

Technische Universität München - Fakultät für Maschinenwesen

Test Coverage Assessment for Semi-Automatic System Testing and

Regression Testing Support in Production Automation

Sebastian Ulewicz

Vollständiger Abdruck der von der Fakultät für Maschinenwesen

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Markus Lienkamp

Prüfende/-r der Dissertation:

1. Prof. Dr.-Ing. Birgit Vogel-Heuser

2. Prof. Dr.-Ing. Stefan Kowalewski

3. Prof. Dr. Julien Provost

Die Dissertation wurde am 02.03.2018 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen am 04.10.2018 angenommen.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

Test Coverage Assessment for Semi-Automatic System Testing and Regression
Testing Support in Production Automation

Autor:
Sebastian Ulewicz

ISBN 13: 978-3-96548-011-7
1. Auflage 2018

Copyright
© sierke VERLAG
Hermann-Föge-Weg 15
37073 Göttingen
Tel.: +49 (0)551 5036647

Coverdesign: sierke MEDIA

Alle Rechte vorbehalten. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt.
Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung
des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen,
Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Contents

1 Introduction ... 1

1.1 Objective and Contributions .. 2

1.2 Thesis Structure ... 3

2 Field of Investigation ... 5

2.1 Automated Production Systems in Production Automation 5

2.1.1 Control Programs developed with the IEC 61131-3 Standard 6

2.1.2 The Technical Process in Production Automation 8

2.2 Testing Basics and Definitions .. 9

2.2.1 Errors, Faults and Failures ... 9

2.2.2 Levels of Testing .. 10

2.2.3 Test Artefacts ... 11

2.2.4 Test Case Design Strategies ... 12

2.2.5 Regression Testing ... 13

2.2.6 Test Automation and Model-based Testing ... 13

2.2.7 Testing with Simulations .. 15

2.3 Static Analysis Basics and Definitions .. 16

3 Analysis of System Testing in Production Automation and
Derivation of Requirements on the Approach 19

3.1 Requirements Regarding the Applicability of the Approach 19

3.1.1 Support of Industrial aPS Software .. 20

3.1.2 Inclusion of Valid Hardware and Process Behavior 20

3.1.3 Independence from Formalized Behavior Models 21

3.1.4 Real-time and Memory Size Restrictions ... 22

3.2 Requirements Regarding the Improvement of the Current Situation in
System Testing of aPS ... 22

3.2.1 Improvement of Repeatability and Transparency of the System
Testing Process ... 23

3.2.2 Support of the Assessment of Test Adequacy 23

3.2.3 Increase in Efficiency During the Testing Process of Changes to a
Previously Tested Control Software .. 24

3.3 Scope Limitation ... 24

4 State of the Art ... 27

4.1 Analysis of Existing Approaches in Production Automation and Adjacent
Domains .. 27

4.1.1 Static Code Analysis .. 28

4.1.2 Formal Verification ... 29

4.1.3 Testing ... 31

4.1.4 Test Coverage Assessment .. 32

4.1.5 Regression Testing .. 36

4.2 Discussion of the Research Gap ... 39

5 A Concept for Efficient System Testing of Automated
Production Systems ... 41

5.1 Concept Overview .. 41

5.2 Guided Semi-Automatic System Testing ... 45

5.2.1 Including Human Operators into Testing Processes 46

5.2.2 Test Case Metamodel and System Test Execution Process 49

5.2.3 Test Suite and Test Execution History .. 52

5.2.4 Test Bed and PLC Software Project Generation 53

5.3 Coverage Assessment for System Tests ... 54

5.3.1 Identifying a Suitable Coverage Metric .. 55

5.3.2 Assessing Test Coverage using Statement Coverage 56

5.3.3 Preparing the PLC Software Project for Execution Tracing 58

5.3.4 Relating Test Cases to Code .. 62

5.3.5 Visualizing Test Coverage .. 64

5.4 Prioritization of System Tests for Regression Testing 67

5.4.1 Building a Relation between Test Cases and Executed Control
Program Parts and Acquiring Timing Information 68

5.4.2 Change Identification .. 69

5.4.3 Change Impact Analysis .. 71

5.4.4 Basic Prioritization .. 72

5.4.5 Refined Prioritization .. 73

6 Implementation of the Approach for Efficient System
Testing in Production Automation 77

7 Qualitative Evaluation of the Approach 81

7.1 Description of the Case Study .. 81

7.2 Experiments .. 84

7.2.1 Experiment I: Guided System Testing ... 84

7.2.2 Experiment II: Coverage Investigation .. 85

7.2.3 Experiment III: Regression Testing ... 86

7.2.4 Experiment IV: Runtime and Memory Overhead 89

7.3 Expert Evaluation .. 91

7.3.1 Evaluation of the Applicability of the Approach 91

7.3.2 Improvement of the Current Situation in System Testing.................... 93

7.3.3 Overall Satisfaction of Requirements .. 96

8 Post-Evaluation Performance Optimization and
Scalability Estimation ... 99

8.1 Optimization of the Runtime Overhead Generated by the Approach 99

8.2 Extrapolation of the Evaluation Results regarding Scan Cycle Time
Overhead .. 100

9 Conclusion and Outlook .. 103

10 References ... 105

11 Table of Figures .. 117

12 Table of Tables ... 121

1 Introduction 1

1 Introduction
In factory automation, so-called automated production systems (aPS(s)) have high require-

ments regarding availability and reliability (Vogel-Heuser et al., 2015), as these systems typi-
cally run over long periods of time (decades) and system failures or incorrect behavior can
dramatically increase costs regarding maintenance or the produced products. The volume and
complexity of aPSs’ software have risen substantially over the last decade (Vyatkin, 2013),
exacerbating the problem of ensuring reasonable system quality. Even though model-driven
engineering methods (Alvarez et al., 2016; Estévez et al., 2017), component architectures
(Hametner, Zoitl and Semo, 2010) and approaches for distributed systems (Basile, Chiacchio
and Gerbasio, 2013) have been proposed in research to manage the program complexity and
reduce testing efforts, most industrial aPSs are still directly programmed in the standard IEC
61131-3 (IEC, 2003). The software’s quality of aPSs is typically investigated and assured by
testing. Apart from unit tests performed on single software modules in an early design phase,
system tests of the integrated functionality of software and hardware are defined and performed
in late phases of development, often as late as during on-site plant commissioning. In addition,
aPSs are often subject to changes after the start of production, e.g. because of changed require-
ments by the customer, newly found bugs in the control software or wear on hardware compo-
nents. During the implementation of changes, new faults can unintentionally be implemented.
Thus, besides testing the changes themselves, so-called regressions of the system are subject to
investigation. For this, regression testing is performed by executing previously successfully
performed test cases again, to identify possible unwanted side effects of changes.

In several research projects and discussions with industry partners performed by the author
of this thesis, it was found that test plans for system testing exist in most of the cooperating
companies in the field of aPS engineering, yet the definition of the individual test cases is ab-
stract and generic. On the one hand, this means that large parts of these test plans can be reused
between projects. On the other hand, the individual test cases leave significant room for inter-
pretation during the testing process. Additionally, tests are performed manually, as many func-
tions are not related to the software alone, but to the integrated system comprised of mechanical
and electrical hardware as well as software. Thus, many actions performed during these tests,
such as placing intermediate products into the machine and visually verifying the correct prod-
uct quality, cannot be performed fully automatically: Sensors and actuators that would enable
automated testing are not available due to their cost. Instead, the test operator is required to
perform these actions manually.

The personnel manually performing system tests in late phases of development are often
subject to high time pressure, an uncomfortable on-site environment and the mentioned vague
specifications. This results in three main problems.

2 1 Introduction

Problem 1 - Lack of documentation and repeatability: Which test cases were performed and
their findings are often documented in a very rudimentary way, making the testing process
intransparent and hardly reproducible.

Problem 2 - Uncertainty of test adequacy: The adequacy of the performed tests to ensure
the abstractly defined required functionality is often based on the experience and intuition of
the test operator. Subsequently, the possibility of not testing critical behavior and thus over-
looking critical faults in the system represents a realistic problem. In addition, the quality of the
performed test cases themselves remains uncertain.

Problem 3 - Inefficient or inadequate regression testing: The testing process, especially
after changes, is to be kept as short as possible, while assuring sufficient system quality. The
difficulty and problem for the involved personnel are to identify and perform only relevant test
cases for the implemented change under the difficult situation of high time pressure without
any support by automated systems. This problem is exacerbated by the necessity to restart the
regression testing process after fixing a regression.

In this thesis, an approach aiming at tackling these problems is proposed to increase the
overall quality and efficiency of system testing for aPS in the domain of production automation.

1.1 Objective and Contributions

The objective of this thesis is to provide support for system testing for aPS in production
automation. The main contribution of the approach presented in this thesis is subdivided into
three sub-concepts:

1. A guided, semi-automatic system testing approach for aPS to structure the testing
process, reduce deviations in testing quality and to provide a foundation for an im-
proved documentation process and the following approaches of test coverage as-
sessment and prioritization support for regression testing.

2. A test coverage assessment approach for system testing of aPS to provide support
for the evaluation of test adequacy in the testing process. As the behavior of inte-
grated aPS is largely dependent on the software, this approach aims at identifying
uncovered (untested) code using coverage tracing. Thus, unintended omissions of
testing system behavior can be revealed and evaluated by the tester.

3. A test prioritization approach for system testing of aPS to support testing personnel
in identifying relevant test cases based on changes to the system and information
about previously performed test cases. This part of the approach aims at increasing
system regression test efficiency by performing test cases that have a high probabil-
ity of unveiling introduced regressions into the system first.

1 Introduction 3

Thus, for the first time, the contribution presented in this thesis is to provide valuable sup-
port in quantitatively assessing and increasing testing quality in fully integrated industrial aPS
in industrial quality assurance scenarios.

1.2 Thesis Structure

The thesis is structured as follows. Chapter 2 (p. 5) provides an overview of the field of
investigation and basic definitions. In Chapter 3 (p. 19), the domain requirements are presented,
as derived from multiple workshops with industrial partners. Based on these requirements, re-
lated work in the field of production automation and adjacent domains are investigated and
rated for their applicability in Chapter 4 (p. 27). In this literature review, a research gap for the
regarded domain was identified. In Chapter 5 (p. 41), the approach developed in this thesis for
the identified requirements and research gap will be presented. The approach consists of three
main sub-concepts: a) guided semi-automatic system testing (chapter 5.2, p. 45), b) test cover-
age assessment for system testing (Chapter 5.3, p. 54) and c) regression test prioritization sup-
port (Chapter 5.4, p. 67). The implementation of the approach is presented in Chapter 6 (p. 77).
In Chapter 7 (p. 81), the evaluation of the approach is presented, which was performed using
an industrial case study and expert workshops. In that chapter, the designed experiments are
regarded in detail, including measurement results, which were subsequently discussed with ex-
perts. The relation of the approach to the imposed requirements is subject to investigation in
the last part of the chapter. Following the evaluation, the most limiting property of the approach
– its runtime overhead – was optimized and its scalability was estimated. These findings are
presented in Chapter 8 (p. 99). The thesis concludes with Chapter 9 (p. 103), in which a sum-
mary of the achieved results and an outlook on future research is given.

2 Field of Investigation 5

2 Field of Investigation
The presented approach was designed for industrial application for automated production

systems (aPS) in the domain of production automation. To allow for a better understanding of
the domain requirements, required theoretical background for the field of investigation, i.e. aPS,
testing and static analysis, will be presented in detail.

2.1 Automated Production Systems in Production
Automation

Automated systems can be described as autonomously working technical systems, e.g. a
ticket vending machine. Process automation systems are a specialization of automated systems,
dealing with automating the control of arbitrary technical processes (Lauber and Göhner, 1999,
pp. 5–6). Automated Production Systems (aPS) are process automation systems, which are con-
trolling production processes.

Figure 1: The schematic structure of a process automation system (translated from (Lauber and

Göhner, 1999, p. 7))

As shown in Figure 1, a process automation system consists of a controlled technical system
(bottom), a computing and communication system (middle) and human operators (top). These
parts communicate in a bi-directional manner by exchanging signals: sensor and actuator values
are used to observe (sensors) and control (actuators) the technical system by the computing and
communication system. The human operator is usually able to influence and observe the pro-
cess via a human machine interface (HMI), such as a touch-sensitive display. Ideally, the oper-
ator will only interfere with the system in case of unexpected or exceptional circumstances
during operation, yet during commissioning and maintenance processes of an aPS, the HMI is
generally heavily used for testing. In addition, the personnel experienced with programming

Process Automation System

Signals from the
technical process

Signals for controlling
the technical process

Process resultsInfluence on process

Human (process operating personnel)
for supervision and operation of the technical process and for intervention in case of

exceptional circumstances

Computing and communication system (includes, e.g. a Programmable Logic
Controller (PLC), industrial PCs, microcontrollers, bus systems, etc.)

Technical System
(technical product or technical plant) on which the technical process is running

6 2 Field of Investigation

will also often connect to the computing system with an engineering PC, which will allow for
manipulating and changing the control program.

In aPS, the computing and communication system is usually represented by a Programma-
ble Logic Controller (PLC) or embedded PC (also called industrial PC) and bus systems, con-
necting sensors and actuators to this computing system. The majority of PLCs and embedded
PCs is programmed with the programming standard IEC 61131-3 (IEC, 2003). While the third
edition of the standard has been introduced in 2013 (IEC, 2013), allowing for new object-ori-
ented elements, this new version has not been adopted by all PLC manufacturers yet and is
mostly used for software libraries. Therefore, the approach presented in this thesis was devel-
oped for the common parts of the second and third edition, not focusing on the object-orienta-
tion.

In the following, the special properties and differences of this programming standard in
comparison to regular desktop software will be presented, followed by a more detailed defini-
tion of the technical process.

2.1.1 Control Programs developed with the IEC 61131-3 Standard

In regular desktop software, programs are usually designed to have a beginning and an end.
As control programs written in the IEC 61131-3 always need to work with recent input values,
these types of programs are executed in a specific loop, the so-called PLC scan cycle. As shown
in Figure 2, this cycle consists of reading the current process inputs (e.g. sensor values read
from the bus system), executing the control program and writing the newly calculated process
outputs (e.g. actuator values written to the bus system). This cycle usually begins as soon as the
controller is started and is usually only stopped if the controller is turned off. Depending on the
inputs and internally stored values, different parts of the control program can be executed.

Figure 2: Schematic of the standard PLC scan cycle: Inputs values are read, computation is per-

formed, output values are written (based on (Lauber and Göhner, 1999, p. 281))

For application in aPSs, it is important for this scan cycle to fulfill real-time requirements.
This means that each repetition shall not last longer than a specified maximum PLC scan cycle

Begin

Read process inputs (sensor values)

Control program execution (computation
or outputs)

Write process outputs (actuator values)

Cyclic repetition
by the system part

2 Field of Investigation 7

time (typically in the range of 1-100 milliseconds) to be able to control the technical process in
a satisfactory manner.

The IEC 61131-3 standard only defines the syntactic composition a correct program should
have. As it does not cover all areas of PLC programming, such as the Integrated Development
Environments (IDEs) or the interfaces of editors and compilers, exchange of PLC programs for
different PLC vendors can be non-trivial (Neumann et al., 2000, p. 26). For this reason, the
PLCopen (PLCopen, 2017) defines a uniform exchange format for different vendors. In this
thesis, the uniform structure of the PLCopen is used as a basis for describing the IEC 61131-3.
It describes common elements and programming languages (PLCopen, 2013). Common ele-
ments include data typing, variables, configuration, resources, tasks, Program Organization
Units (POUs) and Sequential Function Charts (SFC). The programming languages describe the
two textual programming languages Instruction List (IL) and Structured Text (ST) and the two
graphical programming languages Ladder Diagram (LD) and Function Block Diagram (FBD).
The following paragraphs contain a short description of these elements, derived from the defi-
nitions in (PLCopen, 2013).

Data Typing: The standard specifies common data types, such as Booleans (BOOL), Integers
(INT) and floating point numbers (REAL), but also allows for users to define own data types.
The latter are called derived data types and include enumerations (sets of named values) and
structures (equivalent to the basic data structure record).

Variables: Variables (storage locations with an associated name) can be defined in config-
urations, resources, and POUs. Their scope is usually confined to the organization unit unless
declared public (using the keyword VAR_GLOBAL). They can be assigned an initial value upon
start-up of the program.

Configuration, resources, and tasks: A configuration is used to formulate the connection of
an entire control software to a specific type of control system, including the arrangement of
hardware (assignment of variables to I/O channels). It can contain several resources – one for
each computing unit (e.g. when using a multicore processor). Each resource, in turn, can contain
several tasks, which control the execution of a set of Programs (see POUs). The programs
usually include calls and sub-calls of other POUs. Tasks can be configured to be executed pe-
riodically or upon certain events, such as variable value changes. A conventional PLC will most
commonly contain one configuration, one resource, and a few tasks, configured to be executed
periodically.

Program Organization Units (POUs): Functions (FUN or FC), Function Blocks (FB) and
Programs (PRG) are POUs. POUs comprise of an interface and an implementation body, which
contains executable code defined in any of the programming languages of the IEC 61131-3.
FBs and PRGs can also be structured using SFC (see next paragraph). The greatest differences
between the POUs are that, firstly, both FBs and PRGs can retain values over scan cycles, i.e.

8 2 Field of Investigation

they can “remember” values, while FUNs cannot. Secondly, PRGs and FUNs only exist once
in a program and can be accessed globally. In contrast to this, FBs can be instantiated multiple
times and only be accessed according to the scope of the variable of their instance.

Sequential Function Chart (SFC): SFCs are derived from Petri nets and IEC 60848 Grafcet,
which graphically describe a sequential behavior. While defined as a programming language in
the IEC 61131-3, SFC is described by the PLCopen as a way to structure the internal organiza-
tion of FBs and PRGs rather than a programming language. It consists of steps, which are linked
to actions (programmed in the programming languages and SFC), and transitions, which are
associated with a condition. Starting from an initial step, a step is activated if a preceding step
connected to this step is active and the transition connecting both evaluates to true. SFCs allows
diverging, converging and parallel sequences.

Programming languages: Instruction List (IL), Ladder Diagram (LD) and Function Block
Diagram (FBD) are less powerful programming languages that were designed to resemble
known programming structures such as LD for electrical wiring, IL for assembler code and
FBD for Boolean logic diagrams. Structured Text (ST) is a more powerful language with roots
in Pascal and contains most capabilities of a modern programming language, including branch-
ing (e.g. IF-THEN-ELSE) and loops (e.g. FOR, WHILE). It is, therefore, suitable for complex
functions, albeit not as easily understandable for users less experienced with programming.

2.1.2 The Technical Process in Production Automation

According to (Lauber and Göhner, 1999, pp. 43–47), technical processes consist of differ-
ent procedures. These procedures can be classified in continuous procedures and event-discrete
procedures. Continuous procedures are procedures containing time-related, continuous process
values, e.g. deformation procedures in hydraulic presses. Suitable mathematical models for de-
scriptions can be linear differential equations. Event-discrete procedures are characterized by
sequentially occurring, stepwise, distinguishable (discrete) process states and often individually
distinguishable objects. The transition between the process states can be described as binary
events, defining the occurrence of certain states. Examples of these kinds of procedures are the
sequential states during movement of an elevator or discrete manufacturing steps during pro-
duction using machining tools. Suitable models for describing these procedures can be finite
state machine models, such as Petri nets or flow charts.

Technical processes typically do not consist of only one type of procedure (Lauber and
Göhner, 1999, p. 46), yet in production automation, event-discrete procedures dominate the
technical process. The technical process is therefore dominated by binary input and output val-
ues and controlled in a sequential manner.

2 Field of Investigation 9

2.2 Testing Basics and Definitions

Many definitions for quality assurance and testing for aPSs stem from the domain of soft-
ware engineering. While there are certain differences between the domains of software engi-
neering and aPS engineering, most of the definitions also apply for the investigated domain of
aPS engineering.

Testing is an analytical method for quality assurance (Hoffmann, 2013, p. 20). In compari-
son to quality assurance methods dealing with process quality, it relates directly to product
quality (Hoffmann, 2013, p. 20). In contrast to static analytical methods (see 2.3), testing is
performed during system execution, while static methods focus on syntactic and semantic prop-
erties of the source code (Hoffmann, 2013, p. 23). Testing is “an activity in which a system or
component is executed under specified conditions, the results are observed or recorded, and an
evaluation is made of some aspect of the system or component.” (IEEE, 2008, p. 11) It has “
[…] the intent of (i) revealing defects, and (ii) evaluating quality.” (Burnstein, 2003, p. 27) Yet,
it is not suitable for proving the correctness of the system as “program testing can be a very
effective way to show the presence of bugs, but is hopelessly inadequate for showing their ab-
sence.” (Dijkstra, 1972)

2.2.1 Errors, Faults and Failures

As testing has the intent of revealing defects (Burnstein, 2003, p. 27), it is important to
define this expression as well as other expressions used in relation to this definition, such as
errors, faults, bugs, and failures.

An error is “1. a human action that produces an incorrect result, such as software contain-
ing a fault. 2. an incorrect step, process, or data definition. 3. an incorrect result. 4. the differ-
ence between a computed, observed, or measured value or condition and the true, specified, or
theoretically correct value or condition.” (ISO/IEC/IEEE, 2010, p. 128) In this thesis, the term
error refers to a human action leading up to a fault.

A fault is “a manifestation of an error in software.” or “a defect in a hardware device or
component.” (ISO/IEC/IEEE, 2010, p. 140) If referring to software, a fault is used equivalently
to the term bug. If a fault is encountered, it may cause a failure (ISO/IEC/IEEE, 2010, p. 140).

The term defect is often not clearly defined as it is “a generic term that can refer to either
a fault (cause) or a failure (effect)” (ISO/IEC/IEEE, 2010, p. 96) In this thesis and in some
literature such as (Burnstein, 2003), the term defect is used equivalently to fault or bug (when
referring to software defects).

