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Abstract

X-ray Dark-field is a relatively new contrast mechanism that combines the high resolution of X-ray
scattering to the large field-of-view of X-ray imaging. It exhibits the property of orientation-selectivity,
which forms the basis of a new sub-category of imaging methods, namely, Anisotropic X-ray Dark-
field (AXDF) imaging. AXDF imaging utilizes the orientation selectivity of the dark-field signal to
reveal information about sub-pixel sized structures without the need of directly resolving them. In
addition, AXDF tomography aims at the reconstruction of the three dimensional scattering information
inside every three dimensional volume element.

AXDF imaging is a suitable candidate for non-destructive testing, a field with an ever increasing
demand for higher resolution and larger field-of-view. Currently available high resolution imaging
methods, such as X-ray micro Computed Tomography, are unable to meet these demands due to the
trade-off between the spatial resolution and the measurable sample size. AXDF imaging, with at
least two orders of magnitude difference between the size of the structures probed versus the size
of the investigated sample, is a promising tool for this industry. However, AXDF imaging methods
require bulky hardware and long acquisition time that severely hinder their translation to industrial
applications. Development of optimized and industrially compatible AXDF acquisition protocols is
the main goal of this thesis.

With the above goal in mind, we present a method for fast two dimensional AXDF imaging
of continuously moving samples. Further, we investigate AXDF tomographic methods where the
directional dependence of the dark-field signal renders standard tomographic acquisition unusable.
We present two approaches to design tomographic acquisition schemes for optimal sampling of the
real and reciprocal space, simultaneously. We validate the proposed methods with numerical and
experimental analysis. In both cases, the proposed methods reduce the hardware and time complexity
of two and three dimensional AXDF imaging methods and, hence, are a significant step forward for
using these methods outside the laboratory.





Zusammenfassung

Das Röntgen-Dunkelfeld (XDF) ist eine neuartige Kontrastart welche die hohe Auflösung von
Röntgen-Streumethoden mit dem großen Sichtfeld konventioneller Röntgen-Bildgebung verbindet.
XDF ermöglicht die Detektion von richtungsabhängigen Streueigenschaften und bildet damit die
Basis einer neuen Kategorie von Bildgebungsmethoden, der Anisotropischen Röntgen-Dunkelfeld
(AXDF) Bildgebung. In Projektionsgeometrie kann man mittels AXDF die Orientierung von nicht
direkt auflösbaren Mikrostrukturen untersuchen. Darauf aufbauend wird mittels AXDF-Tomographie
die dreidimensionale Streuinformation in jedem Raumpunkt rekonstruiert.

AXDF hat viele potentielle Anwendungen in der zerstörungsfreien Werkstoffprüfung, einem
Gebiet mit steigenden Anforderungen an hohe Auflösungen bei gleichzeitig großem Sichtfeld. Mikro-
Tomographie, der aktuelle Gold-Standard in hochauflösender Bildgebung, kann diese Anforderungen
nicht erfüllen da eine hohe Auflösung immer mit einem verkleinerten Sichtfeld verbunden ist. AXDF
kann Strukturen mehr als zwei Größenordnungen unter der Probengröße detektieren und überwindet
somit die Limitationen von Mikro-Tomographie. Um der Anwendung der AXDF-Bildgebung in der
Industrie näher zu kommen, werden in dieser Dissertation ist die Entwicklung neuer und schnellerer
Aufnahmemethoden mit reduzierter Hardware-Komplexität untersucht.

Das oben genannte Ziel vor Augen, präsentieren wir eine in der Industrie anwendbare Methode
für zweidimensionale AXDF-Bildgebung mit kontinuierlicher Probenbewegung, beispielsweise durch
ein Förderband. Darüber hinaus untersuchen wir AXDF-Tomographie für Fälle, in denen die Rich-
tungsabhängigkeit des Dunkelfeldsignals eine konventionelle Tomographie unbrauchbar macht. Wir
präsentieren neue Ansätze zur optimalen Abrasterung sowohl des Realraums als auch des reziproken
Raums sowohl für die zweidimensionale als auch die dreidimensionale AXDF-Bildgebung. Die
vorgeschlagenen Methoden werden numerisch und experimentell validiert. Die Optimierung erfolgt
im Hinblick auf eine vereinfachte Aufnahme und höhere Aufnahmegeschwindigkeit und stellt somit
einen signifikanten Schritt zur Anwendung dieser Methoden außerhalb des Labors dar.
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Chapter 1

Introduction

X-rays are a form of electromagnetic waves discovered by William Conrad Roentgen in 1895. They
have wavelengths typically in the range of 0.01 to 10 nm and energies in the range of 100 eV to 100
keV [Attwood (1999)]. Owing to the short wavelength, X-rays have the ability to penetrate matter.
This was immediately clear with the first pictures taken with X-rays [Kevles (1997)]. Since then,
X-rays have been crucial to the development of several fields of science including but not limited
to physics, chemistry, material science and medicine. Moreover, a lot of these developments have
made their way directly into the real world through applications such as the diagnosis of diseases in
medicine and safety screening at airports.

X-ray Imaging is one of the foremost uses of X-rays in the real world. The easy application of
X-ray Imaging stems from the fact that it relies on the phenomena of X-rays attenuation. Compared
to other modes of X-ray interaction with matter, this is the one that is easy to measure and quantify.
In simple terms, X-ray attenuation is analogous to shadows we see in everyday life. When a beam
of visible light is obstructed by an opaque object, we see a shadow of the object. We can decipher
the shape of an object merely by looking at the shadow. Since X-rays are able to penetrate matter, a
shadow obtained using X-rays reveals the details of the internal structure of the object in addition
to the outer shape. A significant step in the development of X-ray Imaging is X-ray Computed
Tomography (CT) [Cormack (1963), Cormack (1964)]. By looking at the attenuation of an object
from several directions, CT allows the reconstruction of the internal details in three dimensions.

X-ray Imaging has been used as a diagnostic tool in medicine and non-destructive testing for
several decades. Over the years, significant advancements have been made in increasing the value
of this tool by addressing aspects such as the spatial resolution and image quality. In an attempt to
increase the spatial resolution of X-ray CT, another branch of methods have been developed under the
category of industrial X-ray micro computed tomography (µCT) [Maire and Withers (2014)]. µCT
aims at very high resolution imaging of material specimens. Industrial scanners have demonstrated
resolution down to half a micrometer [Withers (2007)]. However, these systems suffer from a trade-off
between the achievable resolution and the measurable sample size [Cnudde and Boone (2013)].



2 Introduction

Recently, a novel model of contrast mechanism with X-rays, namely X-ray Dark-field imaging has
shown promise to break this barrier.

X-ray Dark-field (XDF) [Pfeiffer et al. (2008)] is a relatively new contrast mechanism for X-rays.
It originates from the small and ultra small angle scattering of X-rays. This is not the first time
that scattering of X-rays is used for imaging. X-rays scattering based imaging methods [Guinier
and Fournet (1955)] are commonly used to probe structures in the nano and micro meter regime.
They probe the entire scattering (also known as reciprocal) space at one spatial location (pixel) in
one measurement. As a result, scattering based imaging has, until recently, required a point-wise
raster scanning approach [Fratzl et al. (1997), Rinnerthaler et al. (1999), Kinney et al. (2001)]. X-ray
dark-field contrast mechanism combines the high reciprocal space resolution of scattering methods
with the real space (spatial) resolution of imaging. This implies that we can probe information in the
sub-micrometer regime and still measure macro sized samples without the need of raster scanning.
This has opened an exciting research area aimed at the applications of this new contrast mechanism.
Some applications that have been reported include lung imaging [Gromann et al. (2017), Hellbach
et al. (2018)] , mammography [ Rieger et al. (2013), Wang et al. (2014), Coello et al. (2017), Scherer
et al. (2017)], cardiac imaging [Hetterich et al. (2017)], human joint imaging [Tanaka et al. (2013),
Thüring et al. (2013)] and non-destructive testing [Nielsen et al. (2014), Gresil et al. (2017)].

An interesting property of X-ray dark field contrast is its anisotropicity [ Jensen et al. (2010),
Bayer et al. (2013)], which makes it sensitive to structures that have a preferred orientation. By
combining the two properties of the dark-field contrast i.e. sub-pixel resolution and anisotropicity,
a new sub-category of imaging methods has recently emerged, namely, Anisotropic X-ray Dark-
field (AXDF). AXDF imaging aims to resolve the trade-off between resolution and sample size by
revealing information about micron sized oriented scatterers inside macro sized samples. Analogous
to attenuation based X-ray imaging, Anisotropic X-ray dark-field imaging has also been developed
in both 2D (radiography) [Potdevin et al. (2012), Schaff et al. (2014), Eggl et al. (2015), Prade et al.
(2016), Kagias et al. (2016) ,Jud et al. (2016)] and 3D (tomography) [Malecki et al. (2014), Bayer
et al. (2014), Vogel et al. (2015), Wieczorek et al. (2016)]. These methods have shown promise
for revealing useful information about structures inside industrial and biological samples without
the need of directly resolving them. Having been proposed recently, these methods are still in the
early stages of development and there is scope of developing this field similar to conventional X-ray
imaging for real world applications. One of the major hurdles for the application of AXDF methods
is their complex and time consuming acquisition methods. Hence, there is a need to understand the
requirements for the simultaneous real and reciprocal space sampling for AXDF radiography and
tomography. The goal of this thesis is to design, develop and optimize the acquisition protocols for
these methods in order to enable their translation to real-world medical and industrial applications.

1.1 Outline

This thesis is divided into seven chapters classified under three themes (parts).
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1. X-ray Imaging Basics

In the first part, we review the information necessary to understand conventional X-ray Imaging.
This consists of a basic understanding of the interaction of X-rays with matter in Chapter 2,
followed by a brief explanation of X-ray Computed Tomography in Chapter 3.

2. X-ray Dark-field Imaging

This section takes the reader two steps deeper into the topics pertinent to this thesis. In Chapter
4, we review the basics of X-ray dark-field contrast mechanism. We provide a brief overview of
this fast growing field and provide details of the methods available to acquire this signal and its
anisotropic property. We also introduce a 2D AXDF imaging method in this chapter. Chapter
5 is dedicated to the discussion of AXDF tomography. We discuss, in detail, two recently
proposed tomographic reconstruction approaches.

3. Acquisition Schemes for Anisotropic X-ray dark-field Imaging Modalities

This part details the three main contributions of this thesis. All three contributions are aimed
at reducing the complexity of the acquisition methods for AXDF imaging. In Chapter 6, we
present an industrially compatible approach for performing 2D AXDF imaging. The following
two Chapters i.e. Chapters 7 and 8 deal with a much more complex problem, i.e. sampling
schemes for AXDF tomography. In Chapter 7, we present an approach to quantify and optimize
the existing schemes for the AXDF tomographic imaging modalities. In Chapter 8, we extend
the ideas of Chapter 7 and develop a new mechanism to design acquisition schemes for arbitrary
setup configurations and sampling requirements of AXDF tomography.

Finally, we present a summary of our results and an outlook for the future of AXDF imaging in
Chapter 9.





Part I

X-ray Imaging Basics





Chapter 2

Interaction of X-rays with Matter

The property of X-rays that makes them so important is that they can penetrate matter. However, the
interaction of X-rays with matter is more complex than simply passing through it. At an atomic level,
X-rays get absorbed by the photoelectric effect, or scattered upon interaction with matter. Additionally,
at a macroscopic level, such as an interface between two media, X-rays get refracted or reflected. In
reality, these phenomena are just different ways of explaining similar physical interactions at different
scales. Since we are concerned with attenuation and scattering based X-ray imaging in this thesis, we
will focus the discussion in this chapter to these two phenomena. In section 2.1, we look at X-ray
scattering in a medium. In the following section, we look at the macroscopic interaction of X-rays by
means of the complex index of refraction.

2.1 X-ray Scattering

The quantity of interest in scattering experiments is the differential scattering cross-section (dσ/dΩ)
[Glatter and Kratky (1982), Als-Nielsen and McMorrow (2011)]. It is a measure of the efficiency of
the scattering process where the incident flux and the detection parameters have been normalized
out. In order to calculate this quantity, we begin with elastic scattering from a single electron. In the

Figure 2.1: Differential cross section of a single electron system at an angle of observation ψ .
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(a)
(b)

Figure 2.2: (a) Illustration of scattering from a two electron system. (b) Definition of the scattering
vector Q.

classical view, an electron, upon illumination with an incident X-ray beam, oscillates and radiates a
wave of the same frequency (hence, elastic). Assuming that the polarization of the incident wave is ε̂

and that of the emitted radiation is ε̂ ′, then the differential cross section for scattering from a single
electron is given by:

dσ

dΩ
= r2

0|⟨ε̂, ε̂ ′⟩|2, (2.1)

where r0 is the fundamental unit of scattering known as the Thomson scattering length, and < ·, ·> is
the standard inner product. The factor |⟨ε̂, ε̂ ′⟩|2 is known as the Polarization factor P and depends

on the choice of the optical geometry. We have P =
1+ cos2 ψ

2
for unpolarized sources, such as the

standard laboratory sources, at an angle of observation ψ , as shown in Figure 2.1.

In a real experiment, we are not interested in scattering from a single electron, but from a medium
with an electron distribution ρ(r). In order to calculate scattering from a volume element, we need to
sum up the scattering from individual electrons while taking the phase difference into account. Let
us consider two electrons separated by distance r as shown in Figure 2.2. The incident radiation is
described by wave-vector k and the scattered radiation by k′. Since we consider only elastic scattering,

|k|= |k′|= 2π

λ
, where λ denotes the wavelength of the incident wave. The phase shift between the

waves scattered from the two points can be written as:

△φ(r) = (k− k′) · r = Q · r, (2.2)

where Q = (k− k′) is known as the scattering vector with units of Å
−1

.

Now, we can calculate the scattering amplitude from a small volume element dr at a distance r
from the origin by summing up all secondary waves with the phase shift represented by a factor e−iQr.
By replacing the summation with an integration over the whole volume irradiate by the incident beam,
we get:

F(Q) =
∫

ρ(r)e−iQ·rdr. (2.3)
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Mathematically speaking, the above expression is the Fourier transform of the electron density and is
known as the atomic form factor. In order to calculate the intensity I(Q) as the absolute square of the
amplitude, we multiply F with its complex conjugate F∗,:

I(Q) = FF∗ =
∫ ∫

ρ(r1)ρ(r2)e−iQ(r1−r2)dr1dr2. (2.4)

This is a Fourier transform again in terms of the distance between the pair of points (r1 − r2).

We can carry out the double integral in steps. First we sum up all pairs with equal relative distances

γ(r) =
∫

ρ(r1)ρ(r2)dr

r = r1 − r2 = constant.
(2.5)

γ(r) is known as the auto-correlation function at correlation length r and is a point in the so-called
reciprocal space or Q space. The second part is the integration over this reciprocal space:

I(Q) =
∫

γ(r) · e−iQrdr. (2.6)

This is again the Fourier transform. So, the intensity distribution is determined by the structure of the
object as expressed by its auto-correlation function. We can see that the real space and the reciprocal
space are related by a Fourier transform related to the factor Q · r. The above equation forms the basis
of Small Angle X-ray Scattering (SAXS) [Guinier and Fournet (1955),Glatter and Kratky (1982)].

At last, we note that we assumed a free electron in the above consideration while in reality an
electron is bound to an atom. Hence, we need to take into account the response of an electron to the
incoming field. To do this, we add dispersive coefficients [Als-Nielsen and McMorrow (2011)] to the
atomic form factor:

F(Q) = f (Q)+ f ′+ i f ′′. (2.7)

f ′ accounts for the fact that by virtue of the binding energy, the scattering length is reduced. However,
it can be ignored for energies greater than the binding energies, which is the case for the rest of this
thesis. Due to the dissipation in the system, the response of an electron also has a phase lag with
respect to the incoming beam and we added the imaginary term f ′′ to compensate for it, which is in
turn related to the attenuation cross section discussed in the next section [Als-Nielsen and McMorrow
(2011)].

2.2 X-ray Attenuation and Phase Shift

In Figure 2.3, we show two linearly polarized electromagnetic waves propagating in the z direction
with frequency ω and wave vector k. The first wave travels in vacuum while the second wave travels
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Figure 2.3: X-ray Attenuation and Phase shift while passing through a medium.

through a medium with refractive index n:

n = 1−δ + iβ . (2.8)

Equation 2.8 describes the two main interactions of the second wave with the medium, namely, phase
shift and attenuation. While phase shift is related to the refractive index decrement δ , attenuation is
related to the real part β . The second wave after travelling through the material can be written as:

E(z, t) =E0 einkz−ωt ,

=E0 e−βkz eiδkz−ωt .
(2.9)

2.2.1 Attenuation

Attenuation of the incoming beam refers to the decrease in the mean intensity. It is defined as:

I(z)
I0

=
|E(z)|2

|E0|2
= e−2kβ z. (2.10)

We can rewrite the above equation to obtain the Beer Lambert law:

I = I0e−µz, (2.11)
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where µ = 2kβ is the linear attenuation coefficient. µ describes the efficiency of X-ray absorption by
an element. The beer lambert law can be generalized to a medium consisting of several materials by
using an integral over infinitesimal volumes of homogeneous attenuation coefficients, resulting in:

log
(

I
I0

)
=−

∫ z

0
µ(z)dz. (2.12)

µ is related to the absorption cross-section σ and the atomic number density ρat by:

µ = ρatσ . (2.13)

The absorption cross-section is proportional to the atomic number approximately as Z4, which is the
reason that makes X-rays useful for distinguishing between different elements inside objects and
forms the basis for X-ray Computed Tomography, discussed in the next chapter.

2.2.2 Phase Shift

The phase shift △φ of the wave after passing through a material of thickness z with respect to the
undisturbed wave (in the absence of attenuation) is given by:

△φ(z) = kδ z. (2.14)

This leads to the refraction of the beam in a direction perpendicular to its propagation and is given by
[Paganin (2006)]:

α =
λ

2π

dφ

dx
, (2.15)

where λ is the wavelength of the beam. Similar to attenuation, we can extend this to the generic case
in a homogeneous material:

△φ =−
∫ z

0
kδ (z)dz. (2.16)

This phenomena forms the basis for Phase Contrast X-ray Imaging. We will discuss this contrast
mechanism very briefly in Chapter 4.





Chapter 3

X-ray Computed Tomography

We saw in section 2.2.1 that X-ray absorption is one of the major modes of interaction of X-rays with
matter. This is also the easiest to detect and quantify and was, infact, the phenomenon that led to the
discovery of X-rays. Ever since its discovery in 1895, X-ray absorption has been used in a plethora of
fields from medicine, material science and security. A single X-ray image is described by the Beer
Lambert law (Eq. 2.11) as explained in section 2.2.1. However, for most applications, a 2D projection
is not enough to obtain the desired information and we need to reconstruct the absorption coefficient
in the 3D volume. This process of reconstructing the 3D information about the inside structure of a
specimen using X-rays is known as X-ray Computed Tomography (CT) [Cormack (1963), Cormack
(1964)]. In this chapter, we review the basics of CT with respect to the mathematical reconstruction
approach and the acquisition methodology.

