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Abstract: Fast and accurate assessment of within-field variation is essential for detecting field-wide
heterogeneity and contributing to improvements in the management of agricultural lands. The goal
of this paper is to provide an overview of field scale characterization by electromagnetic induction,
firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil
water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs.
Furthermore, results concerning special applications in agriculture, horticulture and archaeology
are included. In addition to these investigations, this survey also presents a wide range of practical
methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific
locality is determined by the intensity at which soil factors influence these values in relationship
to the desired information. The interpretation and utility of apparent electrical conductivity (ECa)
readings are highly location- and soil-specific, so soil properties influencing the measurement of
ECa must be clearly understood. From the various calibration results, it appears that regression
constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe),
texture, yield, etc., are not necessarily transferable from one region to another. The modelling
of ECa, soil properties, climate and yield are important for identifying the location to which
specific utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied.
In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be
quite a robust method to detect relative differences, both spatially and temporally. Often, the use of
ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather
than as absolute terms.

Keywords: EM38; apparent electrical conductivity; soil mapping; yield variability and management
zones; soil sampling schemes; soil types

1. Introduction

Fast and accurate detection of within-field variation is essential for the detection and management
of the environment. The EM38 device (Geonics. Ltd., Mississauga, ON, Canada), a sensor that delivers
dense datasets, can be used to accomplish this goal. The EM38 meter is the most widely used EMI
sensor in agriculture [1,2].

Researchers have related EM38-ECa (apparent electrical conductivity—ECa) to a number
of different soil properties either within an individual field or across the entire landscape [3].
The application of EM38 began with the detection of salinity and continued with the determination of
clay and water content [2]. Currently, areas of application include the estimation of nutrient levels and
other soil chemical and physical properties, soil sampling points, the determination of soil types and
their boundaries, the prediction of yield and the delineation of crop management zones. The increasing
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application especially during the last decade is also caused by various technical developments: Global
Positioning Systems (GPS), surface mapping programs and systems for data analysis and interpretation.
Technical data, construction and tool specification are described in Heil and Schmidhalter [4].

This device consists of a receiver and a transmitter coil installed 1.0 m apart at the opposite ends of
a nonconductive bar. The investigated depth range depends on the coil configuration and the distance
between the coils. While the distance is fixed, the orientation of the coils can be changed. In the vertical
mode, the device is in a position perpendicular to the soil, whereas in the second case, the device lies
parallel to the soil surface [5,6]. The sensitivity in the horizontal mode is the highest directly below
the instrument, while the sensitivity in the vertical position reaches a maximum at approximately
30–40 cm below the instrument. The depth-weighted nonlinearity of the response is shown in Figure 1.
The cumulative relative contributions of all soil EC are R(z).
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Figure 1. (Left) Relative cumulative contribution vs depth for vertically (RV(z)) and horizontally
(RH(z)) orientated dipoles; (Right) Comparison of the relative responses for vertically (FV(z)) and
horizontally (FH(z)) oriented dipoles.

An exact determination of the measurement depth is difficult. Theoretically, the readings acquire an
unlimited depth, but in reality, it depends on the electrical contrast. The most common definition is a depth
range up to 1.5 m when using the vertical dipole mode and 0.75 m in the case of the horizontal mode [4–6].

For wide area measurements e.g., in precision agriculture as well as in field-scale soil property
measurements the sensor is mounted on metal-free sledge and pulled behind an all-terrain vehicle
equipped with a GPS receiver and data collection computer (Figure 2).
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Figure 2. Mounting of the EM38 on a metal-free sledge pulled by a tractor (constructed after Corwin
and Lesch [7]).

Beside the EM38, EM31 and EM34 electromagnetic devices are also available on the market.
In contrast to the EM38, the other devices are designed for the detection of deeper areas of soils,
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e.g., geological layers, ground water and other subsurface feature associated with changes in ground
conductivity. The EM31 has an effective exploration depth of about six metres with an intercoil spacing
of 3.66 m. The EM34-3 uses three intercoil spacings—10, 20 and 40 m—to provide variable depths of
exploration down to 60 m.

2. Goal of this Study

The objective of this study is to summarize the results of recent measurements and the
development of algorithms from ECa measurements obtained with the geophysical sensor EM38.
Given the numerous possible subject matters for research in using EM38, this review paper has focused
on the following specific fields:

1. Salinity
2. Soil-related properties in non-saline soils

• Soil texture
• Soil water content, water balance
• Soil horizons and vertical discontinuities
• N-turnover, cation exchange capacity, organic matter and additional soil parameters
• Soil sampling designs
• Soil type boundaries

3. Agriculture

• Agricultural yield variability and management zones
• Efficiency of agricultural field experimentation
• Additional application of EM38 in agriculture and horticulture

4. Archaeology

The rationale of this compilation should allow the users of this sensor to understand which
variables are today detectable, which objectives are realistic and in which regions applications are
widely used. The users have to note that these sensor readings are a composite of soil properties and
therefore not a replacement for in-depth knowledge’s about soil and site.

3. Surveying Soil Salinity

Ample information can be found in the literature that describes the potential of EM-38
measurements for the non-invasive detection of in situ soil salinity (Table 1).

Table 1. Overview with literature of relationships between EM38-ECa and salinity.

Study Parameters Location of Investigation

Derivation of salinity with ECa and ECe

[8] ECa and ECe relationships: classifying salt affected area California, USA

[9] Descriptions and formulations of ECe and ECa;
mathematical coefficients; South Australia

[10,11] Descriptions and formulations of ECe and ECa; inverted
salinity profiles; South California, USA

[12] ECa and ECsaturated extract, Na, Cl, Salinity maps with
relation to yield Barley) North-east Australia

[13] Calibration ECe and ECav, ECah Missouri, USA

[14] ECa and EC1:5 relationships to perform growth of Australian
tree species on saline sites Queensland, Australia

[15] Formulations of ECe and ECa Egypt
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Table 1. Cont.

Study Parameters Location of Investigation

Derivation of salinity with ECa and ECe

[16] Relationship ECa and ECe, ECa observations on establishing
and growth of perennial pasture species Australia

[17] Salinity contour maps with ECe and ECav, ECah Nnortheast Spain

[18] Salinity classification system based on EC1:5 with groups
of degrades Henan, China

[19] Formulations of ECe and ECa California, USA

[20] ECa, ECe to apply site specific management tech. on
saline sites California, USA

[21] ECe and ECav, ECah advanced calibrations reduce soil
sampling from 200-300 to 36, California, USA

[5,22] Site calibration ECe and ECav, ECah Saskatchewan, Canada

[23–26]
Formulations of ECa and ECe; Salt tolerance of trees, forages,
crops and turf grasses; survival and growth of eucalyptus
and pastures in saline soils.

Alberta, Canada

[27] Exchangeable sodium percentage and ECe in relation to ECa Illinois, USA

[28] Soil survey with salinity regions; relationship ECe and ECa
to detect salinity of irrigated districts Aragon, Spain

[29] Ranges of ECa as classification system of saline areas Victoria, Australia

[30]
Salinity classification system based on ranges of total
dissolved salt concentrations, EC1:5 with groups of crops
with different tolerances to rootzone salinity

Victoria, Australia

[31–34] Descriptions and formulations of ECa, ECe, ECp and EC
ratios; multiple regression coefficients; California, USA

[35]
Relationships of ECe and ECa, Soil salinity maps of different
depth intervals and salinity profile maps at upstream and
downstream of the field borders

Yazd Province, Iran

[36] Monitoring spill of liquid manure occurred a few years ago Manitoba, Canada
[37] Formulations of ECe and ECa (India) India (different regions)

[38,39] Descriptions and formulations of ECe and ECa; modeled
coefficients; NSW, Australia

[40] Comparison EC1:5 - ECe and ECa to detect salinity in an
early stage

Nakhon Ratchasima,
Thailand

[41] Comparison ECe and ECa to detect salinity New Mexico, USA

[42–45]
Determination ECe profiles with ECa (EM38 and EM31);
geostatistical methods to predict salinity from ECa (EM38
and EM31), comparison calibration approaches;

NSW, Queensland, Australia

[46,47]
Ratio (EM38/EM31) sampling points to determine deep
drainage and leaching fraction, ECa and ECe; ECa and clay;
ECa and deep drainage;

NSW, Australia

[48] ECe, water content and ECah, combined with cokriging California, USA

[49] Descriptions, formulations, classifications of ECa, ECe, ECp
and EC ratios –

[50] Overview salinity and determination –
[51–53] Detection subsurface saline material Victoria, Australia

[54] Calibration models ECe and ECa and water content over
regional scale Colorado, USA

[55] Descriptions and formulations of ECe and ECa, simple depth
weighted coefficients; North Dakota, USA

[56] Depthwise calibration models ECav, ECah and ECe and
EC1:5 to construct inverted salinity profiles Jiangsu, China

[57] Comparison saturated paste and 1:1 soil to water extracts Oklahoma, Texas, USA
[58] Formulations of ECe and ECa Pakistan
[59] Site calibration ECe and ECav, ECah Navarre, Spain
[60] Site calibration ECe and ECav, ECah North Dakota, USA
[61] Site calibration EC(1:5) and ECah West Australia
[62] Salinity calibration model to simulate ECe from ECa California, Minnesota, USA
[57] Comparison saturated paste and 1:1 soil to water extracts Oklahoma, Texas, USA
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Table 1. Cont.

Study Parameters Location of Investigation

Construction of salinity maps

[63] Interpolation methods of ECa;
ECa maps as base for salinity maps/ECe) Uzbekistan

[64] Relation ECa-topography-salinity extension Senegal
[65] ECa-salinity areas SE Australia
[66] Salinity maps with stepwise data processing Victoria, Australia
[67] Mapping salinity with EM38, EM31 and Wenner array Alberta, Canada
[68] Geostatistical analysis of soil salinity data ————–

[69] Salinity distribution within a field and combination with
iodine tracer study Cape Province, South Africa

[70] Soil salinity maps with ECa, in relation to land use and
soil/geology South Australia

[71] ECa and visual agronomic survey of salinity Punjab, Pakistan
[72] Mapping of salinity plume in a sandy aquifer North Dakota, USA
[73] Detecting salt stores and evaluation of the risk of salinisation NSW, Australia

[74] ECa maps by inverting data collected at various heights in
the EM4SOIL software Yazd Province, Iran

[75] Salinity characteristics with PCA California, USA
[76] Comparison of multiple linear regression and cokriging California, USA
[77] Temporal changes in salinity using ECa Aragon, Spain

[78–80]

Saline seep mapping and remediation; comparison salinity
(ECe) and ECa of different conductivity tools;
saline seep mechanism in combination with hydrological
modeling

Kansas, USA

[81] Comparison salinity (ECa) between different land use Australia
[82] EM38 field wise NSW, Australia

Salinity and field management

[83] Assessment of salinity by farmers Australia
[84] Effect of salinity on eucalyptus trees SE Australia
[85] Soil salinity and groundwater properties Tunisia
[86] Extension of groundwater acidity NSW, Australia
[87] EM38 and TDR: comparison of measuring methods -
[88] Assessment of soil quality properties with ECa California, USA

[89] ECa distribution in the landscape and as a consequence of
evapotranspiration and phreatic rise South Australia

[90] Salinity in vineyards Australia
[91] ECa–salinity–water content California, USA
[92] Salinity management in cotton fields California, USA

EM38 in combination with other sensors

[93] Comparison tools and methods detection salinity Australia

[94] EM38 in combination with satellite-based navigation
methods Alberta, Canada

[95] Increasing precision of salinity with EM38 and EM31 (both
ECah) at various layers Yellow River Delta, China

[96]
Hyperspectral data related to different soil salinization
extent was combined with ECa order to establish a soil
salinization monitoring model

Weigan River, China

Corwin and Lesch [97] summarized five methods that have been used for determining soil salinity
in the field: (1) visual crop observations; (2) the electrical conductivity of the soil solution (soil paste or
extracts); (3) in situ measurement of electrical conductivity with electrical resistivity (with the Wenner
array method); (4) non-invasive measurement of electrical conductivity with ECa and, most recently;
(5) in situ measurement of electrical conductivity with time domain reflectometry. Frequently, ECe (e.g.,
conductivity of aqueous extracts of soil saturated soil paste, EC1:5, EC1:2 or EC1:1, conductivity of soil:
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water suspensions) was indicated as the most useful and reliable measurement of point-wise salinity
detection [43–57,81,82,95–98]. In older publications, ECe alone was often used to identify salt-affected
areas [29–57,81,82,86,93,95–99] Norman [30] developed a salinity classification system based on the
range of total dissolved salt concentration (EC1:5) with corresponding groupings of crops with different
tolerances to root zone salinity. Soil salinity can be derived from the conductivity of the bulk soil
(ECa). For example, salinity is quantified and monitored in irrigated agricultural areas of arid zones by
means of ECa measurements using EM38 [28–40,86]. In areas where saline soils exist, 65% to 70% of
the variance in ECa can be explained by the changes in salinity alone [51]. ECa readings can be used to
predict the exchangeable sodium percentage and ECe as well [27]. The different terms of salinity can
be inferred from the equation ECa = f (ECe(0−Z cm)).