A failure is the “termination of the ability of a product to perform a required function or
its inability to perform within previously specified limits.” (ISO/IEC/IEEE, 2010, p. 139) “A
failure may be produced when a fault is encountered.” (ISO/IEC/IEEE, 2010, p. 139) In the

10 2 Field of Investigation

domain of aPS, the most common scenarios for failures are shutdowns of an aPS or the inability
to detect products of unsatisfactory quality.

As an example in aPS control program engineering, a human error could be a misconcep-
tion about the behavior of a piece of hardware, which leads to the programmer implementing a
faulty control sequence. This fault could then cause the aPS to unexpectedly halt during opera-
tion, causing a failure of the machine to fulfill its purpose, the production of a product.

2.2.2 Levels of Testing

The system being tested, also termed System Under Test (SUT), “may consist of hardware,
system software, data communication features or application software or a combination of
them” (ISO/IEC/IEEE, 2010, p. 361). Thus, depending on the investigated SUT, only software
components or a fully integrated system, including hardware, may be subject to testing and
relevant for quality evaluation. Systems are commonly tested on different levels ranging from
tests of individual components to the system as a whole.

Figure 3: Levels of testing (Burnstein, 2003, p. 134)

Figure 3. shows the different levels of testing: the basic test levels are often divided into
unit testing, integration testing, system testing and acceptance testing.

Unit testing, also called component testing, is “testing of individual hardware or software
components.” (IEEE, 2008, p. 8) It is often conducted on individual, independent software
components and is aimed at ensuring that each individual software unit is functioning according
to specification (Burnstein, 2003, p. 138). Translated to the domain of aPS, this type of test

2 Field of Investigation 11

deals with testing individual program organization units (POUs) or hardware components in-
dependent from control software. The tests regarding the control software can be fully auto-
mated, as only software and no complex hardware behavior is involved.

Integration testing is “testing in which software components, hardware components, or
both are combined and tested to evaluate the interaction among them.” (IEEE, 2008, p. 9) In
the domain of aPS, a scenario for this could be integrating a hardware component with a driver
POU to evaluate whether they properly function together. The aim is not to test the individual
components in depth, but rather focus on their interaction and integrated functionality. These
tests are often not restricted to one engineering domain, but often involve hardware and soft-
ware.

System testing is “testing conducted on a complete, integrated system to evaluate the sys-
tem’s compliance with its specified requirements.” (IEEE, 2008, p. 10) For aPS, this means that
the fully integrated aPS, usually consisting of control software, execution hardware, bus sys-
tems, pneumatic piping, electrical wiring and hardware components are tested in integration
with the technical process. The aim is to find deviations from the system to its specified re-
quirements. In contrast to acceptance testing, it is mostly done without the customer and can,
therefore, be performed more thoroughly.

Acceptance testing is “(A) Testing conducted to establish whether a system satisfies its ac-
ceptance criteria and to enable the customer to determine whether to accept the system. (B)
Formal testing conducted to enable a user, customer, or other authorized entity to determine
whether to accept a system or component.” (IEEE, 2008, p. 8) Therefore, acceptance testing is
similar to system testing with a different aim: establishing the notion that the system works
according to specification towards the customer rather than internally within the engineering
company.

2.2.3 Test Artefacts

During the course of the testing process, different artifacts are generated. The relevant
artifacts for this thesis are test plans, test cases, test suites, test drivers (test bed) and test reports.

Before performing tests, a test plan can help structuring and controlling the process. A test
plan identifies what items are to be tested, which tasks are to be performed, responsibilities,
testing schedules, and (expected) required resources for the testing activity (ISO/IEC/IEEE,
2010, p. 370).

A test case specifies “a set of test inputs, execution conditions, and expected results devel-
oped for a particular objective, such as to exercise a particular program path or to verify com-
pliance with a specific requirement.” (IEEE, 2008, p. 11) It can also serve as a documentation
of which tasks were performed (IEEE, 2008, p. 11). It is, therefore, a very detailed plan for
testing specific aspects of an SUT, including acceptance criteria. If the acceptance criteria are

12 2 Field of Investigation

met, the test case is considered “passed”, if they are not met it is considered “failed”. If a test
case could not or could not completely be executed, the result of the test case is “inconclusive”.

A set of test cases is usually called a test suite. A test suite can also include a sequence in
which the individual test cases are to be executed.

Test cases can be manually performed, but are often automatically executed. In these cases,
a test driver, which is “a software module used to invoke a module under test and, often, provide
test inputs, control and monitor execution, and report test results” (ISO/IEC/IEEE, 2010, p.
369) is commonly used. In this thesis, it is synonymously used to the expression test bed.

Each test case should be documented. The results of the test case executions are commonly
compiled in a test report, which is “a document that describes the conduct and results of the
testing carried out for a system or component.” (ISO/IEC/IEEE, 2010, p. 371) Usually, it con-
tains which test cases were performed, what their result was and other information, such as
time, date and the name of the tester.

2.2.4 Test Case Design Strategies

When designing tests, two basic strategies can be distinguished: black box testing and white
box testing (also known as glass box testing) (Burnstein, 2003, pp. 63–65).

Black box testing is “pertaining to an approach that treats a system or component whose
inputs, outputs, and general function are known but whose contents or implementation are un-
known or irrelevant.” (ISO/IEC/IEEE, 2010, p. 35) Test inputs and expected outputs are de-
rived from the system specification or requirements. It is therefore mostly used synonymously
to functional testing, which is “1. testing that ignores the internal mechanism of a system or
component and focuses solely on the outputs generated in response to selected inputs and exe-
cution conditions 2. testing conducted to evaluate the compliance of a system or component
with specified functional requirements.” (ISO/IEC/IEEE, 2010, p. 154)

White box testing, also known as glass box testing, is testing of “a system or component
whose internal contents or implementation are known.” (ISO/IEC/IEEE, 2010, p. 157) As tests
are derived directly from the implementation, it is often also referred to as structural testing,
which is “testing that takes into account the internal mechanism of a system or component.”
(ISO/IEC/IEEE, 2010, p. 349)

Both test case design strategies have their advantages and disadvantages. Black box testing
is more suited to evaluating the compliance of an SUT to its specification, while possibly miss-
ing faults in the control flow that might not be defined in detail in the specification. White box
testing is more suitable for unit testing to find these recently mentioned types of faults, yet
might miss important parts of the specification that might not be implemented in the code. In

2 Field of Investigation 13

addition, structural testing often requires a vast amount of test cases with growing complexity
of the SUT, thus preventing its economic use in system testing.

2.2.5 Regression Testing

Regression testing is “selective retesting of a system or component to verify that modifica-
tions have not caused unintended effects and that the system or component still complies with
its specified requirements.” (ISO/IEC/IEEE, 2010, p. 295) It is mostly performed by reusing
existing test cases to investigate whether scenarios within these tests are still performed accord-
ing to specification. It is therefore not aimed at testing the modification itself, which might
require additional test cases, but the identification of newly introduced faults through previously
successfully performed test cases. Regression testing can be performed on all testing levels and
is mostly done with functional tests.

Re-executing all test cases can be very costly. For that reason, many approaches for reduc-
ing this effort were the focus of research for many years in computer science. The approaches
mostly fall into the categories regression test selection (Rothermel and Harrold, 1997) and re-
gression test prioritization (Rothermel et al., 2001). Test selection techniques aim at reducing
cost by selecting an appropriate subset of existing test cases (Rothermel et al., 2001). If this
selection is performed safely, the reduced set of test cases has the same ability to reveal faults
while requiring less time to be executed. Not all test selection techniques are safe and those
which are, assume controlled regression testing. This means that when testing will be per-
formed on a modified system, nothing but the software changed in relation to the old version.
All other factors, such as the execution hardware, the controlled hardware, and technical pro-
cess would have to react exactly the same as before. This assumption is very hard to be held in
system testing in the domain of aPS engineering, as every physical hardware movement or
process step is generally at least stochastically distributed regarding timing. Test prioritization
techniques use scheduling of a set of test cases to meet testing goals earlier, e.g. test coverage
(Rothermel et al., 2001). As prioritization techniques do not omit test cases, the possible draw-
back of unsafe selection cannot occur. For short test sets prioritization might not be cost effec-
tive, but for long test suites or test suites that fail, the remaining time can be spent more effec-
tively (Rothermel et al., 2001). For aPS, system test suites generally require manual interaction
and are therefore costly. In addition, failing test cases require finding and fixing the problem
and reiterating the regression testing process. It is therefore very beneficial to reveal possible
regressions earlier.

2.2.6 Test Automation and Model-based Testing

A defined test case can be executed manually by stimulating the SUT as specified, and
observing and comparing the SUT’s outputs to the expected results. Particularly in unit testing,
this very repetitive task is often automated. For this, a test driver (see 2.2.3) can be implemented,

14 2 Field of Investigation

if the test cases directly refer to the SUT’s interface and are defined in a machine-readable
format.

“Model-based testing (MBT) is a variant of testing that relies on explicit behaviour models
that encode the intended behaviours of a SUT and/or the behaviour of its environment. Test
cases are generated from one of these models or their combination, and then executed on the
SUT.” (Utting, Pretschner and Legeard, 2012). Model-based testing is generally based on the
idea that instead of defining each test case by itself, a model of the SUT can be used to derive
test cases in a structured way. Figure 4 gives an overview of the process steps involved in MBT,
which are:

(1) A test model is manually generated from informally specified requirements. An exam-
ple of this model could be an abstract definition of SUT behavior according to the re-
quirements.

(2) Test selection criteria are specified, which are often informal methods or guidelines, e.g.
relating to coverage criteria of the test model, such as “every state in the test model has
to be included in some test”.

(3) The test case specification is the operational form (formalized) of the test selection cri-
teria.

(4) Using the test case specification and the test model, test cases can be automatically gen-
erated.

(5) The test cases are subsequently executed. This can be done manually or automatically,
depending on the situation and employment of a test script (see test driver, 2.2.3). The
result of the test case execution is the verdict of the test cases.

2 Field of Investigation 15

Figure 4: The process of model-based testing according to (Utting, Pretschner and Legeard, 2012)

While these process steps are present in many MBT approaches, not all approaches include
every step. Some approaches directly define test cases as models, thus a test model only refers
to exactly one test case (e.g. (Kormann, Tikhonov and Vogel-Heuser, 2012)).

2.2.7 Testing with Simulations

In many cases, especially in system testing, test cases do not solely relate to software inter-
faces. Instead, test actions referring to the integrated system are given. An example for this
would be a test case specifying that a product that does not meet quality requirements should
be correctly identified and sorted into a waste bin. The test case can therefore not be easily
automated, but needs to be executed manually using a real machine or using a hardware or
process simulation. Simulations can be used for testing in cases where a real machine is not
(yet) available, the test might damage the aPS or other reasons that economically justify creating
a simulation.

Integrating an SUT with a process simulation is often distinguished into Software-in-the-
Loop (SIL) and Hardware-in-the-Loop (HIL) simulations. SIL, also called System Simulation,
implies that both the control software as well as the simulated hardware and technical process
are available in a virtualized form, both running on a PC for example. In contrast to this, HIL
uses the execution hardware that is later used in productive use (e.g. a PLC) to execute the
control software and can be connected to the simulation, e.g. via a bus system. While SIL is

16 2 Field of Investigation

more flexible, as no additional execution hardware is needed, HIL can also be used to investi-
gate effects caused by the real execution hardware (e.g. real-time constraints) and the simulation
can be partially replaced with real sensors or actuators. (Barth and Fay, 2013)

For both techniques, it is necessary to create an adequate simulation. As the simulation itself
does not include test cases or test automation, this setup has to be further extended by the test
driver stimulating both the simulation and the SUT.

2.3 Static Analysis Basics and Definitions

In contrast to testing (see 2.2), static analysis aims at finding bugs in earlier development
stages related to syntactic and semantic properties (Hoffmann, 2013, p. 23). Its focus is the
identification of common error patterns (Louridas, 2006) or code optimization (Aho, Sethi and
Ullman, 1986, p. 385). It is usually performed after successful compilation and before testing.
Most tools for static analysis, such as CODESYS STATIC ANALYSIS (3S - Smart Software
Solutions GmbH, 2016b) or ITRIS AUTOMATION PLC CHECKER (Itris Automation, 2017), as
well as research approaches (Prähofer et al., 2016) work in a similar way: Source code is trans-
formed into an abstract representation and analyzed for common patterns relating to errors
(Louridas, 2006). The first abstract representation generated from the code is often an Abstract
Syntax Tree (AST) (Aho, Sethi and Ullman, 1986, p. 6; Parr, 2007, p. 162). As simple AST is
shown in Figure 5.

Figure 5: An Abstract Syntax Tree (AST) for the expressions “3+4*5” (Parr, 2007)

Based on the AST, specialized models for investigating data flow or control flow properties
are common. In particular, the Control Flow Graph (CFG), which represents the flow of control
through the code (see Figure 6, code (top) and its representation as a CFG (bottom)), can be
used for various test coverage metrics (Burnstein, 2003).

2 Field of Investigation 17

Figure 6: Code sample (top) and resulting control flow graph (bottom) (Burnstein, 2003)

The CFG is a directed graph, consisting of nodes and edges. Nodes represent sequential
statements, also called Basic Blocks (BB). More specifically, “[a] basic blocks is a sequence
of consecutive statements in which flow of control enters at the beginning and leaves at the end
without halt or possibility of branching except at the end” (Aho, Sethi and Ullman, 1986, p.
528). Edges represent control loops or branches in the control flow, as for example caused by
loop statements (FOR, WHILE, DO) or conditional statements (IF-THEN-ELSE, CASE).

Static analysis methods are not aimed at verifying functional specifications and can there-
fore not be directly related to system testing. Yet, they prove to be very useful for instrumenta-
tion, coverage calculation, and change impact analysis.

3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach
19

3 Analysis of System Testing in Production
Automation and Derivation of Requirements
on the Approach

The presented approach was developed in close cooperation with industrial experts. In sev-
eral workshops with up to seven experts from three different internationally renowned compa-
nies related to or active in the field of factory automation, the current state of practice and
resulting requirements were derived. In addition to these workshops, the current situation in the
aPS engineering domain was discussed with several experts from other reputable companies
active in this field. While the presented situation might not apply to all companies, the described
boundary conditions and problems apply to a major percentage of companies in this domain
from the author’s point of view. This was supported by further discussions with other compa-
nies about the subject.

Some of the requirements are derived from the situation of aPS engineering in production
automation and need to be addressed to achieve industrial applicability of a new approach.
Some others are relating to problems with the current industrial approach of system testing, thus
need to be fulfilled in order to improve the current situation.

These requirements represent the foundation for the development of the approach presented
in this thesis and the rating of related work. At the same time, the requirements were used for
the evaluation, to design experiments and for the expert discussion to gain an understanding
whether the proposed approach fulfills the initially imposed requirements presented in this sec-
tion.

3.1 Requirements Regarding the Applicability of the
Approach

To allow for a quick adoption of the approach in industry, it was important to compile re-
quirements regarding the boundary conditions of the industrial partners. In general, the experts
noted that the approach to be developed was to be applicable to industrial aPS software, allow
for testing including valid hardware and technical process behavior and not interfere with real-
time capabilities or memory restrictions of the execution hardware. All these requirements were
to be fulfilled, while no additional resources for formalized behavior models (simulations) are
available.

In the following sections, requirement definitions are presented for each of these boundary
conditions.

20 3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach

3.1.1 Support of Industrial aPS Software

Most aPS in production automation are programmed in the IEC 61131-3 standard (IEC,
2003). While other standards were developed such as the IEC 61499 (IEC, 2012) aiming at
improving distributed automation systems, the IEC 61131-3 is still the dominant programming
method of PLCs in production automation. The third edition of the IEC 61131-3 (IEC, 2013),
which includes object-orientation, is still hesitantly adopted and mostly used in software librar-
ies.

The IEC 61131-3 defines several programming languages in which an aPS software can be
programmed in (see section 2.1.1, p. 66). The companies participating in the workshops mainly
develop their programs in Structured Text (ST) and Sequential Function Chart (SFC). To ena-
ble an evaluation of the applicability of the approach and a rating of related approaches in the
field, the following requirement was derived:

Requirement RIEC – Support of IEC 61131-3: At least one of the languages specified in the IEC
61131-3 needs to be supported by the approach.

Furthermore, typical industrial aPS software consists of multiple Program Organization
Units (POUs) and many lines of code. To allow for a quantitative measure, the following re-
quirement including definite numbers was defined:

Requirement RSW – Support of industrial code complexity: APS software with multiple, inter-
acting POUs and more than 5000 lines of code need to be supported.

3.1.2 Inclusion of Valid Hardware and Process Behavior

The approach needs to be applicable to real industrial testing use cases, as defined by the
currently performed system test cases in the company. System tests, as described in this ap-
proach, are defined as black box tests (test derived from a specification rather than the code
itself) of a fully integrated system comprised of software and controlled hardware in interaction
with the technical process. The tests include manual manipulations of the hardware or technical
process that cannot be performed by the software. As an example, manually opening and clos-
ing doors, or putting intermediate products in the machine, can be typical operations during
system testing. To include the possibility of interacting with more than just the software of the
system, the following requirement was defined:

Requirement RInt – Support of interaction with the integrated system: Manipulation and obser-
vation of hardware and technical system must be supported.

Testing a system integrates all parts of the system, meaning software and hardware in com-
bination with the controlled process. As each test is defined in a black-box manner, test cases

3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach
21

only describe the stimulation and expected behavior of the fully integrated system. The
interaction between software, hardware, and technical process are therefore not defined in de-
tail. Thus, to be able to perform system tests that only describe input-output-behavior of the
fully integrated system, the internals of the system need to be connected. For this it is also
important that the hardware behavior is valid, i.e. behaving exactly like in reality. Substituting
this part of the system with a simulation is an abstraction of the final system. Thus, finding
faults (partially) related to hardware behavior that is lost during abstraction cannot be found.

Requirement RHWB – Inclusion of valid hardware behavior: The software is required to interact
with the hardware and technical process during testing.

To clarify the difference between both requirements (RInt and RHWB), Figure 7 shows the
connection between them and the SUT. RInt relates to enabling all required external interaction
with the system, while RHWB concerns the valid behavior and internal interaction of the soft-
ware, hardware and technical process. Thus, substituting parts of the system, e.g. with simula-
tions, the performed tests cannot be seen as systems tests relating to the final system, as behavior
is modified due to this substitution.

Figure 7: Relation of the requirements RInt and RHWB to the SUT

3.1.3 Independence from Formalized Behavior Models

Simulations are used in early phases of aPS development, mostly to gain a better under-
standing of achievable production cycle times (time to produce one product), which is often an
integral part of the customer’s specification. Yet, these simulations are always a simplification
of real hardware behavior and often do no reach a level of detail or include unwanted situations
and are therefore not usable for testing purposes. Developing a suitable simulation for testing
purposes would need substantial resources. As the regarded aPSs are produced in very small lot
sizes, this effort would not be profitable, as the cost for one simulation would have to be divided
among only a very small number of machines for which this simulation could be applied. This

RInt

RHWB

aPS / SUT

Software

Hardware&stimulation
/

conformance
assessment

Techn. Process

22 3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach

problem especially applies to medium and smaller sized companies, where an approach which
is independent of simulations is required, as these are often no option for system testing in
production automation for economic reasons. At the same time, first versions of simulations
often miss important effects in the machines, which are iteratively implemented upon identifi-
cation in the real system. Yet, with small lot sizes, performing these iterations is limited, leaving
the validity of simulations questionable. This further decreases the payoff of creating such sim-
ulations. Most companies, therefore, currently choose to skip simulations for testing and per-
form system tests directly on the machine instead, which results in the following requirement.

Requirement RSim – Independence from behavior simulations: No formalized models or simu-
lations of hardware or technical process behavior is required for the approach.

3.1.4 Real-time and Memory Size Restrictions

The approach should not influence the real-time properties of the tested system in a way
that would not permit needed real-time capabilities of the system to hold. The needed real-time
capabilities are seen as unaffected if a possible increase in execution time of modified code
does not lead to the PLC scan cycle time to be exceeded. As described in section 2.1.1, the PLC
scan cycle includes reading all inputs, executing the PLC program and writing all outputs. The
requirement was defined as follows.

Requirement RRT – Insignificant influence on real-time properties: Maximum PLC scan cycle
time is not to be exceeded due to the approach.

In addition, possibly increased size of compiled control code software should not lead to
exceeded memory on the execution hardware (PLC).

Requirement RMem – Insignificant influence on memory size: Available memory size on the exe-
cution hardware is not to be exceeded due to the approach.

Both requirements depend on the application use case. The rating of the fulfillment of the
approaches is thus related to a specific use case (e.g. application example). Yet, this information
can be extrapolated to gain qualitative estimation of the fulfillment of this requirement.

3.2 Requirements Regarding the Improvement of the
Current Situation in System Testing of aPS

Besides the boundary conditions as present in the aPS industry, several requirements were
derived from properties of the testing process that were seen as unsatisfactory for the involved
companies with the currently employed approach of manual testing.

3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach
23

The environment in which the system tests are currently performed is often very uncom-
fortable: the tests are often performed on-site, in the customer’s premises, often in a loud and
dirty environment. In addition, the test and modifications to the aPS are often performed under
substantial time pressure. During commissioning, deadlines for the start of operation are often
coupled with penalties upon exceeding. During maintenance or fixing of bugs, every minute of
the aPS not being in operation is costing substantial amounts of money. For these reasons, the
testing personnel, engineers or technicians, are under substantial stress, which can lead to sev-
eral problems, such as varying testing quality, lack of documentation or missing of critical test
cases. In addition, complex interdependencies within the software and the lack of documenta-
tion make it hard to decide which tests to use for regression testing upon implementing changes.

In the next sections, these problems were used to derive requirements on the approach for
improving this current situation.