3.1 Mathematical Basis of CT Reconstruction

3.1.1 Radon Transform

The basics of an X-ray projection were described by the Radon Transform [Radon (1986)], long
before CT was even conceptualized. Let us define the cross-section of a function as f (x,y). Then the
projection of f taken from an arbitrary direction θ ∈ [0,π) is defined as:

[R f ](s,θ) =
∫

∞

−∞

f (x,y)du, (3.1)

where (s,u) is the coordinates of the point (x,y) in the reference frame rotated by the angle θ (Figure
3.1):

s =xcosθ + ysinθ ,

u =− xsinθ + ycosθ .
(3.2)
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Figure 3.1: Illustration of the Fourier Slice Theorem (Eq. 3.7).

Eq. 3.1 is called the radon transform and gives the projection of any 2D function onto a line at an
angle θ . This transform provides a very convenient mathematical description of the image formation
process in X-ray imaging. For 3D, the direct interpretation of the radon transform would imply
integrals over hyper-planes, which is not the case for X-ray imaging, therefore, the radon transform
has been adapted for the 3D case of X-ray imaging as the X-ray Transform [Natterer (2001)]. In this
chapter, we limit our discussion to the 2D case. The Radon Transform is related to the well-known
fourier transform through the Fourier slice theorem.

3.1.2 Fourier Slice Theorem

The Fourier Slice Theorem [Banhart (2008)], or the Central Slice Theorem is one of the most
fundamental concepts of CT reconstruction. The theorem states that the fourier transform of a
projection, is a slice in the fourier domain of the function. In order to state this explicitly, lets first
revisit the one and two dimensional fourier transform and its inverse. [Fg](S,θ) is the one dimensional
fourier transform of g(s,θ) if:

[Fg](S,θ) =
∫

∞

−∞

g(s,θ)e−2πisSds, (3.3)

and its inverse,
[F−1g](s,θ) =

∫
∞

−∞

g(S,θ)e2πisSdS. (3.4)

[F2 f ](X ,Y ) is the 2-dimensional fourier transform of f (x,y) if:

[F2 f ](X ,Y ) =
∫

∞

−∞

∫
∞

−∞

f (x,y)e−2πi(xX+yY )dxdy. (3.5)
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and its inverse in cartesian and polar coordinates, respectively, is:

[F−1
2 f ](x,y) =

∫
∞

−∞

∫
∞

−∞

f (x,y)e2πi(xX+yY )dXdY,

=
∫

π

0

∫
∞

−∞

f (Scosθ ,S sinθ)e2πi(xcosθ+ysinθ)S|S|dSdθ .
(3.6)

The fourier slice theorem states that for all S ∈ R and θ ∈ [0,π).

[F2 f ](Scosθ ,S sinθ) = [FR f ](S,θ). (3.7)

The theorem is illustrated in Figure 3.1. For a detailed proof, we direct the readers to Banhart (2008).

Using Equation 3.7, and taking projections [R f ](s,θ) over the angular range θ ∈ [0,π), we can
sample the 2D fourier space of the function, as shown in Figure 3.2. Now that we have measured F2 f ,
we can use the inverse 2D fourier transform to recover the function f . While this is possible in theory,
recovering the function f (x,y) via the 2D inverse fourier transform (Eq. 3.6) involves interpolation of
the tiled fourier grid, which is non-trivial and leads to inaccurate reconstruction. Methods that use
this concept to perform reconstruction exist [Francesco and da Silva (2004)], however, they are not
commonly used. Two of the most commonly used methods for CT reconstruction are the Filtered
back Projection (FBP) and the so-called iterative methods [Natterer (2001)]. We discuss these two
methods briefly in the next section.

3.2 Reconstruction

The problem of CT reconstruction is to invert the radon transform, i.e. given a function g(s,θ), find a
function f (x,y) such that:

[R f ](s,θ) = g(s,θ) for all −∞ < s < ∞, θ ∈ [0,π). (3.8)

Below, we present an analytical approach to solving this problem.

3.2.1 Filtered Back Projection

Let us define the backprojection operator:

[Bg](x,y) =
∫

π

0
g(xcosθ + ysinθ ,θ)dθ , (3.9)

for all point (x,y) in the plane. It is easy to see that BR f ̸= f i.e. backprojection operator is not the
inverse of the radon transform. Using this operator, filtered backprojection [Banhart (2008)] is defined
as:

f = B(F−1(|S|FR f ). (3.10)
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Figure 3.2: Tiling of the fourier space obtained by acquiring projections g(s,θ), θ ∈ [0,π) and using
the Fourier slice theorem (Eq. 3.7).

|S| is a high pass filter that is multiplied to FR f in order to compensate for the oversampling of the
zero frequency as can be seen in Figure 3.2. The reconstruction is performed in two steps:

1. Filtering in fourier domain:

g′(s,θ) = [F−1|S|FR f ](s,θ) (3.11)

2. Backprojection in real domain:
f (x,y) = [Bg′](x,y). (3.12)

3.2.2 Iterative Reconstruction

The FBP algorithm presented above provides an analytical approach to reconstruct the image from
a series of projections. However, it suffers from several limitations such as the requirement of a
homogeneous distribution of projections over 180◦. Moreover, it does not allow any possibility to
incorporate prior information about the sample. Therefore, there is continuous effort to develop novel
reconstruction methods with the aim of reducing the dose transmitted to the patient while improving
the image quality for diagnosis. We explain the basics of these methods below.

Let us consider a discretized 5×5 two dimensional cross section shown in Figure 3.3. Let us
define a ray i passing through the image and recorded on a detector pixel as shown. The value recorded
at the pixel can be written as a weighted sum of the contributions from all the pixels intercepted by
the ray:

bi = ∑
j

ai j x j, (3.13)
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Figure 3.3: Illustration of ray tracing for setting up the linear system for iterative reconstruction (Eq.
3.13).

where ai j is a weight representing the contribution of the jth pixel to the ith ray. Several approaches
for calculating the weights are available, most common being the line model, strip model and Joseph’s
model [Natterer (2001), Joseph (1982)]. By using one of the ray tracing approaches for all rays, we
obtain a linear system of equations:

Px = b, (3.14)

where P is known as the system matrix. It is a 2D array consisting of one column for every pixel j and
one row for the ray i. Size of P is typically too large to store in the system memory, hence, it is not
possible to solve Eq. 3.14 by factorization. Moreover, the measured data b is characterized by noise
owing to the detector electronics, b = b∗+ noise. Therefore, we resort to numerical optimization
methods to find a least squares solution to the minimization problem min

x
∥Px−b∥2

2.

3.3 Acquisition Schemes in CT

So far, we presented the methods of CT reconstruction. In this section, we deal with another important
aspect of CT i.e. the acquisition method. Although we do not directly use the fourier slice theorem
for reconstruction, it provides some important conclusions for designing CT acquisition schemes. An
important consequence of the Fourier slice theorem is that we can sample the fourier space of the
function f (x,y) by obtaining the slices [FR f ](S,θ). Such a frequency domain tiling can be obtained
by measuring the projections [R f ](s,θ) for equally spaced θ ∈ [0,π). An example of such a tiling is
shown in Figure 3.2. Another important criteria is to determine the number of projections required for
a good reconstruction. We can again use the fourier slice theorem in combination with the Nyquist
Shannon theorem to estimate this number, as is explained below.

Note that in a real experiment, we use the discrete versions of equations 3.11 and 3.12. Lets say
that we have N projections and M lines in each projection where M is odd. This implies that the
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projection g = R f of f is sampled as:

g(sm,θn) = g(m△s,n△θ),

m =(M−1)/2, · · · ,(M−1)/2,

n =0,1, · · · ,N −1,

(3.15)

where △s > 0 denotes the sampling of s and △θ = π/N. Now, consider that we only reconstruct a
band limited version of f by integrating over −W < s <W instead of the infinite integral in Eq. 3.6.
Using the Shannon sampling theorem, we know that in order to recover the W bandlimited version of
f , we need:

△s ≤ 1
2W

. (3.16)

In a real experiment, this boils down to a simple rule of thumb that the number of projections N
should be atleast π/2 times the maximum width of the sample.

3.3.1 Spherical Representation of Acquisition Schemes

In the previous section, we derived the most important criteria for a CT acquisition scheme i.e. we
need to measure projections spread uniformly over a full circle. Using this, let us define a standard
CT acquisition scheme consisting of N acquisition poses as:

X(Φ1,Φ2,N) :=
{

x = φ ; φ ∈
{

Φ1,
Φ2 −Φ1

N
, . . . ,Φ2 −

Φ2 −Φ1

N

}
;N ∈ N

}
, (3.17)

where Φ1 and Φ2 are angles in degrees. Here, we consider an acquisition pose x := (φ) that defines
the orientation of the sample with respect to the setup coordinates in 3D space. A conventional CT
system usually provides only one degree of freedom to the sample stage (rotation around the y axis),
hence, one angle is usually used to describe the sample rotation. A standard CT acquisition trajectory
can be written in the above notation as X(0◦,180◦,N), where N is given by the criteria explained in
the previous section.

In this section, we introduce a spherical representation of acquisition schemes which will be
heavily used throughout this thesis. In this representation, we assume the sample to be stationary
at the centre of the sphere and mark the trajectory of the optical axis with blue points for a given
acquisition scheme. This trajectory for an acquisition scheme X consists of the points ±t(x) ∀ x ∈ X .
t(x) for a pose x is given by:

t(x) = R(x) ·T, (3.18)
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Figure 3.4: Schematic of a setup used for Computed Tomography. The z axis is the tomographic axis
and the sample is rotated around the y axis.

where T ∈ S2 is the direction of beam propagation shown in Figure 3.4, and R(x) is the euler rotation
matrix for rotation of the sample by an angle φ about the y axis given by:

Ry(φ) =

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

 . (3.19)

Figure 3.5(a-c) shows the representation for the schemes X(0◦,180◦,20), X(45◦,180◦,20) and
X(0◦,90◦,20), respectively.

3.3.2 Null Space Analysis

The spherical representation of acquisition schemes provides a nice tool to visualize the different
trajectories. However, we need a method to quantify the effectiveness of these schemes in order to
develop dose efficient and task specific schemes. One way to analyze the acquisition schemes and
their effect on the reconstruction is to analyze the nature of the full system matrix P.

An important aspect of a linear operator, such as P in the CT model described above, is the
null space (or kernel) of P. It is defined as ker(P) := {v | Pv = 0} and is of special interest as for
w /∈ ker(P) and any v ∈ ker(P), the measurement does not change under addition i.e.,

Pw = P(w+ v). (3.20)

The kernel provides a tool to analyze the matrix P and gives information about the uncertainty of a
computed reconstruction. While it is well known that incomplete data leads to a larger nullspace, it
is of special interest how elements of this space look like as they provide a relative insight of which
regions are likely to be affected more/less.

Standard methods such as singular value decomposition (SVD) are typically used for computing
the null space of such matrices. However, these methods rely on the full representation of the matrix
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Spherical representation of CT schemes (a) X(0◦,180◦,20) (b) X(45◦,180◦,20) (c)
X(0◦,90◦,20). (d-f) Null space of the schemes in top row.

and we already saw in section 3.2.2 that P is usually too big to store in system memory. Therefore,
we calculate one vector of the null space v ∈ ker(P) by solving Pv = 0 iteratively using an initial
non-zero guess for v. In the simplest case, we can use a uniform initial guess as:

v =


0.01

...
0.01

 . (3.21)

This initial guess is especially useful for visualizing the effect of missing angles clearly. We use this
guess to calculate the null space of the three schemes shown in Figure 3.5. We set the reconstruction
volume size to 50×50×50, the detector size to 100×100 and use a parallel geometry assumption.

We show the component of null space calculated using this approach and a single iteration of
conjugate gradient solver in Figure 3.5. Spherical representation of the acquisition schemes can be
seen in the top row along with the null space component at the bottom. The images in the bottom row
show the null space averaged over all x− z planes. We can see that missing angle lead to a larger null
space component corresponding to the missing information. This effect can also be understood using
Figure 3.2 i.e. the frequencies corresponding to the missing projections are missing in the fourier
domain, leading to loss of information in the orthogonal direction.
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X-ray Dark-field Imaging





Chapter 4

X-ray Dark-Field

X-ray dark-field (XDF) is a relatively new contrast mechanism for X-rays. The name dark-field is
borrowed from light and electron microscopy [Gage (1920)], where it refers to the signal that is
observed when the main beam is blocked, hence the term "dark-field". The signal measured as the
dark-field contrast originates from small and ultra small angle scattering of X-rays [Yashiro et al.
(2010), Lynch et al. (2011), Strobl (2014),Prade et al. (2015)]. However, instead of blocking the
source of light, we use optical elements to indirectly separate the absorbed, refracted and scattered
part of the radiation [Pfeiffer et al. (2008)]. In this chapter, we outline the concepts and mechanism
employed to obtain X-ray dark-field signal in a laboratory setup.

In section 4.1, we review the fundamental principles behind XDF and outline the setup required to
measure this contrast mechanism. Next, we review the approaches available to measure the dark-field
contrast, and present details of the two methods used in this thesis. We briefly discuss the relation
between XDF and conventional X-ray scattering methods in section 4.4. Finally, we introduce
Anisotropic X-ray Dark-field Imaging in section 4.5.

4.1 X-ray Grating Interferometry

The basic principle of XGI was discovered many years ago and is known as the Talbot effect [H.F.
(1836)]. The Talbot effect sates that a periodic wavefront will repeat itself at certain fixed distances
[Jahns and Lohmann (1979)]:

dT =
mp2

λ
, m is even (4.1)

where p is the periodicity of the wavefront and λ is the wavelength. One specific case of this effect is
observed when a transmission grating [Loewen and Popov (1997)] is placed under spatially coherent
illumination. Self-images of the grating are generated at fixed distances given by the expression
above.

In case of structures known as Talbot Array Illuminators (TAILs) [Lohmann and Thomas (1990),
Hamam (1997), Klaus and Arimoto (1997), Suleski (1997)], we observe the fractional Talbot effect. A
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Figure 4.1: Schematic of an X-ray Grating Interferometry (XGI) Setup.

special case of a TAIL is the binary phase grating. It is a periodic structure with regions of thickness w
that shift the incoming wavefront by a phase 0−π . The phase shifted wavefront then interferes with
the un-shifted wavefront to create bands of intensity patterns behind the phase grating at fractional
talbot distances given by:

z =
(m+1/2)p2

λ
, m is even. (4.2)

This phenomena has been studied extensively for visible light [Testorf and neda (1996)]. The fractional
Talbot effect was demonstrated for X-rays for the first time by Cloetens et al. (1997).

Using this effect, Momose et al. (2003) introduced the X-ray Grating Interferometer (XGI) by
placing a transmission grating at a fractional talbot distance. By placing a transmission grating of the
same period as the self image of the phase grating at the position of the grating, Momose et al. (2003)
observed moire fringes [Yokozeki (1982)] in the FOV. Moire fringes are equivalent to imprinting a
pattern on the wavefront and by observing the distortion of this pattern by a sample, we can reconstruct
the real and imaginary parts of the refractive index. Momose et al. (2003) used this principle to
obtain differential phase contrast images using an XGI setup, which was a major breakthrough in the
available phase contrast imaging methods [Momose (2005)] at that time. While this was a new way
of phase contrast imaging, X-ray talbot interferometry still did not solve the problem faced by other
phase contrast imaging methods, which is the requirement of a coherent and monochromatic X-ray
source.

This limitation was overcome in 2006 by the introduction of a third grating in a XGI setup.
Pfeiffer et al. (2006) demonstrated the first XGI setup with a lab X-ray source by using an additional
transmission grating close to the source, known as the source grating. The source grating acts as a
beam splitter and splits an incoherent laboratory source into several individually coherent but mutually
coherent sources. The important condition that is to be met is the fact that the period of the source
grating should be chosen such that the position of the highest intensity matches with the position of
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the absorption grating. When the three gratings are placed in the optimal configuration, we can obtain
differential phase-contrast with a cheap laboratory X-ray source.

In a following publication, Pfeiffer et al. (2008) reported the availability of a third type of contrast
modality in an XGI setup, the so-called dark-field contrast. Following these developments, XGI
gained popularity as an imaging modality which for the first time extended X-ray imaging beyond the
absorption contrast. Nowadays, XGI is an active field of research and several advancements have been
made in increasing the sensitivity, resolution and image quality of this technique [Bech et al. (2010),
Scholkmann et al. (2014), Birnbacher et al. (2016), Modregger et al. (2011)]. In the next section, we
discuss the data processing steps required to obtain the differential phase and dark-field contrast in an
XGI setup.

4.2 Three Contrasts

Figure 4.1 shows the schematic of a typical XGI setup using a lab source. In addition to the source
and the detector, the setup consists of three gratings as discussed above. The first grating, G0 is an
absorption grating that splits an incoherent X-ray wavefront into a number of individually coherent
but mutually incoherent beamlets. The second grating G1 is a phase grating that imprints the talbot
pattern on the incoming wavefront. The third grating G2, placed right in front of the detector is an
absorption grating used to analyze the interference pattern.

As explained in the previous section, when we place G2 at one of the fractional Talbot distances,
we observe a moire fringe pattern. This patten can be approximated as a sinusoid of period 2π

[Weitkamp et al. (2005),Bech (2009)] and can be described by the first two terms of a Taylor series
expansion as follows:

Ik = a0 +a1 cos
(

2π

n
k−φ

)
, (4.3)

where k = 1,2, · · · ,n are the sampling points. The three parameters a0,φ and a1 represent the mean
intensity, phase and the peak intensity of the moire pattern, respectively. In addition, we define a
quantity, visibility (V ), as:

V =
a1

a0
. (4.4)

By calculating the three parameters, with and without a sample in the beam, we can obtain three
contrast modalities, namely the conventional attenuation contrast (A), differential phase contrast
(DPC) and the dark-field contrast (DF) as illustrated in Figure 4.2. The three quantities are defined as:

A =
as

0
ar

0
,

DPC = φ
s −φ

r,

DF =
V s

V r ,

(4.5)
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Figure 4.2: The intensity (also known as, stepping) curve, with (red) and without (blue), the sample.

where the superscript s refers to the parameter calculated with the sample in the beam and the
superscript r refers to the parameters without the sample. A least squares fitting approach is used to
extract the parameters in all the data presented in this thesis.

The three contrast modes reveal information about the three modes of interaction of X-ray with
the sample, namely absorption, refraction and scattering (Chapter 2). As evident in Figure 4.2 and 4.3,
the dip in the mean intensity is caused due to the absorption of a fraction of the incoming flux, the shift
in the position of the peak is caused by refraction from macro-sized interfaces while scattering from
micron sized structures leads to a loss of visibility. These three contrast mechanisms are illustrated in
Figure 4.3, alongwith the corresponding images of a Cherry. We can see in Figure 4.3 that attenuation
contrast does not reveal any details of the inside of the cherry since the difference in the attenuation
coefficient between the cherry and the seed is not significant for the X-ray energy used. On the other
hand, the differential phase contrast is able to delineate nicely the boundary of the seed from the inside
of the cherry. Most importantly, the dark-field contrast reveals fibrillated structures which are not
visible in either of the other two modalities. In conclusion, the three contrast mechanisms, obtained
simultaneously, provide complementary information about the sample.
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(a) Absorption Contrast

(b) Differential Phase Contrast

(c) Dark-field Contrast

Figure 4.3: Schematic showing the three contrast mechanisms obtained in an XGI setup and the
corresponding images of a cherry.