During the last three decades, several calibration methods have been published describing
EM38-ECe relationships [27,28,41,60]. Following the classification of Triantafilis et al. [43] and
Vlotman et al. [49], further calibration approaches have been proposed, using linear regression,
multiple regression coefficients [15,31,37], simple depth weighted coefficients [5,13–55,67,69–82,86–94],
established-coefficients [10,11], modelled coefficients [38], mathematical coefficients [9], a logistic
profile model [43] and inverted salinity profiles [56].

Johnston et al. [19] reported that EM38 readings are not highly accurate but that categories of
soil salinity for large areas can be readily established. Coefficients of determination between 0.88 and
0.9 at depth levels of 30–60, 60–90 and 0–90 cm in soils in which salinity was the dominant factor
influencing the EM38 readings were described by Amezketa [59]. A more complex example of these
regressions is the dual pathway parallel conductivity (DPPC) model developed by Rhoades et al. [32].
This model indicates the major contribution to ECa readings from conductivity in the water-filled pores
that contain the majority of the solved salts with a relatively small contribution from the exchangeable
cations. When comparing different ECa-ECe prediction models, the relationships often show low
accuracy [5,19,78]. These results suggest that it is essential to establish calibration relationships between
ECa and ECe that depend on the soil type and water status for the specific site conditions for a particular
survey [19,20]. The variability of ECa to ECe conversion is greater in coarse-textured soils than in
medium- or fine-textured soils [24].

The effect of soil salinity and soil water content on the ECa has been described e.g., by Hanson
and Kaita [91], Bennett et al. [65], Gill and Yee [16], Turnham [81] and Wittler et al. [54]. The results
indicated substantial changes in the ECa readings as soil-water content changed. A linear relationship
existed between soil-water content and ECa for each level of soil salinity across the range of measured
soil water contents [91]. Norman [30] stated that, for clay soils (i.e., >40% in the top 30 cm), the water
content of the soil profile should be greater than 20% to allow soil salinity values to be accurately
derived from the observed ECa data. In Iranian investigations, Rahimian and Hasheminejhad [35]
found that more reliable regression equations between ECah (horizontal mode) and ECav (vertical
mode) and soil salinity could be derived at 35% water content in comparison to 25% water content.
Arndt et al. [60] cited similar values from the USDA-Soil Conservation Service. For field surveys
where ECa was closely related to salinity, Corwin and Lesch [97] used relationships between the v-
and h-mode to derive new variables. The geometric mean (sqrt(ECah*ECav)) provides a measure of the
cumulative ECa through the root zone and the ratio mean (ECah/ECav ) characterizes the degree of
leaching. A ratio greater than 1 indicates that the net flow of water and salts is upward, and a ratio less
than 1 indicates a downward net flow.

Broadfoot et al. [66] and Mankin and Karthikeyan [80] described similar classifications:

• Leached soils, where salinity increases with depth, defined by ECah/ECav ≤ 1.0
• Uniform, where salinity does not change significantly with profile depth and where 1.0 <

ECah/ECav ≤ 1.05, and
• Inverted salinity profiles, where salinity decreases with depth and where ECah/ECav > 1.05.



Sensors 2017, 17, 2540 7 of 44

A similar representation was chosen by Spies and Woodgate [93]. Subsoil (EM31) salinity maps
and root zone (EM38) maps were combined to provide an assessment of salinity hazard. The EM38
instrument had a depth range of less than 1.5 m, while the EM31 probes had a depth range of 4 to 6 m.
Triantafilis et al. [42] developed a leaching fraction model in combination with ECa based on the amount
of deep drainage and the average root zone ECe. However, the present investigations are not limited
to the creation of real-time inventories but are also of value in forecasting temporal changes in the
salinity status. Lesch et al. [100] used pre- and post-ECa surveys to quantify the degree of salt removal
from a field. However, the spatial variability impeded the derivations, particularly for subareas
with high salinity levels. Salama et al. [101] related apparent conductivity to recharge/discharge
mechanisms within watersheds. They associated low values of ECa with low concentrations of total
soluble salts and recharge areas. Discharge areas were associated with high values of ECa, indicating
greater concentrations of soluble salts near the surface and inverted salt profiles. The latter were
associated with rising groundwater tables, increased groundwater flow with mobilization of soluble
salts, and greater discharge at or near the surface. All of these factors are related to saline seep
development [102].

In an advanced application, EM38-ECa was used to help to assess the salt tolerance of trees,
forages and turf grasses [14,16,23–26,65]. The authors also studied the usefulness of ECa to predict the
survival and growth of eucalyptus and pastures in saline soils. According to McKenzie et al. [24,25]
and McKenzie [26], close correlations between salinity measured as ECa to the yield of wheat
and salinity measured by the saturated paste extract by McKenzie [26] were equal. In contrast,
relationships of ECa with observations on the establishment and growth of perennial pasture species
were weak [16]. Kaffka et al. [20] reported that, in locations where crop growth were influenced by
salinity, ECa was useful for estimating optimum N-fertilizer application and for identifying areas of the
field with unprofitable yields. Horney et al. [92] developed a four-step method for site-specific salinity
management in commercial fields. The steps included (1) generation of an ECa map; (2) directed
soil sampling for ECe; (3) determination of the estimated amendment requirement as a function of
location in the field; and (4) integration of the individual amendment requirements into a practical
spatial pattern for amendment application. As early as 1997, McKenzie et al. noticed that EM38 is a
cost-effective tool for assessing field salinity and for use in experiments on the salt tolerance of crops.

Vaughan et al. [48] combined ECe and water content of soil samples with field wide ECah
measurements. The prediction of soil salinity at unsampled points was carried out by co-kriging of
logECe with ECah. In a comparison to the work of Triantafilis et al. [44] co-kriging and regression kriging
of the ECa readings also showed minimum errors compared to ordinary and three-dimensional kriging.

All of the cited procedures are practical only if salinity is the main factor influencing ECa and
if ECe shows a close relationship to ECa [65]. Otherwise, a multiple regression model with further
independent influencing factors is required. Consequently, calibration equations and modelled results
cannot be used on other sites very often.

4. Detecting Soil-Related Properties in Non-Saline Soils by EM-38

4.1. Influence of Soil Water Content Conditions

In soils where salinity is not a significant factor, ECa values primarily represent as a function of
soil water content and the amount of electrical charge. Many researchers recommend measurements
with the EM38 at a soil water content close to or at field capacity [49,103,104].

This praxis has its basis in the theory of Rhoades et al. [32] and Corwin and Lesch [97].
In sufficiently wet soils, soil water is the major conductive pathway. Here ECa is determined by
the volumetric content of soil water. However, to an increasing extent of researchers noticed that
the spatial patterns of ECa, measured under different soil water conditions, are relatively stable with
time; only the level indicates a change [105]. However, the relationship between ECa and soil physical
and chemical properties varied considerably depending on the actual water conditions. This weak
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temporal stability of relationships between ECa and other soil properties indicated that soil water
conditions have a significant influence on ECa. When there is not enough water in the continuous
pores, the surfaces of soil particles and the small discontinuous pores of the soil are the main pathways
(e.g., when soil water content is <60 to 70% of field capacity). Under these conditions, the influence
of the soil particle volume, the volume and conductivity of water in the small pores, as well as the
surface- conductivity of soil particles, increases [32].

Bang [106] showed that several variables (i.e., bulk density, percentage of sand, silt, and clay,
plant-available water content, cone index, and saturated hydraulic conductivity) and chemical
parameters (i.e., extractable P and K, pH, cation exchange capacity, organic matter, and micronutrients)
presented different strengths of the correlations with ECa. Few direct strong correlations were found
between ECa and the soil physical properties studied (R2 < 0.50), yet overall, the correlation improved
when ECa was measured under relatively dry conditions. Furthermore, according to Bang, the utility
of ECa as a variable in cluster analysis to indicate management or soil sampling zones was influenced
by variations in ECa measured under different soil water conditions. Bang suggested “that the spatial
and temporal ECa variability measured under different soil water conditions could be a critical factor
when evaluating the ability of ECa to predict soil chemical and physical characteristics important to
soil and crop productivity and management”. Therefore, Bang [106] recommended that an ECa survey
be conducted under relatively dry conditions in similar coastal plain soils.

Lück et al. [107] carried out measurements on loamy fields, partly with coarse textured sediments.
The authors found the most pronounced ECa distributions during summer (relatively dry conditions).
This may has been caused by the larger water content fluctuations in the sandy soils due to their
lower water-holding capacity. In contrast to these soils, the loamy parts of the fields had a higher
water content as a consequence of higher water-holding capacity as well as better water delivery via
capillary rise. Conversely, at sites with dominant Pleistocene loess soils, readings taken during periods
when soil water content was at field capacity produced more pronounced maps [108]. Under drier
conditions, the ECa readings indicated lower, more similar values. Some researchers recommend a
different procedure. Mertens et al. [109] suggested the creation of an averaged map from repeated
recordings made at different dates. This procedure is scientifically more appropriate than a water
correction. Zhu et al. [110] indicated that the best mapping of major soil distribution across a landscape
studied in Pennsylvania required optimal timing, meaning the occurrence of a wet period. No single
survey or relative differences in ECa obtained by repeated measurements was sufficient to obtain the
best possible soil map for the study area. A combination of repeated surveys, depth to bedrock, and
terrain attributes provided the best mapping of soils in this agricultural landscape and doubled the
accuracy of the map. ECa measurements collected during the wetter periods (i.e., >10-mm antecedent
precipitation during the previous 7 days) showed greater spatial variability (i.e., greater sills and
shorter spatial correlation lengths), indicating the influence of soil water distribution on soil ECa [111].

4.2. Soil Texture

Frequently, in non-saline soils, ECa is used to indicate soil texture, particularly clay content.
Simulations of silt and sand are rare and seem more likely a by-product. However, the quality of
the single relationships are often rather confounding (Table 2). As noted by Corwin and Lesch [112]
the target variables correlate inconsistently with ECa mainly as a consequence of: (1) the complex
interaction of soil properties; (2) a temporal component of variability that is only weakly indicated by
an expected constant variable such as ECa and (3) variable climatic factors.

