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Abstract

The present work searches for suitable iterative solvers for problems in thermoacoustics. In
particular, Helmholtz equations and discontinuous-Galarkin-discretized linearized Navier-
Stokes equations (DG-LNSE) were treated. The literature related to iterative solvers is sum-
marized, and suitable solvers were identified. Multiple solvers were found to work for the
Helmholtz equation and LNSE with no heat source term. On the other hand, none of the
tested solvers (GMRES, FGMRES, BiCGStab, CG) worked for the more complex LNSE prob-
lems involving a heat source term, regardless of used preconditioner. For Helmholtz eigen-
value problems, numerical investigations revealed that conjugate gradient (CG)–with the Multi-
grid method as a preconditioner–scales particularly slowly in terms of memory consumption
with increasing problem size (number of DoF), leading to significant memory savings when
compared to direct solvers. In particular, for 3D problems, CG with Multigrid is shown to solve
problems one order of magnitude larger than MUMPS (a parallel direct solver) can solve with
for same memory requirement. As for 2D problems, CG With Multigrid solves problems twice
as large as MUMPS solves for the same memory requirements. Additionally, CG with Multigrid
is as fast or faster than direct solvers for these equations. An alternative solver for Helmholtz
eigenvalues was also studied, namely CG with SOR. This latter configuration was found to be
effective, too, though less than CG with Multigrid. For 3D problems, CG with SOR was shown
to solve problems that are five times larger than those that MUMPS can solve for the same
memory requirements. For 2D problems, it solves problems that are twice as large as those
that MUMPS can solve. However, for Helmholtz eigenvalue problems, CG with SOR is slower
than MUMPS by one order of magnitude for 3D problems, and two orders of magnitude for
2D problems.

For DG-LNSE frequency response problems with no heat source terms, GMRES with the
SOR method as preconditioner was found to be suitable. It is shown to solve problems one
order of magnitude higher than MUMPS can solve for the same memory usage, while being
about 3 times slower slower. For the studied DG-LNSE problems with heat source terms, no
iterative solvers converged. However, this is suspected to be a result of poor choice of bound-
ary conditions in the used test cases. Nevertheless, GMRES with SOR was the nearest solver
to convergence. This area requires further investigation.
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Mathematical notation

In this work, a certain style of mathematical notation was chosen to avoid ambiguity. This
serves mainly to distinguish matrices from vectors and scalars, iteration step from exponent,
matrix dimension from matrix entry, and so on. Table 1 shows this style of notation.

Example Notation Meaning
A Bold upper-case Latin character. Matrix

Am1,m2 Matrix with comma separated
subscript

Matrix with
explicitly-stated
dimensions.

x Bold lower-case Latin character Vector

a (also: λ) Lower-case Latin or Greek
character

Scalar

ai , j Scalar with two
comma-separated indexes as
subscripts

Entry in the i -th row
and j -th column of
matrix A

λα Variable with a scalar as
superscript

Power

x(k) A variable with scalar in
parentheses as superscript

Iteration step k of an
iterative method

x{l } A variable with scalar in braces as
subscript (or occasionally
superscript)

l -th multigrid level

Table 1: Table detailing the mathematical notation used throughout this work

Also consult at Appendix A for the concepts and operations used in the work.
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1 Introduction

The field of thermoacoustics is of ever-increasing importance. Both in academia and industry,
reliance on numerical methods is common in this field. These case a given problem into a
system of linear equation system of the form Ax = b.

However, due to the proliferating application of these methods on larger and more com-
plex models, as well as the constant drive for more robust schemes and better approximations,
the task of solving these equation systems becomes increasingly challenging. The processing
time increases dramatically, but even more pressing is the issue of memory requirement for
solving these systems. This is particularly true when the available computational resources
are limited, such as when access to high-performance supercomputers is restricted.

The straightforward way for solving linear equation systems is the use of direct solvers.
These tend to be robust and applicable to a wide variety of problem classes, though at the
cost of higher memory consumption. This disadvantage is particularly evident for very large
systems. The focus of this work lay thus on iterative solvers instead, which allow for lower
memory constraints.

Iterative methods have been the subject of fairly intensive research, especially since the
early 50’. Constant theoretical advancements have produced several methods that vary in
practical utility. A reoccurring theme in the literature is the need for empirical tests to es-
tablish whether a scheme is suitable for a given class of problems. This is due to the fact that
these methods typically come with special constraints. An iterative solver suitable for an ap-
plication is often not suitable for another. Also, the robustness of an iterative scheme can be
strongly influenced by the choice of preconditioner. Therefore, an investigation to determine
appropriate iterative solver-preconditioner combinations for problems in thermoacoustics is
performed in this work.

This work specifically handles eigenvalue problems and problems relating to frequency
response function (FRF) within the context of thermoacoustics. First, an introduction to nu-
merical eigenvalue and frequency response algorithms is provided. Then an overview of the
theory behind the iterative solvers and preconditioners that were studied is presented. There-
after, through numerical investigation of several preconditioner-solver combinations on mul-
tiple models, this work investigates the convergence behavior of these combinations. The aim
here is to find some solver that is generally applicable for all test cases. For the combinations
that proved to work, the effect of increasing problem size on memory consumption are stud-
ied. This way, this work aims to push the limit of the problem size that can be solved on an
ordinary work station. The scope of this study is limited to thermoacoustics. Therefore, the
results are only applicable to problems from this field and problems which deliver similar
equation systems. For all simulations done in this work, COMSOL Multiphysics 4.4 was used.
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2 Theory

2.1 Krylov subspaces and the Arnoldi Iteration

Throughout this work, the idea of a Krylov subspace plays an important role in multiple places.
The need for the concept of Krylov subspace arizes from the desire to reduce systems of linear
equations that are too large to a manageable size. This is relevant for the eigenvalue algorithm,
since most often, only a very small proportion of eigenvalues is of interest. This also comes
very clearly into play for the GMRES iterative solver, where the algorithm essentially projects
the system on a smaller Krylov subspace, solves the system, then projects the problem back
onto the original dimension (This is discussed more thoroughly in Section2.6.5).

When discussing Krylov subspaces, there is often the need to find a transformation be-
tween the original system and the Kyrlov subspace projection of the system. This is most
commonly achieved through the Arnoldi iteration, and is a prominent feature of the GMRES
iterative solver.

2.1.1 Krylov subspaces

Consider a system of linear equations
Ax = b

where A is an n×n matrix, and b and x are n×1 vectors. The order-m Krylov subspace of this
problem is defined as the space spanned by the product of the first m powers of A multiplied
with the initial vector r(0) [1]. This can be expressed as

Kr (A,r(0)) = span{r(0),Ar(0),A2r(0), . . .Ar−1r(0)} .

where
r(0) = b−Ax(0)

and x(0) is the initial estimate.

2.1.2 General introduction to the Arnoldi iteration

The Arnoldi iteration is used to calculate a projection of a matrix A into a Krylov subspace.
This means calculating the following transformation:

(Vn,m)∗AVn,m = Hm,m (2.1)

2



2.1 Krylov subspaces and the Arnoldi Iteration

This includes calculating the orthogonal basis {v1,v2, . . . ,vm} for the Krylov subspace, and the
square upper Hessenberg matrix Hm,m [see [2],[3]]. The orthogonal basis vectors are not cal-
culated in one go. Instead, They are calculated stepwise, while simultaneously calculating
components of the matrix Hm+1,m . The combined task of orthogonalization and projection
can be done by relying on a standard Gramm-Schmitt process, but is usually performed us-
ing a modified Gramm-Schmitt process [4]. This is discussed in detail is Section 2.1.3. The
relation between an iteration step k and the next can k +1 be described as follows:

AVn,k = Vn,k+1Hk+1,k (2.2)

2.1.3 Practical implementation of the Arnoldi iteration

The simultaneous basis orthogonalization and orthogonal projection performed by the Arnoldi
algorithm usually relies of the Gramm-Schmidt procedure. This implementation delivers the
following algorithm:

By standard Gram-Schmidt method

1. First, take a start vector r(0) and normalize it by applying v1 = 1
‖b‖ .

2. Initialize the matrices H and V such that all of their elements are 0,

3. For j from 1 to m:

4. (a) for i from 1 to j : hi , j = vT
i Av j

(b) ṽ j+1 = Av j −
j∑

i=1
hi , j v j ,

(c) h( j+1), j =
∥∥ṽ j+1

∥∥,

(d) v j+1 = 1
h( j+1), j

ṽ( j+1), j

.

The classical Gram-Schmitt method is easy to understand and implement. However, with
increasing dimension of Km(A,r(0) (i.e. with increasing m ), it becomes increasingly unstable,
since the vectors A j v j become similar [1] [2]. The modified (or stabilized) Gramm-Schmitt
procedure, as presented in the following, avoids this problem [1] .

By modified Gram-Schmidt method

1. take the vector r(0) and normalize it by applying v1 = 1
‖b‖ ;

2. for j from 1 to m:

(a) ṽ j = Av j ;

3
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(b) for i from 1 to j :

i. hi , j = vT
i ṽ j ;

ii. ṽ j = ṽ j −hi , j vi ;

(c) h( j+1), j = ṽ j ;

(d) v j+1 = ṽ j

h(i+1),i
;

2.2 Eigenvalue algorithm

The eigenvalue problems treated in this work arise discontinuous Galarkin methods. An ex-
planation for discontinuous Galarkin method is beyond the scope of this study, but an ad-
equate presentation of the subject is provided by Blom [5]. These discretizations deliver the
following generalized eigenvalue problem [6]:

(λ−λ0)2Eu− (λ−λ0)Du+Ku = 0 (2.3)

The terms in Eq. (2.3) are to be understood as follows:

• E: Mass matrix,

• D: Damping matrix,

• K: Stiffness matrix,

• u: Solution vector,

• λ0: Linearization point,

• λ: Eigenvalue.

Here, the matrices D, K, N and NF are evaluated; u0 is the solution vector, and λ0 is the lin-
earization point. Eq (2.3) will serve as a starting point for the following discussion. As for de-
tails about the derivation of this equation, see [6, section 19.4]. Eq. (2.3) can be solved first for
λ̃=λ−λ0, i.e

λ̃2Eu− λ̃Du+Ku = 0 , (2.4)

and then solving λ= λ̃−λ0 afterwards. The tilde in Eq. (2.4) is omitted henceforth.
To transform Eq. (2.4) into a linear eigenvalue problem, the transformation

λu = ũ (2.5)

is applied. This yields

λEũ−Dũ+Ku = 0 , (2.6)

λu = ũ . (2.7)
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Rewriting Eq.2.6 and 2.6 as a vector equation delivers(
K λE−D
λI −I

)
=

(
u
ũ

)
= 0 . (2.8)

This can be written as λ
(

0 E
I 0

)
︸ ︷︷ ︸

B

−
(−K D

0 I

)
︸ ︷︷ ︸

A


(

u
ũ

)
︸︷︷︸

x

= 0 . (2.9)

This leads to the linear eigenvalue problem

(λB−A)x = 0 , (2.10)

which is equivalent to
A x =λB x . (2.11)

Note that B has the same dimension of A.

2.2.1 The implicitly restarted Arnoldi method

For the implicitly restarted Arnoldi method, some parameters need to be defined: A desired
number of eigenvalues k must be chosen, and a selection criterion for these eigenmodes has
to be set. Once this is done, this method, as implemented in the ARPACK library, starts by
initially performing an Arnoldi factorization of size m (see Section 2.1).

AVn,m = Vn,m+1Hm+1,m (2.12)

where A is the system matrix obtained in Section 2.2.3.
To obtain a square upper Hessenberg matrix, one needs to remove the last column and

the last line of Vn,m+1 and Hm+1,m , respectively. This yields

AVn,m = Vn,mHm,m +hm+1,mvm+1eT
m (2.13)

where em is the unit vector [3]. The last term on the right represents the residual of this pro-
cess. The large eigenvalue problem in Eq.(2.11) can thus be replaced with a reduced one ex-
pressed by

Hm,myi ,m =λi yi ,m (2.14)

where λi and yi ,m are respectively the i -th eigenvalue and eigenvector.
To solve the reduced eigenvalue problem, the following step are performed until the a

sufficient number of Eigenvalues that satisfy the condition in Section 2.2.1 is reached:

1. The eigenvalues as of Hm,m are computed (This is discussed later in this Section).

5
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2. The eigenvalues are organized in two sets according to the selection criterion: One set
Swanted = {λi |i = 1,2, . . . ,k} for the wanted eigenvalues and another Sunwanted = {λi |i =
k +1,k +2, . . . ,m} for the unwanted eigenvalues.

3. m−k = p steps of the shifted QR factorization (explained below) are performed with the
unwanted eigenvalues Sunwanted as shifts to obtain

Hm,mQm,m = Qm,mH̃m,m . (2.15)

[see[7], Section 4.4.1].

4. The length m Arnoldi factorization [see[7]] is then multiplied from the right with Qm,k ,
which consists of the first k columns of Vk,k , to obtain an Arnoldi factorization

AVn,mQm,k = Vn,mQm,k H̃k,k +h(m+1),mvm+1 (2.16)

where H̃k,k is obtained from H̃m,m by reducing it to exclude elements hi , j for which
i , j > k. Afterwards, set Vn,k = Vn,mQm,k .

5. Finally, the length k Arnoldi iteration is extended to a length m factorization.

An algorithm for the shifted QR factorization, as provided by Lehoucq et al. [7], is explained
in the following. The initial input is the two matrices Hm,m , Vn,m , and a set of shifts {νi |i =
1,2, . . . , l }. For these shifts, the unwanted eigenvalues Sunwanted are selected. The algorithm
performs the following steps for i until i = l :

1. Perform a (normal) QR factorization on the matrix [Hm,m −νi I] .

2. Compute a new H′
m,m = Q∗

m,mHm,mQm,m and a new V′
n,m = Vn,mQm,m . These are used

in the next iteration as Hm,m and Vn,m , respectively.

The QR factorization

For the shifted QR factorization, a QR factorization

H = QRQ∗ , (2.17)

where Q is a unitary matrix and R is an upper triangular matrix, is required. Since H is an
upper-Hessenberg matrix, this can be easily done using a series of 2× 2 Givens rotations or
3×3 Householder rotations, instead of explicitly computing Q, in a so-called bulge-chasing
procedure. This is implemented in the ARPACK package. For an idea as to how such a process
is done, Section 2.6.5 contains a possible implementation.
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Calculating the eigenvalues of H

The Egenvalues of Hm,m are found through a (normal) QR decomposition, in the same man-
ner as described above. It is clear from Eq. (2.17) that a QR decomposition is a similarity
transformation. Moreover, it is known that eigenvalues are invariable in relation to similarity
transformations. Therefore, the eigenvalues of Hm,m are those of R, and since R is an upper
triangular matrix, its eigenvalues are simply its diagonal entries. Note that this method of cal-
culating the eigenvalues of Hm,m , is only practical for small problems. For a larger m, other
other methods to approximate R are used instead. These are discussed in detail in Lehoucq
et al. [7].

After eigenvalues are obtained, the corresponding eigenvectors are calculated by solving
Eq. (2.14) for yi ,m . These are then transformed backwards by applying

x = Vn,my (2.18)

to arrive at the eigenvectors in the original configuration.