4.3 Acquisition and Image Extraction

The first step to obtaining the three contrasts in an XGI setup shown in Figure 4.1 is to sample the
intensity curve (Eq. 4.3). Below, we briefly discuss the approaches available to do this.

1. High resolution detector:

With the availability of a high resolution detector, the moire fringes can be directly resolved
and we can sample the intensity curve by binning the measured moire pattern into coarser
resolution or using fourier analysis [Takeda et al. (1982)]. This allows for a single shot
measurement of the three contrast mechanisms and is, hence, suitable for 4D applications
as demonstrated by Yashiro et al. (2017). However, it is limited by the requirement of high
flux and is implemented, almost exclusively, at synchrotron X-ray sources. Moreover, limited
field-of-view poses significant limitation to the practical applications of this approach.
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Figure 4.4: A typical field of view for a nicely aligned grating interferometry system with 3 gratings.
A point (x,y) on the sample sees different points (k in Eq. 4.3) of the intensity curve as one of the
gratings is stepped to different positions over one period.

2. Phase Stepping:

A more practical approach to sample the intensity curve is to step one of the gratings to several
positions over one period. This approach approach was used by Momose et al. (2003) and still
remains the most commonly used approach, hence, the curve in Figure 4.2 is often known as
the stepping curve. This approach involves a step and shoot mechanism and, therefore. suffers
from excessive dose and poor temporal resolution.

3. Phase Scanning:

The phase stepping approach suffers from poor temporal resolution and lack of repeatability in
the process of grating stepping. Hence, an alternate approach was proposed for the first time by
Kottler et al. (2007). In this approach, the optical system is static, instead the linear position of
the sample is changed with respect to the moire fringes in order to sample the stepping curve. A
slit-scanning approach [Koehler et al. (2015)] also uses the same principle, with the difference
that the gratings are moved (not stepped) with respect to a static sample. It is currently the most
investigated technique for medical applications.

4. Electro-mechanical deflection of the X-ray focal spot:

This approach was introduced recently where in the focal spot in a laboratory X-ray source is
deflected to induce a relative shift between the point being investigated and the moire pattern.
Miao et al. (2014) demonstrated that this results in the same effect as moving one of the grating
or the sample.

In this thesis, we only use the phase stepping and phase scanning methods to obtain dark-field images.
We elaborate on these two approaches below.

4.3.1 Phase Stepping

The basic principle of this approach is to change the phase of the moire pattern seen by a given point
(x,y) in the sample. This is done by keeping the sample stationary and moving one of the grating in
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Figure 4.5: A typical field of view for the phase scanning method. A point (x,y) on the sample sees
different points (k in Eq. 4.3) of the intensity curve as it moves linearly through the FOV.

steps, hence, it is often known as the phase stepping method [Creath (1988)]. First, we try to align the
gratings perfectly so as to ensure that there are no moire fringes in the FOV. An example of FOV in an
aligned setup is shown in Figure 4.4. In principle, the method also works with moire fringes, however,
then we have an even lesser tolerance for imperfection in grating stepping. One of the three gratings
(most commonly G1) is mounted on a precision stepper motor and stepped to n position over one

period of the respective grating. The grating positions are given by xg =
d
n

where d is the period of
the grating that is being stepped. For every pixel (x,y) on the detector plane, we obtain the intensity Ik

corresponding to the kth grating position. We repeat this process for n positions of the grating using a
step-and-shoot approach. By using this stepping approach, we obtain k points on the Intensity curve
and calculate the parameters as

0,a
s
1,φ

s and ar
0,a

r
1,φ

r, with and without the sample, respectively. We
illustrate this process in Figure 4.4, where the pixel (x,y) on the sample remains stationary while the
phase of the moire pattern at this point is changed by stepping the grating G1. We use this approach
throughout Chapters 7 and 8.

4.3.2 Phase Scanning

The phase stepping approach suffers from serious drawbacks owing to stringent requirements of
stability and repeatability during the stepping process. Although, algorithmic improvements presented
recently [Teuffenbach et al. (2017)] try to overcome this limitation, it still remains one of the major
concerns to the practical application of such systems. In order to obviate the need of grating stepping,
Kottler et al. (2007) introduced a phase scanning approach. In this approach, the intensity modulation
in every pixel is recorded by moving the sample linearly through the detector field-of-view (FOV)
that encodes spatially varying phase information in the form of intensity i.e. moire fringes. Several
works [Arboleda et al. (2014), Marschner et al. (2016)] using this approach have been reported in
recent years. All of them require a very precise and uniform arrangement of moire fringes in the FOV,
or in other words, assume a well-defined and homogeneous grating structure. However, owing to
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Figure 4.6: Relation between dark-field signal and setup parameters.

the imperfections in the fabrication process, it is almost impossible to guarantee homogeneity of the
grating structure. To overcome this limitation, Bachche et al. (2017) recently proposed a robust phase
scanning method that works with irregular and varying moire patterns. We illustrate this approach in
Figure 4.5, where the intensity curve (different values of k in Eq. 4.3) is sampled by moving the pixel
(x,y) across the FOV with moire fringes. We use this method in Chapter 6.

4.4 Origin of the Dark-field Signal

So far, we learnt that an XGI setup provides a complimentary contrast, namely, the dark-field contrast.
We saw in the last section, that this contrast modality is obtained by indirectly separating X-ray
scattering from absorption and refraction. Owing to this reason, the main contribution to the dark-field
contrast comes from small and ultra small angle scattering of X-rays from micron and sub-micron
sized structures. Obviously, the same quantity is measured directly in other X-ray modalities, for
example, SAXS where we block the main beam and directly measure the scattered part of radiation.
In these techniques, we measure the entire diffraction pattern at one point and use raster scanning
approach to perform SAXS imaging [Guinier and Fournet (1955), Schaff et al. (2015)]. XDF provides
the unique ability to obtain scattering information with the spatial resolution of an imaging system.

However, there is a need to establish the relationship between these two methods in order to
better understand the origin of the dark-field contrast. Several efforts have been made recently in this
direction [Yashiro et al. (2011), Yashiro et al. (2010), Yang and Tang (2012), Lynch et al. (2011),
Wolf et al. (2015)]. One of the most notable description was presented by Strobl (2014), which was
later demonstrated experimentally by Prade et al. (2015). Schaff (2017) used the approach of Strobl
(2014) and provided a detailed analysis of the relationship between XDF and SAXS by employing a
back and forth combination of real and reciprocal space projection/slicing operation. In this section,
we explain very briefly the relation between the measured dark-field signal to the size of the structures
in the sample, namely the correlation length.

We saw in Eq. 2.6, that we measure the fourier transform of the three dimensional autocorrelation
function in a SAXS measurement. In SAXS, we measure an integral through the three dimensional
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function onto a 2D plane in the fourier space. In the case of XDF, we directly measure the autocorrela-
tion function in the real space. Moreover, the three dimensional function is sliced along the x− z plane
(see Figure 4.1) due to the unidirectional sensitivity of the setup. Next, we integrate this function over
the z axis and probe it at a certain point on the x axis, resulting in a scalar value:

G(ζGI) =
∫

γ(x = ζGI,0,z)dz, (4.6)

where ζGI is the correlation length of the XGI setup and is given by:

ζGI =
λLs

p2
, (4.7)

Ls is the distance between the sample and G2 when the sample is placed between G1 and G2 (see
Figure 4.6), λ is the wavelength of the incident beam and p2 is the period of G2. This means that we
can probe different auto-correlation lengths by moving the sample within the setup, or by changing its
design energy. This has, recently, been demonstrated by Kagias et al. (2017).

4.5 Anisotropic Property

We saw in section 4.4 that the uni-directional specificity of the gratings leads to a 2D projection of the
3D auto correlation function on the sensitivity axis of the grating interferometer. This implies that
the projected value of the correlation function varies with the relative orientation of the scattering
function and the sensitivity axis. This leads to a very interesting property of the dark-field signal
known as anisotropy [Jensen et al. (2010), Revol et al. (2012), Revol et al. (2013), Bayer et al. (2013),
Lauridsen et al. (2014)]. To demonstrate this property, we show attenuation and dark-field images
obtained for a sample made of three toothpicks, as it is rotated around the beam propagation direction
(z axis in Figure 4.1). We can see in the top row of Figure 4.7 that the attenuation signal does not
change with the pose of the sample, which is expected since the sample is always projected in the
same direction, or in other words, the line integrals of the attenuation coefficients (Eq. 2.11) remains
invariant under rotation around the beam propagation axis. On the other hand, we see that the value of
the dark-field signal changes as the toothpicks are rotated around the z axis. This change is due to the
anisotropic property of the dark-field signal. As the relative orientation of the scatterers changes with
respect to the sensitivity axis, the measured dark-field signal also changes.

While anisotropy of the dark-field signal is an interesting property, it also implies that a single dark-
field image is not sufficient to obtain the complete dark-field information inside a sample. Moreover,
standard radiography or tomographic methods are not sufficient for X-ray dark-field imaging. This
led to the development of Anisotropic X-ray Dark-field (AXDF) imaging. In the next section, we
present a two dimensional AXDF imaging method.
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Figure 4.7: Attenuation vs. dark-field signal of a phantom made of three toothpicks. Top row
shows X-ray attenuation and bottom row shows the corresponding dark-field image in three different
orientations of the sample with respect to the grating bars (angle of the phantom with respect to the
grating bars is indicated below the images). We can see that the attenuation images remain same while
the dark-field changes with the orientation of the sample.

4.5.1 X-ray Vector Radiography

As the name suggests, X-ray Vector Radiography (XVR) [Jensen et al. (2010), Revol et al. (2012),
Schaff et al. (2014), Potdevin et al. (2012), Prade et al. (2016)] is a two-dimensional imaging technique.
It is aimed at the reconstruction of the orientation of sub-pixel sized structures without the need
of resolving them. Several dark-field images are obtained by rotating the sample around the beam
propagation direction such as the ones shown in Figure 4.7. This leads to a modulation of the dark-field
signal as shown in Figure 4.7. This variation can be modeled as a sinusoid [Schaff et al. (2014)], with
its phase representing the main structure orientation in every pixel. Figure 4.8 shows the orientations of
wood fibres inside the toothpicks calculated by fitting a sinusoidal model to the visibility modulation.
We can see that XVR reveals the orientations of wood fibres inside the toothpicks which are not
directly resolvable at the resolution of the imaging system. It has been shown useful for analyzing
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Figure 4.8: XVR result for the toothpick sample shown in Figure. 4.7.

the micro-structure of composite materials [Revol et al. (2012), Prade et al. (2016)] and biological
specimen [Jensen et al. (2010), Potdevin et al. (2012), Schaff et al. (2014)].

Recently, Kagias et al. (2016) presented a novel design of circular gratings which can be used to
probe all the directions of this anisotropic signal in a single shot. The circular gratings consist of a
two dimensional arrangement of circular cells, each cell containing grating bars like the spokes of
a wheel. Hence, each cell is able to record the component of scattering in several directions. Later,
by considering each cell as a point on the object, we can directly recover the complete scattering
information in this point. Such gratings, however, have been uses only with bright synchrotron sources
and a high resolution detector. Practicality of such gratings with a lab source has not been reported
yet. In this thesis, we will restrict our discussion to the most commonly used linear gratings.





Chapter 5

X-ray Dark-field Tomography

In the previous chapter, we discussed a two-dimensional directional dark-field imaging modality,
namely X-ray Vector Radiography (XVR). We saw that it is a very convenient method to visualize
the orientations of structures with sizes below the resolution of the imaging system. However, XVR
suffers from two major drawbacks:

1. No 3D information in the reciprocal space i.e. XVR reveals only two-dimensional structure
orientations projected onto the plane orthogonal to the beam propagation direction.

2. No real space 3D information i.e. the structure orientations are averaged throughout the
thickness of the sample.

While the above two assumptions are useful for thin samples as has been demonstrated in literature,
they become a serious hurdle for thick samples with multi-layered oriented structures. To overcome
these limitations, we move to Anisotropic X-ray Dark-field (AXDF) tomographic modalities.

One of the early attempts in this direction was made by Bayer et al. (2014). They attempted to
reconstruct the orientations by independently resolving scattering along two orthogonal directions
and fitting a vector to the result. Another approach was recently presented by Schaff et al. (2017),
which again involves the independent reconstruction of scattering along several directions and fits an
ellipsoid to the result. Interestingly, their method works with Filtered back projection (section 3.2.1)
and is, hence, computationally very cheap. Both the above methods involve manual alignment of the
sample atleast two times within the setup.

The aim of the tomographic modalities discussed in this chapter is to reconstruct the reciprocal
space scattering function inside every three-dimensional voxel using a single reconstruction model.
One of the first efforts in this direction was made by Malecki et al. (2014) using a tensor model
to approximate the scattering function which was later refined by Vogel et al. (2015). Recently,
Wieczorek et al. (2016) presented a robust approach that enables the reconstruction of the spherical
scattering function using spherical harmonics. We will present details of these two approaches in this
chapter.
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5.1 X-ray Tensor Tomography (XTT)

X-ray Tensor Tomography, as the name suggests, uses a tensor appoximation to model the scattering
function. The goal of XTT reconstruction is to reconstruct a tensor T (r) ∈ R3×3

+ in every voxel r.
Malecki et al. (2014) divided this problem into two steps. In the first step, we calculate the scattering
strength along certain pre-defined directions ε ∈ S2. In the second step, we used this information to fit
a 3×3 tensor in every voxel. The smallest semi axis of the tensor represents the structure orientation.
Below, we present details of the method.

5.1.1 Forward Model

The first requirement for any tomographic modality is a mathematical model for the physical process.
Recall that the beer lambert law forms the basis of the model for standard computed tomography in
Chapter 2. The Beer Lambert law is obviously not sufficient for dark-field tomography, owing to the
directional dependence of the dark-field signal. Malecki et al. (2014) incorporated this directionality
using weight functions and derived a modified beer lambert law as:

d(x)≈ exp

[
−
∫

t(x)
∑
k

w(εk,x) ·ζk(r)2dr

]
, (5.1)

where d(x) is the dark-field measurement integrated along the tomographic axis t(x), εk ∈ S2, k =

1, · · · ,K are predefined orientations and ζk(r) ∈ R is the scattering strength in the voxel r along
the orientation εk. w(εk,x) is a weight factor that determines the strength of scattering along the
orientation εk which will be measured at the sample pose x. We usually use a set of 13 directions as
shown in Figure 5.1(a).

Recall from the previous chapter, that the logarithm of the dark-field signal obtained at a certain
orientation with respect to grating bars can be modeled by a sinusoid. Malecki et al. (2013) extended
this dependence to thick samples by using the superposition principle and derived the weight factor
as:

w(εk,x) =
(∣∣εk × t(x)

∣∣ 〈εk,s(x)
〉)2

, (5.2)

where t(x) and s(x) are the tomographic and sensitivity axes at the pose x. They are given by:

t(x) =R(x) ·T,

s(x) =R(x) ·S,
(5.3)

where T ∈ S2 and S ∈ S2 are the directions of the beam propagation and setup sensitivity, respectively.
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5.1.2 Reconstruction

Malecki et al. (2014) proposed a modified SART approach for the reconstruction. Later, Vogel et al.
(2015) established a generic formulation of the linear problem similar to the one in Eq. 3.13. Below,
we briefly describe the approach of Vogel et al. (2015).

Re-writing Equation 5.1 with βk(r) = ζk(r)2 results in:

− ln(d(x))≈
∫

t(x)
∑
k

w(εk,x) ·βk(r)dr,

=∑
k

w(εk,x)
∫

t(x)
βk(r)dr.

(5.4)

By using one of the standard discretization methods for line integrals of m =− ln(d(x)) over the rays
t(x) yielding a system matrix P, we arrive at:

m = W1Pβ1 +W1Pβ1 + · · ·+WkPβk = ∑
k

WkPβk,

=
(

W1P · · ·WkP
)

︸ ︷︷ ︸
= AXT T


β0
...

βK

 ,
(5.5)

where AXT T is the full system matrix for XTT. We can see that Eq. 5.5 is a linear problem similar
to conventional CT. The major difference is that the system matrix AXT T is K times the size of the
standard CT system matrix P. Writing the XTT problem in this way, provides the advantage that
standard solvers can be used it. Vogel et al. (2015) proposed an interleaved approach to simultaneously
solve the K linear systems, where in a single iteration of the whole system comprises of approximately
solving K modified linear systems. In this work, we use the Conjugate Gradients (CG) solver to
calculate βk(r), however, other solvers can be used as well. At last, we extract the scattering strengths:

ζk(r) =
√
|βk(r)|. (5.6)

5.1.3 Ellipsoid Fitting

In the previous section, we calculated the scattering strengths along K pre-defined orientations on
the unit sphere. In figure 5.1(b), we can see 13 orientations from 5.1(a), scaled with their respective
scattering strengths. We use Principal Component Analysis [Hotelling (1933)] (PCA) to approximate
a 3×3 tensor in every voxel. For every voxel, we form a matrix M:

M(r) := {±ζ1(r) · ε1,±ζ2(r) · ε2, · · ·}. (5.7)
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(a)
(b)

Figure 5.1: (a) Pre-defined scattering orientations εk, k = 1 · · ·13 used for XTT reconstruction. These
directions correspond to the three sides (red), face diagonals (green) and body diagonals (blue) of
a cube. (b) The orientations in (a) scaled with their corresponding scattering strength. We fit an
ellipsoid to the scaled orientations as shown, the three semi axis of the ellipsoid are also shown in
black bold color. Smallest half axis corresponds to the orientation of the scattering structure.

Next, we perform an eigen decomposition of this matrix to obtain:

V ·Λ =C ·V (5.8)

where C ∈ R3×3 is the covariance matrix of M, Λ ∈ R3×3 is a diagonal matrix containing the three
eigen values λ1,λ2,λ3 and V ∈ R3×3 contains the corresponding eigen vectors v1,v2,v3 which are
mutually orthonormal. We define a scaling factor in every voxel as:

σ :=
∑k |βk|

K

/(
|λ1|+ |λ2|+ |λ3|

3

)
. (5.9)

Finally, we define the scattering tensor in every voxel by the half axis lengths r1 =
√

σλ1,r2 =
√

σλ2,r3 =
√

σλ3 corresponding to the half axis v1,v2,v3. The tensor thus obtained is shown in
Figure 5.1(b), alongwith the three semi axes. Since oriented structures scatter primarily in the
orthogonal direction, the smallest half axis v3 represents the main structure orientation in every voxel.
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5.2 Anisotropic X-ray Dark-Field Tomography (AXDT)

In the previous section, we presented the reconstruction method for X-ray Tensor Tomography (XTT).
XTT uses a tensor approximation for the scattering function and the smallest half axis of the tensor is
considered as the main orientaition of the scattering structures. This model has a major disadvantage
that it only assumes a single scattering structure inside every volume element. This assumption is
not valid, especially, since directional dark-field imaging reveals structures with size much smaller
than the spatial resolution of the system. In order to overcome this limitation, Wieczorek et al.
(2016) modeled the scattering function as a spherical function using the basis of spherical harmonics.
Such a formulation provides a more generic description of the scattering function and allows for the
reconstruction of multiple scattering structures in a single real space voxel. Below, we present the
details of the AXDT reconstruction approach.