3.2.1 Improvement of Repeatability and Transparency of the
System Testing Process

Due to the strong relation of the individual capability of each tester to the testing quality
and the strong influence of stress during the testing situation, unwanted deviations in test quality
are likely to occur. In addition, personnel expenses are high, especially when relying on expe-
rienced testers, and repeatability of the tests can suffer, in particular if the documentation of the
performed tests is kept to a minimum. To tackle this problem, the following requirement was
defined.

Requirement RRep – Improved repeatability: The approach is to enable and improve the repeti-
tion of the testing process at a later time and by different personnel.

During the current system testing setting, documentation of the performed actions are seen
as cumbersome and are often performed only in a minimal manner. This fact forbids reproduc-
ing the behavior of the system during testing or assessing the current state of testing. At the
same time, increasing the resources available for documentation is not possible. For this reason,
the following requirement was defined.

Requirement RDoc – Improved documentation: Detailed documentation of the performed test
cases and their outcome has to be supported.

3.2.2 Support of the Assessment of Test Adequacy

Test adequacy is a matter of judgment by the tester. Whether everything was tested can
roughly be compared to the test plan or generic test specifications (if available), yet a support
for this estimation is not available in aPS engineering. While different coverage metrics (see
section 4.1.4) allow for a quantified estimation of test adequacy, e.g. a percentage value of full

24 3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach

coverage, this number was seen as questionable by the experts for usage in system tests. As
resources for completely testing a system are not available (testing all behavior in every detail
in an aPS is not feasible), fully covering a complete aPS was seen as an unachievable test ade-
quacy criterion. Any specific number below “100% coverage” was seen to have little meaning,
as metrics greatly vary in thoroughness (for further details, see section 4.1.4). Therefore, rather
than assessing how complete the system behavior was tested, the requirement was set to finding
untested behavior and assessing its need for specifying tests in agreement with the experts.

Requirement RTA – Support for test adequacy assessment: The approach is to support the as-
sessment of test adequacy through identification of untested behavior.

3.2.3 Increase in Efficiency During the Testing Process of Changes
to a Previously Tested Control Software

Similar to the assessment of test adequacy, the efficiency during regression testing relies
heavily on the ability of the tester. Based on experience and intuition, this person has to select,
prioritize and repeat test cases in an efficient way. The set and sequence of test cases should
ideally be able to find as many faults as quickly as possible. Yet, so far, this is done completely
without tool support. Thus, the approach provides automated support to improve the efficiency
during the testing process required after the implementation of software changes to a previously
tested system. In particular, a support for choosing or prioritizing test cases for regression test-
ing has to be given.

Requirement RReg – Support for regression testing: The approach is to increase the efficiency
during regression testing.

3.3 Scope Limitation

Based on the field of investigation and the requirements compiled in the industrial work-
shops, the problems that this thesis is aiming to solve are within the field of system testing of
aPS in production automation regarding event-discrete technical processes and specially engi-
neered aPS (small lot size). Certain problems within this domain are out of the scope of this
work. Firstly, this thesis deals with the problems in system testing of fully integrated aPS rather
than single mechatronic or software components. Therefore, the scope is limited to system test-
ing rather than testing processes that can be fully automated, such as software unit testing. Sec-
ondly, only discrete-event technical processes are regarded, excluding continuous processes as
dominant in the chemical industry. Thirdly, the approach aims at improving the testing process
of aPS that are produced in small quantities (special purpose machines with lot sizes less than

3 Analysis of System Testing in Production Automation and Derivation of

Requirements on the Approach
25

ten, down to one). In contrast to other fields, such as mass production, all engineering docu-
ments, test specifications or simulations have to be developed and produced for these small
series. Thus, reusability of these artifacts is very low, resulting in tighter resource restrictions.

4 State of the Art 27

4 State of the Art
Given the requirements compiled in the previous chapter, current works of research were

reviewed and rated for their applicability on the domain and problem. In addition, adjacent
domains such as computer science and automotive engineering were investigated. In the fol-
lowing sections, these works will be presented. In each section, the reviewed approaches are
compiled into a table, rating each approach regarding the requirements derived in Chapter 1.
The resulting research gap is defined in this process and formulated in Section 4.2. The ap-
proach developed in this thesis aims at filling this research gap.

4.1 Analysis of Existing Approaches in Production
Automation and Adjacent Domains

A multitude of approaches was developed for improving the quality assurance of software
in general and control software of aPS is particular. (Hoffmann, 2013) differentiates three cat-
egories for analytic quality assurance of software: static analysis, formal software verification,
and software testing. Each of these fields will be regarded in more detail. In addition, a closer
investigation of the fields of test coverage assessment and regression testing will be given, as
these are central concepts of the approach developed in this thesis. The rating scheme is given
in Table 1, stating for each requirement what properties were required for it to be fulfilled (+),
partially fulfilled (○) or not fulfilled (-).

Table 1: Rating scheme for the evaluation of existing, related approaches

RIEC – Support of IEC 61131-3
+: At least one IEC 61131-3 language supported or independent from implementation language
○: No support of IEC 61131-3 languages, but application in the field of embedded systems
-: No support of IEC 61131-3 languages and application only in the field of computer science or
higher programming languages
RSW – Support of industrial code
+: APS software with multiple, interacting POUs and more than 5000 lines of code
○: Lab-sized experiments
-: Approach only focused/applied on individual functions or POUs or loosely connected, delimited
modules
RInt – Support of interaction with the integrated system
+: Manual or simulated interaction with hardware and technical process behavior supported
-: No support for interaction with hardware or technical process behavior
RHWB – Inclusion of valid hardware behavior
+: Inclusion of hardware behavior using real hardware
○: Inclusion of hardware behavior using simulations or other hardware behavior models
-: No inclusion of hardware behavior
RSim – Independence from behavior simulations
+: Simulation or hardware behavior model not required for execution of the approach
○: Simulation or behavior model required for the approach; can be (partially) generated from exist-
ing engineering documents
-: Simulation or behavior model required for the approach

28 4 State of the Art

RRT – Insignificant influence on real-time properties
+: Approach does not alter or embed program (e.g. HIL) or significance of influence on real-time
properties investigated and found to be negligible
○: Approach embeds unmodified program, but influence on real-time properties not investigated
-: Approach modifies or embeds original program and influence was not investigated in relation to
aPS or embedded systems
RMem – Insignificant influence on memory size
+: Approach does not alter program (e.g. HIL) or significance of influence on memory overhead in-
vestigated and found to be negligible
○: Approach embeds unmodified program, but influence on memory usage not investigated
-: Approach modifies original program and influence was not investigated related to aPS or embed-
ded systems
RRep – Improved Repeatability
+: Repeatability is a focus of the approach and was investigated or the approach employs fully auto-
matic testing/execution
○: Repeatability was not investigated; improvements very likely
-: Repeatability was not investigated; improvements very unlikely
RDoc – Improved Documentation
+: Automatic recording of detailed execution information during testing
○: Improvement of documentation not investigated; automatic recording likely possible
-: Improvement of documentation not investigated; automatic recording unlikely possible
RTA – Support for Test Adequacy Assessment
+: Approach enables assessment of test adequacy
○: No method for test adequacy assessment implemented; tests are generated using coverage met-
rics, thus, coverage can be inferred, if all test are executed
-: No method for test adequacy assessment implemented
RReg – Support for Regression Testing
+: Selection or prioritization of existing test cases supported
○: No methods directly aimed at regression testing; re-testing has very low demand on resources
-: No methods directly aimed at regression testing; re-testing has high demand on resources

4.1.1 Static Code Analysis

Static code analysis (see Chapter 2.3) aims at an early detection of common error patterns.
An advantage of these approaches is the relatively small cost of execution: Most static analysis
tools finish analysis in a matter of seconds. Most available commercial tools, such as
CODESYS STATIC ANALYSIS (3S - Smart Software Solutions GmbH, 2016b) or Itris PLC

CHECKER (Itris Automation, 2017) are aimed at checking (configurable) pre-defined rules re-
garding naming conventions or potential problems in variable access. In research, this has been
extended by the ability for user-defined rules and more advanced analysis of the control flow
(Prähofer et al., 2012, 2016; Angerer et al., 2013; Stattelmann et al., 2014; Nair et al., 2015;
Biallas, 2016). One approach offers an additional explorative analysis of programs, using
graphical representations of the dependencies within the code (Feldmann, Ulewicz, et al., 2016;
Ulewicz, Feldmann, et al., 2016). Another focus of recent research was the adherence to coding
guidelines in FBD programs for nuclear power plants (Jung, Yoo and Lee, 2017).

4 State of the Art 29

As summarized in Table 2, the approaches all possess several quite similar positive and
negative aspects. On the positive side, they are optimized for aPS software (RIEC), do not strug-
gle with industrially sized programs (RSW) and do not alter the program, so no influence on real-
time behavior or memory size exists (RRT and RMem). In addition, no specially designed formal
hardware models (RSim) are required and the performed analyses are deterministically repeata-
ble (RRep). Automatic documentation is technically possible, yet often not explicitly mentioned
in the presentation of the approaches (RDoc). Support for the identifying regressions in the sys-
tem are not directly part of the approaches, yet, static analysis is relatively low in expense and
thus could be fully executed for every evolution of a system (RReg).

Despite all of these positive aspects, several problems regarding the approaches and their
applicability to the initially defined requirements exist. First, static analysis techniques tend to
over-approximate the possible negative impact of error patterns. This means that the results of
these methods often contain many false positives, i.e. results that are presented as critical but
do not cause any problems in real use. This is partially due to not taking the behavior of the
software’s environment (hardware and technical process) into account (RInt and RHWB). Second,
the analysis does not relate to a particular system, but to common error patterns. Thus, static
code analysis does not allow for an investigation of a system’s functional conformance to its
specification. This also does not allow for any adequacy assessment of the SUT (RTA).

Table 2: Evaluation of related approaches in the field of static code analysis

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
(3S - Smart Software Solutions
GmbH, 2016b; Itris Automation,
2017)

+ + - - + + + + + - ○

(Prähofer et al., 2012, 2016;
Angerer et al., 2013) + + - - + + + + ○ - ○

(Nair et al., 2015)
(Stattelmann et al., 2014) + + - - + + + + ○ - ○

(Biallas, 2016) + + - - + + + + ○ - ○
(Feldmann, Ulewicz, et al., 2016)
(Ulewicz, Feldmann, et al., 2016) + + - - + + + + ○ - ○

(Jung, Yoo and Lee, 2017) + + - - + + + + ○ - ○

4.1.2 Formal Verification

Formal verification can be used to mathematically prove compliance of a model to a speci-
fication. This is commonly done using model checking, where the compliance of the model to
so-called proof obligations (rules the model has to fulfill) is verified. Several tools for model
checking have been developed that offer a backend for formal analysis (Uppsala University
(UPP) and Aalborg University (AAL), 2010; nuXmv, 2014, NuSMV, 2015) and even a frontend
graphical editor for developing behavior models (Akesson et al., 2006; Uppsala University
(UPP) and Aalborg University (AAL), 2010). With these tools, the models have to be manually
generated or imported from other sources. In some works, these model checkers were shown to

30 4 State of the Art

be applicable for verification of small problems in aPS, given that all models and proof obliga-
tions are specified manually (Buzhinsky and Vyatkin, 2017). Other research groups developed
their own specialized tools for the domain of aPS, such as ARCADE.PLC (Biallas, Brauer and
Kowalewski, 2012; Biallas, 2016), which generates a model directly from aPS control software.
Other works use similar approaches, such as for programs written in LD (Kottler et al., 2017)
or SFC (Bauer et al., 2004). A toolchain for verifying industrially-sized programs is introduced
in (Gourcuff, de Smet and Faure, 2008; Fernández Adiego et al., 2015). These approaches re-
quire only the specification of proof obligations rather than a creation of a system behavior
model. In (Ljungkrantz et al., 2010), an approach is proposed, in which reusable components
including not only the implementation but also its specification for verification purposes. The
approach is mainly aimed at individual POUs and simple integrations thereof. An approach for
a more abstract verification of the interoperability of technical process and an aPS system (hard-
ware and control software) is presented in (Hackenberg et al., 2014). The approach requires
modeling of material flow behavior, steps in the technical process, system behavior and soft-
ware behavior and thus requires high efforts, even if the system verification is performed on a
rather abstract level.

Regarding the applicability of these approaches on aPS, they are independent of the aPS
implementation or allow for the generation of models from at least one of the IEC programming
languages (RIEC). None of the approaches influences real-time behavior (RRT and RMem) as the
code itself is not executed and investigated, but a model thereof. Once the modeling is complete,
the verification process can be performed fully automatically, not hindering repeatability or
documentation (RRep and RDoc), even if this has not been investigated in detail by most works.
This ability to automate the formal verification process is also beneficial for regression testing,
as the resources for repetition are rather low (not manual interaction needed), yet most formal
approaches tend to require increasingly long times (hours - days) to solve complex aPS prob-
lems.

While a system’s compliance with the specification can be exhaustively proven, the ap-
proaches using formal verification require extensive resources for the specification of formal-
ized requirements and system models, extensive knowledge of formal methods and often fail to
deal with the complexity (RSW) of fully integrated systems (“State Space Explosion”). Some
approaches try to mitigate the complexity problem by abstraction (Gourcuff, de Smet and Faure,
2008; Fernández Adiego et al., 2015) or by focusing on performed changes (Ulewicz, Ulbrich,
et al., 2016). Yet, the appropriate relation to and interaction with valid hardware behavior re-
mains (RHWB and RInt).

4 State of the Art 31

Table 3: Evaluation of related approaches in the field of formal verification

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
(Buzhinsky and Vyatkin, 2017) + ○ - ○ - + + + ○ - ○
(Biallas, Brauer and Kowalewski,
2012; Biallas, 2016)

+ ○ - ○ - + + + ○ - ○

(Bauer et al., 2004) + ○ - ○ - + + + ○ - ○
(Kottler et al., 2017) + - - - + + + + ○ - ○
(Gourcuff, de Smet and Faure,
2008)

+ + - - + + + + ○ - ○

(Fernández Adiego et al., 2015) + + - - + + + + ○ - ○
(Ljungkrantz et al., 2010) + - - - + + + + ○ - ○
(Hackenberg et al., 2014) + ○ + ○ - + + + ○ - ○
(Ulewicz, Ulbrich, et al., 2016) + ○ - ○ - + + + ○ - +

4.1.3 Testing

Using model-based test generation and test automation techniques (see (Rösch et al., 2015)
for a literature review), the effort of specifying and performing test cases can be reduced. For-
malized functional specifications can be used to describe intended system behavior (test mod-
els) or fault handling functionality of the system. Models can also be used to describe hardware
or process behavior and can, therefore, be used for simulation.

Tools for describing test models and generating test cases from them are readily available,
e.g. SEPP.MED MBTSUITE (Sepp.med GmbH, 2017) or ALL4TEC MATELO (ALL4TEC, 2017).
While the generation of individual test cases is reduced, the definition of such test models re-
quires substantial effort. In addition, behavior models are required for system testing (RSim,
RHWB and RInt). Nonetheless, several approaches in the aPS domain pursue this direction. Some
use environmental models of the system (Kumar et al., 2013), special requirement ontologies
(Sinha et al., 2016) or synchronized depth first search in automata (Pinkal and Niggemann,
2017) to generate executable test cases. Others convert specialized GRAFCET specifications to
automata for conformance testing, generating input and expected output sequences (Provost,
Roussel and Faure, 2011, 2014). All of the aforementioned approaches require complex models
to be specified and validated. As the models often also yield a very large set of test cases, some
works are aiming at reducing these test sets, e.g. by including plant model features (Ma and
Provost, 2017a, 2017b). Some works use modified UML sequence diagrams to specify individ-
ual test cases (Hametner et al., 2011; Vogel-Heuser et al., 2013). More recently, an approach
using timing sequence diagrams to generate test cases covering all possible signal mutations
for different classes of mutations was proposed (Rösch and Vogel-Heuser, 2017).

Most of the mentioned MBT approaches are fully automated, thus requiring behavior mod-
els of hardware and technical process outside the control software, to be applicable to system
testing. For this, virtual commissioning techniques have proven to be valuable for testing of

32 4 State of the Art

aPS produced in greater lot sizes. Here, detailed simulations are specified, enabling an auto-
matic execution of a multitude of test scenarios (Liu et al., 2014; Süß et al., 2016; Thonnessen
et al., 2017). Software tools for creating and performing simulations for aPS are readily avail-
able, e.g. TRYSIM (Cephalos GmbH, 2017), WINMOD (Mewes & Partner GmbH, 2017) and
PLCLOGIX (Logic Design Inc., 2017). Unfortunately, the creation of simulations requires ex-
tensive effort to enable the representation of valid system behavior regarding the hardware and
technical process. This problem can be mitigated by designing simulations of different abstrac-
tion levels related to the tested problem (Puntel-Schmidt et al., 2014; Puntel-Schmidt and Fay,
2015) or by using existing engineering artifacts for an automatic generation of simulation mod-
els (Barth and Fay, 2013). In many cases, the required documents and resources for the creation
of the simulations are not available in the industry, especially for individually engineered ma-
chines and plants (lot size 1).

Table 4: Evaluation of related approaches in the field of (model-based) testing

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
Test generation tools (ALL4TEC,
2017; Sepp.med GmbH, 2017) + + + ○ - ○ ○ ○ ○ ○ -

(Kumar et al., 2013) + ○ ○ + - + + + ○ ○ -
(Sinha et al., 2016) + - ○ + - + + + ○ ○ -
(Pinkal and Niggemann, 2017) + ○ - ○ - + + + ○ ○ -
(Provost, Roussel and Faure,
2011, 2014) + ○ - ○ - + + + ○ ○ -

(Ma and Provost, 2017a, 2017b) + + ○ + - + + + ○ ○ -
(Hametner et al., 2011) + ○ + ○ - ○ ○ + ○ - -
(Vogel-Heuser et al., 2013) + ○ + ○ - ○ ○ + ○ - -
(Rösch and Vogel-Heuser, 2017) + + + + + + + ○ ○ ○ -
Simulation Tools (Cephalos
GmbH, 2017; Logic Design Inc.,
2017; Mewes & Partner GmbH,
2017)

+ + + ○ - + + ○ ○ - -

(Süß et al., 2016) + + + ○ - + + ○ ○ - ○
(Liu et al., 2014) + - + ○ - + + ○ ○ - ○
(Thonnessen et al., 2017) + + + ○ ○ + + ○ ○ - ○
(Puntel-Schmidt and Fay, 2015)
(Puntel-Schmidt et al., 2014) + + + ○ ○ + + ○ ○ - ○

(Barth and Fay, 2013) + + + ○ ○ + + ○ ○ - ○

4.1.4 Test Coverage Assessment

Coverage metrics in the field of computer science have been an active research topic for
many years. They can be used for test case generation (Anand et al., 2013), change impact
analysis (Bohner and Arnold, 1996; De Lucia, Fasano and Oliveto, 2008), regression test se-
lection and prioritization (Engström, Runeson and Skoglund, 2010; Yoo and Harman, 2012) or
for assessing test suite adequacy (Yang and Chao, 1995; Zhu, Hall and May, 1997; Gligoric et

4 State of the Art 33

al., 2013). While some approaches have already been incorporated into the production automa-
tion domain, coverage metrics have rarely been used for assessing test suite adequacy in this
field. In the following, a closer look into work related to the presented approach will be taken.

4.1.4.1 Requirements based Coverage Assessment

Requirements based coverage metrics are based on the relation of requirements and test
cases in which test cases check whether the system under test fulfills a set of requirements. In
reverse, if an approach uses functional requirements or specifications for test generation, it is
assumed that the generated test case is adequate for these requirements.

A basic realization of this approach is available in multiple requirements management tools,
such as RATIONAL DOORS (IBM, 2016) or POLARION (Siemens, 2016): informally specified
requirements can be linked to informally specified test cases. If a requirement does not have a
related test case, it is assumed that a test case is missing. In case one or more test cases are
linked to a requirement, the requirement is seen as fulfilled if all test cases were completed
successfully. This implies that the creator of the test cases specified all relevant test scenarios,
which is relying heavily on the ability of the individual. If test cases for a requirement are
missing, this would not become apparent if all other test cases were executed successfully as
no quantitative measure beyond the connection of tests and requirements is given.

Using formalized requirements, the expected behavior of the system can be specified in
more detail and a subsequent relation between content of the requirement and the test cases can
be performed, rather than solely evaluating the connection of requirement and test case. This
was implemented in different research works in specific applications for embedded systems
(Siegl and Caliebe, 2011), computer science (Whalen et al., 2006) and testing of safety field
busses (Krause, 2012). Here, test cases can be generated from and related to a system model
and thus allow for an assessment of test coverage. Another work presents an approach, where
tests are symbolically executed and compared to a specification using a model checker
(Ammann and Black, 1999). The approach claims independence from implementation lan-
guage, yet the type of test cases is not taking cyclical execution into account, preventing appli-
cation on aPS. Several works in the domain of aPS testing also use specifications models for
test generation using coverage metrics (Kumar et al., 2013; Sinha et al., 2016) and therefore
allow for an assessment of test adequacy related to the test models prior to test execution. Table
5 gives an overview of these approaches, including a rating regarding the initially derived re-
quirements in aPS system testing.

An approach which bases test coverage on formalized or traceable requirements exhibits
multiple positive aspects: 1) it is a direct measure of how well a test suite addresses a set of
requirements, 2) it is implementation independent and 3) it does not require execution or instru-
mentation of the system under test (Whalen et al., 2006). At the same time, this type of metric
has several negative aspects:

34 4 State of the Art

1. Detailed requirements specification as well as a model of the relation between these
requirements and test cases need to be available. This requires additional effort.

2. A quantitative evaluation of this metric requires formalized requirements specifications
or relies solely on the assumption that a given set of test cases can fully strengthen the notion
that all requirements are fulfilled, even if each requirement only relates to a single test case.

3. Missing or incomplete requirements will go unnoticed in this metric. If the set of re-
quirements is not maintained correctly or inadequately defined from the beginning, the metric
cannot yield satisfying results.

