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1 Introduction

The associated production of a top-quark pair and a Higgs boson can provide direct infor-

mation on the Yukawa coupling of the Higgs boson to the top quark, which is crucial for

verifying the origin of fermion masses and may shed light on the hierarchy problem related

to the mass of the Higgs boson. For this reason, experimental collaborations at the Large

Hadron Collider (LHC) are actively searching for this Higgs-boson production mode in the

currently ongoing Run II. The Standard Model (SM) cross section for this process at a

center-of-mass energy of 13 TeV is quite small, of the order of 0.5 pb.

Differences between the measured cross section and the corresponding SM predictions

could indicate the presence of new physics which modifies the top-quark Yukawa coupling.

Consequently, a large amount of work has been devoted to the study of this process beyond

leading order (LO) in the SM. The LO cross section scales as α2
sα, where αs and α denote

the strong coupling constant and the electromagnetic fine structure constant, respectively.

The next-to-leading order (NLO) QCD corrections to this process were first evaluated more

than ten years ago [1–6]. This process also served as a benchmark for validating automated

tools for NLO calculations; in [7, 8] the NLO corrections were calculated automatically and

interfaced with Monte Carlo event generators, thus including parton shower and hadroniza-

tion effects. Electroweak corrections to this process were studied in [9–11]. NLO QCD and

electroweak corrections were included in the POWHEG framework in [12]. In [13] the NLO

corrections to the associated production of a top pair and a Higgs boson were studied by

considering also the decay of the top quark and off-shell effects. The cross section for

the associated production of a top pair, a Higgs boson and an additional jet at NLO was

evaluated in [14].

Perturbative calculations for the tt̄H production process are difficult and involved, due

to the presence of five external legs, four of which carry color charges. Consequently, it is

not likely that the next-to-next-to-leading order (NNLO) QCD corrections for this process
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will be computed in the near future. For this reason, the impact of soft gluon emission

corrections beyond NLO was the subject of recent studies. In [15] the soft gluon emission

corrections to the total tt̄H cross section in the production threshold limit were evaluated

up to next-to-leading logarithmic (NLL) accuracy; the production threshold is defined as

the kinematic region in which the partonic center-of-mass energy approaches 2mt + mH ,

which is the minimal energy of the final state. In [16], on the other hand, we applied Soft-

Collinear Effective Theory (SCET) methods1 in order to study the impact of soft-gluon

corrections to the associated production of a top pair and a Higgs boson in the partonic

threshold limit,2 i.e. in the limit where the partonic center-of-mass energy approaches the

invariant mass M of the tt̄H final state. The mass M is bounded from above only by

the hadronic center-of-mass energy. In [16] a resummation formula for the soft emission

corrections was derived and all of the elements necessary for the evaluation of that formula

to next-to-next-to-leading logarithmic (NNLL) accuracy were evaluated. By using these

results, a study of the approximate NNLO corrections originating from soft gluon emission

in the partonic threshold limit was carried out. In particular, an in-house parton level

Monte Carlo program was developed and employed to evaluate the total cross section and

several differential distributions. However, a direct numerical evaluation of the soft gluon

emission corrections to NNLL was not performed in [16]. Recently, results for the total

cross section and invariant mass distribution at NLL accuracy in the partonic threshold

limit were presented in [18].

From the technical point of view, the associated production of a top pair and a W

boson shows several similarities to the associated production of a top pair and a Higgs

boson. However, the former process involves only one partonic production channel in

the partonic threshold limit, namely the quark annihilation channel, while the latter also

receives large contributions from the gluon fusion channel. For this reason some of us

recently studied the resummation of the soft gluon corrections in the partonic threshold

limit to tt̄W production [19]. In that work the resummation was carried out up to NNLL

accuracy in Mellin space. An in-house parton level Monte Carlo program for the numerical

evaluation of the resummation formulas was developed and employed to obtain predictions

for the total cross section and several differential distributions at the LHC operating at a

center-of-mass energy of 8 and 13 TeV. (The NNLL resummation in the partonic threshold

limit for tt̄W production in momentum space was studied in [20].)

By building upon the results of [16] and [19], in this paper we study the resummation

of soft gluon emission corrections to the associated production of a top-quark pair and a

Higgs boson in Mellin space. We developed an in-house parton level Monte Carlo code

which allows us to evaluate numerically soft emission corrections to this process up to

NNLL accuracy. In this paper, we employ the expression “parton level Monte Carlo”

in order to indicate a numerical program where the momenta of the incoming partons

1See [17] for an introduction to SCET.
2Often this limit is referred to as PIM kinematics. The acronym PIM stands for Pair Invariant Mass

and was extensively employed in the context of top-quark pair production. While the generalization to our

case is trivial, the word “pair” should not be applied to the process under study here, where the final state

invariant mass involves 3 particles.

