ̅̅ ̅̅ ̅̅  is the  mean 

of observed SWE values, and 𝑆𝑊𝐸𝑠̅̅ ̅̅ ̅̅ ̅̅  is the mean simulated SWE. 
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NSE indicates whether the model performs better than the mean value of the data (NSE = 1 is the optimal 

value). R2 ranges from 0 to 1 and represents the trend similarity between the observed and the simulated 

data: higher R2 values indicate better model performance. A standard method to evaluate model 

performance for daily SWE modeling results is not available. In this work, we follow the 

recommendations of Moriasi et al. (2007) developed for monthly discharge values: unsatisfactory 

performance (NSE≤0.50), satisfactory performance (0.50<NSE≤0.65), good performance 

(0.65<NSE≤0.75) and very good performance (0.75<NSE≤1.00).  

Table 4.3 Calibrated snow parameters and elevation band parameters.  

Parameters Description Default Range 

SFTMP Snowfall temperature [°C] 1 0/4 

SMTMP Snowmelt base temperature [°C] 0.5 -2/2 

SMFMN Melt factor for snow on December 21 [mm H2O °C-1day-1] 4.5 1.5/7 

SMFMX Melt factor for snow on June 21 [mm H2O °C-1day-1] 4.5 1.5/7 

TIMP Snow pack temperature lag factor 1 0/1 

PLAPS Precipitation lapse rate [mm H2O/m] 0 0/0.15 

TLAPS Temperature lapse rate [°C/km] 0 -9/0 

4.3 Results 

We will focus on model results for sub-basins 12 and 17. We chose these two sub-basins, because there 

are multiple snow stations available at different elevations (Figure 4.1 and Table 4.2). This allowed us 

to consider the snow information available for different elevations when evaluating the model 

performance. Model performances for all sub-basins are summarized in a tabular form in the following 

sections.  

4.3.1 Model performance using calibration procedure I 

As shown in Table 4.4, the definition of a unique set of snow parameters for the entire basin (hereafter 

defined as basin-scale snow parameters) resulted in satisfactory model performance during both the 

calibration and validation periods in 90% of the sub-basins. Exceptions were represented by sub-basin 

5 and sub-basin 20. During the calibration period, sub-basins 5 and 20 displayed much lower NSE values 

(-0.38 and 0.34, respectively) than the other 18 sub-basins (the lowest NSE is 0.65). During validation, 

the NSE of sub-basins 5 and 20 were also lower (-0.31 and 0.48, respectively) than the others (the lowest 

NSE is 0.52). This noteworthy difference in model performance could be ascribed to the topography of 

the sub-basins. Sub-basin 5 and 20 are characterized by lower elevations (about 90% of the area of the 

two sub-basins is below 1600 m a.s.l) than the other sub-basins (on average only 37% of the area of the 



Chapter 4: Calibration of Snow Parameters in SWAT  

 

89 

  

subcatchments is below 1600 m a.s.l). During calibration, the assignment of a unique set of parameters 

for the entire basin was biased by this disproportion between low and high elevation sub-basins and the 

optimal set of parameters was representative of the majority of the sub-basins. Therefore, the calibrated 

parameters better represented high elevation catchments characterized by high SWE values than sub-

basins 5 and 20. 

Table 4.4 Calibration and validation performance of basin-scale snow parameters (calibration procedure 

I). 

 Calibration Validation 

Sub-basin R2 NSE R2 NSE 

1 0.77 0.74 0.96 0.96 

2 0.82 0.81 0.94 0.87 

3 0.93 0.92 0.72 0.65 

4 0.77 0.76 0.68 0.67 

5 0.09 -0.38 0.13 -0.31 

6 0.93 0.90 0.94 0.94 

7 0.73 0.73 0.86 0.85 

8 0.85 0.71 0.96 0.81 

9 0.90 0.88 0.92 0.85 

10 0.80 0.67 0.86 0.76 

11 0.76 0.65 0.96 0.92 

12 0.81 0.81 0.93 0.93 

13 0.81 0.72 0.80 0.52 

14 0.87 0.87 0.82 0.81 

15 0.71 0.71 0.87 0.84 

16 0.92 0.87 0.91 0.72 

17 0.81 0.73 0.95 0.76 

18 0.88 0.88 0.96 0.61 

19 0.77 0.67 0.88 0.87 

20 0.75 0.34 0.85 0.48 
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Figure 4.2 Model performance of basin-scale snow parameters for fitting sub-basin SWE during both 

the calibration and validation periods (calibration procedure I): (a) calibration and (b) validation results 

of sub-basin 12; (c) calibration and (d) validation results of sub-basin 17. 

Figure 4.2 displays the sub-basin SWE of sub-basins 12 and 17. The snow covered periods were well 

captured at both sub-basins. Simulated Sub-SWE of sub-basin 12 fitted well with the SWE computed 

using Eq. (4.5) in both the calibration (R2=0.81, NSE=0.81) and validation periods (R2 =0.93 NSE=0.93). 

Generally, the simulation underestimated the maximum SWE except for the snow season of 2009-2010. 

Similarly, the same basin-scale snow parameters applied to sub-basin 17 led to an underestimation of 

the maximum SWE during the calibration period, but resulted in a slight overestimation during 

validation.  

The calibrated basin-scale snow parameters generally did not lead to good model performance when 

comparing EB-SWE to the point SWE data of the snow stations (NSE values are provided in Figure 4.3 

and 4.4). As shown in Figure 4.3 for sub-basin 12, the EB-SWE simulations of all considered elevation 

bands displayed clear underestimations in comparison to the station observations during calibration. In 

the validation period, the results were better in high elevation areas (bands 4 and 5), where the EB-SWE 

simulations matched the observation of three snow stations with acceptable NSE better than in low 

elevation areas. For sub-basin 17 (Figure 4.4), the EB-SWE values fitted better with station observations 

during calibration compared to sub-basin 12. Model performance was good in low elevation areas (bands 

1 and 2) but underestimated the observed values in high elevation areas (band 5). During validation, 

performance was unsatisfactory in low elevation areas but improved to very good levels at high elevation 
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areas (band 5). Notice that the NSE values were used to support the qualitative comparison between EB-

SWE and the observed values from snow monitoring stations. In fact, the EB-SWE is a representative 

value standing for areas of a range of elevations, whereas the station observation can only represent one 

point among the elevations. To summarize, in both sub-basins, the basin-scale snow parameters resulted 

in good performance in simulating sub-basin SWE, but normally failed to reach reasonable and 

acceptable fits between EB-SWE and the point observations. 
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Figure 4.3 SWE comparison between values calculated from station observations and the simulated 

values of the corresponding elevation band at sub-basin 12 with basin-scale snow parameters (calibration 

procedure I): (a) calibration and (b) validation performances of band 1 and Marienberg station; (c) 

calibration and (d) validation performance of band 3: “Observed 1” stands for Matsch station, “Observed 

2” represents ST. Valentin station; (e) calibration and (f) validation performance of band 4 and Schlinig 

station; (g) calibration and (h) validation performances of band 5: “Observed 1” stands for Ausserrojen 

station, and “Observed 2” represents Melag station.  

 

Figure 4.4 SWE comparison between values calculated from station observations and the simulated 

values of the corresponding elevation band at sub-basin 17 with basin-scale snow parameters (calibration 

procedure I): (a) calibration and (b) validation performance of band 1 and Stausee ST. Pankraz station; 

(c) calibration and (d) validation performance of band 2: “Observed 1” stands for Pawigl station, 

“Observed 2” represents Stausee Zoggl station; e and f are the calibration and validation performances 

of band 5 and Weissbrunn station.  
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4.3.2 Model performance using calibration procedure II 

The second calibration procedure considers the definition of sub-basin specific snow parameters 

(hereafter defined as sub-basin-scale snow parameters). The lowest R2 and NSE were 0.61 and 0.55 

during calibration, and 0.65 and 0.56 during validation (Table 4.5). Compared to the performance with 

basin-scale snow parameters, sub-basin-scale parameterization led to higher R2 and NSE values in 65% 

of the sub-basins (e.g. sub-basins 4, 7 and 8), but lower values were also observed in four sub-basins 

(sub-basins 3, 6, 14, and 18). The sub-basin SWE of the two low elevation-dominated sub-basins (5 and 

20) were apparently better reproduced considering the improvement in the R2 and NSE values. For the 

calibration and validation periods of sub-basin 5, R2 increased by 0.74 and 0.61, and NSE increased by 

1.20 and 1.04, respectively. For sub-basin 20, NSE increased to the acceptable level with 0.55 and 0.56 

for each period. Except for sub-basins 5 and 20, however, the differences of the R2 and NSE values 

(Table 4.4 and Table 4.5) between calibration procedure I and II was on average smaller than 0.2% and 

3.5%, respectively, indicating comparable performances were reached between basin-scale and sub-

basin-scale approaches.  

Table 4.5 Calibration and validation performance of sub-basin-scale snow parameters (calibration 

procedure II). 

 Calibration Validation 

Sub-basin R2 NSE R2 NSE 

1 0.75 0.74 0.96 0.94 

2 0.81 0.81 0.95 0.94 

3 0.90 0.88 0.69 0.61 

4 0.88 0.86 0.65 0.63 

5 0.83 0.82 0.74 0.73 

6 0.87 0.85 0.91 0.90 

7 0.87 0.84 0.95 0.95 

8 0.81 0.79 0.97 0.90 

9 0.88 0.87 0.91 0.87 

10 0.86 0.82 0.83 0.77 

11 0.70 0.67 0.94 0.94 

12 0.82 0.81 0.93 0.93 

13 0.83 0.73 0.79 0.66 

14 0.86 0.84 0.68 0.66 

15 0.82 0.82 0.94 0.92 

16 0.89 0.89 0.87 0.81 

17 0.83 0.75 0.95 0.84 

18 0.88 0.88 0.91 0.57 

19 0.80 0.72 0.93 0.91 

20 0.61 0.55 0.83 0.56 
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Figure 4.5 Model performance of sub-basin-scale snow parameters for fitting sub-basin SWE during 

both the calibration and validation periods (calibration procedure II): (a) calibration and (b) validation 

results of sub-basin 12; (c) calibration and (d) validation results of sub-basin 17. 

With the sub-basin-scale snow parameters, the snow seasons of the two sub-basins were also captured 

well (Figure 4.5). In particular, the period of 2008-2009 was reproduced better in comparison to the 

performance of the basin-scale parameterization in Figure 4.2. At sub-basin 12 (Figure 4.5a and 4.5b), 

the sub-basin SWE values were reproduced well in both calibration (R2=0.82, NSE=0.81) and validation 

(R2=0.93, NSE=0.93). At sub-basin 17 (Figure 4.5c and 4.5d), the model results generally displayed 

underestimations in the maximum SWE during the calibration period, and presented overestimations 

during validation.  

Even with the sub-basin-specific snow parameters, clear differences were observed at most elevation 

bands by comparing the EB-SWE with the point value from the corresponding snow stations at sub-

basin 12 (Figure 4.6). However, in comparison to the basin-scale results (Figure 4.3), closer matching 

was observed at sub-basin 12 (Figure 4.6). For sub-basin 12 during the calibration period, only the EB-

SWE of band 3 was close to the data of Matsch station with NSE of 0.65 (Figure 4.6c), while the EB-

SWE of the other bands presented obvious underestimations (Figure 4.6). During validation, the EB-

SWE of high elevation areas (Figure 4.6f and 4.6h) approached the observations with high values of 

NSE > 0.70, whereas the simulations of lower elevation areas (Figure 4.6b and 4.6d) generally showed 

underestimation except for the case of ST. Valentin station. For sub-basin 17, sub-basin-specific snow 

parameters generally led to improvements (Figure 4.7) in comparison to calibration approach I. During 
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the calibration period, close matching was reached between EB-SWE and the station observations of all 

elevation bands (Figure 4.7a, 4.7c and 4.7e). During validation, although higher NSE values (Figure 4.7) 

were generally obtained compared to the results of approach I (Figure 4.4), obvious differences were 

still observed at the low elevation bands with negative NSE values (Figure 4.7b and 4.7d). An 

exceptional case was displayed between the EB-SWE of band 2 and the observations from Stausee Zoggl 

station, which got a close match with NSE of 0.62. The EB-SWE of the high elevation band matched 

the observed value quite well with an NSE of 0.93 (Figure 4.7f). 



 Chapter 4: Calibration of Snow Parameters in SWAT 

 

96 

 

 

Figure 4.6 SWE comparison between values calculated from station observations and the simulated 

values of the corresponding elevation band at sub-basin 12 with sub-basin-scale snow parameters 

(calibration procedure II): (a) calibration and (b) validation performances of band 1 and Marienberg 

station; (c) calibration and (d) and validation performances of band 3: “Observed 1” stands for Matsch 

station, “Observed 2” represents ST. Valentin station; (e) calibration and (f) validation performances of 
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band 4 and Schlinig station; (g) calibration and (h) validation performances of band 5: “Observed 1” 

stands for Ausserrojen station, and “Observed 2” represents Melag station.  

 

Figure 4.7 SWE comparison between values calculated from station observations and the simulated 

values of the corresponding elevation band at sub-basin 17 with sub-basin-scale snow parameters 

(calibration procedure II): (a) calibration and (b) validation performances of band 1 and Stausee ST. 

Pankraz station; (c) calibration and (d) validation performances of band 2: “Observed 1” stands for 

Pawigl station, “Observed 2” represents Stausee Zoggl station; (e) calibration and (f) validation 

performances of band 5 and Weissbrunn station.  
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Figure 4.8 Comparison between the calibrated basin-scale snow parameter and sub-basin-scale 

parameters. Box plots display the distribution of sub-basin-scale snow parameters.  

The calibrated values of each snow parameter for each sub-basin are provided in Figure S4.3 in the 

Supplementary material. In Figure 4.8, the normalized values of the snow parameters are displayed and 

they were calculated according to Eq. (4.13).  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑉𝑎𝑙𝑢𝑒−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
  (4.13) 

where Value represents the value of the calibrated parameter, Max and Min stand for the maximum and 

minimum values of each sub-basin-scale parameter. 

As shown in Figure 4.8, great variability was observed for all five snow parameters among different sub-

basins. SMFMX and SMFMN basin-scale parameters were very close to the mean value of the sub-

basin-scale parameters. SMTMP and TIMP parameters were within the 25th and 75th percentile of the 

sub-basin-scale parameters. The largest discrepancy between basin-scale and sub-basin-scale parameters 

was observed for SFTMP.  
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4.3.3 Model performance using calibration procedure III 

 

Figure 4.9 Model performance of manually modified snow parameters for fitting sub-basin SWE during 

both the calibration and validation periods (calibration procedure III): (a) calibration and (b) validation 

results of sub-basin 12; (c) calibration and (d) validation results of sub-basin 17. 

In the third calibration procedure, after a first automatic calibration considering sub-basin specific snow 

data, the snow parameters were manually modified (Table 4.6) within the reasonable physical ranges to 

match the SWE values converted from the corresponding snow stations. The simulated Sub-SWE values 

of sub-basin 12 (Figure 4.9a and 4.9b) presented a very good estimation of reproducing both snow 

seasons and daily SWE behavior during both calibration (R2=0.82 and NSE=0.78) and validation 

(R2=0.89 and NSE=0.89). For sub-basin 17 (Figure 4.9c), the snow season of the calibration period was 

captured equally well as the results in Figure 4.2 and Figure 4.5. The simulated daily SWE displayed 

good performance (R2=0.81 and NSE=0.78) with underestimations in the calibration period and also 

good performance (R2=0.88 and NSE=0.61) with slight overestimations during validation.   

Table 4.6 The calibrated values of parameters for sub-basins 12 and 17. 

Parameters Calibrated values 

 Approach  I Approach  II Approach  III 

Sub-basin 12 

PLAPS [mm H2O/m] 0.056 0.051 0.055 

TLAPS [°C/km] -4.05 -4.11 -3.50 

SFTMP [°C] 0.06 0.85 0.69 
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SMTMP [°C] 0.72 1.41 1.60 

SMFMX [mm H2O °C-1day-1] 5.04 6.41 3.49 

SMFMN [mm H2O °C-1day-1] 3.23 3.01 1.83 

TIMP 0.25 0.42 0.30 

Sub-basin 17 

PLAPS [mm H2O/m] 0.045 0.032 0.025 

TLAPS [°C/km] -5.98 -5.38 -6.09 

SFTMP [°C] 0.06 1.20 0.81 

SMTMP [°C] 0.72 1.50 1.80 

SMFMX [mm H2O °C-1day-1] 5.04 5.23 3.14 

SMFMN [mm H2O °C-1day-1] 3.23 2.92 2.48 

TIMP 0.25 0.25 0.43 

With the manually modified snow parameters, most of the EB-SWE presented reasonable behaviors 

compared to snow observations. At sub-basin 12 during calibration (Figure 4.10a, 4.10c, 4.10e and 

4.10g), the EB-SWE of all the highest elevation areas got evidently close to the station values with a 

minimal NSE of 0.57. During validation (Figure 4.10b, 4.10d, 4.10f and 4.10h), a big difference was 

observed between band 3 and the values from ST. Valentin station, while high NSE values were obtained 

for the other five stations. Compared to the results of approaches I and II (Figure 4.3, 4.4, 4.6, and 4.7), 

the improvements were very obvious at sub-basin 12. As for sub-basin 17, good estimations were 

presented at all the considered elevation bands during calibration, which had the lowest NSE of 0.51 

(Figure 4.11a, 4.11c, and 4.11e). During validation, negative NSE values were observed between band 

1 and Stausee ST. Pankraz station (Figure 4.11b), and also between band 2 and Pawigl station (Figure 

4.11d). Located at the same elevation band, Stausee Zoggl station revealed values close to the EB-SWE 

of band 2, with an NSE of 0.61 (Figure 4.11d). For the high elevation areas (Figure 4.11f), the EB-SWE 

approached the observations from Weissbrunn station with a very high NSE=0.95. In comparison to the 

results of the other two approaches (Figure 4.3, 4.4, 4.6, and 4.7), the manually modified snow 

parameters led to improvements, particularly for the high elevation band. Overall, the modified snow 

parameters resulted in “all-acceptable-performance” for the majority of all the elevation bands where 

the snow stations were located at sub-basins 12 and 17. Meanwhile, they kept a good fit between the 

simulated Sub-SWE and the referred values calculated based on observations. 
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Figure 4.10 SWE comparison between values calculated from station observations and the simulated 

values of the corresponding elevation band at sub-basin 12 with manually modified snow parameters 

(calibration procedure III): (a) calibration and (b) validation performances of band 1 and Marienberg 

station; (c) calibration and (d) validation performances of band 3: “Observed 1” stands for Matsch station, 

“Observed 2” represents ST. Valentin station; (e) calibration and (f) validation performances of band 4 
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and Schlinig station; (g) calibration and (h) validation performances of band 5: “Observed 1” stands for 

Ausserrojen station, and “Observed 2” represents Melag station. 

 

Figure 4.11 SWE comparison between values calculated from station observations and the simulated 

values of the corresponding elevation band at sub-basin 17 with manually modified snow parameters 

(calibration procedure III): (a) calibration and (b) validation performances of band 1 and Stausee ST. 

Pankraz station; (c) calibration and (d) validation performances of band 2: “Observed 1” stands for 

Pawigl station, “Observed 2” represents Stausee Zoggl station; (e) calibration and (f) validation 

performances of band 5 and Weissbrunn station.  

4.3.4 Validation of SWAT model results against snow depth observations 

As a final validation step of the applied calibration procedure we compare the snow depth observations 

available with the SWAT model results obtained using calibration procedure III. Since SWAT provides 

SWE time series, we converted them into snow depth values using Eqs. (4.3) - (4.5). We grouped the 
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available observations in six elevation classes and computed the mean of the observations (<HS>) and 

the mean of model results (HSSWAT), for each elevation class, to simplify the comparison. Please notice 

that these elevation classes should not be confused with the elevation bands of the SWAT model. They 

have been defined only to provide a clearer representation of the results. As shown in Figure 4.12, 

observed snow depth values are highly variable also in the same elevation class, however, the model 

results capture very well the mean behavior of the observations, confirming that the calibrated model 

can reproduce observed snow dynamics, despite the strong assumptions introduced in the definition of 

<Sub_HS> and . It is also interesting to observe that the model is able to capture well both snow 

accumulation as well as its melt, such that the snow cover duration is well described for all elevation 

classes.  