4. Unrequired parts of the code cannot be identified as test cases are related to requirements
only. If unneeded code was implemented, this metric is unable to identify these unnecessary
parts of the code resulting in additional maintenance effort in later stages of system mainte-
nance.

Table 5: Evaluation of related approaches in the field of requirements-based coverage assessment

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
Commercial requirements
engineering tools (IBM, 2016;
Siemens, 2016)

+ + + + + + + - - - -

(Siegl and Caliebe, 2011) ○ ○ - - + + + ○ ○ + -
(Whalen et al., 2006) ○ ○ - - + + + ○ ○ + -
(Krause, 2012) ○ - - - + + + ○ ○ ○ -
(Ammann and Black, 1999) - ○ - - + + + ○ ○ + -
(Kumar et al., 2013) + ○ ○ + - + + + ○ ○ -
(Sinha et al., 2016) + - ○ + - + + + ○ ○ -

4.1.4.2 Code Structure Based Coverage Assessment

Structural code coverage metrics have been a common method for assessing software test
adequacy in safety critical systems: For safety-critical avionics systems, the DO-178b standard
proposes the use of structural metrics for assessing the adequacy of a suite of tests for a test
subject (RTCA, 1992). Depending on the criticality, the standard proposes more or less detailed
metrics, such as statement coverage (“every statement in the program has been executed at
least once” (RTCA, 1992)) or condition/decision coverage (“every point of entry and exit in
the program has been invoked at least once, every condition in a decision in the program has
taken all possible outcomes at least once, and every decision in the program has taken all pos-
sible outcomes at last once” (RTCA, 1992)) is proposed. While the presented approach does
not aim to fulfil coverage criteria as in software testing for safety critical systems for economic
reasons, certain properties about the different metrics still apply to the field of aPS. The differ-
ent metrics differ substantially regarding the number of test cases to fulfill each criterion, but
also in their ability to detect faults. In most cases, full statement coverage needs fewer test cases
but can fail to detect faults in complex decisions within the control flow. The practical ability
to detect faults in desktop software was evaluated for unit testing (Zhu, Hall and May, 1997)

4 State of the Art 35

and complete test suites (Gligoric et al., 2013; Gopinath, Jensen and Groce, 2014). From these
evaluations, even the simple statement coverage metric turns out to be a very valuable metric,
especially for finding out if a test suite is inadequate (missing test cases). The DO-178b (RTCA,
1992) also proposes statement coverage as the minimal requirement for safety critical systems.

There are many tools available from computer science for structurally based coverage anal-
ysis. An overview of available tools is given by (Yang, Li and Weiss, 2009), yet not all tools
have remained in development. Still, tools such as CLOVER (Atlassian, 2016),
BULLSEYECOVERAGE (Bullseye, 2016) and PURIFYPLUS (Unicom, 2016) are readily available
and offer coverage analysis using multiple coverage criteria for higher object-oriented program-
ming languages (e.g. Java, C++, C#). Even if their application on the programming languages
and execution hardware of PLCs could be achieved (RIEC), these tools were not developed in
respect to the industrial scenarios required in the aPS industry: all tests are executed fully auto-
matically and do not require human operators (RInt). In addition, the influence of the tracing
algorithms used by the tools is unsure regarding a port into the PLC field (RRT and RMem).

In comparison to computer science and critical embedded systems, production automation
engineering has seen few approaches of structural code coverage metrics for test adequacy as-
sessment. A tool for test coverage measurement for Function Block Diagrams (FBD) is pre-
sented by (Jee et al., 2010) for use in safety critical programs of nuclear reactors. The test case
coverage is externally checked by analyzing the data flow paths of the FBD and comparing
them to the test inputs. This approach seems to be hardly applicable to aPS in production auto-
mation: Here, the technical process is dominated by event-discrete process steps (see 2.1.2)
which differ substantially from the complex logical data flows of nuclear power plants.

A reason for the hesitant use of coverage criteria in production automation might be the
strict real-time requirements and the overhead created by measuring coverage (RRT and RMem).
Only a few works present efficient tracing algorithms for embedded systems (Wu et al., 2007)
and automation software (Prähofer et al., 2011). As tracing algorithms of the former approach
are designed for embedded systems, the scenarios and test environment prohibit an easy adap-
tion to automated production systems (no interaction to hardware without behavior models).
The latter approach for automation software uses a very sophisticated tracing approach aimed
at debugging automated production systems, not taking coverage assessment into account. In
particular, this approach does not include structured system tests or a connection of tests to the
recorded data and focuses mainly on reproducing variable values at certain points in time for
debugging purposes.

Some works in the production automation field take a different approach stemming from
computer science: testing input sequence generation from the code itself to achieve full cover-
age related to a certain criterion. Some are generating test relating to the data flow of FBD (Jee,
Yoo and Cha, 2005; Jee et al., 2009; Doganay, Bohlin and Sellin, 2013; Enoiu et al., 2013;

36 4 State of the Art

Enoiu, Sundmark and Pettersson, 2013; Maruchi, Shin and Sakai, 2014). Other works use
model-checkers and the control flow to do the same (Simon et al., 2015; Bohlender et al., 2016).
Some approaches extend this idea for software product lines, offering efficient test input se-
quence generation techniques for individual configurations (Lochau et al., 2014). These ap-
proaches possess two main problems for system testing in production automation: 1) the gen-
eration technique generates test input sequences directly from the code but does not include an
expected behavior (“test oracle”). The test cases themselves are very focused on software rather
than system operation scenarios (RInt, RHWB), thus realistic system testing scenarios are hardly
achievable. 2) As the generated test suite is usually very large, it is difficult to execute all test
cases, especially concerning the complete system. Test coverage is completely unknown if cer-
tain test cases are omitted (RTA).

An overview of the mentioned approaches, including their rating, are shown in Table 6.

Table 6: Evaluation of related approaches in the field of structure-based coverage assessment

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
Commercial test coverage
assessment tools (Atlassian,
2016; Bullseye, 2016; Unicom,
2016)

- + - - + - - ○ ○ + -

(Jee et al., 2010) + ○ - - + ○ ○ + ○ + -
(Wu et al., 2007) ○ ○ - - + + + + ○ + -
(Prähofer et al., 2011) + + + + + + + - + - -
(Jee, Yoo and Cha, 2005; Jee et
al., 2009) + - - - + ○ ○ + ○ ○ -

(Maruchi, Shin and Sakai, 2014) + - - - + ○ ○ + ○ ○ -
(Doganay, Bohlin and Sellin,
2013)
(Enoiu et al., 2013; Enoiu,
Sundmark and Pettersson, 2013)

+ + - - + ○ + + ○ ○ -

(Simon et al., 2015)
(Bohlender et al., 2016) + - - - + ○ ○ + ○ ○ -

(Lochau et al., 2014) + - - - + ○ ○ + ○ ○ -

4.1.5 Regression Testing

Besides the general approach to make testing of aPS more efficient and increase testing
quality as presented in the previous paragraphs, several approaches focus on the selection and
prioritization of existing test cases. In the domain of computer science in particular, this has
been an active field of research for many years (Yoo and Harman, 2012). Two main classes of
approaches can be identified in this field: static and dynamic techniques. Static techniques focus
on the connection of engineering artifacts to the test cases (traceability) to gain information
about what test case should be selected and prioritized due to a change. Dynamic techniques
leverage data acquired during the execution of test cases to allow for a relation of the test cases
to the tested code. After changes are performed on the system, this allows for an assessment of

4 State of the Art 37

test cases having a higher probability to yield different results, e.g. by failing, exposing newly
introduced unwanted behavior. While static analysis generally is better at finding all relevant
test cases (soundness), dynamic approaches in computer science often choose less unnecessary
test cases (Ernst, 2003) and are thus more precise.

4.1.5.1 Static Regression Test Selection and Prioritization

Regarding static traceability methods, established tools for requirements engineering can
be used to infer connections between requirements and test cases (IBM, 2016; Siemens, 2016)
similarly to test coverage. In the case of changed requirements, related test cases can quickly
be identified. Yet in practice, changes are often directly performed on the system, often without
a change of the requirements documents. In these cases, a detailed relation of test cases to the
performed change is impossible to achieve, hindering a prioritization of available test cases
(RReg). Several approaches try to improve this by including additional information, such as sys-
tem models of the SUT (Caliebe, Herpel and German, 2012) or the connection between test
cases, requirements and product cost of a software product line (Baller et al., 2014). An ap-
proach from computer science performed prioritization upon four factors: requirements volatil-
ity, customer priority, implementation complexity and fault proneness (Srikanth, Williams and
Osborne, 2005). This prioritization method requires manual effort, yet structured prioritization
of test cases with a reduced level of subjectivity can be achieved. Other approaches use historic
test execution data, e.g. information about test runs, such as the fault detection rate of individual
test cases (Kim and Porter, 2002) or a fault symptom database with connected test cases (Abele
and Weyrich, 2017). A combination of the system’s software structure and historic process data
in decentralized production systems (Zeller and Weyrich, 2015) or historic test execution data
in combination with a clustering of test cases (Alagöz, Herpel and German, 2017) for test se-
lection are more propositions to improve the regression testing process. To cope with the
amount of data for prioritization using historic data, agent-based prioritization techniques have
been proposed (Malz and Göhner, 2011; Malz, Jazdi and Göhner, 2012). For variant-rich in-
dustrial IT systems with well-delimited modules, an approach for prioritizing sub-system test
cases that are directly related to modules via a system model was presented (Abele and Weyrich,
2016; Abele et al., 2017). Yet, this approach would only be applicable to systems that are far
more modularized and loosely connected as those regarded in this work.

While these approaches seem beneficial in specific situations, all of these approaches re-
quire additional artifacts and their connection to the system, which are often not available in
the industry. In addition, the approaches are often focused on automatically executable test
cases that do not take hardware behavior into account (RInt and RHWB). One approach for test
selection is independent of additional models, solely basing the choice of test cases on changes
to the software (Ulewicz, Schütz and Vogel-Heuser, 2014), yet the approach is limited to unit

38 4 State of the Art

and integration testing, and is not applicable to system testing of aPS. Table 7 summarizes these
findings.

Table 7: Evaluation of related approaches in the field of static regression test selection and
prioritization

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
Commercial requirements
engineering tools (IBM, 2016;
Siemens, 2016)

+ + + + + + + - - - -

(Caliebe, Herpel and German,
2012) ○ + - - + + + ○ ○ - +

(Baller et al., 2014) + + - - + ○ ○ ○ ○ - +
(Kim and Porter, 2002) ○ + - - + + + + ○ - +
(Srikanth, Williams and Osborne,
2005) - ○ - - + - - + ○ - +

(Zeller and Weyrich, 2015) ○ ○ ○ + - ○ ○ ○ ○ - +
(Alagöz, Herpel and German,
2017) ○ + ○ + - + + ○ ○ - +

(Malz and Göhner, 2011; Malz,
Jazdi and Göhner, 2012) + ○ - - + ○ ○ ○ ○ - +

(Abele and Weyrich, 2017) ○ + + + + ○ ○ ○ + - +
(Abele and Weyrich, 2016; Abele
et al., 2017) ○ - + + + ○ ○ ○ ○ - +

(Ulewicz, Schütz and Vogel-
Heuser, 2014) + ○ - - + + + - - - +

4.1.5.2 Dynamic Regression Test Selection and Prioritization

When using dynamic regression test selection and prioritization methods, execution traces
are recorded during the execution of test cases to allow for a relation between executed code
and its related test case. By identifying changes in a system, this information can be used to
prioritize available test cases (Jones and Harrold, 2001; Rothermel et al., 2001; Orso,
Apiwattanapong and Harrold, 2003). Originally, these works stem from computer science, thus
important requirements for aPS are not regarded. In particular, the test cases used in the ap-
proaches are performed completely automatically, with no possibility for manual interaction or
inclusion of valid hardware behavior (RInt and RHWB). In addition, their runtime overhead is not
investigated (RRT). Only one approach for tracing seems applicable for aPS, yet the approach
focuses on reproducing variable values for manual debugging and does not consider test auto-
mation or regression testing (Prähofer et al., 2011). In work preliminary to the approach pre-
sented in this thesis, a regression test prioritization approach was presented, trying to overcome
these obstacles. Yet, the approach was only applied on a lab-sized study (RSW) and did not
include a test adequacy investigation (RTA). An overview of the approaches and their rating is
given in Table 8.

4 State of the Art 39

Table 8: Evaluation of related approaches in the field of dynamic regression test selection and
prioritization

 RIEC RSW RInt RHWB RSim RRT RMem RRep RDoc RTA RReg
(Orso, Apiwattanapong and
Harrold, 2003)

- + - - + - - + ○ - +

(Rothermel et al., 2001) - + - - + - - + ○ - +
(Jones and Harrold, 2001) - + - - + - - + ○ - +
(Prähofer et al., 2011) + + + + + + + - + - -
(Ulewicz and Vogel-Heuser,
2016b)

+ ○ + + + + + ○ + - +

4.2 Discussion of the Research Gap

As the discussion of the related work in the previous sections shows, none of the analyzed
approaches succeeds in fulfilling the imposed requirements identified in the workshops with
the industry partners (Chapter 1). This is mostly due to relying on additional detailed formalized
requirements or to not taking valid hardware behavior into account sufficiently. In addition, the
disregard of important real-time requirements and industrially relevant test scenarios including
manual interaction with the system prevent all approaches from computer science to be directly
applicable. Thus, the identified research gap is defined as follows.

Research Gap: There is no approach for test adequacy and regression test prioritization for
system testing of aPS in production automation, which is (directly) applicable in the aPS in-
dustry. The industrial applicability is mainly defined by the support of IEC 61131-3 languages
and control programs of industrial complexity, no significant influence on real-time properties
and the inclusion and possibility to manipulate hardware behavior. Furthermore, the approach
is not to depend on formalized behavior simulations.

The approach developed in this thesis aims at filling this research gap.

5 A Concept for Efficient System Testing of Automated Production Systems 41

5 A Concept for Efficient System Testing of
Automated Production Systems

This section describes the developed concepts that aim at improving the system testing pro-
cess in production automation. To illustrate their interrelation, a brief overview of the complete
approach will be given, followed by a detailed description of the individual concepts.

As described in section 3.1.2, system testing in aPS engineering is currently performed
mostly fully manually. This causes several problems: the repeatability of test cases is low, the
documentation of the test cases is minimal and the quality of executed system tests is unknown
or roughly estimated by personal experience of the test engineer or technician. Furthermore,
selection, prioritization, and execution of these tests after software changes suffer from a similar
problem: change impacts are largely unknown due to the complexity of the system and a lack
of tool support. This results in unneeded re-execution of unaffected tests or – even worse –
omission of affected tests and the subsequent disregarding of unwanted behavior caused by
changes.

The goals of the presented approach are to increase code quality (a) by reducing deviations
in system test execution and increasing transparency through detailed automatic documentation
(RRep and RDoc), (b) by identifying untested parts of the implementation (RTA) and (c) by in-
creasing testing efficiency by prioritizing tests that should be re-executed due to changes to the
program (RReg). To ensure industrial applicability, requirements regarding the application do-
main are to be fulfilled. This means that industrial aPS software properties need to be factored
in (RIEC and RSW) while ensuring real-time capabilities of the system (RRT). As the type of con-
sidered tests is on the system test level, i.e. functional tests regarding the integrated behavior of
a system’s software and hardware (RHWB), human interaction during execution is required (RInt).
Additionally, the approach may not rely on behavior models or simulations (RSim), as these are
often not available.

The presented approach aims at reaching these goals by using a novel guided semi-auto-
matic system testing approach, combined with a tracing and coverage assessment concept.
These concepts are combined with a change impact analysis and test selection and prioritiza-
tion concept to further improve the testing process of aPS with focus on regression testing of
software changes.

5.1 Concept Overview

Regarding the requirement demanding more testing quality and efficiency, several problems
are present when using the current approach of manual system testing. The testing quality is
impaired due to a lack of transparency, i.e. very few if any detailed knowledge about what tests
were already performed is documented, repeatability, i.e. the possibility of exactly repeating a

42 5 A Concept for Efficient System Testing of Automated Production Systems

test, and measurability to assess the testing adequacy in general. In addition, manual testing
lacks in testing efficiency regarding regression testing as selection and prioritization of tests
after implementing modifications in the system are mostly performed by a matter of feeling by
the test technician or engineer, resulting in varying quality of testing efficiency.

Many of these problems cannot be overcome solely relying on improvements in manual
testing, as most of the decisions and processes during manual testing heavily rely on individual
experience and ability. In addition, manually performing tests requires significant manual effort
for documentation, as no computer-aided support is given. Therefore, a guided semi-automatic
system testing concept (see Chapter 5.2) was developed, allowing for the required type of sys-
tem tests for real industrial scenarios. At the same time, it aims at structuring the testing process
(increased repeatability) and enabling measurements during execution (increased transparency
and measurability). It also represents the foundation for the other presented concepts offering
the possibility to relate the testing artifacts (e.g. test suite information, test cases, test traces)
amongst each other and to the control software itself and previous revisions of it.

Under the assumption that all parts of the control software were programmed to achieve
required functionality, untested parts of the code imply untested functionality and thus missing
test cases. As absent needed test cases represent a lack of test quality, a test coverage assessment
concept (see Chapter 5.3) was developed that enables the identification of untested code. For
this identification, a measurement on which parts of the code are executed during testing is
performed (statement coverage). To acquire significant and complete information about exe-
cuted statements, this measurement was to be developed to be real-time capable, e.g. not miss-
ing any program executions due to a recording algorithm lagging behind. As neither industrial
control programs nor available development environments include the possibility to measure
the needed information, the test coverage measurement concept includes the instrumentation of
the code, implementing tracepoints that enable recording whether certain statements have been
executed. Each tracepoint consist of the instrumented part of the code (a function call) and the
information about its location and relation to the trace record. To keep this information con-
nected for later use in the coverage analysis, a tracepoint database is created, storing this infor-
mation.

To be in line with the requirements of applicability in the production automation domain,
the concepts must not create any significant deviation from the behavior of the system (RRT).
Thus, only minimal modification of the code is permitted, resulting in the possibility to use the
instrumented code as the final control program. For this reason, a detailed control flow analysis
of the complete control program (see Chapter 5.3) is performed, optimizing the instrumentation
of the code by identifying suitable locations of tracepoints within the code while still enabling
the recording of all needed information. To allow for an efficient analysis, the executable code
is converted into a dependency model, including the program control flow, which is based on

5 A Concept for Efficient System Testing of Automated Production Systems 43

directed graphs. The dependency model is additionally used as a base for visualizing the calcu-
lated test coverage.

Figure 8 represents a graphical overview of the connections of the described concepts: An
original program is to be tested with a test suite (top left). A subsequent test coverage is to be
performed to identify potentially untested code. The test suite is comprised of multiple tests,
which were manually derived from the system requirements and specified in the previously
described semi-automatic system test format. From this test suite, an executable test suite (ex-
ecutable IEC 61131-3 code) is automatically generated. To allow for a calculation of the cov-
erage, the program is instrumented by the inclusion of tracepoints. The location of these
tracepoints is identified through a dependency model, which is directly generated from the code
of the original program. The instrumented program is then merged with the executable test suite
and executed, during which test traces are recorded using tracepoints. The subsequent coverage
calculation is performed using the traces, the dependency model and tracepoint information
stored in a tracepoint database, which was created during code instrumentation. After the cal-
culation of the coverage, the result can be visualized using a graphical representation of the
dependency model, including information about coverage, particularly emphasizing unexe-
cuted parts of the model. Using this information, the identification of untested code and a sub-
sequent assessment of further needed test efforts are facilitated. While this assessment is diffi-
cult to automate completely, a manual assessment by the test engineer or technician is sup-
ported.

Figure 8: Coverage Assessment Overview

When regarding program modifications, regression testing plays an important role by pos-
sibly identifying newly introduced faults through re-execution of available tests. While the goal
of identifying faults is important, re-executing test cases is also expensive resource and time
wise, especially regarding system tests that involve personnel. To minimize these efforts, ide-

PLC Program
(original)

PLC Program
(instrumented,
including tests)

Dependency
Model

Trace Point
Database

Traces

Coverage
Calculation

and Visualization

PLC Code
Model
Process
Semi-automatic
Automatic
Manual

Test
Project Generation

PLC Program
(instrumented)

Test Execution

TracesExecution
Traces

Code
Instrumentation

Test
Report

Coverage
Assessment

Test Suite

44 5 A Concept for Efficient System Testing of Automated Production Systems

ally only needed re-testing efforts would be performed (test selection) and arranged in a se-
quence optimized for efficiency (test prioritization). As a safe selection of test cases, i.e. avoid-
ance of omission of test cases that could find faults, is hard to achieve for system testing of aPS
in production automation (see Chapter 2.2.5), the presented approach focuses on the prioritiza-
tion of test cases (see Chapter 5.4).

For this, an approach was developed that gives the personnel involved in the system regres-
sion testing process automated support in prioritizing test cases based on the implemented
change of the system to enable quick identification of newly introduced unwanted behavior. As
shown in Figure 9, so-called execution traces are recorded using the semi-automatic system
testing approach (see Chapter 5.2) to allow for a relation between each system test and the
related parts of the control software of the aPS. After changes to the system, this information is
combined with a change identification and change impact analysis to allow for a prioritization
of test cases with a high probability to identify newly introduced unwanted side effects. For
this, test cases related to changed and possibly influenced parts of the code are prioritized before
the rest of the test cases. A refined prioritization is performed either by prioritizing test cases
covering as many modifications as fast as possible or by covering modifications as intensely as
possible.

Figure 9: Overview of the concepts developed for prioritization of regression tests

In the following chapters, the main concepts will be described in detail.