– 2 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

as well as the momenta of the top quark, antitop quark and Higgs boson are generated,

and arbitrary kinematic distributions depending on the momenta of the final state heavy

particles can be studied in the soft emission limit. By matching these results with complete

NLO calculations carried out with MadGraph5_aMC@NLO [21] (which we will indicate with

MG5 aMC in the rest of this paper) we obtain predictions for the total cross section and several

differential distributions which are valid to NLO+NNLL accuracy. We also compute the

observables at NLO+NLL accuracy and using NNLO approximations of the NLO+NNLL

results, and show that these less precise computations miss important effects.

The paper is organized as follows: in section 2 we review the salient features of the

technique employed to obtain and evaluate the relevant resummation formulas. In section 3

we present predictions, valid to NLO+NNLL accuracy, for the total cross section and several

differential distributions for the associated production of a top pair and a Higgs boson at

the LHC operating at a center-of-mass energy of 13 TeV. Finally, section 4 contains our

conclusions.

2 Outline of the calculation

The associated production of a top quark pair and a Higgs boson receives contributions

from the partonic process

i(p1) + j(p2) −→ t(p3) + t̄(p4) +H(p5) +X , (2.1)

where ij ∈ {qq̄, q̄q, gg} at lowest order in QCD, and X indicates the unobserved partonic

final-state radiation. Two Mandelstam invariants play a crucial role in our discussion:

ŝ = (p1 + p2)2 = 2p1 · p2 , and M2 = (p3 + p4 + p5)2 . (2.2)

The soft or partonic threshold limit is defined as the kinematic situation in which

z ≡ M2

ŝ
→ 1 . (2.3)

In this region, the unobserved final state can contain only soft radiation.

The factorization formula for the QCD cross section in the partonic threshold limit

was derived in [16] and reads

σ (s,mt,mH) =
1

2s

∫ 1

τmin

dτ

∫ 1

τ

dz√
z

∑
ij

ff ij

(τ
z
, µ
)

×
∫
dPStt̄HTr

[
Hij ({p}, µ) Sij

(
M(1− z)√

z
, {p}, µ

)]
. (2.4)

In (2.4), s indicates the square of the hadronic center-of-mass energy and

τmin =
(2mt +mH)2

s
, τ =

M2

s
. (2.5)

We use the symbol {p} to indicate the set of external momenta p1, · · · , p5. The trace

Tr [HijSij ] is proportional to the spin and color averaged squared matrix element for tt̄H+
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Xs production in the process initiated by the two partons i and j, where Xs indicates the

unobserved soft gluons in the final state. The hard functions Hij , which are matrices

in color space, are obtained from the color decomposed virtual corrections to the 2 → 3

tree-level process. The soft functions Sij (which are also matrices in color space) are

related to color-decomposed real emission corrections in the soft limit; they depend on plus

distributions of the form

P ′n(z) ≡
[

1

(1− z)
lnn
(
M2(1− z)2

µ2z

)]
+

, (2.6)

as well as on the Dirac delta function of argument (1−z). The parton luminosity functions

ff ij are defined as the convolutions of the parton distribution functions (PDFs) for the

partons i and j in the protons N1 and N2:

ff ij (y, µ) =

∫ 1

y

dx

x
fi/N1

(x, µ) fj/N2

(y
x
, µ
)
. (2.7)

In the soft limit the indices ij ∈ {qq̄, q̄q, gg}, as at LO. The hard and soft functions

are two-by-two matrices for qq̄-initiated (quark annihilation) processes, and three-by-three

matrices for gg-initiated (gluon fusion) processes. Contributions from other production

channels such as q̄g and qg are subleading in the soft limit. We shall refer to such processes

collectively as the “quark-gluon” or the “qg” channel in what follows.

The hard functions satisfy renormalization group equations governed by the soft anom-

alous dimension matrices ΓijH , which depend on the partonic channel considered. These

anomalous dimension matrices, which are needed to carry out the resummation of soft

gluon corrections, were derived in [22, 23]. The hard functions, soft functions, and soft

anomalous dimensions must be computed in fixed-order perturbation theory up to a given

order in αs. In this work we study the resummation up to NNLL accuracy. For this task

we need to evaluate the hard functions, soft functions and soft anomalous dimensions to

NLO. All of these elements were already evaluated to the order needed here [16, 22–24].

In particular, the NLO hard functions were evaluated by customizing two of the one-

loop provider programs available on the market, GoSam [25–29] and Openloops [30]. The

numerical evaluation of the hard functions for this work has been performed by using a

modified version of Openloops in combination with Collier [31–35]. GoSam in combination

with Ninja [29, 36, 37] was used to cross-check our results.