 

Figure 4.12 Comparison between observed snow depth for the available stations at various elevation 

ranges (Observed HS), their mean <HS> and the results of SWAT simulations (HSSWAT) converted into 

snow depth using Eq. (4.5). 

4.4 Discussion 

4.4.1 Calibration of snow parameters considering Sub-SWE  

Calibration of snow parameters according to the sub-basin averaged SWE can represent a useful 

approach for SWAT applications. The results of our study (Table 4.4 and Table 4.5) show that the 

definition of sub-basin specific snow parameter sets can be recommended when sub-basins have quite 

different elevation ranges, as is the case for sub-basins 5 and 20. Moreover, the sub-basin specific snow 
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parameterization is appropriate when snow monitoring stations are densely distributed in the catchment, 

i.e., enough data are available to perform model calibration at a finer spatial scale than the basin scale 

one.  

It is well known that snow dynamics are highly dependent on several site specific conditions (Endrizzi 

et al. 2006, Hiemstra et al. 2002), such as exposure to wind, land cover, orientation and solar radiation. 

As described in the official documentation (Neitsch et al. 2011), the snow module of SWAT uses a non-

distributed, temperature index-based approach. The model applies the same SWE value to each HRU. 

This value represents the sub-basin weighted average SWE considering the elevation band results. 

Moreover, snow processes in SWAT are controlled by precipitation and temperature inputs. SWAT 

assigns the same climate inputs to all HRUs of one sub-basin, independently of whether the elevation 

band method is applied or not (Neitsch et al. 2011, Tuo et al. 2016). This does not allow for more detailed 

snow parameterization at the HRU level, however, the definition of sub-basin-scale snow parameters 

can provide a rough description of the differences which are often observed in snow dynamics within a 

basin.  

One possible way of improving the description of snow processes in SWAT could be the use of band 

specific climate data instead of the lumped climate data modified by elevation band. In addition, the 

elevation band could be used as a factor during HRU definition. This would allow calculation of the 

hydrological processes using different input data for different bands and differentiate between the 

processes occurring at high and low elevation HRUs. A dynamic HRU scheme based on snow cover 

change, along the lines of the dynamic glacier approach of Luo et al. (2013), may also improve the snow 

modeling performance of SWAT. Bieger et al. (2016) pointed out that a grid-based model setup option 

will be available in the new version SWAT+. Therefore, a grid-based approach could also be applied to 

the snow module in order to improve the spatially distributed simulation of snow processes. Meanwhile, 

this approach requires input data with higher spatial resolution and a longer computational time. 

Considering model performance, the calibrated snow parameters were able to simulate the SWE of each 

sub-basin well (Table 4.4 and Table 4.5). During both the calibration and validation periods, acceptable 

R2 and NSE values were obtained for 18 high elevation sub-basins with basin-scale snow parameters 

(Table 4.4) and all sub-basins with sub-basin-scale snow parameters (Table 4.5). Therefore, the 

performances of the two parameterization approaches could be considered as equally good at 

reproducing the overall behavior of snow process at the sub-basin scale for high elevation sub-basins. 

The length of the snow seasons was properly captured and daily variability of SWE was in general 

sufficiently well simulated (Figure 4.2 and 4.5 as examples).  Although in some sub-basins (e.g. sub-

basins 3,6, and 19) the basin scale parameters led to higher NSE or R2 values than the sub-basin-scale 
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ones, a more specific parameterization for each sub-basin generally resulted in better performances (i.e., 

higher NSE and R2 values) for the majority of the sub-basins. Considering the uncertainties related to 

data preprocessing described in section 4.2.2 as well as epistemic model uncertainty, it can be expected 

that the model is not able to perfectly reproduce SWE peaks and their fluctuations (Figure 4.2, 4.5 and 

4.9). In particular, we consider the following to be the most important sources of uncertainty (Abbaspour 

et al. 2007): 1) the conversion process from snow depth to sub-basin averaged SWE; 2) the quality and 

uncertainty of the climate and temperature inputs, e.g. large uncertainty exists for precipitation in this 

mountainous region (Duan et al. 2016, Tuo et al. 2016); 3) the epistemic uncertainty of the model 

structure (e.g. lumped way of using climate input) and of the snow package itself (e.g. limitation of 

temperature index approach). These three sources of uncertainty mentioned above are to some extent 

known by the SWAT users’ community (Abbaspour et al. 2007, Galván et al. 2014) and our 

recommendation is to avoid looking for a perfect match between model and computed SWE data, since 

it will most likely lead to model overfitting. Taking the issue of model and data uncertainty into proper 

consideration, the values of R2 and NSE obtained in this study support the conclusion that the daily SWE 

time series can be reproduced using the SWAT snow module.  

4.4.2 Calibration of snow parameters considering EB-SWE  

Different combinations of snow parameter values have led to similar acceptable SWE simulations on 

the sub-basin level in both calibration and validation periods (Table 4.4-4.6, Figure 4.2, 4.5, and 4.9). 

Therefore, the use of Sub-SWE is not enough to identify the most suitable set of snow parameters. 

Specific snow outputs of each elevation band were used for further validation of the parameters and 

compared to SWE values computed from point observations of snow depth. As shown in Figure 4.3, 4.4, 

4.6, 4.7, 4.10, and 4.11, the EB-SWE computed considering different sets of snow parameters led to 

different matching to the corresponding point observations. Calibrating snow parameters only referring 

to Sub-SWE, using both basin-scale or sub-basin-scale calibration, could fail to get acceptable EB-SWE 

values compared to the point observations (Figure 4.3, 4.4, 4.6, and 4.7). Especially for sub-basin 12 

(Figure 4.3 and 4.6), the simulated SWE values were considerably different from the observed values, 

thus, for some cases these calibrated snow parameters were not able to reproduce the sub-basin snow 

conditions at the same time as well as the elevation band conditions. Unlike the sub-basin 12, the results 

of sub-basin 17 represented another situation in which the calibrated snow parameters of II may already 

lead to a close match with most point observations (Figure 4.7). As a consequence, the manual 

calibration of procedure III could not lead to large improvements (Figure 4.11). Under this situation, the 

calibration procedure III was suggested to be implemented as an additional attempt to optimize the model 

further.  
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Improvements (Figure 4.10-4.11) were observed after manual refinement of snow parameters by 

considering the performance of both Sub-SWE and EB-SWE. Calibration procedure III allowed us to 

obtain generally acceptable results at the sub-basin scale (Figure 4.9) and produced EB-SWE simulations 

closer to the values from station observations than calibration procedures I and II. For some bands, the 

model results were not satisfactory (Figure 4.10a, Figure 4.10d, Figure 4.11b, and Figure 4.11d) even 

after the calibration procedure III. It cannot be excluded that the poor performance of these cases could 

be ascribed to: 1) the simplified snow modeling structure of SWAT; 2) measurement errors; 3) the 

simplified approach used for the conversion from snow depth to snow water equivalent; 4) the specific 

local conditions influencing a single station. The local variability in snow observations within the same 

elevation band can be appreciated by comparing for example ST. Valentin (1499 m) and Matsch (1570 

m) stations (for example, Figure 4.3c and 4.3d), in which the higher station even displayed lower SWE 

values than the lower station. In mountainous regions, in addition to elevation, local snow dynamics are 

also affected by the specific topographic factors of the location like valley or ridge, sunny side or shaded 

side due to radiation or wind effect (Endrizzi et al. 2006, Hiemstra et al. 2002). In SWAT, only elevation 

effects can be considered by applying the elevation band method to partially take into consideration this 

source of variability. The NSE of EB-SWE generally increased from the simulation of basin-scale 

parameters to that of the sub-basin-scale parameters, from simulation of the sub-basin-scale parameters 

to that of the manually modified parameters. 

Independently of the three calibration procedures, some discrepancies between the sub-basin-averaged 

SWE and SWAT model results seem to be persistent. As shown in Figure 4.2, 4.5 and 4.9, we always 

observed an earlier snow peak simulated around late September of 2007 for sub-basin 17. Meanwhile, 

there was no station presenting a peak during the same period (Figure 4.4, 4.7, and 4.11). This 

disagreement could be ascribed to the earlier peak simulated in high elevation bands (Figure 4.4e, 4.7e 

and 4.11e). The high elevation areas accounted for more than 50% of sub-basin 17. As a result of the 

lumped approach of the elevation band method (Eq. (4.10)), the earlier peak was propagated to the 

simulated Sub-SWE.  

Limited by climate data availability, computational time and snow module structure, it is also not 

feasible to delineate very small sub-basins for capturing the specific local condition of each station. In 

fact, it is not appropriate to calibrate the model by fitting EB-SWE to point observations, because one 

band covers a range of elevations that may contain several stations with clearly different snow records. 

The snow parameters of a lumped model calibrated based on one station cannot be considered 

representative of the situation in an entire region (Egli and Jonas, 2009). Therefore, we suggest using 

only the EB-SWE as an additional reference for model assessment by qualitatively judging whether the 

EB-SWE is reasonable or not in comparison to the station observation of each band. Furthermore, the 
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parameters could be modified accordingly by making a compromise between sub-basin averaged SWE 

outputs and the EB-SWE performance, which could actually provide reasonable snow simulations by 

systematically considering both model characteristics and the natural snow processes. Considering the 

recent coupling of SWAT with MODFLOW and  RT3D performed by Bailey et al. (2017) and Bailey et 

al. (2016) to have a better spatial description of groundwater flow and transport processes, a combination 

of SWAT and a more detailed grid-based snow module could be envisioned. However, as snowmelt is 

considered a part of the effective rainfall, the precipitation method of SWAT should also be modified to 

fit the grid structure.   

4.4.3 Spatial variability of snow parameters  

Snow parameters obtained using calibration procedure I and II both led to good performance for the sub-

basins located at high elevations, although they identified different combinations of the parameter set. 

The comparison of the basin-scale parameters with the mean values of sub-basin-scale parameters 

(Figure 4.8) presented a small difference for SMFMX, SMFMN and TIMP, indicating a similar melt 

process (Eq. (4.9)). Meanwhile, large discrepancies were observed for SFTMP and SMTMP. Lower 

SFTMP and higher SMTMP of basin scale parameters lead to less snow fall into the sub-basins and less 

snowmelt. On the other hand, the combination of higher SFTMP and lower SMTMP of the sub-basin 

parameter set indicated the situation of more snow fall and more snowmelt. As a consequence, the 

accumulated snow pack at the sub-basin scale was similar for both parameterization approaches. 

However, considering the EB-SWE results at sub-basins 12 and 17, sub-basin-scale parameters led to a 

closer match between the EB-SWE and the observations from snow monitoring stations than the basin-

scale parameters. This result may suggest that by defining specific snow parameters individually for a 

sub-basin, the sub-basin-scale parameterization is capable of capturing snow processes better than the 

uniform assignment of snow values for the entire basin. 

The great variability observed in the sub-basin-scale snow parameters (Figure 4.8) could be ascribed to 

the complex spatial variability of the natural snow processes in alpine catchments (Egli and Jonas 2009, 

Hiemstra et al. 2002). Moreover, the obvious differences between the sub-basin dependent snow 

parameter values and the uniform basin-scale values (Figure 4.8) also emphasized that a single set of 

snow parameters may not realistically reproduce the natural snow processes of every sub-basin. In 

addition, we can observe that different calibration approaches led to different optimal snow parameters 

sets (Table 4.6), which resulted in good performances in reproducing sub-basin SWE (Figure 4.2, 4.5, 

and 4.9) but resulted in the main difference in the results obtained by comparing the EB-SWE (Figure 

4.3, 4.4, 4.6, 4.7, 4.10, and 4.11). What really matters is to choose the approach according to the 

topographic characteristics of the sub-basins. Therefore, it is concluded that for snow-dominated, 
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elevation-diverse river basins, sub-basin-scale snow parameters are preferable to help investigate the 

snow processes appropriately and accurately by better reflecting the complex spatial variability of snow. 

Basin-scale snow parameterization is suitable for river basins characterized by uniform topography, 

which display similar snow behavior over all sub-basins.  

4.5 Conclusion 

Modeling snow processes is of great importance in snow-dominated river basins like in the Alps. In view 

of the model structure and parameter complexity of SWAT, we recommend calibrating snow parameters 

using SWE information. Ground snow observations or remote sensing snow products can provide us 

with this information. In this technical note, we proposed three calibration approaches. First, a unique 

set of snow parameters for the entire basin was defined for model calibration using sub-basin averaged 

SWE values. The second approach aimed at considering the spatial variability of snow parameters, which 

defined a sub-basin specific set of snow parameters for calibrating the model with sub-basin averaged 

SWE. In the third and final procedure, in addition to sub-basin-averaged SWE values, we also utilized 

the station-specific information to calibrate the model. This last calibration approach is capable of 

reaching a good compromise that fits both SWE at the sub-basin level and the SWE specific to the 

stations. Currently, the third calibration procedure proposed in this work could be an easy and feasible 

option for the calibration of alpine snow processes. Moreover, a sub-basin-scale snow parameterization 

seems to be more suitable for models where the sub-basins display a large variability in elevation range. 

The use of elevation bands permits qualitatively comparing the SWAT EB-SWE results with the 

information available for each station. In this work, we also suggest possible modifications of the SWAT 

model structure to improve the representation of snow processes. In particular, a grid-based approach or 

the definition of elevation dependent HRUs and meteorological input can be effective solutions for an 

improved application of SWAT in alpine catchments. Moreover, the third calibration procedure could 

be jointly used with the traditional SWAT model calibration performed considering discharge. A 

comparison between multi-objective and single-objective calibration is outside the scope of this 

technical note, but it deserves further investigation (Hanzer et al. 2016, Rajib et al. 2016). 

 

  



 

 

Chapter 5  

A Multi-Objective Approach to Improve SWAT Model Calibration in Alpine 

Catchments4 

 

Multi-objective hydrological model calibration can represent a valuable solution to reduce model 

equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely 

applied to investigate water quality and water management issues in alpine catchments. However, the 

model calibration is generally based on discharge records only, and most of the previous studies have 

defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow 

observations to validate model results or have taken into account the possible variability of snow 

parameters for different subbasins. This work presents and compares three possible calibration 

approaches. The first two procedures are single-objective calibration procedures, for which all 

parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II 

differ from each other by the assumption used to define snow parameters: The first approach assigned a 

unique set of snow parameters to the entire basin, whereas the second approach assigned different 

subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective 

calibration, in which we considered snow water equivalent (SWE) information at two different spatial 

scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these 

approaches in the Upper Adige river basin where a dense network of snow depth measurement stations 

is available. Only the set of parameters obtained with this multi-objective procedure provided an 

acceptable prediction of both river discharge and SWE. These findings offer the large community of 

SWAT users a strategy to improve SWAT modeling in alpine catchments. 

 

 

 

 

 

4 Tuo, Y., Marcolini, G., Disse, M., Chiogna, G., 2018. A Multi-Objective Approach to Improve SWAT Model 

Calibration in Alpine Catchments. Journal of Hydrology, 559: 347-360. DOI: 10.1016/j.jhydrol.2018.02.055  
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5.1 Introduction 

Multi-objective calibration of hydrological models has proven useful in producing reliable predictions 

of several hydrological components and reducing model equifinality and uncertainty (Bekele and 

Nicklow, 2007; Hanzer et al., 2016; Lu et al., 2014; Pfannerstill et al., 2017; Rajib et al., 2016). Snow 

observations represent an optimal dataset to calibrate hydrological models in conjunction with 

streamflow since they are available in many alpine catchments in terms of snow depth values and often 

have higher spatial resolution than river discharge gauging stations. Moreover, snow dynamics play a 

key role in determining the seasonal characteristics of river discharge, which further affects other 

hydrology-related processes like erosion, hydropower operation, water supply, as well as flood 

prevention (Cunderlik and Ouarda, 2009; Pradhanang et al., 2011; Rahman et al., 2013; Zampieri et al., 

2013). Therefore, in order to conduct a comprehensive and reliable hydrological investigation in alpine 

catchments, it is not only important to focus on river discharge, but it is also necessary to accurately 

describe the snow processes (Endrizzi et al., 2006; Grusson et al., 2015; Hanzer et al., 2016; Troin and 

Caya, 2014; Warscher et al., 2013). Hence, a multi-objective calibration approach considering both 

discharge and snow measurements can be a feasible and useful method to improve the application of 

hydrological models, like the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), in alpine 

catchments. 

SWAT is one of the most comprehensive and applied hydrological models  (Abbaspour et al., 2015; 

Francesconi et al., 2016; Golmohammadi et al., 2017; Liu et al., 2016; Malagò et al., 2016; Shen et al., 

2012; Tuo et al., 2016). As outlined in the present work, SWAT adopts a specific approach to describe 

snow processes: the same snow water equivalent (SWE) value is assigned to all hydrological response 

units (HRU) in a subbasin, and this value is derived from the weighted sum of the SWE computed for 

each elevation band in a subbasin. Therefore, output time series of SWE are available at two spatial 

scales: for the entire subbasin (the average subbasin SWE) and for each elevation band.  

To the best of our knowledge, only a few studies have taken these two snow outputs into account to 

evaluate the performance of the SWAT snow module (Fu et al., 2014; Fu et al., 2015; Grusson et al., 

2015; Pradhanang et al., 2011) and no study has included the snow information of subbasin and elevation 

band scales into model calibration processes. Previous studies mostly assigned a unique set of snow 

parameters to an entire basin (e.g., Fu et al., 2014; Fu et al., 2015; Rahman et al., 2013) without 

considering the heterogeneous morphology encountered in large (>1000 km2) catchments (Egli, 2011; 

Egli and Jonas, 2009). Moreover, multi-objective model calibration has been attempted in SWAT, 

considering water quality, soil moisture, evapotranspiration, or glacier information along with 

streamflow (Abbaspour et al., 2007; Bekele and Nicklow, 2007; Cao et al., 2006; Lu et al., 2014; 
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Maringanti et al., 2011; Omani et al., 2017; Pfannerstill et al., 2017; Rajib et al., 2016; White and 

Chaubey, 2005), but snow data, which are very important information in snow-dominated catchments 

to represent snow dynamics, have rarely been used, due to the typical lack of SWE time series. In snow-

dominated catchments, SWAT model parameters are generally estimated using discharge records alone 

(e.g., Levesque et al., 2008; Rahman et al., 2013; Wang and Melesse, 2005). Since river discharge is the 

combination of the contributions of different hydrological components, calibration based on discharge 

alone can easily lead to the problem of model equifinality (Beven, 2006; Hanzer et al., 2016).  

In this work, for the first time in the framework of multi-objective SWAT model calibration, we take 

advantage of a simple empirical regression equation which has recently been proposed to convert snow 

depth data into snow water equivalent (Pistochhi, 2016). The conversion equation is useful since SWE 

is the typical variable modeled in hydrological models, while snow depth is the most common 

information about the snowpack. Daily SWE data of both subbasin and elevation band scales, are 

computed based on snow depth measurements and further applied in the multi-objective calibration 

procedure. We compare then three approaches to calibrate SWAT model parameters in alpine 

catchments. Two are classical single objective calibration procedures, while the third one is a novel 

multi-objective calibration. The novelties in the latter approach include the use of SWE data derived 

from snow depth measurements and the use of these SWE information at two spatial scales (subbasin 

and elevation band) to calibrate the model along with discharge. The possibility of modeling both 

discharge dynamics and changes in SWE allows us to verify whether it is possible to improve model 

performance in alpine catchments considering multiple datasets for calibration.  

The specific objectives of this study are to: 1) investigate the effect of using the same or different snow 

model parameters for different subbasins on model performance considering a single-objective 

discharge-based calibration procedure; 2) propose a multi-objective calibration procedure involving both 

discharge and two spatial scales of snow output for SWAT modeling in snow-dominated alpine 

catchments; 3) assess the model performances of single-objective and multi-objective procedures in the 

Upper Adige catchment, an important alpine basin in Northeast Italy; 4) compare the behavior of major 

hydrological components between the single-objective and multi-objective procedures. 