Traces

Change Identification

Traces

Test Execution

Test Case Prioritization

PLC Code
Model
Process
Semi-automatic
Automatic
Manual

Correlation of code
and each test case

Final Test Case
Prioritization

Code Instrumentation and
Testing Project Generation

Previous
PLC Program

(original)

PLC Program
(instrumented,
including tests)

Test
Report

Previously
used Test

Suite

Current
PLC Program

(original)

Dependency Model
(current version)

Dependency Model
(previous version)

Trace
Point

Database

Execution
Traces

5 A Concept for Efficient System Testing of Automated Production Systems 45

5.2 Guided Semi-Automatic System Testing

In this section, a concept for guided, semi-automatic system testing is presented that is ori-
ented towards the requirements of industrial use, as described in Chapter 1. It was first presented
in (Ulewicz and Vogel-Heuser, 2016a). As discussed in the previous sections, many system
testing processes in factory automation need the possibility of manual interaction and realistic
hardware behavior (RInt and RHWB) while simulations or other formal behavior models are not
available (RSim). As a result, in the presented concept, a human operator is included in a semi-
automatic testing process as an efficient and applicable way to overcome the obstacle of stim-
ulating and assessing hardware behavior in aPS in production automation. The system testing
approach facilitates analysis of test case properties, the relation of test cases to other software
and testing artifacts and usage of automated code generation algorithms. Therefore, it represents
the foundation of the subsequently described approaches on coverage assessment (Chapter 5.3)
and test prioritization (Chapter 5.4).

Figure 10: Inclusion of stimulation and behavior assessment into a system testing approach is

currently not regarded in most approaches in research

The main gap the presented approach (Figure 10) is focusing on is the fact that none of the
reviewed testing approaches considers the efficient testing of systems comprised of software
and hardware in which not all testing processes can be automated. In these approaches, a test
bed including multiple tests is used to stimulate a system under test via its inputs; its conform-
ance analyzed using its outputs. While this is feasible when concentrating on software-only
systems, systems including hardware can often not be fully stimulated or observed by the soft-
ware. Some approaches try to avoid this problem, using simulations of the hardware behavior,
yet this poses multiple problems for the domain of production automation, as simulations sim-
plify reality, might not be fault free and require high effort in creation. In most cases, only the
real hardware is adequate for the assessment of the system’s behavior. As subsequently defined

Test Bed

System Under Test

Software

Hardware

&
stimulation

/
conformance
assessment

Test case
fail

continue

? ?
Techn. Process

&
stimulation

/
conformance
assessment

46 5 A Concept for Efficient System Testing of Automated Production Systems

in requirement RSim, the presented approach is aiming at including stimulation and behavior
assessment of the hardware parts of a mechatronic system in an efficient way to identify faults
in the software.

In the following chapters, concepts for including human operators into the system testing
process (5.2.1) and a test system integrating this concept into a semi-automatic process will be
presented. The test system comprises the test cases (5.2.2), the test suite and execution history
(5.2.3), and the generation of the PLC test project (5.2.4).

5.2.1 Including Human Operators into Testing Processes

In automated production systems, only required sensors or actuators for regular operation
are available, mainly for cost reasons. As testing often involves only partial functionality of the
system outside of regular operation, specified system states in the test cases cannot be reached
automatically, as needed actuators are missing. In current practice, these states are mostly in-
duced through manual interaction. An example for this would be a test whether safety doors are
operational by manually opening and closing the doors for which no actuators are installed.
Besides the missing actuators for reaching systems states, adequate sensors within the machine
are missing or are inadequate for assessing system or product states. As an example, achieved
product quality has to be visually assessed by test engineers or technicians. Installing and bring-
ing adequate sensors and actuators into operation for these situations is not economically rea-
sonable. Human interaction is flexible enough for most of these tasks and is, therefore, a prime
candidate for inclusion within the concept. On the downside, humans exhibit a comparably low
degree of precision during their actions and these actions are less resource efficient per repeti-
tion than highly specialized automated systems.

Automated production systems are developed to automatically perform actions, which are
partially available during testing, e.g. in manual operating mode. Even though not all systems
states can be reached or assessed automatically, many can. For this reason, this concept aims at
combining human flexibility with automated precision and efficiency, by including a human
testing engineer or technician into a testing process that is automated as much as economically
reasonable.

Human interactions with the hardware during testing will be classified into manipulative
actions, such as putting an intermediate product into the production plant or opening safety
doors, and diagnostic actions, such as verifying visually whether an action was performed in a
satisfying way. For integration of these actions with an automated system and testing functions,
an interaction between the testing engineer and the automated testing processes needs to be
achieved. The interaction between human operators and the automated production systems is
usually achieved by using a human-machine interface (HMI). As peripheral devices, such as

5 A Concept for Efficient System Testing of Automated Production Systems 47

touch displays and other input devices are often already available in the production systems,
these devices are considered for inclusion into the concept.

On the one hand, HMI devices are used to display information about the production process
and machine status to a human operator during operation. In the same manner, tasks can be
displayed to a testing engineer during the testing process. This can be realized in the form of
textual or graphical information. This enables an inclusion of human actions by displaying in-
formation about the task to be performed, whether it is a manipulative or diagnostic action. On
the other hand, the devices enable the human operator to influence the production process by
changing parameters or switching operating modes. Again, this can be used for inclusion of
human actions within the testing process, by using this feature for acknowledgment of manip-
ulative actions or input of results of diagnostic actions. Input hardware such as touch displays
or keyboards can be used to provide information to the automation system.

As portrayed in Figure 11, HMI devices can be used to include a human test engineer or
technician into the test process. For this, the test case shall include information about manipu-
lative as well as diagnostic actions to be performed by the tester at the appropriate times. There-
fore, the HMI is bridging the gap between the fully automated test and the manual actions by
the test engineer or technician. To further detail the concept, the test operations are regarded in
more detail, resulting in a simple, yet powerful HMI concept.

Figure 11: Inclusion of a human test engineer or technician into the testing process

As with regular test operations, in the most simple case, manipulative and diagnostic actions
can either be successful (e.g. intermediate product inserted into the system) or not (e.g. product
quality not satisfactory). For this reason, at least these actions need to be enabled by the HMI.

Test Bed

System Under Test

Software

Hardware

&stimulation
/conformance

assessment

failcontinue

&stimulation

/
conformance
assessment

HMI input

HMI
output

Test case
inputs expected

outputs

Techn. Process

operator
tasks

48 5 A Concept for Efficient System Testing of Automated Production Systems

To conclude the involvement of the operator with the testing process, this results in the need
for an HMI that can display information and receive inputs for a successful and unsuccessful
termination of the action. This can be achieved through a simple visualization as shown in
Figure 12.

Figure 12: HMI example for including a

manipulative action into a test case

Figure 13: HMI example for including a

diagnostic action into a test case

Here, the task display is used to display information about the task in a textual manner using
a text box. Two buttons are used to convey to the automated system whether this task was
performed in a satisfactory manner (“Done”) or not (“Cancel”).

As mentioned before, besides the actions performed by the operator, certain processes can
be fully or partially automated. Even though the processes are automated, there is a probability
for these actions to fail. Therefore, the test engineer is involved in the testing process with a
monitoring task during these processes. It is, therefore, reasonable to use the HMI to display
information about the automatically performed actions and enable to abort the process through
inputs. This can be achieved using the same HMI concept.

As exemplified in Figure 13, the task display is used to display information about the per-
formed automated action to the operator and one button is used to stop the process in case it is
not performed in a satisfactory way (“No”). The button formerly used to assess whether the
action was satisfactory can be used to manually end an automatic process step in case there is
no sensor available (“Yes”).

Figure 14: HMI template for manipulative and diagnostic actions using a customizable interface

In both use cases, customizing the text within the task display as well as the buttons is
reasonable, resulting in the generic template visualization shown in Figure 14. This information
has to be part of the test case for increased flexibility.

Using these presented concepts, a multitude of manual interactions can be included in the
testing process, yet the automation of the testing process needs to be regarded in more detail to
achieve a semi-automatic testing.

Please insert an intermediate
product into infeed A.

DoneCancel

Is product at output B in a
satisfactory condition?

YesNo

Textual Information

OkNot Ok

5 A Concept for Efficient System Testing of Automated Production Systems 49

5.2.2 Test Case Metamodel and System Test Execution Process

The definition of the test case is based on joint concepts developed in the research project
MOBATEST1. A refined variant of this test case format is used in the currently available version
of the CODESYS TEST MANAGER ((3S - Smart Software Solutions GmbH, 2016c), Version
4.1.0.x). Yet, this format does not include all properties of the test case format described in this
section (especially succeed conditions). As an official formal specification was not published
by 3S – SMART SOFTWARE SOLUTIONS GMBH, the metamodel presented in Figure 15 is used for
explanation. It represents a parallel refinement of the test case format as done by the author of
this thesis. It has to be noted that the format in the CODESYS TEST MANAGER includes most
shown elements, yet with slightly different names. For the approach presented in this thesis, the
most significant addition to the elements and the process in which the system test is executed
are succeed conditions groups and more detailed step conditions. In contrast to assessments
checking whether the SUT does not comply with an expected behavior, these conditions enable
checking whether the SUT has reached a target state. This is particularly useful for system
testing, where test steps are often designed as “remain in the current test step until X happens
or the timeout is reached”.

A system test relates to an SUT, defines a test interface (ManipulatedVariable and
CheckedVariable) and includes a sequential set of test steps to test this SUT. In the case of the
system tests defined in this thesis, the SUT is the fully integrated aPS. In the model, this is
denoted by stating the POU designated as the entry point for the logic part of the program (e.g.
“PLC_PRG” or “Main”) as the SUT. Each test step in the set of test steps can define stimulating
actions (StepAction), conditions relating to failing (FailCondition) or passing (SucceedCondi-
tionGroup) of a test step, and a step duration (StepDuration).

To get a better understanding of the purpose and usage of the elements the process of test
case execution is schematically shown in Figure 16. Each test case is started at the first test step.
The execution of a test step is started with checking for a timeout of the test case as defined in
SystemTest.Timeout (see Figure 15, top left). If the timeout has not yet been reached, (op-
tional) stimulating actions (StepAction) are performed, e.g. by setting variable values. Subse-
quently, the SUT is executed (optional, as defined in Step.ExecuteSUT, see Figure 15), after
which each FailCondition is checked. StepConditions are usually checked by comparing varia-
ble values to specified expected values (CheckValue), the occurrence of rising or falling flanks
(CheckFlank) or other custom definitions directly specified in ST (CheckExpression). If none

1 „Model-based testing of PLC software variants for automated special purpose machinery“ (German: “Mo-

dellbasiertes Testen von SPS-Steuerungssoftwarevarianten für den Sondermaschinenbau“). It was supported by
the Bavarian Ministry of Economic Affairs and Media, Energy and Technology within the research program “In-
formations- und Kommunikationstechnik in Bayern” under Grant IUK413.

50 5 A Concept for Efficient System Testing of Automated Production Systems

of the FailConditions is violated, the SucceedConditionGroups are checked. If all conditions
within a SucceedConditionGroup evaluate to true, this results in the group being evaluated as
succeeded. If one or more SucceedConditionGroups are succeeded, the next step is executed.

Figure 15: Metamodel for system tests based on joint concepts developed in project MOBATEST

If the system test timeout is exceeded or one or more FailConditions fail to be fulfilled, the
system test is marked as failed. As abruptly stopping an aPS during operation can lead to prob-
lems such as an undefined state of the system, an additional tear down sequence can be defined.
In case all test steps were completed successfully, the test result is set to succeeded. Unless the
test is marked as failed or succeeded, the test case result remains unknown (inconclusive).

SystemTestpkg

+ SUT : String
+ Timeout : StepDuration
+ Description : String
+ Name : String
+ Id : long

SystemTest

+ Timeout : StepDuration
+ ExecuteSUT : boolean
+ Description : String
+ Index : int

Step

+ DataType : String
+ Name : String

Variable

- CheckedVariable
0..*

1

- ManipulatedVariable
0..*

1

+ Evaluate() : boolean

+ TearDown : String
+ DelayBeforeEval : StepDuration

StepCondition

1..*

1

- FailCondition
0..*

1

+ Expression : IECExpression

CheckExpression

- SucceedConditionGroup
0..*

1

StepDuration

+ RepeatCount : long

DurationRepeat

+ TimeSpanMS : long

DurationTimeSpan

+ Value : String
+ Operator : TestResult

CheckValue

+ Execute() : void

StepAction

+ Value : String

SetValue

+ Statement : IECStatement

ExecuteStatement

0..*

1

- StepDuration
0..1

1

- <<enum constant>> Fail : int
- <<enum constant>> Success : int
- <<enum constant>> Unknown : int

<<enum>>
TestResult

+ Falling : boolean
+ Rising : boolean

CheckFlank

+ EvaluateAll() : boolean

ConditionGroup

5 A Concept for Efficient System Testing of Automated Production Systems 51

Figure 16: System Test Loop

The test case metamodel is used to define system tests. While unit tests generally directly
relate to an SUT interface, system tests require the inclusion of a tester and thus a connection

SystemTestLoopact

Perform
StepActions

Execute
SUT

Check Fail
Conditions

Check
Succeed
Conditions

Check
StepDuration

Check
timeout

Set Test
Result
Succeeded

[!Timeout]

[ExecuteSUT] [!ExecuteSUT]

[FailConditionsFailed > 0]

[SucceedCondition
GroupsSucceeded >0]

[LimitReached]

[FailConditionsFailed == 0]

[Timeout]

[SucceedCondition
GroupsSucceeded == 0]

Execute
test step

Set Test
Result
Failed

Advance to
next Test
Step

[LastStep]
[!LastStep]

[!LimitReached]

Check if
last Step

Perform
Tear down

52 5 A Concept for Efficient System Testing of Automated Production Systems

to an HMI. This interaction between test case and HMI is enabled by defining shared variables
for the task text (taskText: STRING) and the buttons of the HMI (nokButton: BOOL
and okButton: BOOL) as described in Chapter 5.2.1. The taskText is changed by the test
case using a StepAction, which results in the text to be displayed on the HMI. Conversely, the
button values (true means the button is pressed) is written by the visualization and checked
by the test case using StepConditions.

As schematically shown in Figure 17, a system test usually consists of several steps that
generally include interaction with the HMI by setting the task text using a SetValue StepAction,
checking whether the nokButton was pressed using a FailCondition and including the jump
to the next test step using SucceedConditions observing the okButton or a defined value of
another global variable. Thus, the duration of a generic step in system tests is often not exactly
defined, but relating to an event (button pressed, sensor triggered, etc.). Test steps in system
tests can be exclusively relating to manual actions (via HMI) or automatic actions (setting and
checking software variables), but can also be a mixture of both.

Figure 17: Basic System Test: The schematic test case (left) will change the test HMI (right) to display

different tasks, which have to be acknowledged (Ulewicz and Vogel-Heuser, 2016a)

5.2.3 Test Suite and Test Execution History

In line with the requirement RDoc, the approach is to enable a detailed documentation of the
testing process. For this, objects for storing information about the test suite and the test execu-
tion history were defined. As schematically shown in Figure 18, each PLC software project can
contain one test suite and one test history.

Display during step 2:

Display during step 3:

Display during step 1:Test Case

Step 1
Insert product a location A!

OKCancel

Step 2

fail

Automated process active…
Stop!

Step 3
Is product at location B and in good

condition?

YesNo

SuccessButton
= TRUE

Lightbarrier
= TRUE

SuccessButton
= TRUE

tim
eo

ut
O

R
 F

ai
lB

ut
to

n
=

TR
U

E

success Button variables TRUE when pressed,
FALSE when not.

„Success“-Button„Fail“-Button

5 A Concept for Efficient System Testing of Automated Production Systems 53

As defined in Chapter 2.2.3, a test suite is defined as a set of test cases in a specific order.
For this reason, it aggregates all system tests within the PLC project and possesses two lists for
defining a test case order and selection (TestCaseOrder and TestCaseSelection).

Whenever a test suite is executed, the resulting information about the results and durations
of each test case is stored (TestSuiteExecutionInformation and TestExecutionInformation). The
information about the execution of each test case can be directly related to the system test ob-
ject. As each test case can be executed multiple times relating to different PLC software project
revisions, multiple TestExecutionInformation-objects can be associated with one system test.

Figure 18: Metamodel for storing information about test suites and the test history of a PLC software

project

Using this metamodel, detailed information about the test history can be stored and related
to test cases.

5.2.4 Test Bed and PLC Software Project Generation

The starting point for generating a PLC software project that includes the possibility to
execute the specified system tests is an original, unaltered PLC software project. The contents
of such a PLC program running on a PLC runtime is depicted schematically in Figure 19 (left):
a program is interacting with controlled hardware and an HMI via globally defined variables.
In addition, global variables for system-wide storage of information are common. The program
is depicted as one POU, yet it usually consists of calls and sub-calls of other POUs and merely
represents the entry point into this network of calls.

Based on this original PLC software project, several additional items are generated into the
project (see Figure 19, right side). Instead of directly executing the original Program cyclically,
the PLC runtime is changed to call a test bed block. This test bed block continues calling the
original program, which is now the SUT. Yet, additional function calls are implemented before

TestDatapkg

+ SUT : String
+ Timeout : StepDuration
+ Description : String
+ Name : String
+ Id : long

SystemTest

+ End : TimeStamp
+ Start : TimeStamp
+ ProjectRevision : int

TestSuiteExecutionInformation

+ ResultMessage : String
+ Result : TestResult
+ End : TimeStamp
+ Start : TimeStamp

TestExectutionInformation

1..*1

1

0..*

TestHistory

0..*1

+ TestCaseSelection : List
+ TestCaseOrder : List

TestSuite

0..*1

PLCProject

0..11

0..1

1

54 5 A Concept for Efficient System Testing of Automated Production Systems

and after this call: Based on the test cases which are stored in global variable arrays on the PLC
runtime, actions are performed before the call, and conditions are checked after the call, by
writing on specific global variables and reading from them respectively. To allow for an inter-
action with the tester, additional HMI resources are integrated into the PLC software project.
During the testing process, tracing is performed (see 5.3.2 for more details), recording relevant
information during the test case execution for later use in documentation and analysis of test
coverage.

Figure 19: Test project generation (based on (Ulewicz and Vogel-Heuser, 2016a))

The test cases are stored as objects within the control software project. Using the function-
ality provided by the CODESYS TEST MANAGER (CODESYS, 2015), these test cases can be
automatically converted into executable test cases. The tool can, among other things, upload
the generated project onto any execution hardware, start the testing process, generate a test
report and download any specified files from the execution hardware. This functionality is used
in combination with the generation of additional tracing POUs and variables and the insertion
of the HMI components for displaying test case information on a display and enabling user
input during test execution, respectively.

5.3 Coverage Assessment for System Tests

The guided semi-automatic system testing approach (Chapter 5.2) sets the foundation for
measurements during testing and relating test cases to these measurements. This chapter de-
scribes the considerations and developments leading from the possibility to record data during
testing to an approach for coverage assessment in system testing for identification of untested
behavior (RTA). This part of the approach was preliminarily published in (Ulewicz and Vogel-
Heuser, 2018a).

Starting from identifying a suitable coverage metric for identifying untested functionality
(Section 5.3.1), the basic concept for coverage assessment is presented in Section 5.3.2. The

Hardware

Legend:

PLC Runtime

Test Bed Block
PerformActions();
Execute(

);
CheckConditions();
Trace();

Program
(original)

PLC Runtime

HW

Hardware

Program
(original)

Internal

HMI

HW

Internal

HMI

Test
Cases

Test
Cases

Test
Cases

Test
HMI

Traces

Original:

Generated:
POU:
Global Variables:

Read/Write:

5 A Concept for Efficient System Testing of Automated Production Systems 55

required modifications to the programs and the way this is achieved are presented in Section
5.3.3. The acquired coverage information is related to the coverage measure (Section 5.3.4) and
visualized for a quick identification of untested functionality (Section 5.3.5).

5.3.1 Identifying a Suitable Coverage Metric

As described in the state of the art (Section 4.1.4.2), multiple different coverage metrics
have been developed in the field of computer science. Each metric has positive and negative
aspects regarding the presented problem (identifying untested behavior), which were analyzed
to choose a suitable metric for the given requirements of insignificant influence on real-time
behavior (RRT) and providing support in assessing test adequacy by identifying untested system
behavior (RTA).

Requirements based metrics are generally not suitable if detailed functional specifications
are not available, which is often the case in aPS engineering. A coverage cannot be calculated
if the relation between detailed functional specifications cannot be made. In addition, unneeded
functions, i.e. unneeded code, cannot be identified as these would not be specified even with
detailed specifications. This type of coverage metric was therefore found not to be suitable for
the presented approach and was excluded from further consideration.

In contrast to this, code structure based metrics can be calculated without the need for ad-
ditional detailed functional specifications. In the field of computer science, different metrics
were developed and checked for their suitability for assessing test suite adequacy, i.e. whether
a test suit comprised of multiple test cases covers all relevant behavior in the system. Statement
coverage was found to be very effective in detecting mutations, i.e. defects, in code (Gopinath,
Jensen and Groce, 2014). For identifying non-adequate test suites, i.e. test suites missing test
cases, statement coverage does not seem to have any downsides compared to more detailed
criteria (Gligoric et al., 2013). In addition, to record these detailed metrics, more detailed in-
strumentation is required: decisions need to be analyzed in more detail and more memory is
needed to store the information in case more complicated decisions are present. According to
requirement RTA and RMem, both available execution time and memory are critical and statement
coverage is expected to require less of both in comparison to more complex metrics, such as
condition/decision coverage. Industrial application was also expected to yield complex cover-
age results to be evaluated by the tester, which would be amplified by the even more detailed
results from other metrics. Therefore, for this approach, statement coverage was more promis-
ing for the requirement of minimal influence on real time properties of the system and was
subsequently chosen for the presented approach.

56 5 A Concept for Efficient System Testing of Automated Production Systems

5.3.2 Assessing Test Coverage using Statement Coverage

Based on the finding that statement coverage represents a promising coverage measure, the
conception of the basic concept of assessing coverage was developed. In Section 5.3.2.1 a con-
cept for recording statement coverage is presented, which is subsequently implemented into the
process of system testing, as described in Section 5.3.2.2.