Interruption condition for the implicitly restarted Arnoldi iteration

To estimate whether the eigenvalues and eigenvectors of the Hessenberg matrix are an ac-
curate representation of those of the original problem statement at Eq.(2.11), the following
formula can be used: ∥∥(A−λi I)vi ,m

∥∥= h(m+1),m |eT
myi ,m | (2.19)

where vi ,m = Qn,myi ,m is the obtained approximation of the eigenvector from Eq.(2.11). If the
norm of the term on the right side h(m+1)m |eT

m ym
i | is below a certain threshold, the process is

terminated. [7] [3]

2.2.2 Additional notes about the Arnoldi method

There are two extra issues regarding the Arnoldi method that have to be discussed. First, the
dimension of the Krylov subspace (m) has to be chosen. This issue is not critical, as a dimen-
sion m = 50 was shown to be sufficient for the Helmholtz equation. This is due to the fact
that the Arnoldi iteration becomes largely insensitive to changes in m around that threshold
[8]. The second issue relates to large Krylov subspaces. For such spaces, the Arnoldi vectors
produced by the modified Gram-Schmidt procedure are not orthogonal to machine preci-
sion. This leads to false eigenvalues [9]. In this case, explicit re-orthogonalization of the basis
becomes preferable. This can be done for instance with the DKGS method, which was intro-
duced by Daniel et al. [10]. However, the COMSOL version (4.4) used in this work does not
support this feature.[3]

2.2.3 Shift and invert method

To solve the eigenvalue problem in Eq. (2.11), the implicitly restarted Arnoldi method de-
scribed in Section 2.2.1 is used. However, this method is only appropriate for searching for
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the lowest an highest eigenvalues. If the eigenvalues around a specific point are of interest,
the shift and invert method can be coupled with the Arnoldi method to achieve this[7]. The
shift and invert method is implemented in the ARPACK library [7]. In this section, only the
core idea behind this method is introduced. The publication by Lehoucq et al. [7] is recom-
mended for those interested in a more complete understanding of the algorithm.

Let’s define σ as the point where the solver should search for eigenvalues. σ is then called
the shift. First, let’s apply the spectral transformation

µ= 1

λ−σ (2.20)

to Eq. (2.11). This yields

Ax =
(
σ+ 1

µ

)
Bx . (2.21)

This can be rearranged as

(A−σB)x = 1

µ
Bx , (2.22)

which in turn can be rearranged as

(A−σB)−1B︸ ︷︷ ︸
C

x =µx . (2.23)

The shift and invert method consists of using the Arnoldi method (more precisely, the im-
plicitly shifted Arnoldi method presented in Section 2.2.1) to search for the highest eigenval-
ues of C = (A−σB)−1B. As can be seen Eq.(2.20), the highest eigenvalues of C correspond to
the eigenvalues of the system at Eq.(2.11) which are closest to the shift σ. After obtaining the
eigenvalues µi , it is possible to transform the eigenvalues backwards to the original configu-
ration by using the relation

λi =σ+ 1

µi
, (2.24)

which immediately follows from Eq.(2.20).
The most memory-critical part of the shift and invert method is the transformation into

the form at Eq.(2.23). This requires solving the system

(A−σB)C = B (2.25)

For the matrix C. This is done by solving

(A−σB)ci = bi ∀i = 1,2, . . . ,n , (2.26)

where ci and bi are the columns of C and B respectively, using any of the solvers form Sections
2.5 and 2.6
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2.3 Frequency response functions

Two of the test cases treated in the present work are cases where some frequency response
function (FRF) is the value of interest. Therefore, a brief introduction to this concept in pro-
vided here.

For a simple single input-single output system, a linear time-invariant system can be rep-
resented as a state-space model as follows[11]:

ẋ = Ax+bu (2.27)

y = cT x (2.28)

Applying Laplace transformation to Eq.(2.27) and Eq. (2.27) yields

sX(s) = AX(s)+bU (s) , (2.29)

Y = cT X(s) . (2.30)

Note that X(s) is a vector, not a matrix. The upper-case notation is used here to indicate
Fourier or Laplace transformation. Solving Eq. (2.29) for X(s) and inserting it into Eq. (2.30)
yields

Y (s) = cT (sI−A)−1bU (s) . (2.31)

The FRF of a system can be defined as

G := Y (ω)

U (ω)
, (2.32)

where Y (ω) is the Fourier transform of the output and U (ω) is that of the input. From Eq.
(2.32) and Eq. (2.31), the relation

G(s) = cT (sI−A)−1b (2.33)

is obtained[11]. Eq.(2.33 can be solved using any of the solvers discussed in Sections 2.5 and
2.6.

2.4 Solving systems of linear equations

Take a system of linear equations represented as follows

A x = b (2.34)

Where A ∈ Cn×n , x ∈ Cn×1 and b ∈ Cn×1. Solving such systems is required in both eigenvalue
and frequency response algorithms. This mainly applies for the systems of linear equations
presented in Eq.(2.26) and Eq.(2.33). Such systems can either be solved using direct or iter-
ative solvers. In this section, both these classes of solvers will be introduced, while only ex-
ploring iterative solvers in a detailed manner. Afterwards, an overview of preconditioners will
be presented. Occasionally, some noteworthy differences are present between the precondi-
tioned and unpreconditioned versions of the algorithms may be present. Unless explicitely
otherwise stated, the unpreconditioned version will be the one that is discussed.
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2.5 Direct solvers

The system described by Eq. (2.34) can be solved using direct methods. These will, in this
Section, receive a very short treatment, as they lay beyond the scope of this work.

The most basic direct solver is possibly Gaussian elimination. Most direct solvers, such as
the LU Decomposition and the QR Decomposition, are based, at least in part, on it [12]. Con-
sistent innovations have been achieved in this class of solvers over the years, such as the intro-
duction of variants of the classical factorization methors that can exploit band structures and
better cope with large systems. Among these are the MUMPS [13] and PARDISO solvers[14].

A defining feature of this class of solvers is that, when neglecting round-off errors, it pro-
vides an exact solution after a finite number of steps and are typically relatively fast. However,
their memory consumption increases rapidly with increasing problem size. Some estimates
state that the memory requirements increases with order O (n3)[15]. At a certain problem size,
such memory consumption is often unaffordable. Moreover, numerical schemes typically de-
liver a linear equation system where the matrix A has a pronounced, often narrow band struc-
ture. Most direct solvers do not take much of an advantage of this, resulting instead in a so-
called fill in effect. This means that the entries in the matrix A that were originally zero acquire
a non-zero value during the solution process [16].

In this work, the solver MUMPS was used as a benchmark to compare iterative solvers to.
As such, a brief presentation of this solver is provided in the following

2.5.1 Multifrontal Massively Parallel Solver (MUMPS)

The MUMPS solver is a direct solver based on Gaussian elimination that was developed by
Amestoy et al. [13]. It is a parallel, fully asynchronous solver based on a multifrontal approach
that implements classical pivoting during factorization. It is designed such that it adapts to
numerical work load during calculation. Moreover, it reasonably exploits existing sparsity pat-
terns and the resulting independence of computations, as well as the independence of calcu-
lations also present in dense matrices. These features result in a high performance for this
solver. Equally important is MUMPS’s capacity for solving a wide range of problems. This in-
cludes symmetric, asymmetric, and indefinite matrices using LU or LDLT factorization. For
an in-depth understanding of the algorithm, the publication Amestoy et al. [13] is recom-
mended.

For the purposes of this work, it might be helpful to know that MUMPS (as with other
direct solvers present in COMSOL 4.4) actively exploits shared memory parallelism (such as
multicore processors) according to the COMSOL 4.4 reference manual [6]. Consult the same
publication for more information regarding the implementation of MUMPS.

2.6 Iterative solvers

The purpose of iterative solvers is to avoid the problems associated with direct solvers, partic-
ularly their high memory consumption. This comes at the cost of sacrificing robustness. The
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defining feature of iterative schemes is that they only approach the exact solution asymptot-
ically, never truly arriving at it. Nonetheless, this can be overlooked, since the discretization
process introduces its own error. It is therefore only important that the error of the iterative
solver remain at lower magnitude then the discretization[17].

The most appropriate introduction to this class of solvers is are probably the Jacobi, Gauss-
Seidel and SOR schemes due to their simplicity. Therefore, they shall be discussed first in the
following section. However, according to Schaefer [16], they are not very effective. As a result,
another class of solvers, the Krylov subspace methods, was developed. Among such solvers is
the conjugate Gradient (CG) method, which is highly efficient as it only involves one matrix-
vector multiplication. Yet this method reliably converges only for Hermitian, positive definite
matrices. The method was thus extended to handle non-Hermitian matrices and indefinite
systems. Further development of this method has delivered the biconjugate Gradients (BiCG)
[18] and the Biconjugate Gradients stabilized (BiCGStab) methods [19]. Although these meth-
ods do not suffer from the drawbacks of the Conjugate Gradient Method, they do not satisfy
the optimality condition1 and converge irregularly[20]. The last Krylov subspace solver that
will be discussed is the GMRES method, which is optimal and does not suffer from significant
instability or robustness issues, at the cost of higher memory consumption [1].

Iterative solvers are typically not used separately, but are instead coupled with precondi-
tioners. Mathematically, a preconditioner transforms problem statement into a form that is
numerically easier to solve[21]. As discussed throughout this section, the convergence prop-
erties of iterative solvers are strongly dependent an an appropriate choice of preconditioner.
This is verified by the results from this work (see tables in Appendix C.3). Therefore, instead
of just discussing solvers, it is often more meaningful to discuss solver-preconditioner combi-
nations. The latter is done often throughout this work. Preconditioners are discussed in more
details in section 2.7

Another class of solvers that shows promise is the Multi-resolution methods, which can be
used either as solvers or as preconditioners to other methods. Essentially solve the system on
a coarser mesh using a robust solver, while using extra operations (pre- and post-smoothers)
to smooth out the error produced by such an operation. This is discussed more thoroughly in
subsection 2.7.6. Also see the same subsection for a brief explanation of the role of pre- and
post-smoothers.

2.6.1 Classical splitting methods

These methods are also commonly referred to as stationary iterative solvers or relaxation
methods. They are limited in their applicability to diagonally-dominant systems of linear
equations. This means that the convergence is guaranteed only if the condition |ai i | ≥Σi 6= j |ai j |
is satisfied, although they may still converge otherwise [22].

Consider the Linear equation system 2.34. The system can be extended as described by
equation 2.35

Bx−Bx+Ax = b , (2.35)

1A global minimum for the residual is not necessarily reached
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where B is a square matrix with suitable dimension. The general iteration rule for the step
k +1 can thus be derived as

Bx(k+1) −Bx(k) +Ax(k) = b (2.36)

or
x(k+1) = B−1(B−A)x(k) +B−1b . (2.37)

By defining
M = B−1(B−A) , (2.38)

the equation changes to
x(k+1) = M x(k) +B−1 b . (2.39)

It can be observed from Eq.(2.38) and (2.39) that the matrix B should ideally be easily invert-
ible. By choosing B = I, this may be achieved, but at the cost of slower convergence. On the
other extreme, the choice of B = A causes the scheme to converge after exactly one step. But
this is strips the scheme of any practical or theoretical significance, as the iteration rule then
simplifies to

x(k+1) = A−1b (2.40)

which is the same as Eq.(2.34) and does not answer the question of how to efficiently invert A.
The best course of action is choosing a pragmatic compromise between the two approaches.
This is commonly implemented by opting to assign certain values of A to B.

A can be decomposed as
A = AL +AU +AD (2.41)

where AL and AU are respectively the lower- and upper-triangular components of A, and AD

is the matrix of the diagonal elements of A. From this, the following iterative methods can be
derived:

Jacobi: B = AD (2.42)

Gauss-Seidel: B = AD +AL (2.43)

Successive Over-
Relaxation (SOR):

B = AD +ωSOR AL

ωSOR
(2.44)

Successive Over-
Relaxation U (SORU):

B = AD +ωSOR AU

ωSOR
(2.45)

Symmetric Successive
Over-Relaxation (SSOR):

B = ωSOR

2−ωSOR
(

AD +ωSOR AL

ωSOR
)D−1(

ωSOR AU +AD

ωSOR
) (2.46)

.
Some versions of the Jacobi algorithm scale the matrix AD by an additional factor ofω. The

parameter ωSOR is called the relaxation parameter. It should be chosen so that ωSOR ∈ (0,2).
A choice of ωSOR < 1 can be made to increase the speed of convergence of an overshooting
process, or establish the convergence of otherwise diverging processes, whereas a choice of
ωSOR > 1 tends to speed up convergence of a slow converging process. For 0 < ωSOR < 2, the
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SOR method converges if A is symmetric positive definite 2 [24], [6]. In general, though, these
methods may or may not converge regardless of symmetry. They will, however, definitely fail
if the system matrix has zeroes on its diagonals[6].

Krylov subspace Methods

A Krylov subspace is the space generated by an n×n matrix A and an n×1 vector b that spans
the product of the first r powers of A multiplied with b [4]. It is expressed as

Kr (A,r(0)) = span{r(0),Ar(0),A2r(0), . . .Ar−1r(0)} .

where
r(0) = b−Ax(0)

and x(0) is the initial estimate.
An iterative method that is based on the projection of the system on a Krylov subspace is

called a Krylov subspace method [25]. The methods that will be discussed from this category
are CG, BiCG (briefly), BiCGStab, GMRES, and the FGMRES.

2.6.2 Conjugate gradient (CG)

For the conjugate gradient method, the system in equ.2.34 should possess a matrix A that is
symmetric and positive definite, though it might also occasionally converge for matrices that
are not positive definite, especially if the matrix is close to positive definite [6]. the method, as
described by Hestenes and Stiefel [26] can be understood as follows in this section.

Consider
Ax−b = 0 , (2.47)

and define Q as

Q(x) := 1

2
xT Ax−bT x . (2.48)

Q is called a quadratic form. Taking the first derivative of Q relative to x yields

∂Q(x)

∂x
= Ax−b = 0 . (2.49)

The second derivative yields
∂2Q(x)

∂x2
= A . (2.50)

Therefore, if A is positive definite, the solution of Eq.(2.47) represents a global minimum for
the quadratic function Q(x).

It is helpful at this point to consider the geometric implications of this minimization prob-
lem. The first point of interest is the fact that the solving the equation Q(x) = c produces an

2A proof for this is provided by Quarteroni et al. [23]
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ellipsoid in Cn . One way of solving the minimization problem in (15) is by first defining the
residual r(x)

r(x) = Ax−b (2.51)

and choosing an arbitrary vector v(0) and an arbitrary search direction p(0). The idea is to min-
imize Q along this direction, that is solving the equation

∂

∂x
Q(x(0) +qp(0)) = 0 (2.52)

for q . Eq.(2.52) for q results in

q = p(0)T r(x(0))

p(0)T Ap(0)
. (2.53)

Now is is possible to set
x(1) = x(0) +q (0)p(0) . (2.54)

A new vector v(1) has thus been obtained. The next step is to choose a new search direction
p(1). Since the Q(x) = c admits ellipsoids as its solution, the new search direction p(1) and the
old one p(0) should ideally be A-conjugate, that is

p(1)T Ap(0) = 0 . (2.55)

The new residual then reads as:

r (1) = Ax(1) −b = r(1) +e.p(0) . (2.56)

Searching for the A-conjugate direction to p(0) in the plane defined by the previous direction
and the gradient of r(1) in the direction of v(1) results in

p(1) =−r(1) +e.p(0) (2.57)

where

e = r(1)Ap(0)

p(0)Ap(0)
. (2.58)

Having obtained a new search direction p, a new vector x, and a new residual r, which is
smaller than the initial residual, the current iteration is concluded and the next iteration can
be launched by setting x(0) = x(1),r(0) = r(1) and p(0) = p(1), and restarting the process. Interrupt
the process as soon as a certain error criterion has been met, and take the corresponding x
vector as your approximation. [26]. A graphical example is presented in Figure 2.1. 3

If one neglects round-off errors, this method converges after a maximum of n steps (n
being the number of degrees of freedom of the system). It is for this reason that CG can the-
oretically be considered a direct method [27]. However this method suffers with build-up of
round-off error if too many iterations are performed. Provided the matrix A is symmetric pos-
itive definite, CG can nevertheless be a descent iterative method, as it typically requires about
half the memory required by other iterative solvers. [6]

3Credits: By Oleg Alexandrov, wikipedia commons, public domain.
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Figure 2.1: A graphical example of the conjugate gradient method (CG) for a small problem of
dimension 2 (in red), along the less optimal Gradient Descent method (in green)
for the same problem. The blue, concentric ellipses represent solutions for the
equation Q(x) = c for different values of c. Conjugate gradient can easily be seen
as minimizing the quadratic function Q(x).