5.2 Material and method 

5.2.1 Study area  

The Upper Adige river basin closed at Bronzolo (6875 km2) is a typical Alpine catchment located in the 

Northeastern Italian Alps (Figure 5.1). It has a large elevation range (223 m a.s.l. - 3865 m a.s.l.) and is 

characterized by steep slopes and sharp hydro-climatic gradients (Callegari et al., 2015). From late 



 Chapter 5: A Multi-Objective Approach to Improve SWAT Model Calibration 

 

112 

 

October to April, snowfall is the dominant form of precipitation in this area, and the snow cover duration 

is elevation-dependent (Marcolini et al., 2017b). As a consequence, snowmelt water is the dominant 

contributor to streamflow in the spring (Mei et al., 2014; Mei et al., 2016; Penna et al., 2014). Land uses 

of the river basin are mainly forest (55.8 %), grassland and pasture (21.3 %), and barren land (11.5 %). 

The main soil types are loamy sand (45.5 %), silty clay (21.5 %), and sand (17.3 %). With 13 major 

hydropower plants present in the catchment, several subbasins are affected by hydropeaking (Figure 5.1). 

Further information about the catchment is provided in the recent review of Chiogna et al. (2016). 

 

Figure 5.1 The Upper Adige river basin.  

5.2.2 Computation of snow water equivalent values  
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Based on data availability for the period 2005-2010, we selected 44 snow measurement stations 

recording daily snow depth values in the Upper Adige river basin (Figure 5.1 and Table S5.1 in 

Supplementary material). These snow data represent a subset of the data used by Adler et al. (2015) and 

Marcolini et al. (2017b) to analyze climatic changes occurring in this region. The available time series 

have been quality checked and their homogeneity has been tested using the standard normal homogeneity 

test (Marcolini et al., 2017a).   

In order to make use of these snow data for SWAT model calibration, two types of SWE data were 

computed, starting with the available snow depth observations: the mean subbasin scale SWE (<

𝑆𝑢𝑏_𝑆𝑊𝐸 >) and the SWE of each station. A detailed description of the calculations is given in 

Appendix A; here, we illustrate the main steps of the procedure qualitatively. The subbasin scale SWE 

values were calculated from the mean snow depth data (HS) computed for each of the 20 subbasins 

(Figure 5.1) as follows. First, daily HS measurements were interpolated using a simple power law model 

to establish a correlation between HS and elevation. The interpolated values were then used to compute 

a mean subbasin snow depth, and finally these values were converted into SWE data using the equation 

suggested by Pistocchi (2016) for the temporal evolution of snow density. The SWE values for each 

snow station were computed by multiplying the snow depth observations by the temporal evolution of 

snow density according to the equation suggested by Pistocchi (2016). The computed < 𝑆𝑢𝑏_𝑆𝑊𝐸 > 

and the SWE of each station were then used to calibrate and validate the SWAT model. The <

𝑆𝑢𝑏_𝑆𝑊𝐸 > time series were compared to the subbasin SWE output of SWAT, while the SWE values 

for each snow station were compared qualitatively to the corresponding elevation band SWAT output.  

5.2.3 SWAT model 

5.2.3.1 Model description 

The SWAT model, developed by the Agricultural Research Service of the United States Department of 

Agriculture, is a comprehensive, time-continuous, semi-distributed, process-based model (Arnold et al., 

2012a; Arnold et al., 1998).  It can be used to model the water cycle, erosion, vegetation growth, and 

water quality in large river basins and to assess the effects of climate change and water resources 

management (Abbaspour et al., 2015; Dile et al., 2016; Yang et al., 2016). SWAT divides river basins 

into subbasins composed of HRUs, which are characterized by different combinations of land use, soil 

characteristics and topography. The hydrological cycle is calculated based on water balance, which is 

highly affected by climate input such as daily precipitation and maximum/minimum air temperature. 

Using daily input time series, SWAT simulates the daily, monthly and yearly fluxes of water and solutes 

in river basins. The water yield is routed through the streams and reservoirs along the river network. 
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Even though SWAT was originally developed to quantify the impact of land management practices in 

large, complex catchments, its application in mountainous river basins is not rare (Ahl et al., 2008; 

Debele et al., 2010; Grusson et al., 2015; Rostamian et al., 2008; Troin and Caya, 2014). It has, for 

example, been used to support regional water management practices such as flood control (Yang et al., 

2014), hydropower management (Malagò et al., 2015; Rahman et al., 2013) and assessment of climate 

change adaptation schemes (Pradhanang et al., 2011). SWAT uses the elevation band method to consider 

the orographic effects on precipitation and temperature in mountainous areas. Up to ten elevation bands 

can be defined in each subbasin. This method has been applied in several snow-dominated alpine 

catchments and proven useful and essential (Grusson et al., 2015; Malagò et al., 2015; Morán-Tejeda et 

al., 2014; Pradhanang et al., 2011; Rahman et al., 2013). In this work, six elevation bands were applied.  

5.2.3.2 Snow package 

The snow module of SWAT is based on the temperature-index approach (Hock, 2003; Neitsch et al., 

2011; Walter et al., 2005) and it is able to simulate changes in SWE for several user-defined elevation 

bands. Although more complex snow modules have been tested in previous studies, no significant 

improvement has been observed (Debele et al., 2010; Meng et al., 2015). 

SWAT provides snow output in the form of snowmelt and SWE with identical units of precipitation 

(Pradhanang et al., 2011). A detailed description and equations of the snow packages are available in the 

SWAT user’s manual (Neitsch et al., 2011). Among the snow parameters (Table 5.1), SMFMX should 

be larger than SMFMN in our study area, because SMFMX is the maximum melt factor in the Northern 

Hemisphere and the minimum melt factor in the Southern Hemisphere, which is explained in the SWAT 

I/O files (Arnold et al., 2012b). In SWAT, the user can choose to assign either a unique set of snow 

parameters to the entire basin or define a different set of snow parameters for each subbasin. For the 

latter case, the source code has to be modified: The files “readsub.f” and “readsno.f” contain an 

inappropriate constraint: negative and zero values of SFTMP and SMTMP are not allowed at the subbasin 

scale. This is contradictory to the SWAT official documentation (Arnold et al., 2012b), which defines 

the physical range for SFTMP and SMTMP between -5 and 5 (e.g. Grusson et al., 2015).  

SWAT output files provide SWE values for each elevation band in the output.snw file. In the following, 

we refer to this SWE output as EB-SWE (elevation band snow water equivalent). Each elevation band 

covers an area with a range of elevations, and the SWE depends on snow depth, which is elevation-

dependent. Therefore, the EB-SWE output cannot be calibrated to fit exactly with the data available for 

a single monitoring station. Still, a qualitative comparison is feasible. 

Snow outputs (snowmelt and SWE) are stored in the output.hru file at the HRU scale. SWAT assigns 

the elevation-weighted SWE value of the subbasin to all HRUs within a subbasin. Therefore, the same 
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SWE is assigned to each HRU. This SWE output of SWAT represents an average SWE value for the 

entire subbasin (detailed information is provided in the Supplementary material). This subbasin specific 

value can be used for model calibration by comparing it to the subbasin SWE that is computed using Eq. 

(A5). This SWE output in output.hru is hereafter referred to as Sub-SWE. Snowmelt values are not ideal 

for model calibration because their measurements are rarely available. 

Table 5.1 Description and initial calibration range of the calibrated snow parameters, elevation band 

parameters and hydrological parameters. The designation “a_” means an absolute increase. The other 

parameters without “a_” mean a replacement. 

Parameters Description Default Range 

SFTMP Snowfall temperature [°C] 1 0/4 

SMTMP Snowmelt base temperature [°C] 0.5 -5/5 

SMFMN Melt factor for snow on December 21 [mm H2O °C-

1day-1] 

4.5 1.5/7 

SMFMX Melt factor for snow on June 21 [mm H2O °C-1day-1] 4.5 1.5/7 

TIMP Snow pack temperature lag factor 1 0/1 

PLAPS Precipitation lapse rate [mm H2O /m] 0 0/0.15 

TLAPS Temperature lapse rate [°C/km] 0 -9/0 

SOL_AWC Available water capacity of the soil layer [mm H2O 

/mm soil] 

0.01-0.06 0/0.2 (“a_”) 

CN2 SCS runoff curve number 55-94 -20/4 (“a_”) 

ESCO Soil evaporation compensation factor 0.95 0/1 

GWQMN Threshold depth of water in the shallow aquifer 

required for return flow to occur [mm] 

1000 -300/300 

(“a_”) 

REVAPMN Threshold depth of water in the shallow aquifer for 

"revap" to occur [mm] 

750 -300/300 

(“a_”) 

GW_REVAP Groundwater "revap" coefficient 0.02 0.02/0.2 

GW_DELAY Groundwater delay [days] 31 0/300 

ALPHA_BF Baseflow alpha factor [days] 0.048 0/1 

SLSUBBSN Average slope length [m] 9.15-

15.24 

-9/115 

(“a_”) 

CH_N2 Manning's "n" value for the main channel 0.014 0/0.3 

CH_K2 Effective hydraulic conductivity [mm/hr] 0 0/400 

5.2.4 Model setup  

ArcSWAT 2012 (version 664), with an interface in ArcGIS, was used to set up the model for the Upper 

Adige river basin with 20 subbasins (Figure 5.1). The datasets used in the model are listed in Table 5.2. 

Based on the availability of snow data and discharge records, the model considered the time frame from 

2005 to 2010. All snow stations are located at a relatively low elevation, below 2000 m a.s.l. Due to the 

lack of high elevation stations, we cannot observe the effect described by Grünewald et al. (2014) in 
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which snow depth increases with elevation up to a certain altitude where it displays a distinct peak 

followed by a decrease at the highest elevations.  

In most subbasins, snow depth measurements are available for stations located at similar elevations 

(Table S5.1). Eight gauging stations (Figure 5.1) provide effective discharge records for the investigated 

time frame. Among them, five stations record the natural streamflow of four headwater subbasins (1, 2, 

7, 8, and 11), two (subbasins 3 and 4) are affected by the upstream subbasins, and one (subbasin 20) 

records the total streamflow behavior at the end of the entire basin. In this work, the simulations were 

performed at the daily scale.  

Table 5.2 Source of input data used in setting up the SWAT model and data used for calibration. 

Data type Scale Data source 

DEM 90 m × 90 m 
Shuttle Radar Topography Mission (SRTM) produced by 

Consortium for Spatial Information (CGIAR-CSI) 

Land use map 100 m × 100 m 
Corine Land Cover 2006 (CLC2006) from European 

Environment Agency 

Soil map 1 : 1500,000 

Data provided in the framework of Globaqua Project 

(Navarro-Ortega et al., 2015) following the procedure 

described in (Meyer et al. 2016) 

River 

network 
 

EU-DEM product http://www.eea.europa.eu/data-and-

maps/data/eu-dem. 

Climate input  
Autonomous Province of Bolzano 

(http://www.provincia.bz.it/meteo/home.as) 

Snow 

measurements 
 Autonomous Province of Bolzano (Adler et al., 2015) 

River 

discharge 
 Autonomous Province of Bolzano (Adler et al., 2015) 

5.2.5 Model calibration and evaluation  

In order to mitigate the effects of the initial conditions, a time frame of 516 days (01/01/2005 - 

05/31/2006) was used as a warm up period. Calibration began on 06/01/2006 and lasted until 05/31/2008, 

while validation was performed during the time period 06/01/2008 - 05/31/2010. The parameters to be 

calibrated (Table 5.1) were selected according to the one-at-a-time sensitivity analysis in SWAT-CUP 

(Abbaspour, 2015). Three calibration procedures were applied: I) All the parameters reported in Table 

5.1 were calibrated according to discharge records using an automatic calibration procedure, and basin-

scale snow parameters were estimated to assign the same set of values to the entire basin. II) All 
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parameters were calibrated automatically to reproduce the discharge measurements as in procedure I. 

Unlike procedure I, snow parameters were calibrated at the subbasin scale to consider the spatial 

variability of the snow processes. An additional manual calibration was required when automatic 

calibration led to unrealistic parameter sets. Such a step was necessary when SMFMX values that were 

estimated using automatic calibration were lower than SMFMN values, which is not correct for the 

Northern Hemisphere where the study area is located. III) Subbasin-scale snow parameters and the other 

parameters were calibrated manually so that the Sub-SWE output (Eq. (S5.1) in Supplementary material) 

fit the subbasin average SWE as defined in Eq. (A5) and the streamflow simulation fit the discharge 

records. Meanwhile, a qualitative comparison between EB-SWE and the SWE values computed for each 

monitoring station (Eq. (A3)) was also taken into account for parameter modification.  

Starting with the initial ranges of parameters reported in Table 5.1, the automatic calibration was 

performed with the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) (Abbaspour et al., 2004; 

Abbaspour et al., 2007) in SWAT-CUP (Abbaspour, 2015) to narrow down and target the effective range 

of each parameter. SUFI-2 is based on a semi-automated inverse modeling procedure with the 

implementation of a combined calibration-uncertainty analysis (Abbaspour, 2015). The initial parameter 

ranges were defined following the SWAT documentation (Arnold et al., 2012b) and studies of 

neighboring Alpine catchments (Grusson et al., 2015; Rahman et al., 2013). For each iteration, 1000 

simulations were run. After each iteration, the ranges of the parameters were modified and generally 

narrowed down according to both the suggested values of the program (Abbaspour et al., 2004; 

Abbaspour et al., 2007) and their initial limitations.  

The goodness of fit between the modeled and the observed discharge was computed for each gauged 

subbasin during both the calibration and validation periods. The goodness of fit between Sub-SWE and 

the subbasin average SWE defined in Eq. (A5) for each subbasin was calculated during both periods. 

Furthermore, the simulated EB-SWE was qualitatively compared to the data of each station belonging 

to a specific elevation band. The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), the 

coefficient of determination (R2), and the percent bias (PBIAS) (Gupta et al., 1999) were used as 

goodness of fit indicators for the best simulation (Eqs. (5.1) -(5.3), respectively): 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝐵𝑡−𝑆𝐼𝑀𝑡)

2𝑇
𝑡=1

∑ (𝑂𝐵𝑡−𝑂𝐵̅̅ ̅̅ )2
𝑇
𝑡=1

  
(5.1) 

𝑅2 =
[∑ (𝑂𝐵𝑡−𝑂𝐵̅̅ ̅̅ )(
𝑇
𝑡=1 𝑆𝐼𝑀𝑡−𝑆𝐼𝑀̅̅ ̅̅ ̅̅ )]

2

∑ (𝑂𝐵𝑡−𝑂𝐵̅̅ ̅̅ )2
𝑇
𝑡=1 ∑ (𝑆𝐼𝑀𝑡−𝑆𝐼𝑀̅̅ ̅̅ ̅̅ )2

𝑇
𝑡=1

  
(5.2) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂𝐵𝑡−𝑆𝐼𝑀𝑡)
𝑇
𝑡=1 ∗(100)

∑ (𝑂𝐵𝑡)
𝑇
𝑡=1

  
(5.3) 
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where 𝑂𝐵𝑡 is the SWE computed by Eq. (A5) or the observed discharge at time t; 𝑆𝐼𝑀𝑡 is the simulated 

SWE or the simulated discharge at time t; 𝑂𝐵̅̅ ̅̅  is the mean of SWE computed by Eq. (A5) or the mean 

of observed discharge values; and 𝑆𝐼𝑀̅̅ ̅̅ ̅ is the mean simulated SWE or discharge. 

NSE indicates the accuracy of the model output in comparison to the mean of the referred data (NSE = 

1 is the optimal value). R2 represents the trend similarity between the observed and the simulated data, 

and it ranges from 0 to 1. Higher values indicate better model performance. PBIAS indicates the average 

tendency of the simulations to be larger or smaller than the corresponding observations. The lower the 

PBIAS’s absolute value, the more accurate the model simulation (PBIAS=0 is the optimal value). 

Positive values stand for underestimation bias, and negative values represent overestimation bias (Gupta 

et al., 1999). A standard method to evaluate model performance is not available for daily SWE or daily 

discharge modeling results. In this work, we followed the recommendations of Moriasi et al. (2007) 

developed for monthly discharge values: unsatisfactory performance (NSE≤0.50), satisfactory 

performance (0.50<NSE≤0.65), good performance (0.65<NSE≤0.75), and very good performance 

(0.75<NSE≤1.00). The values of R2 and PBIAS were used to compare model performances.  

In order to evaluate the model performance of reproducing snow pack characteristics, the mean absolute 

percentage error (MAPE) of snow cover duration (SCD, i.e., the number of days with HS>0 m), snow 

peak value (SPV, i.e., the maximum HS between June 1st and May 31st) and snow peak day (SPD, i.e., 

the day when SPV occurs) were calculated for the entire river basin as follows: 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝐴𝑡−𝑆𝑡

𝐴𝑡
|𝑁

𝑡=1   (5.4) 

where 𝐴𝑡 is the SCD/SPV/SPD calculated based on the SWE value converted from Eq. (A5) of subbasin 

t, and 𝑆𝑡 is the SCD/SPV/SPD calculated based on the simulated SWE value of subbasin t.  

5.3 Results 

In the following, we will focus on model results for subbasins 2 and 20. We chose these two subbasins, 

because the first is a headwater not affected by hydropeaking, and the second integrates the processes 

occurring in the entire river basin, and it is not heavily affected by hydropeaking. Graphic results are 

displayed for calibration procedures II and III in order to focus on the comparison between the single-

objective and multi-objective calibration strategies. Model performances for all three calibration 

procedures and all subbasins are provided in tables. 

5.3.1 Model performance using calibration procedure I 

As shown in Table 5.3, calibration procedure I resulted in at least satisfactory model performances 

(NSE>0.5) in simulating river discharge during the calibration period. During validation, the discharge 
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of all gauged subbasins, except for subbasins 7 and 11, were also well reproduced with NSE>0.5.  

Comparing simulated and observed river discharge for all gauging stations and for the entire simulation 

period (Figure 5.2a), a close fit was observed with an R2 value of 0.92. Underestimation of streamflow 

occurred for river discharge values larger than 250 m3/s. The mean absolute value of PBIAS for 

streamflow was 8.42 % considering the entire period (Table 5.3). Despite the good performance in 

reproducing river discharge, the agreement between Sub-SWE and the subbasin averaged SWE was 

unsatisfactory (NSE<0.5) for most subbasins (70 % of the subbasins during the calibration period and 

50 % during the validation period). In addition, the absolute values of PBIAS for Sub-SWE were higher 

than 50 % for 65 % of the subbasins during calibration and for 50 % of the subbasins during validation. 

Considering the entire period and all subbasins, poor agreement was shown between the Sub-SWE and 

the SWE computed according to Eq. (A5) (Figure 5.2d). Thus, the parameters of procedure I calibrated 

according to discharge were able to reproduce river discharge but failed to capture the behavior of SWE 

at the subbasin scale. 

Table 5.3 Calibration and validation performance of both SWE and discharge with the calibrated 

parameters of procedure I. 