The resummation formula for the associated production of a tt̄H final state in Mellin

space is similar to the one which was derived for the production of a tt̄W final state in [19]

and reads

σ(s,mt,mH) =
1

2s

∫ 1

τmin

dτ

τ

1

2πi

∫ c+i∞

c−i∞
dNτ−N

∑
ij

ff̃ ij (N,µ)

∫
dPStt̄H c̃ij (N,µ) , (2.8)

where we introduced the Mellin transform of the luminosity functions ff̃ ij , and

c̃ij (N,µ) ≡ Tr

[
Hij ({p}, µ) s̃ij

(
ln

M2

N̄µ2
, {p}, µ

)]
. (2.9)
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Since the soft limit z → 1 corresponds to the limit N → ∞ in Mellin space, we neglected

terms suppressed by powers of 1/N in (2.8). Furthermore, in (2.9) we employed the notation

N̄ = NeγE . The function s̃ij is the Mellin transform of the soft function Sij found in (2.4).

The hard and soft functions in (2.8) can be evaluated in fixed order perturbation theory

at scales at which they are free from large logarithms. We indicate these scales with µh
and µs, respectively. Subsequently, by solving the renormalization group (RG) equations

for the hard and soft functions one can evolve the hard scattering kernels in (2.9) to the

factorization scale µf . One obtains

c̃ij(N,µf ) = Tr

[
Ũij(N̄ , {p}, µf , µh, µs) Hij({p}, µh) Ũ†ij(N̄ , {p}, µf , µh, µs)

× s̃ij

(
ln

M2

N̄2µ2
s

, {p}, µs
)]

. (2.10)

Large logarithmic corrections depending on the ratio of the scales µh and µs are resummed

in the channel-dependent matrix-valued evolution factors Ũ. The expression for the evo-

lution factors is

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
2SΓcusp(µh, µs)− aΓcusp(µh, µs) ln

M2

µ2
h

+ aΓcusp(µf , µs) ln N̄2

+ 2aγφ(µs, µf )

}
× u ({p}, µh, µs) , (2.11)

which is formally identical to the expression found for the corresponding quantity in carry-

ing out the resummation for tt̄W production. For the definition of the various RG factors

appearing in (2.11) we refer the reader to [19]. However, while for tt̄W production one

needs to consider the evolution factor in the quark-annihilation channel only, for tt̄H pro-

duction one also needs to evaluate the appropriate anomalous dimensions and evolution

factor for the gluon fusion channel.

The functions U in (2.11) depend on αs evaluated at three different scales: µh, µs
and µf . In practice, it is convenient to rewrite the evolution factors in terms of αs(µh)

only. This can be done by employing the running of αs at three loops [38]. By doing this,

logarithms such as ln(µh/µs) appear explicitly in the formula for the evolution matrix,

which becomes [19]

Ũ
(
N̄ , {p}, µf , µh, µs

)
= exp

{
4π

αs(µh)
g1 (λ, λf ) + g2 (λ, λf ) +

αs(µh)

4π
g3 (λ, λf ) + · · ·

}
× u({p}, µh, µs) , (2.12)

with

λ =
αs(µh)

2π
β0 ln

µh
µs

, λf =
αs(µh)

2π
β0 ln

µh
µf

. (2.13)
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MW 80.419 GeV mt 173.2 GeV

MZ 91.1876 GeV mH 125 GeV

GF 1.16639× 10−5 GeV−2 αs (MZ) from MMHT 2014 PDFs

Table 1. Input parameters employed throughout the calculation.

The leading logarithmic (LL) function g1, the NLL function g2, and the NNLL function g3

can be obtained starting from (2.11). One can see that the l.h.s. of (2.10) is independent of

µh and µs if the evolution factors and the hard and soft functions are known to all orders in

perturbation theory. This is impossible in practice, which introduces a residual dependence

on the choice of the scales µh and µs in any numerical evaluation of (2.11) or (2.12).

The hard and soft functions are free from large logarithms if one chooses µh ∼ M and

µs ∼M/N̄ . It is well known that one then faces the presence of a branch cut for large values

of N in the hard scattering kernel, whose existence is related to the Landau pole in αs.

In this work, we choose the integration path in the complex N plane when evaluating the

inverse Mellin transform according to the Minimal Prescription (MP) introduced in [39].

In the numerics, we need the parton luminosity functions in Mellin space. These can be

constructed using techniques described in [40, 41].

