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Abstract

Background: Oleaginous organisms are a promising, renewable source of single cell oil. Lipid accumulation is
mainly induced by limitation of nutrients such as nitrogen, phosphorus or sulfur. The oleaginous yeast Trichosporon
oleaginosus accumulates up to 70% w/w lipid under nitrogen stress, while cultivation in non-limiting media only
yields 9% w/w lipid. Uncoupling growth from lipid accumulation is key for the industrial process applicability of
oleaginous yeasts. This study evaluates the effects of rapamycin on TOR specific signaling pathways associated with
lipogenesis in Trichosporon oleaginosus for the first time.

Results: Supplementation of rapamycin to nutrient rich cultivation medium led to an increase in lipid yield of up to
38% g/L. This effect plateaued at 40 μM rapamycin. Interestingly, the fatty acid spectrum resembled that observed
with cultivation under nitrogen limitation. Significant changes in growth characteristics included a 19% increase in
maximum cell density and a 12% higher maximum growth rate. T. oleaginosus only has one Tor gene much like the
oleaginous yeast Rhodosporidium toruloides. Consequently, we analyzed the effect of rapamycin on T. oleaginosus
specific TORC signaling using bioinformatic methodologies.

Conclusions: We confirm, that target of rapamycin complex 1 (TORC1) is involved in control of lipid production
and cell proliferation in T. oleaginosus and present a homology based signaling network. Signaling of lipid induction
by TORC1 and response to carbon depletion to this complex appear to be conserved, whereas response to nitrogen
limitation and autophagy are not. This work serves as a basis for further investigation regarding the control and induction
of lipid accumulation in oil yeasts.
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Background
Production volumes of bio-based lipids have experienced
a 65% increase over the last decade due to increasing
demands by food, chemical- and pharmaceutical indus-
tries [1, 2]. Especially the application of natural oils for
biofuels, oleochemicals and bioactive substances is
expanding rapidly [3]. However, the application of plant
oils for non-food use accelerates land use and climate
change, which in turn negatively impacts on biodiversity.
Further, the majority of pharmaceutically active high
value lipids such as long chain polyunsaturated fatty

acids are still sourced from fish and crustaceans, which
negatively affects sensitive marine ecosystems.
Microbial oils have been designated as a sustainable

alternative to plant and animal based lipids. In particular,
oleaginous yeast, which can accumulate between 20 and
70% w/w lipids [4, 5] have gained increasing interest as
providers for sustainable oleochemical building blocks in
the biofuel, lubricant, food and cosmetics industry.
However, induction of lipogenesis in microorganisms is
linked to nutrient restriction (N or P), which results in
significant reductions in cell growth. In order to design
an economically relevant continuous production process
that provides for high lipid and biomass formation the
metabolic uncoupling of cell growth from intracellular
lipid accumulation is a prerequisite. This aim however* Correspondence: brueck@tum.de
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requires in depth knowledge of the cells regulatory
mechanisms involved in lipogenesis.
The target of rapamycin complexes (TORCs) are

central, highly conserved regulators in the control of cell
proliferation, sexual development, cell skeleton organization,
lipogenesis and other essential functions. TORCs draw their
name from the TORC1 inhibiting heterocyclic makrolid
rapamycin, derived from Streptomyces hygroscopicus. The
complexes consist of different components depending on
the organism. The key component is Tor1, a phos-
phatidylinositol 3 kinase-like serine/threonine kinase
(mTOR in mammals).
Whereas some involvement of TORCs, such as TORC1

activation of translation and transcription are conserved
from yeast over plants to mammals [6], other downstream
processes are vastly different depending on the organism.
It is reported that the signaling network plays a crucial
role in the control of lipid homeostasis [7, 8]. Understand-
ing the regulatory system of lipid accumulation would
therefore contribute to the ability for targeted, genetic
modification of single cell oil production strains.
Recently, the effects of rapamycin on the lipid accumu-

lating microalgae Euglena gracilis in comparison to model
algae Chlamydomonas reinhardtii and Cyanidioschyzon
merolae were characterized [9]. Lipid content was signifi-
cantly increased when the algae were exposed to minor
concentrations of rapamycin. By contrast, higher rapamy-
cin concentrations resulted in growth inhibition. While
the effect of rapamycin has been well described in model
yeasts, it has as of now not been evaluated in non-
conventional oil forming yeasts strains. Therefore, this
study evaluates the significance of TORC signaling path-
ways on lipogenesis in oleaginous yeast for the first time.