 Calibration period Validation period 

Subbasin  NSEDIS R2
DIS PBIASDIS NSESWE R2

SWE PBIASSWE NSEDIS R2
DIS PBIASDIS NSESWE R2

SWE PBIASSWE 

1 0.68 0.69 7.60 -2.11 0.40 -147.70 0.60 0.63 14.60 0.12 0.65 -73.50 

2 0.67 0.72 9.80 -1.43 0.56 -147.00 0.67 0.71 11.20 0.33 0.77 -71.50 

3 0.76 0.81 5.30 -1.17 0.48 -128.50 0.70 0.75 14.50 0.61 0.71 -34.80 

4 0.83 0.86 -3.40 0.81 0.82 4.90 0.80 0.81 -2.20 0.61 0.63 23.00 

5 ― ― ― 0.80 0.86 -20.20 ― ― ― 0.84 0.89 -18.00 

6 ― ― ― -0.17 0.73 -92.90 ― ― ― 0.80 0.85 -27.50 

7 0.54 0.57 -2.50 -0.53 0.48 -108.40 0.31 0.37 10.40 0.19 0.70 -80.70 

8 0.72 0.73 -5.90 -0.88 0.52 -104.60 0.65 0.68 -14.40 -0.80 0.64 -114.10 

9 ― ― ― 0.91 0.91 0.10 ― ― ― 0.87 0.91 -17.80 

10 ― ― ― -0.45 0.06 99.60 ― ― ― -0.41 0.09 93.90 

11 0.66 0.68 0.60 0.66 0.68 -8.60 0.32 0.47 -14.20 0.95 0.95 -7.30 

12 ― ― ― -0.42 0.43 -96.40 ― ― ― 0.35 0.63 -59.30 

13 ― ― ― -14.79 0.61 -440.30 ― ― ― -6.58 0.81 -292.90 

14 ― ― ― -0.36 0.24 97.10 ― ― ― -0.16 0.41 84.20 

15 ― ― ― -0.10 0.55 87.20 ― ― ― 0.25 0.75 67.90 

16 ― ― ― 0.68 0.85 -41.20 ― ― ― 0.64 0.88 -50.90 

17 ― ― ― 0.09 0.59 80.80 ― ― ― 0.89 0.92 18.30 

18 ― ― ― -0.02 0.34 81.00 ― ― ― 0.80 0.87 32.30 

19 ― ― ― 0.58 0.78 38.80 ― ― ― 0.92 0.93 7.40 

20 0.73 0.82 11.50 -0.25 0.18 94.40 0.74 0.82 6.60 0.77 0.83 35.00 
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Figure 5.2 Scatterplots of the simulated discharge against the observed discharge of all the gauged 

subbasins (a-c: calibration procedures I-III) and the simulated Sub-SWE against the subbasin average 

SWE converted from Eq. (A5) of all the subbasins (d-f: calibration procedures I-III). 

5.3.2 Model performance using calibration procedure II 

Calibration procedure II differs from calibration procedure I in that it defines subbasin specific snow 

parameters. The calibrated parameters of procedure II showed performances as good as procedure I in 

simulating river discharge during both calibration and validation periods (Table 5.4). This procedure 

also obtained unsatisfactory performances during validation for subbasins 7 and 11.  Still, the R2 value 

between model simulation and all available streamflow observations (Figure 5.2b) was equal to 0.91. In 

this case, the model underestimated streamflow with values larger than 300 m3/s.  Considering the entire 

period, the mean absolute value of PBIAS was 7.75 % for streamflow simulations. With respect to the 

subbasin SWE, unsatisfactory results (NSE<0.5) were obtained for 70 % of the subbasins during 

calibration and 50 % of the subbasins during validation. The absolute value of PBIAS higher than 50 % 

occurred for 65 % of the subbasins during calibration and 50 % of the subbasins during validation. As 

shown in Figure 5.2e, poor agreement was also observed between all the Sub-SWE and the subbasin 

averaged SWE. Generally, no improvements were observed in simulating the subbasin averaged SWE 

even though different sets of snow parameters were assigned to each subbasin to consider local 
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differences in snow dynamics. Also, in this case, the model calibrated according to discharge was only 

able to reproduce streamflow dynamics adequately. 

Table 5.4 Calibration and validation performance of both SWE and discharge with the calibrated 

parameters of procedure II. 

 Calibration period Validation period 

Subbasin  NSEDIS R2
DIS PBIASDIS NSESWE R2

SWE PBIASSWE NSEDIS R2
DIS PBIASDIS NSESWE R2

SWE PBIASSWE 

1 0.69 0.70 -7.70 -2.17 0.44 -147.80 0.62 0.64 -2.30 0.21 0.71 -72.10 

2 0.58 0.64 15.90 -3.67 0.47 -220.40 0.68 0.73 16.50 -0.18 0.76 -105.80 

3 0.73 0.77 -1.20 0.28 0.75 -66.20 0.66 0.70 7.30 0.74 0.75 12.20 

4 0.78 0.81 -8.60 0.81 0.81 4.20 0.75 0.76 -7.20 0.57 0.62 15.50 

5 ― ― ― 0.82 0.83 -8.40 ― ― ― 0.72 0.79 -15.90 

6 ― ― ― 0.02 0.75 -85.60 ― ― ― 0.85 0.87 -21.00 

7 0.57 0.59 1.90 -0.60 0.45 -117.70 0.23 0.34 13.20 0.19 0.67 -81.70 

8 0.72 0.75 -5.70 -1.15 0.52 -114.80 0.68 0.76 -16.90 -1.02 0.65 -122.70 

9 ― ― ― -4.29 0.39 -230.50 ― ― ― -0.52 0.61 -120.10 

10 ― ― ― 0.10 0.64 -78.60 ― ― ― 0.64 0.82 -49.20 

11 0.64 0.71 0.20 0.63 0.66 -12.60 0.34 0.49 -13.10 0.95 0.95 3.00 

12 ― ― ― 0.26 0.48 -48.90 ― ― ― 0.55 0.65 -38.30 

13 ― ― ― -5.27 0.80 -252.60 ― ― ― -2.99 0.90 -193.90 

14 ― ― ― -0.19 0.40 90.10 ― ― ― -0.02 0.32 73.90 

15 ― ― ― -0.37 0.19 97.60 ― ― ― -0.37 0.17 91.90 

16 ― ― ― 0.76 0.82 31.80 ― ― ― 0.78 0.80 -1.10 

17 ― ― ― 0.68 0.69 15.50 ― ― ― 0.17 0.87 -80.00 

18 ― ― ― 0.37 0.81 -63.90 ― ― ― 0.34 0.92 -67.10 

19 ― ― ― 0.78 0.81 18.90 ― ― ― 0.83 0.91 -21.80 

20 0.77 0.79 3.60 0.24 0.57 68.50 0.77 0.79 -2.70 0.82 0.87 -15.40 

Figure 5.3 and Figure 5.4 show the detailed model performances of subbasins 2 and 20, respectively. 

We focused on river discharge, subbasin scale SWE, and elevation band scale SWE compared to 

monitoring station values. The daily discharge behavior obtained using the calibrated parameters of 

procedure II was well captured at subbasin 2 (Figure 5.3a). Most of the peaks were closely reproduced, 

while base flow was slightly underestimated. In contrast, the subbasin averaged SWE values were 

overestimated (Figure 5.3c) with on average 59 % longer snow seasons. This result indicates that a much 

larger amount of snow accumulation was simulated at subbasin 2 in comparison to the subbasin averaged 

SWE reference. A larger amount of snow accumulated in the subbasin lead to a large amount of 

snowmelt water contributing to the discharge during the melting season. The EB-SWE of lower elevation 

areas (bands 1 and 2) well matched the SWE values (computed converting measured HS values using 

Eq. (A3)) of the three available snow stations in subbasin 2 (Figure 5.3e and 5.3g). As previously 

mentioned, EB-SWE is a representative value for a range of elevations, whereas the station observation 

can only represent one point among these elevations. The SWE time series of the snow stations at 

subbasin 2 were considered to be well reproduced by the model. For the higher elevation areas (band 3-

6) of subbasin 2, no snow stations were available. The simulated EB-SWE values are displayed in Figure 



 Chapter 5: A Multi-Objective Approach to Improve SWAT Model Calibration 

 

122 

 

5.3i. The highest elevation area (band 6), in particular, displayed a much larger SWE amount and longer 

snow cover duration than the other elevation bands. In fact, the Sub-SWE is the weighted mean of the 

EB-SWE of all the elevation bands (Eq. (S5.1)). Therefore, the overestimation of Sub-SWE observed in 

subbasin 2 (Figure 5.3c) could be explained by the overestimation of SWE at elevation bands 3 through 

6 (Figure 5.3i). 

Considering subbasin 20, the simulated discharge reproduced the general behavior of the observations 

well (Figure 5.4a). Daily fluctuations stemming from hydropeaking were not captured since the reservoir 

module was not used in the model due to the lack of information about reservoir management. Figure 

5.4c displays the subbasin SWE of subbasin 20. The snow-covered periods were well captured. The 

simulation underestimated the subbasin scale SWE during the calibration period. During validation, 

simulated Sub-SWE fit quite well with the SWE of the 2008-2009 snow season, but overestimated the 

maximum SWE values for the snow season 2009-2010. Regarding the EB-SWE simulations, they 

matched with the SWE of the monitoring station “MOELTEN” during the first three snow seasons 

(2006-2009), but they were much higher than the station SWE values for the snow season 2009-2010. 
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Figure 5.3 Model performance of the calibrated parameters for both calibration procedures II and III at 

subbasin 2. a-b: discharge; c-d: subbasin SWE; e-h: qualitative comparison between the SWE values of 

each snow station converted using Eq. (A3) and the EB-SWE output of the corresponding elevation 

bands; i-j: EB-SWE of the higher elevation areas where there are no stations (the dotted line divides the 

calibration and validation periods). 
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Figure 5.4 Model performance of the calibrated parameters of both calibration procedures II and III at 

subbasin 20. a-b: discharge; c-d: subbasin SWE; e-h: qualitative comparison between the SWE values 

of snow station converted using Eq. (A3) and the EB-SWE output of the corresponding elevation band 

(the dotted line divides the calibration and validation periods). 

5.3.3 Model performance using calibration procedure III 

A third calibration procedure was developed to meet both good performances in subbasin SWE and river 

discharge simulations, as well as suitable matches between EB-SWE and SWE values obtained 

converting the HS observations of the corresponding snow stations. This procedure was able to 

reproduce both subbasin SWE and river discharge properly (Table 5.5). The simulated river discharge 

values fit well with the observations, as shown by the at least satisfactory model performances (NSE>0.5) 

for all the gauged subbasins during both the calibration and validation periods (Table 5.5). Procedure III 

appeared to lead to a more accurate set of model parameters than procedures I and II, since subbasins 7 

and 11 also displayed satisfactory results during the validation period. Such a conclusion, however, 

should be supported by a systematic comparison to be performed in a larger set of alpine river basins. In 

addition, the scatterplot displayed in Figure 5.2c shows good agreement between observed and simulated 

values (R2=0.89). Underestimation of river discharge was observed for values larger than 300 m3/s 
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(Figure 5.2c). The mean absolute value of PBIAS for streamflow simulations was 4.63 %. The agreement 

between Sub-SWE and the subbasin averaged SWE was at least satisfactory (NSE>0.5) for all 20 

subbasins during both the calibration and validation periods (Table 5.5). Good model performance 

(0.65<NSE≤0.75) was achieved for 75 % of the subbasins during calibration and 75 % of the subbasins 

reached very good model performance (0.75<NSE≤1.00) during validation. In addition, absolute PBIAS 

values were smaller than 50 % during the entire simulation period for 95 % of SWE. Considering the 

entire period and all subbasins, close agreement was reached between Sub-SWE and the subbasin 

averaged SWE with an R2 of 0.85 (Figure 5.2f). The multi-objective based calibration procedure was 

able to capture the behavior of both river discharge and averaged SWE of each subbasin well. 

Table 5.5 Calibration and validation performance of both SWE and discharge with the calibrated 

parameters of procedure III. 

The model performance of procedure III for subbasins 2 and 20 is also displayed in Figure 5.3 and Figure 

5.4. For subbasin 2, the multi-objective calibrated parameters led to a good fit between simulated and 

observed discharge values (Figure 5.3b). Most peaks and base flow were well estimated. The simulated 

Sub-SWE fit quite well with the subbasin average SWE, capturing the length of the snow seasons and 

providing a satisfactory estimate of the SWE amount (Figure 5.3d). EB-SWE simulation results for 

bands 1 and 2 (Figure 5.3f and 5.3h) were similar to those obtained in procedure II. A noticeable 

difference between model results obtained using procedure II and procedure III was observed for 

elevation bands from 3 to 6. Using calibration procedure III, snow cover duration (Figure 5.3j) did not 

 Calibration period Validation period 

Subbasin  NSEDIS R2
DIS PBIASDIS NSESWE R2

SWE PBIASSWE NSEDIS R2
DIS PBIASDIS NSESWE R2

SWE PBIASSWE 

1 0.65 0.66 -2.60 0.50 0.69 -34.60 0.53 0.54 6.10 0.86 0.87 -12.40 

2 0.66 0.67 -3.60 0.54 0.86 -59.20 0.61 0.63 3.60 0.82 0.94 -34.10 

3 0.63 0.63 -2.80 0.70 0.88 -40.20 0.50 0.52 9.60 0.75 0.76 14.60 

4 0.70 0.73 -9.80 0.59 0.76 -37.10 0.57 0.59 -1.80 0.67 0.69 -0.70 

5 ― ― ― 0.84 0.84 4.30 ― ― ― 0.78 0.78 9.70 

6 ― ― ― 0.86 0.89 -8.90 ― ― ― 0.91 0.92 9.10 

7 0.76 0.84 -6.90 0.75 0.82 -29.50 0.63 0.70 11.40 0.77 0.86 -33.10 

8 0.63 0.63 -2.70 0.74 0.85 -30.80 0.50 0.52 -7.10 0.51 0.97 -62.10 

9 ― ― ― 0.87 0.88 9.30 ― ― ― 0.88 0.91 -13.50 

10 ― ― ― 0.73 0.78 27.70 ― ― ― 0.82 0.83 5.00 

11 0.73 0.77 -2.50 0.64 0.70 -19.10 0.56 0.59 -0.70 0.92 0.93 -9.90 

12 ― ― ― 0.78 0.82 -17.50 ― ― ― 0.89 0.89 -5.10 

13 ― ― ― 0.82 0.90 26.50 ― ― ― 0.84 0.90 -17.30 

14 ― ― ― 0.88 0.91 9.70 ― ― ― 0.77 0.81 -11.00 

15 ― ― ― 0.80 0.80 -9.30 ― ― ― 0.87 0.88 -9.60 

16 ― ― ― 0.78 0.85 32.80 ― ― ― 0.83 0.86 -9.10 

17 ― ― ― 0.78 0.81 19.90 ― ― ― 0.61 0.88 -51.80 

18 ― ― ― 0.88 0.88 3.50 ― ― ― 0.62 0.96 -47.00 

19 ― ― ― 0.75 0.83 27.00 ― ― ― 0.93 0.94 -8.50 

20 0.71 0.71 0.20 0.60 0.74 44.80 0.70 0.70 -2.70 0.84 0.92 -23.40 
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increase as much as when using calibration procedure II, leading to an improved agreement between 

Sub-SWE and subbasin average SWE. 

For subbasin 20, the simulated discharge fit well with the observations (Figure 5.4b) except for the 

fluctuations during the winter season caused by hydropeaking. Although the subbasin mean SWE values 

displayed a large variability between calibration and validation periods, the model calibrated using 

procedure III closely followed the observations (Figure 5.4d). The simulated snow seasons matched well 

the values computed using Eq. (A5). Figure 5.4f shows a close match between simulated EB-SWE and 

the SWE of the snow station converted using Eq. (A3). Calibration procedure III allows us to reproduce 

SWE and streamflow appropriately, both in low snow accumulation years and in high snow 

accumulation years.  

5.3.4 Validation of SWAT model results against snow depth observations 

A final validation step was implemented to compare the HS observations of the 40 snow gauges within 

the basin (Figure 5.1) to the model results obtained using calibration procedure II and III. The SWE time 

series of the model output were converted into HS values using Eqs. (A3) and (A4). To simplify the 

comparison, we classified the observations and the corresponding model results into six classes 

according to 300 m elevation intervals (i.e., class 1 stations from 300 m a.s.l. to 600 m a.s.l., class 2 from 

600 m a.s.l. to 900 m a.s.l. and so on). We then computed the mean snow depth between November 1st 

and April 30th for the entire simulation period (<HS>) for each elevation class. As shown in Figure 5.5, 

observed <HS> values presented a positive correlation with the elevations, which can be reproduced 

with a power law as given in Eq. (A1). The model results of procedure III captured very well the mean 

behavior of the observations of the elevation areas for classes 2 through 5, where 82.5 % of the snow 

stations were located (Table S5.1), while slight deviations were observed for classes 1 and 6. Results of 

procedure II captured well the mean behavior of the observations for classes 3 and 4, corresponding to 

57.5 % of the snow stations (Table S5.1). It is particularly relevant to observe that calibration procedure 

II performed poorly for class 5 (1500 m a.s.l. - 1800 m a.s.l.). This is the most sensitive elevation for 

snow variability in the Adige catchment, as evidenced by Marcolini et al. (2017b). Therefore, procedure 

III performed better in reproducing the observed snow dynamics than procedure II.  
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Figure 5.5 Comparison between the mean values of observed HS for the available stations at various 

elevation ranges and the mean values of SWAT simulation results converted into HS using Eqs. (A3) 

and (A4). 

As shown in Table 5.6, evident differences were observed between the multi-objective and single-

objective calibration procedures in reproducing snow pack characteristics, such as snow cover duration 

(SCD), snow peak value (SPV) and snow peak day (SPD). The two single-objective procedures (I and 

II) led to similar errors for all three snow characteristics during both the calibration and validation 

periods. Their values were higher than those obtained by the multi-objective approach (III). Among them, 

MAPE values of SCD and SPV obtained by procedure I and II were three and two times higher, 

respectively, than the corresponding values obtained using procedure III. The MAPE values of SPD 

were close among the results of the three procedures, and procedure III still led to the smallest values. 

Generally, procedure III performed better in reproducing the snow pack characteristics than procedures 

I and II. The absolute percentage error of SCD, SPV and SPD for each subbasin are provided in the 

Supplementary material (Table S5.2-S5.4) for all calibration procedures. 

Table 5.6 Mean absolute percentage error of snow pack characteristics: snow cover duration (SCD), 

snow peak value (SPV) and snow peak day (SPD) for the three calibration procedures. 

 Calibration Validation  

 I II III I II III 

MAPESCD (%) 44.0 37.7 8.4 31.5 30.4 8.8 

MAPESPV (%) 51.5 43.3 19.3 30.9 31.2 12.0 

MAPESPD (%) 9.3 10.6 7.9 3.1 3.5 1.0 
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5.4 Discussion 

5.4.1 Effect of different snow parameterizations on discharge-based, single-objective calibration  

Table 5.3, Table 5.4 and Figure 5.2 show that the set of parameters obtained using calibration procedures 

I and II both led to equally good performances in simulating the river discharge but failed to reproduce 

the subbasin average SWE in most subbasins. The definition of subbasin specific snow parameters in 

procedure II led to a higher R2 (Figure 5.2d and 5.2e) and smaller MAPE of SCD and SPV (Table 5.6) 

than procedure I. However, the improvements were minor. Therefore, we can conclude that assigning 

subbasin specific snow parameters does not significantly improve the model performance of snow 

simulations when calibrating all model parameters according to river discharge records. Considering a 

single-objective calibration procedure, the defined set of subbasin specific snow parameters could still 

not fit the specific snow conditions of each subbasin. Moreover, river discharge in subbasins 3, 6, 9, 10, 

12, 14, 15, and 17 was highly affected by hydropeaking, which cannot be reproduced by our hydrological 

model due to the lack of input data. Using discharge-based single-objective calibration, the identified 

optimal set of snow parameters was also influenced by this source of uncertainty. Thus, the model 

calibrated according to discharge only could not properly capture the snow observations in the Upper 

Adige catchment. Therefore, the SWAT model calibrated using a single-objective approach was not able 

to reproduce both snow and discharge dynamics, independently of the scale at which snow parameters 

were defined.   

5.4.2 Importance of applying a multi-objective calibration procedure in alpine catchments  

Calibration procedures I and II displayed quite similar model performances. We will now focus only on 

procedure II in comparison to procedure III, since they both define subbasin specific snow parameters. 

The multi-objective calibration approach offered using procedure III resulted in much better model 

performances than the single-objective procedure, especially in reproducing snow dynamics. 

As shown in Table 5.3-5.5, the calibrated parameters of procedure III led to acceptable simulations for 

streamflow in all gauged subbasins during the entire period. In contrast, procedure II could not reproduce 

the discharge of subbasins 7 and 11 during validation. More importantly, the use of procedure III allowed 

us to simulate the subbasin SWE of each subbasin properly with at least satisfactory performance, while 

the use of a single-objective procedure failed to reproduce SWE adequately in most subbasins. Moreover, 

including snow data during calibration allowed us to reproduce important properties better, such as snow 

cover duration in the catchment and peak snow accumulation (Table 5.6).  