5.2.1 Reconstruction

Recall the XTT forward model from Eq. 5.1:

d(x) = exp

[
−
∫

t(x)
∑
k

w(εk,x) ·ζk(r)2dr

]
, (5.10)

The model involves a representation of the scattering function as a summation of scattering magnitudes
evaluated at discrete scattering orientations. The first step to a continuous model is replacing the
summation with an integral. By replacing the discrete weighting function w(εk,x) with h : S2 ×S2 ×
S2 → R and representing the field of scattering functions as η : S2 ×R3 → R, we get:

d(x) = exp
[
−
∫

T (x)

∫
S2

h(u,x)η(u,r)
dΩ(u)

4π
dr
]
, (5.11)

where dΩ(u) denotes the standard solid angle. h(u,x) models the relationship between the sensitivity
vector s(x) and tomographic vector t(x) for every pose x, as before:

h(u,x) =
(∣∣u× t(x)

∣∣ 〈u,s(x)〉)2
. (5.12)

We use the orthonormal basis of spherical harmonics to discretize the spherical functions. A
square integrable function f ∈ L2(S2) can be decomposed using this basis as:

f =
∞

∑
k=0

k

∑
m−−k

f m
k V m

k , (5.13)

where
{

V m
k

}
k=0,··· ,∞;m=−k,··· ,k is the set of real-valued coefficients; index k is called the degree and m

is called the order of the spherical harmonic.
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Figure 5.2: Scattering function in a single voxel reconstructed using the AXDT method.

Using spherical harmonics to discretize the inner integral, we get:

d(x) = exp

[
− 1

4π

∫
t(x)

∞

∑
k=0

k

∑
m=−k

hm
k (x)η

m
k (r)dr

]
, (5.14)

where the scattering function as well as the weighting function are expressed in terms of real-
valued spherical harmonics with their coefficients denoted as ηm

k and hm
k , respectively. By swapping

summation and integration and using a truncation degree K for the spherical harmonics, we get:

d(x)≈ exp

(
− 1

4π

K

∑
k=0

k

∑
m=−k

hm
k (x)

∫
t(x)

nm
k (r)dr

)
. (5.15)

Spherical harmonics of degree 4 are sufficient to describe the spherical function completely with the
weighting function that is used [Wieczorek (2017)].

Again, by using one of the standard discretization methods for line integrals of m = (− ln(d(x)))
over the rays t(x) yielding a system matrix P and by forming weighting matrices W m

k according to
hm

k (s(x), t(x)), the reconstruction of the spherical harmonics coefficients of the field of scattering
profiles reduces to solving the following linear equation system:

m =
K

∑
k=0

m=k

∑
m=−k

W m
k Pη

m
k =

(
W 0

0 P · · · W−K
K P · · · W K

K P
)

︸ ︷︷ ︸
= AAXDT



η0
0
...

η
−K
K
...

ηK
K


, (5.16)

where we call AAXDT as the full system matrix.

We solve this system using the conjugate gradient method with K = 4. An instance of scattering
function reconstructed using the described method in a single voxel is shown in Figure 5.2.
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5.2.2 Micro-structure extraction

As discussed in the case of XTT, the micro-structure orientation is orthogonal to the direction of
maximum scattering. This means that the structure orientation can be found in the greater circles
C(u) :=

{
u′ ∈ S2, ⟨u′,u⟩= 0

}
orthogonal to the maximum scattering direction u. Therefore, for

a reconstruction η(u,r), we compute the Funk-Radon transform [Funk (1913)] in every volume
element:

η̂(u,r) :=
∫

C(u)
η(u′,r)ds(u′). (5.17)

This can be again computed easily using the basis of spherical hamonics as:

η̂
m
k (r) = Lk(0)ηm

k (r), (5.18)

Lk denotes the Legendre polynomials:

L2k+1(0) = 0,

L2k = (−1)k 1 ·3 ·5 · · ·2k−1
2 ·4 ·6 · · ·2k

.
(5.19)

The peaks in η̂m
k (u,r) correspond to the main structure orientation in the volume element r.
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Chapter 6

Trochoidal X-ray Vector Radiography

Parts of this chapter have been published as:
Sharma, Y., Bachche, S., Kageyama, M., Kuribayashi, M., Pfeiffer, F., Lasser, T., and Momose, A.
(2018). Trochoidal X-ray Vector Radiography: Directional dark- field without grating stepping.
Applied Physics Letters, 112(11):111902.

We discussed the method of X-ray Vector Radiography in section 4.5.1. XVR is a novel X-ray
imaging modality that reveals the orientations of sub-pixel sized structures within a specimen. XVR
finds applications in many industrial and clinical environments. In this chapter, we provide a detailed
analysis of the conventional XVR imaging method and its limitations and present a new approach to
overcome some of these limitations.

We begin by explaining, in detail, a standard acquisition scheme for XVR. Lets us now assume an
acquisition scheme comprising of N poses:

X(N) :=
{

x = (θ); θ ∈
{

0,
180◦

N
, . . . ,180◦− 180◦

N

}
,N ∈ N

}
. (6.1)

We note that the definition of the rotation matrix R(x) in this case is different from the one defined in
Eq. 3.19. Since θ is the angle of rotation around the z axis, the rotation matrix is defined as:

R(x) = Rz(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 . (6.2)

An XGI setup with linear gratings has a preferred sensitivity direction. We refer to this direction
as the sensitivity axis. The sensitivity axis at a sample pose x is defined as the direction orthogonal to
the alignment of grating bars and lying in the plane of the grating. Similar, to the previous definition
of the optical axis, the sensitivity axis can be defined as:

s(x) = R(x) ·S, (6.3)
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(a) (b)

Figure 6.1: (a)Spherical representation of XVR acquisition. The blue and red points denote the unit
vectors ±t(x) and±s(x) for all x ∈ X(16) (Eq. 6.1) (b) Eulerian cradle that is typically used to realize
the acquisition scheme shown in (a).

where S is the sensitivity direction of the setup.
We extend the spherical representation presented in section 3.3.1 to the case of XVR. We plot the

tomographic and the sensitivity axes for the acquisition scheme X(N) in Figure 6.1(a). Red points
represent the trajectory of the sensitivity axis while the blue points denote the optical axis. We can see
that for the acquisition scheme X(N), different sensitivity directions are probed for the same optical
direction. This means, that while we do not have any tomographic information about the sample, we
are probing the scattering information over the circular trajectory orthogonal to the beam propagation
direction.

Typically, this is done by mounting the sample on an eulerian cradle as shown in Figure 6.1(b).
The typical steps of a XVR measurement include:

1. Select the number of poses N and mount the sample on an eulerian cradle in an XGI setup.

2. For every x ∈ X(N):

(a) Rotate the sample to the pose x.

(b) Perform a standard phase stepping procedure to obtain the dark-field image V (x).

3. Register the images V (x), x ∈ X(N).

4. Use a sinusoidal model for visibility modulation to extract the main structure orientation.

While, step 2(a) is needed to probe different points on the visibility curve; step 2(b) samples the
intensity curve (Figure 4.2) to get a single point on the visibility curve.

The XVR method discussed above requires a stepwise method involving rotation of the sample to
several poses and a phase-stepping procedure for every pose. Translation of gratings with period in
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Grating G0 G1 G2
Type absorption π/2 phase-shift absorption

Lamellae Gold Nickel Gold
Period(µm) 8.09 4.12 8.4
Duty Cycle 0.5 0.5 0.5

Material Height(µm) 115 5.21 136

Table 6.1: Gratings used for the TXVR setup shown in Figure 6.2.

the order of a few micrometers induces additional chances of vibration and instabilities leading to
erroneous results in a conventional XGI setup. Moreover, the eulerian cradle is a bulky component
posing a significant challenge to the commercialization of this technology. To overcome these
limitations we present a method that does not require any grating translation during the measurement,
works with laboratory X-ray sources and is suitable for fast scanning of continuously moving samples
placed on a commonly used industrial stage. The key idea of our new method is to combine step 2
of the XVR procedure described above into a single step. This is done by combining both the phase
stepping and the visibility sampling into the sample motion. Owing to the sample trajectory used, we
name our method as Trochoidal X-ray Vector Radiography (TXVR). Below, we present the details of
TXVR.

6.1 Setup

We use a vertical XGI setup presented by Bachche et al. (2017), designed with the aim of scanning
fast moving samples in an industrial setting, for example, on a conveyor belt. The X-ray source is a
tungsten rotating anode source (UltraX 18, Rigaku, Japan). The focus size on the anode is 0.3 mm x
3 mm. With a take off angles of 6◦, the effective spot size is 0.3 mm x 0.3 mm. It is placed at the
bottom of the setup and emits X-rays vertically in the upward direction to the detector. The detector is
a photon counting detector with a FOV of 77.5 mm x 38.5 mm and a pixel size of 100×100 µm. The
detector has a fast count rate and readout speed of upto 174 fps.

Three gratings are placed between the source and the detector. G0 has a period of 8.09 µm, π/2
phase grating G1 has a period of 4.12 µm, and G2 has period of 8.4 µm. The gratings are arranged
in the first talbot configuration with distances of 397 mm and 417 mm between G0-G1and G1-G2,
respectively. The heights of the three gratings are 115 µm, 5.21 µm and 136 µm respectively. Grating
specifications are provided in Table 6.1.

A linear sample stage is mounted in between G1 and G2. In addition, a rotational motor is
mounted on the linear stage with a hole in the middle to allow X-rays to pass through. An acyrlic
plastic is mounted on the center (hole) of the rotation stage for placing the sample.
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G2 : Absorption grating 
Period: 8.4 µm 

G1 : Phase grating  
Period: 4.12 µm 

G0 : Source grating  
Period: 8.09 µm 

X-ray Source 
40 kV, 70 mA 

HyPix 3000 
Pixel size:  100 x 100 µm2 

Trochoidal Sample  
Trajectory 

207 mm 

397 mm 

417 mm 

X 

Y 

Z 

Figure 6.2: Schematic of a vertical grating interferometer setup used for Trochoidal X-ray Vector
Radiography (TXVR). Figure by Sharma et al. (2018) is licensed under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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6.2 Measurement

In this section, we present a method to perform XVR with two main advantages:

1. no grating stepping, and

2. continuous movement of sample

during the measurement. Below, we describe how this is achieved in the setup shown in Figure 6.2.
The setup described in the previous section enables simultaneous linear and rotational motion of

a sample placed on the rotational stage. Let us consider a point on the sample which is located at a
distance r from the centre of rotation and makes a counterclockwise angle α with the positive x axis at
time t = 0, such that its cartesian coordinates in the sample frame can be written as (see Figure 6.3):

p = r cos(α),

q = r sin(α).
(6.4)

The motion of this point on the detector plane, with (x,y) denoting the coordinates of a detector pixel,
can be written as:

x = rM cos(ωt +α)+ut,

y = rM sin(ωt +α),
(6.5)

where ω is the angular speed of the sample rotation, M is the magnification of the system and u is the
linear speed of the sample on the detector plane with unit of pixels/s. u is related to the speed of the
linear stage v by:

u =
v ·M

d
(6.6)

where d is the detector pixel size. Let:

H(p,q, t) =
(

Hx(p,q, t),Hy(p,q, t)
)
, (6.7)

where Hx(p,q, t) and Hy(p,q, t) are functions that relate the detector coordinates x and y, respectively,
to the sample coordinates (p,q) at time t. Hx(p,q, t) and Hy(p,q, t) can be easily derived from
Equations 6.4 and 6.5. The motion described by Eq. 6.5 falls under one of the three special cases of a
trochoid namely cycloid, curtate cycloid or prolate cycloid, depending on the ratio of the linear speed
and the tangential speed at the distance r from the centre of rotation. Therefore, we use trochoid as the
generic term to describe the motion of the sample and term our method as Trochoidal X-ray Vector
Radiography (TXVR).

Prior to the measurement, we need to establish a field of moire pattern in the detector FOV. This
is done by rotationally misaligning the gratings G1 and G2 slightly, resulting in moire fringes as seen
in Figure 6.3. We can see in Figure 6.3 that the fringes are not uniform due to slight inhomogeneities
in the grating structure. Next, we perform a standard phase stepping procedure by displacing G2 in
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Figure 6.3: Detector FOV with 775 x 385 pixels (top view from Figure 6.2). We can see moire fringes
introduced by slightly rotating the gratings G1 and G2 with respect to each other. The phase image
without the sample is discretized into n bins as shown in the zoomed inset (Eq. 6.8), this is used for
the algorithm of image formation (Eq. 6.12). The trajectory of a point (p,q) on the sample (Eq. 6.5)
is shown in red. Blue, yellow and magenta points show the position of this point at times Tθ for three
different values of θ (Eq. 6.11).

steps over one period and calculate the background absorption A0(x,y), differential phase φ0(x,y)
and visibility V0(x,y) images, where (x,y) denotes the coordinates of pixels in the detector plane.
Sometimes it is required to tune the grating alignment in order to ensure that the values of φ0 span the
range [−π,π] along the x direction for every row y in the FOV. Once this is achieved, we discretize
the 2D moire field into K regions represented by indicator matrices Fk:

Fk(x,y) =

1, if−π + 2π(k−1)
n < φ0(x,y)≤−π + 2πk

n

0, otherwise
,

k =1,2, · · · ,K.

(6.8)

The number of pixels in every row y in each indicator matrix is stored in the vector Nk(y).

We acquire movie frames It(x,y) at time t ∈ T , where:

T =
{

0,
1
f
,

2
f
, · · · , NF

f

}
, (6.9)

f is the detector frame rate and NF is the total number of frames recorded as the sample moves in a
trochoidal trajectory (given by Eq. 6.5) across the FOV.

6.3 Algorithm

The measurement described in the previous section, provides a set of frames It , t ∈ T . The processing
algorithm consists of two major steps:
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1. Trochoidal Phase Scanning to calculate the N dark-field images at poses x ∈ X(N).

2. Standard XVR processing to calculate structure orientations from the N dark-field images.

6.3.1 Trochoidal Phase Scanning

In this step, we obtain N attenuation (A(θ)) and dark-field images (V (θ)) at the pose θ ∈ Θ, with
respect to the pose at t = 0, where Θ is:

Θ =
{

0,
360◦

N
, . . . ,360◦− 360◦

N
;N ∈ N

}
(6.10)

These N images are equivalent to those obtained using the acquisition scheme X(N) in Eq. 6.1.

In order to to do, first we decouple the linear and rotational motion. This is done by selecting
frames It , t ∈ Tθ , such that:

Tθ =
{

t ∈ T : t =
θ +2π j

ω
for j ∈ N

}
. (6.11)

The set of frames, acquired at the positions denoted by blue points on the trochoidal trajectory shown
in Figure 6.3, represents a linear motion of the point (p,q) at a pose θ with respect to the pose at
t = 0.

From this linear movie, we calculate Jk(θ , p,q) utilizing the algorithm described by Bachche et al.
(2017):

Jk(θ , p,q) = ∑
t∈Tθ

It(H(p,q, t)) ·Fk(H(p,q, t))
A0(H(p,q, t)) ·Nk(Hy(p,q, t))

. (6.12)

Jk(θ , p,q) is the stepping curve for every angular position θ of the sample such as the one that would
be obtained by the conventional phase stepping approach. It encodes the information about the change
in the background phase map caused by the point (p,q) in the sample as it crosses the FOV in the
orientation θ . Next, we fit a sinusoid to the stepping curve for every θ :

Jk(θ , p,q)≈ a0(θ , p,q)+a1(θ , p,q)cos
[

2π

n
k−φ(θ , p,q)

]
. (6.13)

We perform the trochoidal phase scanning procedure described above with the sample in the FOV to
obtain the parameters as

0(θ , p,q),as
1(θ , p,q) and φ s(θ , p,q) for the sample and without the sample

to obtain ab
0(θ , p,q),ab

1(θ , p,q) and φ b(θ , p,q) for the background. We can, thus, calculate the
absorption and dark-field (visibility) image as explained in section 4.2:

A(θ , p,q) =
as

0(θ , p,q)
ab

0(θ , p,q)
,

V (θ , p,q) =
as

1(θ , p,q) ·ab
0(θ , p,q)

ab
1(θ , p,q) ·as

0(θ , p,q)
.

(6.14)
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From now on, we use the short notations Ai and Vi to denote the attenuation and visibility images

obtained at the pose θ =
i ·360◦

N
with respect to the pose at t = 0. We choose an odd number for N to

allow for interlaced sampling over [0,2π].

6.3.2 XVR Processing

Registration

We register the attenuation images Ai to the image A0 using rotation and translation, and use the
resulting transformation matrices to register the corresponding visibility images. Post registration, we
define the mean attenuation image as:

Amean =
N−1

∑
i=0

− ln(Ai)

N
(6.15)

Model Fitting

So far, we obtained the dark-field values Vi corresponding to θ =
i ·360◦

N
. Next, we use these images

to calculate the main structure orientation in every pixel. Vi encodes the variation in the dark-field
signal as the orientation θ of the scattering structure with respect to the grating bars is varied over
[0,2π]. We model this variation as a sinusoid as proposed by Schaff et al. (2014):

− ln(Vi))≈ b0 +b1 cos
[

2
(

2iπ
N

− γ

)]
. (6.16)

Finally, we define three quantities as:

1. b0 - Mean dark-field

2. b1/b0- Anisotropy

3. γ- Main structure orientation

6.4 Experiments

First, we obtain the background phase map Fk,k = 1, · · · ,K, where K = 20 using the phase stepping
procedure described in section 6.2. Note that the value of K = 20 is obtained empirically, any K ≥ 3
can be used. Next, we set the parameters for trochoidal scanning. One of the most important factors to
tune is the rotation speed and the number of rotations within the FOV. We use 100 full rotations of the
sample in the FOV to obtain 100 images for calculating Jk(θ) for every pose θ (Eq. 6.12). Again, we
note that 100 full rotations are only required for good statistics. Theoretically, 3 rotations are enough.

We determine the scanning distance as the total distance for the entire sample to cross the FOV
from left to right. This turns out to be 80 mm for the size of the samples used. We use the maximum
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(a) (b) (c)

Figure 6.4: The visibility images Vi, i = 0,7,15 for N = 31 obtained using the trochoidal phase
scanning algorithm described in section 6.3.1. The outline colors correlate roughly to the colored
points in Figure 6.3 representing the decoupled linear trajectories for each of the three images.