It has several other advantages, such as its suitableness for parallelization and its ability
exploit sparse matrix structures [see for instance 28]. Accurate computational effort estimates

are difficult to come by, but according to Van der Vorst [29], the CG-Method scales with O (n
3
2 )

in 2-D cases and O (n
4
3 ) for 3-D problems. Consequently, while CG is less suitable for 2-D prob-

lems, It is very effective for 3-D problems. This can be further enhanced by the choice of an

appropriate preconditionner, reaching a scaling factor as low as O (n
7
6 ) according to Axelsson

[24] and Gustafsson [30].

Although the CG method is attractive, it has significant restrictions regarding it’s appli-
cability. Namely, it only reliably converges for positive definite matrices A. Handling this re-
striction is not straightforward. Therefore, the next paragraph is dedicated to how to best tell
whether A is positive definite.

Criteria for positive definiteness

Generally speaking, a matrix A is positive definite if the criterion

xT Ax > 0 ∀x 6= 0 (2.59)
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applies. However, this criterion is often difficult to check. Therefore, more practical criteria
must be used instead. This can be achieved by restricting the discussion to symmetric matri-
ces.

Indeed, for a symmetric matrix, positive definiteness is present if the matrix is strictly di-
agonally dominant with strictly positive diagonal entries, i.e.

ai ,i > 0 and ai ,i >
n∑

i 6= j
|ai , j | ∀i = 1,2, . . . ,n . (2.60)

[31] If the matrix is diagonally dominant, but not strictly so (that is, ai ,i ≥
n∑

i 6= j
|ai , j |), then the

matrix is positive semi-definite. This already improves the chances of convergence for CG [6].
This theorem is important since many discretization schemes deliver such structures.

Conjugate gradients for the Helmholtz equation

The Helmholtz equation is symmetric. Moreover, it tends to produce well-conditioned sys-
tems of linear equations, but source terms and complex boundary conditions can make it
ill-conditioned. If the system is known to be well-conditioned, then it also tends to be posi-
tive definite. This is confirmed by the fact that CG worked for all the Helmholtz cases present
in this study.

2.6.3 Biconjugate gradient (BiCG)

The Bi-CG Method is a modification of the classical CG-Method that aims to extend the method
to non-Hermitian and indefinite systems. This method is of little practical importance, as it
is surpassed by other methods in usefulness such as the biCGStab. It does, however, have a
certain theoretical importance[18]. In the following, a complete description of the basic al-
gorithm is provided. Start by choosing an initial guess x(0), and two other vectors v̂(0) and b̂.
The initial guess can be chosen arbitrarily, but a good guess could significantly speed up con-
vergence. The same applies to v̂(0) and b̂, with the exception that the latter two are preferably
chosen to be different than zero to avoid any anomalous behavior. Calculate the initial resid-
uals

r(0) = b−Ax(0) (2.61)

r̂(0) = b̂− v̂(0)A(0) (2.62)

then define the new search directions
p(0) = r(0) (2.63)

p̂(0) = r̂(0) . (2.64)

The iteration rule for the step k +1 is then defined as follows

q (k) = r̂(k)(r)(k)

p̂(k)Ap(k)
. (2.65)
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This definition aims to establish the biorthogonality condition, i.e.

r̂(k+1)T rk) = r(k+1)T r̂(k)

[18, page 80]. Then proceed with

x(k+1) = x(k) +q (k)p(k) (2.66)

x̂(k+1) = x̂(k) +q (k)p̂(k) (2.67)

rk+1 = r(k) −q (k)Ap(k) (2.68)

r̂(k+1) = r̂(k) −q (k)p̂(k)AT (2.69)

e(k) = r̂(k+1)T rk+1)

r̂(k)T r(k)
. (2.70)

This definition aims to establish the biconjugacy condition, i.e

p̂(k+1)T Ap̂(k) = p̂(k+1)T Ap(k) = 0

[18] similarly to 2.55. Then proceed with

p(k+1) = r(k+1) +e(k)p(k) (2.71)

p̂(k+1) = r̂(k+1) +e(k)p̂(k) . (2.72)

This is repeated until a desirable accuracy is reached. Although The BiCG Method can handle
non-Hermitian matrices, it require around double the computational effort of the CG method,
and is suffers from stability issues [18]. This method has been mentioned here since it is a
helpful intermediate step to understand the BiCGStab Method. It also has other theoretical
points of interest, such as its relation to Quasi-Newton methods and more [see 18]. Since the
method is surpassed by BiCGStab in most important respects, it is not implemented in the
COMSOL software package.

2.6.4 Biconjugate Gradient Stabilized (BiCGStab)

. Further development of the BiCG method yielded the BiCGStab method, that seeks to solve
the stability issues present in BiCG and achieve stronger convergence behavior. As such, BICGStab
is one of the main iterative solvers COMSOL provides [6]. In the following, a summary of the
preconditioned implementation of BiCGStab is provided.

Calculate the residual
r(0) = b−Ax(0) (2.73)

then choose an arbitrary vector r̂(0) such that r̂(0)T r̂(0) 6= 0. Define the parameters ρ(0), α, β, ω0

such that
ρ(0) =α=ω0 = 1 (2.74)
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as well as v(0), h and p(0) where
v(0) = p(0) = 0 . (2.75)

The iteration rule for the step k +1 is then as follows:

ρ(k) = r̂(0)T r(k−1) (2.76)

β= ρ(k)

ρ(k−1)
.

α

ω(k−1)
(2.77)

p(k) = rk−1 +β(p(k−1) −ω(k−1)v(k−1) (2.78)

t = As (2.79)

ω(k) = tTs

tTt
(2.80)

xk = h+ω(k)s . (2.81)

If xk is sufficiently accurate, then quit. Othewise, calculate the new residual

r(k) = s−ωk t , (2.82)

then proceed to the next iteration step.[19]
For each iteration, this solver requires the same amount of time and memory. This gives it

an advantage over other methods such as GMRES, which requires about twice as much mem-
ory per iteration. On the other hand, it has a less regular convergence behavior than GMRES,
often increasing the residual from one step to a later step by several orders of magnitude. This
can affect the rate of convergence and the numerical accuracy. In the implementation in the
COMSOL software package, the algorithm is modified in order to be able to detect low accu-
racy and stagnation; and restart the iterations accordingly, using the current appoximation as
the initial guess.

Another noteworthy point is that BiCGStab requires two or three preconditioning steps
per iteration when using right- or left-preconditioning, respectively; whereas CG and GMRES
need both one preconditioning step per iteration.[6] [19] [32]

2.6.5 Generalized minimal residual method (GMRES)

The Generalized Minimal Residual Method (GMRES) is an extention of the the MINRES method
[1]. It was developed by Saad and Schultz [1] to cope with non-Hermitian systems. It is one of
the most commonly used iterative methods for solving large linear equation system [33]. As
the name suggests, the reasoning behind the algorithm starts from the problem of iteratively
minimizing the norm of the residual r = b−Ax, that is,

min‖r‖ = min
∥∥Ax− r(0)

∥∥ . (2.83)

Note here that
r(0) = Ax(0) +b , (2.84)
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where the initial guess x(0).
However, the since n is very large, minimizing the residual in this state is too costly, com-

putationally. Instead, GMRES projects the problem onto a Krylov subspace Km̃(A,r(0)). This
space lays within the span of A, with a much lower dimension m̃ that may vary depending on
implementation. This way, the minimization problem can be solved economically.

The Arnoldi algorithm is used to find an orthogonal basis {v1, . . . ,vn} for Km̃(A,r(0)). The
vectors of this basis are arranged column-wise in a Matrix V. Additionally, x can be expressed
as x = Vn,m̃y. Consequently,

min‖r‖ = min
∥∥AVn,m̃y− r(0)

∥∥ . (2.85)

The vectors vi satisfy the relation

AVn,m̃ = Vn,m̃+1Hm̃+1,m̃ . (2.86)

One obtains thus
min

∥∥r(0)
∥∥= min

∥∥Vn,m̃+1Hm̃+1,m̃y− r(0)
∥∥ . (2.87)

This is equivalent to

min‖r‖ = min
∥∥V∗

n,m̃+1Vn,m̃+1Hm̃+1,m̃y−Q∗
n,m̃+1r(0)

∥∥ (2.88)

leading to
min‖r‖ = min

∥∥Hm̃+1,m̃y−∥∥r(0)
∥∥e1

∥∥ . (2.89)

This is based on the knowledge that Vn,m̃+1 is orthonormal and V∗
n,m̃+1r(0) = ∥∥r(0)

∥∥e1, where

e1 = (1,0, . . . )T .
Finding an appropriate y that minimizes the residual in Eq.(2.89) is equivalent to solving

the problem statement. This is a least square problem that can be solved using an appropriate
solver. This is discussed in later in this section.

A simple matrix- vector multiplication x = Vn,m̃+1y is then sufficient to arrive at the solu-
tion. The Hessenberg matrix Hn,m̃+1 determines the size of the problem to be solved.

GMRES requires the storage of the basis vectors for the Krylov subspace. This is possibly
its main disadvantage, as it considerably increases memory consumption. For every iteration,
the number of stored vectors increases by one, every vector being of size n. To solve this issue,
a maximum number of steps m may be defined a priori, after which the process restarts. In
this case, the residual from the last iteration is used to calculate a new basis for the Krylov
subspace for use in the next set of iterations. Also, the last approximation is used as the initial
guess for the next set of iterations [1]. This variant of the algorithm is called GMRES(m) or
restarted GMRES. However, the restarted subspace and the earlier subspace are often similar,
which causes the method to suffer from stagnation problems in convergence. This variant is
nonetheless the default implementation of GMRES in the COMSOL software package, possi-
bly due to it’s favorable memory consumption [6].

Indeed, in practice, it is more convenient and common to use GMRES(m), as the parame-
ter m can then be adjusted according to the estimated memory consumption. A rough algo-
rithmic representation of this method is as follows:
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1. Choose an initial guess x(0) (usually 0) and calculate the initial residual r(0);

2. Repeat:

(a) Use the Arnoldi method to calculate Vn,m+1 and Hm+1,m (see section 2.1);

(b) Minimize the residual with an appropriate y(k) (explained in the following);

(c) Compute x(1) = x(0) +Vn,m+1y;

(d) Calculate the new residual r(1);

(e) if residual norm is too large:

i. set the new residual to the initial residual r(0) = r(1);

ii. set the obtained approximationx(1) as the new initial guess x(0].

(f) if residual small enough, end process and return the final x.

In practice, the intermediate approximations for x do not have to be explicitly computed,
since the residual norm can be computed using the relation

||r(1)|| = hm+1,m |emy| . (2.90)

This saves some unnecessary calculation steps, and thus saves time [1].
GMRES is an optimal algorithm and the solution converges monotonically. However, its

convergence rate strongly depends on the preconditioner. This is discussed in detail in Meis-
ter [20]. As discussed earlier in Section 2.6.2, Krylov subspace methods are generally well
suited to treat 3D problems, but much less so for 2D problems. In general, GMRES requires
about twice as much memory per iteration as CG[6], though this depends greatly on the struc-
ture of the problem, the condition number, and the number of iterations before GMRES is
restarted. [6]

Solving the minimization problem

As discussed in this subsection thus far, solving the least square problem in Eq.(2.89), namely

min‖r‖ = min
∥∥Hk+1,k y−ρe1

∥∥ (2.91)

where ρ = ∥∥r(0)
∥∥, is an important part of GMRES. There are multiple ways to achieve this.

One of these methods is based on the QR decomposition, which will be discussed here (as
proposed by Saad and Schultz [1]). The parameter k is chosen for the equation 2.91, since it is
a good idea to orient this discussion to GMRES(m), instead of standard GMRES. Nevertheless,
this discussion still holds for both.

The basic idea behind the use of QR decomposition here is to find an orthogonal Q such
that

QHk+1,k = R =
(

R̂
0T

)
(2.92)
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where R ∈ Ck+1×k . In the particular case of the equation 2.91, the last row of R is a zero row
vector in Ck . R̂ is an upper triangular matrix. Note that the structure of Hk+1,k significantly
reduces the computational effort for performing this decomposition [1].

Let’s define the rotation matrix F( j ), A matrix that rotates the basis vectors e j and e j+1 by
an angle θ. This matrix takes the shape

F( j ) =





1
. . .

1
cos(θ j ) −sin(θ j ) ← row j
cos(θ j ) sin(θ j )

1
. . .

1

(2.93)

Let’s suppose that the rotations F(i ) for i from 1 to j were applied to the matrix H( j )4 to
produce the upper triangular matrix

R( j ) =
(

R̂( j )

0T

)
. (2.94)

As with the equation 2.92, R̂ j ∈ C j× j 5. At the next step, the last column and row of H( j+1)

is appended to R j . Therefore, in order to obtain R( j+1), one has to start by multiplying the
new column by the previous rotations. This puts the size of R( j+1) at ( j +2)× ( j +1). The new
rotation has the structure

R( j+1) =
(

R̂( j )
j , j r j ,1

02, j r2,1

)
(2.95)

where r j ,1 and r2,1 are new vectors. Note that

r2,1 =
(

r
h

)
. (2.96)

The task of the next rotation will then be the elimination of the term h, in order to propagate
the upper diagonal structure of R( j ). To achieve this, F j+1 should be defined as:

cos(θ j+1) = rp
r 2 +h2

, (2.97)

sin(θ j+1) = −hp
r 2 +h2

. (2.98)

4In this context, H( j ) ∈ C j+1× j , and should be understood as a reduction of the original Hk+1,k , that has its
characteristic structure, but where all rows and columns whose index is higher that j are omitted.

5The columns add rows of H( j )
(m+1,m) are not affected by the rotation F( j ), and are thus omitted from R( j ).
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Note that the rotations F( j ) must also be applied to ρe1. At the end of this process, the
transformation

Q(k)H(k)
k+1,k = R(k) (2.99)

is obtained. It is useful to remember that Q(k) ∈C(k+1),(k+1) and R(k) ∈Ck+1,k . With the help of
this transformation, it is possible to write the equation 2.91 as:

min
∥∥∥H(k)

k+1,k y(k) −ρ(k)e1

∥∥∥= min
∥∥∥Q(k)(H(k)

k+1,k y(k) −ρe1)
∥∥∥= min

∥∥∥R(k)y(k) −g(k)
∥∥∥ , (2.100)

where g(k) = Q(k)ρe1.
We arrive thus at Eq.(2.100). To solve the least square problem, all one needs is to remove

the last row of the matrix R(k) and the last element of g(k). This way, a definite equation system
in upper triangular form emerges. The least square solution is obtained by solving this system,
which is easy, given its structure. [1].