Considering the overall performance of the models, both calibration procedures were able to reproduce 

the discharge records with similar R2 (Figure 5.2b and 5.2c). The underestimation of high streamflow 
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discharge values could be ascribed to the impact of river damming. Without data to implement the 

reservoir module, all these models were not able to simulate the high discharge and hydropeaking effects 

properly.  

The comparisons of model performances in subbasins 2 and 20 further illustrated the positive effect of 

using a multi-objective calibration approach. As shown in section 5.3, subbasin 2 represented a 

headwater subbasin with natural flow and subbasin 20 represented the outlet of the river basin. In 

addition, subbasin 2 was a snow-dominated alpine subbasin with high elevation areas, and subbasin 20 

was dominated by low elevation areas (< 800 m). Based on the hydrographs, procedures II and III 

presented an equally good ability in simulating the discharge time series for both subbasins (Figure 5.3a 

and 5.3b, and Figure 5.4a and 5.4b). However, SWE simulations were quite different between the two 

procedures at both the high elevation and the low elevation subbasins. This can lead to distinct 

interpretations about the hydrological modeling behaviors caused by different calibration approaches. In 

subbasin 2 (Figure 5.3), procedures II and III performed equally well in qualitatively matching the SWE 

of snow stations converted using Eq. (A3), but different subbasin average SWE were obtained. 

Procedure II led to a large overestimation of the subbasin SWE and much longer snow seasons due to 

the overestimation of SWE for high elevations (Figure 5.3i). Procedure III led to a close fit between Sub-

SWE and subbasin averaged SWE references, although the amounts of subbasin SWE were very 

different between calibration and validation periods (the values of SWE during validation were almost 

twice as high as the calibration values). As a consequence, the contribution of snowmelt to streamflow 

was very different in the model that was calibrated using the single-objective calibration procedure 

compared to the multi-objective procedure. This was shown by comparing the snowmelt results of the 

two procedures (Figure 5.6a and Figure 5.7). The cumulated snowmelt simulated by calibration 

procedure II reached 2333 mm, which was almost twice as much as the amount simulated by procedure 

III during the entire period (Figure 5.7). The simulated and observed cumulative discharge in the case 

of procedure III fit closely (Figure 5.7). Despite the larger snowmelt contribution to streamflow, the 

results of procedure II still underestimated the cumulative behaviors of discharge records (Figure 5.7a). 

These results show that although the simulated discharge values may look reasonable, they can be 

inaccurate in terms of the relative contribution of runoff components. In other words, the multi-objective 

calibration approach reduced model equifinality (Beven, 2006; Hanzer et al., 2016). Considering 

subbasin 20 (Figure 5.4), there was no significant difference between the simulated Sub-SWE of 

procedure II and procedure III, although improvements were observed during the calibration period of 

procedure III. The predicted snowmelt was similar between the two procedures as observed in Figure 

5.6b. In this low elevation subbasin, however, the contribution of snowmelt was not as relevant as for 

subbasin 2. In general, the snow and elevation band parameters obtained using procedure III allowed us 
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to reproduce snow dynamics at both subbasin and elevation band spatial scales better than those of 

procedure II, since snow data were considered during model calibration. Moreover, a multi-objective 

model calibration allowed us to obtain a more robust estimate of snow parameters than a single-objective 

calibration in subbasins affected by hydropeaking. The lack of data to implement the reservoir module 

of SWAT led to inaccurate streamflow predictions in subbasins affected by hydropower production, 

which consequently affected the snow parameters that were calibrated according to river discharge. 

Lastly, the final validation of section 5.3.4 from another perspective further confirmed the better snow 

dynamic simulation ability of calibration procedure III compared to procedure II, which closely matched 

the snow measurements of the river basin. 

 

Figure 5.6 Comparison of the snowmelt behaviors of procedures II and III at subbasin 2 (a) and subbasin 

20 (b) (the dotted line divides the calibration and validation periods). 
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Figure 5.7 Cumulative curve of precipitation, snowmelt water and discharge at subbasin 2 of calibration 

procedures II (a) and III (b) (the dotted line divides the calibration and validation periods). 

The way SWAT models snow processes, the computation of subbasin mean SWE and the conversion 

from HS to SWE present some limitations, which to some extent justify the discrepancy between SWE 

model results and observations. First, the snow module of SWAT uses a non-distributed, temperature 

index-based approach (Neitsch et al., 2011), whereas in reality, snow dynamics are highly dependent on 

several site-specific conditions such as exposure to wind, land cover, and solar radiation (Endrizzi et al., 

2006; Hiemstra et al., 2002). Moreover, the uncertainty in estimating SWE by the equation proposed by 

Pistocchi (2016) is about 13 %. We should also consider the uncertainty of the climate and temperature 

input in mountainous regions (Duan et al., 2016; Tuo et al., 2016), the epistemic uncertainty of the model 

structure (Abbaspour et al., 2007) and of the snow package itself, and the uncertainty propagated from 

hydropower operation (Majone et al., 2016). 

5.5 Conclusion 

Modeling snow processes is of great importance in snow-dominated alpine river basins like the Upper 

Adige river basin. A discharge-based, single-objective calibration approach is not capable of simulating 

snow dynamics reasonably well, regardless of whether the spatial variability of snow parameters is 

considered in the parameterization or not. By referring to river discharge alone, the model has a high 

chance of obtaining streamflow simulations that are in good agreement with the observations but are 
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composed of unreliable contributions of different hydrological processes. In the end, this would result 

in inappropriate considerations for water resources management plans and policies.   

Due to the rapid development of measurement devices and remote sensing techniques, snow data are 

available or become available for many snow-dominated alpine basins and therefore represent an optimal 

dataset for model calibration to integrate streamflow observations. The multi-objective calibration 

procedure proposed in this work was based on the inclusion of SWE time series in the calibration 

procedure of SWAT. Measurements of SWE values are rare in alpine catchments and continuous SWE 

time series are generally not available. To overcome this important limitation, in the multi-objective 

calibration approach we used the simple empirical equation proposed by Pistocchi (2016) to convert 

snow depth observations into SWE values. Moreover, SWE time series at both the subbasin and the 

elevation band scales were computed, which allowed us to take advantage of the SWAT model structure 

to reproduce the spatial variability of snow dynamics properly. One disadvantage of the multi-objective 

calibration procedure compared to the single-objective approach is the time required for model 

calibration. As a payoff, however, model predictions are much more robust and reliable, which in the 

end is the most important goal to be achieved by a hydrological model. 

The multi-objective calibration procedure was superior to the single-objective procedures.  We therefore 

conclude that it is crucial to apply a multi-objective calibration procedure in hydrological modeling of 

alpine catchments, since: 1) When snow data of different spatial scales were included in the calibration, 

the multi-objective procedure was able to capture snow dynamics very well. As a major hydrological 

component, an improved simulation of snow dynamics is fundamental for alpine hydrology. 2) Multi-

objective calibration also reproduced river discharge properly, not only by fitting the observations very 

well in terms of statistical metrics and hydrographs, but also by simulating discharge with a reasonable 

snowmelt contribution. Multi-objective calibration hence allowed us to reduce model equifinality and 

uncertainty. 3) We believe that a multi-objective calibration procedure could reduce the parameter 

uncertainty that is propagated from hydropeaking effects by providing more reasonable and reliable 

snow and elevation band parameters according to snow data of different spatial scales. To better explore 

this point, however, a specific uncertainty analysis should be performed in the future with the support of 

hydropower operation data, but it is beyond the scope of this work. Finally, to facilitate multi-objective 

modeling applications in snow-dominated catchments, the automatic calibration software SWAT-CUP 

(Abbaspour, 2015) could be further developed. In particular, an automatic rejection criterion could be 

introduced when the parameter set converges to a maximum snowmelt factor smaller than the minimum 

snowmelt factor. Moreover, it would be useful to allow the user to select the elevation band scale SWE 

result as target variable for calibration. 
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Appendix A 

Computation of mean subbasin snow depth 

López-Moreno and Nogués-Bravo (2006) showed that among various local, geostatistical and global 

methods used to interpolate snow depth data at the catchment scale, global methods (e.g., linear 

regression and generalized additive models) have the best performance. Moreover, several studies have 

indicated that snow depth shows the strongest correlation with elevation (López-Moreno and Nogués-

Bravo (2006), Grünewald et al. (2014)). In this study, we applied a simple power law model to establish 

a correlation between all available snow depth measurements in the catchment at a given day and 

elevation (h): 

𝐻𝑆 = 𝑎 · ℎ𝑏                                                                                                                         (A1) 

The parameters a and b were estimated at the daily scale. This simple interpolation scheme allowed us 

to obtain results that were comparable to those obtained by López-Moreno and Nogués-Bravo (2006). 

The mean subbasin snow depth <Sub_HS> was then computed as a weighted mean for each subbasin: 

< 𝑆𝑢𝑏_𝐻𝑆 >= ∫ 𝐻𝑆 ∙ ℎ̃
ℎ𝑚𝑎𝑥

0
(ℎ)𝑑ℎ                                                                                    (A2) 

where ℎ̃ is the probability density function of the elevation in each subbasin and hmax is the maximum 

subbasin elevation. 

Conversion of snow depth measurements into snow water equivalent values 

Snow depth values can be converted into SWE [kg/m2] values by multiplying them by the snow bulk 

density 𝜌 [kg/m3]: 

𝑆𝑊𝐸 = 𝐻𝑆 · 𝜌                                                                                                                       (A3) 

Several empirical methods, specific for a given geographic region, have been proposed to convert HS 

values into SWE values, estimating the temporal variability of the snow bulk density (e.g., Jonas et al., 

2009; McCreight and Small, 2014; Pistocchi, 2016; Sturm et al., 2010). For the Upper Adige catchment, 

the following equation was proposed by Pistocchi (2016): 

𝜌 = 200 + (𝐷𝑂𝑌 + 61)                                                                                                         (A4) 

where DOY is a counter of the day of the year, which is set to 1 on January 1st, with October 1st being -

92 to account for the winter season extending across two years in the Northern Hemisphere (Pistocchi, 

2016).  
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Eq. (A4) aims at describing the seasonal dynamics of snow density and assumes a positive correlation 

between snow density and the number of days since the beginning of the winter period (Jonas et al., 

2009; Pistocchi, 2016). Despite the intrinsic limitations associated with the use of such models, in 

particular at the daily scale, this simple approach can be applied whenever snow density time series with 

adequate spatial and temporal resolution are not available, which is the case for the Upper Adige 

catchment (McCreight and Small, 2014; Pistocchi, 2016). The uncertainty in estimating SWE by 

applying Eq. (A4) is comparable to the within-site spatial variability (Pistocchi, 2016).  

The mean subbasin snow water equivalent (<Sub_SWE>) for each day was computed according to the 

following equation: 

< 𝑆𝑢𝑏_𝑆𝑊𝐸 > = < 𝑆𝑢𝑏_𝐻𝑆 >· 𝜌                                                                                          (A5) 

The units of <Sub_SWE> were then converted into mm of H2O so they could be compared to SWAT 

model results. 

 

 



 

 

Chapter 6  

Coupling Hydrological Modeling and Support Vector Regression to Model 

Hydropeaking in Alpine Catchments5 

 

Water management in the alpine region has an important impact on streamflow. In particular, 

hydropower production is known to cause hydropeaking i.e., sudden fluctuations in river stage caused 

by the release or storage of water in artificial reservoirs. Modeling hydropeaking with hydrological 

models, such as the Soil Water Assessment Tool (SWAT), requires the knowledge of the management 

rules of the reservoirs. These data are often not available since they are sensitive information for 

hydropower production companies. In this work, we propose to couple the results of a calibrated 

hydrological model with a machine learning method to reproduce hydropeaking without the knowledge 

of the actual management operation of the reservoirs. In particular, we trained a support vector machine 

(SVM) with the output of a SWAT model, the day of the week and the energy price. We tested the model 

for the Upper Adige river basin in North-East Italy. A wavelet analysis showed that energy price has a 

significant influence on river discharge, and a wavelet coherence analysis indicated the improved 

performance of the SVM model in comparison to the SWAT model alone. The SVM model was also 

able to capture the fluctuations in streamflow caused by hydropeaking when both energy price and river 

discharge displayed a complex temporal dynamic. 

 

 

 

 

 

 

 

5 Chiogna, G., Marcolini, G., Liu W.Y., Ciria T.P., Tuo, Y., 2018. Coupling Hydrological Modeling and Support 

Vector Regression to Model Hydropeaking in Alpine Catchments. Science of the Total Environmental, 633: 220-

229. DOI: 10.1016/j.scitotenv.2018.03.162  
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6.1 Introduction 

Alpine catchments play a pivotal role in Europe for water provisioning as well as for hydropower 

production (Wagner et al., 2015, Viviroli and Weingartner, 2004; Hastik et al., 2015) and fluctuations 

of river discharge occur at multiple temporal scales due to natural and anthropogenic driving forces (Poff 

et al., 2007; Rahman et al., 2013). Therefore, water management in these catchments strongly influences 

the hydrological cycle and vice versa (Beniston, 2012; Basso and Botter, 2012). Dams and hydropower 

plants greatly impact alpine rivers since they generate highly variable river stage fluctuations. 

Hydropeaking i.e., the artificial increase and decrease of discharge and corresponding water levels in 

rivers (Hauer et al., 2017b) is particularly relevant, since it threatens ecosystem integrity (Zolezzi et al., 

2009; Botter et al., 2010; García et al., 2011; FitzHugh and Vogel, 2011; Hauer et al., 2017a; Holzapfel 

et al., 2017).  

Modeling hydrological processes in alpine catchments requires that the coupled interaction between 

natural processes and economic drivers, which control hydropower production, are taken into account 

(Gaudard et al., 2014; Tonolla et al., 2017). Several models exist in the literature to reproduce reservoir 

operation and have been successfully applied in several case studies (e.g., Majone et al., 2016; Rahman 

et al., 2013; Finger et al., 2012; Rahman et al., 2014). However, data availability is one of the main 

challenges in reproducing streamflow when considering reservoir operation for hydropower production 

(Gaudard et al., 2014). In fact, in many countries, the energy market is an open market and reservoir 

management rules are considered sensitive information by hydropower companies. Hence reliable 

management data may not be publically available, hindering the possibility of using reservoir operation 

modules in hydrological models. Moreover, the operation of the major hydropower plants now generally 

depends on energy price fluctuations, while in the past it was a regulated sector (Gaudard et al., 2014; 

Massarutto and Pontoni, 2015). 

This study aims at showing how machine learning methods can be used to improve hydrological models 

in alpine catchments highly affected by hydropeaking at the daily time scale. Machine learning methods 

have been widely applied in hydrology as a surrogate for distributed and semi-distributed models for 

various purposes (e.g., Deka, 2014; Nourani et al., 2014; Rasouli et al., 2012; Solomatine and Shrestha, 

2009). A peculiar characteristic of learning machines is their ability to deduce the dynamic response of 

the system depending on available measured data. Several works highlight the use of machine learning 

methods as a valuable and accurate tool for modeling complex river basin systems in support of water 

management information needs (Karamouz et al., 2009; Khalil et al., 2005; Ticlavilca and McKee, 2011).  

In this work, we first performed a wavelet analysis of streamflow and energy price time series for the 

Upper Adige catchment (North-East Italy), since the ecological relevance of hydropeaking in this river 
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basin has been highlighted in several studies (Bruno et al., 2013; Zolezzi et al., 2009). The wavelet 

analysis is able to reveal the main mode of the frequency of a signal and it can be used to identify when 

any change in these modes occurred (Daubechies, 1990; Labat, 2005; Schaefli et al., 2007; Torrence and 

Compo, 1998). Moreover, using a wavelet coherence analysis (Grinsted et al., 2004), we identified the 

correlation between energy price and streamflow to investigate the impact of energy market fluctuations 

on river discharge. Using a support vector machine (SVM), we coupled hydrological model results 

obtained with the Soil Water Assessment Tool (SWAT) with energy price time series and the day of the 

week to improve model prediction of hydropeaking on a daily time scale. Previous works (e.g., Torres-

Rua et al., 2012) coupled physical models and machine learning to correct, for example, hydraulic 

simulation models. However, this combination has only rarely been attempted in hydrology. In order to 

estimate the performance of our model, beside using traditional metrics like mean absolute error, mean 

absolute percentage error, root mean square error, ratio of root mean squared error to the standard 

deviation of observations and Nash-Sutcliffe efficiency, we propose to use the wavelet coherence 

between measured and modeled streamflow time series (Rathinasamy et al., 2014). This analysis allowed 

us to highlight at which temporal scales the coupled model outperformed the SWAT model calibrated 

without the reservoir management tool. 

6.2 Methodology 

6.2.1 Study area  

The Upper Adige river basin is located in the North-East Italian Alps (Figure 6.1) and has a drainage 

area of 6875 km2 closed at Bronzolo. It is a typical alpine catchment with a large elevation range from 

223 m a.s.l. to 3865 m a.s.l. The river basin is characterized by steep slopes and sharp hydroclimatic 

gradients (Callegari et al., 2015). The Upper Adige catchment is affected by a variety of stressors that 

affect its ecological status, and hydropeaking is the most important one (Navarro-Ortega et al., 2015). 

Although several studies have focused on Upper Adige subcatchments  (Mei et al., 2014; Mei et al., 

2016b; Penna et al., 2014; Penna et al., 2017a; Penna et al., 2017b; Tuo et al., 2016), few of them have 

tried to reproduce the hydrological behavior of the system including reservoir operation. Water discharge 

for hydropower production in the Upper Adige is managed with 15 artificial reservoirs and their 

operational rules influence the measured discharge at the gauging station of Bronzolo. Reservoir 

management operational rules are not available and that is what motivated this research.  
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Figure 6.1 Upper Adige river basin  

Land uses of the river basin are mainly forest, grassland and pasture, and barren land. The main soil 

types are loamy sand, silty clay, and sand. The data sets used to setup the SWAT model are the following:  

 Digital elevation map (DEM) from Shuttle Radar Topography Mission (SRTM) produced by 

Consortium for Spatial Information (CGIAR-CSI), spatial resolution: 90 m x 90 m. 

 Land use map: Corine Land Cover 2006 (CLC2006) from the European Environment Agency, 

spatial resolution: 100 m x 100 m. 

 Soil map, developed by the Food and Agriculture Organization (FAO) of the United Nations. 

 Digital stream network, EU-DEM product available at http://www.eea.europa.eu/data-and-

maps/data/eu-dem. 

 Daily precipitation and temperature data from a total of 65 rain gauges (60 rain gauges inside the 

basin and 5 rain gauges close to the basin boundary, see Figure 6.1) were collected from the 

meteorological surveys of the Autonomous Province of Bolzano (data available at 

http://weather.provinz.bz.it/default.asp). Previous studies have shown that the sensitivity of 

http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
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hydrological models of the Upper Adige river basin depends on precipitation input (Duan et al., 

2016; Mei et al., 2016a; Tuo et al., 2016) and this aspect will not be investigated further in this 

work. 

 Daily measured streamflow data for the period at the Bronzolo gauging station (Figure 6.1) were 

collected in the GLOBAQUA project (Chiogna et al., 2016). In this work, we considered the 

period November 1, 2004 - October 31, 2010. 

The river discharge time series measured at the Bronzolo gauging station is shown in Figure 6.2A. 

Streamflow displays the typical features of an alpine catchment, with low winter flows and high flows 

during the melting period in spring and summer. Figure 6.2B shows in more detail that river discharge 

fluctuates greatly during the winter period due to hydropeaking. Such fluctuations appear to be less 

pronounced during the high flow period.  

 

Figure 6.2 A) Streamflow at the Bronzolo gauging station for the entire period considered in this study. 

B) Streamflow at the Bronzolo gauging station from November 1, 2008 to October 31, 2009 shows the 

different impacts of hydropeaking during low flow and high flow conditions. 