Rotation Speed ω 30 deg/sec
Number of Rotations 100
Scanning Distance 80 mm

Linear Speed v 0.0752 mm/sec
Total Scan Time 20 mins

Frame rate 66.67 fps
Total frames 80000

Table 6.2: Settings used for TXVR.

rotation speed of the motor i.e. 30 deg/sec. Therefore, we can calculate the speed of the linear motor
such that 100 rotations are possible in a distance of 80 mm. Another important factor is to ensure that
the ratio of the rotation speed in deg/sec to the exposure time is an integer. Here, we set an exposure
time of 15 ms, which is just enough to obtain good statistics. We perform trochoidal scanning with
the settings shown in Table 6.2 with and without the sample in the FOV.

We measure a total of 80000 frames in a total scan time of 20 mins. We use N = 31 (Eq. 6.1) for
the phase scanning algorithm (section 6.3.1) i.e. we obtain images Ai and Vi for i = 0, · · · ,30. Finally,
we calculate the mean attenuation as given by Eq. 6.15, the mean dark-field, anisotropy and vector
images according to Eq. 6.16.

6.5 Results

We show results for 3 samples measured using TXVR. The first sample is a small specimen cut
out of polypropylene reinforced with glass fibres manufactured using injection molding process.
We show three dark-field images V0,V7,V15 obtained using the trochoidal phase scanning procedure
(section 6.3.1) for this sample in Figure 6.4. We can see that these three images correspond to
θ = 0◦,81.3◦,174.2◦ with respect to the pose at t = 0.
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Figure 6.5: TXVR result for a glass fibre composite material. The bright part in (a) is a thick screwhole
extending out of the plane. We mask it out for the anisotropy image in (c).

Finally, we show the mean attenuation image and mean dark-field images in Figure 6.5(a) and
(b), respectively. The bright part in the middle is a thick screw hole (female screw) extending out
of the plane with a thin plate at the bottom. Since the screw hole is too thick for the X-ray energy
used, we mask it out and show the TXVR result only for the bottom plate. We show the masked
anisotropy in Figure 6.5(c). We can see that anisotropy provides more information than the mean
dark-field image and suggests the presence of oriented structures i.e. the glass fibres. We show the
vector image in Figure 6.6(a). The colored bars represent the orientations of the glass fibres resulting
from the molding process that is used for manufacturing. The orientations of the glass fibres with
diameters in the range of a few microns can be determined in this image, which has a pixel size of
approximately 70 µm.

We show results for a sample with known orientations in Figures 6.7 and 6.8(a). It is a rubber pipe
reinforced with a crossed arrangement of nylon fibres. We can see in Figure 6.8(a) that the orientation
of the nylon fibres can be determined using TXVR. Moreover, we see in Figure 6.7 that the anisotropy
image provides a better distinction of the fibres inside the matrix. The third sample shown in Figure
6.8(b) is the cap of a species of mushroom found in East Asia (Hypsizygus tessellatus). There are
hundreds of flat, vertical partitions radiating out like spokes of a wheel from the centre of the cap
known as gills. Here, we can see the radial orientations of these gills beneath the mushroom cap. The
colored bars represent the orientations of the gills calculated using TXVR.

6.5.1 Comparison of XVR and TXVR

We also performed a conventional XVR measurement of the sample shown in Figure 6.6(a). Figure
6.6(b) shows the result of conventional X-ray Vector Radiography (XVR) with phase stepping using
a setup and method described by Prade et al. (2016). The setup used for the XVR measurement
comprises of a micro-focus X-ray tube (operated at voltage 60 kV and power 40 W) and a Varian
PaxScan 2520DX detector (pixel size 127 µm). The three gratings with periods of 10 µm, 5 µm, and
10 µm, respectively, were arranged in the first fractional Talbot configuration. The effective pixel size
of the data was approximately 55 µm and the total exposure time was 231 s. The sample holder can
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2 mm 2 mm

Figure 6.6: Vector images obtained using (a) TXVR (b) Conventional XVR. Two dimensional
orientations γ(p,q) (Eq. 6.16) are displayed as color coded unit vectors overlaid on the corresponding
gray-scale attenuation image. Coloring is obtained by converting the value of γ(p,q) to HSV (Hue,
Saturation & Value) by setting hue equal to γ(p,q), and saturation and value equal to 1 for all pixels;
the colorwheel on the right should be used for interpreting the colors. The grayscale values are set
between [0.6,1] for (a) and [0.7,1] for (b). The central part is a thick screw hole, hence, we mask it
out for displaying the orientations of the glass fibres in the thin plate at the bottom of the screw hole.
We show every 7th pixel in (a) and every 9th pixel in (b).

be seen at the bottom of Figure 6.6(b), which was required in order to place the sample vertically in a
horizontal setup.

To further quantify the similarity, we register the mean attenuation data (Amean) of XVR to that
of TXVR. We should note that the TXVR data has a lower resolution than the corresponding XVR
measurement. Therefore, we register the high resolution XVR data to the low resolution TXVR data.
We use scale, rotation and translation to register the corresponding attenuation images. We then apply
the transformation matrix obtained to transform the XVR result. We calculate pairwise dot product of
unit vectors obtained using the two methods. Figure 6.9(a) shows the dot product between unit vectors
obtained using TXVR and TXVR. Bright pixels imply that the angular deviation is small. We show
the histogram of the angular deviation inside the roi (marked with a red rectangle) in Figure 6.9(b).

We can see from Figure 6.9 that the results obtained using the two methods are consistent. Small
deviations can be attributed to imperfect registration owing to the difference in sample mounting
(vertical vs. horizontal). The presence of sample holder in XVR data makes registration particularly
difficult. Moreover, both the measurements were made on different setups leading to major differences
in several parameters such a source size, detector resolution, magnification etc. An objective study of
TXVR and XVR with equivalent data is part of future work.
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Figure 6.7: TXVR result for a known sample made of nylon fibres. We can see that anisotropy
image (masked using the attenuation image) provides a much better definition of the fibres than mean
attenuation or mean dark-field.

6.6 Limitation

We note that owing to the trochoidal trajectory, the tangential velocity varies with the distance from
the centre of rotation. This implies that the effective linear velocity used for phase scanning (Eq. 6.12)
is different for different points inside the sample. Theoretically, this will lead to a blurring in the
images. However, owing to the processing on digital images, this does not happen as long as this
variation is less than 1 pixel/frame. We define:

rmax =
d · f

ω ·M
(6.17)

as the maximum distance from the centre of rotation where this condition is satisfied. Therefore,
we do not induce any additional blurring as long as the sample fits inside a circle of diameter 2rmax

around the center of rotation. rmax ≈ 1 cm for the settings used in this work which is sufficient for the
size of the samples used. For bigger samples, we need to decrease the rotation speed or increase the
detector pixel size to ensure that this condition is satisfied.

6.7 Summary and Outlook

X-ray Vector Radiography is a novel imaging method to reveal the orientations of micro-structures
inside a specimen. In this chapter, we use a novel method to perform XVR of a continuously
moving sample without the need to step gratings during the acquisition process. This provides
several advantages in terms of stability and repeatability, making this kind of system easily adaptable
for industrial applications. While TXVR is a promising approach to translate XVR into industrial
applications, we need several algorithmic improvements to increase the measurement speed.

We observed that only 3100 frames out of the 80000 recorded were used to obtain the results
shown in this chapter. This implies that we can measure much faster by using a faster rotation motor.
However, this would impose further restrictions on the camera frame rate and the maximum size of
the sample that can be measured without inducing motion blur. Most of these issues can be addressed
by improving the processing algorithm.
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Figure 6.8: Examples of results obtained using TXVR. Two dimensional orientations γ(p,q) (Eq.
6.16) are displayed as color coded unit vectors overlaid on the corresponding gray-scale attenuation
image. Coloring is obtained by converting the value of γ(p,q) to HSV (Hue, Saturation & Value) by
setting hue equal to γ(p,q), and saturation and value equal to 1 for all pixels; the colorwheel on the
right should be used for interpreting the colors. (a) Orientations of nylon fibres embedded in a rubber
pipe (half cut) calculated using TXVR. The grayscale for the attenuation image is set to [0.29,1] and
the orientation is shown in every 3rd pixel. (b) The orientations of gills inside the cap of a species of
mushrooms found in East Asia overlaid on the attenuation image (grayscale values between [0.06,1]).
Vectors in every 3rd pixel are shown.
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Figure 6.9: (a) Pair-wise dot product of the unit vectors in Figure 6.6(a) and (b). Brighter color implies
the orientations calculated using TXVR and XVR are identical (b) Histogram of angular deviation
between TXVR and XVR result inside a region of interest.
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(a) (b)

Figure 6.10: A sample consisting of two toothpicks separated in depth by approximately 7 cm.
Dark-field images of the sample are obtained using the same data (only linear motion) but with two
different velocities in the phase scanning step. We observe that we can focus on different planes inside
the sample by selecting different velocities for phase scanning.

In this work, we took a significant step forward in simplifying the acquisition protocol for XVR
by combining the conventional stepwise procedure into a continuous sample motion. Similarly, we
can combine the two step algorithm in sections 6.3.1 and 6.3.2 to obtain a more robust algorithm.
Moreover, we can incorporate the position dependent velocity variation discussed in section 6.6 in this
model. This combined model can potentially result in significant improvements in the measurement
speed. In addition, below we discuss a preliminary idea for potentially extending TXVR into the third
dimension i.e. depth.

6.7.1 Towards Multi-slice TXVR

As an addition to this chapter, we also want to present some future possibilities with the setup shown
in Figure 6.2. It can be seen in Eq. 6.12, 6.7 and 6.6 that the linear velocity of the sample is an
important variable in the phase scanning step. The linear velocity u of the sample on the detector plane
is further dependant on the magnification M. This implies that for the same set of parameters, moving
the sample up and down in the vertical setup changes the value of u used for phase scanning. Or in
other words, by selecting different values of u, we can focus on different heights inside the sample
and obtain an effect similar to Depth-of-focus reconstruction in microscopy [Kang et al. (2015)].

We demonstrate this effect using a sample consisting of two wooden toothpicks, separated in
height by approximately 7 cm. We measure this sample using only linear motion and perform phase
scanning to obtain the dark-field images. We observe that by processing the same linear movie with
two different velocities, we can focus on one of the the two toothpicks as shown in Figure 6.10.
This principle of depth-of-focus scanning exists in other fields such as microscopy and computer
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vision. Advanced algorithms [Nayar and Nakagawa (1994)] can be used to deconvolve the focussed
objects from the out-of-focus regions of the image. We believe that combining this depth-of-focus
approach with TXVR may allow us to perform a multi-slice TXVR where in we can resolve structure
orientations in multiple slices within the sample. This method could be especially useful for composite
materials comprising of multi-layered arrangements of fibres.





Chapter 7

Coverage Metric and Sparse Acquisition
Schemes

Parts of this chapter have been published as:
Sharma, Y., Wieczorek, M., Schaff, F., Seyyedi, S., Prade, F., Pfeiffer, F., and Lasser, T. (2016).
Six dimensional x-ray tensor tomography with a compact laboratory setup. Applied Physics
Letters, 109(13):134102.

We reviewed two methods for Anisotropic X-ray Dark-field (AXDF) tomography in Chapter 5,
namely X-ray Tensor Tomograghy (XTT) and Anisotropic X-ray Dark-field Tomography (AXDT).
We saw that owing to the directional dependence of the dark-field signal, the forward model (Eq.
5.1) for dark-field tomography comprises of a pose-dependent weight factor (Eq. 5.2). Because
of these additional weights in the forward model, conventional CT acquisitions schemes are not
sufficient for dark-field tomography. Malecki et al. (2014) extended the idea of circular trajectory in
CT (section 3.3.1) to dark-field tomography by employing additional circular trajectories resulting in
an acquisition scheme spread over a sphere instead of a circle. Figure 7.1 shows the basic idea of such
a scheme, wherein we sample the unit sphere of orientations instead of a circle.

In order to reach the poses depicted in Figure 7.1, we require three rotation axes. This is achieved
by placing the sample on an eulerian cradle, same as the one used for XVR (Figure 6.1(b)). Schematic
of a grating interferometry setup with an eulerian cradle is shown in Figure 7.3. Requirement of
large number of poses and rotation around three axes to reach every pose results in a long acquisition
time for AXDF tomography. The requirement of the cradle and long acquisition time are significant
hurdles for the practical applications of dark-field tomography. It is, therefore, necessary to design
sparse acquisition schemes for these methods, which is the goal of this chapter.

In order to acheive the aforementioned objective, we first begin with visualizing XTT acquisition
schemes in section 7.1. While the visualization method helps us better understand the schemes, it is
not enough to quantify them. In section 7.2, we present a numerical method to predict the efficacy of
XTT acquisition schemes. Next, we combine this predictive measure with an experimental measure
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of performance in section 7.3, in order to validate the applicability of the numerical method. Finally,
we test different acquisition schemes using the two metrics with the goal of reducing the time and
hardware complexity of XTT acquisition. We present experimental results for two samples in section
7.4 and draw conclusions in section 7.5.

7.1 Acquisition Schemes for XTT

In order to sample the unit sphere as shown in Figue 7.1, we require three axes of rotation shown in
Figure 7.3. Defining the world coordinates as x,y,z and the sample coordinate system as x′,y′,z′, the
three angles of rotation are defined as:

1. ψ - rotation around the y axis

2. θ - rotation around the z′ axis

3. ψ - rotation around the y′ axis

A sample pose x := (ψ,θ ,φ) is defined by rotating around the corresponding axes in the order-
ψ,θ ,φ . The resulting rotation matrix (see Appendix A) is:

R(x) = Ry(ψ) ·Rz(θ) ·Ry(φ) = cosψ cosθ cosφ − sinψ sinφ −cosψ sinθ cosψ cosθ sinφ + sinψ cosφ

sinθ cosφ cosθ sinθ sinφ

−sinψ cosθ cosφ − cosψ sinφ sinψ sinθ −sinψ cosθ sinφ + cosψ cosφ .

 (7.1)

The weight factor (Eq.5.2) models the anisotropic property of the dark-field signal in terms of
the tomographic and sensitivity axes. Therefore, in order to understand the acquisition schemes, it
is essential to look at the trajectories of these two axes. We have done this before, in the case of
conventional CT in Figure 3.5 and for the case of XVR in Figure 6.1. In the former case, sensitivity
axis plays no role. In the latter case, we sample several sensitivity points, however, the optical axes
remains invariant since we do not perform tomography. In the case of XTT, both the axes play an
important role as we will discuss in this section.

Let us begin with an example tomographic trajectory rotating about y′ as a function of ψ and θ :

A(ψ,θ) :=
{

x := (ψ,θ ,φ); φ ∈ [0◦,18.95◦, . . . ,360◦]
}
.

A common sparse acquisition scheme for conventional CT using 20 equally spaced projection angles
is then expressed as A(0◦,0◦). In other words, the sample is rotated around the fixed y axis and line
integrals through the sample along z, also known as the optical axis, are recorded. For visualization,
we plot ±t(x) on a unit sphere, assuming that the sample is fixed at the center of the sphere. The
points ±t(x) for A(0◦,0◦) are shown in blue in Figure 7.2(a). We have S = y when the grating bars are
horizontal. Assuming again that the sample is fixed at the center of a sphere, we also plot ±s(x) on the
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ψθφ

Figure 7.1: XTT acquisition scheme spread over the unit sphere. Figure by Sharma et al. (2016) is
licensed under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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(a) A(0◦,0◦) (b) A(20◦,45◦) (c) A(40◦,45◦) (d) A(40◦,90◦)

Figure 7.2: Spherical representation of acquisition scheme A(ψ,θ) for different combinations of ψ

and θ . On each sphere, blue points represent the trajectories of the optical axis ±t(x) and red points
represent the trajectories of the sensitivity axis ±s(x) assuming that the sample is fixed at the center
of the sphere. Figure by Sharma et al. (2016) is licensed under CC BY 4.0.

unit sphere. The points ±s(x) for A(0◦,0◦) are shown in red in Figure 7.2(a). It can be seen that only
one direction of scattering can be measured with A(0◦,0◦). This means that a standard CT acquisition
trajectory is not sufficient for an XTT measurement. Therefore, additional tomographic trajectories
for XTT (as shown in Figure 7.2) are obtained by rotating y′ using ψ and θ . The visualization of the
trajectories of the optical axis t(x) and sensitivity axis s(x) shown in Figure 7.2 gives a qualitative
understanding of the orientations that are measured with a given acquisition scheme. In the next
section, we present a method for the quantification of such acquisition schemes.

7.2 Coverage Metric (CM)

Let Σ and T be two sets of evenly distributed points chosen from a hemisphere:

Σ = {σk, k = 1,2, . . . ,N},

T = {τ j, j = 1,2, . . . ,N},

where N = 4843. The mean vector of Σ is given by:

mΣ =
1
N

N

∑
k=1

σk.

Let X be an acquisition scheme using n different acquisition poses xi:

X :=
{

xi := (ψi,θi,φi); i = 1, . . . ,n
}
.

The objective is to define a quantity, Coverage(X ,k) that represents how well the orientation σk ∈ Σ is
measured by X . Our proposed procedure for computing Coverage(X ,k) is outlined in the following.

https://creativecommons.org/licenses/by/4.0/
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1. Define Xk ⊂ X as the set of poses that measure the orientation σk ∈ Σ:

Xk :=
{

x ∈ X ; w(σk,x)> Tc
}
,

where w(σk,x) is the weight factor that specifies how well the orientation σk is measured by
the acquisition pose x, and Tc = 0.7 is an arbitrarily chosen threshold. It was already defined in
Eq. 5.2. Below, we reiterate the definition of w(σk,x):

w(σk,x) =
(∣∣σk × t(x)

∣∣ 〈σk,s(x)
〉)2

, (7.2)

where | ·× · | denotes the magnitude of the cross product and ⟨·, ·⟩ denotes the standard scalar
product.

2. Rk is the mean resulting length of the vectors t(x) for all x ∈ Xk,

Rk =

∥∥∥∥∥ 1
|Xk| ∑

x∈Xk

t(x)

∥∥∥∥∥ ,
where ∥·∥ denotes the Euclidean length of a vector.

3. Tk ⊂ T is the set of points that are measured by Xk, assuming that each vector t(x) contributes
to the measurement of points lying within a cone of opening angle 5◦ around it:

Tk :=
{

τ ∈ T ; ⟨τ, t(x)⟩ > cos(2.5◦) ∀x ∈ Xk
}
.

4. The Coverage(X ,k) is then defined as:

Coverage(X ,k) := 2× (1−Rk)×
|Tk|
N

.

The quantity 2× (1−Rk) is the spherical variance [Mardia and Jupp (2008)], while |Tk|/N
is related to the cumulative solid angle spanned by the t(x), x ∈ Xk. Thus, a higher value of
Coverage(X ,k) is achieved when the t(x) are distributed widely over the unit sphere.

Next, we scale the unit vectors σk ∈ Σ with the values of Coverage(X ,k) for all values of k resulting
in:

Γ(X) :=
{

γk := σk ×Coverage(X ,k), k = 1, . . . ,N
}
,

and its mean:

mΓ(X) =
1
N

N

∑
k=1

γk.