3 Numerical results

In this section we present predictions for the total cross section and differential distributions

for the tt̄H production process. The main goal of this work is to obtain predictions for

physical observables which are valid to NLO+NNLL accuracy. However, we also perform

some systematic studies meant to provide insight into the validity of various approximations

to this state-of-the-art result. In all cases, we use the input parameters listed in table 1,

and MMHT 2014 PDFs [42]. We switch PDF orders as appropriate for a given perturbative

approximation according to the scheme given in table 2, where we also specify the computer

code used in each case.

As a preliminary step we check that with our choice of scales and input parameters

the NLO expansion of the NNLL resummation formula (which we refer to as “approximate

NLO”) provides a satisfactory approximation to the exact NLO calculation. Such an

approximation of (2.10) captures the leading terms in the Mellin-space soft limit (N →∞)

of the NLO cross section, namely the single and double powers of lnN as well as N -

independent terms. Even though the N -independent terms depend on the Mandelstam

variables, we will refer to them as “constant” terms in what follows. Analogous comparisons

of approximate NLO and complete NLO calculations were carried out for tt̄W production

in [19]. In [16], similar comparisons were also performed for tt̄H production, but with two

differences with respect to the current work: the renormalization and factorization scales

were fixed (independent of M) instead of dynamic (correlated with M), and the leading

terms were represented in momentum space instead of Mellin space.

– 6 –
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order PDF order code σ [fb]

LO LO MG5 aMC 378.7+120.5
−85.2

app. NLO NLO in-house MC 473.3+0.0
−28.6

NLO no qg NLO MG5 aMC 482.1+10.9
−35.1

NLO NLO MG5 aMC 474.8+47.2
−51.9

NLO+NLL NLO in-house MC +MG5 aMC 480.1+57.7
−15.7

NLO+NNLL NNLO in-house MC +MG5 aMC 486.4+29.9
−24.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 497.9+18.5
−9.4

(NLO+NNLL)NNLO exp. NNLO in-house MC +MG5 aMC 482.7+10.7
−21.1

Table 2. Total cross section for tt̄H production at the LHC with
√
s = 13 TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties are

estimated through scale variations of this (and the resummation scales µs and µh when applicable)

as explained in the text, see the discussion around (3.5).

The NLO approximation mentioned above is easily obtained by setting µs = µh = µf
in the NNLL resummation formula (2.10). For this reason, the matched NLO+NNLL cross

section is given by

σNLO+NNLL =σNLO +
[
σNNLL − σapprox. NLO

]
. (3.1)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NNLL resummation onto the NLO result. In order to study the convergence of resummed

perturbation theory, we will also calculate NLO+NLL results, defined as

σNLO+NLL =σNLO +
[
σNLL − σNLL expanded to NLO

]
. (3.2)

The difference of terms in the square brackets contributes at NNLO and beyond, adding

NLL resummation onto the NLO result. However, in contrast to the approximate NLO

result, the constant piece of the NLO expansion of the NLL resummation formula contains

explicit dependence on the matching scales µh and µs, in addition to that on µf . The

numerical dependence on these scales is formally of NNLL order (and is indeed canceled

through µs and µh dependence in the NLO hard and soft functions in the NNLL result),

and provides an additional handle on estimating the size of NNLL corrections using the

NLL resummation formula.

While we are mainly interested in NNLL resummation effects, it is also interesting

to study to what extent these all-orders corrections are approximated by their NNLO

truncation. To this end, we consider “approximate NNLO” calculations based on the

NNLL resummation formula (2.10). Approximate NNLO calculations include all powers of

lnN and part of the constant terms from a complete NNLO calculation, but neglect terms

which vanish as N → ∞. Since the constant terms are not fully determined by an NNLL
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calculation (only their µ-dependence is, through the RG equations), there is some freedom

as to how to construct such approximations.

Here we consider two possibilities. The first follows the procedure used in [19] for the

case of tt̄W production. A detailed description of which constant pieces are included in

that NNLO approximation can be found in section 4 of [19].3 We match these NNLO

corrections, obtained in the soft limit, with the NLO ones in the usual way:

σnNLO = σNLO +
[
σapprox. NNLO − σapprox. NLO

]
, (3.3)

where we introduced the acronym nNLO to indicate approximate NNLO corrections

matched to full NLO calculations. The second NNLO approximation we consider is based

on the direct expansion of the NLO+NNLL result to NNLO. This differs from the approx-

imate NNLO result used above by constant terms, which are formally of N3LL order. We

define this approximation through the matching equation(
σNLO+NNLL

)
NNLO exp.