McBratney et al. [113] and McBratney and Minasny [114] demonstrated that differences in the
mineral composition influence the magnitude of the ECa values and therefore the strength of the
relationship to the clay content. Kaolin-dominant soil minerals will have smaller conductivities,
and soil that mainly contains illite or has a mixed mineralogy will have larger ECa values, but
these values are smaller than those for smectitic materials. Furthermore, the authors noticed that at
low conductivities (<50 mS m−1), it is quite difficult to separate clay. Wayne et al. [115] derived
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texture fineness classes from ECa readings. A conductivity greater than 30 mS m−1 indicated
clay, and a conductivity less than 5 mS m−1 indicated sand. Furthermore, ECa values between
0 and 10 were classified as sandy loam, and values between 10–20 mS m−1 indicated clay loam.
These fineness classes represented a basis for the derivation of the plant-available water content.
Domsch and Giebel [116] described another approach to delineate clay content. Working with
predominantly sandy soils, the authors indicated that, at field capacity, ECa reflected this property
well. However, for soils with water-influenced horizons (gleyic soils), such relationships are very
weak and should not be introduced in calculations for mineral soils. A factor scoring that used clay
and silt content showed a closer relationship with ECa. Furthermore, the authors related ECa to soil
textural classes: an ECa of 0–10 mS m−1 indicated sand or loamy sand, an ECa of 10–20 mS m−1

indicated sand or loamy sand over loam, and an ECa of 20–30 mS m−1 indicated sandy loam or loam.
Vitharana et al. [104] used the geometric mean ((ECav·ECah)0.5) to delineate the clay content of the
top- and subsoils. Doolittle et al. [117] used ECa to locate small inclusions of sandy soils within a
predominately fine-textured alluvial landscape. Bobert et al. [103] improved the relationships between
ECa and clay, silt and clay + silt by extracting the drift caused by soil water content calculated from
a wetness index map. A multi-site/multi-season approach to calibrate ECa models for predicting
clay content across large landscapes was developed by Harvey and Morgan [118]. The fact that the
relationships between clay and ECa were similar in all 12 fields, indicated that a single linear regression
model could be used to describe the spatial variability of the clay content across all of the fields.
This “single calibration approach” used data from a designated calibration area to estimate ECa model
parameters that were then combined with data from subsequent fields to predict the soil variability
in the observed fields. The single calibration approach is likely applicable to other areas, providing
requirements for its use are met. Those requirements include the following: (1) the distribution of
the soil property or properties of interest in calibration area should be representative of the study
area; (2) the soil property or properties that influence ECa should be the same across the study area;
and (3) management practices (e.g., crop rotation and irrigation) should be similar across the study area.

To an increasing extent, methods other than linear regression have been used. Response surface
sampling design, fuzzy k-means classification, hierarchical spatial regression modelling and ECa

(EM38 and EM34) surveys were applied by Triantafilis and Lesch [119] to produce a map of spatial clay
content. Triantafilis et al. [44] combined ECa values (EM38 and EM31) and clay content with different
geostatistical methods (co-kriging, regression-kriging and ordinary-kriging). The results suggested
that the linear relationship of clay content against ECa (EM38) data used in combination with kriging
of regression residuals was the most accurate. Vitharana et al. [104] showed that standardized ordinary
kriging of subsoil clay content as the primary variable and the geometric mean ((ECav*ECah)0.5)
as the secondary variable gave better results when compared to ordinary kriging and traditional
ordinary kriging.

Table 2. References indicating relationships between EM38-ECa and soil texture.

Study Texture Texture
Content (%) ECa (mS m−1) R2 Location of

Investigations

Europe

[103]
Clay
Silt
Silt + Clay

not
described ECav: 10–110

0.28/0.53 *
0.14/0.49 *
0.25/0.71 *
* with extracting
TWI-trend

Wulfen,
Kassow, East
Germany

[116] Clay Silt 4–16
7–36 ECav: 3–30

ECav: 0.55 (clay)
ECav: 0.67 (clay + silt) (after
factor scoring)

Brandenburg,
Berlin,
Germany
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Table 2. Cont.

Study Texture Texture
Content (%) ECa (mS m−1) R2 Location of

Investigations

Europe

[120] Clay 2–60 ECav: mean
13–92 ECav: 0.56 Saxony-Anhalt,

Germany

[121] Clay 2–45 ECav: 2–80

ECa: 0.66
ECa corr: 0.85, corrected
across field boundaries with
neighbors regression

Bavaria,
Germany

[122] Clay 6–42 ECav, ECah:
6–36

ECav: 0.08–0.38
ECah: 0.13–0.33

Scheyern,
Germany

[123]

Clay 7—-32 ECav: 8–44
ECah: 6-41

ECav: 0.21–0.44
ECah: 0.13–0.67

Scheyern,
Germany

Silt 4–53 ECav: 8-44
ECah: 6–41

ECav: 0.11–0.46
ECah: 0.01–0.60

Sand 28–79 ECav: 8–44
ECah: 6–41

ECav: 0.04–0.38
ECah: 0.13-0.69

[109]
Clay
Silt
Sand

2–25
5–69
5–50

ECav: 5–65
ECav: 0.76–0.76
ECav: 0.65–0.71
ECav: 0.00–0.69

3 fields around
Bonn,
Germany

[108]

Clay 3–48 ECav: 2–99
ECah: 5–77

ECav: 0.76
ECah: 0.74

South
Germany

Silt 4–71 ECav: 2–99
ECah: 5–77

ECav: 0.67
ECah: 0.67

Sand +
gravel 15–67 ECav: 2–99

ECah: 5–77
ECav: 0.76
ECah: 0.74

[124] Clay 5–30 ECav: 9 (mean) ECav: 0.94 Southwest
Sweden

[125]

Clay 9–24 ECav: 4
ECah: 32.2
approximate
values
two depths:
0–25 cm, 25–60
cm and 2 fields

ECav: 0.19–0.41
ECah: 0.32–0.45

South Norway
Silt 28–49 ECav: 0.006–0.52

ECah: 0.002–0.56

Sand 33–61 ECav: 0.01–0.4
ECah: 0.02–0.44

Gravel 3–11 ECav: 0.05–0.94
ECah: 0.08–0.94

[126] Clay about 5–40 ECah: 6–26 ECah: 0.63 South Norway

[127] Clay
Sand

23–44
39–67 ECav: 0–50 ECav: 0.55

ECav: 0.41

Moravia,
Czech
Republic

[128] Clay 4–24 ECav: 0.49–0.67 (different
dates on the same field)

Jütland,
Denmark

[129] Clay 2–56 ECav: 9–106
ECah: 5–97 ECav: 0.81 East-Flanders,

Belgium

[104] Clay
topsoil:
14–24
subsoil: 3–27

ECav: 18–47
ECav: 12–36

(ECav* ECah)0.5: 0.69 subsoil
(ECav* ECah)0.5: 0.16 topsoil

Flanders,
Belgium
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Table 2. Cont.

Study Texture Texture
Content (%) ECa (mS m−1) R2 Location of

Investigations

North America

[106]

Clay 10–46 (mean
values)

ECav: 1–54
ECah: 1–56

ECav–30 cm: about 0.5
ECah–30 cm: 0.3–0.56

North
Carolina, USA

Silt 20–35 (mean
values)

ECav: 1–54
ECah: 1–56

ECav–30 cm: 0.4–0.6
ECah–30 cm: −0.3–0.56

Sand 40–70 (mean
values)

ECav: 1–54
ECah: 1–56

ECav–30 cm: about 0.4
ECah–30 cm: −0.3–−0.6

[130]
Clay
Silt
Sand

24–44
26–51
8–50

ECav , ECah:
about 40,
salinity affected

0.08
0.18
0.14

ln of geometric
mean of ECav
and ECah

California,
USA

[112] Clay 3–48 about ECav,
ECah 10-65

ECav: 0.11.
ECah: 0.08

Western
California,
USA

[131] Clay 14–29 ECav: 19–35
ECah: 14–26

ECav: 0.69
ECah: 0.66

Nebraska,
USA

[118] Clay 12–32 ECav: 19–118 0.76 12 sites in
Texas, USA

[132]

Clay 13–63 ECav: 30–65
ECah: 38–83

ECav–30 cm: 0.55
ECah–30 cm: 0.55

Central
Missouri, USA

Silt 33–81 ECav: 30–65
ECah: 38–83

ECav–30 cm: 0.55
ECah–30 cm: 0.55

Sand 6–11 ECav: 30–65
ECah: 38–83

ECav–30 cm: 0.27
ECah–30 cm: 0.27

[3] Clay
Silt

13–36
31–67 ECav: 7–37 ECav: 0.55

ECav: 0.15 and 0.48 (2 fields)
North-central
states, USA

[133]
Clay
Silt
Sand

about 5–40
unknown
unknown

ECav:about 5–60
ECav: 0.36–0.77
ECav: 0.27–0.71
ECav: 0.21–0.36

Midwest USA

[100] Clay
Sand

10–32
52–85

ECav: 84.8
ECah: 40.1

ECah: 0.76
ECah: 0.74

Southwest
USA

Australasia

[42,45] Clay about 30–85 ECav:80–200
(salt affected) ECav 0.62 and 0.64 NSW,

Australia

[134] Clay about 40–65 ECav:30–210 ECav: 0.72 NSW,
Australia

[119] Clay 15–58 ECav: 5–159
ECah: 13–147

ECav: 0.66
ECah: 0.67
combination of EM34 and EM38
in different modes:0.79

NSW,
Australia

[135] Clay about 20–45 about 10–36 ECav: 0.72
ECah: 0.65

Manavata,
New Zealand

Asia

[136]
Clay
Silt
Sand

1.5–41.3
6.5–33.5
45.8–91.0

ECav: 1–40 topsoil: 0.47 (on average) Sri Lanka

Unknown

[137] Clay 12–20 ECav: 7–20
ECah: 7–15

ECav: 0.78
ECah: 0.80 Not described
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4.3. Soil Water Content, Water Balance

The derivation of the water storage capacity, particularly the field capacity, and the plant-available
water content based on electrical conductivity measurements has gained increasing importance. Table 3
provides an overview of current investigation areas and target variables.

Table 3. Literature describing relationships between EM38-ECa and parameters of soil water.

Study Parameters Location of Investigations

Water content

[138] Water content Iowa, USA
[139] Water content Iowa, USA
[112] Water content South California, USA
[91] Water content California, USA
[140] Water content, water table depth New Zealand
[141,142] Water content Ontario, Canada
[143] Water storage [mm] Minnesota, USA
[144] Soil drainage classes Illinois, USA
[145] Soil water content (θv, θw), ±3% South Dakota, USA
[146] Plant available water content Missouri, USA
[147] Water content Columbia County, USA
[148,149] Volumetric water content Texas, USA

[122] Water content: ECav: 0.39; ECah: 0.26
Plant available water content: ECav: 0.31; ECah: 0.29 Bavaria, Germany

[123] Water content ECav: 0.04–0.26; ECah: 0.16–0.64 Bavaria, Germany
[150] Water content Florida, USA
[3] Water content North-central USA
[151] Water content with EM38 and ASD spectrometer Quebec, Canada
[102] Repeated ECa measurements for determining water content Pennsylvania, USA

[152] Detection of available water content from ECa, for using in the
yield software ADSIM WA, Australia

[153] Repeated ECa measurements and relation to water content
(irrigation) Queensland, Australia

[115] Available water content and soil water deficit from texture
finess classes and ECa

Cambridgeshire, UK

[154] ECa in combination with GPR to predict field wide water
content South-east Italy

[155] Soil water content, soil bulk density South Dakota, USA

Groundwater, water table depth, water drainage

[156] Water table depth using geophysical and relief variables Darling River, Australia
[9] Groundwater recharge South Australia
[157] Depth to groundwater table Montana, USA
[158] Soil drainage classes Iowa, USA

[159] Characterizing of water and solute distributions in the vadose
zone with readings of EM38 and borehole conductivity meter New Mexico, USA

[160] Water table depth Florida, USA
[161,162] Detection of areas with different water movements Tennessee, USA
[46] Deep drainage risk Australia
[163] Hydraulic conductivity of palaeochannel in alluvial plains NSW, Australia