The angular deviation of the normalized mean vector m̂Γ(X) from the normalized mean vector m̂Σ is a
measure of the non-uniformity of the Coverage Sphere. Finally, we can now introduce the Coverage
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Metric CM(X) as:

CM(X) :=
〈
m̂Γ(X), m̂Σ

〉
× 1

N

N

∑
k=1

Coverage(X ,k).

CM(X) ∈ [0,1] is a measure of the efficiency of the acquisition protocol X . Higher values of CM
imply a more comprehensive and uniform measurement of all orientations on the unit sphere.

7.3 Performance Metric (PM)

In the last section, we derived a numerical method to quantify the efficacy of an XTT acquisition
scheme. In order to correlate this metric with experimental results, we define an experimental metric
and call it the Performance Metric (PM). The goal of this metric is to quantify the result of a scheme
X with respect to a standard scheme S. Hence, we need a metric to quantify the difference in the
result, which in this case is a tensor.

Riemannian manifold Sym+
3 , i.e. the manifold of positive-definite symmetric matrices, provides

us tools for comparison on tensors. One such tool is a Riemannian metric [Pennec et al. (2006)]
or the distance d : Sym+

3 ×Sym+
3 → R+ between two tensors T1,T2 ∈ Sym+

3 on this manifold. It is
computed as:

d(T1,T2) =

√
3

∑
i=1

log(λi)2,

where λi denotes the i-th eigenvalue of the matrix T− 1
2

1 T2T− 1
2

1 . We refer the reader to Wieczorek
(2017) for a detailed description of this metric.

Let us consider a XTT volume consisting of I voxels ri, i = 1 · · · I. We reconstruct it using two
different acquisition schemes X and S and obtain corresponding tensors TX(ri) and TS(ri) in the ith

voxel. These two tensors are considered to be correlated if d (TX(ri),TS(ri)) is less than a certain
threshold Tp. Based on this, we introduce a Performance Metric PM(X), which determines how well
the acquisition scheme X performs with respect to S:

PM(X) =

∣∣{ri; d
(
TX(ri),TS(ri)

)
< Tp, i = 1, . . . , I

}∣∣
I

,

where Tp = 0.4 and | · | is the number of elements in a set.

7.4 Experiments and Results

In this section, we use the two metrics described above to assess the time and hardware complexity of
different acquisition schemes. We measure two fibre composite samples using the setup described in
the next section and perform XTT reconstruction using the algorithm described in section 5.1. We use
an oversampled acquisition scheme S to measure the samples and obtain a baseline standard recon-
struction. Next, we perform reconstructions with different downsampled versions of the acquisition
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Figure 7.3: Setup used for AXDF tomography. Figure by Sharma et al. (2016) is licensed under CC
BY 4.0.

Grating G0 G1 G2
Type absorption π/2 phase-shift absorption

Lamellae Gold Nickel Gold
Period(µm) 10 5 10
Duty Cycle 0.5 0.5 0.5

Material Height(µm) 160-170 8 160-170

Table 7.1: Gratings used for the XTT setup shown in Figure 7.3.

schemes and compare the results to the standard result using the Performance Metric described in
section 7.3. Separately, we calculate the coverage metric (section 7.2) for the downsampled schemes.
By demonstrating an agreement between the numerical and experimental metric, we establish the
validity of our proposed coverage metric. Finally, we use CM to design optimal acquisition schemes
in order to reduce the time and hardware complexity of XTT setups. We discuss the acquisition
schemes and corresponding results for both the samples in separate subsections.

7.4.1 Setup

We use the setup shown in Figure 7.3. It consists of a X-ray tube XWT-160-SE from X-ray Worx
Gmbh, with acceleration voltages between 10-160 kV, maximum power of 300 W and a tungsten
anode. It is a microfocus X-ray tube with a spot size which increases from 4 µm to more than 100 µm
when operated at the lowest and the highest power, respectively. The source opening half-angle is 15◦.
We use a flat panel PaxScan 2520DX detector from Varian medical systems with a 600 µm thick layer
of columnar structured cesium iodide as the scintillator. The physical pixel size is 127×127 µm with
a total of 1920×1536 pixels. We usually operate at 1 fps, however, frame rates of 0.5-12.5 fps are

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 7.4: XTT reconstruction of a SFRP sample. Tensors and their smallest half axis in a slice is
shown overlaid on the corresponding attenuation volume. A region-of-interest is shown on the right.

available. Three gratings, as described in Table 7.4.1, are placed between the source and the detector.
We assume a symmetric interferometer in the first fractional Talbot configuration for a design energy
of 45 keV, resulting in an Inter-grating distances of 92.7 cm.

7.4.2 Sample 1- Short Fibre Reinforced Polymer (SFRP)

We analyze a Short fibre Reinforced Polymer (SFRP) sample made of glass fibres (18 µm in diameter).
SFRPs are widely used in the automotive industry for their improved mechanical properties which
depend heavily on the orientation and length distribution of the reinforcing carbon or glass fibres. A
very high resolution XCT combined with fibre tracking techniques is commonly used to analyze the
fibre orientation distribution of such materials. XTT is a very useful technique for these materials as it
directly resolves the orientations of the fibres within a much larger sample size. We measure a SFRP
sample (dimensions 10×10×2 mm) in the setup shown in Figure 7.3.

The sample was measured with a standard XTT acquisition scheme as first introduced by Malecki
et al. (2014):

S =
{

s := (ψ,θ ,φ); ψ ∈ [0◦,20◦,40◦],

θ ∈ [0◦,30◦,60◦,90◦],

φ ∈ [0◦,2.01◦, . . . ,360◦]
}
.

(7.3)

Scheme S comprising of 2160 poses is shown in Figure 7.6(a). The dark-field signal at every pose d(x)
(Eq. 5.10) was measured using 7 phase steps and 3 secs exposure per phase step resulting in a total
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(a)
B(4.2) = S3,PM = 0.88

B(4.2) = S3
CM = 0.76

B(1.6)
CM = 0.38

(b) B(1.6),PM = 0.61
(c)

Figure 7.5: Time Complexity Analysis for SFRP sample. (a) Plot of CM and PM versus the acquisition
time (b) Coverage Spheres for two acquisition schemes highlighted in (a). (c) XTT reconstruction in
the region of interest shown in Figure 7.4 obtained using the two schemes.

acquisition time of approximately 12.6 hours. We calculate scattering tensors TS(ri) ∈R3×3
+ for voxels

ri, i = 1, . . . , I, discretizing the volume of interest (isotropic voxel size 64 µm3) using the method
presented in section 5.1; the subscript (here S) indicates the acquisition protocol used to compute
the scattering tensors. Figure 7.4(a) shows the scattering tensors TS(ri) along with the corresponding
structure orientation, overlaid on the CT volume of the sample. The tensors are color coded with their
orientation. It is evident from Figure 7.4(a) that XTT reveals the three dimensional orientations of
fibres in this sample. The resulting fibre orientations are comparable qualitatively to the fibre tracking
results presented by Hannesschlager et al. (2015), where they used a voxel size of 6.5 µm3. Below,
we study the effect of reducing the time and hardware complexity of the acquisition scheme (Eq. 7.3).

Effect of Time Complexity

We define seven acquisition schemes B(t) by downsampling S to reduce the acquisition time to t hours
while using all three axes of rotation:

B(t) =
{

s(k−1)× T
t
; k = 1,2, . . . ,2160× t/T

}
, (7.4)
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(a) S (b) S3 (c) S2 (d) S1

Figure 7.6: (a) Spherical representation for standard scheme XTT scheme S used in this study. (b-d)
Downsampled scheme with 3, 2 and 1 axes of rotations, respectively.

where T = 12.6 hours is the acquisition time for scheme S. CM and PM for B(t) are plotted against t
in Figure 7.5(a). We pick two points B(4.2) and B(1.6) from Figure 7.5(a) and show the reconstructed
result in Figure 7.5(c) and corresponding Coverage Spheres in Figure 7.5(b). It can be seen that B(4.2)
provides a uniform Coverage Sphere comprised of high values, thus leading to a good quality of the
result.

Effect of Hardware Complexity

Hardware complexity is induced by the Eulerian cradle, which is required to provide the two additional
axes of rotation (ψ and θ ). Therefore, in this study, we begin with the acquisition scheme B(4.2)
as representative of a complex setup employing 3 rotation axes and rename it S3, the subscript here
indicating the number of rotation axes. Next, we remove rotation axes in steps to obtain the schemes
S2 and S1. The four schemes S, S3, S2 and S1 are shown in Figure 7.6. Scheme S2 represents a medium
complexity setup employing two rotation axes with fixed ψ (optimally chosen using CM), while
scheme S1 represents a simple setup employing only one rotation axis (fixed ψ and θ ):

S2 =
{
(ψ,θ ,φ); ψ = 40◦,θ ∈ Θ,φ ∈ Φ

}
,

S1 =
{
(ψ,θ ,φ); ψ = 40◦,θ = 30◦,φ ∈ Φ

}
.

The Coverage Spheres for S2 and S1 are shown in Figure 7.7(b) and the reconstructed tensors are
shown in Figure 7.7(c). The plot of CM and PM versus the number of rotation axes is shown in
Figure 7.7(a). It can be seen that the quality of the reconstruction deteriorates slightly but not enough
to affect their interpretation in an application when only a single value of ψ is used (i.e. a medium
complexity setup using two rotation axes). However, using a simple setup with just one rotation axis
and fixed ψ,θ (scheme S1), markedly deteriorates the quality of the reconstructions.

7.4.3 Sample 2 - Carbon Fibre Reinforced Polymer (CFRP)

In this section, we present similar results as before, but for a Carbon fibre Reinforced Polymer (CFRP)
specimen. This sample has sharp discontinuities in structure orientation, making it more challenging
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(a)
S2,PM = 0.66

S2
CM = 0.45

S1
CM = 0.08

(b) S1,PM = 0.04
(c)

Figure 7.7: Effect of Hardware Complexity for the SFRP sample (a) Plot of PM and CM versus
acquisition schemes with 3,2 and 1 axes of rotations. (b) Coverage Spheres for S2 and S1, S3 is shown
in Figure 7.5(b). (c) Corresponding XTT reconstruction results in a region of interest.
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Figure 7.8: XTT result for the CFRP sample. Tensors and their smallest half-axes in one slice are
overlaid on the attenuation volume. A region-of-interest is shown on the right.

compared to the previous sample, which has a smooth arrangement of fibres due to the injection
molding process. We perform a XTT measurement using a densely sampled acquisition protocol S
with 2700 poses,

S =
{

s := (ψ,θ ,φ); ψ ∈ [0◦,20◦,40◦],

θ ∈ [0◦,11.25◦, . . . ,90◦],

φ ∈ [0◦,3.636◦, . . . ,360◦]
}

in a continuous measurement spanning 30 hours, with 8 phase steps and 5s exposure per step.

Figure 7.8(a) shows the scattering tensors TS(ri) along with the corresponding structure orientation,
overlaid on the X-ray absorption volume. Region of Interest is shown in 7.8(b). The tensors are
color coded using their orientation. It can be seen that XTT is able to successfully reconstruct the
orientations of the carbon fibres in this sample comprising of uni-directional laminates (green) joined
together with pieces of orthogonal connecting fibres (red).

Effect of Time Complexity

Several acquisition schemes B(t) are defined by downsampling S to achieve an acquisition time of t
hours:

B(t) =
{

b(k−1)· T
t
; k = 1,2, . . . ,2700 · t/T

}
,

where T = 30 hours is the acquisition time required for scheme S. CM and PM for B(t) are plotted
against t in Figure 7.9(a). We pick two points B(10) and B(2) from Figure 7.9(a) and show the
reconstructed result in Figure 7.9(c) and the corresponding Coverage Spheres in Figure 7.9(b). It can
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(a)
B(10) = S3,PM = 0.12

B(10) = S3
CM = 0.63

B(2)
CM = 0.16

(b) B(2),PM = 0.02
(c)

Figure 7.9: Time Complexity Analysis for CFRP sample. (a) Plot of CM and PM versus the acquisition
time (b) Coverage Spheres for two acquisition schemes highlighted in (a). (c) XTT reconstruction in
the region of interest shown in Figure 7.8 obtained using the two schemes.

be seen that acquisition time has a significant detrimental effect on both the CM and PM which is also
evident in the ROIs shown in Figure 7.9(c).

Effect of Hardware Complexity

We begin with the acquisition scheme B(10) as representative of a complex setup employing 3 rotation
axes and rename it S3, the subscript here indicating the number of rotation axes. Next, we remove
rotation axes in steps to obtain the schemes S2 and S1. Scheme S2 represents a medium complexity
setup employing two rotation axes with fixed ψ (optimally chosen using CM), while scheme S1

represents a simple setup employing only one rotation axis (fixed ψ and θ ):

S2 =
{
(ψ,θ ,φ); ψ = 40◦,θ ∈ Θ,φ ∈ Φ

}
,

S1 =
{
(ψ,θ ,φ); ψ = 40◦,θ = 45◦,φ ∈ [0◦,0.4◦, . . . ,360◦]

}
,

The Coverage Spheres for S2 and S1 are shown in Figure 7.10(b) and the reconstructed tensors are
shown in Figure 7.10(c). The plot of CM and PM versus the number of rotation axes is shown in
Figure 7.10(a). It can be seen that the quality of the reconstruction for S2 (scheme using 2 axes
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(a)
S2,PM = 0.06

S2
CM = 0.48

S1
CM = 0.03

(b) S1,PM = 0.01
(c)

Figure 7.10: Effect of Hardware Complexity for the CFRP sample (a) Plot of PM and CM versus
acquisition schemes with 3,2 and 1 axes of rotations. (b) Coverage Spheres for S2 and S1, S3 is shown
in Figure 7.9(b). (c) Corresponding XTT reconstruction results in a region of interest.

of rotation) is a reasonable compromise when compared to S3 = B(10) (scheme using 3 axes of
rotations).

7.5 Discussion

So far, we presented a detailed description of XTT acquisition schemes and evaluated several schemes
numerically and experimentally. We compared sparse acquisition schemes to oversampled schemes
for two different samples. Since the first sample is manufactured using injection molding, the resulting
orientation of glass fibres is smooth as can be seen in Figure 7.7. On the other hand, the second
sample consists of a layered structure of uni-directional carbon fibres with orthogonal connecting
fibres. Clearly, this kind of structure is more challenging for XTT because of the discontinuities and
higher density of carbon fibres. While the oversampled scheme is able to resolve the complicated
structure of the second sample, we start loosing quality as soon as we start downsampling. For both
studies of time and hardware complexity on both samples, we observe a strong correlation between
the numerical and experimental metrics. This implies that the coverage metric is a valid criterion
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to design and assess XTT acquisition schemes. Below, we discuss the effect of time and hardware
complexity for both the samples.

7.5.1 Effect of Time Complexity

In order to observe the effect of acquisition time on the result of XTT reconstruction, we compared
several schemes with decreasing acquisition time while maintaining the same hardware complexity.
From Figures 7.5 and 7.9, we observe that reduction in the acquisition time has a detrimental effect on
the reconstruction quality. However, for both the samples, reduction in acquisition time by a factor of
3 does not harm the interpretation of the results. Further reduction in time is, however, not desirable.
While we start loosing accuracy in the SFRP sample with an acquisition time of 1.6 hrs, the result
for the CFRP sample is almost unusable at an acquisition time of 2 hours. The deterioration rate is
also evident in the corresponding trends of CM. This implies that the CM can be used in the future to
decide the minimum acquisition time required for task-specific XTT measurements.

7.5.2 Effect of Hardware Complexity

The bulky Eulerian cradle (Figure 7.3) required for the additional axes of rotation poses significant
challenges for practical applications of XTT. Moreover, the time for motor movements, specifically
the ψ and θ motors adds significant overhead to the total measurement time. Therefore, it is essential
to reduce the number of rotation axes for practical applications of XTT. We studied the effect of the
number of rotation axes for XTT. Specifically, we designed three acquisition schemes with similar
measurement time, but decreasing number of rotation axes required to implement these schemes.

We observe, in both the samples, that decreasing the number of rotation axes leads to deterioration
in the quality of the result, as evidenced from the corresponding values of CM and PM. However, we
note that the results obtained using the scheme S2 is reasonable comparable to the results obtained
with the scheme S3. Feature specific interpretation of the result does not change significantly between
the two cases. However, reducing the axes of rotation to a single axis results in a complete loss of
information. This is expected, because in this case we are essentially measuring only two circular
trajectories as can be seen in Figure 7.6(d).

Owing to these observations, we conclude that a XTT setup with only two axes of rotation is
viable, especially for commercial applications. Further advancements in the processing algorithms
might help increase the quality of the result in comparison to those obtained with 3 rotation axes.

7.6 Summary

X-ray Tensor Tomography is a novel imaging modality with potential applications in material science
and medicine. We had provided a detailed overview of the XTT reconstruction methodology, which
was developed primarily by Malecki et al. (2014) and Vogel et al. (2015) in Chapter 5. In this
chapter, we provided a detailed visual, numerical and experimental understanding of the XTT
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acquisition schemes. The spherical representation of acquisition schemes provides a very useful tool to
comprehend such schemes. However, this is not enough for a quantitative estimation of these schemes.
Therefore, we presented a numerical metric to predict the quality of a given acquisition scheme. We
demonstrated the validity and applicability of this metric by comparing it to an experimental metric
that. The coverage sphere is a potentially valuable tool for designing task-specific acquisition schemes.
By using this representation, we can selectively design acquisition schemes targetting the desired
section on the unit sphere. We elaborate more on this idea in the next chapter.

Next, we used the two metrics to study two major aspects that contribute to the complexity of
XTT acquisition schemes- time and rotation axes. We conclude that the coverage metric is a valid tool
to optimize acquisition time for task-specific XTT measurements. More importantly, we conclude
that it is possible to perform a full six-dimensional X-ray Tensor Tomography with at most two axes
of sample rotation. Therefore, by adding only one additional rotation axis to a conventional X-ray
Computed Tomography device, it is possible to obtain compact XTT setups for industrial and potential
medical applications.



Chapter 8

Design of Acquisition Schemes and Setup
Geometry

Parts of this chapter have been published as:
Sharma, Y., Schaff, F., Wieczorek, M., Pfeiffer, F., and Lasser, T. (2017). Design of Acquisition
Schemes and Setup Geometry for Anisotropic X-ray Dark-Field Tomography (AXDT). Scientific
Reports, 7(1):3195.

In Chapter 7, we presented a method to assess the efficacy of a given acquisition scheme for X-ray
Dark-field Tomography. The Coverage Metric (section 7.2) was based on the fundamental idea that in
order to measure a sensitivity point, we need to measure it from several tomographic points spread
evenly on a circular trajectory. Sensitivity points that satisfy this condition for the given scheme were
assigned a high value of coverage and vice-versa.

Motivated by the results in Chapter 7, we extend the same concept to design acquisition schemes
in this chapter. We design acquisition schemes such that the aforementioned criteria is satisfied for a
uniformly distributed set of orientations on the unit sphere. In simple words, the method works in two
steps:

1. Choose a set of uniformly distributed points on the unit sphere,

2. Design a full tomographic trajectory corresponding to every point.

Using the above two steps, we formulate an approach to design acquisition schemes for directional
dark-field tomography. Next, we use the AXDT reconstruction method (5.2) and null space analysis
(3.3.2) to establish the validity of the proposed method.