Methods
Strains and media
Wild type Trichosporon oleaginosus ATCC 20509 (DSM-
11815), obtained from the “Deutsche Sammlung von
Mikroorganismen und Zellkulturen” (DMSZ) (Braun-
schweig, Germany) was used for all experiments. Cultivation
was done in YPD medium (glucose, 20 g/L; tryptone, 20 g/L;
yeast extract, 10 g/L), nitrogen limitation medium [10]
(glucose, 30 g/L; yeast extract, 0.5 g/L; (NH4)2SO4, 0.3 g/L;
MgSO4•7H2O, 1.5 g/L; KH2PO4, 2.4 g/L; Na2HPO4 0.91 g/L;
CaCl2•H2O, 0.22 g/L; ZnSO4•7H2O, 0.55 μg/L; MnCl2•4H2O,
22.4 μg/L; CuSO4•5H2O, 25 μg/L; FeSO4•7H2O, 25 μg/L,
pH 6.1). Rapamycin (Tecoland, CA, USA) was solved in
DMSO (10 mM stock) and added directly to the
media in different concentrations after the inoculation.

Cultivation conditions
T. oleaginosus was cultivated as triplicate in yeast ex-
tract peptone dextrose medium (YPD) with different
concentrations of rapamycin solution for 7 days at

28 °C in 500 mL baffled shake flasks. Cultivation was
carried out in 100 mL YPD and nitrogen limitation
medium (MNM) with glucose. Cells from an over-
night culture grown in YPD medium under the same
cultivation conditions were washed in ddH2O and
used to inoculate all cultivations at OD600 = 0.5.
Where applicable, rapamycin was added 8 h after in-
oculation and adjusted to varying concentrations.
6 mL samples were taken daily for analysis of cell-dry
weight, lipid content and fatty acid distribution.

Biomass and lipid determination
Determination of cellular dry weight occurred by pellet-
ing 2 mL samples (12,000 g for 10 min), washing cells
with ddH2O and freeze drying at −80 °C for 24 h in
pre-weighed microtubes. Cellular total lipid was ob-
tained by extraction with chloroform and methanol by
Folch et al. [11] (adapted). Cell pellets from 12 mL
culture were washed with ddH2O twice and disrupted
four times by french press (EmulsiFlex®-B15, Avestin) at
2400 bar. A triplicate of 4 mL cell lysate was transferred
to glass vials with screw caps and mixed with 6 mL of
Folch reagent (2:1 chloroform/methanol) each. After
extraction by shaking at 900 rpm and room temperature
for 1 h, 1 mL 0.9% NaCl was added to aid phase separ-
ation. Samples were vortexed, centrifuged at 1000 g and
the chloroform phase was transferred to pre-weighed
glass vials. After evaporation of the solvent und a
constant stream of dried nitrogen, vials were
weighed and lipid content was calculated per dry
weight in % g/g.

Analysis of fatty acid composition
Triplicates of 2 mL culture were pelleted by centrifuga-
tion, washed with ddH2O and freeze dried at −80 °C.
Between 10 and 20 mg were used for the fatty acid
analysis. Fatty acid methyl esters (FAMES) were obtained
by direct conversion of cell biomass by methanol
transesterification [12].
FAMEs were analyzed on a GC-2025 gas chromato-

graph from Shimadzu (Nakagyo-ku, Kyōto, Japan) with
flame ionisation detector and an AOC-20i auto injector
(Shimadzu). 1 μl sample was applied onto a ZB-WAX
column (30 m, 0.32 mm ID; 0.25 μm df; Phenomenex
(Torrance, CA, USA)) with an initial column temperature
of 150 °C (maintained for 1 min). A temperature gradient
was applied from 150–240 °C (5 °C/min), followed by
6 min maintenance at 240 °C. Fatty acids were identified
according to retention times of authentic standards.