[42,45] Deep drainage (mm/year) with a 4-parameter broken-stick
model fitted to ECav beyond 120 cm Australia

Irrigation

[164] Irrigation effectiveness/drainage California, US,

[165] ECa – soil available water holding capacity on two
variable-rate irrigation scenarios New Zealand

[166] ECa for quick assessment of deep drainage under irrigated
conditions in the field. Australia
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Water content, like salinity, is a horizontally and vertically effective dynamic property. In areas
where water content is the dominant factor that influences ECa and where water content decreases
with depth, ECah > ECav and vice versa [167]. Wayne et al. [115] developed a hierarchical procedure
for calculating available water content. ECa was used to target the location for neutron probe samples.
The construction of a water content–texture relationship allowed the determination of the available
water content and the soil water deficit. Kachanoski et al. [141] found that in soils with a low electrolyte
content and a wide range of texture, ECa explained more than 90% of the water content. Additionally,
Kachanoski et al. [142] correlated ECa readings with water storage and found that 50–60% of the
variations in ECa were explained by water content. Similar levels for coefficients of determination
were described by Sheets and Hendrickx [150] and Khakural et al. [143]. Morgan et al. [147] noted
that ECa is only applicable in areas with a greater range of water content. The same observation was
made by Hedley et al. [135],who calculated an R2 of 42%. Substantial changes in the relationships
between ECa readings and soil water content were shown by Hanson and Kaita [91]. The higher the
soil salinity was, the more sensitive the ECa readings were to changes in soil water content. A linear
relationship existed between soil water content and ECa for each level of soil salinity over the range
of measured soil water contents. In a Mollic catena, Brevik et al. [139] found significant relationships
between ECa and soil water content that explained 50% to over 70% of the variability. The greatest
difference between ECa values in any soils was observed when the soils were moist. Regression line
slopes tended to be lower in higher landscape positions indicating greater ECa changes with a given
change in soil water content. A relationship between increasing water content and ECa readings from
a summit-to-foot slope area of calcareous till parent material with a coefficient of determination of
0.86 was described by Clay et al. Wilson et al. [161,162] derived areas with different water movements
from EM31 and EM38 readings. Drying/draining patterns were characterised by a downward shift
in ECa with time. Follow-up ECa surveys across high-to-low patterns showed a positive correlation
between ECa and water content. Regions with increased horizontal flow showed high conductivities
after rainfall. Areas that had preferential vertical flow showed lower EM38 readings after periods of
rainfall. For a prototype engineered barrier soil profile designed for waste containment, Reedy and
Scanlon [148] and Reedy [149] predicted the average volumetric water content at any location at any
time with a linear regression model (R2 = 0.80) and spatially averaged volumetric water contents over
the entire area (R2 = 0.99).

Bang [106] described weak and negative relationships between soil water content and ECa values
in North Carolina’s Coastal Plains. Little variation in subsoil water content across the study site for
each survey date combined with a relatively narrow range of variability in soil texture was the main
reason for this result. Furthermore, the variability in other factors (e.g., soil compaction and texture)
might have masked the contribution of the water content to ECa variation, The author concluded that
the spatial variability of soil water content at a 0- to 75-cm depth could not be directly determined
by a field-scale ECa survey at this site, due to the weak relationships between soil water content
and ECa. Relationships between plant-available water content and ECa (R2 = 0.78) were derived
by Wong and Asseng [152] to transform a water storage capacity map of the field into yield maps
for three major season types (dry, medium and wet) and nitrogen fertilizer management scenarios.
Hall et al. [159] reported that ECa methods (i.e., EM38 and the use of a borehole conductivity meter)
could accurately characterize water and solute distributions in the vadose zone. Saey et al. [168]
developed an index to register the area-wide soil heterogeneity. After calculating the relationship
between clay content and ECa, this equation was converted so that ECa was the target variable. In the
next step, the authors calculated a quotient of the measured ECa and the ECa reading derived from the
clay content. This result was called ECref and was used as measure for soil heterogeneity.

Variables other than water content are targets of ECa measurements to an increasing extent;
for example, hydraulic conductivity, water table depth, drainage classes and groundwater
recharge. In developing a relationship between ECa and estimated deep drainage (mm/year)
Triantafilis et al. [42,45] developed four-parameter broken-stick models fitted to ECav beyond 120 cm.
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Vervoort and Annen [163] showed that the overall patterns of the hydraulic conductivity of
palaeochannel in alluvial plains could be inferred from the combination of EM inversion using EM38
and EM34 measurements. However, the absolute magnitude of hydraulic conductivity could not be
easily predicted.

Sherlock and McDonnell [169] used simple linear regression analyses to compare terrain electrical
conductivity measurements from EM31 and EM38 to a distributed grid of water table depth and soil-
water content measurements in a highly instrumented 50 by 50 m hill slope in Putnam County, New York.
Regression analysis indicated that EC measurements from the EM31 meter (v-mode) explained over
80% of the variation in the water table depth across the test hill slope. Despite problems with sensitivity
and zeroing the EM38 could explain over 70% of the gravimetrically determined soil water variance.

The depth of the water table was also detected by Schuman and Zaman [160]. Knowledge
of the water table depth was necessary to select a suitable field for new citrus plantings and for
drainage systems. With ECa in the vertical mode, the authors could estimate these values with a
RMSE of approximately 4–15 cm. ECa, the topographical wetness index and the rainfall time series
gave good predictions of water content and water table depth using the models derived according
to Hedley et al. [140]. Further investigations determined soil drainage classes [144], groundwater
recharge [170], water drainage [46] and irrigation [164].

4.4. Detection of Soil Horizons and Vertical Discontinuities

To an increasing extent, investigations were carried out to calculate ECa depth profiles in
combination with the detection of vertical discontinuities (Table 4). Refining and improving of soil
maps is necessary for soil protection and the description of soil functions.

Table 4. Literature indicating derivations of soil types and patterns as well as further soil parameters
from EM38-ECa.

Study Investigation Object Location of Investigation

Soil types

[171] Separation between Natraqualf and Ochraqualf Tennessee, USA
[172] Soil types, yield maps Virginia, USA
[173] ECa to derive more homogeneous lacustrine-derived soils Iowa, USA
[174] Soil pattern as basis of management zones England
[175] Soil boundaries Denmark
[158] Soil map unit boundaries, detection of inclusions Iowa, USA

[2] Refine and improvement of soil maps -
[176] Soil types with clusteranalysis Elbe-Weser-region, Germany

[177] Detection of areas with sulfidic sediments and coastal acid sulfate
soils NSW, Australia

[128] Soil types Jütland, Denmark
[178] Soil boundaries between clay loam and sandy loam soils Cambridge, UK

[179] Soil types, in combination with terrain parameters and other
sensors NW Victoria, Australia

[102] Repeated ECa measurements for determining soil types Pennsylvania, USA

[180] Inversion of EM38 and EM34 sigma-a data to detect the areal
distribution of soil types Darling River, Australia

[181] Distinguishing between soils with cambic pedogenic horizons and
argillic horizons; boundaries of soil map units Texas, USA

[182] Supporting delineation of spatial distribution of C content Harz region, Germany

Soil depth to horizons/layers/discontinuities/borders

[183] Depth to limestone bedrock and clayey residuum Florida, Pennsylvania, USA
[184] Depth of claypan soils Missouri, USA
[185] Soil depth sounding East, south Germany

[5] Soil depth sounding Ontario, Canada
[186] Depth to sand and gravel Unknown
[187] Depth of sand deposition Missouri, USA
[188] Layer depth, ECa as auxiliary variable North Netherlands
[189] Depth of the Tertiary substratum Flanders, Belgium
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Table 4. Cont.

Study Investigation Object Location of Investigation

Soil depth to horizons/layers/discontinuities/borders

[190] Soil depth to petrocalcic horizon Utah, USA
[191] Soil depth to bedrock (loess above basalt) Idaho, USA
[192] Bulk density and ECa Iowa, USA
[193] Boulder clay depth North Netherlands
[194] Linear, negative relation between ECa and topsoil layer thickness Fuxin, China

[195] Bayesian method to map the clay content of the Bt horizon
associated with the control of encroaching trees South Africa

[1,196–198] Depth to claypan soils Missouri, USA

Further soil properties

[88] Soil properties and cotton yield California, USA
[199] Soil properties and cotton yield California, USA

[112] Water content, cation exchange capacity, cations and anions in
saturation extract and exchangeable, B, Mo, pH, C, N, West California, USA

[132] Cation exchange capacity, C, N, P, soil enzyme, microbial biomass,
hydr. Sat. K., bulk density Missouri, USA

[3] Water content, cation exchange capacity North-central states, USA
[45] CEC in salt affected soils NSW, Australia

[200]
CEC in dependence of EM38, EM31, 3 remotely sensed (Red,
Green and Blue spectral brightness), 2 trend surface (Easting and
Northing) variables

NSW, Australia

[201] Exchangeable Ca, Mg, cation exchange capacity Ontario, Canada

[124] ECa as a covariable in cokriging improved the prediction of pH,
clay, SOM Sweden

[202] ECa in relation to water content, yield, CEC, clay silt, organic
matter

Brandenburg,
Saxony-Anhalt, Germany

[131] C, total dissolved solids, depth of topsoil Nebraska, USA
[203] Soil organic carbon and classifing with fields normalized ECa Andalucia, Spain
[204] N-dymanics for management zones Nebraska, USA

[176] Precision agriculture: combination of ECa and soil parameters
(clay, yield, plant available water) Mecklenburg, Germany

[205,206] Compaction in paddy rice fields by puddling Bangladesh
[207] ECa as subsidiary variable for interpolation Missouri, USA
[208] Soil compaction Silsoe, UK
[209] Relations leaching rates to ECa NSW, Australia

[210] ECa as subsidiary variable for interpolation of P, K, pH, organic
matter and water content Iowa, USA

[211] Simple linear inversion of ECa to simulate magnetic susceptibility -

ECa profiling by depth requires more intensive measurements. Usually, this investigation
is carried out with measurements made at different heights above the soil surface or repeated
measurements at different coil spacing using regressions between ECa and depth for the further
calculation [5,9,185,212]. As the instrument is raised above the ground, the relative influence of
deeper layers on the measurements decreases. Visual comparison of ECa values and instrument
height and inverse modelling (inversion, optimization) are often used. However in numerous
cases, the alternating influencing factors impede the retrieval of adequate results; for example,
both texture and salinity can cause strong vertical fluctuations. Sudduth et al. [196], Sudduth
and Kitchen [155,175–179,181,184–188,195–198,201–209], Kitchen et al. [213] and Noellsch [214] used
ECa to determine the depth to the claypan (the sublayer with 50 to 60% clay, varying in depth
from 0.1 to 1 m) in nonsaline soils (Missouri). A high correlation between increasing ECa and
decreasing depth to the claypan was observed by Doolittle et al. [184]. The depth of boulder clay
was estimated by Brus et al. [193], and Bork et al. [191] estimated the loess thickness above basalt.
Mapping of sand deposition after floods was carried out by Kitchen et al. [187]. In the investigations of
Boettinger et al. [190] soil depth to the petrocalcic horizon was positively and significantly correlated
with ECa. Doolittle and Collins [183] reported that bedrock depths on a Pennsylvania site, based on
depth classes, could be estimated with ECa data.
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Knotters et al. [188] introduced ECa as an auxiliary variable in co-kriging and kriging with
regression to predict the depth of Holocene deposits. Vitharana et al. [189] improved the content of a
soil map with the calculation of the depth of a Tertiary stratum.