2.6.6 Flexible Generalized Minimal Residual Method (FGMRES)

The Flexible Generalized Minimal Residual Method (FGMRES) method is an extension of
GMRES that enables switching the preconditioner at every iteration step to optimize com-
putational speed and efficiency. More specifically, a different preconditioner is used for each
Arnoldi vector[34].

Compared to GMRES, FGMRES requires some additional considerations. For instance,
let’s look at the right-preconditioned system, namely

AP−1x̃ = b , (2.101)

where x̃ = Px. To obtain the solution vector x, one needs solve the problem x̃ = Px This leads
to the requirement that the operation P−1v should be easy to perform for any vector v[34].The
FGMRES saves this problem at the cost of storing a vector per iteration step. This leads FGM-
RES to require the same amount of memory that GMRES needs for double the number of
iterations before restart [3]. A complete description of the algorithm is provided by Saad [34].

In practical implementation, flexible preconditioning is done in case the preconditioner
is based on splitting methods as shown in Section 2.7.2. Namely, the relaxation parameter is
adjusted automatically. On the other hand, if used with a static preconditioner, such as ILU,
FGMRES is identical to right-preconditioned GMRES. Overall, GMRES and FGMRES behave
fairly similarly, in practice [6]. It was deemed thus more less interesting than the simpler GM-
RES in this work.

2.6.7 Summary: Iterative solvers and their main characteristics

Multiple iteratiive solvers were discussed thus far in this work. Here, we provide a summary to
show the main advantages and disadvantages of iterative solvers, compared to one another.
A direct solver was added for comparison. This summary is presented in Table 2.1. Note that
the statements in this summary are not universally valid. For example, iterative solvers can
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Solver Memoy utilization Constraints to the system matrix A speed
CG Low Reliable only if A is positive definite Fast
BiCGStab High Converges for most problems Slow
GMRES High, but adjustable Converges for most problems Slow
FGMRES High, but adjustable Converges for most problems Slow
MUMPS Highest Most reliable Fastest

Table 2.1: A summary for the main advantages and disadvantages for each iterative solver
mentioned in this work thus far. A parallel direct solver, namely MUMPS, is also
included for comparison

perform faster than direct solvers if the problem is sufficiently well-conditioned, although
this is rarely the case. From this table, we conclude that it is best to use CG whenever possi-
ble. Whenever CG is not a option, GMRES is to be used instead, due to its reliability, smooth
convergence and adjustable memory utilization.

2.7 Preconditioners

Preconditioners are an important tool for minimizing the memory and time requirements of
iterative solvers. The basic idea is multiplying the Eq. (2.34) with a matrix P.From the left or
from the right-so called left or right preconditioning, respectively.

Left preconditioning: PAx = Pb (2.102)

Right preconditioning: AP−1Px = b (2.103)

This is done to obtain a new system that is on the one hand equivalent to the original, but
in the other has a lower condition number. In the following, the concept of the condition
number will be discussed. Additionally, a number of preconditioners that proved noteworthy
in this study will be briefly discussed.

Definition (Condition number)

The condition number is defined as the ratio between the largest and smallest singular
values of a matrix. It strongly influences the convergence rate and accuracy of iterative
solvers. The higher the condition number, the more iterations are needed and the more
precision is lost. If the condition number is too high, then otherwise stable algorithms
that are susceptible to round-off error might not converge at all. on the other hand, the
lowest (theoretically) possible condition number is 1. In such a situation, the solver can
theoretically find a solution without introducing error of its own, and in the case of several
solvers–such as CG–might converge in as little as one step.[35]
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2.7.1 Incomplete LU factorization

The LU factorization decomposes the Matrix A to an lower-triangular matrix L and an upper-
triangular matrix U multiplicatively.

A = LU (2.104)

There are several ways to perform this factoring [see [36]] inserting this into Eq. (2.34) yields

LUx = b (2.105)

As a direct solver, this method is implemented by first solving the equation

Ly = b (2.106)

which is an easy task since L is upper triangular, and then solving the equation

Ux = y (2.107)

which is also easy to solve.
The LU factoring can, in principle, be used as a preconditioner. In such a case, P = 1

ωLU,
where ω is a relaxation factor. This, however, would not be efficient, since the factoring pro-
cess in itself is rather expensive. This is coupled with the fact that a complete LU decomposi-
tion generally leads to fill-in. The incomplete LU factorization (ILU) solves this by one of two
possibilities [see [37]]:

• only considering elements of A that are not too small. This can be implemented in
many ways. The COMSOL implementation is as follows: during the elimintion process,
elements of A are neglected if they are lower than the euclidean norm of their corre-
sponding column multiplied with a certain parameter called “drop Tolerance” [6] (see
Appendix B for a way how this can be done).

• opting to calculate entries in L and U from A until a maximal number of entries have
been calculated, at which point the algorithm is interrupted. In this case, only the en-
tries of L and U with the highest value are calculated. The maximal number of entries to
be calculated is determined by a parameter which the COMSOL software package refers
to as “Fill ratio” [6].

As for the calculating the decomposition, this can be done using multiple algorithms [see
36]. In Appendix B, an implementation example is given.

2.7.2 Classical splitting methods as preconditioners

The classical iterative solvers described in Section 2.6.1 can be used as preconditioners. This
applies to the Jacobi method (i.e. diagonal scaling) described in Eq. (2.42), Gauss-Seidel (Eq.
(2.43)), as well as SOR, SORU , and SSOR methods described in Eq. (2.44), Eq. (2.45) and Eq.
(2.46).This is done by using taking the initial guess and performing a set number of iterations
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from one of these methods to arrive at an improved approximation. This approximation is
then used as the initial guess for the iterative solver. This is a cheap and simple trick that can
also be used as a pre- or post-smoother (see Section 2.7.6). In the case of the Jacobi method,
this is especially effective for very large systems [see [6]].

Equally noteworthy is that SSOR has the propety that B is symmetric if A is symmeric. This
makes it particularly appropriate as a preconditioner for CG, since symmetry of the precon-
ditioner is necessary for CG [6].

2.7.3 SOR- line, SOR gauge and SOR vector

SOR line

This is a method developed for special classes of problems, such as the treatment of boundary
layers with highly anisotropic meshes, which aims to rearrange the matrix A to improve its
band structure [see 38]. Though this is not necessarily relevant to the models handled in this
work, this solver performed nevertheless adequately for these models.

SOR gauge

This preconditioner is typically used for problems in magnetostatics and similar problems.
When treated with a finite element scheme, such problems give rise to systems where the
matrix A is singular. However, These problems are solvable if the vector b is within the range
of A [see [6], page 988]. Though might not always the case for Helmholtz problem, based on
the results of the present study. this preconditioner is given a brief mention here since it works
well for the cases studied in this work.

SOR vector

This algorithm applies SOR iterations on the original system, but also performs a SOR itera-
tions on a projected system described by:

TT ATy = TT b

where y = Tx, and T is a discrete Gardient operator (and is orthogonal). This method can be
advantageous for Helmholtz problems [see [39],[40]].

2.7.4 The Vanka algorithm

The Vanka algorithm can be understood as an SOR scheme of sorts applied to individual
blocks of the system. The blocks are formed using Lagrange multiplier (for a more in-depth
discussion, see Vanka [41] ). This procedure can be used as a preconditioner [6]. This method
was particularly developed for Navier-Stokes equation. However, for this method to provide
any real advantages (or even to converge in the first place), many parameters have to be pre-
cisely adjusted. Therefore, it is not explored in-depth in this study.
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2.7.5 Symmetrically-coupled Gauss-Seidel method (SCGS)

This algorithm is largely similar to the Vanka algorithm. However, contrary to the Vanka algo-
rithm, it builds the blocks based on the degrees of freedom contained in individual elements
of the mesh. This leads to the advantageous situation where the blocks are small, and their
factorization can hense be stored once during initialization phase-in a similar fashion to SOR
line. Other algorithms, such as Vanka’s ( in some of its variations) factorize at every step.

The algorithm can be modified to use either mesh elements, lines in mesh elements, or
more complex schemes as a basis for forming the blocks [[6], page 984]. Apart from its use-
fulness as a preconditioner, this algorithm can also be used as a stand-alone solver or pre-/
post-smoother [6].

2.7.6 Multigrid methods

Multigrid methods is a vast and promising class of preconditioners/solvers [42], [43]. One can
divide this class up into two categories: algebraic and geometric multigrid methods.

Geometric multigrid method creates an auxiliary set of meshes, the number of which
ranges between one and several, and–whenever possible–use conducts its calculation on the
coarsest levels. On the other hand, algebraic multigrid doesn’t generate any actual extra meshes,
but simulates this process by projecting the matrices obtained from the discretization on
smaller subspaces to obtain what can be understood as virtual grid levels [6]. Since algebraic
multigrid has stronger restrictions in the version of COMSOL used in this work, the discussion
shall henceforth be restricted to geometric multigrid6.

Multigrid methods provide expansive design space, since it is possible to freely adjust its
components. As an example, the auxiliary meshes can be generated either independently
from the fine mesh or can be derived from it using a coarsening algorithm. One may also
chose to use different shape functions for the coarser meshes. Moreover, for each solver, a
pre- and post-smoother may be chosen virtually at will. However, in order to obtain the best
result, careful design of all solver components is recommended, sometimes even necessary.
In general in geometric multigrid solvers/preconditioners are fast and memory-efficient for
elliptic and parabolic equations. [6] [44]. In addition, according to Arnone et al. [45] and Hack-
busch and Trottenberg [46], Multigrid methods can speed up the convergence of problems
governed by the Navier-Stokes equations. The main advantage of Multigrid methods is that
their memory consumption scales linearly with the the problem size [47].

The idea behind multigrid methods is that numerical error is smoothly distributed along
the grid. A hierarchy of mesh levels is produced, and robust solver is used on the lowest grid
level. Since the numerical resolution in insufficient, the direct solver produces error with a dif-
ferent wave number, which obscures the physical solution. High wave number error is filtered
out by performing some smoothing operations.

6The implementation in the COMSOL 4.4, which is the version used in this work, only supports scalar partial
differential equations, and does not support complex-valued system matrices [[6], page 982]
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Introduction to the theoretical basis of two-grid methods

Consider the grid layer of order l , where the element size hl changes according to the follow-
ing formula:

Ω{l } = { j h{l } | j = 1,2, . . . ,2l+1 −1} . (2.108)

The linear equation system to be solved on the l -th grid layer is

A{l }x{l } = b{l } . (2.109)

Let’s first consider a simple case where there is only two grids: a coarse grid and a fine
grid. Such a method is called a two-grid method. Essentially, such a method consists of ap-
proximating the (smooth) long wavelength part of the vector x{l } on the coarse grid. As for the
short wavelength part, it is smoothed out by some iterations of a simple iterative method on
the fine grid, such as the relaxation methods presented in Section 2.6.1. Inserting the formula
for a general relaxation scheme (see Eq. (2.39)) delivers

x(i+1)
{l } = M(ω)x(i )

{l } +N(ω)b for i = 0,1,2, . . . ν1 . (2.110)

Next, the defect d{l } = A{l }x{l } −b of the fine mesh is computed. A so-called restriction opera-
tion is then performed by projecting the this defect onto the coarser meshΩ{l−1}.

d{l−1} = R{l }
{l−1}d{l } (2.111)

The error on the coarser grid is calculated by solving the system

A{l−1}e{l−1} = d{l−1}. (2.112)

This system can be solved by some solver from Sections 2.5 and 2.6. Interpolation on the finer
mesh delivers the (unknown) error e{l } on the fine meshΩ{l }.

e{l } = P{l−1}
{l } e{l−1}. (2.113)

Using the obtained error and the formula A{l }e{l } = d{l },new , it is possible to compute a new
defect d{l },new and a new solution vector x{l },new

x{l },new = x{l },ol d +e{l } . (2.114)

Similarly to Eq. (2.110), a number ν2 of postsmoothing operations can be performed. For pre-
and post-smoothing operations, that the relaxation parameterω in this context has a different
function in comparison to relaxation parameters for standalone solvers or preconditioners. It
is namely a calibration parameter that should be adjusted to deliver a low-pass filter, that
ideally removes all high-wavenumber components from the error [3].
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Generalization to a number m of grid layers

The process explained thus far can be extended to any number of multigrid levels. The use of
m grid layers leads to a potentially very efficient solver, since now, a very coarse problem

A{l−m}e{l−m} = d{l−m} (2.115)

has to be solved for e{l−m} instead of Eq. (2.112). A general formulation of the multigrid method
is thus obtained. One iteration of the multigrid method is called a cycle. The exact structure
of a cycle is determined by the parameter γ, which stands for the number of two-grid itera-
tions in each intermediate step. If γ= 1, then the cycle is referred to as a V-cycle. If γ= 2 or 3,
then it’s a so-called W- or F-cycle, respectively. Most cycles used in the literature are either
V- or W-cycles. However, as Schaefer [16] notes, the explicit choice of cycle does not impact
convergence significantly. [3]

Some of the literature state that multigrid methods might be inefficient for indefinite prob-
lems. This is shown to hold for the Helmholtz equation [48]. Indeed, it might even diverge, as
observed in this work for the case LNSE (see Section ??). However, multigrid methods, when
used as preconditioners, proved to be very effective for the present set of Helmholtz cases.
For information regarding the implementation of these solvers, consult the COMSOL 4.4 ref-
erence manual[6]. [3]
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3 Overview of the test setup

First, it should be said time and memory requirements of solvers fluctuate considerably under
the same parameters. This, coupled with the sheer number of freely adjustable solver/preconditioner
parameters, makes it difficult to systematically study the performance of every possible com-
bination. However, the results were consistent enough such that qualitative comparisons be-
tween solvers in terms of efficiency could be made. Therefore, it was often more meaningful
to use a handful of test cases to derive rough rules of thumb about the optimal parameters
of a solver-preconditioner combination. As for the amount of fluctuations, some tests were
conducted to get some estimates regarding their magnitude. These are discussed in Section
3.4 and Appendix C.4. Also note that all the simulations in this work were run on COMSOL
multiphisics 4.4.

In the following, an overview of the used test cases is provided

3.1 Used test cases

For this work, a total of six different numerical cases were studied. Three of the cases were
Helmholtz problems, whereas the other three were LNSE problems. The used test cases are
listed in Table 3.1

Case Name Symmetrical?
Case 1 Eigenvalues of a room (3D, Helmholtz) yes
Case 2 Eigenmodes of a generic reheat combustor (2D, Helmholtz) yes
Case 3 Eigenmodes of a generic reheat combustor (3D, Helmholtz) yes
Case 4 Reflection coefficients of a swirler (3D, DG-LNSE) no
Case 5 Eigenmodes of a laminar flame (2D, DG-LNSE) no
Case 6 Flame transfer function of a laminar flame (2D, DG-LNSE) no

Table 3.1: List of used test cases.