Nile red assay
Semi-quantitative estimation of intracellular lipids was
done by Nile Red staining according to Sitepu et al. [13].
200 μL of culture sample was adjusted to OD600 = 1 and
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transferred to MaxiSorp F96 plates (Thermo Scientific
Waltham, MA, USA) as 5 replicates. After addition of
25 μL DMSO, the blank measurement was taken. Subse-
quently, 25 μL of Nile Red staining solution (0.1 mg/mL
in DMSO) were added and Nile Red fluorescence inten-
sity was measured at 590 nm (excitation 530 nm) on an
EnSpire 2 plate reader from Perkin Elmer (Waltham,
MA, USA). Lipids were estimated by correcting FI
(fluorescence intensity) by OD600.

Online OD measurements
Online OD measurements were conducted by measuring
real-time backscatter at 525 nm with a Cell Growth
Quantifier (Aquila biolabs - Baesweiler) using 100 mL
YPD in 250 mL shake flask without baffles for 72 h.
Rapamycin concentration was adjusted to 5 μM 8 h after
inoculation. The backscatter signal was calibrated with a
manual 2 point OD600 measurement by an HP 8453
photometer.

Statistical analysis
Statistical analysis and data visualization was done in R
[14]. Data were fitted to a Richards’ growth curve using
the grofit package [15]. All error bars show standard
deviations. Stars show significance with p = 0.05 in
comparison to untreated cultures.

Assembly of TORC-network
Previously published genomic and transcriptomic data of
T. oleaginosus [16] were searched for TORC homologues
using sequences from Schizosaccharomyces pombe and
Saccharomyces cerevisiae, Candida curvata and Crypto-
coccus neoformans.

Results and discussion
Effect of rapamycin on nile red fluorescence
Cultivation of T. oleaginosus in full YPD medium does
not lead to nutrient limitation and is associated with a
low accumulation of intracellular lipids. Supplementa-
tion of this medium with rapamycin (20 μM, [9]) after
8 h cultivation time resulted in significantly higher nile
red fluorescence (corrected for OD) signal indicating an
increased lipid production (Fig. 1). The increase of 66%
FI/OD at 72 h subsequently decreased to 44% (92 h) and
40% after 116 h respectively. During cultivation, no de-
crease in OD was observed, indicating that the cell
growth was not affected by the applied rapamycin
concentrations.
It is reported that Nile Red is a semiquantitative lipid

stain [17], as its specific fluorescent signal is dependent
on the fatty acid profile, the type of lipid (phospho-, tria-
cylglyceride or steran) and the protein content within
intracellular lipid bodies.

Effect of rapamycin on lipid accumulation
To confirm an increase in lipid yield, a gravimetric bio-
mass and lipid determination was conducted using cells
grown in cultures containing between 0 and 40 μM
rapamycin. The addition of 40 μM rapamycin resulted in
a maximal lipid increase of 38% compared to controls.
Moreover, at 5 μM rapamycin the total biomass produc-
tion is significantly increased. This data contrasts reports
on the effects of rapamycin on algae and bacterial
growth, where supplementation of the compound re-
sulted in decreased biomass formation in line with its
established cell cycle inhibition effects [8, 18].
Due to the expected logarithmic dependency

(Additional file 1), effects of rapamycin on lipid content
(Fig. 2) saturate at low concentrations. To confirm the
effect of rapamycin on intracellular lipogenesis, we applied
a one tailed Welch’s t-test between samples in the absence
and presence of rapamycin. The null hypothesis of both
sample sets being of the same distribution is rejected with
p = 0.003 and a confidence interval of 1.4–5% g/g increase
in the absence and presence of rapamycin.