5.3.2.1 Basic Concept for Recording Statement Coverage Information

The calculation of statement coverage requires information about which statements were
covered during code execution. Statements are regarded as covered if they are executed. To
find out whether a particular statement was executed, another statement recording its own exe-
cution can be placed right after or in front of the statement of interest. Given, designated
memory for storing this information exists, e.g. an array with one element for each statement,
which can be set to TRUE if the respective statement was visited, all required information for
statement coverage can be recorded in memory and real-time (see Figure 20). This technique
requires an exact relation between array index and the respective statement, which has to be
saved during instrumentation (insertion of the recording statement).

Figure 20: A method to record statement coverage: insertion of a record function call just before the

statement of interest, which changes entries in an array

Yet, using this technique in this simple form, the code required for recording whether any
of the investigated statements was executed would increase the source code dramatically. This
would go in hand with high increases in required execution time. Yet, when regarding the prop-
erties of a control flow (see Chapter 2.3), the number of required recording statements can be
drastically reduced.

A simple control flow comprises of jumps in the control flow and basic blocks. While jumps
are generated when implementing control statements (IF-THEN-ELSE, WHILE, …), basic
blocks are made up of most other statements (assignments, calculations, …). As basic blocks
are defined to only have one entry and one exit point in the control flow, it can be derived that
all statements within this basic block are executed, if one of the statements was executed. It is
thus sufficient to only record once per basic block whether it was covered, instead of recording
this information for each individual statement. As control statements connect basic blocks, these

Memory

C
od

e

C
od

e …
a := a + 1;
…

…
record(position:=n); a := a + 1;
…

Statement of interest Recording instrumentation

executedStatements : ARRAY [0 .. N] OF BOOL;
Array Elements: 0 1 … n … N

executedStatements[n] := true;

5 A Concept for Efficient System Testing of Automated Production Systems 57

statements do not have to be recorded, as it can be derived that they were executed if both the
preceding as well as the subsequent basic block was executed. To conclude, at least every basic
blocks execution is to be recorded in order to find uncovered statements. In fact, the number of
required records could be further reduced by taking mutually exclusive paths of the code into
account, such as IF-THEN-ELSE decisions, where either the THEN- or the ELSE-part would
have to be recorded. Yet, this optimization was not implemented into the approach yet.

Based on the knowledge of what information needs to be acquired to find untested state-
ments, the method for efficient code instrumentation was developed, which is described in de-
tail in Section 5.3.3. Before going into detail about the instrumentation, the basic concept for
recording coverage information in the context of executing a complete test suite will be de-
scribed in the next section.

5.3.2.2 Basic Concept for Recording Traces and Calculating Coverage

Before traces can be recorded, the original PLC software projects are required to be instru-
mented to implement the basic concept for recording statement coverage as described in the
previous section. The instrumentation will be described in detail in Section 5.3.3. The instru-
mentation achieves two things: 1) the control code is extended by functions, function calls, and
designated memory (trace array) to allow for recording traces and 2) information about the
relation of the function calls to decipher recorded traces are saved. The latter information is
required after all tests have been executed to allow for the relation of each code to covered code.
To enable an execution of test cases, the instrumented project is extended by generated execut-
able test cases as described in Section 5.2.4 and uploaded onto the PLC for test execution. The
test execution is similar to the “pure” guided semi-automatic system testing approach (Section
5.2), yet before each test case the volatile memory storing trace information (trace array) is
cleared, filled up again during test execution, and saved to non-volatile memory after each test.
This distinction between volatile and non-volatile memory reduces the impact of the recording
on real-time properties, as volatile memory typically is significantly quicker to be read and
written. The result is a trace file for each test case, storing the coverage information for each
respective test case. After testing, the traces stored on the non-volatile memory of the PLC are
transferred to the engineering system. Traces are superimposed to acquire information about
the overall coverage and the uncovered parts of the code in particular. This information is sub-
sequently visualized to enable a coverage assessment by the human testing engineer or techni-
cian (see Section 5.3.5). The relation between the previously described steps is schematically
shown in Figure 21.

58 5 A Concept for Efficient System Testing of Automated Production Systems

Figure 21: A detailed overview of the coverage calculation concept: the PLC software project is in-
strumented on the engineering system, executed on the PLC while traces are recorded. Traces are

subsequently imported into the engineering system and analyzed.

5.3.3 Preparing the PLC Software Project for Execution Tracing

An unmodified PLC software project does not allow for recording the information described
in the previous sections. For this, it has to be instrumented. This means that special functions
for tracing are added to the project, function calls are directly added into the code, and memory
is designated for recording this trace information during runtime. The designated memory is
realized in the form of an array in the PLC software program with an array entry for each basic
block. To enable a direct relation between the source code and the trace array, information about
the relation of array entries, basic blocks and their position within the code is stored during
instrumentation. The instrumentation is based on a so-called dependency model, which will be
described in Section 5.3.3.1. The model is used to find and add tracepoints, i.e. points at which
basic block execution is recorded. This and the inclusion of the functions for tracing will be
described in Section 5.3.3.2.

5.3.3.1 The Dependency Model

The dependency model used for identifying decisive points and basic blocks within the code
is an extension of the dependency model definition presented in (Feldmann, Hauer, et al., 2016).

CoverageCalculationDetailedOverviewact

on engineering
system (PC)

Execute
test case

Reset
Trace
Array

Save
Trace
Array

Advance to
next test
case

Trace is
saved as text
file on non-
volatile PLC
memory
(HDD)

[!LastTestCase]

Import traces

Superimpose
traces

[LastTestCase]

Visualize
coverage

Trace array
(volatile PLC
memory) is
empty

Trace array
is gradually
filling with
values

Testing is done;
All traces are
imported
individually onto
the engineering
system

All individual
traces are
superimposed
into one
coverage trace

on PLC

Instrument PLC
software
project

Generate Test
Project

Upload PLC
software
project on PLC

Insert executable
test cases into
project

Insert tracing
functions, function
calls, and save
trace point
information

5 A Concept for Efficient System Testing of Automated Production Systems 59

The original dependency model was designed to analyze programs for modularity and other
maintainability properties by analyzing the control flow as well as the data flow within control
programs. As this analysis did not consider the control flow within program organization units
(POUs), the metamodel, which is presented in Figure 22, was extended by suitable stereotypes
to be able to represent these features in a generated model. The extended stereotypes are shown
in light gray in the figure. The dependency model contains information about the control flow,
data flow, and call dependencies within and between PLC software entities, POUs, and varia-
bles in particular.

Figure 22: Dependency metamodel for code analysis and instrumentation (extension of (Feldmann,

Hauer, et al., 2016); extensions filled light gray)

DependencyModelpkg

DependencyModel

DataType

+ type : DataType

Variable

+ tasks : Task[1..*]
+ pous : POU[0..*]

Project

+ pous : POU[0..*]

Library

- attribute1 : int
+ mainAction : Action
+ complexity : int
+ localVars : Variable[0..*]
+ inOutVars : Variable[0..*]
+ outputVars : Variable[0..*]
+ inputVars : Variable[0..*]

POU

+ globalVars : Variable[0..*]

GlobalVariableList

+ id : int
+ name : String

Node

+ id : int
+ name : String

Edge

0..* 0..*

FunctionBlock

+ returnType : DataType

Function

Program

+ pou : POU

Task

+ type : ElementaryTypeEnum

ElementaryType

...
BYTE
BOOL

<<enum>>
ElementaryTypeEnum

DerivedType

+ baseType : DataType

ArrayType

+ baseVars : Variable[0..*]

StructType

- attribute0 : int
+ writtenVariable : Variable
+ writingObject : ICalleable

WritesEdge

+ writtenVariable : Variable
+ readingObject : ICalleable

ReadsEdge

ICalleable

+ operation0() : void

+ calledObject : ICalleable
+ callingObject : ICalleable

CallsEdge

+ executedPou : POU
+ executingTask : Task

ExecutesEdge

+ Condition : String
+ targetObject : BasicBlock
+ sourceObject : BasicBlock

JumpsToEdge

+ Condition : String
+ targetStep : SFCStep
+ sourceStep : SFCStep

SFCTransitionEdge+ modified : boolean
+ length : int
+ sourceStartPos : int
+ sequentialID : int

BasicBlock

Action

+ ExitAction : Action
+ Action : Action
+ EntryAction : Action

SFCStep

1..*

0..*

1..*

60 5 A Concept for Efficient System Testing of Automated Production Systems

The dependency model is a directed graph consisting of nodes and edges. Nodes represent
structural entities of an IEC 61131-3 project, whereas edges represent the dependencies be-
tween these entities (Feldmann, Hauer, et al., 2016). An edge connects two nodes, a source
node, and a target node, in one direction. The metamodel is able to contain nodes from different
hierarchies in the project, starting from the project itself, the defined tasks (threads) in the pro-
ject, the POUs (functions, function blocks and functions) called by the tasks and other POUs.
This was extended by code elements such as actions (functions embedded in POUs) and basic
blocks (code segments that do not contain decisions such as if-statements). For SFC, the step
node was implemented, which can itself contain multiple actions per step. In the current version
of the approach, actions with ST implementation and the type qualifiers P0 (single execution
upon step deactivation), P1 (single execution upon step activation) and N (repeated execution
while step being active) are supported. The edges represent dependencies between the nodes,
such as calls between POUs, write operations on variables and, in the extended model, also
progressions between basic blocks (JumpsToEdge) and SFC-steps (SFCTransitionEdge).

Figure 23: Example for a CFG (bottom) generated from code (top left) and an excerpt of contained

information in the dependency model (top right)

The JumpsToEdge is generated from control statements, such as if-statements, and addi-
tionally stores the condition as expressed in the if-statement or implicitly expressed in the else-
statement. For example, if there is an if-statement, the then-part of the if-statement will be
represented as an edge leading from the code before the if- to the then-part with the condition

Information in the dependency
Model:

Control Flow Model:

Source Code:
1. IF in < 0 THEN

2. out := -1;

3. negative := TRUE;

4. ELSIF in = 0 THEN

5. out := 0;

6. negative := FALSE;

7. ELSE

8. out := 1;

9. negative := FALSE;

10.END_IF

BB1:BasicBlock
sequentialID = 1
sourceStartPos = 17
length = 31
modified = false

E3:JumpsToEdge
sourceObject = BB2
targetObject = BB3
Condition = “in = 0”

BB1

BB3

BB4

…

BasicBlocks:
JumpsToEdges:

5 A Concept for Efficient System Testing of Automated Production Systems 61

specified in the if-statement. If there is an else-part of the statement, there will be an addi-
tional edge leading from the code before the if-statement to the else-part with the inverted
condition of the if-statement (see Figure 23 for a practical example).

If a basic block calls another POU, there will be an edge leading from the first function
block to the initial basic block within the called POU without a condition. The same applies for
the SFCTransitionEdge: Transitions in SFC-charts are converted to transition edges, showing
the connection between SFC steps as defined in the SFC chart.

5.3.3.2 Instrumentation of the PLC Software Project

Based on the metamodel presented in the previous section, a dependency model can be
automatically generated from the source code of the PLC program. This is done by identifying
all defined tasks as initial points for code exploration. The called POUs are identified from each
initial point. The code specified within these POUs (its implementation body and, if available,
its actions) is converted to an abstract syntax tree (AST), which is then walked through itera-
tively. During this walk-through, basic blocks and control statements connecting these blocks
are identified and saved as nodes and edges. In case a basic block calls another POU, this POU
is equally walked through until the end of the code is reached. In this process, each basic block
is sequentially numbered (sequentialID, see Figure 23, top right), to allow for an easy correla-
tion between basic blocks and trace data. The result is a call graph spanning the control software
project’s code, which is relevant for the control flow, omitting POUs which will never be called.
These POUs will already be identified by the compiler and are thus of no further relevance. The
created graph is the basis for code instrumentation, explained in more detail in the next section.

The recording of data needed to infer execution traces is achieved by instrumenting the
source code of the PLC project and saving information about inserted parts within a database.
The instrumentation consists of inserting function calls in the beginning of each basic block and
allocating memory for temporal storage of execution trace information. The trace information
is realized as an array of Boolean variables for each basic block (tpa: ARRAY[0..MAXTP]
OF BOOL, where MAXTP is the total number of traced basic blocks)2. The array is reused for
each test case by resetting each entry before each test case and saving the recorded information
after each test case. For this, two functions and one function block were developed:

• Reset function tp_reset(): The reset function is called before each test case and is
used to reset the complete trace array to ensure that all array items are set to their initial state
(false).

2 The trace array was later replaced by a trace structure, containing the same information, but improving the

performance of the approach (see Chapter 8.1).

62 5 A Concept for Efficient System Testing of Automated Production Systems

• Record function tpr(INT i): This function, which is called at each tracepoint, is
given the identification number of the tracepoint after which the related array item in the trace
array is set to true. In its simplest form, it only consists of one line of code:
tpa[i]:=TRUE; This dedicated call-by-value function was later replaced by inserting the
tracing code directly at the respective position in the source code for performance reasons (see
Chapter 8.1).

• Saving function block tp_save(BOOL xExecute, STRING szFilename):
After each completed test case (failed or successful), this function will be called to save the
information stored within the trace array into a common text file on the execution hardware. As
this process might take several PLC scan cycles, the writing process needs to be completed
(Output xDone = TRUE) before the next test case is initiated. The data saved is the ID and
value of each tracepoint (e.g. “1: true, 2: false, 3: false, …”).

These POUs are inserted into the project alongside the trace array at the instrumentation
phase of the control software project. Using the information collected in the dependency model,
each basic block is instrumented with a tracepoint. Function calls of the tpr-Function are in-
serted into the code using the information about the location of the basic blocks (see Figure 24).

Original code:

1. IF in < 0 THEN
2. out := -1;
3. negative := TRUE;
4. ELSIF in = 0 THEN
5. out := 0;
6. negative := FALSE;
7. ELSE
8. out := 1;
9. negative := FALSE;
10. END_IF

Instrumented code:

1. tpr(i:=42); IF in < 0 THEN
2. tpr(i:=43); out := -1;
3. negative := TRUE;
4. ELSIF in = 0 THEN
5. tpr(i:=44); out := 0;
6. negative := FALSE;
7. ELSE
8. tpr(i:=45); out := 1;
9. negative := FALSE;
10. END_IF

Figure 24: Instrumentation example: The original code (left) is extended by function calls resulting in
instrumented code (right)

5.3.4 Relating Test Cases to Code

Alongside the instrumentation of the code (Section 5.3.3.2), a tracepoint database is created
allowing for the relation between the instrumented code, the dependency model and the execu-
tion trace information created during test execution. The database contains information about
the related basic block and thus about the tracepoint location (sourceStartPos) of each inserted
part within the code. In addition to this information, an entity named “visit” will be filled with
information from the execution traces after the testing process is finished: each test case will
create an execution trace stating if a tracepoint was “visited” or not. Thus, each tracepoint in
the tracepoint database can be “visited” by each test case. This information is combined to

5 A Concept for Efficient System Testing of Automated Production Systems 63

identify which test cases were not visited by any test case (WasVisited() evaluates to
false) to identify untested parts of the source code. A practical, simplified example for this
is given in Figure 25: Three traces are combined into one trace. Each trace stores information
about whether each of three basic blocks was visited. Combining the three traces reveals that
basic block 3 was not visited by either of the test cases.

Figure 25: Generic example for combining statement coverage traces

The connection between the basic block to the individual system test is shown in Figure 26:
a SystemTest (bottom right) has TestExecutionInformation, if it was previously executed, as
extracted from a test report returned by the CODESYS TEST MANAGER upon completing the
testing process. Information about which test case visited which tracepoint can be extracted
from the imported execution traces. This information can directly be linked to a system test
execution, i.e. a TestExecutionInformation.

Trace 1
1: TRUE
2: FALSE
3: FALSE

Trace 3
1: FALSE
2: TRUE
3: FALSE

Combined
Trace

1: TRUE
2: TRUE
3: FALSE

+
Trace 2
1: TRUE
2: TRUE
3: FALSE

64 5 A Concept for Efficient System Testing of Automated Production Systems

Figure 26: Connection to code and test cases

Information about all tracepoints and their connection is stored during instrumentation.
Thus, the connection between system test and basic block is closed and the coverage of each
basic block can be inferred. For handling of this information, a concept for visualizing this
information was developed which will be presented in the next section.

5.3.5 Visualizing Test Coverage

As pointed out by Piwarowski (Piwowarski, Ohba and Caruso, 1993) and Yang (Yang, Li
and Weiss, 2009), high coverage scores are difficult to achieve even regarding statement cov-
erage. This may be due to unreachable code or complex conditions, among other reasons. This
fact was also pointed out by the industry partners questioned in the initial requirements study:
testing all behavior in every detail in an automated production system is not feasible. One rea-
son why this is not possible in this particular field of industry is economics: testing is resource-
intensive and performed under significant time pressure.

As the goal of the presented approach is to identify the untested behavior of the system, a
quantitative measure as in a coverage percentage seemed unnecessary or unsuitable. Instead, a
visual emphasis of untested code was chosen. This also allows for the detailed investigation by
the tester to evaluate whether the untested parts are indeed critical and therefore might require

TestDataConnectionToCodepkg

+ Name : String
+ Id : long

SystemTest

+ End : TimeStamp
+ Start : TimeStamp
+ ProjectRevision : int

TestSuiteExecutionInformation

+ ResultMessage : String
+ Result : TestResult
+ End : TimeStamp
+ Start : TimeStamp

TestExectutionInformation

1..*1

1
0..*

TestHistory

0..*1

+ TestCaseSelection : List
+ TestCaseOrder : List

TestSuite

0..*1

PLCProject

0..1

1

0..1

1

+ projectRevision : int

TracePointDataBase

+ TestCaseName : String

Visit

+ WasVisited() : boolean

+ sequentialID : int
+ blockReference : BasicBlock

TracePointInfo

From
execution
traces

From test
report

1

DependencyModel

+ operation1() : void

+ modified : boolean
+ length : int
+ sourceStartPos : int
+ sequentialID : int

BasicBlock

0..*1

0..*1

1

1

0..*1

From
instrumentation

0..*
1

1
1

5 A Concept for Efficient System Testing of Automated Production Systems 65

additional test cases. Inspired by a traffic light color scheme, untested parts are marked “red”,
i.e. need investigation, and partially tested parts are marked “yellow”, i.e. potentially critical.
A “green” marking was deliberately not used as parts of the system that were fully covered
might still contain faults (testing is “hopelessly inadequate” to show the absence of faults
(Dijkstra, 1972)).

For a quick assessment of the coverage of the system, different views were chosen aggre-
gating the underlying coverage (see Figure 27). In a software project call graph, all executable
POUs are depicted starting from the task calling the first POU. Each POU is marked “yellow”
or “red” depending on whether the steps (in the case of a POU programmed in SFC), actions or
its basic blocks were only partially covered or not covered at all. Views that are more detailed
are presented by clicking on the respective POUs. In the case of POUs programmed in SFC,
the individual steps, as well as their transitions, are shown with a similar color-coding. The
level closest to the code is a view depicting individual basic blocks.

For future work, a direct implementation into the development environment’s editors could
support industrial acceptance of the approach as no new concepts would have to be learned. A
mock-up of this idea is depicted in Figure 28.

By allowing for the tester to quickly browse through the project to identify untested parts
of the system, a quick ability to detect the untested behavior of the code is expected. If a com-
plete POU is marked as untested, the user can quickly look into the code and decide whether
this block was previously tested or needs further investigation. If an automatic step chain was
only partially covered, the tester can identify the untested steps, which often correspond directly
to behavior in the machine, and analyze the item for further investigation. This process can also
be performed down to the basic block level, where individual lines can be identified as untested,
as critical behavior or be deliberately omitted.

66 5 A Concept for Efficient System Testing of Automated Production Systems

Figure 27: Hierarchical coverage views as developed for the approach: A software project call graph
(left) gives a quick overview of covered (light gray and white) and uncovered (dark gray) POUs. More
detailed views can unveil uncovered parts of the code from SFC level (upper right) to ST level (lower

right).

Figure 28: Coverage Visualization Concept

ST / Basic Block View

SFC ViewSoftware Project Call Graph (PLC Project View)

Fully covered

Partially covered

PLC_PRG

Manual

OpModeManager

Automatic Sequence1

Sequence2

Sequence3

Sequence4

Fault
Entry

ManualFunction1

GeneralFunctions
BusDiagnosis

HMIConnector

ManualFunction2

ManualFunction3

ManualFunction4

ManualFunction5

Init

Not covered

Coverage:

ManualFunction6

Task1 Init

Step10

Step23

Step24

Step30

Step41

Step50

true

done

altdone

done

done

done

alt

done

0: done := false;
alt := false

1: done :=
true

2: alt :=
true

3

Not traced
a NOT a

true true

Object Tree View SFC-Editor View

ST-Editor View

Manual
ManualFunctions

Mf_0801_InletStopper (FB)
Mf_0802_InletAmp (FB)
Mf_0803_InletGo (FB)
Mf_0804_InletReverse (FB)
Mf_0805_InletClutch (FB)
Mf_0806_OutletAmp (FB)
Mf_0807_OutletGo (FB)
Mf_0808_OutletReverse (FB)
Mf_0809_OutletClutch (FB)

ManualFunctionsMgr (FB)
Auto

AutoChains
Seq_021_GripperDepal (FB)
Seq_023_TrayChange (FB)

N010_Action
N020_Action
N030_Action

IF Lift.Servo.ReferenceOk = TRUE AND
Lift.Servo.Fault = OK

THEN
Lift.Servo.StartReference := FALSE;
ReturnValue := OK;

ELSE
ReturnValue = Lift.Servo.Fault;
IF ReturnValue = OK
THEN

N010

N020

N030

Partially
covered

Not
covered

5 A Concept for Efficient System Testing of Automated Production Systems 67

5.4 Prioritization of System Tests for Regression
Testing

Regression testing focuses on prioritization of system tests for a previously tested system
that has undergone changes. The goal of the prioritization is to efficiently find newly introduced
faults using existing, previously successfully executed test cases. To enable this efficient re-
gression testing process, the system tests are arranged in a way that test cases with a higher
probability to find newly introduced faults are moved to the front of the queue of test cases to
be executed (test prioritization). Through this, possible regressions of the system can be found
earlier, enabling an optimized iterative debugging process (fixing the regression and repeating
the regression testing process). This part of the approach was preliminarily published in
(Ulewicz and Vogel-Heuser, 2016b, 2018b).