6.2.2  Hydrological model 

SWAT was developed by the Agricultural Research Service of the United States Department of 

Agriculture (Arnold et al., 2012; Neitsch et al., 2011). It can be utilized to simulate daily water cycles, 

crop growth, sediment, nutrient and pesticide transport in large river basins and assess the effects of 

climate change and water resources management. The hydrological cycle simulated by SWAT is based 

on the water balance of various components including precipitation, infiltration, evapotranspiration, 

surface runoff, lateral flow, and percolation to shallow and/or deep aquifers. A SWAT model was set up 
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for the Upper Adige basin with 20 subbasins delineated in Figure 6.1. A two-year warm up period was 

used to mitigate the effect of the initial conditions as described by Tuo et al. (2016) and Vigiak et al. 

(2018). Sensitive parameters were identified with the one-at-a-time sensitivity analysis approach of 

SWAT-CUP (Abbaspour, 2015). Automatic model calibration was performed using the Sequential 

Uncertainty Fitting algorithm version 2 (SUFI-2) in the SWAT-CUP tool package (Abbaspour et al., 

2015). Starting with the initial parameter ranges that were bounded to physically reasonable intervals 

according to literature (Arnold et al., 2012; Grusson et al., 2015), the model was calibrated with four 

iterations. After each iteration, parameter ranges were narrowed down considering both their reasonable 

physical limitations and the suggested ranges from the iteration results. The Nash–Sutcliffe efficiency 

(NSE) was used to assess goodness of fit of the simulations, following the guidelines of Moriasi et al. 

(2007). 

6.2.3 Support Vector Machine 

A brief mathematical introduction to support vector machines (SVM) is provided in Appendix A. For a 

more detailed description, we refer to e.g., the works of Schölkopf et al. (1999), Schölkopf and Smola 

(2002) and Smola and Schölkopf (2004). The basic idea behind SVM is that of using the maximum 

margin algorithm. This algorithm searches for the hyperplane (a line in the two dimensional case) with 

the largest separating margin between the observed data, to find the optimal function fitting the 

observations, paying attention to avoid overfitting to maintain the generality of the model.  

Finding the optimal hyperplane is often a non-linear optimization problem and hence it is of difficult 

solution. The support vector algorithm applies the so-called kernel trick to solve this complex problem. 

The kernel trick aims to solve the non-linear problem in a space, called feature space, whose dimension 

is higher than that of the input space, i.e. the space of the observed data. In the feature space a linear 

representation of the dependency among variables is possible. The application of a kernel function 

allows us to solve the problem in the feature space, hence, solving a linear problem. This leads to much 

lower computational costs in comparison to other solvers.  

6.2.3.1 Calibration of hyperparameters 

In this work, we followed Hsu et al. (2003) and chose a Gaussian RBF kernel, and the calibration was 

executed by adjusting three hyperparameters - the kernel width ‘rbf’, the regularization constant ‘C’ and 

the ε-insensitive loss function parameter ‘ε’ - using a grid search method (Bergstra and Bengio, 2012). 

In the grid search method, we defined an upper and a lower bound for each hyperparameter. Then, one 

hyperparameter was kept fixed, while combinations of the other two hyperparameters were tested.  
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Each model run (i.e., each combination of hyperparameters) was evaluated by K-fold cross validation 

(Anguita et al., 2009). This method requires that you subdivide the data into k subsets of roughly equal 

size (four subsets of equal length were used in our case). In each step, the k-1 subsets were used to train 

the model, while the remaining subset was used for validation. Each subset was used exactly once for 

validation. Finally, the averaged error of all k trials was computed. Using the K-fold cross validation 

allowed us to find a set of parameters, which was not only suited for a particular subset. The advantage 

was that the optimal set of parameters identified should be less sensitive to the calibration period than 

using other calibration approaches. On the other hand, one drawback of this K-fold cross validation was 

that optimal parameters obtained for a subset and for the whole data set might not coincide (Schölkopf 

and Smola, 2002). Moreover, the smaller the data set, the stronger the regularization tended to be. In our 

work, kernel width was 6.5, the value of C was 20 and the ε value was 0.0288. 

6.2.3.2  Selection of the variables used for training the SVM 

The SVM was trained according to the river discharge modeled at Bronzolo with the SWAT model, the 

energy price and the day of the week starting from November 1, 2004. The last two pieces of information 

are in fact complementary: Energy price fluctuations are subject to market drivers, which depend on, for 

example, the cost of other energy sources (both fossil and renewable); the weekly fluctuations depend 

on the fact that energy demands are lower on weekends than on work days. Energy price and week days 

are to some extent correlated (less energy use in the weekend could mean a structural lower price), 

however, the variability of the energy price for different seasons and years, leads to a very small negative 

Kendall’s tau (-0.06) with a significance level smaller than 95%. Several energy price data sets are 

available at http://www.mercatoelettrico.org/it/. Figure 6.3A represents the daily mean energy price for 

North Italy, which is the one considered in this study, while Figure 6.3B shows more clearly the daily 

variability of the signal. We observed that the time series displayed both weekly and seasonal 

fluctuations. Tests were also performed using other publicly available energy prices but no significant 

difference was identified for the purpose of this study.  

Considering the constraints due to data availability, we used the period from November 1, 2004 to 

October 31, 2008 to train the SVM, while we used the following two years for model validation. 
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Figure 6.3 A) Mean daily energy price for North Italy for the entire simulation period. B) Mean daily 

energy price for North Italy from November 1, 2008 to October 31, 2009 showed more clearly the high 

frequency variability in the time series.  

6.2.4 Continuous Wavelet Transform 

Wavelet analysis has been shown to be a useful tool for detecting localized variations in the modes of 

variability within time series (Carey et al., 2013; Coulibaly and Burn, 2004; Guan et al., 2011; Lau and 

Weng, 1999; Marcolini et al., 2017; Zolezzi et al., 2009). Wavelet analysis is performed by decomposing 

the time series into a transformed variable in time-frequency space to determine both the dominant 

modes of variability and how these modes vary in time. We performed wavelet analysis using the Matlab 

toolbox developed by Torrence and Compo (1998) .  

The continuous wavelet transform looks for similarity between a signal and a well-known mathematical 

function (Labat, 2005). The major difference compared to the Fourier transform, which is also the 

strength of this kind of analysis, is that the well-known mathematical function, called the wavelet 

function, is applied several times to the analyzed time series at different scales and at different temporal 

positions. Wavelet transform allowed us to determine not only the frequency content of a signal, which 

Fourier analysis is also able to do, but also the frequency time-dependence (Labat, 2005). Similar to 

other studies analyzing variability in climate and hydrological signals, the Morlet function was used as 

a wavelet function for its ability to evidence fluctuations in time series (Labat et al., 2004; Labat et al., 

2000).  

The wavelet power spectrum (WPS) represents the energy of the scale s and is useful for identifying 

fluctuations for scales with the largest influence on the signal. In particular, a larger positive amplitude 
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implies a higher positive correlation between the signal and the wavelet, and a large negative amplitude 

implies a high negative correlation.  

The wavelet transform assumes that the time series is periodic. Since hydrological time series are not 

periodic and only a fraction of the entire time series is available, a bias is introduced at the beginning 

and at the end of the time series. To remove this bias, Torrence and Compo (1998) suggested padding 

the end of the time series with zeros. The introduction of the zero padding (not shown in the pictures) 

leads to the definition of a cone of influence, where edge effects are significant and hence the results are 

uncertain (Torrence and Compo, 1998). The cone of influence, indicated by shadowing the area of the 

contour plot, shows the wavelet transform influenced by edge effects.  

Wavelet coherence (WTC) can be used to identify the scales where two time series focus on the power 

and how this may change in time (Torrence and Compo, 1998; Grinsted et al., 2004). An intuitive 

interpretation of wavelet coherence is as a generalization in the scale-time space of the squared cross-

correlation coefficient r2 between the signal content of the two time series. Similar to the classical 

correlation coefficient, high coherence values (close to 1) are displayed for the time windows and scales 

in which model and observations are highly correlated, while values close to 0 indicate low coherence. 

The possibility of identifying how model performance varies depending on the signal scales and time 

intervals is one of the main advantages of wavelet coherence analysis compared to classical correlation 

analysis. For more details about wavelet transform and wavelet coherence, the reader is referred to 

Torrence and Compo (1998), Grinsted et al. (2004) and Labat (2005). 

6.2.5 Evaluation of model performance 

The performance of the two models was assessed by global model performance indicators: MAE (mean 

absolute error), MAPE (mean absolute percentage error), RMSE (root mean square error), RSR (ratio of 

RMSE to the standard deviation of observations) and NSE (Nash-Sutcliffe Efficiency) (Table 6.1). MAE 

and RMSE measure the absolute deviation between model results and observations, while MAPE and 

RSR provide a relative error estimate which is not influenced by the different magnitude in the data. 

NSE evaluates whether the model output outweighs a simulator just taking the mean of the observations. 

Note that, due to the square operation, NSE puts high weight on large discharge values. 

Table 6.1 Global model performance indicators. 𝑌𝑗
𝑜𝑏𝑠 indicates the data of the observed time series, 𝑌𝑗

𝑠𝑖𝑚 

are the simulation results, the over bar represents the mean value of the time series. 

Name Equation Description 

Mean absolute  

error 
MAE =

1

𝑛
∑ |𝑌𝑗

𝑜𝑏𝑠 − 𝑌𝑗
𝑠𝑖𝑚|

𝑛

𝑗=1
 

[0,+∞), 0 is the 

optimum value (o.v.) 
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Mean absolute 

percentage error 
MAPE =

1

𝑛
∑

|𝑌𝑗
𝑜𝑏𝑠 − 𝑌𝑗

𝑠𝑖𝑚|

𝑌𝑗
𝑜𝑏𝑠

∗ 100
𝑛

𝑗=1
 [0,+∞), 0 is the o.v. 

Root mean  

square error 
RMSE = √

1

𝑛
∑ (𝑌𝑗

𝑜𝑏𝑠 − 𝑌𝑗
𝑠𝑖𝑚)2𝑛

𝑗=1   [0,+∞), 0 is the o.v. 

RSR RSR =
RMSE

STDEVobs
=

√∑ (𝑌𝑗
𝑜𝑏𝑠−𝑌𝑗

𝑠𝑖𝑚)
2

𝑛
𝑗=1

√∑ (𝑌𝑗
𝑜𝑏𝑠−𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)

2
𝑛
𝑗=1

  [0,+∞), 0 is the o.v. 

Nash-Sutcliffe 

Efficiency 
NSE = 1 −

∑ (𝑌𝑗
𝑜𝑏𝑠 − 𝑌𝑗

𝑠𝑖𝑚)
2𝑛

𝑗=1

∑ (𝑌𝑗
𝑜𝑏𝑠 − 𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )

2
𝑛
𝑗=1

 (-∞,1], 1 is the o.v. 

In addition to these traditional metrics, we also applied the WTC between the measured and the 

simulated discharge. This analysis aimed at identifying the scales at which observed data and model 

results focused on the wavelet power spectrum, with particular attention to the evolution of this behavior 

in time (Torrence and Compo, 1998; Grinsted et al., 2004). High coherence values mean that the modeled 

and the observed time series share the same frequency content in a specific time window. 

6.3 Results and discussion 

Figure 6.4 shows the wavelet transform of the logarithm of the river discharge and energy price signals. 

The analysis was performed on the log transformed streamflow data to highlight the effect of 

hydropeaking. Both signals show a very interesting behavior: A high power is present for the periods of 

7 days and 3 days until 2009. After this date, the power of the signal becomes weaker, in particular the 

energy price signal. The decrease in the power signal indicates that the energy price time series involves 

at least one clear change in 2009. This change may be attributed to various reasons: It could be caused 

by, for example, random energy price fluctuations at scales smaller than one day and/or by a more 

extensive use of other renewable energies. For the purpose of this study, however, it is not relevant to 

identify the exact cause of this change. The change in the streamflow time series is hard to explain 

considering purely hydrological reasons, since no abrupt change in meteorological or land use data was 

identified in 2009 in previous studies (Chiogna et al., 2016).  

Both streamflow and energy price signals display high power during longer periods (at about 180 and 

365 days). However, this seasonal and yearly dynamic behavior is not of high relevance for this study 

and will not be discussed further. 
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Figure 6.4 A) Wavelet transforms of log(Q) and B) of the energy price. Red indicates high power while 

blue indicates low power. 

Figure 6.5A shows the observed streamflow data at Bronzolo, the model results obtained using SWAT 

and the SVM model trained using the energy price, the day of the week and SWAT model output results. 

Figure 6.5B shows in more detail that the SWAT model was not able to capture the fluctuations in river 

discharge due to hydropeaking, since no data related to hydropower management were available for this 

catchment in this study. However, the SVM model results clearly showed that the model was capable of 

including the impact of energy market fluctuations into the predicted river discharge. The SVM was 

trained in a period when the energy price displayed a strong weekly and sub-weekly periodicity (Figure 

6.4). The test of the SVM was performed in the following period when this periodicity was much weaker 

(Figure 6.4). A visual evaluation of Figure 6.5A allows us to conclude that the SVM model performance 

was not affected by this change in the energy price behavior, showing the robustness of the approach 

towards changes in the water management operation of the reservoirs.  
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Figure 6.5 A) Streamflow observations in Bronzolo (red line), SWAT model results (green line) and 

SVM model results (black line) for the entire simulation period. The vertical blue line separates the SVM 

training period from the test period. B) Streamflow observations in Bronzolo (red line), SWAT model 

results (green line) and SVM model results (black line) from November 1, 2008 to October 31, 2009 

show more clearly the different impacts of hydropeaking during low flow and high flow conditions. 

This strength of the proposed approach becomes even more evident from the analysis of Figure 6.6, 

which shows the coherence between energy prices and both the measured and the modeled river 

discharge time series. Coherence between observed streamflow and energy price is almost equal to 1 for 

all winters before 2009 for the period of 3-7 days and the two signals are in phase (the arrows in the first 

panel of Figure 6.6 point to the right). During high flow conditions, however, coherence decreased 

significantly. The high coherence between the two signals can be considered an indication of causality, 

since the significant region of Figure 6.6 is so extensive that it is very unlikely that this is simply by 

chance (Grinsted et al., 2004). According to the coherence analysis, the fluctuations in the energy price 

drive therefore the fluctuations in the streamflow. Hence, we can also attribute the change in streamflow 

variability for the period of 3-7 days observed after 2009 to the change in the energy price variability. 

Indeed, it was shown that energy price variability affects reservoir management operations and hence 

water release (storage) from (in) the reservoirs (Gaudard et al., 2016; Russell and Campbell, 1996).  

Coherence between energy price and SVM model results show a very similar behavior: High coherence 

during the winters before 2009 at the period of 3-7 days and low coherence elsewhere. This indicates 

that the SVM was able to learn the behavior of the impact of the energy market fluctuations on river 

discharge and it was able to reproduce such behavior properly in the case of a complex temporal dynamic 

as well. As expected, the SWAT model could not reproduce such behavior and it did not display high 
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coherence with the energy price signal anywhere. The results of Person (2013) showed that 

hydropeaking has a strong impact on fish habitat mainly during winter where suitable habitat is strongly 

displaced under unstable flow conditions. Therefore, it is important from an ecological perspective, to 

properly capture hydropeaking in river discharge during the winter season. 

Moreover, a hypothetical SWAT model with implemented reservoirs should be updated in case of 

changes in reservoir management operations, and it would therefore require strong collaboration in terms 

of data exchange between hydropower companies and water authorities. Such cooperation is always 

desired, however, it is often impracticable because their interests differ. We should also consider that 

the energy market is becoming more and more variable due to, for example, the increased introduction 

of renewable energy sources, which depend on local atmospheric conditions (e.g., cloudiness, presence 

of wind) and consequently reservoir management rules have to frequently adapt to this variability. 

 

Figure 6.6 Wavelet coherence between energy price and observed streamflow data, SVM simulations 

and SWAT simulations. Red indicates high coherence while blue indicates low coherence. The direction 

of the arrows indicates a phase shift between the signals: arrows pointing to the right indicate that the 

two signals are in phase, while arrows pointing to the left indicate a phase shift of .  

In Figure 6.7, we compare the cumulative distribution functions of the observed streamflow with the 

SWAT and the SVM models considering the entire time series (i.e., validation and calibration periods 

are considered together). The main improvement from using the SVM model was achieved for low 

discharges, where hydropeaking fluctuations were more evident. On the other hand, for a range of high 

flows (200 m3/s < Q < 300 m3/s) the SWAT model slightly outperformed the SVM model. This behavior 

can be explained by observing Figure 6.5: During the training period of the SVM, events with a discharge 

larger than 300 m3/s were very rare, and the SVM was trained considering high flow events that were 
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generally underestimated by the SWAT model. Therefore, during the training period, the SVM model 

did not learn to optimally reproduce the high flow conditions observed during the testing period. In order 

to solve this problem, the SVM could be trained with additional parameters controlling the hydrologic 

response of the catchment, such as temperature, precipitation or groundwater levels. However, such an 

analysis is beyond the scope of this work, which focuses on improving model performance in 

reproducing hydropeaking. 

 

Figure 6.7 Cumulative distribution functions of the observed river discharge (red line) of the SWAT 

model (green line) and of the SVM model (black line). 

In Table 6.2, we summarize the global model performance indicators computed for the SWAT and SVM 

models. In all cases, the SVM model outperformed the SWAT model and reached a closer prediction of 

observed streamflow. However, the difference between the two models according to these indicators is 

relatively small considering that the SVM model has three additional calibration parameters (the kernel 

width, the regularization constant and the ε-insensitive loss function parameter) compared to the SWAT 

model. Therefore, in our opinion, this kind of comparison is not sufficient to judge whether the SVM 

model outperforms the SWAT model. 

Table 6.2 Model performance indicators. 

 MAE [m3/s] MAPE [-] RMSE [m3/s] RSR [-]  NSE [-] 

SWAT 26.6 0.23 36.3 0.46 0.79 

SVM 21.0 0.14 34.8 0.44 0.81 

Figure 6.8 allows us to better explain where the coupled model performed better than the SWAT model. 

We evaluated the hydrological model results considering their coherence with the observations for 

several periods from one day to one year. Both SWAT and SVM models displayed high coherence (on 
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average higher than 0.8) with the observations at the period of one day. However, the difference in model 

performance for longer periods between 3 and 30 days was large. The SWAT model displayed an 

average coherence (computed over the entire simulation period) smaller than 0.5 with the observations 

at 3 days and 7 days, while for the SVM model, coherence ranged between 0.7 and 0.8 for the same 

periods. Both models were capable of reproducing the observed discharge at the monthly (i.e., about 30 

days) and yearly periods showing an average coherence of 0.8 and 1, respectively. 

 

Figure 6.8 Coherence between streamflow observations and SWAT model simulations as well as 

streamflow observations and SVM model simulations. Red indicates high coherence while blue indicates 

low coherence. The direction of the arrows indicates a phase shift between the signals: arrows pointing 

to the right indicate that the two signals are in phase, while arrows pointing to the left indicate a phase 

shift of .  

6.4 Conclusion 

In this work, our aim was to improve the model results obtained using a hydrological model such as 

SWAT for catchments affected by hydropeaking, where no reservoir operation data are available. We 

chose to study the Upper Adige River basin in North-East Italy. In order to improve hydrological model 

simulations, we proposed to reproduce streamflow using an SVM trained with the output of the 

hydrological model, the energy price and the day of the week. Our results showed that the SVM 

outcomes were able to capture hydropeaking behavior and led to better model performances. In 

particular, we proposed to use the wavelet coherence between the measured and the modeled data to 

identify at which scales and for which time windows the model performed the best. Wavelet coherence 

analysis indicated that the SVM model was particularly effective in reproducing hydropeaking during 

the winter period when low flow conditions are highly affected by weekly fluctuations in river discharge. 
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On the other hand, we observed that the SVM model was not able to outperform the SWAT model during 

high flow conditions when daily streamflow was less affected by hydropeaking than during low flow 

conditions.   

This work represents an attempt to couple SVM and more traditional hydrological models such as SWAT. 