We can see in Figure 7.3 that the cradle blocks the X-ray beam for higher values of ψ . This
restricts the availability of measurable poses to |ψ| ≤ ψmax and is a hurdle to the implementation of
the acquisition schemes. Although detrimental, we can work around this limitation by optimizing
the orientation of the grating bars. We study this effect extensively and conclude that certain grating
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orientations provide significant advantage over others. Finally, we show experimental results to
demonstrate the effectiveness of the new schemes as well as the effect of grating orientation.

This chapter is organized as follows. We present the method to design acquisition schemes in
section 8.1 and study the effect of grating alignment on the experimental realization of the schemes in
section 8.2. In section 8.3.2, we use null space analysis to demonstrate that the schemes work well
with both the AXDT and XTT reconstruction approaches as we expect from conventional tomography.
Finally, we demonstrate experimental results for all of the above analysis in section 8.4 and provide a
comprehensive discussion in the following section.

8.1 Design of Acquisition Schemes

In conventional tomography, we acquire line integrals through a three-dimensional object onto a 2D
detector and use analytic or iterative methods to reconstruct the 3D volume from several 2D images
acquired at different poses of the sample (Chapter 3). The pre-requisite for recovering the 3D spatial
information from 2D projections is that the total measured signal in any projection is constant, that
is, the measured quantity (such as X-ray attenuation coefficient) is invariant under rotation. This is,
however, not true for the dark-field signal. Due to its anisotropic nature, the dark-field signal varies as
the object is rotated around an axis. However, it is possible to define an axis of rotation such that a
certain component of the scattering function (q) is invariant under rotation of the object around this
particular axis [Feldkamp et al. (2009)]. We use this concept to design an acquisition trajectory that
comprises of several poses for which a unique component of the dark-field signal remains invariant,
thus allowing for a full tomographic reconstruction of this particular component. In the following, we
explain how such an acquisition trajectory can be designed for any scattering orientation q ∈ S2.

Recall that we defined the sensitivity vector s(x) ∈ S2 and the tomographic vector t(x) ∈ S2 for
every acquisition pose x = (ψ,θ ,φ) as:

s(x) = R(x) ·S,

t(x) = R(x) ·T,
(8.1)

where R(x) ∈R3×3 is the Euler rotation matrix for the pose x, S ∈ S2 is the setup sensitivity, T ∈ S2 is
the direction of beam propagation ([0,0,1]T in the setup shown in Fig, 7.3) and · denotes standard
matrix-vector multiplication. S is the direction in which the phase shift is measured by the grating
interferometer setup; it is orthogonal to the grating bars in the plane of the gratings ([0,1,0]T in the
setup shown in Fig. 7.3). Evidently, the sensitivity vector denotes the scattering orientation that is
probed at the acquisition pose x while the tomographic vector represents the direction along which
the signal is integrated.

Let us define an acquisition scheme as:

A(ψ,θ ,N) :=
{

x = (ψ,θ ,φ); φ ∈
{

0◦,
180◦

N
, . . . ,180◦− 180◦

N

}
; N ∈ N

}
. (8.2)
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(a) (b) (c) (d)

Figure 8.1: Spherical representation of acquisition schemes. Please note that in all these images,
the sample can be imagined as being stationary at the center of the sphere while the setup ro-
tates around it. Blue points represent the vectors ±t(x) and red points represent ±s(x) for all
x ∈ A(0,0,11) with (a) horizontal grating alignment, (b) vertical grating alignment, and (c) diagonal
grating alignment. (d) The vectors ±t(y) and ±s(y) for all y in an exemplary acquisition scheme
Y (q, [0.7071,−0.7071,0]T ,10) obtained using the method explained in Algorithm 1. Figure by
Sharma et al. (2017) is licensed under CC BY 4.0.

A conventional X-ray CT acquisition scheme in this notation can be expressed as A(0,0,N). The
points ±t(x) for x ∈ A(0,0,11) are shown as blue dots in Figure 8.1(a). Such a circular measurement
trajectory with sufficiently large value of N is desired for analytic reconstruction in X-ray CT (Chapter
3). Note that A(0,0,N) is similar to the scheme (X(0,180,N) in section 3.3.1. However, the sensitivity
vector has no significance in X-ray CT since the measured quantity is invariant under rotation.
In the case of dark-field signal, we also compute ±s(x) for x ∈ A(0,0,11) assuming horizontally
(S = [0,1,0]T ), vertically (S = [1,0,0]T ) and diagonally (S = [0.7071,−0.7071,0]T ) oriented gratings
which are shown as red points in Figure 8.1(a-c).

Using the concept of rotational invariance, we postulate that a scattering orientation q ∈ S2

can be recovered for a three-dimensional volume by measuring it from N poses xi, i = 1,2, . . . ,N,
such that s(xi) = q and the vectors t(xi) consist of N points equally spaced on a circular trajectory.
It can be seen that this condition is satisfied for q = [0,1,0]T in Fig. 8.1(a). On the other hand,
each of the 11 points of scheme A(0,0,11) measure a separate sensitivity vector when gratings are
placed vertically (Figure 8.1(b)) or diagonally (Figure 8.1(c)). However, we can obtain the same
blue and red points as Fig. 8.1(a) for vertical and diagonal gratings with the schemes A(0,90,11)
and A(0,45,11), respectively. More generally, we can obtain an acquisition scheme Y (q,S,N) :={

yi(q,S) := (ψ,θ ,φ) , i = 1, . . . ,N
}

that fully measures the orientation q for the setup sensitivity S.
In other words, s(yi(q,S)) = q for all i. To obtain a scheme Y (q,S,N), we transform xi ∈ A(0,0,N)

to yi(q,S). Note from Fig. 8.1(a) that A(0,0,N) = Y ([0,1,0]T , [0,1,0]T ,N). The method to calculate
Y (q,S,N) from A(0,0,N) is given in Algorithm 1.

Figure 8.1(d) shows an orientation vector ±q in red and the vectors ±t(y) in blue for all y ∈
Y (q, [0.7071,−0.7071,0]T ,10). Using the procedure described above, we can design an acquisition
scheme Z(S,N) that measures L scattering orientations fully and comprises of L ∗N poses for the
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given setup sensitivity S:
Z(S,N) =

{
Y (ql,S,N); l = 1, . . . ,L

}
. (8.3)

Algorithm 1: Calculate Y (q,S,N) from A(0,0,N)

For every x ∈ A(0,0,N)

1. Calculate Euler rotation matrix R(x).

2. Calculate Rintermediate(x,q) such that Rintermediate(x,q) · [0,1,0]T = q:

Rintermediate(x,q) = R(x) ·M([0,1,0]T ,q), (8.4)

where M(v1,v2) ∈ R3×3 is a matrix such that v2 = M(v1,v2) · v1 for all v1,v2 ∈ S2.

3. Estimate the orientation u(x,q,S) ∈ S2 measured by the rotation matrix Rintermediate(x,q)
given the setup sensitivity S:

u(x,q,S) = Rintermediate(x,q) ·S. (8.5)

4. Rotate u(x,q,S) to q:

R f inal(x,q,S) = Rintermediate(x,q) ·M(u(x,q,S),q). (8.6)

5. Compute the pose y(q,S) = (ψ,θ ,φ) from the matrix R f inal(x,q,S) such that the absolute
value of ψ in y(q,S) is minimized. For calculation of pose (ψ,θ ,φ) from the rotation matrix,
please refer to Appendix B.

8.2 Acquisition Schemes and Setup Geometry

In the previous section, we presented a method to design an acquisition scheme Z(S,N) that fully
measures several sensitivity orientations on the unit sphere. The first step for designing such a scheme
is to choose a set of orientations that we wish to measure. In order to reconstruct the spherical function
using AXDT, it is required to choose orientations that are uniformly distributed on the unit sphere.
One example of such sets of orientations are the t-designs presented by Hardin and Sloane (1996). We
use these designs as they are a good choice for selecting uniformly distributed points on the sphere.
However, any uniform distribution of points on the sphere can be used. We begin with a symmetric
t-design consisting of 56 directions spread over the unit sphere as shown in Figure 8.2(a). Since the
AXDT model is symmetric around the origin, we use only 28 directions of this t-design spread over
one half of the unit sphere.

Next, we generate an acquisition scheme:

Z([0.7071,−0.7071,0]T ,100) =
{

Y (qi, [0.7071,−0.7071,0]T ,100), i = 1, . . . ,28
}
, (8.7)
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(a) (b) (c)

(d) (e) (f)

Figure 8.2: (a) A t-design with 56 uniformly distributed points. We aim to design trajectories that fully
measure all of these scattering orientations. (b) Acquisition scheme Z([0.7071,−0.7071,0]T ,100)
with 2800 poses. Acquisition schemes (c) ZD(100) with 1676 poses, (d) ZH(100) with 1256 poses,
(e) ZV (100) with 1284 poses, which measure all the points in (a) within the practical limitations of
the setup with diagonally, horizontally and vertically aligned grating bars respectively. (f) acquisition
scheme W (100). Figure by Sharma et al. (2017) is licensed under CC BY 4.0.

consisting of 2800 poses. The vectors ±t(x) for all x ∈ Z([0.7071,−0.7071,0]T ,100) are shown in
Figure 8.2(b). This acquisition scheme fully measures the 56 points shown in Figure 8.2(a). However,
it can be seen in Figure 7.3 that the Eulerian cradle intercepts the beam for high values of ψ , hence,
the setup is limited to −40 ≤ ψ ≤ 40. Therefore, all of the 2800 poses for the scheme Z(S,100)
cannot be measured. Figure 8.2(c) shows the points of Figure 8.2(b) that can be measured with the
condition |ψ| ≤ 40◦.

The ratio of the points that can be measured (Figure 8.2(c)) to the total number of desired points
(Figure 8.2(b)) is a function of the maximum reachable value of ψ and the setup sensitivity. Therefore,
to study this effect, we calculate Z(S,N) for 91 values of S such that:

⟨S, [1,0,0]⟩= cos(α); α ∈ [0◦,1◦,2◦, . . . ,90◦], (8.8)

where ⟨·, ·⟩ denotes the inner product. Figure 8.3(a) shows a 2D plot of the relative fraction of
measurable poses (out of 2800) for the acquisition scheme Z(S,100) for different values of reach-
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Figure 8.3: (a) 2D plot of the fraction of poses that can be measured with different grating arrangements
and different ψ angle limitation. (b) Fraction of poses that can be measured with maximum reachable
ψ = 40◦ for acquisition schemes Z(S,N). Red curve corresponds to the black line marked in (a). We
study three points on these curves corresponding to vertical, diagonal and horizontal grating alignment
denoted by ZV (N), ZD(N) and ZH(N) respectively. Figure by Sharma et al. (2017) is licensed under
CC BY 4.0.

able ψ ∈ [0◦,1◦,2◦, . . . ,90◦]. A line of this 2D plot for the maximum reachable ψ limit of 40◦

is shown in Figure 8.3(b) (red curve). The point of maximum of this line plot corresponds to
Z([0.7071,−0.7071,0]T ,100), that is, when the grating bars are placed diagonally. In addition, simi-
lar line plots for acquisition schemes Z(S,N),N = 60,20 are shown. We observe that the line plots
for lower values of N have step-like artifacts arising from round-off errors which can be circumvented
by using large number of sampling orientations. As it is difficult to actually align gratings at precise
angles in most of the currently available setups, we only study the three extreme points marked in
Figure 8.3(b). We define the notation ZD(N), ZH(N) and ZV (N) to denote acquisition schemes with
diagonal, horizontal and vertical arrangement of grating bars respectively. Figure 8.2(c-e) shows
the vectors ±t(x) for the measurable poses of acquisition schemes ZD(100), ZH(100), and ZV (100),
respectively, assuming that poses with |ψ|> 40◦ cannot be measured. It is evident from these results
that the maximum amount of poses can be probed by placing the gratings such that the grating lines are
aligned diagonally. From now on, we will assume that all acquisition schemes Z(S,N) are truncated
at |ψ|= 40◦, since this is the practical limit of our setup.

8.3 Null Space Analysis

Recall that we provided a brief overview of null space analysis as a tool to assess acquisition schemes
for CT in section 3.3.2. By looking at the null space of the system matrix P of a linear problem (such
as the one in Eq. 3.14), we can assess the nature of the linear system, and in turn of the acquisition
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scheme used to obtain the system. We already saw that the system matrix of the standard tomographic
problem is typically too large to store in the memory of currently available computing devices and,
hence, it is not possible to analytically calculate the null space of the matrix. Instead, we calculate one
component of the null space v by iteratively solving for Av = 0. Below, we extend the same concept
to calculate the null space for the XTT and AXDT system matrices.

8.3.1 Methods

Null space of AAXDT

The full system matrix AAXDT (see Eq. 5.16) for AXDT is larger than that of CT by an additional
factor of 2K −1 where K is the highest degree of spherical harmonic (K = 4 for our case). Therefore,
we reconstruct one vector spanning a subspace of the nullspace of AAXDT by iteratively solving
AAXDT η = 0 for η . Different vectors η ∈ ker(AAXDT ) can be computed by starting from different
initial guesses for η . We compute one component of the null space by starting with an initial guess of
η such that:

η =
{

η
m
k ; η

m
k = 0 for k ̸= 0 , η

m
k =


0.01

...
0.01

 for k = 0
}
, (8.9)

for all voxels. Since spherical harmonics are equivalent to a fourier series in terms of angular
frequency, this initial guess is equivalent to starting with a uniform spherical function which is a good
initial guess for clearly visualizing the effect of AXDT acquisition schemes.

Null space of AXT T

Similarly, the system matrix of XTT (see Eq. 5.5) is larger than the CT system matrix P by an
additional factor of K, where K is the number of pre-defined scattering orientations (see section 5.1).
Therefore, we reconstruct one vector spanning a subspace of the nullspace of AXT T by iteratively
solving AXT T β = 0 for β . Different vectors β ∈ ker(AXT T ) can be computed by starting from different
initial guesses for β . We compute one component of the null space by starting with an initial guess of
β such that:

β =

{
βk; βk =


0.01

...
0.01

}. (8.10)

This initial guess is equivalent to the initial guess η for AXDT i.e. a uniform unit sphere.

For computing the null space in both the cases above, we set the reconstruction volume size to
50×50×50, the detector size to 100×100 to limit computation times and use a parallel geometry
assumption in order to eliminate errors at the edges due to forward and back-projection.
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8.3.2 Results

It was outlined above that the acquisition trajectories are truncated due to the physical limitations of
the setup. This means that we cannot measure the full tomographic trajectory Y (qi,S,N) for all the
orientations qi, i = 1, . . . ,28. The missing angles lead to circular trajectories with missing wedges
similar to the ones in limited angle tomography. In standard tomography, the null space is easily
understood in terms of the Fourier Slice theorem as explained in section 3.3.2. However, the Fourier
Slice theorem does not carry over to our system due to its sensitivity specificity. Hence, it is not
possible to assume that similar limited angle artifacts can also be seen for the case of AXDT. Moreover,
all of the poses for Z(S,N) are used for the reconstruction of the spherical harmonic coefficients in
AXDT reconstruction, and there is no direct reconstruction of individual components corresponding
to each of the truncated trajectory. However, we postulate that our acquisition schemes correlate well
to the reconstruction process of AXDT/XTT and, hence, some effect of the limited angle trajectories
should be visible in the corresponding spherical function. We check this hypothesis by visualizing the
null space of the AXDT and XTT operators.

Correlation of Acquisition Schemes with AXDT

We estimate the null space for the proposed schemes as explained in section 8.3.1. Next, we probe
the reconstructed null space (in terms of spherical coefficients) at the specific points qi, i = 1, . . . ,28,
in order to evaluate the effect of the missing wedges for these individual scattering orientations.
Figure 8.4 shows the null space components for the scheme ZD(100). The magenta points show the
tomographic trajectory for all components qi as projected onto the x− z plane. Analogously, the
images show the null space averaged over all x− z planes for the corresponding component after
the first iteration. The null space artifacts caused by the ψ truncation can be seen explicitly in the
individual components reconstructed with AXDT. We also show corresponding figures for ZV (100)
and ZH(100) in Figures 8.6 and 8.5, respectively.

Correlation of Acquisition Schemes with XTT

We calculate the null space of the XTT operator for the acquisition scheme ZD(100). For setting up
the operator AXT T , we set the pre-defined set of orientations to qi, i = 1, . . . ,28, same as the one used
for designing the acquisition scheme (Eq. 8.3). In Figure 8.7, we show the null space components of
the 28 points similar to the Figures 8.4 to 8.6.

For all the four cases in Figures 8.4 to 8.7, we can see limited angle artifacts for every single
point on the sensitivity sphere, as we would expect if we measured them separately. Moreover, we
should note that we use all the poses in the reconstruction approaches for both XTT and AXDT as
is explained in Chapter 5 and later probe the points separately. This observation is a very strong
indication that the proposed method to design acquisition schemes presented in section 8.1 is coherent
with both the reconstruction models presented in Chapter 5.
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Figure 8.4: Null space components for each of the 28 points in Figure 8.2(a) calculated using the
acquisition scheme ZD(100) (Figure 8.2(c)). The magenta points show the trajectories for each
component truncated for maximum reachable |ψ|= 40◦ and the correponding images show the null
space averaged over all x− z planes. Figure by Sharma et al. (2017) is licensed under CC BY 4.0.

Figure 8.5: Null space components for each of the 28 points in Figure 3(a) in the manuscript calculated
using the acquisition scheme ZH(100) (Figure 3(d) in the manuscript). The magenta points show the
trajectories for each component truncated for maximum reachable |ψ|= 40◦ and the correponding
images show the null space averaged over all x− z planes. Figure by Sharma et al. (2017) is licensed
under CC BY 4.0.
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Figure 8.6: Null space components for each of the 28 points in Figure 3(a) in the manuscript calculated
using the acquisition scheme ZV (100) (Figure 3(e) in the manuscript). The magenta points show the
trajectories for each component truncated for maximum reachable |ψ|= 40◦ and the correponding
images show the null space averaged over all x− z planes. Figure by Sharma et al. (2017) is licensed
under CC BY 4.0.

Figure 8.7: Null space components for each of the 28 points in Figure 3(a) in the manuscript calculated
using the acquisition scheme ZV (100) (Figure 3(e) in the manuscript). The magenta points show the
trajectories for each component truncated for maximum reachable |ψ|= 40◦ and the correponding
images show the null space averaged over all x− z planes.
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(a) (b)

Figure 8.8: Attenuation volume (a) 3D rendering (b) A slice shown of the attenuation volume marked
in (a). Porosity is clearly visible in attenuation.