4.5. Relationships to N-turnover, Cation Exchange Capacity, Organic Matter and Additional Soil Parameters

In addition to the previously listed soil properties, further parameters have been combined with
ECa readings, including cation exchange capacity, organic matter, bulk density, nutrients (e.g., NO3

−,
Olsen-P) and elements such as Ca, Mg, K, Na (exchangeable or in saturation extract), B, Mo, H and
other anions. For close relationships, field-wide ECa measurements allow mapping of soil properties
(Table 4). The dominant target variable was the cation exchange capacity [3,132,135].

The leaching rates calculated from a field study were related to changes in ECa readings [209].
This enabled the derivation of a spatially averaged leaching rate. The spatial distribution of N
seems to be an increasingly attractive parameter to be estimated via soil conductivity. Eigenberg and
Nienaber [215,216] and Eigenberg et al. [217,218] related ECa maps made at different times to temporal
values of available N and other specific mobile ions that were associated with animal waste and cover
crops, and concluded that ECa can be used as an indicator of the content and loss of water-soluble
N. Eigenberg and Nienaber [215,219] isolated and detected areas of nutrient build-up in a cornfield
receiving waste. Different manure and compost rates had been applied for replacement of commercial
fertilizer. ECa measurements differentiated commercial N-fertilized plots from those that had manure
applied at the recommended P rate, compost applied at the P rate, and compost applied at the N rate.
In another publication, the same authors [220] discriminated areas with synthetic fertilizer from areas
with feedlot manure and compost application. Differences between ECa maps before and after the
applications were partly explained by N decompositions. Furthermore, Eigenberg et al. [221] reported
that ECa (EM38 and Dualem-2) soil conductivity appeared to be a reliable indicator of soluble N gains
and losses in a soil under study in Nebraska, a measure of available N sufficiency for corn mainly
in the early growing season, and an indicator of NO3

–N surplus after harvest when soluble N was
vulnerable to loss as a consequence of leaching and/or runoff.

Johnson et al. [204] stated that in soils where ECa is dominated by NO3
−-N, ECa was applicable for

tracking spatial and temporal variations in crop-available N (manure, compost, commercial fertilizer,
and cover crop treatments). Furthermore, the calculation of fertilizer rates for site-specific management
was possible. Stevens et al. [222] studied ECa as an indirect measure for NH4

+ and K+ in animal
slurries. The predictive capability of soil conductivity to estimate soil nitrate was demonstrated by
Doran and Parkin [223]. Korsaeth [125] found an explanation of a variance of 27–69% (average 47%) of
topsoil inorganic N concentration by means of ECa. In general, the author stated that determination of
absolute levels of this parameter was difficult with ECa, but it appeared to be quite a robust method
for detection of both spatial and temporal relative differences. Some authors described relationships
between ECa and soil conditions that influenced soil mineral N [224,225]. Fritz et al. [224] suggested
the application of ECa to predict NO3

− concentrations in the soil. A comparison of the EM38 and
the Veris 3100 sensor cart showed a correlation with soil NO3

−, but the authors indicated that further
studies were necessary to confirm their results.

The studies of Jaynes et al. [226] and Kitchen et al. [213] assumed a possible relationship between
soil ECa and N mineralization and denitrification rates. Soil conditions, especially the texture,
influenced the rate of denitrification and N mineralization [227]. The relationships between soil
texture and N mineralization and denitrification should aid in developing an in-season variable-rate N
fertilizer recommendation [224]. Soil organic matter, ECa, and soil texture are properties that might
aid in predicting mineralization and denitrification in soil. Dunn and Beecher [228] detected large
differences in surface soil acidity and a strong relationship (R2 = 0.49 to 0.91) compared to ECa readings
in individual rice fields in NSW, Australia. The proposed ECa levels for the delineation of zones
were <80, 80–140 and >140 mS m−1 for the EM31 vertical mode, and <80, 80–110 and >110 mS m−1

for the EM38 vertical mode. Many rice growers in southern NSW currently have EM maps of their
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fields. Using these maps soil sampling for soil acidity would be a more cost-effective method than
grid sampling.

Triantafilis and Momteiro Santos [200] indicated the cation exchange capacity (CEC) as one of
the most important soil properties because it is an index of the shrink–swell potential and is thus a
measure of soil structural resilience to tillage. The authors used the readings from EM38 and EM31,
and additionally remotely sensed spectral reflections (red, green and blue spectral brightness), and two
trend surface (Easting and Northing) variables as ancillary data or independent variables, and a
stepwise MLR model was used to predict the CEC. The x and y variables accounted for any distinct
drift in the residual error pattern. The correlation coefficient (R2 = 0.76) for the regression model was
much larger than that achieved with any of the individual ancillary data variables. The adjusted R2

was 0.69, and the estimated RMSE was 1.86 cmol kg−1.
In other studies, the results were more confusing. Heininger et al. [229] and Nadler [230] indicated

that salinity, soil texture, or soil water content were masking the response of ECa to other physical,
chemical and nutrient levels in soil. Cations, such as Ca, Mg, or K, commonly associated with binding
sites on soil particles, could influence ECa with variations in ECS (i.e., conductivity of the solid soil).
However, the common assumption is that in most field solutions, changing levels of soil cations have
a minor influence on ECS [229,231]. Heininger and Crosier [232] demonstrated that under saturated
conditions changes in nutrient levels (e.g., soluble N and S), changes in ECWC could influence ECa. In a
study by Heiniger et al. [229], ECa was evaluated as a means to estimate plant nutrient concentrations
(i.e., P, K, Ca, Mg, Mn, pH, CEC, and humic content). This study indicated that it was unlikely that
ECa could be used to directly estimate the soil nutrient content in a field. However, the authors
suggested that additional research on the relationships of ECa with soil water content and soil texture
was necessary to determine whether ECa could be used to establish nutrient management zones.
The authors concluded that “ECa can be valuable tool when used in conjunction with multivariate
statistical procedures in identifying soil properties and their relationship to nutrient availability”.

According to Martinez et al. [203], ECa can provide inexpensive and useful information to capture
soil spatial variability and characterization of organic carbon. ECa data were used to elucidate
differences in soil properties as a consequence of topography and management, explaining >25% of
the spatial variation. With normalized ECa (∆ECa) the authors successfully applied fuzzy k-means
to delimit homogeneous soil units related to soil management and the spatial distribution of organic
carbon. Grigera et al. [131] related soil microbial biomass to organic matter fractions in a field using
ECa. Soil properties (0–90 cm) that showed higher correlations with ECav (Ct (R = 0.87), clay (R = 0.83),
total dissolved solids (R = 0.68), and depth of topsoil (R = 0.70)) influenced soil water availability in
this field. Soil microbial groups were correlated with different soil C fractions in the uper 15 cm and
were similar across ECa zones. Motavalli et al. [233] assessed variation in soil Bray 1 P levels in litter
amended landscapes at 0–5 and 5–15 cm depths. ECa was also applied as subsidiary variable in a
co-kriging method for improving the map accuracy interpolation of P, K, pH, organic matter and water
content [210]. Jung et al. [207] described a similar effect for the application of ECa. Cross-semivariance
analysis with ECa as a secondary variable were better than by a simple semivariance analysis.

Bekele et al. [234] reported that ECa was strongly related to ammonium extractable K, organic
matter (OM), pH and Bray-2 phosphorus with factor analysis but not to ammonium extractable Ca
and the sum of bases in fields in LA, USA. Furthermore Lukas et al. [127] examined soil chemical
characteristics (i.e., P, K, Mg content and pH value) and humus content and showed relatively balanced,
moderately strong correlations with ECa.

Additionally, the use of ECa for the detection of soil compaction has become increasingly
important [192,208]. Krajco [208] discovered that the ECa readings measured in the horizontal mode
distinguished the areas with no compaction above 0.3 m and areas with soil compacted in the entire
soil profile with less precision. The EM38 operated in the vertical mode was not sensitive enough to
measure any differences in soil bulk density.
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4.6. Derivation of Soil Sampling Designs

ECa measurements are frequently applied to devise soil sampling schemes to reduce soil sampling
points (Table 5) [88,114,115,235,236].

Table 5. Literature describing selection of areas for soil sampling with EM38-ECa.

Study Investigation Object Location of Investigation

[59] Soil sampling points Ebro River, Spain
[199] Sampling design West California, USA

[237] ECa base sampling design: response surface sampling design (RSSD),
stratified random sampling design (SRSD) California, USA

[228] Soil sampling design pH NSW, Australi,
[238] Mapping sodium affected soils Great Plains, USA

[204,239] Soil sampling design, soil units West California, USA
[100,236,240,241] Soil sampling design Southwest USA

[115] Sampling design for loacation of neutron probe access tubes Cambridgeshire, UK
[242] VQT method (variance quad-tree) in combination of relief data and ECa Jiangsu Province, China,
[235] Optimum locations for soil investigations Brandenburg, Germany

In addition to finding representative locations, the goal is to significantly reduce the number of
samples required to effectively calculate the target variable. Frequent selection of sampling points by
means of ECa surveys is performed empirically. In principle, design-based (probability-based) and
model-based (prediction-based) sampling schemes are applicable.

Triantafilis et al. [42,45] used the ratio (ECav(EM38)/ECav(EM31)) to determine soil sampling
points on salt affected areas. Lower ratios appeared when EM38 was sensing the relatively sandy
and less conductive topsoil. The results of Shaner et al. [243] support the utilization of ECa-directed
zone sampling as an alternative to grid sampling if the transition zones of soil texture and soil
organic matter are avoided. Approximately 80% of the samples in grid sites 10 m from the zone
boundaries were classified correctly compared to the samples <10 m from the boundary, in which
only 50–54% were classified correctly. Corwin et al. [237] described a procedure that was the basis for
the development of the ESAP software package [240,241]. In this model-based sampling approach,
a minimum set of calibration samples was selected based on the measured ranges and spatial locations
of the ECa readings. This sampling approach originated from the response surface sampling design
(RSSD) methodology of Box and Draper [244]. The ESAP software was specifically designed for use
with ground-based EM signal readings. The ESAP software package tried to identify the optimal
locations for soil sampling (6–20 sites depending on the level of variability of ECa) by minimizing
the mean square deviation. Zimmermann et al. [235] developed a hierarchical system with (1) ECa

measurements; (2) kriging; (3) cluster analysis; (4) principal component analysis and (5) formation of a
pseudo-response surface design to select subsets of appropriate sites for soil sampling. The number
of samples could be minimized while still retaining the prediction accuracy inherent in statistical
sampling techniques. Horney et al. [92] suggested a methodology for salt affected soils with the
following steps: (1) building an ECa map; (2) directed sampling for salinity; (3) as a function in the field
determination of the estimated improvement requirement and (4) integration into a practical spatial
pattern. Tarr et al. [245] used stratification of ECa and terrain attributes to derive a heterogeneous
pasture in relatively homogenous sampling zones with fuzzy k-means clustering. The five zones
had significant differences in the target variables (i.e., P, K, pH, organic matter and water content).
However, the reduction of sampling points from 116 to 30 to 15 points resulted in a loss of accuracy,
but this loss may not have an economic or management consequence to the producer. Yao et al. [242]
described a completely new method based on Minasny and McBratney [246]. The authors developed
the application of the VQT (variance quad-tree) method on sampling design with the digital elevation
model and its derivatives and Landsat TM images. ECa was selected as an additional variable, and the
spatial distribution map of ECa was used as design detecting salinity. The results show that the spatial
distribution of soil salinity detected with the VQT scheme was similar to that produced with grid
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sampling, while the sample quantity was reduced to approximately one-half. The spatial precision of
the VQT scheme was considerably higher than that of the traditional grid method with respect to the
same sample number. Fewer samples were required for the VQT scheme to obtain the same precision
level. The authors suggested that VQT and ECa provide an efficient tool for lowering sampling costs
and improving sampling efficiency in the coastal saline region.