Both designations for each model used. For instance, Model 1 could be referred to as such,
but might also be referred to as Eigenvalues of a room (3D, Helmholtz solver). A more detailed
description of the used models is presented in the following
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3.2 Default settings for solvers and preconditioners

To ensure that the tests are reasonably systematic, a set of default parameters for each solver
and preconditioner was chosen, based on the theoretical understanding that was presented
in Section 2.

Default solver settings In the beginning, a default set of parameters was chosen for the
solvers. Table 3.2 lists these.

Solver Default configuration

Iterative solvers

GMRES
Number of steps before restart: 50,
Preconditioning: Left,
Maximum number of iterations: 100000.
relative error: 10−6

FGMRES
Number of steps before restart: 50,
Preconditioning: Left,
Maximum number of iterations: 100000.
relative error: 10−6

BiCGStab
Preconditioning: Left,
Maximum number of iterations: 100000.
relative error: 10−6

CG
Preconditioning: Left,
Maximum number of iterations: 100000.
relative error: 10−6

Direct solvers MUMPS

Memory allocation factor: 1.2
Preordering algorithm: Automatic,
With row pivoting,
Use pivoting: on,
Pivot threshhold: 0.1.
relative error: 10−6

Table 3.2: Default configuration for the solvers. These are exactly the same as the default set-
tings in COMSOL 4.4. Also note that the relative error was set to 10−6 when inves-
tigating the scaling behavior. For the initial tests (that were done to identify which
solver-preconditioner combinations were suited for which case), the parameters
described in Appendix C.2 were used

Default preconditioner settings: At the start of the tests, a default set of parameters was
chosen for the preconditioners. This set is based on the default settings of the involved pre-
conditioners in COMSOL 4.4, with modifications small modifications. These preconditioner
settings will be referred to as “default” from now on. Table 3.3 lists the default settings of the
preconditioners that were studied in a detailed manner. This set of preconditioners is referred
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3.3 Search for suitable iterative solvers

to as the first set. Some other preconditioners were also studied as well, but much less thor-
oughly. Among these are SOR line, SOR Guage and SOR vector and others. Some have were
designed for specific cases and proved to be hard to tune without a detailed knowledge of the
underlying physics, such as the Vanka preconditioner. Others, such as Domain Decomposi-
tion, were fairly complex, while showing little promise in the way of potential advantages. The
default settings for this second set of preconditioners are included in the Appendix C.1.

3.3 Search for suitable iterative solvers

For every test case, all available solver-preconditioner combinations were testes. This was
done to establish which solvers with which preconditioners are convergent for a given case. If
a solver finished successfully, its solution time and requirements in physical memory.

At the end of this process, the list of valid solvers was narrowed down to one choice iter-
ative solver for a given model. Efforts were also made to narrow down the total list to as few
solvers as possible for the sake of simplicity. In the end, the list is effectively narrowed down
to two solvers. In the next step, scaling tests were conducted on each solver, as described in
Section 3.4.

3.4 Scaling tests for chosen solvers

For each test case, the number of degrees of freedom (number of DOF) was gradually scaled
upwards. The chosen iterative solver was tested at each scale, with time and memory require-
ments being documented. Additionally, a direct solver was also tested to serve as a bench-
mark. This was done to obtain a comparison between direct and iterative solvers in their scal-
ing behavior.

As stated before, two solvers were chosen in the end. GMRES with SOR was chosen for
case 4, whereas CG with Multigrid was chosen for cases 1, 2 and 3. But since GMRES with
SOR is actually also convergent for cases 1, 2 and 3, some scaling tests were also conducted,
to compare the scaling behavior of these two iterative solvers for Helmholtz problems. As
another possible alternative, some tests were also made to compare the scaling behavior of
CG with SOR to MUMPS. This is discussed further in Section 4.2

Error estimation

Due to the the fact that the scaling tests were often time-consuming (taking upwards of several
hours per run), only a handful of runs per case could be conducted. To obtain a rough estimate
of the variation in time and memory consumption under constant conditions, separate tests
were conducted.

The idea behind these these tests is to take the same case and run the solver at the same
problem size a set number of times (a number of 5 was chosen) for the chosen iterative solver
and direct solver, and then do the same all over again for a problem size several orders of
magnitude higher. Attention was also made to avoid reaching problem sizes where the tests
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Preconditioner Configuration:

Incomplete LU

Solver: Incomplete LU:
Drop using: drop tolerance,
Drop tolerance= 0.01,
Respect pattern,
Number of iterations: 1,
Relaxation factor: 1.

Solver: SPOOLS:
Drop tolerance: 0.01,
Pivot threshhold: 1,
Preordering algorithm: Nested dissection.

SOR
Relaxation factor : 1,
Number of iterations: 10 (]).

Jacobi
Relaxation factor : 1,
Number of iterations: 10 (]).

Multigrid

General:
Solver: Geometric multigrid,
Number of iterations: 2,
Multigrid cycle: V-cycle,
Hierearchy generation method:

Lower element order first (any),
Number of multigrid levels: 1,
Mesh coarsening factor: 2,
Assemble on all levels;

Presmoother:
SOR: SOR,
Number of iterations: 2,
Relaxation factor: 1;

Postsmoother:
SOR: SORU,
Number of iterations: 2
Relaxation factor: 1;

Coarse solver:
MUMPS with default settings.

Table 3.3: Used default configuration for the first set of preconditioners. Only parameters de-
noted by (]) differ from the default parameters used by COMSOL

would be too time consuming. Since this is not central to this work, the results of these tests
are presented and discussed in the Appendix C.4.
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4 Numerical investigations for the
Helmholtz eigenvalue problem

The Helmholtz equation

The first three cases are governed by the Helmholtz equation. This equation describes acous-
tics in a quiescent medium, and can be generally formulated as general formulation of this
equation is as follows:

1

ρ̄c̄2

∂2p

∂t 2
−da

∂p

∂t
∇.(− 1

p
(∇p −qd )) =Qm , (4.1)

where p is a local small variation in pressure from a stationary mean pressure p0, ρ̄ is the mean
density of the medium, u is a local small variation in the velocity field over a stationary mean
velocity u0, c̄ is the isentropic speed of sound, qd is a dipole source term, Qm is a monopole
source term and da is the damping coefficient. For this class of problems, the speed of sound
is is an important parameter, and it can be derived from density and pressure [? ]. System
matrices obtained form the Helmholtz equation are symmetric.

4.1 Test cases for the Helmholtz equation

4.1.1 Case 1: Eigenvalues of a room (3D, Helmholtz problem)

Case 1 is a room taken from the model library of COMSOL Multiphysics 4.4. It is essentially
a room with dimensions 5×4×2.6 meters. Sound-hard boundary conditions are assumed at
all boundaries. The model is governed by a Helmholtz equation with no source terms and no
damping. The Helmholtz equation thus simplifies to

−∆p + 1

c2

∂2p

∂t 2
= 0 . (4.2)

A time harmonic solution of the form p = p̂e iωt delivers the following governing Helmholtz
equation:

∆p̂ + ω2

c2
p̂ = 0 . (4.3)

The solver searches for the pressure eigenvalues of the room, i.e. the squared angular frequen-
cies of the a time-harmonic pressure wave for which resonance occurs [see [49]].
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Numerical investigations for the Helmholtz eigenvalue problem

Figure 4.1: Geometry of test case 1.
.

4.1.2 Case 2: Eigenmodes of a 2D generic reheat combustor (2D, Helmholtz
problem)

Case 2 handles a 2D generic reheat combustor. This setup was derived from a 3D reheat com-
bustor studied by Zellhuber [50]. It is composed of a 2D inlet channel and an area jump. This
model features passive flame by changing thermodynamical properties like pressure, density
and temperature through the flame. Figure 4.3 represents the temperature mean field which
indicates the flame position.
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4.1 Test cases for the Helmholtz equation

Figure 4.2: Geometry of test case 2.
.

Figure 4.3: The temperature mean field (in Kelvin) that results from the flame in test case 2.
.

4.1.3 Case 3: Eigenmodes of a 3D generic reheat combustor (3D, Helmholtz
problem)

Case 3 is a 3D generic reheat combustor with rectangular cross-section area. Similarly to case
2, it is also a Helmholtz case with passive flame. One exception is that case 3 has a square

35



Numerical investigations for the Helmholtz eigenvalue problem

profile. The geometry is shown in Figure 4.4. Figure 4.5 represents the temperature mean field
which indicates the flame position.

Figure 4.4: Geometry of test case 3.
.

Figure 4.5: The temperature mean field (in Kelvin) that results from the flame in test case 3.
.
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4.2 Results and discussion

4.2 Results and discussion

For the Helmholtz test cases, the results from the initial investigation of all solver-preconditioner
combinations, as well as the scaling tests, are presented and discussed in this section. The re-
sults from the initial investigation are summarized in tables that are included in Appendix
C.3, whereas the results from the scaling tests are plotted in Figures 4.8, 4.9 and 4.10. The
plot points in the memory consumption vs problem size curves were best fitted using a linear
trendline. This is despite the fact that some power law was to be expected, theoretically. For
these tests, however, a power law provided a significantly worse fit. Table 4.2 provides a list
of the obtained correlations, as fitted using both linear and power fit. The table additionally
provides the coefficient of determination for every fit. This measure can be understood as the
ratio of variation accounted for by the trendline to variation unaccounted for[52]. It ranges
from 0 to 1, with 1 being the ideal case, and can be thus used to compare the quality of the lin-
ear and power fits. The most significant issue with a power fit is that it tends to be significantly
far off for higher problem sizes. This can be verified by using the fitted relations provided in
Table 4.2.

Throughout the discussion, an upper limit on RAM of 14 GB is assumed, although the
actual limit of the hardware considered in this work is 16 GB. This latter limit is considered a
hard upper limit, since the operating system itself needs about 2 GB of RAM to run smoothly.

As for time requirements of solvers as a function of problem size, these are plotted along-
side the memory plots in Figures 4.8, 4.9 and 4.10. The relations are emphasized by power
trendlines. The numerical expressions is not of interest, since only a rough idea about the
time requirements is needed. They are therefore not presented here.

This class of problems (Helmholtz eigenvalue problems), which covers the models 1, 2
and 3 in table 3.1, is notable for admitting most iterative solver-preconditioner combinations.
Since the resulting matrices are symmetrical and (likely to be) positive definite, it is possible
to use CG here. This is an advantage, since CG is known to be one of the most efficient solvers
available.

From the start, an interesting anomaly was observed. Namely, the eigenvalue solver im-
plemented in COMSOL multiphysics apparently might become very ill-conditioned when ex-
plicitly searching for eigenvalues near zero. As a result, when explicitly searching for eigen-
values around zero for certain models, almost all iterative solvers either fail or deliver highly
distorted eigenmodes (whereas direct solvers work with no apparent issues). This was espe-
cially noticed for case 1 (eigenvalues of a room). However, this can be fixed quiet easily, by
searching for eigenvalues around a frequency that is slightly above zero (such as, say, 20 Hz ),
when low frequency eigenmodes are of interest.

Once the above-mentioned issue is taken into consideration, it is observed that most it-
erative solvers converge robustly. A list of all tested iterative solvers and the outcome is in-
cluded in Appendix C.3. Most noteworthy is the conjugate gradient method, which is known
to require significantly less memory and time than other methods, independent of precondi-
tioner. Although the difference between solver performance is often not visible in the tables
at Appendix C.3, this is probably due to the relatively small problem size. However, we know
from the literature that CG is the most memory-efficient of the present iterative solvers, and
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Numerical investigations for the Helmholtz eigenvalue problem

should be used when possible. The performance of CG for these problems would thus be ex-
amined in detail. As for the preconditioner, SOR and Multigrid performed similarly, and bet-
ter than most other preconditioners. The multigrid preconditioner offers much more room
for further improvement than SOR, it is shown by the literature to be very efficient in terms of
memory and time. On the other hand, the SOR preconditioner is a tried-and-true approach
that should not be overlooked. It was decided to first examine the scaling behavior of CG with
multigrid. This was done for the test cases 1, 2 and 3. In addition, another round of tests was
preformed to examine the scaling behavior of CG with SOR, in case any unexpected flaws in
multigrid preconditioning are discovered at a later point. These tests were conducted on test
cases 2 and 3.

CG (as implemented in COMSOL 4.4) offers no parameters to modify, except for the max-
imum number of iterations. This parameter doesn’t affect convergence in any way, but the
process is interrupted if this number of iterations is reached. So it should be set to a high
value if the problem at hand is expected to require a high number of iterations.

In the following, the optimal parameters for the Multigrid preconditioner and the SOR
preconditioner are discussed

4.2.1 Optimal parameters for the multigrid preconditioner

The default implementation of MG in COMSOL 4.4 was used, since they were found to be
effective. Some brief attempts at increasing the mesh coarsening factor were made, but there
were no immediately noticeable improvements in memory savings over the default value of
2. However, a high coarsening factor for very small problems was observed to cause the solver
to fail, as the process of generating the coarse mesh breaks down. Moreover, as discussed
in the next paragraph, it was revealed later that Multigrid with the default settings is very
efficient as it is. Since these attempts where made at a relatively small n, it is possible that
actual differences can be observed at higher n (around n = 106). As discussed in Section 2.7.6,
the convergence behavior of Multigrid is largely insensitive to cycle type, so it makes sense to
just use the simpler V-cycle. Figure 4.6 is a basic representation of the default structure of the
Multigrid solver. This structure was used in the scaling tests.

Figure 4.6: Default design of the multigrid preconditioner
.

Further investigation went into finding a way to use an iterative solver as the coarse solver
instead of MUMPS. This was initially unsuccessful, since using an iterative solver as the coarse
solver made caused the solver-preconditioner combination to stagnate. The reasons for this
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are unknown. In a later stage, it was discovered that changing the post-smoother to an itera-
tive solver (namely non-preconditioned CG) remedied this problem. Figure 4.7 is a represen-
tation of the modified solver structure. Some preliminary tests show this setting to converge
reliably. Based on these tests, This setting is expected to be moderately slower than the de-
fault solver structure but also less memory consuming. Nevertheless, no systematic scaling
tests were done to confirm this prediction.

Figure 4.7: Modified design of the multigrid preconditioner
.

4.2.2 Optimal parameters for the SOR preconditioner

For the SOR preconditioner, There are three variants to choose from: SOR, SORU and SSOR
(see Section 2.7.2). The SSOR version is chosen, since the latter is theoretically slightly more
robust than standard SOR. There are two additional parameters to adjust: the relaxation pa-
rameters and the number of SOR iterations. Since the SOR preconditioner is stable for this
case, a high relaxation number could be used. However, the more conservative choice of
ωsor = 1 is made. A choice of 0.9 is slightly safer, but a value lower than around 0.7 offers
no known advantages.

As for the ideal number of iterations of SOR, it depends significantly on the relaxation pa-
rameter. The lower the relaxation parameter, the more iterations are needed. As discussed in
Section 5.2.1, SOR begins to stagnate after a few steps. For CG, better preconditioning doesn’t
reduce the memory utilization, and only serves to guarantee convergence and speed it up. In
fact, it is more meaningful to use as little as 2 iterations of SOR, despite this leading to more CG
iterations. Overall, using 2 SOR iterations was shown to save time while causing no robustness
issues.