8.4 Experiments

In this section, we present experimental results to support the observations made in sections 8.3.2 and
8.2. We measured a circular thermoplastic short fibre moulding part, composed of fibres that are 7 µm
thick and 200 µm long, at a resolution of approximately 80 µm in the setup described in section 7.4.1.
We measured the sample with the following acquisition schemes:

1. ZD(N) - New schemes (section 8.1) with diagonal grating alignment

2. ZH(N) - New schemes (section 8.1) with horizontal grating alignment

3. ZV (N) - New schemes (section 8.1) with vertical grating alignment

4. W (N) - Schemes introduced by Malecki et al. (2014) with vertical grating alignment. Such a
scheme can be written as:

W (N) = {w =(ψ,θ ,φ);

ψ ∈{0◦,20◦,40◦},

θ ∈{0◦,30◦,60◦,90◦},

φ ∈{0◦,
360◦

N
, . . . ,360◦− 360◦

N
}}.

(8.11)

The trajectory ±t(w) for all w ∈W (100) is shown in Figure 8.2(f).

We employed 7 phase steps with 1 sec. exposure per step for obtaining a single dark-field image for
all the schemes.
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(a) (b)

Figure 8.9: A slice of (a) the isotropic scattering component, and (b) the 3D vectors reconstructed
using AXDT for a thermoplastic short fibre moulding sample measured at a spatial resolution of
approximately 80 µm. The red box marks a feature that cannot be seen in either of (a) or (b). We can
see in (a) that porosity cannot be seen in the dark-field image. Therefore, we mask porosity in (b)
with the attenuation volume (Figure 8.8)
.

First, we reconstruct the attenuation volume using the scheme ZD(100) and show its 3D rendering
in Figure 8.8(a). A slice of the volume is shown in Figure 8.8(b). Obviously, the imaging resolution is
not sufficient to resolve the fibres with a diameter of 7 µm. However, we can resolve the porosity as
can be seen.

Next, we perform AXDT reconstruction of the same volume. A slice of η0
0 , which is the isotropic

component of the dark-field signal, is shown Figure 8.9(a). Figure 8.9(b) shows the main orientation
in every third voxel as extracted from the spherical function. The vectors have been masked with the
attenuation signal to avoid the undesired effect of edge-scattering at the pores [Yashiro and Momose
(2015), Wolf et al. (2015)]. The red box in Figure 8.9(b) shows a feature in this sample which
cannot be seen in either of 8.9(a) or 8.8(b). This is a weld-line and is only revealed by extracting the
orientations of the fibres in the region using AXDT. Very high resolution micro CT may be required
to directly resolve this structure but then a sample of this dimension (28×23×21 mm3) cannot be
measured at once and one would have to resort to multiple tomographies or even to destroying the
sample.

We use detectability of the unique feature highlighted in Figure 8.9(b) to compare and contrast
the different acquisition schemes. In order to do so, we define an experimental metric similar to the
one in section 7.3.

8.4.1 Experimental Metric

We consider the scheme ZD(100) as a standard, over-sampled scheme with the highest quality result.
As was done in section 7.3, we define an Experimental Metric, EM(X), for an acquisition schemes X
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(a) (b)

Figure 8.10: (a) Coverage Metric (CM) and (b) Experimental Metric (EM) as a function of N for four
different acquisition schemes.

as:

EM(X) =
1
I

I

∑
i=1

∣∣∣〈Ui(X),Ui(ZD(100))
〉∣∣∣ (8.12)

where ⟨·, ·⟩ is the standard scalar product, Ui(ZD(100)) and Ui(X) denote the structure orientation for
the voxel index i = 1, . . . , I in the region-of-interest (red rectangle in Figure 8.11) calculated using the
acquisition scheme ZD(100) and an arbitrary scheme X , respectively.

8.5 Results

We show the region marked in Figure 8.9(b) for different acquisition schemes in Figure 8.11. The
columns in Figure 8.11 correspond to three different values of N = {100,20,10} for a specific scheme,
while the rows show four different schemes for the same value of N. The value of the Experimental
Metric for different schemes is shown in Figure 8.10(b).

In addition to the experimental metric, we also use the Coverage Metric (CM) to compare the
schemes. This is a metric which determines the degree up to which an acquisition scheme measures
all orientations on the unit sphere or, in other words, CM(X) provides a measure of the efficiency of
any acquisition scheme X . The usability of CM as a valid metric for XTT acquisition schemes was
established in Chapter 7. It can be directly applied to AXDT as well, since the two methods only
differ in the reconstruction method and the acquisition protocol is identical. Figure 8.10(a) shows the
coverage metric for ZD(N),ZH(N),ZV (N), and W (N) for different values of N.
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Figure 8.11: Structure orientations calculated using AXDT in the region-of-interest (indicated by the
red box in Figure 8.9(c)) for different acquisition schemes. Each column corresponds to acquisition
schemes and every row shows the four schemes with the same value of N. The red box indicates the
region-of-interest used for calculating the Experimental Metric. Figure by Sharma et al. (2017) is
licensed under CC BY 4.0.

8.6 Discussion

We present a new technique to design acquisition schemes for directional dark-field tomographic
imaging. We use the concept of rotational invariance to design tomographic trajectories that fully
measure a unique component of the three dimensional scattering function. However, we show that all
of the desired poses cannot be measured in a regular setup. In fact, this is a problem for most of the
setup configurations, since it is always difficult to measure along the axis of the sample mount with X-
rays. Therefore, we show the fraction of poses that can be measured for different setup configurations
in Figure 8.3(a) and (b). We observe that while it is possible to measure all the information with any
grating orientation in an ideal setup, the grating orientation starts to play a major role when the setup
limitation, that is the availability of the angle ψ only up to a certain value, is enforced. It can be seen
that we can optimize the amount of measurable poses by placing the gratings diagonally.

Next, we study the effect of the aforementioned setup limitation by visualizing the null space of
the AXDT operator. It can be seen in Figures 8.4 to 8.7 that the ψ limitation leads to missing wedges
(magenta points) in the tomographic trajectories for most of the orientations. We note that the effect
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of these missing wedges can be directly seen in the null space of the corresponding component. This
is an interesting finding because of the fact that even though the AXDT operator uses all of the poses
at the same time to reconstruct the spherical function, we are still able to see the effect of the limited
angle trajectories at the corresponding sensitivity points on the reconstructed field. More importantly,
the null space visualization is proof that the initial concept of calculating tomographic trajectories
which provide invariant dark-field signal for certain pre-defined orientation vectors works exactly as
we expect it to. Please note that the fact that we only get one component of ker(A) is not a limitation
for our work since we compute this component in the exact same way for all the orientations.

We use the Coverage Metric (CM) (Chapter 7) to compare the new schemes ZD(N), ZH(N), ZV (N)

among themselves and to the schemes that have been used by our group in previous works W (N). It
can be seen in Figure 8.10(a) that the value of CM decreases with the value of N for all four schemes
and that the new schemes outperform the previously used scheme W (N). Moreover, ZD(N) has the
highest value of CM amongst the new schemes. This implies that diagonal grating alignment is the
most efficient of the proposed schemes (as also seen in Figure 8.3), followed by horizontal alignment,
and vertical grating alignment is the least favorable.

Finally, we show an example of the application of AXDT to an industrially relevant composite
material. We show in Figure 8.9(c) that AXDT is able to resolve orientations of fibres with sizes that
are much below the resolution of the imaging system. Moreover, the fibre orientations calculated
using AXDT reveal a particular feature (weld-line) in the sample which cannot be seen in conventional
attenuation or even the isotropic component of the dark-field signal. We compare, qualitatively in
Figure 8.11 and quantitatively in Figure 8.10, the new schemes Z(S,N) for three different grating
orientations and the old schemes W (N). We can see in Figure 8.11 that although the weld-line is
clearly visible in all the schemes with N = 100 (first row), the scheme ZD(100) provides the most
comprehensible distinction of the weld-line. More importantly, the quality of this result is maintained
for ZD(20) and ZH(20), while significant deterioration can be seen for ZV (20) and W (20). The vectors
reconstructed with the schemes W (N) (last column in Figure 8.11) seem to be oriented in certain
preferred directions and the variations are lost. This is due to the fact that the schemes W (N) provide
an uneven sampling of the unit sphere and the reconstruction is biased towards a partial reconstruction
of the most commonly sampled scattering orientations.

In Figure 8.10(b), we compare the performance of the schemes with respect to the scheme
ZD(100), which is assumed as the reference dataset. Here, we can see that the vectors in the region-
of-interest deviate most from the reference for the schemes W (N). Also, we observe that the trend
of the graph for the four schemes matches the corresponding trend observed in Figure 8.10(a). This
observation supports our claim that the new type of acquisition schemes provide better results than
the old ones. Moreover, we can also conclude that diagonal grating orientation is the most favorable
followed by horizontal and vertical alignment of gratings for the new schemes. It should also be
noted that ZD(20) corresponds to a measurement time of only ∼ 2 hours and is still of comparable
quality to ZD(100) which requires ∼ 10 hours of measurement. This reduction in acquisition time
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is a substantial improvement compared to the long measuring times of ∼ 10 hours required for the
schemes used previously [Malecki et al. (2014),Vogel et al. (2015),Sharma et al. (2016)].

8.7 Summary

In this work, we present a more efficient method to design acquisition schemes for tomographic
imaging of the directional dark-field signal and present results of diagonal grating orientation being the
most optimal setup configuration for these schemes. Finally, we also show that the new schemes with
diagonal grating alignment allow us to obtain good image quality with only ∼ 2 hours of measurement
time instead of the ∼ 10 hours of measurements that was used previously.



Chapter 9

Summary and Outlook

Anisotropic X-ray Dark-field (AXDF) imaging aims to bridge the gap between industrial demands
of resolution and available X-ray technology. By reconstructing the reciprocal space scattering
information in every real space voxel, AXDF imaging aims to reveal information about micron and
sub-micron sized structures in centimeter sized samples. However, these methods suffer from a long
and tedious measurement procedure which is a hurdle to their practical applications in industry and
medicine. In this thesis, we presented strategies to simplify the acquisition methods for AXDF imaging
in two and three dimensions with the goal of applying these methods to real world applications.

In order to lay the context for understanding the contributions of this work, we briefly explained
the basics of conventional X-ray Computed Tomography in Chapter 3. Next, we reviewed recent
developments in the field of X-ray dark-field imaging in Chapter 4, and introduced a two dimensional
AXDF imaging modality. Chapter 5 covered, in detail, the most recent developments in the field of
AXDF tomography. Finally, we addressed the need to simplify measurement methods for AXDF
imaging in the following ways.

1. Two dimensional AXDF imaging

Analogous to conventional radiography, X-ray Vector Radiography is a two dimensional AXDF
imaging method. As the name suggests, we reconstruct the orientations of micro structure
inside a sample by analyzing the variation in the dark-field signal as the sample is rotated around
the beam propagation direction. Conventional XVR measurements require a time consuming
stepwise process of sample rotation and grating stepping. We presented a new method, namely
Trochoidal X-ray Vector Radiography (TXVR) that overcomes these limitations. We replace the
tedious stepwise process with a fast, continuous motion of the sample in a trochoidal trajectory.
By doing so, we obviate the need to step gratings during the measurement and enable the fast
measurement of continuously moving samples, thus taking a significant step forward towards
the commercialization of this method.

2. AXDF Tomography
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AXDF tomography aims at the reconstruction of the three dimensional scattering function at
every three dimensional location inside the sample. It is, therefore, required to understand the
requirements of AXDF tomography with respect to optimal sampling of both the reciprocal and
real space information. We approached this problem in two ways:

(a) Reducing the hardware and time complexity of existing schemes:

We introduced and validated a numerical measure to predict the efficacy of existing
schemes in section 7.2. We used this measure to design sparse acquisition schemes for
XTT. An important conclusion of this study was that we can perform XTT with only two
rotation axes instead of three, as initially proposed.

(b) Design of acquisition schemes:

In Chapter 8, we took a step back and laid down the foundations for an optimal sampling
protocol. We used ideas from Chapter 7 to develop an approach for designing acquisition
schemes for any arbitrary setup configuration. We proved the validity of our approach
using knowledge from convention tomography (Chapter 3). Moreover, we discussed
optimal setup configuration to implement the new schemes and showed promising results
with respect to the schemes used earlier.

9.1 Outlook

AXDF imaging is a new category of X-ray imaging modalities. Owing to the aforementioned obstacles
for measurement, the field has not been able to gather as much attention from the scientific community
as it deserves. With the results presented in this thesis, we hope to overcome some of the barriers to
this and hope to see this field move much faster in the coming years.

Trochoidal X-ray Vector Radiography (TXVR) is a novel and easy way of resolving structure
orientations in thin samples. The main focus of this chapter was to demonstrate proof-of-principle
of using the trochoidal trajectory for XVR measurement. However, we did not make full use of the
trochoidal motion during the processing stage. The speed and accuracy of TXVR can be significantly
increased, in future work, by incorporating properties of the trochoid into the processing algorithm.

One of the most important factors for AXDF tomographic acquisition is the number of rotation
axes needed for the measurement. We showed, in Chapter 7, that while two rotation axes are sufficient
for this, a single rotation axis does not work. However, we did not take into consideration the fact that
we do not always need to sample the entire unit sphere of orientations for a given task. We believe
that the Coverage Metric (section 7.2) can be used to design task-specific acquisition schemes with
much lesser hardware complexity than the schemes presented in this thesis.

Finally, the correlation of the new schemes (Chapter 8) with conventional tomography is a strong
indication of the fact that we have been able to successfully relate our methods to conventional
tomography. This implies that we can now use decades of knowledge from CT for AXDF tomography
and develop this technology at a much faster pace.



Appendix A

Rotation Matrix from Euler Angles

In this appendix, we provide the calculation of the rotation matrix R(x) for the pose x := (ψ,θ ,φ)

in the setup (Figure 7.3) using an eulerian cradle Figure 6.1(b). An eulerian cradle provides the
following three rotation axes (see Figure 7.3):

1. ψ- Rotation about y axis

2. θ - Rotation about z′ axis

3. φ - Rotation about y′ axis

In order to reach the pose (ψ,θ ,φ) , first we rotate the sample around the y axis:

Ry (ψ) =

 cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

 (A.1)

Next, we rotate the sample around the z′ axis:

Rz (θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (A.2)

Finally, we rotate around the y′ axis, which is analogous to standard rotation in CT:

Ry (φ) =

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

 (A.3)
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The rotation matrix R(x) for the pose x := (ψ,θ ,φ) can now be calculated as R(x) = Ry (ψ) ·Rz (θ) ·
Ry (φ). Using Equation A.1 and A.2,

Ry (ψ) ·Rz (θ) =

 cosψ cosθ −cosψ sinθ sinψ

sinθ cosθ 0
−sinψ cosθ sinψ sinθ cosψ

 (A.4)

Using Equation A.3 and A.4,

R(x) =Ry (ψ) ·Rz (θ) ·Ry (φ) = cosψ cosθ cosφ − sinψ sinφ −cosψ sinθ cosψ cosθ sinφ + sinψ cosφ

sinθ cosφ cosθ sinθ sinφ

−sinψ cosθ cosφ − cosψ sinφ sinψ sinθ −sinψ cosθ sinφ + cosψ cosφ

 (A.5)



Appendix B

Euler Angles from Rotation matrix

Calculation of a unique pose x := (ψ,θ ,φ) from a given rotation matrix R(x) is not trivial. Below,
we present details of this calculation used for the last step in Algorithm 1. Let us write a generalised
rotation matrix as: R00 R01 R02

R10 R11 R12

R20 R21 R22

 (B.1)

Comparing Eq. 6.2 and B.1,
R11 = cosθ . (B.2)

Now, we have two cases:

If |R11| ̸= 1

Values of θ

Keeping in mind that cosθ = cos(−θ), there are actually two values for θ that satisfy Eq. B.2 for
R11 ̸=±1 (we will handle this case in the next section):

θ1 =arccos(R11)

θ2 =− arccos(R11)
(B.3)

Values of ψ

Using Eqs. A.5 and B.1,
R21

−R01
= tanψ (B.4)

We use this equation to solve for ψ as:

ψ = arctan2(R21,−R01) , (B.5)
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where arctan2(y,x) is arc tangent of the two variables x and y. It is similar to calculating the arc
tangent of y/x, except that the signs of both arguments are used to determine the quadrant of the
result, which lies in the range [−π,π]. One must be careful in interpreting Equation B.5. If sinθ > 0,
then ψ = arctan2(R21,−R01). However, when sin(θ)< 0,ψ = arctan2(−R21,R01). A simple way
to handle this is to use the equation B.6 to compute ψ:

ψ = arctan2
(

R21

sinθ
,
−R01

sinθ

)
, (B.6)

Equation B.6 is valid for all cases except when sinθ = 0. We will deal with this case in the next
section. For each value of θ , we compute a corresponding value of ψ using Equation B.6, yielding:

ψ1 =arctan2
(

R21

sinθ1
,
−R01

sinθ1

)
,

ψ2 =arctan2
(

R21

sinθ2
,
−R01

sinθ2

)
,

(B.7)

Values of φ

Using Eqs. A.5 and B.1,
R12

R10
= tanφ (B.8)

Using similar arguments as above, we end up with two values of φ :

φ1 =arctan2
(

R12

sinθ1
,

R10

sinθ1

)
,

φ2 =arctan2
(

R12

sinθ2
,

R10

sinθ2

)
,

(B.9)

We now have two solutions x1 := (θ1,ψ1,φ1) and x2 := (θ2,ψ2,φ2) when |R11| ̸= 1. Both the solutions
are valid. We use x := (θ1,ψ1,φ1) in the last step of Algorithm 1.

If |R11|= 1

When |cosθ | = 1, sinθ = 0 and the RHS of equations B.7 and B.9 boil down to arctan2
(

0
0
,
0
0

)
.

In this case, R12,R10,R21 and R01 do not constrain the values of ψ and φ . Therefore, we must use
different elements of the rotation matrix to compute the values of ψ and φ .

If R11 = 1

Obviously,
θ = 0. (B.10)
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From equations A.5 and B.1,

R0,0 = cosψ cosφ − sinψ sinφ = cos(ψ +φ)

R0,2 = cosψ sinφ + sinψ cosφ = sin(ψ +φ)

R2,0 =−sinψ cosφ − cosψ sinφ =−sin(ψ +φ)

R2,2 =−sinψ sinφ + cosψ cosφ = cos(ψ +φ)

(B.11)

Therefore,

tan(ψ +φ) =
R0,2

R0,0

ψ +φ = arctan2(R0,2,R0,0)

φ = ψ + arctan2(R0,2,R0,0)

(B.12)

Infinite solutions exist.

If R11 =−1

Obviously,
θ = π. (B.13)

Same as above, from equations A.5 and B.1

R0,0 =−cosψ cosφ − sinψ sinφ =−cos(ψ −φ)

R0,2 =−cosψ sinφ + sinψ cosφ = sin(ψ −φ)

R2,0 = sinψ cosφ − cosψ sinφ =−sin(ψ −φ)

R2,2 = sinψ sinφ + cosψ cosφ = cos(ψ −φ)

(B.14)

Therefore,

tan(ψ −φ) =
R0,2

−R0,0

ψ −φ = arctan2(R0,2,−R0,0)

φ = ψ − arctan2(R0,2,−R0,0)

(B.15)

Infinite solutions exist.
In both the above cases, we set ψ = 0 and calculate φ to obtain a unique solution. This obviously

makes sense since ψ rotation is much slower than φ .
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