4.7. Derivation of Soil Type Boundaries

Delineating soil classifications has quite different levels of complexity and accuracy. ECa is applied
to support the derivation of soil types (Table 4). Very often, the first question concerns the interpolation
of the ECa procedure. Niedźwiecki et al. [247] gave an overview of ECa field-wide variability with
variograms. The authors recommended an individual interpolation because of differing variability
between fields. Selection of parameters for semivariograms has a strong influence on the ability to
identify significant spatial autocorrelation of data. Lag parameter size and directional analysis of
variance are particular concerns.

The next question concerns the interpolation of ECa across field boundaries. As a consequence
of land use, time of measurement, wetness, and fertilization differences between single fields,
considerable differences in the ECa levels frequently exist. Weller et al. [121] presented a method for
unifying ECa across boundaries with a “nearest-neighbours ECa correction”. ECa measurements near
field boundaries were correlated with ECa values of the neighbouring field, resulting in the same level
of ECa in both fields. This procedure also enhanced the coefficients of determination.

Another procedure was described by Heil and Schmidhalter [108] (Figure 3). To reduce the
levels and to obtain reliable ECa values across field boundaries, the following steps were used: (1) The
field-by-field means (mfield) were subtracted from individual observations (Figure 3b); (2) The resulting
new ECa (zresidual) values were then used as input to estimate the residual variogram. The ECa data
were interpolated, and continuous maps of ECa residuals were obtained (Figure 3c); (3) Finally,
the field-by-field means (mfield) were added back to the estimated point-kriged surfaces (zkrig) for each
particular field (Figure 3d). With this procedure it is possible to interpolate point wise or row wise
measurements with a single interpolation calculation.
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Figure 3. Procedure of interpolation of ECa across field boundaries. (a) Lanes of ECa –measurements
with EM38 on arable farmland (16.9 ha); (b) Lanes of ECa –measurements (field-by-field means (mfield)
were subtracted from individual observations); (c) Interpolation 5 m × 5 m grid of ECa (residuals);
(d) Interpolation 5 m × 5 m grid of ECa (residuals+local means).

Nehmdahl and Greve [128] compared soil profile descriptions and interpolated ECa measurements
to derive areas with more or less similar soil types. Stroh et al. [181] distinguished boundaries of
soil map units in a relative manner. In different instances, gradients or contrasting inclusions within
map units were also identified. In this investigation, correlations between ECa readings and soil
properties such as CEC, pH, particle size distribution and extractable bases were low (i.e., explained
<6% of the variance) or non-significant. James et al. [178] used confusion matrix analysis to determine
whether ECa and a clustered k-means algorithm accurately delineated soil textural boundaries in a
field containing clay loam and sandy loam soils. The agreement between the ECa data and the two soil
classes was 62%. Hedley et al. [135] derived two soil units (clayey soils and silty loamy soils) with a
discriminant analysis of an ECa survey. A more detailed prediction was not possible.

Often, the use of ECa is restricted to its application as covariate or the readings are used in a
relative sense, not as absolute terms. In some studies, combination with further predictors such as
terrain attributes or yield deliver an acceptable result [179]. Rampant and Abuzar [179] predicted
soil types from the various combinations of geophysical (EM38, EM31, airborne gamma radiometrics)
and terrain attributes with a decision tree classifier. Individually, the geophysical data were relatively
weak predictors of soil information. Using all of the geophysical and terrain data, the soil types were
predicted very well, with less than 2% of the area misclassified. Clay et al. [248] empirically derived
soil patterns from ECa readings and elevation data. Generally, well-drained soils in the summit area
and poorly-drained soils in the valley bottoms had low and high ECa values, respectively.

An interesting comparison between ECa and the soil values of the German national soil inventory
(Bodenzahlen) was presented by Neudecker et al. [249]. In 11 fields in four different German
regions, R2 varied between 0.1 and 0.71. Highly heterogeneous fields showed a range of R2 values
from 0.03–0.71. The authors concluded that ECa measurements were much better in delineating
zones of different soil substrates than other, rather subjective methods such as the German national
soil inventory.
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5. Applications in Agriculture

5.1. Derivation of Agricultural Yield Variability and Management Zones

ECa is used to reflect crop yields and to derive management zones. Different studies show that
crop yields vary due to site-specific differences and temporal climatic changes (Table 6).

Table 6. Composition of literature with derivations of yield maps, management zones and selection of
areas for fertilization with EM38-ECa.

Study Investigation Object Location of Investigation

[172] Yield maps, Soil types and ECa Virginia, USA

[106] ECa, NIR, elevation, slope with k-means clustering to define
management zones North Carolina, USA

[65] Help for define management options with ECa SW, Australia
[250] Development of predictors of vine yield from ECa New Zealand
[251] Management zones in viniculture Clare Valley, Australia
[103] Relationship ECa crop yield North, east Germany
[252] Management zones on soil NO3 and P sampling variability South Dakota, USA

[253,254] N-management zones Belgium
[130,199,255] Soil properties and cotton yield California, USA

[174] Soil pattern as basis of management zones England

[12] Identifiing management classes with ECa (measured at high and
low water content) North-east Australia

[154] Multi-sensor data (EM38, GPR, FieldSpec) to delineate
homogeneous zones Italy

[256] Relationships ECa, N-fertilizing demand Southwest Sweden
[257] Relationship ECa crop yield , management zones Brandenburg, Germany

[258] Establishing of management zones with Corg, clay, NO3, K, Zn,
ECa, corn yield data Colorado, USA

[259] Correlations ECa with yield, sugar content, piercing force, Kramer
energy in a single year Peleponnese, Greece

[260] Relationship ECa crop yield, management zones Missouri, USA
[261] Management zones and N applications Missouri, USA
[262] Management zones delineation software Missouri, USA
[224] ECa to predict NO3-concentration Dakota, USA
[131] ECa zones Nebraska, USA

[263] Distribution of legumes in pastures in dependence of ECa and
slope Iowa, USA

[176] Soil types (derived from ECa) related to yield, K, Mg Elbe-Weser-region, Germany
[92] Management zones salt affected sites California, USA

[264] Development of key properties for delineation management zones North Belgium
[265] Management zones in a paddy rice field with ECa Bangladesh

[226,266] Relationship ECa crop yield Iowa, USA
[267] Management zones with yield, elevation and ECa Iowa, USA
[132] Relationship ECa crop yield Missouri, USA
[268] ECa-maps to derive management zones Iowa, USA
[269] Relationship ECa crop yield, terrain attributes Iowa, USA
[213] Relationship and classification ECa crop yield North central Missouri, USA
[270] Managing and monitoring variability in vineyards Australia
[271] Management zones with yield, elevation, ECa, aerial photos Nebraska, USA
[272] Site-specific management of grassland Ireland
[249] Comparison ECa – German national soil inventory (Bodenzahlen) Bavaria, Germany
[273] Lime applicationto reduce subsoil acidity Western Australia
[225] Relationships ECa, N-fertilizing zones Saxonia, Germany
[274] Senor application in viticulture Australia
[275] Multiyear ECa – yield relationship Victoria, Australia

[276] Delineation of site-specific management-zones with ECa and
topographic parameters Nile Delta, Egypt

[277] Data fusion (Terrian attributes, ECa, yield, aerial imagers) Minnesota, USA

[179] Yield zones, yield per year, in combination with terrain
parameters and other sensors

North West Victoria,
Australia

[164] Relationship ECa crop yield Bavaria, Germany
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Table 6. Cont.

Study Investigation Object Location of Investigation

[196] Relationship ECa crop yield Missouri, USA
[278] Relationship ECa − volumetric water content (−35 cm) – yield NRW, Germany
[279] ECa and yield of apples Ankara, Turkey,

[42,45] Sampling points with ratio (ECav-EM38/ECa-EM31) NSW, Australia
[245] Management zones and multilevel sampling scheme Central Iowa, USA
[280] Management zones with ECa relative differences (ϑij , Eq. 31) SW Spain

[104] Management zones (delineated mainly with subsoil clay from
((ECav* ECah).5)) delivered from ECa) Flanders, Belgium

[281] Characterization of soil variation by key variables: pH, ECa,
organic matter Flanders, Belgium

[121] Interpolation of ECa across field boundaries Bavaria, Germany
[282] EC and soil inorganic N (no EM38-ECa) Nebraska, USA

Management (productivity) zones with similar yields and used by farmers to make application
decisions based upon calculations of the expected yield. The applied methods and additional predictors
are different in this context. In fact, ECa has no direct relationship to the growth and yield of
plants, but the spatial variation of ECa is partly correlated with soil properties that do affect crop
productivity. Several studies have shown this connection [88,127,213,226,271]. The advantage of ECa

in comparison to yield measurements is its relative temporal stability, which offers a better basis for the
delineation of management zones than variable yield mapping information does. With cluster analysis,
Fleming et al. [258] confirmed that management zones represented different suites of soil. In one field,
soil organic matter, clay, nitrate, potassium, zinc, ECa and corn yield data corresponded to the levels
indicated by the management zones. In a different field, only the medium productivity zone had the
highest values for these parameters. Cockx et al. [253,254] used the spatial distribution of NO3

− in
addition to ECa to create nitrogen management zones. The interpolated ECa measurements were the
input for a fuzzy k means classification. This procedure placed each single point in a membership
in each class [46]. The method minimized the multivariate within-class variance, and consequently,
individuals in the same class had similar attributes [283]. Using a principle compound analysis, (PCA)
Vitharana et al. [189,281] detected the importance of pH, ECa-v and organic matter as independent
key variables to characterize overall soil variation. The authors identified and delineated four classes
(with a fuzzy k-means algorithm) with these variables. Clear differences in soil properties and
landscape positions were found between these classes, and the three-year average standardized yields
(grain and straw) were also different across the classes. Schepers et al. [277] aggregated brightness
images, elevation, ECa and yield into management zones using principal component analysis in
combination with unsupervised classification. Domsch et al. [257] correlated ECa and yield within
the boundary lines method. In this context, Corwin et al. [284] combined ECa with leaching of
pollutants and Johnson et al. [204] combined ECa with soil quality parameters (measured as bulk
density, water content, clay content, organic matter, N, extract-able P, pH, microbial biomass C and
N, potentially mineralizable N). In an investigation on claypan soil, Sudduth et al. [196] described
a negative relationship between ECa and grain yield in a dry year. The correlations with corn and
soybean in a wet year in topographically highly variable landscape were also negative, as observed by
Jaynes et al. [226,266]. However, in both studies no significant relationships were observed in years
with a more normal water supply. In a newer study of claypan areas, Jung et al. [132] described negative
relationships for corn and soybean in years with more than 150 mm precipitation, while in contrast, ECa

was positively correlated in years with less than 150 mm precipitation. In both cases, the correlation
coefficients were not higher than 0.74. However, the authors concluded, “while correlation analysis
itself is far from a definitive analysis, we suspect this similar pattern (between ECa and yield) in
correlation is not coincidental”. Kitchen et al. [213] related ECa to yield applying boundary line
analysis on claypan soils. A significant relationship (boundary lines with R2 > 0.25 on most areas)
was apparent, but climate, crop type, and specific field information was also necessary to explain the
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structure of the potential yield by ECa interaction. The authors divided the relationships between
productivity and ECa into four categories: (1) positive; (2) negative; (3) positive in some portions of
the field and negative in others; and (4) no relationship. The strongest relationships were negative,
reflecting the tendency of claypan soils to be water-limited for crop production in the majority of
growing seasons [133]. Figure 4 and Table 7 show the relationships between ECa (EM38 in both
configurations) and yield of the long-term field experiment Dürnast 020 (South Germany, (4477221.13E,
5362908.78N), Heil, unpublished).

Table 7. Regressions between ECa and multi-annual mean of yield (wheat) of the long-term experiment
Dürnast 020 in dependence of fertilization level (see Figure 1).