The obtained results were highly satisfactory but there is still room for improvements. In particular, 

modeling hydropeaking at the hourly scale should be explored in the future. This would provide 

important information for ecological studies. Moreover, the development of an SVM-based reservoir 

management module directly implemented within the hydrological model, allowing for streamflow 

routing and for a more realistic reproduction of water storage and release, would be greatly beneficial to 

model hydrological processes in catchments highly affected by human impact. Another test to be 

performed in future studies is to investigate the exportability of the trained SVM to other gauging stations 

in the catchment and to investigate the spatial variability of the SVM hyperparameters. 

Appendix A 

In this section, we will give a brief introduction to the mathematical description of the support vector 

regression. Suppose we have some observed data {(𝑥1, 𝑦1), … , (𝑥𝑙, 𝑦𝑙)} ⊂ 𝑋 × ℝ, where 𝑋 is the input 

space, which in our case is ℝ𝑑. In the linear case, we look for a function 𝑓 = 〈𝑤, 𝑥〉 + 𝑏 that solves the 

following convex optimization problem  

minimize 
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

 
(1) 

subject to {

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀 + 𝜉𝑖
〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

 

 

where 𝜀  is a parameter indicating the maximum allowed error between observations and model 

predictions. In order to deal with otherwise unfeasible constraints, two slack variables 𝜉𝑖  and 𝜉𝑖
∗ are 

introduced. The introduction of these variables allows for some flexibility in the definition of the error 

range. The positive constant 𝐶  determines the trade-off between which deviations larger than 𝜀  are 

tolerated and the flatness of the function 𝑓. Summarizing, Eq. (1) aims at finding a function 𝑓 as flat as 

possible that has at most 𝜀 deviation from the observations.  

In order to solve the problem, we deal with its dual form. We first construct a Lagrange function from 

the objective function 
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𝐿 ≔
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

−∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖
∗)

𝑙

𝑖=1

 

 

−∑𝛼𝑖(𝜀 + 𝜉𝑖−𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏)

𝑙

𝑖=1

 

 

−∑𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗+𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏)

𝑙

𝑖=1

 

(2) 

where 𝜂𝑖 , 𝜂𝑖
∗ , 𝛼𝑖  and 𝛼𝑖

∗  are Lagrangian multipliers. It can be shown that the solution of Eq. (2) 

represents a saddle point with respect to the primal and dual variables for the Lagrange function 𝐿. Hence, 

to solve Eq. (2), the partial derivative of 𝐿 with respect to the primal variables has to vanish. 

𝜕𝑏𝐿 =∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑙

𝑖=1

= 0 

(3) 

𝜕𝑤𝐿 = 𝑤 −∑(𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑙

𝑖=1

= 0 

(4) 

𝜕
𝜉𝑖
(∗)𝐿 = 𝐶 − 𝛼𝑖

(∗)
− 𝜂𝑖

(∗)
= 0 (5) 

If we substitute Eqs (3), (4) and (5) in the Lagrange function, we obtain the dual optimization problem  

minimize 

{
 
 

 
 
−
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖, 𝑥𝑗〉

𝑙

𝑖,𝑗=1

−𝜀∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

+∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

 

(6) 

subject to {
∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖=1

= 0

𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶]

 

 

Notice that in the dual optimization problem, the variables 𝜂𝑖 and 𝜂𝑖
∗ are not present anymore. 

From Eq. (4) we have 

𝑤 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑙

𝑖=1

 (7) 
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Notice that according to Eq. (7),  𝑤 can be described completely in terms of a linear combination of the 

training patterns 𝑥𝑖. 

This leads to the so-called Support Vector expansion 

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)〈𝑥𝑖, 𝑥〉 + 𝑏

𝑙

𝑖=1

 (8) 

For the computation of 𝑓(𝑥), it is therefore not necessary to explicitly compute 𝑤. Moreover, the 

complete algorithm can be described in terms of dot products. In order to compute 𝑏, we apply 

the Karush-Kuhn-Tucker conditions, according to which we have  

𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 + 𝑏) = 0 

𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏) = 0 

 

(𝐶 − 𝛼𝑖)𝜉𝑖 = 0 

(𝐶 − 𝛼𝑖
∗)𝜉𝑖

∗ = 0 

(9) 

From Eq. (9), we have that for all the samples with a distance to 𝑓 smaller than 𝜀, 𝛼𝑖 and 𝛼𝑖
∗ vanish. 

Therefore, not all 𝑥𝑖 are needed to compute 𝑤. Since, as we observed before, 𝑤 can be described as a 

linear combination of the training patterns, this leads to a reduction in the complexity of the problem. 

The observations for which the coefficients are non-vanishing (and hence contributing to 𝑤) are called 

Support Vectors. 

So far, we have considered a linear problem. If the problem is not linear, a solution could be to map the 

input data in some feature space 𝐹, where the problem can be linearly solved, with some map Φ:𝑋 ⟶

𝐹 . Of course, this could lead to a large increase in the complexity of the problem and make it 

computationally unfeasible. Since the Support Vector algorithm can be described in terms of dot 

products of the patterns 𝑥𝑖, we can avoid increasing computational costs by applying a kernel function 

𝑘(𝑥, 𝑥′) ≔ 〈Φ(𝑥),Φ(𝑥′)〉. The new representation of the function 𝑓 would then be  

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖, 𝑥) + 𝑏

𝑙

𝑖=1

 (11) 

Therefore, in the nonlinear case, with the application of the so-called kernel trick, we can linearly solve 

the problem in a feature space, performing our computations in the input space, and hence limit the 

computational costs. As described by Schölkopf et al.(1999); Schölkopf and Smola (2002); Smola and 
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Schölkopf (2004), the map Φ has to satisfy some specific conditions to be applied for the computation 

of the dot products in the feature space. 
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Mountainous catchments play a vital role in affecting water resources around the world. Therefore, 

reasonable understandings and reliable representations of hydrological behaviors in mountainous 

regions are important. In this work, we investigate the solutions for improving SWAT applications, 

regarding precipitation, snow processes, and the effect of hydropower operation, in Alpine catchments 

of Adige River Basin, Italy. Addressing how to evaluate and select the optimal precipitation input, how 

to utilize snow data, and how to take use of data related to hydropower plant operation effectively is 

meaningful for improving SWAT modeling applications in the Alpine catchments. The rational 

utilization of the available data considering model structure is of primary importance. Based on this 

concept, this work aims to improve SWAT application in Alpine catchments and hence increase the 

reliability of model results by utilizing the data related to precipitation, snow processes, and hydropower 

plant operation, respectively, while considering the corresponding SWAT model structures. In the 

following, the main outcomes of this study are summarized. 

 Optimal precipitation inputs for SWAT modeling in Alpine catchments 

In chapter 2, we conduct a comprehensive evaluation of eight high resolution remote sensed 

precipitation products in the Adige River Basin, Italy by comparing to measurements of rain gauges 

at various temporal (daily, monthly and annual) and spatial scales (grid and watershed). All products 

present different occurrence frequency of daily precipitation for some intensity ranges compared to 

rain gauge data, such differences are expected to have significant effects on hydrological modeling 

applications. And all products also tend to show higher error in the winter months (December-

February) when precipitation is low. Consistent improved evaluation metrics are observed as the 

evaluation spatial scale increases from grid to watershed and the temporal scale increases from daily 

to monthly. Considering all evaluation metrics and aspects, in general the CHIRPS (satellite-gauge 

based, 0.05°) and TRMM (satellite-gauge based, 0.25°) can be ranked as the top two best products, 

with relatively lower bias and error than others and reproducing a general southeast-northwest 

decreasing spatial pattern better. Therefore, CHIRPS and TRMM are selected as two representative 

remote sensed datasets to be evaluated as precipitation input for the hydrological modeling 

application in Chapter 3.  

In Chapter 3, the impact of four different precipitation inputs (observed, IDW, CHIRPS, and TRMM 

datasets) on streamflow predicted using SWAT in three Alpine catchments of the Adige River Basin 

is investigated, by analyzing the rainfall features, model performances, parameter uncertainty, 

prediction uncertainty and the potential relationships among the above components. Since all these 

four precipitations do not consider properly the orographic effects and the precipitation information 

at high elevation (Adler et al., 2015; Isotta et al., 2014), the elevation band method of SWAT presents 

to be necessary for estimating the orographic effects in the Alpine catchments, in order to reproduce 
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the hydrograph properly and close the water balance as well. The four different precipitation inputs 

are different in terms of the amount and the temporal distribution of precipitation. Using elevation 

band method, all the calibrated SWAT models with different precipitation datasets are able to 

reproduce the measured discharge. However, in order to fit the measured river discharge, the 

parameters are calibrated distinctly to adjust the water volume of different hydrological components 

for coping with the different rainfall features of the four precipitation products. As a results, although 

the discharge is reproduced well, different precipitation inputs result in different best parameter 

values and optimal parameter ranges, which indicates distinct hydrological components and 

information to the water management practices. Besides, no pattern is observed to identify which 

precipitation would generally lead to smaller/larger parameter uncertainty for a catchment nor for a 

specific parameter. In other words, parameter uncertainty is both precipitation-varied and catchment 

specific. Reflected by P-factor (fraction of measured data enveloped by the 95PPU band) and R-

factor (thickness of the 95PPU envelop) values, precipitation-varied and catchment specific output 

uncertainty is also observed, although IDW based precipitation dataset leads to more consistent 

output uncertainties than the other three precipitation datasets. Considering the values of “goodness 

of fit” for calibrated model results and fixed parameter test and the uncertainty in general, IDW based 

precipitation outperforms the other studied precipitation inputs when coupled with elevation band 

method in this Alpine region. 

In summary, selection of precipitation products has decisive influences on model performance, 

model parameter uncertainties and output uncertainties during hydrological modeling application in 

the Alpine catchments. Due to the lack of information in high elevation areas, the available 

precipitation datasets are of large uncertainty for the studied catchments. The precipitation 

uncertainty propagates to model parameter uncertainty and output uncertainty, which can lead to 

distinct conclusions about the most relevant hydrological processes in a catchment and result in 

different water management strategies or policies. Therefore, in order to select the optimal 

precipitation input from a specific mountainous catchment application, the uncertainty propagated 

from different precipitation datasets has to be taken into consideration. In addition to discharge, 

information of other hydrological components such as snow could be helpful to validate the model 

and constrain the parameters to reduce the model uncertainty and thus increase the reliability of 

model results. 

 Constrain calibration of model parameters considering snow information 

Snow processes are of great importance in Alpine catchments. Snow water equivalent (SWE) of the 

snow packs is actually the difference between accumulated snow and snowmelt water. And it is the 

common form for describing snow in hydrological models. Although snowmelt output is also 
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available in SWAT, owing to the scarcity of snowmelt data in large scale Alpine catchments, the 

snowmelt parameters cannot be calibrated accordingly and therefore the snowmelt contributions to 

streamflow cannot be validated or verified directly. Calibration of SWAT snow parameters using 

SWE information of different spatial scales is of significant implications for reducing the uncertainty 

of the modeled snow dynamics. The performance of this calibration approach is restricted by the 

model structure of SWAT and the practical condition that sparse data cannot represent the complex 

nature of snow dynamics.  

In Chapter 4, the SWE based calibration strategy is proposed and the feasibility of calibrating SWAT 

snow parameters according to SWE data of subbasin and elevation band scales is proven. As shown 

in Chapter 4, SWAT estimates the snow dynamics at relative larger spatial scales (i.e. subbasin and 

elevation band), which matches the sparse availability and incomplete spatial distribution of the 

snow data. The model reproduces well the general snow behavior of large scale, considering the 

uncertainties of model structure, original snow data and SWE conversion processes. Regarding the 

model performance of subbasin-scale SWE, basin scale and subbasin scale snow parameters lead to 

equally good estimations of the overall behavior of subbasin scale snow dynamics for high elevation 

subbasins. Subbasin scale parameterization is more suitable when the subbasins display a large 

variability in elevation range. However, it is difficult to clarify that which snow parameterization 

approach can lead to a smaller model uncertainty. Based on the same sources of uncertainty, the 

basin scale parameters manage to represent the common characteristics throughout the entire basin, 

while the subbasin scales parameters consider and respect the heterogeneous nature between the 

subbasins. Furthermore, owing to that different combinations of snow parameter values have led to 

similar acceptable simulations of the subbasin-scale SWE, the use of Sub-SWE is not enough to 

identify the most suitable set of snow parameters. Therefore, the elevation band scale SWE (EB-

SWE), another snow output of SWAT, is introduced as an additional reference for parameter 

assessment by qualitatively judging whether the EB-SWE estimation is reasonable or not in 

comparison to the station observation of each band. Furthermore, the parameters are modified 

accordingly by making a compromise between Sub-SWE and EB-SWE performances. As a result, 

the model can both reproduce the subbasin scale snow dynamics well and respect the observations 

of the elevation band level. In this way, as evidently supported by the outcomes of Chapter 4, the 

uncertainty of snow simulations is reduced by constraining the snow parameters considering both 

model structure and the natural snow dynamics of different spatial scales. However, since SWAT 

only consider the orographic effect by elevation band method, the local climate conditions in 

mountainous region (Endrizzi et al. 2006, Hiemstra et al. 2002) are not represented by SWAT model. 
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Therefore, some unusual snow dynamics, such as the higher station obtaining lower SWE values 

than the lower station, cannot be reproduced well in the model results. 

Furthermore, in Chapter 5, the SWE information is introduced together with discharge observations 

in the multi-objective calibration procedure to compare with the traditional discharge based, single 

objective calibration applications in Alpine catchments. When involving the discharge estimations, 

snow information also played crucial roles not only in addressing more reliable snow dynamics, but 

also in reproducing discharge observations with more reliable contributions from different 

hydrological components. Referring to river discharge alone, the calibrated model is not capable of 

represent the snow dynamics well, no matter whether the spatial variability of snow parameters is 

considered or not. What is worse, the simulated streamflow time series look in good agreement with 

the observations, but they are highly uncertain and are very likely composed of unreliable 

contributions of different hydrological processes in a lumped way, without the constrain from other 

important information such as snow. This is evident in Chapter 5 supported by the results of 

snowmelt simulations and the cumulative curves. This uncertainty definitely will lead to 

inappropriate instruction for local water resource management practices. The multi-objective 

calibration approach shows evident improvements in obtain a win-win situation for snow and 

streamflow estimations in Alpine catchments. Following the strategy verified in Chapter 4 to 

constrain the snow parameters, the snow dynamics of both subbasin and elevation band scales are 

represented properly while keeping the streamflow simulations fitting the observations well.  Based 

on the water balance frame, as snow processes are major components of the water cycle in Alpine 

catchments, more reliable estimations of snow processes supported by snow information can both 

reduce the uncertainty of snow modeling and indirectly constrain the uncertainty of the other 

hydrological components in a lumped way by restraining their total quantity within a smaller 

variation range. However, the impacts of hydropower plant operation on the river discharge are 

aware but cannot been handled properly due to the lack of operation data, which further complicates 

and enlarges the model uncertainty of simulated discharge that is already affected by the uncertain 

hydrological components. Therefore, from another prospective, involving snow information into 

model calibration is extraordinarily necessary when the river discharge is interrupted by hydropower 

plant operation. The use of snow information as calibration reference could keep snow parameters 

independent from the impacts of the uncertainty propagated from hydropower plant operation and 

the other hydrological processes.   

 Improvements of coupling Support Vector Machine (SVM) method with hydrological model on 

hydropeaking simulation 
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In Chapter 6, SVM method is utilized to improve the SWAT model results for Alpine catchments 

affected by hydropower plant operation. With no operation data, the SVM is trained with simulated 

discharge of SWAT, the energy price and the day of the week, in order to reproduce the effect of 

hydropeaking on streamflow. As shown in the outcome of Chapter 6, without data to implement the 

reservoir operation module, the SWAT model fails to capture the fluctuations in river discharge 

because of hydropeaking effect. Conversely, able to involve the energy price data, SVM incorporates 

the energy market fluctuations into the river discharge, which captures the behavior of hydropeaking. 

As a result, improved streamflow simulation is obtained with higher values of metrics. In fact, energy 

price variability has been proven to affect hydropower plant operations and hence impact the water 

release (storage) from (in) the reservoirs (Gaudard et al., 2016; Russell and Campbell, 1996). In other 

words, energy price functions highly affect and drive the river discharge fluctuations due to 

hydropeaking, which is proven by the high coherence between the observed streamflow and the 

energy price data. Relevance is also supported by the similar behaviors of wavelet transform signals 

between the logarithm of river discharge and energy price. The coherence analysis between SVM 

results and the observed streamflow further indicates that SVM is capable of reproducing the impact 

of the energy market fluctuations on river discharge. In particular, SVM performs effectively in 

reproducing hydropeaking of the low flow conditions when hydropeaking fluctuations are more 

evident, which is a significant improvement in comparison to SWAT. In fact, SWAT model cannot 

reproduce the impact of hydropower plant operation on river discharge, because it does not have the 

operation data and it cannot use the operation related energy price data. The simulated discharge of 

SWAT not only fails to match the fluctuated observations, but also contains large uncertainties 

because the model tries to imitate the hydropeaking fluctuations by forcing the hydrological 

parameters incorrectly. Utilization of SVM helps to reduce this uncertainty and improve the model 

performance in simulating the river discharge impacted by hydropeaking by learning from the energy 

price data that drive the hydropower operation. This coupling use of SVM and the SWAT model has 

important implications to fill the gap/disability of the model structure in simulating the hydropower 

plant affected river discharge by taking use of alternative available data. 

Based on the results of the work, in order to improve the SWAT modeling applications in mountainous 

regions, future researches could better explore the typical regional hydrological influencing factors by 

addressing the following problems: 

 Improvements of SWAT model structure 

Data availability of mountainous catchments is not only limited by the problem of data scarcity in 

comparison to the relative large scale of the catchments, but also is restrained by the serious lack of 
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information from high elevation areas. This problem is difficult to improve in a short time and 

especially impossible to solve for the historical period.  Hydrological model relies on historical data 

to simulate the catchment characteristics and build up a calibrated model. The current model 

structure of SWAT makes it a suitable tool matching the situation of large scale mountainous 

catchments, because SWAT is capable of using sparse data effectively by utilizing precipitation in 

subbasin scale and producing snow outputs at relative large spatial scale (subbasin and elevation 

band scales). What we have done so far is about how to take use the available resources effectively 

and efficiently based on the current model structure, however, a proper modification of the model 

structure would bring fundamental improvements. Since orographic effect is important for both 

precipitation and snow, structure modification could be implemented to perform hydrological 

calculations based on elevation classified areas. From a technical point of view, the modification is 

possible by introducing elevation band as the fourth factor to classify the HRU. In this way, the HRU 

still keeps the unique physical information such as soil, land use and slope. More importantly, a 

selection protocol could be set up to let users choose either the subbasin structure or elevation band 

structure, depending on the specific condition of the study area. From the perspective of data 

availability, this modification is also feasible: Elevation band precipitation inputs could be produced 

by the elevation band method and calibrated by constraining the precipitation lapse rate according 

to hydrological references and validated by comparing to the precipitation observations of certain 

elevation areas; Elevation band and subbasin-scale SWE output will also be helpful to constrain the 

parameters. This modified elevation band based structure could improve the model descriptions of 

the hydrological dynamics in mountainous region and differentiate between the processes occurring 

at high and low elevation HRUs, while still keeping the practicality of the model. Besides, although 

from a theoretical point of view, grid based model structure modification would bring improvements 

with finer spatial distributed hydrological simulations, which could benefit the snow dynamics and 

ground water estimations, it is not recommended and not practical at the large scale mountainous 

regions where accessible data are limited. 