Impact of rapamycin on T. oleaginosus growth kinetics
As our initial data suggested that at 5 μM rapamycin
(at t: 8 h cultivation time) cell growth was enhanced,
we applied a real-time backscatter measurement in
order to compare cellular growth in the absence and
presence of rapamycin (Fig. 3). Cell growth could be
sufficiently described by a fit to a Richards’ curve
[19], which allowed extraction of μmax (maximum
growth rate), lambda (lag phase duration) and A
(maximum OD600) values (Table 1).
Interestingly, we observed significant differences in the

growth parameters of each culture. For the rapamycin
treated culture, the maximum growth rate μmax (12% in-
crease) and the maximum optical density (19% increase)
were elevated compared to controls.
This translates to a change in the maximum growth

rate from a nominal 1.2 to 1.35 OD600/h and an increase
in the maximum cell density from OD 30.8 (61 g/L) to
OD 36.6 (71 g/L) respectively. Hence, in the presence of
5 μM rapamycin the cell density increased by 19% con-
comitantly with a 25% lipid increase. These cumulative
values translate to a 49% improved space time yield
compared to controls in the absence of rapamycin.
The improved growth rate may be attributed to the

upregulation of pathways relating to alternative nitro-
gen sources. A simultaneous assimilation of many dif-
ferent nitrogen sources could be advantageous in a
high nutrient environment such as YPD. Furthermore,
TORCs are known to affect cell cycle progression.
Shortening of the G2 phase could lead to an in-
creased growth rate, while sacrificing replication fidel-
ity and long term offspring survival.
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Fig. 2 Effect of rapamycin on lipid content and biomass: Total lipid content (triangle) and dry biomass (circle) of T. oleaginosus after 72 h of cultivation
in YPD are measured with different concentrations of rapamycin supplementation between 0 and 40 μM. Error bars show standard deviation and the
star shows significance at p = 0.05 in comparison to culture without rapamycin supplementation. The blue line shows a robust logarithmic fit of the
lipid content in dependence of rapamycin concentration as described in Additional file 1
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Fig. 1 Effect of rapamycin on nile red fluorescence: T. oleaginosus grown in YPD without (YPD) and with 20 μM rapamycin (YPD+ R) supplementation. At
different time points, nile red fluorescence (FI) and OD600 were measured. The ratio between the latter is plotted on the y axis and is a semiquantitative
indicator of lipid content. Stars show significance at p= 0.05 and error bars show standard deviation
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Fatty acid profile
Supplementation of rapamycin caused a non-concentration
dependent shift in fatty acid spectrum (Fig. 4). Under these
conditions, a major decrease of C18:0 in favor of C18:1 fatty
acids was observed. Additionally, a minor decrease of C16:0
and a minor increase in C18:3 could be detected. These
changes resemble the fatty acid profile obtained by cultiva-
tion in nitrogen limiting medium, thereby supporting the
notion that rapamycin is at least partially simulating a
low nutrient environment to the cells regulatory sys-
tem. Fatty acid spectra show, that the effect of rapa-
mycin saturates at comparatively low concentrations,
confirming the fit in Fig. 2.
In Euglena gracilis addition of rapamycin led to an in-

crease in lipid amount but almost no change in fatty acid
profile was reported [9]. The reason for this appears to be
the different mechanism of rapamycin response between
this algae and previously identified yeasts or animal cells [9].
This observation in this study motivated us to use a bio-
informatics approach to investigate the effects of rapamycin
on the Trichosporon cell signaling network and lipogenesis.

TORC-network
A homology-based TORC signaling network, including
upstream and downstream elements (Fig. 5), was assem-
bled. A table of all proposed pathway components can
be found in Additional file 2.
The SNF1/AMPK pathway is highly conserved from

yeast to mammals, and homologues of its main compo-
nents could also be detected in T. oleaginosus. These ho-
mologues termed Elm1, Sak1 and Tos3 are kinases
which phosphorylate and activate Snf1 (orthologue to
the mammalian AMPK), which in turn is a central regu-
lator required for energy homeostasis. In S. cerevisiae
Snf1 is mainly responsible for adaption to a glucose
limiting environment [20]. Inactivation of Snf1 is
caused by dephosphorylation initiated by the Reg1/
Glc7 complex [20]. In a low carbon environment,
phosphorylated Snf is translocated to the nucleus,
where it phosphorylates the transcriptional activator
Sip4. Subsequently, Sip4 activates the transcription of
glucose-repressed genes [20]. This process is con-
served in ascomycetes S. cerevisiae and S. pombe
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Fig. 3 Online-OD measurement: Growth curves of T. oleaginosus without (YPD) and with 5 μM rapamycin (YPD+ R) obtained by measuring backscatter
with an online OD system. Thin lines (YPD fit, YPD+ R fit) show fit of Richards’ growth curves