4.2.3 Scaling tests: Comparison between MUMPS and CG with Multigrid

Scaling tests on CG with multigrid on these cases revealed that this combination is very ef-
fective for 3D cases. Indeed, as can be seen in Figures 4.8 and 4.10 (right), CG with Multigrid
manages to reach up a full order of magnitude in problem size compared to direct solvers.
Also, for sparse problems of higher size (starting from around n = 105), CG with Multigrid is,
on occasion, even slightly faster than MUMPS, as can be seen in Figures 4.8 and 4.10 (left).
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However, the results were significantly less impressive for the 2D Helmholtz case. Although
the memory requirements of CG scaled less strongly than MUMPS, the difference is small. Us-
ing the linear fits from Table 4.2, it can be estimated that with around 14 GB of RAM, CG with
Multigrid can solve problems 2.00 times the size of the problems solvable by MUMPS. This is
dwarfed in comparison to the memory savings in the 3D cases (case 1 and 3). In fact, when
limited to 14 GB of RAM and using the same method, CG with Multigrid can handle sizes
that are roughly 10 times larger than problems solvable by MUMPS. This disparity between
performance in 2D and 3D cases is consistent with the findings in Section 2.6.2.

Case solver
Linear fit power fit

resulting fit coefficient of
determination

resulting fit coefficient of
determination

case1
CG with Multigrid M = 2∗10−6 ∗n +1.6178 0.9459 M = 0.0531∗n0.3178 0.8839
MUMPS M = 2∗10−5 ∗n +0.738 0.9981 M = 0.0112∗n0.5036 0.9277

case2
CG with Multigrid M = 1∗10−6 ∗n +1.2652 0.9962 M = 0.1127∗n0.2523 0.8335
MUMPS M = 2∗10−6 ∗n +1.314 0.9937 M = 0.0894∗n0.2814 0.8468

case3
CG with Multigrid M = 2∗10−6 ∗n +6.6746 0.8708 M = 1.9752∗n0.1163 0.5798
MUMPS M = 2∗10−5 ∗n +6.5339 0.9871 M = 1.5292∗n0.1588 0.7792

Table 4.1: Fitted relations for memory (M) in Gigabytes of RAM, as a function of number of
DoF (n) for CG with Multigrid vs MUMPS. Notice how the coefficient of determina-
tion of the linear model (left) is clearly closer to 1 than the power model (right).

Figure 4.8: Scaling behavior of CG with Multigrid and MUMPS for case 1, in terms of time in
seconds (left) and memory consumption in GB (right). The linear fit in the mem-
ory curve is clearly more accurate.

.
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Figure 4.9: Scaling behavior of CG with Multigrid and MUMPS for case 2, in terms of time in
seconds (left) and memory consumption in GB (right). The linear fit in the mem-
ory curve is clearly more accurate.

.

Figure 4.10: Scaling behavior of CG with Multigrid and MUMPS for case 3, in terms of time
in seconds (left) and memory consumption in GB (right). The linear fit in the
memory curve is clearly more accurate.

.

Comparaison between CG with Multigrid and GMRES with SOR

Although it was assumed that memory and time requirements of GMRES with SOR would
scale faster than those of CG with Multigrid, scaling tests to compare the two were nonetheless
conducted, starting from the simple case “eigenvalues of a room”. As expected, the memory
requirements of GMRES increased faster than those of CG with increasing problem size, albeit
slightly. But a much bigger difference was observed in the time requirements: whereas CG was
remarkably fast at high problem sizes, GMRES experiences a steep slowdown. The results of
these tests can be seen in Figure 4.11.

Based on these results, it was deemed unnecessary to conduct the same tests for the two
other Helmholz cases (case 2 and 3). CG with Multigrid clearly outclasses GMRES with SOR in
the two important aspects for these cases.
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Figure 4.11: Scaling behavior of CG with Multigrid and GMRES with SOR for case 1, in terms
of time in seconds (left) and memory consumption in GB (right). The tests were
concluded prematurely, since it had become clear that CG with Multigrid is su-
perior.

.

4.2.4 Scaling tests: Comparison between MUMPS and CG with SOR

Case solver
Linear fit power fit

resulting fit coefficient of
determination

resulting fit coefficient of
determination

case2
CG with SOR M = 1∗10−6 ∗n +0.9636 0.9991 M = 0.0778∗n0.2791 0.8425
MUMPS M = 2∗10−6 ∗n +1.1067 0.9923 M = 0.0761∗n0.2875 0.8301

case3
CG with SOR M = 2∗10−6 ∗n +6.4135 0.9981 M = 2.1106∗n0.1109 0.8.239
MUMPS M = 2∗10−5 ∗n +6.12 0.9999 M = 1.3775∗n0.158 0.8994

Table 4.2: Fitted relations for memory (M) in Gigabytes of RAM, as a function of number of
DoF (n) for CG with Multigrid vs MUMPS. Notice how the coefficient of determina-
tion of the linear model (left) is clearly closer to 1 than the power model (right).

Scaling tests on CG with SOR revealed the combination to achieve noteworthy memory
savings when compared to MUMPS for the 3D test case. It is namely possible to solve prob-
lems around 5 times larger than those that MUMPS can solve for the same memory consump-
tion, as can be seen in Figure 4.13 (right). However, CG with SOR is somewhere between 10
and 100 times slower than MUMPS at the same number of DoF. This can be seen in Figure
4.13 (left).

For the 2D test case, the results were less impressive. As shown in Figure 4.12 (right), CG
with SOR was able to solve problems around twice as large as those that MUMPS could solve
for the same memory consumption. However, this comes at the cost of CG with SOR being
more than two orders of magnitude slower than MUMPS. This is shown in Figure 4.12 (left).
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Figure 4.12: Scaling behavior of CG with SOR, compared to MUMPS, for case 2. This is ex-
pressed in terms of time in seconds (left) and memory consumption in GB (right).

.

Figure 4.13: Scaling behavior of CG with SOR, compared to MUMPS, for case 3. This is ex-
pressed in terms of time in seconds (left) and memory consumption in GB (right).

.

4.2.5 Summary: Solver recommendation for Helmholtz eigenvalue prob-
lems

Three solvers settings were tested overall. These are summed up here, beginning from the
most effective to least effective. For details regarding the memory savings and time consump-
tion, see the discussion in the Section 4.2.

1st choice: CG with Multigrid

The default Multigrid preconditioner was used for the scaling tests. The solver configuration
is shown in detail in Figure 4.14. See Section 4.2.3 for the scaling behavior of this solver con-
figuration.

A more optimal configuration was later discovered. This configuration avoids using direct
solvers as coarse solvers. It is expected to be moderately slower but more memory-efficient
than CG with the default Multigrid. The solver configuration is shown in detail in Figure 4.15.

43



Numerical investigations for the Helmholtz eigenvalue problem

Figure 4.14: Configuration of CG with default multigrid preconditioner in detail
.

Figure 4.15: Configuration of CG modified Multigrid preconditioner in detail1

.

2nd choice: CG with SOR

This configuration uses the tried-and-true SOR preconditioning. Figure 4.16 shows the con-
figuration in detail. See Section 4.2.4 for the scaling behavior of this solver configuration.

1CG with SOR as coarse solver, as well as CG as post-smoother, can be implemented in COMSOL using the
Krylov preconditioner node
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Figure 4.16: Configuration of CG with SOR in detail
.

3rd choice: GMRES with SOR

This configuration has the advantage that it can be used for a wider variety of problem classes.
However, it’s less optimal then the previous two for Helmholtz eigenvalue problems. Figure
4.17 shows the configuration in detail. See Section 4.2.3 for the scaling behavior of this solver
configuration.

Figure 4.17: Configuration of GMRES with SOR in detail 2

.

25 SOR iterations were used in the scaling tests. But a number of 2 was found to be more efficient upon further
investigation.
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5 Numerical investigations for the
linearized Navier-Stokes equations (LNSE)

5.1 Test cases for LNSE

5.1.1 Case 4: Reflection coefficients of a swirler (3D, DG-LNSE)

Case 4 studies a swirler of a BRS Burner Tay-Wo-Chong et al. [51]. Since the swirler features
a structure that is rotationally symmetrical, only 1/6 of the cross-section is represented. The
geometry can be seen in Figure 5.1. Here, we compute the reflection coefficients at the inlet.
This is done over several frequencies to obtain a FRF.

Figure 5.1: Geometry of the test case 4.
.
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5.1.2 Cases 5 and 6: Eigenmodes and flame transfer function of laminar
flame

Cases 5 and 6 are LNSE cases, that are discretized with on a discontinuous Galarkin (DG)
method[5]. Here, we look at a 2D perfectly premixed laminar flame. The heat release rate is
modeled with linearized one-step irreversible Arrhenius equation. In case 5, we a study the
eigenmodes of the flame. In case 6, we compute the flame transfer function (FTF). The input
is the inlet velocity, and the output is the global heat release rate. For more information about
the FTF, consult for example Tay-Wo-Chong et al. [51]. Since the geometry is symmetric, only
half of the structure is modeled. The geometry of the model is shown in Figure 5.2

Figure 5.2: Geometry of test cases 5 and 6..
.

5.2 Results and discussion

Similarly to the Helmholtz test cases, the results for the LNSE cases are presented and dis-
cussed here. This includes the the initial investigation of all solver-preconditioner combina-
tions, as well as the scaling tests. The results from the initial investigation are summarized in
tables that are included in Appendix C.3, whereas the results from the scaling tests are plotted
in Figure 5.3. Table 5.1 provides a list of the obtained correlations, as fitted using both linear
and power fit. The time requirements of solvers as a function of problem size, these are plotted
alongside the memory plots in Figure 5.31.

1See Section 4.2 for more details
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Case solver
Linear fit power fit

resulting fit coefficient
of
determination

resulting fit coefficient
of
determination

case4
GMRES with SOR M = 3E −06∗n +4.9861 0.9861 M = 1.0403∗n0.1501 0.7862
MUMPS M = 3E −05∗n +4.1789 0.9734 M = 0.2062∗n0.313 0.8228

case5 no working iterative solver was found

case6 no working iterative solver was found

Table 5.1: List of obtained expressions for memory consumption as a function of problem size
(M) in Gigabytes of RAM, as expressed by number of degrees of freedom (n) for the
LNSE cases. Notice how the coefficient of determination of the linear model (left)
is clearly closer to 1 than the power model (right).

5.2.1 Frequency response function of LNSE without heat source term (case
4)

This test case, where the reflection coefficients of a swirler were studied, admitted less solvers
than the Helmholtz cases. However, it still offers a host of solvers to chose from. The most no-
table solvers are listed in Table 5.2. Since this problem is not symmetrical, CG wasn’t expected
to converge, and this assumption held true. The Multigrid preconditioner didn’t work either,
so the SOR preconditioner was used instead.

solver preconditioner configuration time Physical Memory

GMRES SOR
type: SSOR

00:11:01 4.63 GBrelaxation factor: 0.9
5 iterations

BiCGStab SOR
type: SSOR

00:14:38 4.36 GBrelaxation factor: 0.9
5 iterations

Table 5.2: Solver settings with least memory consumption and reasonable solution time for
case 4.

Optimal solver

From this list, GMRES with SOR was chosen, due to its more regular convergence behavior.
The solver converges without much delay for a number of iterations before reset of 50. In-
creasing this number could speed-up convergence, but would definitely increase memory
consumption for larger problems. Smaller problems are insensitive to this value, as observing
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the convergence diagrams indicates that the solver could then converge before it had per-
formed 50 iterations.

Concerning the SOR preconditioner, the SSOR version is preferred, since the latter is the-
oretically slightly more robust than standard SOR. The SOR preconditioner is stable for this
case, therefore a high relaxation parameter could be advantageous. Nevertheless, a conserva-
tive choice of 0.9 or 1 is recommended, with 0.9 being the safer choice, though slightly slower.
Any relaxation parameter below around 0.7 offers no known advantages, and needs to be off-
set by a higher number of iterations.

As for the ideal number of iterations of SOR, it depends on the relaxation parameter. The
lower the relaxation parameter, the more iterations are needed. Some tests were made to ob-
tain an estimate for the ideal number of iterations , and the results are shown in Table 5.3.
One weakness of SOR that was revealed is that it begins to stagnates after a few iterations.
This means that using too many steps just slows down the process and offers no benefits. In
fact, it is better to use just enough iterations to guarantee that the iterative solver converges,
and instead do more iterations of the solver. One exception to this is GMRES for smaller prob-
lems, namely because using less iterations of GMRES before restarting it (due to improved
conditioning) saves memory2. The scaling tests were conducted using 5 SOR iterations, al-
though further investigation at a later stage proved a 2 SOR iterations to lead to comparable
memory savings while being significantly faster.

Number
of SSOR
iterations

Time Memory
consump-
tion

50 00:59:58 4.23 GB
5 00:14:38 4.36 GB
2 00:21:00 5.82 GB

Table 5.3: Influence of number of SOR iterations on memory and time consumption, as
shown through time and memory consumption of BiCGStab with SOR for differ-
ent numbers of iteration for the SOR preconditioner. These tests were run on case
4, at n = 238540. The relaxation factor was set to 0.9.

Scaling tests: comparison between GMRES with SOR and MUMPS

GMRES offers significant memory savings, as can be seen in Figure 5.3 (right). This, however,
comes at the cost of very rapidly increasing costs in terms of time, as is shown in Figure 5.3
(left). Using the linear fit from Table 5.1, it can be estimated that with around 14 GB of RAM,
GMRES with SOR can solve problems that are around 10 times larger than those solvable by
CG with Multigrid for the same memory.

2This is particularly the case for eigenvalue problems, where the eigenvalue algorithm itself restarts constantly
the solver after few iterations
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Numerical investigations for the linearized Navier-Stokes equations (LNSE)

Figure 5.3: Scaling behavior of GMRES with SOR compared to MUMPS for case 4, in terms of
time in seconds (left) and memory consumption in GB (right). The linear fit in the
memory curve is clearly more accurate.

5.2.2 Eigenvalues and frequency response function of LNSE with heat source
terms (case 5 and case 6)

For both these cases, all attempts to find an appropriate iterative solver have failed. This is
despite the fact that direct solvers work for them with no apparent issues. Interestingly, when
handling the eigenvalue problem (case 4), the solvers would indeed converge for most solver-
preconditioner combinations (except for CG, which diverges immediately). But the returned
eigenvalues are spurious

As for the flame transfer function case (case 5), GMRES looks most promising, but it stag-
nates some orders of magnitude short of convergence. BiCGStab might also hold some promise,
but it’s highly oscillating behavior makes an accurate assessment of it’s potential difficult to
make. It also occasionally suddenly diverges after seemingly steadily converging for some
time. So in the end, GMRES makes more sense to explore further, since it is more reliable,
overall, while providing comparable memory savings. These cases were abandoned at this
point.

5.2.3 Summary: Solver recommendation for LNSE cases

GMRES with SOR

This solver configuration is effective for LNSE cases with no heat source terms. See Section
5.2.1 for the scaling behavior of this solver setting. This setting is also promising for LNSE
with heat source terms, as long as the problems are well-conditioned. Figure 5.4 shows the
recommended solver configuration in detail.
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5.2 Results and discussion

Figure 5.4: Configuration of GMRES with SOR in detail 3

.