= σNLO +
[
σNNLL expanded to NNLO − σapprox. NLO

]
. (3.4)

In both cases above, the difference of terms in the square brackets is a pure NNLO correc-

tion. Contrary to the approximate NNLO result used in (3.3), which depends only on µf
by construction, the constant pieces of the NNLO expansion of the NNLL result in (3.4)

contain explicit dependence on µh and µs, in addition to that on µf . This scale dependence

is formally of N3LL order, and can be used to estimate the size of such corrections to the

NNLL results. Moreover, the NNLO approximation (3.4) differs from the NLO+NNLL

result through terms of N3LO and higher, so comparing the two results gives a direct

measure of how important such terms are numerically. In fact, were an exact NNLO cal-

culation to appear, adding to it these beyond NNLO terms would achieve NNLO+NNLL

resummation.

3.1 Scale choices

Numerical evaluations of the resummed formulas have a residual dependence on the choice

of the hard and soft scales µh and µs. This feature arises from the fact that the various

factors in (2.10) have to be evaluated at a given order in perturbation theory. When the

resummation is carried out in Mellin space the standard default choice of these scales is

µh,0 = M and µs,0 = M/N̄ [19, 43, 44]. This choice is the same one followed in the “direct

QCD” resummation method [39, 45, 46], and is the one we shall use here.

Furthermore, both the fixed-order and resummed results have a residual dependence

on the factorization scale µf . The factorization scale should be chosen in such a way that

logarithms of the ratio µf/M are not large [47]. Since we are working in the partonic

threshold limit it is natural to choose a dynamical value for the factorization scale which

is correlated with the final state invariant mass M . Figure 1 shows the dependence of the

total cross section calculated within various perturbative approximations on the choice of

3In [16] such approximate NNLO formulas were obtained starting from the resummation formula in

momentum space, and thus differ from Mellin space results through power corrections and constant terms.

However, we have checked that the two approaches lead to results which are numerically almost identical.
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0.1 0.2 0.5 1 2

400

500

600

700

800

μf /M

σ[fb
]

NLO

NLO+NLL

NLO+NNLL

nNLO

Figure 1. Factorization-scale dependence of the total tt̄H production cross section at the LHC

with
√
s = 13 TeV. The NLO and NLO+NLL curves are obtained using MMHT 2014 NLO PDFs,

while the NLO+NNLL and nNLO curves are obtained using MMHT 2014 NNLO PDFs.

the ratio µf/M at the LHC with
√
s = 13 TeV. One can observe that the NLO, NLO+NLL

and NLO+NNLL curves intersect each other in the vicinity of µf/M = 0.5, while the three

curves have a very different behavior for small values of µf . In addition, figure 1 shows

that beyond-NLO corrections are quite significant for µf/M � 0.5, as the NLO result falls

rather steeply away to smaller values in that region, while the other three curves remain

reasonably stable.

Because of these considerations, in the following we employ two different default choices

for the factorization scale, namely µf,0 = M/2 and µf,0 = M . The choice µf,0 = M/2 may

be advantageous because the lower-order perturbative results are larger at lower µf , so

that the apparent convergence of the perturbative series is improved, but other than this

numerical fact there is no obvious reason to exclude the natural hard scale M as a default

choice so we study this as well. In both cases, the uncertainty associated to the choice of

a default value for the scale is estimated by varying each scale in the interval [µi,0/2, 2µi,0]

(i ∈ {s, f, h}). The scale uncertainty above the central value of an observable O (the total

cross section, or the value of a differential cross section in a given bin) is then evaluated

by combining in quadrature the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)} − Ō , (3.5)

for i = f, h, s. In (3.5) κi = µi/µi,0 and Ō is the value of O evaluated by setting all scales

to their default values (κi = 1 for i = f, h, s). The scale uncertainty below the central

value can be obtained in the same way by combining in quadrature the quantities ∆O−i ,

defined as in (3.5) but with “max” replaced by “min”. We use this procedure to obtain

the perturbative uncertainties given in all of the tables and figures that follow.

3.2 Total cross section

We begin our analysis by considering the total cross section for the associated production

of a top pair and a Higgs boson at the LHC operating at a center-of-mass energy of 13 TeV.
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Figure 2. Comparison between different perturbative approximations to the total cross section

carried out with the default factorization scale choices µf,0 = M/2 (left) and µf,0 = M (right).

The labels “NLL” and “NNLL” on the horizontal axis indicate NLO+NLL and NLO+NNLL cal-

culations.

The results obtained are summarized in table 2, where we set µf,0 = M/2, in table 3, where

we set µf,0 = M , and in figure 2, which presents a visual comparison between the main

results at the two different scales.