Yield (dt ha−1) Configuration N Equation R2 Significance

Control plots Vertical 12 101.33 − 1.411 × ECa 0.67 ***
Horizontal 12 64.61 − 0.758 × ECa 0.81 ***

Fertilized plots
(low)

Vertical 42 106.85 − 0.81 × ECa 0.36 **
Horizontal 42 53.466 + 1.394 × ECa − 0.025 × ECa

2 0.76 ***

Fertilized plots
(high)

Vertical 42 111.2 − 0.811 × ECa 0.22 *
Horizontal 42 76.853 + 0.361 × ECa − 0.012 × ECa

2 0.67 ***

n.s. > 0.05, * 0.05 ≥ p > 0.01, ** 0.01 ≥ p > 0.001, *** p ≤ 0.001.
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Figure 4. Relationships between ECa and multi-annual mean of yield (wheat) of the long-term
experiment Dürnast 020 in dependence of fertilization level (control plots: no fertilizer, fertilized
plots (low): 100–140 kg ha−1 N, fertilized plots (high): 150–180 kg ha−1 N).

Here the application of different N-fertilizers with two fertilization levels has been tested since
1979. In the Figure 4 the multi annual means of the yields of wheat (1980, 1983, 1986, 1989, 1992, 1995,
1998, 2001, 2004, 2007, 2010, 2012) were divided in the two fertilization levels and the unfertilized
control plots. Within this site, soils were mapped as deposits of Pleistocene loess, and the dominating
soil types were fine-silty Dystric Eutrochrept and fine-loamy Typic Udifluvent (German Soil Survey,
Bodenkundliche Kartieranleitung 2005). On this productive field (plant available water capacity
250 mm until 100 cm depth , C-content: 1.4% (0–30 cm) and 0.4% (50–75 cm)) all relationships are
negative with always significant R2 and also linear or weak quadratic curves. Remarkable is that
the curves have similar slopes, at least in the higher ECa range. The always lower coefficients of
determination in the case of the vertical configuration could reflect, that the deeper soil is less important
to the plant growth.

After a first visual inspectation the lowest values of yield correspond with higher contents of clay.
The curve progressions allow further interpretations:
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• The spatial distribution of the yield was at first influenced by the ECa across the field. Treatment
effects (fertilizing level, fertilizer form) were overlain by soil conditions with different ECa values.

• The height of the yield was secondly assumedly determined by the level of fertilization.

In claypan soils, Fraisse et al. [260] also used a combination of ECa and topographic features
(with unsupervised classification) to develop zones and evaluated their ability to describe yield
variability. By dividing a field into four or five zones based on ECa, slope, and elevation, 10% to
37% of corn and soybean yield was explained. In this context, Fridgen et al. [262] described software
with a similar derivation of the subfield management zone. Kitchen et al. [285] used unsupervised
fuzzy-k-means clustering to delineate productivity zones with ECa and elevation measurements on
claypan soils. Productivity zones were also derived by Jaynes et al. [267] based on a series of profiling
steps in combination with cluster analysis to determine the relationship between yield clusters and
easily measured terrain attributes (i.e., slope, plane curvature, aspect, depth of depression) and ECa.
In contrast to the previous investigations, Kilborn et al. [269] found no strong relationships between
elevation, slope, and soil ECa with respect to biomass yield and composition. The results of Bang [106]
indicate that clustering with ECa and NIR surveys could be used to delineate management zones that
characterize spatial variations in soil chemical properties. However, these zones were less consistent
for characterizing spatial variability in yields across temporal water content variation. Furthermore,
the author reported that clustering zones developed from ECa values measured under relatively dry
conditions were particularly effective in partitioning the spatial variability of SOM. It is clear that zones
developed from clustering elevation and bare-soil NIR radiance were more effective than ECa alone
in capturing variability in K, CEC, and SOM. Clustering on ECa with elevation and NIR provided
better zones for these parameters and somewhat reduced the variability associated with measuring
ECa under different soil water conditions [106].

A similar praxis was used by Schepers et al. [277]; Chang et al. [252] and Fridgen et al. [262].
Cluster analysis of an ECa map alone or with auxiliary data, such as terrain attributes and bare-soil
images, has been widely used to delineate soil-based management zones. The relationship between ECa

measurements, soil properties and sugar beet yields in salt-affected soils was studied by Kaffka et al. [20].
In these soils, yield was most highly correlated with salinity. This work demonstrated the utility of
relationships between ECa and crop yield to answer resource input questions. Rampant and Abuzar [286]
predicted yield zones from a combination of geophysical (i.e., EM38, EM31, airborne gamma radiometrics)
and terrain attributes with a decision tree classifier. Individually, the geophysical data were relatively
poor predictors of the yield zones. The combination of all sensors and terrain data could predict yield
zones quite well, misclassifying only 5% of the area. The predictions of yield for an individual year were
always worse for yield zones.

The purpose of the application of the EM38 by Guretzky et al. [263] was to examine the relationship
of the relief parameter “slope”, ECa, and legume distribution in pastures. The authors concluded that
slope and ECa data were useful in selecting sites in pastures with higher legume yield and showed a
potential for use in site-specific management of pastures. Dang et al. [12] used an interesting procedure
for identifying management zones on a salinity-affected field. Two surveys of ECa measurements were
carried out; the first used a relatively wet soil profile (April–May 2009) to represent the drained upper
limit of soil water, and the second used a relatively dry profile (October–November 2009) to represent
the lower limit of soil water content extraction following the harvest of the winter crop. The authors
developed a framework to estimate the monetary value of site-specific management options through:
(1) identification of potential management classes formed from ECa at lower limit of soil water content;
(2) measurement of soil attributes generally associated with soil constraints in the region; (3) grain
yield monitoring; and (4) simple on-farm experiments.

Islam et al. [264] estimated key properties to identify management zones on loess and sandy soils.
The authors identified ECa, topsoil pH, and elevation as key properties, which were used to delineate
management classes and to construct an excellent multiple regression model between yield and the
key properties. Additionally, Islam et al. [265] described the construction of waterproofed housing for
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the EM38, which was built using PVC pipes for swimming in a paddy rice field. The ECa data were
classified into three classes with the fuzzy k-means classification method. The variation among the
classes was related to differences in subsoil bulk density. The smallest ECa values representing the
lowest yield and also the lowest bulk density.

There was also a significant difference in rice yield among the ECa classes, with
Vanderlinden et al. [280] carried out a procedure for characterizing a management system. ECa patterns
expressed as relative differences (ϑij) were associated with topography, soil depth and soil structure,
and the authors derived management zones with principal component analysis.

A very detailed insight into the relationship between ECa and yield was given by
Robinson et al. [275] for sites in Victoria, Australia. However, the multi-year measurements of yield
and ECa delivered an inconsistent picture. Significant influences of ECa on yield were found for
all measurements, but they evidenced alternating directions in semi-arid and rainy environments.
(1) Decreasing yield was combined with increasing ECa-v when texture-contrast and gradational soils
with shallow topsoils occurred along with increasing clay content and physio-chemical constraints;
(2) In soils without significant texture-contrast, in which physio-chemical conditions were more
favourable for water in the subsoil, higher yields resulted; (3) Positive trends of ECa and yield were
attributed to the occurrence of higher plant-available water in the root zone in high and moderate
yield zones. However, the R2 did not exceed 0.15 for all calculations.

Additionally, the EM38 has been applied in vineyards for describing soil variability to an
increasing extent [5,15–57,62,70–82,86,90–93,95–270]. Bramley et al. [250] described a close relationship
between ECa readings from stony shallow soils and trunk circumference. However, sufficient predictors
for vine vigour were not found in these investigations.

EM38 has more rarely been applied to apple orchards. Türker et al. [279] produced ECa maps and
compared them with yield and pomological characteristic maps. As a result, the highest value of a
non-linear regression between ECa and apple yield was determined with an R2 of 0.94.

5.2. Improvement of the Efficiency of Agricultural Field Experimentation

Only a few publications reported about the application of ECa readings to improve the efficiency
of field experiments. An accurate comparison of treatments within agricultural field experiments is the
primary objective of these evaluations. Spatial soil variability can have adverse effects on the accuracy
and efficiency of such trials (Table 8).

Table 8. Applications of EM38-ECa for improving the efficiency of field experiments.

Study Investigation Object Location of Investigation

[173] ECa to derive more homogeneous
lacustrine-derived soils Iowa, USA

[204] Classification parameter for block design California, USA

[287] P-content in a field experiment with different
levels of manure applications Michigan, USA

[288] Comparison of yield between strip trials, partly
ECa; simplified evaluation method South, west Australia

Kravchenko et al. [289] used ECa as a covariate to improve the accuracy of P values on field with
different levels of manure applications. Standard errors for the means of P with ECa as a covariate
were smaller than those for which ECa was not used as a covariate. In soils with medium and high
ECa values, the control treatment (no manure) had a significantly lower P concentration.

Johnson et al. [204] applied field wide ECa readings as a classification parameter for a block
design. Blocks were located in homogeneous areas based upon measurements of soil parameters that
are significant for yield. The authors noted that ECa classification can be used as a basis for blocking
only when ECa and yield are correlated. On these sites, which were described by Johnson et al. [204],
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the dominating factors were salinity and clay content. The authors described the application of ECa as
a “compelling tool in statistical design”.

The initial point of the publication of Lawes and Bramley [288] is the fact that farmers and their
advisers are often not able to implement methods that are necessary for evaluation trials on their farms.
The authors explore a new and simple approach to the analysis of farmer strip trials and the spatial
variability of treatment response. Yield data descriptions with a linear model that accounted for the
spatial autocorrelation in the data and a moving pairwise comparison of treatments were applied
by the authors. The results suggest that the pairwise comparison adequately identified treatment
differences and their significance. This method can be readily implemented and expanded with ECa

readings, and it offers an important advance to facilitate on-farm experimentation using precision
agriculture technologies.

Brevik et al. [173] indicated a need to investigate the application of ECa techniques in fields with more
homogenous soil properties. For these investigations, the authors selected a field with lacustrine-derived
soils that exhibited only weak spatial variability in soil properties. The highly uniform ECa readings
obtained did not allow differentiation of soil map units with the ECa data. However, the results did
confirm the uniform nature of the soils in the field, a critical criterion for precision agriculture applications.
An example of the application of conductivity values is given in Table 9 [4].

Table 9. Simulation of the yield (1980–2012) with ANOVA and ANCOVA with the factors fertilizing
level and fertilizer-no. and the covariates ECa and relief parameters.

Target Variable,
Years Model and Effects Significance Partial

Eta-Square
Adjusted

R2 RMSE (dt ha−1)

Yield (dt ha −1),
mean 1980, 1983,
1986, 1989, 1992,
1995, 1998, 2001,

2004, 2007, 2010, 2012

Adjusted model
Constant

Fertilization level
Fertilizer no.

Fertilization level*Fertilizer no.

0.008
0.000
0.000
0.414
0.971

0.313
0.998
0.258
0.081
0.018

0.18 3.26

Yield (dt ha −1)3,
mean (1980, 1983,
1986, 1989, 1992,
1995, 1998, 2001,

2004, 2007, 2010, 2012

Adjusted model
Constant

Fertilization level
Fertilizer no.

Fertilization level*
Fertilizer no.

ECa (EM38-h)ˆ3
lg10(ECa (EM38-v))
Channelnetworkˆ3

TWIˆ3

0.000
0.007
0.000
0.000
0.145
0.000
0.000
0.001
0.024

0.904
0.106
0.764
0.341
0.131
0.275
0.276
0.144
0.075

0.88 1.29

Significance: n.s. > 0.05, * 0.05 ≥ p>0.01, ** 0.01 ≥ p > 0.001, *** p ≤ 0.001; Partial eta-square: Measure of sensitivity
to the correlated independent variables; Adjusted R2: adjusted R2 (coefficient of determination).