35 SOR iterations were used in the scaling tests. Upon further investigation, a number as low as 2 was revealed
to moderately speed up convergence with no memory penalties.
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6 Conclusions and outlook

Based on the results, iterative solvers can be used to save memory for Helmholtz eigenvalue
problems. Three solvers were shown to achieve this. The most effective of these was CG with
Multigrid. For 3D problems, CG with Multigrid was found to be capable of solving problems
that are roughly 10 times larger than direct solvers can solve for the same memory. It was also
slightly faster than direct solvers for large problems for both 2D and 3D cases. However, its
memory savings were less significant for 2D cases. In such cases, for the same memory uti-
lization, CG with Multigrid was capable of solving problems that were twice as large as the
ones direct solvers can solve. An alternative Solver that was studied is CG with SOR. Here, the
simple and reliable SOR preconditioning was tested. For 3D cases, CG with SOR proved capa-
ble of solving problems 5 times larger than direct solvers could solve for the same memory.
However, This drops to a factor of 2 for 2D problems. CG with SOR was observed to be sig-
nificantly slower than MUMPS. For larger problems, it is slower than direct solvers by 1 order
of magnitude for 3D cases, and 2 orders of magnitude for 2D cases. Finally, GMRES with SOR
was briefly studied for Helmholtz cases, but preliminary tests showed it to be less interesting
than the previous two. The specifically recommended parameters for each of these solvers are
summarized in Section 4.2.5.

For frequency response function problems governed by LNSE with no heat source terms,
GMRES with SOR is recommended. This choice provides significant memory savings, at the
cost of more time consumption. To keep the memory consumption to a minimum, it is rec-
ommended that the number of iterations before restart is kept to a minimum. 50 iterations
before restart are sufficient for GMRES to converge, even at large problem sizes. A summary
of recommended parameters for this solver-preconditioner combination can be found in Sec-
tion 5.2.3.

For frequency response function problems governed by LNSE, when a heat source term
is present, there might be no appropriate iterative solver. This can be seen in cases 4 and
5. This is due to the poor condition, possibly as a result of poor choice of boundary condi-
tions. Nevertheless, the solver that shows most promise is GMRES with SOR. As for the solver
and preconditioner settings, the same settings recommended above (for LNSE cases without
source terms) are probably appropriate here, too.

Further improvements could be made to the Multigrid preconditioner for Helmholtz cases.
Its default settings are indeed effective as they are, but the alternative settings shown in Fig-
ure 4.15 promises further reduction in memory consumption. On the other, as discussed in
subsection 2.7.6, the convergence behavior of Multigrid is largely insensitive to cycle type, so
it makes sense to use the V-cycle, as it is the simplest one. But it could be possible to improve
memory savings by increasing the number of grid layers and adjusting coarsening factors for

52



higher numbers of DoF. This also seems to be a promising topic for future exploration.
Another area which warrants further study is LNSE cases with heat source terms. Here,

further work could be done to find which boundary conditions are responsible for the poor
conditioning. These boundary conditions could then potentially be relaxed or changed com-
pletely. Such changes could allow this class of problems to be solved using iterative solvers.
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A Linear Algebra

This work requires a certain level of understanding of linear algebra. The concepts that were
cental to the subject matter, such as eigenvalue problems, were explained in the main body.
In this appendix, the more basic concepts of linear algebra that should be known to the reader
are recalled. Please note that only concepts that were used in this work are present here.

A.1 Matrices and vectors

The mathematical relations in this work are formulated for complex matrices. This choice was
made since it is more convinient to do so when discussing eigenvalues [54].

Definition of a matrix: A complex n1×n2 matrix A is an array of complex numbers ai , j such
that i = 1,2, . . . ,n1 and j = 1,2, . . . ,n2.

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 . (A.1)

This example represents the particular case of a square matrix

A.1.1 Vectors

Definition of a vector: A vector in Cn (or Cn×1) is a matrix with one column and n rows.

Vector norm: In this work, the norm of a vector v in Cn , ‖v‖ is defined as:

‖v‖ =
√

n∑
i=1

|vi |2 . (A.2)

This definition is often referred to as euclidean norm or L2 norm.

Orthogonal vectors: Two vectors u and v in Cn are orthogonal if uT v = vT u = 0.

Orthonormal vectors: Two vectors u and v inCn are orthonormal if they are orthogonal and
are unit vectors, i.e. ‖v‖ = ‖u‖ = 1.
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Linear Algebra

A.2 Matrix operations

Several matrix operations were used in this work. These operations are:

• Addition of two matrices A = B+C. This operation is defined solely for matrices of the
same dimentions. It is defined as:

ai , j = bi , j + ci , j (A.3)

• Multiplication of a scalar α and a matrix αA

{αA}i , j =αai , j (A.4)

• Multiplication of two matrices A = BC. This operation is defined only for the case where
B ∈Cn1×n2 and C ∈Cn3×n4 such that n3 = n4 = m. Matrix product is defined as

ai , j =
m∑

l=1
bi ,l cl , j (A.5)

• Taking the transpose of a matrix A → AT . This operation is defined as

{AT }i , j = a j ,i (A.6)

• Taking the conjugate transpose of a matrix A → A∗. This operation is defined as:

A∗ = A
T

. (A.7)

Here, A is the matrix A, with each element replaced by its complex conjugate1.

[54]
A vector inC3 can be considered as a 3×1 matrix. Therefore, a scalar product between two

vectors in C3, u and v, often represented as u ·v or < u,v >, can be instead represented using
matrix operations as

(scalar product) uT v . (A.8)

This latter notation is the only one used in this work.

A.3 Special types of matrices

There are several types of matrices that are of interest. This either because their structure gives
rise to special types of eigenvalues, or because these structures are a very common product of
numerical discretization schemes.

1the complex conjugate of a complex number a + i b, where a and b are real, is a − i b.
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A.3 Special types of matrices

• Identity matrix: I. They are defined as {I}i , j = 1 ∀i = j and {I}i , j = 0 ∀i 6= j ;

• Diagonal matrix: A is diagonal if ai , j = 0 ∀i 6= j ;

• Symmetric matrices: A = AT ,

• Hermtian matrices : A = A∗,

• Positive definite matrices: Re{x∗}Ax > 0 ∀x ∈ Cn . For real matrices, this reduces to
xT Ax > 0.

• Diagonal matrix:ai , j = 0 ∀i 6= j .

• Upper triangular matrix: ai , j = 0 ∀i > j .

• Lower triangular matrix: ai , j = 0 ∀i < j .

• Non-square upper Hessenberg Matrix Hm+1,m : Hi j = 0 ∀i > j +1, that is:

h1,1 h1,2 . . . . . . h1,m−1 h1,m

h2,1 h2,2 . . . . . . h2,m−1 h2,m

0
. . . . . . h3,m−1 h3,m

...
. . . . . .

...
...

...
. . . . . .

...
...

...
. . . hm,m−1 hm,m

0 . . . . . . . . . 0 hm+1,m


. (A.9)

• Upper Hessenberg matrix Hm,m :

h1,1 h1,2 . . . . . . h1,m−1 h1,m

h2,1 h2,2 . . . . . . h2,m−1 h2,m

0
. . . . . . h3,m−1 h3,m

...
. . . . . .

...
...

...
. . . . . .

...
...

0 . . . . . . 0 hm,m−1 hm,m


. (A.10)

The structure of a Hessenberg matrix is interesting because it is almost triangular.

• Banded matrices : A matrix A has a band structure, if

ai , j = 0 ∀i > j +ml and ∀ j < i +mu . (A.11)

Here, ml +mu +1 is called the bandwidth.
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• Orthonormal matrix: A∗A = I where A can be a rectangular matrix. Note here that the
literature is not consistent on this notation.

• Unitary matrix: AA∗ = A∗A = I. The matrix A can’t be rectangular, and can only be a
square matrix.

[54]
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B Incomplete LU decomposition

Suppose a drop tolerance t and a fill ratio f are given, and we want to compute the incomplete
LU decomposition of a square matrix A. One way to implement this is as follows:

1. for i from 1 to n:

(a) this part is only performed when using fill ratio:

i. count the non-zero entries in v. Let’s call this number m 6=0;

ii. use m 6=0 and f to compute m = m 6=0 f ;

(b) calculate v = eT
i A, where

ei =





...
0
1 ← row i
0
...

(c) for j from 1 to i −1:

i. compute v j = v j

a j , j
;

ii. this step is only performed if using a drop tolerance: If v j < t then drop v j (this
means v j = 0);

iii. if v j 6= 0, then calculate v =−v− vi eT
j U;

2. this step is only performed if using fill ratio:
Here, the number m, as defined earlier, comes in play. Drop all the smaller elements of
v, keeping only the largest m elements;

3. for j from 1 to i −1: li , j = v j ;

4. for j from i to n: ui , j = v j ;

[55]
The above algorithm was formulated such that it is simultaneously compatible with the

drop rules “drop tolerance” and “fill ratio”. Indeed, according to Karypis and Kumar [55], it
is possible to apply both rules simultaneously by following this formulation. Nevertheless,
the COMSOL software package doesn’t support this feature. Moreover, the COMSOL software
package implements two exceptions to the drop rules stated above [6]:
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Incomplete LU decomposition

• Diagonal elements are never dropped;

• If an element of the original matrix A is non-zero, the algorithm may be set such that is
never drops such an element. COMSOL applies this if the check box “respect pattern” is
checked.
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C Results from secondary tests

C.1 Default parameters of the extra preconditioners

Preconditioner Configuration:

Vanka

Main:
Variable: pressure (p) (]),
Block solver: direct,
Number of iterations: 10 (]),
Relaxation factor = 0.7 (]);

Secondary:
Number of iterations: 10 (]),
Relaxation factor: 1.

SCGS

Main:
Number of iterations: 2,
Relaxation factor: 0.7 (]),
Block solver: Direct, stored factorisation (]),
Method: Mesh element lines and vertices,
Vertex relaxation factor: 0.5;

Secondary:
Number of iterations: 1 iteration,
relaxation factor : 0.5.

SOR Line

Main:
Sweep type: SSOR,
Number of iterations: 2,
Relaxation factor: 0.7 (]),
Line based on: Mesh,
Multivariable method: coupled,
Blocked version.

Secondary:
Number of iterations: 1,
Relaxation factor: 0.7 (]).

SOR Gauge

Main:
Solver: SSOR gauge,
Number of iterations: 10 (]),
Relaxation factor: 0.7 (]),
Blocked version,
Variables: pressure (p) (]),

Secondary:
Number of secondary solvers: 1;

SOR Vector

Main:
Solver: SSOR verctor,
Number of iterations: 10 (]),
Relaxation factor: 0.7 (]),
Blocked version,
Variables: pressure (p);

Secondary:
Number of secondary solvers: 1.
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Results from secondary tests

Preconditioner Configuration:

Domain Decomposition

General:
Solver: Multiplicative Schwarz,
Number of iterations: 1,
Number of subdomains: 2,
Maximum nDOF per subdomain: 100 000,
Maximum number of nodes per subdomain: 1,
Additional overlap: 1,
Overlap method: Matrix based,
Hierarchy generation method: Lower element order first,
Mesh coarsening factor: 2,
Assemble on all levels,
Use subdomain coloring;

Coarse solver: MUMPS
Domain solver: MUMPS with default settings

Krylov preconditioner

Using GMRES as preconditioner with:
Number of iterations before restart: 50,
Preconditioning: Left,
Termination technique: Fixed number of iterations (10)

Preconditioner for GMRES is ILU with:
Drop using: Tolerance,
Drop tolerance:1.

Table C.1: Defaut parameters of second set of preconditioners. Parameters that are different
from the original default parameters implemented in COMSOL are marked by (]).
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C.2 The default parameters of the studied cases used in the solver search

C.2 The default parameters of the studied cases used in the
solver search

In order to accelerate the process of searching for working solver-preconditioner combina-
tion, some parameters in the eigenvalue solver (for cases 1,2 and 3) and frequency domain
solver (for case 4) were changed from the values present in the original settings1. Test cases 5
and 6 are omitted, as no iterative solver was found to work for either of them

C.2.1 Test case 1

• Search for eigenvalues around: 20H z
• Number of desired eigenvalues: 6
• Relative tolerance: 10−6

• Number of degrees of freedom: 2958

C.2.2 Test case 2

• Search for eigenvalues around: 20H z
• Number of desired eigenvalues: 4
• Relative tolerance: 10−2

• Number of degrees of freedom: 2718

C.2.3 Test case 3

• Search for eigenvalues around: 0H z
• Number of desired eigenvalues: 4
• Relative tolerance: 10−2

• Number of degrees of freedom 48880

C.2.4 Test case 4

• Relative tolerance: 10−6

• Number of degrees of freedom 238540

1as provided by the professorship for thermo-fluid dynamics in the Technical University of Munich
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Results from secondary tests

C.3 Overview of iterative solvers and their respective results

The purpose of this paper is just to find one or two iterative solvers that work for all models.
Therefore, multiple descent candidates have been overlooked, as studying all solvers thor-
oughly is beyond the scope of this paper. Nonetheless, for each model,a complete list of the
recorded behavior all solver-preconditioner combination is presented. This could hopefully
serve as a guide for whoever wishes to explore alternative solutions. Note: all preconditioning
is left preconditioning, unless stated otherwise. Additionally, all solvers and preconditioners
use the default parameters, as described in Tables 3.2, 3.3 and C.1, unless otherwise stated.
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C.3 Overview of iterative solvers and their respective results

C.3.1 Test case 1

Solver preconditioner Time Physical
memory

GMRES

Incomplete LU (standard) 00:00:08 1.08 GB
Incomplete LU (SPOOLES) 00:00:07 1.04 GB
SOR 00:00:04 1.09 GB
Jacobi 00:00:04 1.09 GB
Vanka 00:01:07 1:16 GB
SCGS 00:00:05 1.16 GB
SOR Line 00:00:03 1.16 GB
SOR Gauge 00:00:08 1.15 GB
SOR Vector 00:00:08 1.18 GB
Multigrid 00:00:01 1.19 GB
Domain Decomposition 00:00:03 1.22 GB
Krylov Preconditioner no convergence

FGMRES

Incomplete LU (standard) 00:00:05 1.22 GB
Incomplete LU (SPOOLES) 00:00:07 1.25 GB
SOR 00:00:07 1.27 GB
Jacobi 00:00:04 1.26 GB
Vanka 00:01:01 1.34 GB
SCGS 00:00:05 1.33 GB
SOR Line 00:00:03 1.34 GB
SOR Gauge 00:00:07 1.36 GB
SOR Vector 00:00:07 1.36 GB
Multigrid 00:00:01 1.37 GB
Domain Decomposition 00:00:02 1.37 GB
Krylov Preconditioner 00:00:05 1.37 GB

BiCGStab

Incomplete LU (standard) 00:00:13 1.36 GB
Incomplete LU (SPOOLES) 00:00:14 1.38 GB
SOR 00:00:07 1.39 GB
Jacobi 00:00:07 1.38 GB
Vanka 00:02:22 1.38 GB
SCGS 00:00:04 1.41 GB
SOR Line 00:00:04 1.42 GB
SOR Gauge 00:00:16 1.42 GB
SOR Vector 00:00:16 1.44 GB
Multigrid 00:00:02 1.44 GB
Domain Decomposition 00:00:03 1.46 GB
Krylov Preconditioner 00:00:20 1.48 GB