We first compare the approximate NLO corrections generated from NNLL soft-gluon

resummation (second row of each table), with the full NLO corrections without (third row

of each table) and with (fourth row of each table) the qg channel. Since the approximate

NLO results include only the leading-power contributions from the gluon fusion and quark-

annihilation channels in the soft limit, the difference between these results and the NLO

corrections without the qg channel gives a measure of the importance of power corrections

away from this limit. The two results are seen to differ by no more than a few percent, even

though the NLO corrections are large. This shows that at NLO the power corrections away

from the soft limit for these channels are quite small. Comparing the NLO results with

and without the qg channel reveals that this channel contributes significantly to the scale

uncertainty, in particular when one chooses µf,0 = M/2. The fact that the leading terms

in the soft limit make up the bulk of the NLO correction provides a strong motivation to

resum them to all orders. No information is lost by doing this, as both sources of power

corrections are taken into account by matching with NLO as discussed above. Since the

power corrections are treated in fixed order, the perturbative uncertainties associated with

them are estimated through the standard approach of scale variations.

We next turn to the NLO+NLL and NLO+NNLL cross sections, which are the main

results of this section. The exact numbers are given in tables 2 and 3, and a pictorial

representation is given in figure 2. The results for the default scale choice µf,0 = M/2

converge quite nicely. The scale uncertainties get progressively smaller when moving from

NLO to NLO+NLL to NLO+NNLL, and the higher-order results are roughly within the

range predicted by the uncertainty bands of the lower-order ones. For µf,0 = M the con-

vergence is still reasonable but not quite as good, mainly because the NLO and NLO+NLL

results are noticeably smaller than at µf,0 = M/2. Interestingly, the NLO+NLL result has
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order PDF order code σ [fb]

LO LO MG5 aMC 293.5+85.2
−61.7

app. NLO NLO in-house MC 444.7+28.6
−39.2

NLO no qg NLO MG5 aMC 447.0+35.1
−40.4

NLO NLO MG5 aMC 423.0+51.9
−49.7

NLO+NLL NLO in-house MC +MG5 aMC 466.2+22.9
−26.8

NLO+NNLL NNLO in-house MC +MG5 aMC 514.3+42.9
−39.5

nNLO (Mellin) NNLO in-house MC +MG5 aMC 488.4+9.4
−8.3

(NLO+NNLL)NNLO exp. NNLO in-house MC +MG5 aMC 485.7+6.8
−15.0

Table 3. Total cross section for tt̄H at the LHC with
√
s = 13 TeV and MMHT 2014 PDFs. The

results are obtained as in table 2, but with the default value of the factorization scale chosen instead

as µf,0 = M .

a smaller scale uncertainty than the NLO+NNLL one for µf,0 = M , a fact which looks

rather accidental considering its wider variation over a larger range of µf , as seen in fig-

ure 1. However, one should remember that the scales µh and µs are kept fixed at their

default values in the NLO+NLL and NLO+NNLL curves of figure 1, while they are varied

as explained above in order to obtain the scale uncertainty reported in the tables.

In analogy to the two different choices for the default factorization scale considered in

this work, one can wonder about the numerical impact of choosing the default hard scale

equal toM/2 rather thanM . We can retrieve this information by looking at the calculations

which we carried out in order to study the scale uncertainty associated to the NLO+NNLL

results. We find that the by setting the hard scale equal to M/2 rather than M , while

keeping all the other scales equal to their default values, the total cross section increases

by about 2%, irrespective of the choice of the default value of the factorization scale.

Finally, we discuss the NNLO approximations to the NNLL resummation formula. The

results in table 2 show that for µf,0 = M/2 the importance of resummation effects beyond

NNLO is rather small, roughly at or below the 5% level after taking scale uncertainties into

account. An examination of table 3 shows that the effects are noticeably larger at µf,0 = M ,

approximately at the 10% level. In either case, figure 2 shows very clearly that the nNLO

results display an artificially small scale dependence compared to the NLO+NNLL results,

confirming the cautionary statements made in [16] about the reliability of the nNLO scale

dependence in estimating higher-order perturbative corrections.

The results in this section highlight the importance of an NNLL calculation. Taken as

a whole, they show that both NLO+NLL and approximate NNLO calculations are a poor

proxy for the more complete NLO+NNLL calculation. We have considered two default

scale choices, µf,0 = M/2 and µf,0 = M . However, we should emphasize that in the end

the default scale choice is arbitrary, and it would not be unreasonable to combine the

envelope of results from the two choices into a single, larger perturbative uncertainty. The
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NLO+NNLL results quoted at either scale would not change significantly through such a

combination.

3.3 Differential distributions

In this section we discuss results for differential distributions. In particular, we consider:

• the distribution differential with respect to the invariant mass of the top pair and

Higgs boson in the final state, M ;

• the distribution differential with respect to the invariant mass of the top-quark

pair, Mtt̄;

• the distribution differential with respect to the transverse momentum of the Higgs

boson, pHT ;

• the distribution differential with respect to the transverse momentum of the top

quark, ptT .