Figure 29: System test prioritization in three steps

The approach comprises three steps:

Step 1 (see 5.4.1): Building a relation between test cases and the executed control program
parts and acquiring timing information for each test case of the unchanged program.

Step 2 (see 5.4.2 and 5.4.3): Identifying changes in the changed program and possible im-
pacts of the changes on the rest of the program.

Step 3 (see 5.4.4 and 5.4.5): Prioritizing system test cases for the changed program accord-
ing to the possible impact of the change and the acquired runtime and timing information of
each test case of the unchanged program.

The prioritization was developed with a similar idea as the work presented by Orso et al.
(Orso, Apiwattanapong and Harrold, 2003): test cases that previously executed parts of the code
that have now been changed or are affected by changes are more likely to yield different results.
Thus, these test cases are more likely to find new faults and are given a higher priority.

As semi-automatic test cases require significant amounts of time for execution, two refined
prioritization methods were developed to increase the efficiency of this basic prioritization fur-
ther. Taking timing information about the test cases into account, these refined methods aim at
1) intensely testing changes to find sporadic faults and 2) testing all changes as quickly as pos-
sible. While the execution traces gathered during coverage assessment was already enough for

1. Guided semi-automatic system testing and
relation of system tests and code

2. Change identification
and impact analysis

3. Test case
prioritization

68 5 A Concept for Efficient System Testing of Automated Production Systems

the basic prioritization, the refined techniques required an extension of the tracing algorithm,
which is described in Section 5.4.1.

5.4.1 Building a Relation between Test Cases and Executed
Control Program Parts and Acquiring Timing Information

The relation built between test cases and executed code during coverage assessment (see
Section 5.3.4) already allows for a basic relation between system tests and each basic block:
Each executed SystemTest results in TestExecutionInformation, which can be related to Visits
of TracePoints, which in turn are directly related to BasicBlocks (see Figure 26). Thus, if a
basic block changed, the test cases previously executing this block can be identified, which –
in combination with a change impact analysis (see 5.4.3) – allows for a basic prioritization (see
5.4.4).

As briefly mentioned in the previous section, two refined prioritization methods (see Sec-
tion 5.4.5 for details) were developed in addition to the basic prioritization (see 5.4.4). These
methods additionally take timing information and intensity of “visiting” basic blocks into ac-
count.

The information needed for the refined prioritization methods are the time to execute each
test case (can be extracted from test report) and the number of times the test case passed through
each part of the code and when it passed through it for the first time (needs additional instru-
mentation). Similarly to the testing coverage concept (Section 5.3), the code is instrumented:
the original project is extended by functions and function calls automatically. For the refined
prioritization methods, the tracing function and the trace array (see 5.3.4) were extended by
four further variants.

Variant 1 - “Traversal”: The same variant as used for coverage assessment. This tracing
function will solely mark entries in the trace array as “true”, hence only recording information,
whether a part of the code was executed or not.

Variant 2 - “Intensity”: The tracing function will increment the corresponding trace array
entry, thus recording information about how often a part of the code was executed by the cur-
rently active test case. In contrast to variant 1, an array of integer values instead of Booleans is
required for recording.

Variant 3 - “Quickness”: The tracing function will record the time since starting the test
case if traversed for the first time. With this method, the first time of traversal for each point of
the code is recorded. Similarly to variant 2, a trace array of integer values is required.

Variant 4 - “All”: This tracing function combines variant 2 and 3 to allow for recording of
both information and choose the preferred type of prioritization after the test execution was
performed. This variant requires two trace arrays.

5 A Concept for Efficient System Testing of Automated Production Systems 69

These variants were created for comparison reasons regarding the required overhead (see
Chapter 7.2.4). In addition to the variants of the tracing function tpr(int i), the Visit-object
(see Figure 26) was extended by the attributes visitCount and firstVisitMS, to enable the import
and analysis of the recorded data.

5.4.2 Change Identification

Direct changes in the software can be identified by comparing a previous (unchanged) and
a current (changed) software revision. Current Integrated Development Environments (IDEs)
often already offer syntactic change analysis of control software, but lack identification of
changes of the control and data flow. As the presented regression test prioritization is based on
the relation between test cases and the program control flow, the comparison is directly per-
formed with the revisions of the system’s dependency model. Changes are identified in a top-
down manner: coarse-grained changes are identified by comparing the items of the dependency
model, subsequently, fine-grained changes are identified by comparing modified items in more
detail.

Coarse-grained changes (software project level): Through comparison of the set of nodes
and edges on the project level (POUs and calls), added, removed and modified nodes and edges
can be identified. The relation between the items in the sets of old and new are generated by the
items’ qualified name (unique name based on their parent objects’ names and own name). If a
node or edge cannot be found in the old revision but the new, it is marked as “added”. Con-
versely, items present in the old set but not the new have been removed. Items of the same name
that have a changed checksum of their content are marked as “modified” (fine-grained changes)
and are subsequently analyzed in more detail by regarding their sub-items. In addition, modifi-
cations on globally specified variables are analyzed in a similar way.

Fine-grained changes (source code level): Modified POUs are analyzed for their internal
changes by comparing their control flow with the unchanged revision. Depending on the im-
plementation of the POU, this is directly performed on the basic blocks and decisions stemming
from an ST implementation or the SFC steps and transitions of an SFC implementation.
Changes to SFC elements are identified similarly to coarse-grained changes: the set of SFC
transition is compared by source and target node names as well as the contained conditions.
This is followed by a comparison of all SFC steps using the steps’ names. Actions related to
the SFC steps are then compared, similarly to ST implementations. In contrast to the coarse-
grained changes and the comparison of SFC implementations, the nodes of the ST control flow
(basic blocks) cannot be easily identified by name as they are consecutively numbered during
creation. Small changes in the control flow, i.e. changes that only modify basic blocks or tran-
sition conditions, are identified by comparing the control flow graphs (basic blocks and transi-
tions) of the implementations using the consecutive numbering. All modified basic blocks are
flagged accordingly. In case transitions were modified, the basic block following the source

70 5 A Concept for Efficient System Testing of Automated Production Systems

basic block of the edge are marked as modified, as the tracing algorithm focuses on the traversal
of basic blocks.

Figure 30: Process of the fine-grained change identification resulting in a set of changed basic blocks

(white: SFC, gray: ST)

Larger changes to the control flow, i.e. changes that add and remove basic blocks or transi-
tions, cannot be safely identified by the comparison algorithm. This could be the focus of future
work. In case the comparison algorithm fails to identify small changes, the first basic blocks is
marked as changed, which leads to all test cases relating to this POU or SFC step to be priori-
tized. This fine-grained change identification process is depicted in detail in Figure 30.

ChangeIdentificationact

Find changed BasicBlocks

Add first basic block to
"changed BasicBlocks"

Find changed JumpsToEdges

Find changed SFCSteps

Find changed
SFCTransitionEdges

[IsSFC]

Find changed Actions (ST)

[No more
changed
SFCTransition
Edges]

Get source SFCStep

Add all successors to
source SFCStep to
"changed SFCSteps"

[Changed
SFCTransition
Edges > 0]

[More changed
SFCTransition
Edges]

Check if corelation between
old and new CFG is feasible

Get source BasicBlock

Add all successors to source
BasicBlock to "changed BasicBlocks"

Add to "changed BasicBlocks"

[IsST]

[No]
[Yes]

[IsST or (IsSFC and
no more changed
SFCSteps available)]

Goto next changed
SFCTransitionEdge

Goto next changed SFCStep

Goto next changed Action

[No changed
SFCTransition
Edges]

[IsSFC and more changed Actions available]

[IsSFC and more changed SFCSteps available]

Goto next changed JumpsToEdge

[No more changed BasicBlocks
from JumpsToEdges]

5 A Concept for Efficient System Testing of Automated Production Systems 71

5.4.3 Change Impact Analysis

A change to the control software can not only have a direct influence on the software’s
output signals and their timing but also on other elements in the code. If for example, a local
variable is assigned a different value in a modified basic block, this can have an influence on
the program’s progression through the control flow. Regarding this indirect influence on the
control software’s behavior, a change impact analysis algorithm was developed to analyze the
cross connections within the program based on the previously identified changes. For this, mod-
ified basic blocks, transitions between basic blocks and SFC steps and global variable assign-
ment are analyzed in detail for three different types of possible influences: influence by changed
assignments, calls or decisions (see Figure 31). For this, basic blocks are subdivided further
into statements, for a differentiated analysis. Directly changed or indirectly changed items will
be both called “modified” from this point for better readability.

Figure 31: Change impact due to 1. modified assignments, 2. modified calls and 3. modified decisions;

influenced basic blocks are light gray

a := b; //b influences a

Influence by modified assignments: A change of an assignment of a variable (write access)
that is used in a different part of the code (read access) can have an influence on the progression
through the code (control flow) or the output behavior of the control program. Thus, the newly
assigned variable is marked as modified.

a(input:=b); //b influences a

Influence by modified calls: A change in passed values in a POU call will likely have an
influence on its behavior. Therefore, the called POU is marked as modified in case of modified
passed values in one or more arguments.

IF b THEN //b influences control flow

Influence on the control flow by modified decisions (edges between basic blocks): If a con-
dition of a decision was modified by another change (see previous change types), the progres-
sion of the program through the code (control flow) is likely to exhibit differing behavior. As

ton(IN:=TRUE, PT:=t);

t := T#500ms;

POU Control Flow

ton.Q
Start/End
Decision
Basic Block
Influence

modified
assignment

modified call

modified
decision

72 5 A Concept for Efficient System Testing of Automated Production Systems

decisions are not instrumented directly, the previous and subsequent basic block of the decision
are marked as modified.

Figure 32: Process of the Change Impact Analysis: BasicBlocks are analyzed for changed statements

for whose impact on other statements and thus BasicBlocks is analyzed

Using this change impact algorithm (see Figure 32), the influence of a change can be ana-
lyzed and is stored in the dependency model: basic blocks are marked as modified, which is
treated equivalently to a direct change of a basic block. The change can affect the control flow
within a POU, but can also reach code outside of the initially investigated POU. While the
influence could technically span throughout the whole program quickly, this problem was not
encountered in any of the conducted preliminary and evaluation experiments. Still, optimiza-
tions of this algorithm can be the focus of future research.

5.4.4 Basic Prioritization

The goal of a prioritization is to quickly unveil regressions in the system. As test cases that
only traverse code that has not possibly been influenced by modifications is more likely to yield

StaticForwardSliceact

Find modified BasicBlocks

Find changed statements

Goto next modified BasicBlock

Goto next modified statement

Find usage of
assigned
variable

Find usage
of called
POU

Add statement to modified statements

Mark BasicBlock
as "modified"

[Containing BasicBlock
not marked as "modified"]

[Statement is assignment]

[Statement is call]

Find succeeding
BasicBlocks of decision
and mark as "modified"

[No more modified statements
or BasicBlocks]

[More modified
statements]

[More modified
BasicBlocks]

[Statement is decision]

[no more modified
BasicBlocks]

[More modified
BasicBlocks]

5 A Concept for Efficient System Testing of Automated Production Systems 73

the same result as the previously successful test execution, these test cases are given a lower
priority. Conversely, test cases that traverse modifications might fail, unveiling a regression in
the system. For this reason, the set of system tests is grouped in test cases that are modification
traversing (high priority test cases) and those that are not (low priority test cases). The grouping
is performed in four steps: 1) all possibly influenced basic blocks are identified in the depend-
ency model, which stores information about changes and possible influence (modifications)
after the change identification and change impact analysis. 2) An iteration through each execu-
tion trace is performed and “visited” (traversed) basic blocks that were possibly influenced are
identified. 3) If an execution trace shows that a test case has visited a modified basic block, it
is added to the group of high priority test cases. 4) After iteration through all execution traces,
all test cases that have not been added to the group of high priority test cases are added to the
group of low priority test cases.

A generic example for this prioritization is given in Figure 33: Given five test cases (a to
e), each test case is investigated for its relation to changes. If a test case relates to a change, it
is give a higher priority.

Figure 33: Basic prioritization: Test case a, b, and c are prioritized higher as they traversed the parts

of the code that have now been changed (change 1 and 2).

5.4.5 Refined Prioritization

In practice, systems are tested with a set of many test cases. Thus, many test cases might be
identified as high priority test cases. For a more efficient prioritization, a refined prioritization
was developed. The refined prioritization aims at two types of changes: changes that cause
sporadic problems and changes that have a wide influence on the system. A prioritization strat-
egy aiming at intensely testing modifications for the former and another aiming at testing all
modifications as quickly as possible for the latter. Through these refined prioritization tech-
niques, the advantage of prioritizing test cases through the quicker unveiling of changes was
expected to improve. The extension of used data for prioritization is shown in Figure 34: In
contrast to the basic prioritization, not only the connection of test cases to changes, but also
their intensity of traversal, as well as the total runtime and the first traversal of each change is
regarded.

a b c

Modification 1 Modification 2

d e
higher
priority

lower
priority

74 5 A Concept for Efficient System Testing of Automated Production Systems

Figure 34: Refined prioritization: For a more detailed prioritization, the intensity of traversal and

first traversal of each change by each test case is regarded in addition to the total runtime of the tests.

5.4.5.1 Prioritizing Test Cases That Intensely Traverse Modifications

Some changes of the system cause regressions that might not become apparent in the first
traversal of modified code. This more detailed prioritization, therefore, gives test cases a higher
priority that traverse modifications as much as possible in the least amount of time. It is aimed
at finding sporadic faults caused by regressions of the system.

The information that is gathered for this prioritization is the number of traversals of possibly
influenced parts of the code and the total execution time previously required by the test case.
For each test case, a prioritization number pit is calculated. This number represents the times
per second the test case previously traversed now modified basic blocks. In the following, the
number is calculated for a test case that visited modified basic blocks 0 to n and within a total
runtime of t:

𝑝𝑖𝑡 =
∑ 𝑣𝑖𝑠𝑖𝑡𝑠𝑛

𝑖=0

𝑡

Thus, pit is the sum of all visits of all modified basic blocks divided by the seconds previ-
ously needed to execute the test case.

After calculation of the prioritization number pit, a refined prioritization of all test cases can
be performed. So far, the algorithm does not differentiate between different modifications.
Thus, if a change has an impact on many parts of the code, this prioritization algorithm might
not check the desired part of the functionality. This prioritization method is therefore aimed at
changes that have little influence on the control code, but might fail due to sporadic faults, in
particular in connection with the controlled hardware.

5.4.5.2 Prioritizing Test Cases That Traverse as Many Modifications as
Fast as Possible

Some changes influence many different parts of the code that might all be related to regres-
sions of the system. For this reason, this refined prioritization method tries to prioritize a set of
test cases that executes all or as many modifications of the code as fast as possible. It is aimed
at quickly finding faults that become apparent in the first traversal of the modified part of the
system.

a
b

c

Modification 1 Modification 2

1 2

1

2

Intensity of traversal (thickness)

↕ Runtime of test case (length)
► First traversal of change

5 A Concept for Efficient System Testing of Automated Production Systems 75

If a revision of the control software includes many modifications (changes to the control
software and resulting possibly influenced parts of the code), there might not be a single test
case traversing all of these modifications. Depending on the quality of the test set, all modifi-
cations might not even be traversed when executing all test cases. Thus, instead of prioritizing
single test cases, modification traversing test combinations (MTTC) are arranged. These com-
binations are sequences of test cases to be executed to cover all or as many modifications as
possible. For this, different MTTCs are arranged and rated for their total time until all modifi-
cations are traversed. The MTTCs are inferred using the following process:

1. For each modification traversing test case, a new MTTC is instantiated. If all modifica-
tions are traversed, the MTTC is completed and the process is repeated for the next test case.

2. If the MTTC does not cover all modifications yet, the set of remaining untraversed mod-
ifications and related test cases are collected. For each item of this new set of test cases, a new
MTTC is instantiated and filled with the test cases that were chosen so far.

3. Step 2 is repeated until all modifications are covered or no test cases are left that cover
remaining modifications.

4. For each MTTC, the total time needed to traverse all modifications is calculated, which
is done by adding up all total execution times of the individual test cases, except for the last test
case for which only the first traversal for the remaining untraversed modification is added.

5. Each MTTC instance is then rated by the needed total time to traverse all modifications.
The MTTCs are prioritized in an order in which the fastest MTTCs is prioritized the highest.
As test cases might be part of multiple MTTCs, only the test cases included in the shortest
MTTC are prioritized the highest and in the respective order.

6. The process is repeated for the remaining modification traversing test cases.

A simple example for this prioritization is given in Figure 35: Given three test cases a, b,
and c, and two modifications 1 and 2, different MTTCs are combined. In this example, MTTC3
will be the combination of test cases to traverse both changes the quickest.

76 5 A Concept for Efficient System Testing of Automated Production Systems

Figure 35: Comparing modification traversing test combinations (MTTC): MTTC1 will traverse both

changes earlier (after t1) than MTTC2 (after t2), yet MTTC3 is the quickest (t3)

Through this prioritization, a combination of test cases that previously traversed all possibly
influenced parts of the control software is executed first, followed by further combinations that
try covering as many modifications as possible using the remaining modification traversing test
cases. Non-modification traversing test cases follow as low priority test cases with no particular
order. Using this method, a quick test of all possibly influenced parts of the code is achieved,
enabling to unveil possibly introduced unwanted behavior in different functions of the code.

a

1

c

2

b

1

2

2.

MTTC1 MTTC2

3.

t1 t2 t3

↕ Runtime of test case (length)
► First traversal of change

c

2

a

1

MTTC3

Prioritization: 1.

6 Implementation of the Approach for Efficient System Testing in Production

Automation
77

6 Implementation of the Approach for Efficient
System Testing in Production Automation

In order to be able to prove the applicability of the presented concept within the production
automation domain, a prototypical tool for defining and executing tests, measuring and as-
sessing test coverage and regression test prioritization was implemented. The tool was imple-
mented as a plug-in for the widely used CODESYS V3.5 Integrated Development Environment
(IDE) for aPS programmed in the IEC 61131-3 standard (3S - Smart Software Solutions GmbH,
2016a). Through the close integration with the IDE, information about the source code, its in-
strumentation and the automation of the test execution and coverage measurement was
achieved. Using the capabilities of the IDE, dependencies and the abstract syntax tree could be
easily extracted from the compile context, i.e. the object model used as an input for the compiler.
The tracepoint database generated during instrumentation is saved as an XML-file for later use
during coverage assessment and test prioritization.

The test definition and test project generation was developed as an extension of the
CODESYS Test Manager (3S - Smart Software Solutions GmbH, 2016c). Test cases can be
directly added into the object tree, as shown in Figure 36. Historically, the object was designed
as a unit test, being added as a child to a POU, i.e. testing this POU. When added to the entry
point of the program, e.g. POU “PLC_PRG”, the unit test becomes a system test.

Figure 36: Test cases can be directly added to the object tree of the PLC software project (still called

UnitTest for historic reasons; screenshot translated, as prototype is in German).

As shown in Figure 37, the definition of test cases was implemented using the comma-
separated-value (CSV) format and a table calculation tool. This prototypical implementation
allowed for the specification of test cases without a specialized editor or knowledge about XML
(exchange format defined in cooperation with project partners).

78 6 Implementation of the Approach for Efficient System Testing in Production

Automation

Figure 37: Prototypical implementation of the test case definition using table calculation tools: the left

rows define the interfacing variables (top: inputs to set, bottom: outputs to check). The test case is
progressing from left to right.

As shown in Figure 38 test suites can be defined using available test cases by selecting
(column “Selection”) and manually prioritizing (using drag-and-drop) the items. In case tests
have been executed before, information about result and runtime (column “Result”), as well as
a recommendation whether to re-execute are given (column “Recommendation”).

Figure 38: Implementation of the test suite editor (screenshot translated, as prototype is in German)

6 Implementation of the Approach for Efficient System Testing in Production

Automation
79

Subsequent to defining the test suite, the testing process can be initiated (see Figure 39).
The prototypical plug-in will instrument the code for tracing, create test tables (test objects
compatible with the CODESYS TEST MANAGER) and a test script, which includes all instruc-
tions for the CODESYS TEST MANAGER. Subsequently, the test script is executed, invoking the
test block creation (IECUnitTest-action in the CODESYS TEST MANAGER) and an upload and
starting of the project on the PLC. After the semi-automatic system test is finished, execution
traces, saved as text files on the PLC, will be automatically transferred to the development
system. The traces and a test report from the CODESYS TEST MANAGER is imported (see 5.3.4)
and a coverage calculation is performed. Apart from the test case definition, selection and the
test execution itself, all processes are fully automatic.

Figure 39: The implementation of the automated generation of the test project and retrieval of test

data after testing

After test execution and download of execution traces, the developed plug-in automatically
loads and analyzes the execution trace files coverage information and displays and browses this

TestingProcessImplementationsd

PLCCODESYS Test ManagerPrototypical Plug-In

1: InstrumentCode()

2: CreateTestTables()

3: CreateTestScript()

4: ExecuteTestScript()
4.1: GenerateIECUnitTestBlocks()

4.2: UploadProjectToPLC()

4.3: StartTestingProcess()

Done

4.4: DownloadTraces()

5: ImportTestReportAndTraces()

6: CalculateCoverage()

80 6 Implementation of the Approach for Efficient System Testing in Production

Automation

information visually (see Figure 40). For this, two views were implemented: a call tree view
(Figure 40, left) and a tree list view (Figure 40, right, including block coverage values for dis-
cussion purposes). Both views allow for an exploration of covered, partially covered and un-
covered code entities. For example, the tree view is controllable by clicking on POUs, which
will display all contained objects, e.g. the ST-CFG (basic blocks and decisions) including their
coverage. Similarly, the tree list view will allow unfolding individual components to gain a
more detailed understanding about the coverage of the code and possibly critical uncovered
code elements.