Conjugate Gradient

Incomplete LU (standard) 00:00:12 1.48 GB
Incomplete LU (SPOOLES) 00:00:07 1.48 GB
SOR 00:00:05 1.44 GB
Jacobi 00:00:03 1.50 GB
Vanka no convergence
SCGS no convergence
SOR Line 00:00:02 1.54 GB
SOR Gauge 00:00:07 1.56 GB
SOR Vector 00:00:07 1.57 GB
Multigrid 00:00:07 1.56 GB
Domain Decomposition no convergence
Krylov Preconditioner no convergence

Preconditioner
Multigrid 00:00:01 1.76 GB
Domain Decomposition 00:00:02 1.77 GB
Krylov Preconditioner 00:00:02 1.78 GB
Remaining preconditioners no convergence

Table C.2: Overview of solver behavior, case 1

65



Results from secondary tests

C.3.2 Test case 2

Solver Preconditioner Time Physical Memory

GMRES

Incomplete LU (standard) 00:00:01 1.1 GB
Incomplete LU (SPOOLS) 00:00:03 1.09 GB
SOR 00:00:02 1.09 GB
Jacobi 00:00:02 1.1 GB
Vanka 00:00:05 1.12 GB
SCGS 00:00:06 1.13 GB
SOR Line 00:00:03 1.14 GB
SOR Gauge 00:00:03 1.16 GB
SOR Vector 00:00:03 1.17 GB
Multigrid 00:00:01 1.15 GB
Domain Decomposition 00:00:01 1.14 GB
Krylov Preconditioner 00:01:45 1.24 GB

FGMRES

Incomplete LU (standard) 00:00:01 1.15 GB
Incomplete LU (SPOOLS) 00:00:03 1.21 GB
SOR 00:00:02 1.21 GB
Jacobi 00:00:02 1.21 GB
Vanka 00:00:04 1.19 GB
SCGS 00:00:06 1.21 GB
SOR Line 00:00:03 1.23 GB
SOR Gauge 00:00:03 1.2 GB
SOR Vector 00:00:03 1.2 GB
Multigrid 00:00:01 1.23 GB
Domain Decomposition 00:00:01 1.23 GB
Krylov Preconditioner 00:00:01 1.23 GB

BiCGStab

Incomplete LU (standard) 00:00:01 1.21 GB
Incomplete LU (SPOOLS) 00:00:07 1.21 GB
SOR 00:00:05 1.24 GB
Jacobi 00:00:02 1.25 GB
Vanka 00:00:10 1.24 GB
SCGS 00:00:02 1.22 GB
SOR Line 00:00:02 1.26 GB
SOR Gauge 00:00:06 1.25 GB
SOR Vector 00:00:06 1.26 GB
Multigrid 00:00:01 1.23 GB
Domain Decomposition 00:00:01 1.26 GB
Krylov Preconditioner distorted result

Conjugate Gradient

Incomplete LU (standard) 00:00:01 1.27 GB
Incomplete LU (SPOOLS) 00:00:03 1.25 GB
SOR 00:00:02 1.27 GB
Jacobi 00:00:01 1.28 GB
Vanka 00:00:05 1.25 GB
SCGS distorted result
SOR Line 00:00:01 1.34 GB
SOR Gauge 00:00:03 1.3 GB
SOR Vector 00:00:03 1.3 GB
Multigrid 00:00:01 1.31 GB
Domain Decomposition 00:00:01 1.31 GB
Krylov Preconditioner 00:00:02 1.32 GB

Use preconditioner

Incomplete LU 00:00:13 1.31 GB
SOR 00:00:02 1.3 GB
Jacobi 00:00:02 1.29 GB
Vanka 00:01:33 1.39 GB
SCGS no convergence
SOR Line no convergence
SOR Gauge no convergence
SOR Vector no convergence
Multigrid 00:00:01 1.25 GB
Domain Decomposition 00:00:01 1.26 GB
Krylov Preconditioner 00:00:02 1.26 GB

Table C.3: Overview of solver behavior, case 2.
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C.3 Overview of iterative solvers and their respective results

C.3.3 Test case 3

Solver Preconditioner Time Physical
memory

GMRES

Incomplete LU (standard) 00:00:31 6.61 GB
Incomplete LU (SPOOLS) 00:01:25 3.93 GB
SOR 00:00:39 6.55 GB
Jacobi 00:01:21 6.54 GB
Vanka 00:02:21 6.64 GB
SCGS 00:02:32 6.64 GB
SOR Line 00:01:08 3.88 GB
SOR Gauge 00:01:20 6.41 GB
SOR Vector 00:01:22 7.15 GB
Multigrid 00:00:08 7.13 GB
Domain Decomposition 00:00:19 6.27 GB
Krylov Preconditioner 00:46:18 6.65 GB

FGMRES

Incomplete LU (standard) 00:00:26 6.63 GB
Incomplete LU (SPOOLS) 00:01:41 4.06 GB
SOR 00:01:01 5.8 GB
Jacobi 00:01:33 6.33 GB
Vanka 00:01:51 6.39 GB
SCGS 00:02:17 3.81 GB
SOR Line 00:01:13 6.43 GB
SOR Gauge 00:01:43 6.48 GB
SOR Vector 00:01:26 6.37 GB
Multigrid 00:00:06 6.46 GB
Domain Decomposition 00:00:26 4.04 GB
Krylov Preconditioner 00:01:00 6.47 GB

BiCGStab

Incomplete LU (standard) 00:00:46 6.5 GB
Incomplete LU (SPOOLS) 00:03:13 6.62 GB
SOR 00:01:54 4 GB
Jacobi 00:02:07 6.43 GB
Vanka 00:05:13 3.79 GB
SCGS 00:01:12 6.34 GB
SOR Line 00:01:31 4.06 GB
SOR Gauge 00:03:45 6.43 GB
SOR Vector 00:03:15 7.01 GB
Multigrid 00:00:29 6.43 GB
Domain Decomposition 00:00:26 6.63 GB
Krylov Preconditioner no convergence

Conjugate Gradient

Incomplete LU (standard) 00:00:34 3.87 GB
Incomplete LU (SPOOLS) 00:01:32 6.61 GB
SOR 00:01:20 3.64 GB
Jacobi 00:01:07 3.57 GB
Vanka 00:03:02 3.65 GB
SCGS no convergence
SOR Line 00:00:41 3.76 GB
SOR Gauge 00:01:56 3.6 GB
SOR Vector 00:01:48 3.62 GB
Multigrid 00:00:09 3.69 GB
Domain Decomposition 00:00:23 3.98 GB
Krylov Preconditioner 00:01:39 3.68 GB

Use preconditioner
Incomplete LU 00:17:01 3.82 GB
Vanka 00:57:00 6.46 GB
Multigrid 00:00:11 3.59 GB
Domain Decomposition 00:00:17 3.99 GB
Krylov Preconditioner 00:00:55 5.44 GB
Remaining no convergence

Table C.4: Overview of solver behavior, case 3.

67



Results from secondary tests

C.3.4 Test case 4

Solver Preconditioner Time Physical
memory

GMRES

Incomplete LU (standard) no convergence
Incomplete LU (SPOOLS) no convergence
SOR 00:11:01 4.63 GB
Jacobi no convergence
Vanka 00:38:16 5.89 GB
SCGS no convergence
SOR Line 00:08:51 6.96 GB
SOR Gauge 00:09:38 6.74 GB
SOR Vector 00:38:16 5.89 GB
Multigrid no convergence
Domain Decomposition 00:17:20 9.26 GB
Krylov Preconditioner no convergence

FGMRES

Incomplete LU (standard) no convergence
Incomplete LU (SPOOLS) no convergence
SOR 00:17:50 5.99 GB
Jacobi no convergence
Vanka 01:23:42 5.97 GB
SCGS no convergence
SOR Line 00:16:55 5.96 GB
SOR Gauge 00:20:16 5.97 GB
SOR Vector 01:25:55 5.88 GB
Multigrid no convergence
Domain Decomposition 00:18:17 10.7 GB
Krylov Preconditioner 01:01:40 4.55 GB

BiCGStab

Incomplete LU (standard) 01:29:47 4.45 GB
Incomplete LU (SPOOLS) no convergence
SOR (relaxation factor: 0.9;
5 iterations)

00:14:38 4.36 GB

Jacobi no convergence
Vanka no convergence
SCGS no convergence
SOR Line 00:20:45 5.9 GB
SOR Gauge 00:22:43 6.22 GB
SOR Vector 03:09:27 4.26 GB
Multigrid no convergence
Domain Decomposition 00:38:03 9.69 GB
Krylov Preconditioner no convergence

Conjugate Gradient All preconditioners no convergence
Use preconditioner All preconditioners no convergence

Table C.5: Overview of solver behavior, case 4.

C.3.5 Test case 5

No working iterative solvers were found for this case.
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C.3.6 Test case 6

No working iterative solvers were found for this case.
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Results from secondary tests

C.4 Estimating the fluctuation in memory utilization

As stated in subsection 3.4, it was deemed interesting to briefly study to amount of variation in
solution time and memory consumption under identical conditions. Since this is not central
to this work, it was decided to include this discussion in the appendix.

C.4.1 Memory leak

At the beginning, it was suspected that some memory leak issues with COMSOL Multiphysics
4.4 might be present. Since this would interfere with any error estimates, some time was ded-
icatied to study this issue. Based on total of 24 of runs on case 1 (eigenmodes of a room), it
was observed that for nDoF = 2958, using the CG with Multigrid (with default settings), the
memory consumption increased by around 0.03GB per run, while the time requirements re-
mained constant. However, once COMSOL Multiphysics 4.4 was shut down and restarted, the
accumulated leak seems to vanish, and start accumulating again. This can clearly be seen in
Figure C.1. However, the gradual increase in memory consumption does seem to slow down
or level after a certain number of runs, as can be seen towards the end of the curve. This latter
finding is not certain, the memory consumption in other tests did not stop increasing.

Figure C.1: The change in the memory consumption for case 1 (eigenvalues of a room), for
increasing number of runs under identical conditions. COMSOL Multiphysics was
shut down and launched anew around run number 7. Notice how this translates
into the disappearance of the accumulated increase in memory consumption.

.

This was not studied any further than this. Since the presence of such issues was suspected
early on, the tests discussed thus far were done so as to minimize the interference of such
effects. For instance, tests for the scaling tests of direct and iterative solvers were conducted
in a strictly alternating fashion. Additionally, tests involving a given case were conducted in a
single session for the sake of consistency. However, if a more detailed study is to be conducted,
it is advised to take this issue into consideration. It should also be stated that the tests for
error estimation were conducted after running a simple model somewhere between 30 and
40 times in hope of minimizing the interference from this effect. However, this might not have
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much of a mitigating effect, as can be seen in for instance Table C.2, where a steady skew
upwards in the memory consumption of solvers can still be observed afterwards.

C.4.2 Error in the scaling tests

The results of the error estimates are presented in Tables C.6, C.7, C.8 and C.9. It can be ob-
served that the solution time is fairly constant, only varying by a some seconds at high prob-
lem sizes. An exact relation between problem size and the amount of variation in time is not
of interest, here.

The more important matter is the variation in memory consumption. The standard devi-
ation appers be fairly high, reaching upwards of 1.27 GB for case 3, at a memory consumption
of 6.9 GB. The results indicate that this deviation is dependent on the problem size and/or the
average memory requirements of the problem, though Table C.9 suggests that problem size is
the more relevant parameter. Indeed, in that table, it can be seen that for GMRES with SOR,
an increase of problem size by about an order of magnitude, at near constant average mem-
ory consumption, caused an increase in the deviation in memory consumptio by a similar
amount.

Nevertheless, due to the small sample sizes, these results should be taken with caution.
For instance, the results for the error estimate tests of MUMPS in case 4 (Table C.9), would in-
dicate that the deviation in memory consumption of MUMPS scales inversely with increasing
problem size. This is in contradiction with the results from the other cases, and is more likely
to be the result of the small sample size. In any case, the reader should feel free to interpret
these values to estimate the maximal problem size that can be safely solved by the suggested
solvers. More robust tests with larger sample sizes are needed to obtain a more accurate data
regarding the scaling behavior and the variation in the memory consumption. Automating
any such tests is highly recommended, even if it would require significant investments in time
and effort.

Test cases 5 and 6 admitted no working iterative solvers.
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Results from secondary tests

nDoF runs average standard
deviation

2958

CG with
Multigrid

Time (s) 2 2 2 2 2 2 0.0
Physical
memory
(GB)

1.18 1.17 1.16 1.17 1.17 1.17 0.0063

MUMPS
Time (s) 0 0 0 0 0 0 0.0
Physical
memory
(GB)

1.19 1.17 1.16 1.17 1.19 1.176 0.0120

153076

CG with
Multigrid

Time (s) 53 52 53 53 53 52.8 0.4
Physical
memory
(GB)

1.86 1.85 1.94 1.86 1.94 1.89 0.0410

MUMPS
Time (s) 45 45 45 45 45 45 0.0
Physical
memory
(GB)

3.04 3.31 3.33 3.32 3.36 3.272 0.1172

Table C.6: Analysis of typical deviation in solution time and memory consumption for case 1

nDoF solver runs average standard
deviation

2718

CG with
Multigrid

Time (s) 1 1 1 1 1 1 0.00
Physical
memory
(GB)

1.24 1.25 1.25 1.27 1.29 1.26 0.0179

MUMPS
Time (s) 0 0 0 0 1 0.2 0.40
Physical
memory
(GB)

1.21 1.25 1.26 1.29 1.31 1.264 0.0344

775356

CG with
Multigrid

Time (s) 73 68 68 70 55 66.8 6.18
Physical
memory
(GB)

2.48 2.53 2.53 2.56 2.57 2.534 0.0314

MUMPS
Time (s) 37 34 34 36 38 35.8 1.60
Physical
memory
(GB)

2.55 2.84 2.93 2.94 2.94 2.84 0.1498

Table C.7: Analysis of typical deviation in solution time and memory consumption for case 2
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nDoF solver runs average standard
deviation

367

CG with
Multigrid

Time (s) 1 0 0 0 0 0.2 0.40
Physical
memory
(GB)

6.3 6 6.42 6.47 6.29 6.296 0.1633

MUMPS
Time (s) 0 0 0 0 0 0 0.00
Physical
memory
(GB)

6.39 5.42 5.84 5.58 6.29 5.904 0.3817

509793

CG with
Multigrid

Time (s) 210 192 197 197 195 198.2 6.18
Physical
memory
(GB)

8.07 5.32 8.12 7.59 5.4 6.9 1.2712

MUMPS
Time (s) 230 236 228 246 237 235.4 6.31
Physical
memory
(GB)

14.14 12.94 14.12 14.33 14.1 13.926 0.4998

Table C.8: Analysis of typical deviation in solution time and memory consumption for case 3

nDoF solver runs average standard
deviation

17540

GMRES
with
SSOR

Time (s) 33 32 33 32 32 32.4 0.49
Physical
memory
(GB)

5.06 5 5.05 5.01 5 5.024 0.0258

MUMPS
Time (s) 30 28 28 28 29 28.6 0.80
Physical
memory
(GB)

3.64 5.06 5.07 5.1 5.08 4.79 0.5752

238400

GMRES
with
SSOR

Time (s) 908 834 835 838 845 852 28.26
Physical
memory
(GB)

5.7 5.88 6.14 4.52 5.23 5.494 0.5705

MUMPS
Time (s) 585 582 587 591 573 583.6 6.05
Physical
memory
(GB)

11.15 11.25 11.31 11.29 11.19 11.238 0.0601

Table C.9: Analysis of typical deviation in solution time and memory consumption for case 4
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