 Application of datasets of different sources 

Applying data of different hydrological processes to constrain the parameters and model uncertainty 

is always beneficial. One possible way is to install measurement devices in the catchments to get the 

information of high elevation or sensitive areas, such as precipitation, snow depth, snowmelt, soil 

moisture, groundwater and so on. These datasets could be used to calibrate or validate the model, 

and they could be reliable but have limited spatial distributions. Another possible way is to take 

advantage of innovative satellite products to further obtain data for the catchments and/or constrain 

the hydrological model. For example, the remote sensed soil moisture data of Soil Moisture Active 
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Passive (SMAP) satellite, available since 2015, could be utilized to validate and improve the 

hydrological model (McNairn et al., 2015). The Surface Water and Ocean Topography Mission 

(SWOT) offers observations of the temporal and spatial variations in water volumes stored in rivers, 

lakes, and wetlands (Solander et al., 2016), which is useful and could be applied to constrain the 

hydrological model. Compared to field measurements, remote sensed data have less accuracy but 

have better spatial distributions. A combined use of the datasets from different sources could be 

useful to improve the credibility of the model results. 

 Improve the use of effective tools such as SWAT-CUP and SVM 

Utilizing useful tools effectively facilitates the hydrological modeling applications. Based on our 

work, we propose two relevant improvements for the future research. First, in order to perform the 

automatic calibration based on snow information for SWAT, the calibration software SWAT-CUP 

has to be further developed to allow the user to select the elevation band scale SWE results as target 

variable for calibration. Moreover, detailed investigations about the objective function for snow 

calibration could be performed with SWAT-CUP to identify the most suitable metrics for evaluating 

SWE simulation. Besides, an automatic rejection criterion could be introduced when the parameter 

set converges to a maximum snowmelt factor smaller than the minimum snowmelt factor. Second, 

compiling a SVM-based hydropower management module in to SWAT could outperform the current 

coupled use of SVM with SWAT. This direct coupling could realize the dynamic interactions 

between the SVM and SWAT, which could ensure the streamflow routing in-between and produce 

a more realistic reproduction of water storage and release. A dynamic and synchronous parameter 

calibration could be implemented further to optimize the model performances. These improvements 

would be greatly beneficial to the modeling applications in mountainous catchments.  

 Analysis of the regional total precipitation reversely 

Limited by the data scarcity partially in high elevation areas, the average precipitation value is 

normally underestimated in mountainous region, which lead to the lack of a reasonable 

understanding about the total water contribution of precipitation for the area (Bárdossy and Pegram, 

2009). Therefore, based on the water balance frame, it is possible to estimate the average total 

precipitation of a catchment reversely by taking use of the subbasin-scale precipitation input 

mechanism of SWAT model. This idea is based on the hypothesis that precipitation, snow processes 

and river discharge are the most important components of the water cycle during snow seasons in 

natural Alpine catchments, so that the magnitude of the other hydrological processes could be small 

enough in the water balance frame. During the model calibration, the snow and discharge information 

are used together to constrain the parameters including the precipitation lapse rate, namely the total 

precipitation of a subbasin is modified to reproduce the snow and discharge behaviors. Therefore, 
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once the snow and river discharge dynamics are reproduced properly, the estimated total 

precipitation could be considered representative for the subbasin during snow seasons. The 

uncertainty could be further validated under the water balance frame. This reverse reanalysis takes 

use of the SWAT model structure and could provide a relative reasonable estimation about the total 

snow season precipitation for a subbasin. This new precipitation dataset could be used to evaluate 

the grid based remote sensed products in Alpine catchments. The method could also be applied in 

the warm period if evapotranspiration data are available. Besides, it is not recommended for 

catchments affected by hydropower plant operation. Additional analyses should be performed to 

discuss about the rationality and feasibility of this idea in future study. 

Effective utilization of available data based on the corresponding model structure is important for 

increasing the reliability of hydrological model results in alpine catchments. Based on this concept, this 

work expands new visions on the improvements of SWAT applications in alpine catchments by 

rationally using available data relevant to precipitation, snow, and hydropower plant operation. 

Moreover, new concepts and potential modifications are proposed in order to improve future SWAT 

applications and further benefit the hydrology researches in alpine catchments.   
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A. Supplementary material of Chapter 3 

 
Figure S3.1 Land use map (SWAT land use classification) of the subbasin Aurino, Rienza and Passirio. 
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Figure S3.2 Slope distribution of the subbasin Aurino, Rienza and Passirio. 
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Figure S3.3 Elevation distribution of the subbasin Aurino, Rienza and Passirio. 
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Figure S3.4 Calibrated parameter distributions for the four precipitation inputs in Aurino catchment within the 

initial parameter range (y-axis domain): green bars show the final parameter ranges; red points represent the 

values of “best parameter”. “Δ” means an absolute increase, without “Δ” means absolute value. 
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Figure S3.5 Calibrated parameter distributions for the four precipitation inputs in Rienza catchment within the 

initial parameter range (y-axis domain): green bars show the final parameter ranges; red points represent the 

values of “best parameter”. “Δ” means an absolute increase, without “Δ” means absolute value. 
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Figure S3.6 Calibrated parameter distributions for the four precipitation inputs in Passirio catchment within 

the initial parameter range (y-axis domain): green bars show the final parameter ranges; red points represent 

the values of “best parameter”. “Δ” means an absolute increase, without “Δ” means absolute value. 
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Table S3.1 Fixed hydrological parameters (mean value of best parameters of the best simulations using 

different datasets at each subbasin) to get the results in Table 3.6. 

Parameter value 

Aurino  

a__SOL_AWC().sol 0.109 

a__CN2.mgt -18.615 

v__ESCO.hru 0.336 

a__GWQMN.gw -31.898 

a__REVAPMN.gw -3.940 

v__GW_REVAP.gw 0.106 

v__GW_DELAY.gw 41.769 

v__ALPHA_BF.gw 0.049 

v__CH_K2.rte 323.733 

a__SLSUBBSN.hru 120.483 

Rienza  

a__SOL_AWC().sol 0.063 

a__CN2.mgt -3.069 

v__ESCO.hru 0.826 

a__SLSUBBSN.hru 117.181 

a__HRU_SLP.hru -0.156 

a__GWQMN.gw -60.072 

v__GW_REVAP.gw 0.049 

v__GW_DELAY.gw 118.302 

v__CH_K2.rte 141.183 

Passirio  

a__SOL_AWC().sol 0.048 

a__CN2.mgt 0.824 

v__ESCO.hru 0.376 

a__SLSUBBSN.hru 94.885 

a__GWQMN.gw 6.799 

v__GW_REVAP.gw 0.173 

v__GW_DELAY.gw 29.165 

v__CH_K2.rte 368.354 
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B. Supplementary material of Chapter 4 

 

Figure S4.1 Location of temperature and precipitation stations in the Upper Adige River basin. 
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Figure S4.2 Left column: Simulated SWE of each HRU where the snow station is located (name of the 

station in the box on the right) and the weighting sum of the SWE value of the elevation bands 

(SUM_EB). The perfect correlation between all pairs of stations and SUM_EB is shown in the other 

plots. 

 
Figure S4.3 Comparison between the values of sub-basin-scale snow parameters (histogram) and those 

of the basin-scale snow parameters (blue lines).
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Table S4.1 Information about the snow stations of each sub-basin. 

Sub-basin Station LAT LONG ELEVATION 

1 PRETTAU 47.03658867 12.09912722 1450 

2 WEHR_IN_PFITSCH 46.92499219 11.5246721 1365 

RIDNAUN 46.90908292 11.30677415 1350 

INNERRATSCHINGS 46.8660261 11.31719654 1260 

3 MUEHLEN 46.90025669 11.94743948 851 

4 TERENTEN 46.83445756 11.78557637 1349 

PFUNDERS 46.88718005 11.7029428 1159 

5 BRUNECK 46.8042795 11.93148052 821 

6 ST.MAGDALENA_IN_GSIES 46.83526049 12.24271916 1398 

STAUSEE_OLANG 46.75973668 12.0536567 1057 

MITTERTAL 46.86072197 12.10089661 1236 

7 TOBLACH 46.72997843 12.21915906 1219 

8 PLATT 46.82249293 11.17808117 1147 

ST.MARTIN_IN_PASSEIER 46.78268262 11.227909 588 

9 FRANZENSFESTE 46.77830419 11.63224641 725 

10 LUESEN 46.74503125 11.76389069 981 

11 STERN 46.5836304 11.90707588 1390 

CAMPILL 46.63934499 11.8608778 1396 

12 AUSSERROJEN 46.8095884 10.48411317 1833 

MELAG 46.83743215 10.65658211 1915 

ST.VALENTIN 46.77587237 10.52890216 1499 

MARIENBERG 46.70568911 10.5212676 1310 

SCHLINIG 46.70413104 10.47392043 1690 

MATSCH 46.69431625 10.61752601 1570 

13 SCHENNA 46.68959619 11.19083111 680 

MERAN 46.68805798 11.13656021 330 

OBERMAIS 46.6578197 11.18323354 334 

14 VORDERKASER 46.73510025 10.92669711 1705 

15 ALLITZ 46.65020601 10.69607321 1754 

STAUSEE_ZUFRITT 46.50906285 10.72507183 1851 

16 FLITZ 46.62357402 11.66281009 1350 

LATZFONS 46.67240083 11.54613904 1190 

ST.ULRICH 46.57404443 11.67296415 1180 

17 WEISSBRUNN 46.48684723 10.83181103 1900 

STAUSEE_ZOGGL 46.54167092 10.98978931 1142 

STAUSEE_ST.PANKRAZ 46.56489465 11.05568468 810 

PAWIGL 46.62776162 11.10933866 1400 

18 REINSWALD 46.70104927 11.41450083 1365 

19 VOELS 46.51340578 11.50595194 840 

20 MOELTEN 46.58577237 11.25168816 1133 

Nearby ALTREI 46.277346 11.367751 1209 

SEXTEN 46.703054 12.349964 1310 

DEUTSCHNOFEN 46.419133 11.412535 1415 

RADEIN 46.346545 11.396822 1562 
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Description of the elevation band method 

 

As shown in Eqs. (S4.1) - (S4.4), the method modifies the precipitation and temperature inputs for each 

sub-basin by weighting the elevation difference between the rain gauge/climate station and the bands. 

𝑅band = 𝑅day + (ELband − ELgauge) ∙
plaps

dayspcp,yr∙1000
, 𝑅day > 0.01                                        (S4.1) 

𝑇band = 𝑇 + (ELband − ELgauge) ∙
tlaps

1000
                                                                                   (S4.2)              

𝑅or = ∑ 𝑅band ∙ frbnd
𝑏
𝑏𝑛𝑑=1                                                                                                         (S4.3) 

𝑇or = ∑ 𝑇band ∙ frbnd
𝑏
𝑏𝑛𝑑=1                                                                                                         (S4.4) 

where Rband is the precipitation in the elevation band (mm), Rday is the precipitation recorded at the rain 

gauge (mm), ELband is the mean elevation at the elevation band (m), ELgauge is the elevation at the 

recording gauge (m), plaps is the precipitation lapse rate (mm/km) and dayspcp,yris the average number 

of days of precipitation in the sub-basin in a year, frbndis the fraction of the sub-basin area within the 

elevation band, and b is the total number of elevation bands in the sub-basin. 𝑇band is the temperature 

(maximum, minimum and average temperatures) in the elevation band (°C), T is the temperature 

(maximum, minimum and average temperatures) recorded at the climate station (°C), tlpas is the 

temperature lapse rate (°C/km). Ror and Tor are the daily precipitation (mm) and temperature (°C), 

respectively, adjusted for orographic effects, and these temperature and precipitation values are assigned 

to all the HRUs in one sub-basin. 
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Test of SWE outputs of different HRUs in the same subbasin (output.hru) 

To investigate the mechanism of calculating the HRU scale SWE outputs in SWAT, a specific model 

which defined a single and unique HRU for the location of each snow station was constructed. Subbasin 

12 is taken as an example for this exercise, since six snow stations are located at different elevations 

(Table S5.1) in this subbasin. However, as shown in Figure S5.1, the SWE outputs for the HRUs related 

to the six stations do not display any significant difference. The value assigned to each HRU was equal 

to the weighted sum of the SWE of all elevation bands 𝑆𝑈𝑀_𝐸𝐵: 

𝑆𝑈𝑀_𝐸𝐵 = ∑ 𝑆𝑊𝐸𝑏𝑎𝑛𝑑 ∙ 𝑓𝑟𝑏𝑛𝑑
𝑏
𝑏𝑛𝑑=1 = 𝑆𝑢𝑏𝑆𝑊𝐸                                                          (S5.1)          

where 𝑆𝑊𝐸𝑏𝑎𝑛𝑑 is the SWE value of each band (mm), 𝑓𝑟𝑏𝑛𝑑 is the fraction of the subbasin area within 

the elevation band, and b is the total number of elevation bands in the subbasin. 

Therefore, we can conclude that the SWAT model assigned the same SWE output for each HRU in one 

subbasin and this value represents the mean SWE of the subbasin (𝑆𝑢𝑏𝑆𝑊𝐸). Besides, the measurement 

of a single monitoring station cannot be used to calibrate the model output obtained at the HRU scale.      
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C. Supplementary material of Chapter 5 

 

Figure S5.1 Comparison of the Simulated SWE of each HRU where the snow station is located and the 

weighting sum of the SWE value of the elevation bands. The SUM_EB is used as a common reference 

for comparing the SWE outputs. 
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Table S5.1 Information about the snow stations of each subbasin. 

Subbasin Station LAT LONG ELEVATION 

1 PRETTAU 47.03658867 12.09912722 1450 

2 WEHR_IN_PFITSCH 46.92499219 11.5246721 1365 

RIDNAUN 46.90908292 11.30677415 1350 

INNERRATSCHINGS 46.8660261 11.31719654 1260 

3 MUEHLEN 46.90025669 11.94743948 851 

4 TERENTEN 46.83445756 11.78557637 1349 

PFUNDERS 46.88718005 11.7029428 1159 

5 BRUNECK 46.8042795 11.93148052 821 

6 ST.MAGDALENA_IN_GSIES 46.83526049 12.24271916 1398 

STAUSEE_OLANG 46.75973668 12.0536567 1057 

MITTERTAL 46.86072197 12.10089661 1236 

7 TOBLACH 46.72997843 12.21915906 1219 

8 PLATT 46.82249293 11.17808117 1147 

ST.MARTIN_IN_PASSEIER 46.78268262 11.227909 588 

9 FRANZENSFESTE 46.77830419 11.63224641 725 

10 LUESEN 46.74503125 11.76389069 981 

11 STERN 46.5836304 11.90707588 1390 

CAMPILL 46.63934499 11.8608778 1396 

12 AUSSERROJEN 46.8095884 10.48411317 1833 

MELAG 46.83743215 10.65658211 1915 

ST.VALENTIN 46.77587237 10.52890216 1499 

MARIENBERG 46.70568911 10.5212676 1310 

SCHLINIG 46.70413104 10.47392043 1690 

MATSCH 46.69431625 10.61752601 1570 

13 SCHENNA 46.68959619 11.19083111 680 

MERAN 46.68805798 11.13656021 330 

OBERMAIS 46.6578197 11.18323354 334 

14 VORDERKASER 46.73510025 10.92669711 1705 

15 ALLITZ 46.65020601 10.69607321 1754 

STAUSEE_ZUFRITT 46.50906285 10.72507183 1851 

16 FLITZ 46.62357402 11.66281009 1350 

LATZFONS 46.67240083 11.54613904 1190 

ST.ULRICH 46.57404443 11.67296415 1180 

17 WEISSBRUNN 46.48684723 10.83181103 1900 

STAUSEE_ZOGGL 46.54167092 10.98978931 1142 

STAUSEE_ST.PANKRAZ 46.56489465 11.05568468 810 

PAWIGL 46.62776162 11.10933866 1400 

18 REINSWALD 46.70104927 11.41450083 1365 

19 VOELS 46.51340578 11.50595194 840 

20 MOELTEN 46.58577237 11.25168816 1133 

Nearby ALTREI 46.277346 11.367751 1209 

SEXTEN 46.703054 12.349964 1310 

DEUTSCHNOFEN 46.419133 11.412535 1415 

RADEIN 46.346545 11.396822 1562 
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Table S5.2 Absolute percentage error of snow cover duration (SCD). 

 Calibration Validation  

Subbasin  I II III I II III 

1 48.8 39.9 11.0 36.4 29.4 10.1 

2 45.1 64.6 12.2 37.0 54.3 12.6 

3 60.4 25.6 6.7 32.8 5.3 8.4 

4 19.5 9.5 18.9 7.0 6.2 10.4 

5 7.3 15.5 5.8 6.4 10.9 1.1 

6 26.8 30.5 0.0 23.8 28.6 0.3 

7 67.1 89.0 16.5 55.7 71.1 21.8 

8 24.1 23.5 1.2 35.3 32.5 10.1 

9 1.8 83.5 5.5 3.1 70.9 0.0 

10 94.5 58.2 7.3 67.5 45.7 5.0 

11 8.8 12.8 9.8 8.1 8.4 9.0 

12 62.8 54.0 7.0 51.0 52.1 9.8 

13 96.6 56.4 2.7 74.2 39.8 2.8 

14 64.9 47.0 0.3 40.9 39.5 0.8 

15 42.1 86.3 19.5 21.3 58.8 27.5 

16 17.7 10.4 11.9 26.1 5.9 6.2 

17 39.0 11.6 1.2 14.8 23.2 17.6 

18 39.9 9.8 7.3 27.2 10.6 1.7 

19 29.6 11.9 16.8 28.6 10.4 18.5 

20 83.2 13.7 7.0 33.1 4.8 2.5 

Table S5.3 Absolute percentage error of snow peak value (SPV). 

 Calibration Validation  

Subbasin  I II III I II III 

1 82.9 93.7 20.0 15.5 20.7 3.1 

2 56.0 83.6 13.7 19.6 34.5 16.5 

3 41.7 22.4 5.8 5.4 9.4 9.2 

4 29.3 23.4 0.0 15.4 5.0 4.1 

5 8.8 15.7 21.5 19.9 23.6 5.3 

6 24.0 18.3 3.9 1.8 2.3 10.7 

7 13.7 11.2 4.1 15.0 9.2 7.6 

8 60.2 65.8 2.2 26.0 31.6 36.4 

9 25.5 80.5 25.4 9.7 35.4 9.5 

10 94.4 16.0 21.1 79.9 11.3 0.4 

11 1.1 6.9 6.7 8.7 14.0 4.2 

12 20.8 5.7 16.6 4.8 15.7 8.1 

13 183.4 104.8 36.4 148.4 129.8 15.4 

14 84.8 78.4 29.7 76.6 58.6 2.7 

15 77.7 82.1 22.3 64.9 85.1 19.1 

16 4.7 28.1 31.1 25.4 9.6 13.0 

17 65.8 31.6 42.2 15.4 30.7 13.5 

18 48.2 27.4 8.0 26.7 48.0 38.5 

19 45.1 20.8 33.6 14.0 23.2 0.9 

20 61.7 49.1 41.6 24.2 25.7 21.6 
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Table S5.4 Absolute percentage error of snow peak day (SPD). 

 Calibration Validation  

Subbasin I II III I II III 

1 18.0 18.0 12.5 2.5 2.5 2.5 

2 18.0 13.3 4.7 1.2 1.6 1.2 

3 16.7 12.1 10.5 1.5 16.1 1.1 

4 10.5 12.2 10.9 16.1 16.1 1.5 

5 8.9 0.1 1.5 0.8 0.5 0.0 

6 13.3 12.2 5.1 1.2 2.1 2.1 

7 12.7 18.6 6.1 2.7 3.6 2.7 

8 18.5 18.5 3.0 2.4 1.2 0.1 

9 0.7 22.9 0.7 1.6 2.5 1.6 

10 0.8 5.8 1.6 14.0 0.9 0.0 

11 6.6 6.6 6.6 0.5 0.5 2.5 

12 18.5 17.9 65.8 0.9 0.0 0.0 

13 21.8 14.4 0.2 0.6 0.7 0.8 

14 3.1 3.1 4.0 12.0 13.5 0.3 

15 3.7 3.7 5.9 2.6 3.6 0.3 

16 8.9 0.7 0.7 0.0 0.0 0.0 

17 3.4 17.2 12.3 1.3 2.5 1.3 

18 0.6 13.9 5.0 0.8 0.7 1.2 

19 0.7 1.1 0.7 0.3 0.4 0.3 

20 0.6 0.6 0.6 0.1 0.1 0.3 

 

 