Table 1 Comparison of growth curve parameters extracted from Richards’ fit: Maximum growth rate (μmax), lag phase (λ) and maximum
cell density (A) of T. oleaginosus cultivated in YPD with and without rapamycin

YPD YPD + 5 μM rapamycin Change / %

μmax / OD600/h 1.2068 ± 1.779*10−3 1.349 ± 1.362*10−3 11.79 ± 2.6*10−3

λ / min 12.433 ± 23.104*10−3 12.151 ± 5.776*10−3 −2.27 ± 3.13*10−3

A /OD600 30.754 ± 7.421*10−3 36.578 ± 6.73*10−3 18.93 ± 0.46*10−3

All values are given with standard deviations
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alike. Interestingly, activated Snf1 also inhibits Acc1p,
which is responsible for catalysis of acetyl-CoA to
malonyl-CoA, a main precursor for the production of
fatty acids [21]. This indicates a direct link between
metabolic signaling under nutrient stress conditions
and the regulation of cellular lipid biosynthesis.

Furthermore, Snf1 is reported to inhibit the Tsc1/Tsc2
complex in model yeasts and in mammals. Moreover,
the Tsc1/Tsc2 complex further integrates signals from
other pathways, including the MAPK/ERK pathway [22],
cytokines, hypoxia signals and Wnt signaling respect-
ively. More recently, it has been suggested that in yeast,
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Fig. 4 Effect of rapamycin on fatty acid content: Profile of the main fatty acids of T. oleaginosus after 72 h of cultivation in Minimal N Medium
(MNM-0) or YPD with different rapamycin concentrations (YPD-0 – YPD-40)
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involvement of other factors, especially in reaction to
low nutrient content is feasible [23]. However, a direct
inhibition of TORC1 by Vps34, an essential gene which
channels amino acid availability to the Tsc1/Tsc2 com-
plex, has been reported in yeasts and mammals [22, 24].
More specifically, TORC1 itself receives inputs from

RheB over the Tsc1/2 axis and directly from the EGO
complex. In model yeasts this EGO is composed of the
kinases Gtr1/2 and Npr2/3 respectively. However in T.
oleaginosus, we could not detect homologous of the
Npr3 or Ego1-Ego3 complexes, which indicates that the
absence of amino acids in the medium are not sensed
via the EGO involved signaling. Inhibition of the TORC1
complex by rapamycin occurs via initial formation of an
Fkh1 protein-rapamycin complex (mammalian homologue
Fkbp12), which then binds to TORC1. This mechanism is
highly conserved throughout the microbial and animal
kingdom. Expectantly, T. oleaginosus Tor1 contained the
characteristic rapamycin binding motif [25]. In nitrogen
limitied media, the addition of rapamycin has no effect on
T. oleaginosus biomass formation, growth kinetics and
intracellular lipid content. This indicates that TORC1 may
already be blocked under nutrient limiting cultivation
conditions. Consequently, rapamycin addition would have
no effects on biomass or lipid formation in the non-
conventional yeast T. oleaginosus.
In consensus with data from model yeasts, we could