The relationships presented in Section 5.1 between ECa and yield are here integrated in a
variance of analysis (ANOVA) and an analysis of covariance (ANCOVA) with the target to model the
multi-annual yield of the long-term experiment Dürnast 020. In the ANOVA only the factors “fertilizing
level“ and “the form of fertilizer” have been considered. To enhance the accuracy of the simulation
the covariates ECa as well as topographical parameters have been added. The ANOVA procedure
delivers with the fertilization level as the single influencing factor only a weak result (R2 = 0.185,
RMSE = 3.26 dt ha−1). In contrast to this result the application of the ANCOVA introduced the factors
fertilization level and fertilization no. and the covariate ECa (EM38-h and EM38-v) in the simulation.
The R2 of 0,875 and a RMSE with 1.29 dt ha−1 indicate a severe enhancement in comparison to the
ANOVA. The partial eta-square illustrates that the introduction of the ECa readings was the main
reason of this improvement. The topographical parameter channelnet (channel network base level (-))
and TWI (topographical wetness index (-)) had only minor meaning.
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Here, ECa has been shown to be a useful indicator of soil variability. Compared to the standard
analysis ANOVA, an ANCOVA with ECa as covariate (and also topographical parameters) reduced
RMSE and enhanced R2 for treatment means and improved the accuracy of this field experiment.

5.3. Additional Application of EM38 in Agriculture and Horticulture

Additionally, some publications describe the use of ECa to assess environmental susceptibility
and/or effects (Table 10).

Table 10. Additional applications of EM38-ECa in agriculture and horticulture.

Study Investigation Object Location of Investigation

[234] Corg, K, pH, Bray-2 P, Louisiana, USA

[290]
Detecting soil properties as indicators for
population density of Redheaded cockchafer
(Adoryphourus couloni)

Victoria, Australia

[215,217,219] Specific ions that are associated with animal waste Nebraska, USA
[220] N decomposition, organic and artificial fertilizer Nebraska, USA

[221]
ECa as an indicator of N gains and losses, available
N sufficiency for corn in early stage and NO3-N
surplus after harvest

Nebraska, USA

[291] ECa as indicator for soil conditions which are
prefered by Heterodera schachtii

North Rhine-Westphalia,
Germany

[292] Herbicide partition coefficients Iowa, USA
[233] Variation in soil testing P Missouri, Oklahoma, USA

[293] Part of fungicide application models in
combination with ratio vegetation index Denmark

[294] Weed distribution, herbicide injury in dependency
of ECa

North Rhine-Westphalia,
Germany

[222] NH4, K in animal slurries Ireland

Jaynes et al. [292] correlated ECa readings with herbicide partition coefficients. The maps are
useful for determining areas with a higher leaching potential for herbicide (atrazine) application.
Olesen et al. [293] developed two different algorithms (an empirical model and a causal model) for
spatially varying fungicide applications. Both models make use of a ratio vegetation index and EM38
measurements. ECa maps describe the soil characteristics, in particular the soil clay content.

Hbirkou et al. [291] used ECa maps for constructing relationships between ECa and the beet
cyst nematode, Heterodera schachtii. This nematode prefers deep soil with medium to light soil and
non-stagnic water conditions. Correlations between ECa and nematode population density were
moderate (R2 = 0.47) and strong (R2 = 0.74). Management maps based on ECa and soil taxation maps
indicated areas with different soil-related living conditions for H. schachtii. These maps could make
farmers able to improve site-specific management strategies on nematode-infested fields.

Grigera et al. [131] created four ECa zones from ECa readings, based on ranges of both
configurations using an unsupervised classification. Soil microbial groups were correlated with different
soil C fractions in the upper soil (−15 cm) and were similar across ECa zones. Zone distribution and
biomarkers correlated in dependence of the fractions of particulate organic matter (fine particulate
organic matter: bacterial (R = 0.85), actinomycetes (R = 0.71) biomarker concentrations; coarse particulate
organic matter: bacteria R = 0.69, actinomycetes R = 0.48). In contrast, fungal (R = 0.77) and mycorrhizal
(R = 0.48) biomarker concentrations were correlated only with coarse organic matter.

6. Application of EM38 in Archaeology

The application of the EM38 device is not restricted to soil properties; it also detects extrinsic
components (Table 11).
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Table 11. Additional applications of EM38-ECa in archaeology.

Study Investigation Object Location of Investigation

[295] Detection of graves with inphase and quadphase
readings Maryland, USA

[296,297] Prehistoric earthworks with measurements in
inphase mode Ohio, USA

[298] Metal objects from the 18th century Canada

[299] Removing of the effect of elevation on the
distribution of ECa readings Santa Catarina State, Brazil

[300] Comparison EM38 fluxgate gradiometer Belgium
[301] Medieval manor in the dutch polders Netherlands
[302] Area prospection with EM38 and MS2D Tundra region, Sweden

Ferguson [298] applied ECa values to find metal objects in a settlement area from the 18th century.
Measurements of ECa also appear to be suitable to search for graves [303]. Low values can indicate a
proximity to metal, but high conductivity has been associated with grave shafts at one cemetery.

A more sophisticated procedure for archaeological detections was described by Dalan and
Bevan [296]. An EM38 meter, which was operated in the inphase mode, measured the susceptibility of
the top half-meter of soil. This susceptibility sounding was performed using a series of heights from
2 m to the surface, with readings taken at intervals of 5 cm. These measurements were analysed with
the aid of the depth sensitivity function of McNeill [304]. In this manner, the authors could detect
magnetic layers to a depth of 50 cm.

Viberg et al. [302] combined the EM38 with the MS2D (Bartington MS2 magnetic susceptibility
meter). The anomalies contained in the survey data were explained by the subsequent archaeological
excavation. A rubbish pit which consist mainly of organic material and fire-cracked stones was
detected in both the MS2D and EM-38 data. This study of Simpson et al. [301] used additionally
a fluxgate gradiometer measurements on an archaeological site. The results of the first survey
showed very strong magnetic anomalies in the central field, which were caused by the brick
remains of the castle. The most useful results with the EM38 were obtained from the magnetic
susceptibility. Its anomalies corresponded well with the gradiometer anomalies. To enhance ECa

maps, Santos et al. [299] recommended a simple procedure to eliminate the effect of elevation on ECa.
In the experience of the authors, soil anomalies are partly changed by changing the elevation within an
investigation area according to the water table depth or the conductive sediment layer. With a linear
dependence between conductivity and the site elevation the influence of topography was removed.
Corrected ECa maps substantially improved the recognition of anomalies. These maps also show a
greater similarity with magnetic susceptibility maps, with both identifying archaeological structures of
interest: a well-structured fireplace and a concentration of ceramic fragments.

7. Conclusions and Closing Remarks

There is no doubt that EM38 measurements have an increasing importance in exploration of areas,
but weaknesses/unclarities of the method are also described in the literature:

• The interpretation and utility of ECa readings are highly location and soil-specific; the soil
properties contributing to ECa measurements must be clearly understood. From the various
calibration results, it appears that regression constants for relationships between ECa, ECe,
soil texture, yield, etc. are not necessarily transferable from one region to another. Several
factors affect the strength of the signal and therefore, the relationships. In addition to texture,
salt concentration and other physicochemical properties, calibrations are further affected by
the relative response of the signal according to depth, the non-linearity of the signal and the
collinearity between horizontal and vertical readings. The soil parameter with the greatest
influence on ECa is also the best derivable.
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• Only a few authors [108,196] account for the influence of the farming system, crop biomass,
applications of fertilizer at the time of measurement on ECa distributions. Most of the identified
soil parameters that influence ECa have significant interdependency and can thus provide
multivariate effects on ECa.

• The modelling of ECa, soil properties, climate and yield are important for identifying the
geographic extent to which specific applications of ECa technology (e.g., ECa–texture relationships)
can be appropriately applied.

• In the case of detecting salinity, obviously better results are achieved if both EM38 readings
(vertical and horizontal) are combined with ECe values from different depth ranges. Nevertheless,
Vlotman et al. [37] posed the question about the need for converting the ECe from ECa.
As McKenzie [24,25] showed, a classification of salinity tolerance level of different crops is
also possible only with EM38 readings. A partitioning in areas of low, medium and high salinity
with measurements in a single mode or with a combination of v- and h-mode is often a sufficient
inventory of the salinity distribution. But it is necessary to take into account, that on the one field
e.g., 60 mS m−1 has salt problems while another field with the same reading does not have such
problems. Therefore ECe will continue to be important at least in the near future.

• The quality of a regression is often determined by a sufficient range of dependent and independent
variables. Delin and Söderström [124] noted that when the ECa data were correlated with the
clay content over the whole farm, the result was much better then when the correlation was
restricted to single zones. This quality is also better if the target variable is also the dominant
ECa-influencing factor.

• The construction of soil sampling designs with ECa readings is limited to those properties that
correlate with ECa. Other parameters require some other sampling approach such as random,
grid, or stratified random sampling.

The world-wide application of the EM38 (and also of other soil sensors) is very varying:

• It seems that the detection of salinity is still the main area of application.
• Site-specific management in agriculture with the application of ECa is still in Germany in an

initial phase of adoption among farmers. Predicting the future is difficult. Nonetheless, a greater
presence of site-specific crop management based on soil detection is to be hoped for.

• Furthermore in Germany increases the investigations in improving soil maps and in detecting soil
functions, including: plant available water, sorption capacity, binding strength for heavy metals,
filtering of unbound substances and natural soil fertility. Additionally, soil protection measures
are also indicators for erosion prevention, retention of nutrients, and conservation/enhancement
of carbon contents (based on good agricultural practice after Article 17, German Soil
Protection Act). The selection of soil functions is based on the German Soil Protection Act
(LABO—Bund-Länder-Arbeitsgemeinschaft Bodenschutz). Here it is not common sense to carry
out this also with EM38. Until now it is not well known that, compared to traditional soil survey
methods, EM38 readings can more effectively characterize diffuse soil boundaries and identify
areas of similar soils within mapped soil units. This gives soil scientists greater confidence in their
soil mapping.

• The application in forests is world-wide rather seldom. But also here is an enormous potential to
improve the existing site maps and to test the water distribution between the trees.

• The improvement of evaluation of field experiments with ECa readings as covariate is more
rarely used. The spatial variability of soil properties can have adverse effects on the accuracy and
efficiency of field experiments. Here is a great potential to take into account the soil conditions by
using ECa readings.

• The fusion of the data of other sensors also shows great potential. The idea behind the combination
of proximal soil sensors is that the accuracy of a single sensor is often not sufficient. The reading
of one sensor is affected by more than one soil property of interest. The fusion of sensor data
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can overcome this weakness by extracting complementary information from multiple sensors or
sources. Until now to an increasing extent, the readings of EM38 are evaluated in combination
mainly with VIS–NIR and a gamma-ray-spectrometer.

• Many of the instruments measure at the point or sample scale, such as soil moisture probes and
tensiometers, while remote sensing devices determine regional patterns. But these techniques are
limited in the depth of penetration into the subsurface.

Here geophysical methods have a positive impact, obtaining data at a range of spatial scales
across fields. This survey has shown that considerable progress has been made in detection and
understanding of soil functions within the last decades. Applications of practical sensors such as the
EM38 are needed to achieve sustainable agriculture, to optimize economic return and to protect the
environment, especially the soil.
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Abbreviations

CEC Cation exchange capacity
ECa Apparent electrical conductivity
ECav Apparent electrical conductivity, measured in vertical mode
ECah Apparent electrical conductivity, measured in horizontal mode
ECe Electrical conductivity of aqueous soil extracts EC1:5, EC1:2 or

EC1:1, soil/water suspensions)
ECp ECa calculated by using predictive equations
ECref Quotient of the measured ECa and the EC
θv, θw Weighted water content after vertical and horizontal mode
Z Soil depth
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