We first set the default value of the factorization scale to µf,0 = M/2. Figure 3 shows

the comparison between complete NLO calculations and approximate NLO calculations

for all of the distributions listed above. We observe that for all of the distributions the

approximate NLO scale uncertainty band (in blue) is included in the NLO scale uncertainty

band (bins with the red frame). However, the approximate NLO uncertainty is smaller than

the NLO uncertainty in all bins. Furthermore the bin-by-bin ratio of the two distributions,

found at the bottom of each panel, shows that the NLO and approximate NLO corrections

have somewhat different shapes.

As for the case of the total cross section, it is reasonable to look at how the approx-

imate NLO distributions compare to the NLO calculations when the contribution of the

qg channel is left out from the latter. This comparison can be found in figure 4. One can

see that approximate NLO and NLO distributions without the qg channel agree quite well

and the size of the respective uncertainty bands is very similar. As observed in the case of

the total cross section, the fact that the leading terms in the soft limit make up a sizable

fraction of the NLO correction also in each bin of the differential distributions provides

a strong motivation to study the all order resummation of the soft emission corrections.

We remind the reader that the contribution of the qg-channel at NLO is included in the

NLO+NLL, NLO+NNLL and nNLO predictions discussed below through the matching

procedure.

The comparison between the NLO and the NLO+NNLL calculations of the differential

distributions can be found in figure 5. We see that the NLO+NNLL uncertainty band is

included in the NLO scale uncertainty band in almost all bins of the distributions considered

here. The exception is the bins in the far tail of the M and Mtt̄ distributions, where the

NLO+NNLL band is not completely included in the NLO one, but is higher than the NLO

one. In general one can observe that the central value of the NLO+NNLL calculation is

slightly larger than the central value of the NLO one in almost all bins of the distributions

shown in figure 5.
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Figure 3. Differential distributions at approximate NLO (blue band) compared to the complete

NLO (red band). The default factorization scale is chosen as µf,0 = M/2, and the uncertainty

bands are generated through scale variations as explained in the text.

Figure 6 shows a comparison between NLO+NLL and NLO+NNLL results. The cen-

tral value of these two calculations is quite close in all bins. The main effect of the correc-

tions at NLO+NNLL is to shrink slightly the scale uncertainty bands with respect to the

NLO+NLL results everywhere with the exception of the bins in the far tail of the M and

Mtt̄ distributions.

We conclude our discussion of the results obtained with the choice µf,0 = M/2 by

comparing in figure 7 the NLO+NNLL, nNLO and NLO+NNLL expanded predictions

for the various distributions. The figure shows the ratio, separately for each bin, of the

distribution to the NLO+NNLL prediction evaluated with µi = µi,0 for i = s, f, h. The blue

band refers to NLO+NNLL calculations, the dashed red band to nNLO calculations and the
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-

tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

dashed black band to the NNLO expansion of the NLO+NNLL resummation. The dashed

black band and the blue band thus differ by NNLL resummation effects of order N3LO

and higher. Numerically, these effects contribute roughly at the 5% level, and as for the

total cross section the NNLO truncation of the NLO+NNLL resummation formula tends to

underestimate the uncertainty of the all-orders resummation. The difference between the

dashed red band and the dashed black band is due to constant NNLO corrections, which

are of N3LL order. Taking the envelope of the two NNLO approximations (i.e. the black

and red bands) gives a more realistic estimate of the scale uncertainty, which is generally

contained within the NLO+NNLL result (the exception is the high-pHT bins).
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Figure 5. Differential distributions with µf,0 = M/2 at NLO+NNLL (blue band) compared to the

NLO calculation (red band). The uncertainty bands are generated through scale variations of µf ,

µs and µh as explained in the text.

We want at this point to study results for a different choice of the default factor-

ization scale, namely µf,0 = M . As discussed for the case of the total cross section in

section 3.2, the numerical impact of the soft emission corrections with the choice µf,0 = M

is significantly larger than the impact of the same corrections with the choice µf,0 = M/2.

However, NLO+NNLL predictions obtained with the two choices are in good agreement.

For what concerns the differential distributions studied here this can be seen by comparing

NLO+NLL calculations carried out with the choice µf,0 = M or µf,0 = M/2 (figure 8),

and NLO+NNLL calculations with µf,0 = M or µf,0 = M/2 (figure 9). Figure 8 shows

that at NLO+NLL the overlap between the distributions evaluated at µf,0 = M and

µf,0 = M/2 is not particularly good, with the band at µf,0 = M/2 slightly larger than the

one at µf,0 = M in all bins. Figure 9 shows instead that the NLO+NNLL distributions
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Figure 6. Differential distributions µf,0 = M/2 at NLO+NNLL (blue band) compared to the

NLO+NLL calculation (red band). The uncertainty bands are generated through scale variations.

at µf,0 = M and µf,0 = M/2 have a large overlap in all bins. The scale uncertainty at

NLO+NNLL with µf,0 = M is larger than the scale uncertainty at µf,0 = M/2 in all bins.