identify homologues components of the TORC1 com-
plex, namely Tor1 (with strong similarity to Tor2 of S.
pombe), Kog1 and Wat1 respectively. Wat1 is a scaffold
protein facilitating the connection between Tor1 and
downstream substrates, like Ppe1 and Sch9 [26].
Analogous to model yeasts and mammals the Wat1
protein in T. oleaginosus mainly contains 7 WD40
repeats. Specifically in mice, Wat1 was required for
TORC2 but not TORC1 activity. Most interestingly,
we could not detect any Tco89 homologue in T. olea-
ginosus, which indicates that a component of the
TORC complexes found in model yeast S. cerevisiae
is absent. Therefore, the TORC1 complex of T. olea-
ginosus more closely resembles the situation reported
for S. pombe or the oleaginous yeast R. toruloides. In-
deed, this resemblances is confirmed by the absence
of a second Tor gene for TORC2. Furthermore, we
could not identify any Avo2 or Bit61 homologues in
T. oleaginosus, both of which are non-functional
TORC2-binding structures [27]. Transcripts for the
TORC2 component Sin4 could be identified in differ-
ent splicing isoform, which is consistent with previous
findings in S.cerevisiae [24]. Notably, in S. cerevisiae,
mutation of Sin4 leads to rapamycin resistance [28].
In analogy, the presence of Sin4 isoforms detected in
T. oleaginosus could render the TORC2 complex
resistant to rapamycin.

Downstream of primary TORC effects, we could
identify significant differences between signals in model
yeasts and T. oleaginosus affecting autophagy. Particu-
larly, genes essential to the autophagy signaling pathway,
namely Atg13, Atg17, Atg31, Atg29 could not found in
T. oleaginosus. In this respect, the T. oleaginosus system
may resemble the regulatory system of Drosophila
melanogaster, in which hyperphosphorylated Atg1 in
conjunction with Atg13 are sufficient to inhibit autoph-
agy. In the model yeast S. cerevisiae the autophagy
signaling is by far more complex and therefore may not
apply to T. oleaginosus [29]. Further, individual autoph-
agy related homologues (Atg5, Atg6, Atg16) were found,
but the actual signaling pathway appears to differ signifi-
cantly from other yeast systems.
The other main signaling pathways for regulation of

lipid biosynthesis, transcriptional and translational initi-
ation appear to be conserved with high similarity.
In S. cerevisiae, TORC1 inhibition liberates Tap42 and

Sit4 from being bound to each other. This in turn acti-
vates the downstream transcription factors, Gat1 and
Gln3. After Gat1 and Gln3 transport to the nucleus,
these transcription factors induce the accumulation of
lipids. Our bioinformatics analysis indicates that a simi-
lar mechanism is likely for T. oleaginosus. The highly
conserved Sch9 is homologous to the mammalian S6K,
which is responsible for activation of ribosomal protein
S6 and therefore directly controls translation. By con-
trast, no homologue to Gaf1, which in S. pombe is
central for the response to nitrogen stress [30], could be
identified. The absence of Gaf1 therefore may modulate
the cell cycle in T. oleaginosus. Nonetheless, Ppe1
homologue a kinase acting within the S. pombe stress
response which also affects the cell cycle [31] could
be identified.
TORC2 activation, especially in yeast, remains elusive.

In S. pombe, interaction with Rhe1 is confirmed [32].
Furthermore, it was reported in mammals, that activa-
tion can be achieved by growth factors (PI3K axis). Fur-
thermore, ribosomal association of the complex suggests
its activation by nutrients. Especially the latter is also
likely for yeast [33], considering the effect on growth in
S. pombe [34]. In T. oleaginosus however, little can be
reported about the effects of downstream TORC2 ele-
ments due to the absence of detailed cell biology studies.
Active TORC2 activates Fkh1/2 in S. cerevisiae (FOXO

genes in mammals), which affects autophagy related
genes, life span and stress response [27, 35, 36]. TORC2
as well as the highly conserved kinase Ksg1 activate
Gad8 by phosphorylation [37]. The subsequent cellular
effects strongly depend on the organism. For S. cerevi-
siae, this impacts on actin organization and cell wall
synthesis, whereas for C. elegans mainly lipid metabol-
ism and growth are affected. For the related and well
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described yeast, S. pombe, changes in amino acid uptake
and general changes in stress response are described
[27]. Lack of Rho/Rac homologues indicates a strong
difference in the regulation of actin organization from
S. pombe.
A confirmed element of TORC2 is Pkc activation, as

was described for the closely related and pathogenic
Cryptococcus curvatus. Pkc itself is involved in regula-
tion of spingholipid biosynthesis, which impacts the
structural integrity of the cell wall [38]. Most recently,
the GATA transcription factor Gaf1 was reported to be
responsible for sexual development in yeast and upregu-
lation of amino acid transporters [30]. It is activated as
response to nitrogen stress about 10 to 120 min after
the onset of nitrogen stress. Therefore it can be hypothe-
sized that it is part of a first, reversible response to nutri-
ent stress. Persisting lack of nitrogen would then trigger
the second, delayed phase which includes elevated
mating in S.pombe.
Two factors indicate, that the observed effects are not

due to rapamycin involvement with TORC2: Rapamycin
resistance of TORC2 could be structurally substantiated
by Avo3 (Ste20), which wraps around the Fkpb-binding
domain of Tor1/2 [39]. Prolonged exposure of certain
mammalian cell types to rapamycin showed inhibited
assembly of TORC2 [40], however this was not observed
in unicellular organisms [27] and therefore appears un-
likely for T. oleaginosus. Secondly, no obvious differences
in cell morphology were observed using microscopy
(Additional file 3) and FACS (data not shown), indi-
cating that for T. oleaginosus, rapamycin does not
impact on cytoskeleton and actin organization, which
are commonly affected by TORC2.

Conclusions
For the first time, lipogenesis could be induced in an
oleaginous yeast without compromising on growth,
resulting in a 1.4 fold increase in total lipid yield. We
observed an increase in growth as well as lipid content
in the absence of nutrient limitation, using YPD as
model substrate with high nutrient content. TORC1 in
Trichosporon oleaginosus can be inhibited by rapamycin,
impacting on growth characteristics and lipid accumula-
tion. However, considering a lack of reduction in growth
and comparatively minor increases in lipid accumula-
tion, inactivation of TORC1 is not sufficient to induce a
cell state resembling nitrogen starvation.
It is possible, that T. oleaginosus either relies on

TORC2 inhibition, requires additive signals of both
complexes or employs another unknown pathway for full
activation of nitrogen stress response and associated
lipid accumulation. However, Torc2 regulation of lipid
synthesis and its strong involvement in the upregulation
of aminoacid transporters [27], one of the defining

features of lipid accumulation in T. oleaginosus, make
TORC2 involvement in nutrient limitation response in
this yeast likely.
Proteomic and transcriptomic approaches are excel-

lent tools for elucidating how rapamycin impacts on
T. oleaginosus physiology. Comparing these data with
previously obtained information about transcriptomic
changes [16] in the presence of nitrogen stress will
allow for pinpointing more clearly the relevance of
TORC1 for lipid accumulation. Using a metabolomic
strategy is a promising approach for a more in-depth
study of key intermediates, such as glutamine and
glutamate as components of central nitrogen metabolism.

Additional files

Additional file 1: Trend analysis: Analytical plots of robust regression
using M-estimation of yeast lipid content in dependence of rapamycin
concentration in cultivation medium (Fig. 2). Data points 9 and 7, both of
which outliers causing deviation at [rapamycin] = 10 were excluded due
to high Cook’s distance. The resulting fit was plotted in Fig. 2 and was
based on the following formula: Lipid content = 13.1996 + 0.3197*log
([Rapamycin]). (DOCX 60 kb)

Additional file 2: Table of T. oleaginosus homologues in TORC signaling
network: Abbreviations: Trichosporon oleaginosus, TO; Schizosaccharomyces
pombe, SP; Nitrogen Catabolite Repression, NCR; Saccharomyces cerevisiae,
SC; Dictyostelium discodeum, DD. (DOCX 38 kb)

Additional file 3: Fluorescence microscopy: 200 μLT. oleaginosus cells
grown for 72 h in YPD with and without 5 μM rapamycin supplementation
were pelleted, washed with ddH2O and resuspended in the same amount of
water. 25 μL DMSO and 25 μL nile red (50 mg/ml) in DMSO were added and
incubated in darkness for 10 min. Images were taken on a Zeiss Axio Lab A1
with an Axio Cam ICm1 (Oberkochen, Germany). Fluorescence was measured
with a 525/25 filter with an exposure time of 500 ms. (DOCX 154 kb)
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