The good agreement between the two bands shown in each panel of figure 9 indicates that

NLO+NNLL predictions are quite stable with respect to different (but reasonable) choices

of the standard value for the factorization scale.

4 Conclusions

In this paper we evaluated the resummation of the soft emission corrections to the as-

sociated production of a top-quark pair and a Higgs boson at the LHC in the partonic

threshold limit z → 1. The calculation is carried out to NNLL accuracy and it is matched

– 16 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
6

Figure 7. Differential distributions ratios for µf,0 = M/2, where the uncertainties are generated

through scale variations.

to the complete NLO cross section in QCD. The numerical evaluation of observables at

NLO+NNLL was carried out by means of an in-house parton level Monte Carlo code devel-

oped for this work, based on the resummation formula derived in [16]. The resummation

procedure is however carried out in Mellin space, following the same approach employed

in [43, 44] for the calculation of the (boosted) top-quark pair production cross section and

in [19] for the calculation of the cross section for the associated production of a top-quark

pair and a W boson.

In the previous sections we presented predictions for the total cross section for this pro-

duction process at the LHC operating at a center-of-mass energy of 13 TeV. In addition, we

showed results for four different differential distributions depending on the four-momenta

of the massive particles in the final state: the differential distributions in the invariant

mass of the tt̄H particles, in the invariant mass of the tt̄ pair, in the transverse momentum

of the Higgs boson, and in the transverse momentum of the top quark. We found that

the relative size of the NNLL corrections with respect to the NLO cross section is rather

sensitive to the choice of the factorization scale µf . In particular, for the two choices which

we analyzed in detail, namely µf,0 = M/2 and µf,0 = M , it was found that the NNLL cor-

rections enhance the total cross section and differential distributions in all bins considered.

The NNLL soft emission corrections expressed as a percentage of the NLO observables are

larger at µf,0 = M than they are at µf,0 = M/2. However, by comparing NLO+NNLL
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Figure 8. Differential distributions at NLO+NLL at µf,0 = M/2 (blue band) compared to the

NLO+NLL calculation at µf,0 = M (red band), where the uncertainties are generated through

scale variations.

predictions obtained by setting µf,0 = M/2 with NLO+NNLL predictions evaluated with

µf,0 = M , and after accounting for the scale uncertainty affecting both predictions, we

find compatible results. This fact shows that the NLO+NNLL predictions are quite stable

with respect to the factorization scale choice. Indeed, it would not be unreasonable to

combine the envelope of the results at the two different scale choices into a single result

with a larger perturbative uncertainty, which for the case of the total cross section would

be at about the 20% level. By taking the envelope of the corresponding NLO results, one

finds instead an uncertainty larger than 30%. We also studied the total cross section and

differential distributions at NLO+NLL accuracy and with NNLO approximations of the

NLO+NNLL resummation formula, and found that both of these are a poor proxy for the

more complete NLO+NNLL results, especially for higher values of µf,0. The study carried

out in this paper is not an alternative to a calculation of the NNLO corrections to the
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Figure 9. Differential distributions at NLO+NNLL at µf,0 = M/2 (blue band) compared to the

NLO+NNLL calculation at µf,0 = M (red band), where the uncertainties are generated through

scale variations.

associated production of a top quark and a Higgs boson. The latter would greatly improve

the quality of the predictions for this process and represent a major technical achievement.

On the contrary, the study of the soft emission corrections to NNLL accuracy must be

considered complementary to a NNLO calculation. If a NNLO calculation were to become

available in the future, it would be possible to match it to the results presented in this

paper in order to obtain NNLO+NNLL accuracy predictions for the total cross section and

differential distributions studied here. In the meantime, NLO+NNLL calculations allow

us to obtain predictions which include in a consistent way higher order corrections and are

affected by a scale uncertainty which is smaller than the one affecting NLO calculations.

The parton level Monte Carlo developed for this paper could be extended to include

the decays of the top quarks and the Higgs boson following the work done in [48]. This
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would allow one to impose cuts on the momenta of the detected particles. Furthermore, our

code could serve as a template for the calculation of the NNLL soft emission corrections to

the associated production of a top pair and a Z boson at the LHC. The latter is a process of

significant phenomenological interest which has already been investigated experimentally

at both the Run I and Run II of the LHC. We plan to study the NLO+NNLL cross section

for this process in future work.
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