Figure 40: Prototypical coverage browser

7 Qualitative Evaluation of the Approach 81

7 Qualitative Evaluation of the Approach
In order to investigate the accordance of the developed approach to the initially specified

requirements, an evaluation was performed using an industrial case study (see Chapter 7.1). For
this, several experiments were designed in order to acquire meaningful data to support the no-
tion that the approach did indeed fulfill the requirements (see Chapter 1). For some experiments,
an experienced industrial expert supported the design of realistic test plans and change scenar-
ios. The experiments were performed by the author, during which different measurements, e.g.
regarding the runtime overhead, were performed. The measurements and findings were pro-
cessed and used in an expert evaluation (see Chapter 7.3). In this expert evaluation, the findings
were presented and discussed with a group of six experienced experts from an internationally
successful company in the field of aPS engineering. In addition, a questionnaire was filled out
by all experts. The results of this workshop discussion and the questionnaire are then discussed
in relation to the initially imposed requirements (see Chapter 1).

The case study, the representative group of participants and the measured data were inten-
tionally chosen as proposed by (Runeson et al., 2012) to allow for an evaluation of the initial
requirements.

7.1 Description of the Case Study

The system used for experimentation had been part of a real industrial factory automation
system for depalletizing trays and passing the individual items on to the next station (see Figure
41). Trays with parts are fed into the machine using conveyor belts. A lift system is used for
locking the tray in position for picking, and subsequent transport to a conveyor system trans-
porting the empty tray out of the system. A 3-axis pick and place unit (PPU) is used to pick up
individual pieces off the locked tray and place them into the next machine, representing the
next process step (this process step was not regarded in this work). A schematic view of the
machine is depicted in Figure 42.

For interaction with the hardware (including 3 drives), 69 input variables and 26 output
variables are available (mostly Booleans). The control program was written by the company
(not by any of the participants) and contained 119 program organization units adding up to
about 15500 lines of code. The program includes two tasks, one for the control code, running
at a fixed PLC scan cycle time of 10ms, and one task for updating the visualization, running at
100ms. The used programming languages were IEC 61131-3 Structured Text (ST) and Sequen-
tial Function Chart (SFC). Thus, the size and complexity of the program represent a realistic
application example. The program was initially written in the integrated development environ-
ment CODESYS V2 and ported to CODESYS V3.5 for this evaluation as the plug-in was de-
veloped for the newer version.

82 7 Qualitative Evaluation of the Approach

Figure 41: The aPS used in the case study including electric cabinets and embedded PC depalletizes

trays filled with needles (bottom left)

The system’s control hardware is a BOSCH REXROTH INDRACONTROL VPP 21 embedded PC
with a PENTIUM III 701MHz processor and 504MB of RAM. The embedded PC runs a
CODESYS CONTROL RTE V3.5.5.20 real-time capable runtime. An Ethernet connection was
used to connect the embedded PC to a development PC running the plug-in and uploading the
test project to the embedded PC for real-time capable execution.

The development system used for generating the instrumented code, the test project and the
coverage assessment was a consumer laptop with an INTEL® CORE™ I7 5600U CPU at 2.6GHz,
8GB RAM and running Microsoft Windows 10 64-bit. CODESYS V3.5 SP8 Patch 1 and
CODESYS TEST MANAGER Version 4.0.1.0. were used, including the developed plug-in.

Figure 42: Schematic view of the system under test (SUT)

As described above, the hardware and technical process in the system is controlled by an
embedded PC. This PC integrates an HMI, which is shown in Figure 43, and consists of a

Tray

Linear drive

Rotary drive

3-axis
PPU

Conveyor (Inlet)
Linear
drive
(Lift)Conveyor (Outlet)

Binary
vertical
movement

7 Qualitative Evaluation of the Approach 83

touchscreen display and several buttons. In regular operation, the HMI shows information about
the machine and permits changing the operating mode (top right) between manual mode, special
functions for calibration and automatic operation. In the manual operating mode, the display is
used to choose appropriate manual functions, such as a function for opening and closing the
gripper or turning on the inlet conveyor. After selecting a manual function, the buttons on the
side can be used to perform the manual function. The HMI was ported from the originally used
program (CODESYS V2) and extended by test visualization on the bottom right for the semi-
automatic system testing approach.

Figure 43: Description of the HMI used in the case study

84 7 Qualitative Evaluation of the Approach

7.2 Experiments

All experiments were designed to acquire insights about the fulfillment of one or more re-
quirements. Both requirements and experiments focus on the technical side of the approach,
excluding an investigation of the usability of the utilized prototypical software tool. An over-
view over the connection of requirements and performed experiments is shown in Table 9.

Table 9: Evaluation of requirements: An overview over the connection of requirements and performed
experiments

 Requirement How fulfillment of the requirement was eval-
uated

A
pp

lic
ab

ili
ty

RIEC – Support of IEC 61131-3 All experiments: Application of approach on in-
dustrial aPS program

RSW – Support of industrial code complex-
ity

All experiments: Application of approach on in-
dustrial aPS program

RInt – Support of interaction with the inte-
grated system

Experiment I: Application of approach using in-
dustrial test plan and industrial case study

RHWB – Inclusion of valid hardware behav-
ior

Experiment I: Application of approach using in-
dustrial test plan and industrial case study

RSim – Independence from behavior simula-
tions

All experiments: Application of approach on in-
dustrial case study without additional models

RRT – Insignificant influence on real-time
properties

Experiment IV: Measurements regarding over-
head and discussion with experts

RMem – Insignificant influence on memory
size

Experiment IV: Measurements regarding over-
head and discussion with experts

Im
pr

ov
em

en
ts

RRep – Improved Repeatability Experiment I: Repetition and comparison of
several test runs

RDoc – Improved Documentation Experiment I: Application of approach on in-
dustrial case study and demonstration of docu-
mentation

RTA – Support for Test Adequacy Assess-
ment

Experiment II: Application of approach on in-
dustrial case study and discussion of results
with experts

RReg – Support for Regression Testing Experiment III: Application of approach on in-
dustrial case study and discussion of results
with experts

All experiments and measurements were performed by the author and will be described in
more detail in the following sections.

7.2.1 Experiment I: Guided System Testing

A test suite was created for the system presented in the previous section based on a test plan
provided by one of the industry partners. The test suite consists of 15 system test cases with a
total runtime of about 25 minutes, directly testing the machine (RHWB) in different operating
modes (manual and automatic) and in the case of an operating mode switch during automatic
operation. All test cases include manual operations by the operator (RInt), such as putting a filled
tray into the machine or acknowledging that the gripper is indeed closed. The test suite was

7 Qualitative Evaluation of the Approach 85

created with the notion that most important functions in the machine were tested. The set of test
cases was approved by an industrial expert from the company. It was reused for the other ex-
periments.

Table 10: List of test cases as compiled for the test suite used in the case study

TC-Name Approx.
runtime
[m:ss]

Description of performed actions

1 MfGreifer 0:38 Manual function (Mf): Open and close the gripper
2 MfGreiferSonderposi-

tionen
1:19 Mf: Move gripper to special positions

3 MfEinlaufBand 1:31 Mf: Switch inlet conveyor on and off
4 MfEinlaufbandStopper 0:33 Mf.: Switch stopper at inlet to stop and back
5 MfAuslaufband 1:17 Mf: Switch outlet conveyor on and off
6 MfLin0Ref 0:29 Mf: Perform reference function with linear gripper

drive
7 MfLin1Abs 0:29 Mf: Perform absolute movements with linear gripper

drive
8 MfLin2Rel 0:52 Mf: Perform relative movements with linear gripper

drive
9 MfLiftRef 0:14 Mf: Perform reference function with lift drive
10 MfLiftXAbs 0:30 Mf: Perform absolute movements with lift drive
11 MfLiftYRel 2:27 Mf: Perform relative movements with lift drive
12 AutoLeerePalette 0:42 Perform automatic operation with empty tray
13 AutoHalbvollePalette 1:33 Perform automatic operation with partially filled tray
14 AutoEinePalette 9:47 Perform automatic operation with full tray
15 StresstestOpMode 4:10 Change operating mode during automatic operation

Repeatability (RRep) was improved by the detailed definition of individual test steps. Fur-
thermore, during the repetition of test cases (experiment IV), all tests all had the same result.
Documentation of the test cases (RDoc) is improved by recording detailed value sequences dur-
ing test execution and the possibility to document coverage or additional variable values of
choice. The recorded values are stored as CSV-Files and can easily be reused for documentation
purposes.

7.2.2 Experiment II: Coverage Investigation

The feasibility of the coverage assessment approach was investigated by tracing and visu-
alizing the coverage of the test suite from experiment I (see Table 10). As coverage was never
previously calculated or displayed, this was an interesting property of the experiment. As ex-
pected, the test suite did cover most of the code but did not cover every detail although the test
suite was designed according to the notion that most important behavior in the machine was
included. Many manual functions were not covered, as no test was designed to specifically
allow this, which was decided due to the similarity to the other test cases for manual functions.

86 7 Qualitative Evaluation of the Approach

In real situations, these tests would have to have been specified. Some function blocks repre-
senting initialization functions were not covered as these were executed only once at program
startup and thus not recorded during the actual test case execution. Some step chains were not
covered as these represent behavior in case of an emergency shut down. Most POUs regarding
the behavior of the machine that were addressed by test cases were partially covered. In all
cases, specific behavior of the system was not included in the test case, mostly functionality
related to fault detection. As an example, the behavior of the system in case of cycle time over-
run was not investigated as no such situation occurred during test execution (see Figure 44).
Another interesting finding was that unneeded code was detected: Due to time restrictions, sev-
eral step chains were copied and modified resulting in complete branches of legacy SFC chains
not being executed (see Figure 45).

Figure 44: Coverage assessment unveils un-

tested fault handling routine: The code branch
for documenting faulty cycle timing was never

executed during the tests

Figure 45: Coverage assessment uncovers un-
needed legacy code: A complete branch of the
SFC code was never used and turned out to be

obsolete upon closer inspection

7.2.3 Experiment III: Regression Testing

In the third experiment, a change scenario on a previously tested system was conducted to
gain knowledge about the properties of the approach regarding prioritization. In this scenario,
the timing of the gripper of the pick and place unit was adjusted to allow more consistent results
regarding the identification of picked up workpieces (needles). In sporadic cases, the gripper
would not recognize a gripped needle even though it was holding on to one. The identification

0
(*Call timer*)

CycleTimer(PT:=T#6000m);

1
Ret := CalcCycleTime(ID:=0);

3

2
Ret := FaultEntry(Ret, 0);

4

5

6

Ret < 0 Ret >= 0

Mode = Auto Mode <> Auto

true

true

true

true

Fully covered

Not covered

Coverage:
Not traced

Seq_26_Supply.N000

Seq_26_Supply.N010

Seq_26_Supply.N310

Seq_26_Supply.N020

Seq_26_Supply.N100

Seq_26_Supply.N110

Seq_26_Supply.N115

Seq_26_Supply.N120

Seq_26_Supply.N300

Seq_26_Supply.N320

Seq_26_Supply.N330

Seq_26_Supply.N335 Seq_26_Supply.N130

Seq_26_Supply.N140

Ret = OK

Ret = OK

Ret = OK

Ret = OK

Ret = OK

Ret = OK

Ret = OK

Ret = OK

R
et

 =
 O

K

Ret = JP

Ret = OK

Ret = OK

Ret = OK

Ret = OK

Ret = OK

R
et

 =
 J

P

Fully covered

Partially covered

Not covered
Coverage:

7 Qualitative Evaluation of the Approach 87

of gripped workpieces is achieved by gripping, waiting and then checking a vacuum sensor
(Figure 46, “_SnsNdl”) that yields a different result in case a workpiece is present. The change
relates to the waiting time, which was prolonged to allow for a more consistent buildup of
vacuum and thus a more consistent identification of gripped needles. For this, the assignment
of a global variable “DelayNeedle” is adjusted which is referring to the waiting time before
checking the vacuum sensor. The modification is regarding a part of the code that is not directly
executed by test cases (the test cases do not run through the global variable assignments). Yet,
this modified variable value is used in parts of the code, which are executed by test cases. Thus,
a possible influence of the assignment on different parts of the code exists.

A schematic view of the change scenario is depicted in Figure 46. By changing the assign-
ment of the global variable “DelayNeedle”, several influenced parts of the program can be
identified. The changed assignment renders the variable “DelayNeedle” modified. As it is used
as an input for a call of the timer-POU “SqTimer”, the called POU is also possibly affected by
the change. Thus, the basic block (Figure 46, “BB1”) containing the timer is added to the set of
modified basic blocks. The timer is used in two decisions (needle detected or not), possibly
changing the progression of the program through the code. As decisions are not directly instru-
mented, the previous and subsequent basic blocks are added to the modified basic blocks. In
this case, the previous basic block has already been added to this set (Figure 46, “BB1”),
whereas the subsequent basic blocks (Figure 46, “BB2” and “BB3”) are newly added.

Figure 46: Experiment III: Influence of a software change regarding a global variable assignment,

possibly influencing the control flow through several Basic Blocks (BB).

This information is used to relate the modified parts of the code to the timing information
acquired during the previous execution of the test cases, which is depicted in Table 11. It be-
comes apparent that not all test cases traverse all modifications: the manual function tests (1–
11), as well as the test relating to the change in the operating mode (15), did previously not
traverse the now modified parts of the code. In contrast to this, the three test cases “12. Empty
tray”, “13. Partially filled tray” and “14. Full tray” all traverse some or all of the modifications.
For each test case and each modification, additional data about the number of traversals and the
timing information about the first traversal are retrieved. Furthermore, the total execution time
of each test trace is retrieved.

BB1

BB2

BB3

POU Sqeuence
(SFC) Step 141

Step 210

Step 145

Step 160

Step 161

Step 200

Ret = OK

Ret = OK

Ret = OK

Ret = JP

Ret = OK

DelayNeedle :TIME := T#1S;

Ret := Busy;
SqTimer(IN:=TRUE, PT:=DelayNeedle);

IF SqTimer.Q AND _SnsNdl THEN
Ret := OK;

ELSIF SqTimer.Q AND NOT _SnsNdl THEN
Ret := JP;

END_IF

88 7 Qualitative Evaluation of the Approach

Table 11: Timing information of all system test cases from experiment II regarding the identified
change and change impact

System tests
(Total execution time)

Basic block 1
traversal

Basic block 2
traversal

Basic block 3
traversal

1.-11. Manual functions
(14s-91s)

No traversal No traversal No traversal

12. Empty tray (40s) 5 times, first after 23s No traversal 5 times, first after
23s

13. Partially filled tray
(1m 33s)

13 times, first after 25s 8 times, first after 25s 5 times, first after
52s

14. Full tray (9m 47s) 192 times, first after
24s

192 times, first after
24s

No traversal

15. Op-Mode-Change
(3m 59s)

No traversal No traversal No traversal

Test cases for manual functions (1.-11.) are combined in this table as none of these test cases traverses the
modifications.

Based on this information, the basic prioritization (modification traversing) and the refined

prioritization methods (intense traversal and quick traversal) were performed. The basic prior-
itization adds test cases 12, 13 and 14 to the group of high priority test cases, whereas the rest
of test cases is assigned a low priority. For the refined prioritization, the order of these three
test cases is calculated.

The refined prioritization method regarding intense traversal uses the traversal count of each
test case to calculate the number of times the test case interacts with a changed part of the
control program. In this case, the result would be pit=0.25 (modification traversals per second)
for test case 12 ((5+5) traversals / 40s = 0.25 traversals per second), 0.28 for test case 13 and
0.65 for test case 14. Thus, the test case order would be 14, 13 and 12, followed by the rest of
the test cases in no particular order. In test case 14, a full tray is depalletized, picking off 192
needles. Thus, the new timing is tested the most by this test case, but not in all situations: there
never is an empty spot on the tray, not testing whether an empty gripper is correctly recognized
by the control program.

The calculation of the prioritization for quick modification traversal returns several
modification-traversing test combinations (MTTC):

MTTC 1: Test cases 12 + 13, resulting in a total time to traverse all modifications of 1m 5s
(40s + 25s)

MTTC 2: Test cases 12 + 14, resulting in a total time to traverse all modifications of 1m 4s
(40s + 24s)

MTTC 3: Test case 13, resulting in a total time to traverse all modifications of 52s

MTTC 4: Test cases 14 + 12, resulting in a total time to traverse all modifications of 10m
10s (9m 47s + 23s)

7 Qualitative Evaluation of the Approach 89

MTTC 5: Test cases 14 + 13, resulting in a total time to traverse all modifications of 10m
39s (9m 47s + 52s)

Prioritizing the quickest combination, MTTC 3 is chosen, containing only a single test case
(13). This test case uses a partially filled pallet, thus including two scenarios for the gripper:
occupied and empty spaces on the tray. Therefore, this test case would test all modifications the
quickest. Another close competitor would have been the combinations of an empty tray fol-
lowed by a partially filled (MTTC 1) or full tray (MTTC 2).

7.2.4 Experiment IV: Runtime and Memory Overhead

To acquire information about the runtime properties of the approach (RRT), two test cases
were each executed five times for six different configurations of the control software. The six
configurations represent different levels of the implementation of the approach (see Table 12).
They were chosen to acquire a deeper understanding of the runtime properties of the individual
extensions of the approach.

Table 12: Configurations of the control program for experiment IV

Configuration Description
1: “Original” Uninstrumented, original control program
2: “Test only” Instrumented program, implementing only the semi-automatic testing ap-

proach without any runtime information acquisition
3: “Traversal” Instrumented program, implementing tracing that only allows for the unre-

fined prioritization of modification traversing test cases
4: “Intensity” Instrumented program, implementing the refined prioritization using intense

traversal
5: “Quickness” Instrumented program, implementing the refined prioritization using quick tra-

versal of all modifications
6: “All” Instrumented program, allowing all prioritization methods

The two test cases chosen for the acquisition of runtime information were a test of a manual
operation (Table 10, test case #1) and one for automatic operation (Table 10, test case #13), as
these are the most different regarding the involved code. During execution of the test cases, the
average and maximum execution time of the PLC scan cycle, including reading sensor and
writing actuator values was measured using the task monitor of the IDE. From all measurements
acquired during the execution of both test cases and all their repetitions, the average and maxi-
mum value were calculated. In addition, the required time to generate the dependency model
and the required memory of the compiled program for each configuration was recorded.

The instrumentation of the project required less than one second, generating the dependency
model and inserting 2261 trace function calls into the code. Each system test was executed
completely without breaking real-time restrictions (10ms for the logic task), while all execution
traces being written into the memory of the embedded execution hardware. The transfer from

90 7 Qualitative Evaluation of the Approach

the memory to the hard drive of the embedded execution hardware was performed asynchro-
nously after each test completion to avoid influence on real-time properties during test execu-
tion and did not exceed 10 PLC scan cycles during which the program was still executed but in
an idle state.

The required execution time for each of the configurations for the given application example
(see Chapter 7.1) is shown in Figure 47. Compared to the original control program, the average
scan cycle time increases by 47% when using the guided testing approach alone (Figure 47,
“Test only”) and another 10%-14%, when recording execution data for the different prioritiza-
tion algorithms (Figure 47, “Traversal” – “All”). While the average increase is quite significant,
this increase has no direct influence on real-time requirements. For this, the maximum required
execution time is relevant, which also increases, but to a smaller extent. The greatest increase
is once again when implementing the guided testing approach (10%) and another 6%-21%,
depending on the type of tracing that is performed for acquiring data for the different prioriti-
zation algorithms. Especially the quickest modification traversal prioritization (Figure 47,
“Quickness”) accounts for a moderate total increase of about 19% compared to the original
program. This is most likely due to the slightly more complex tracing function. With the given
maximum scan cycle time of 10ms for this case study, all approaches are well within the bounds
of real-time requirements, none exceeding 5ms. Therefore, all prioritization methods would be
applicable to the given example (Chapter 7.1).

Figure 47: Comparison of the needed maximum and average PLC scan cycle time for the different pri-

oritization approaches

Regarding required memory (RMem) on the execution hardware (see Figure 48), the addi-
tionally needed space is only increasing moderately with about 22% for each of the prioritiza-
tion methods. Yet, the increase in needed global data increases significantly, resulting in an
overall increase of about 148% for each of the prioritization methods. The increase is mostly
due to the prototypical implementation of the guided system testing approach, accounting for
the biggest increase. While a significant increase in required memory was found, the overall
required memory is still low with less than 5MB.

+10% +6,1% +2,2% +9,2% +2,6%

+47% +10% +0% +4% +4%

0
1
2
3
4
5

Original Test only Traversal Intensity Quickness All

PLC task cycle time [ms]

Task max. Task avg.

7 Qualitative Evaluation of the Approach 91

Figure 48: Comparison of the required memory for the different prioritization approaches

7.3 Expert Evaluation

The results of the measurements, as well as the approach itself, were discussed and evalu-
ated in a group of six experts in the field of automated production systems. The group comprised
employees active in the fields of commissioning, technical maintenance, aPS software engi-
neering and group management (technical development) from the company engineering the
machine used in the case study. The measurements in the previous section were presented to
the group and subsequently discussed in terms of the requirements initially imposed on the
approach. In addition, a questionnaire was filled out by each expert to quantify the results. Cer-
tainly, the group size does not allow for a quantitative rating of the approach although qualita-
tive conclusions were rendered a bit more precisely.

The questions posed in the questionnaire allowed for the experts to mark their approval on
a discrete scale from 1 to 7 or a continuous scale from 0 to 100. For processing, each answer
was normalized to a scale from 0% to 100%. Thus, for a scale from 1-7, where 1 is “fully agree”
and 7 is “fully disagree”, 1 evaluates to 100%, 2 evaluates to 83% and so on. All answers from
each participant were then integrated into an average value for each question using the arith-
metic mean. These values are used throughout the text. Thus, if it is stated that a claim acquired
a 60% approval, this could have been caused by three experts each voting 50%, 60%, and 70%
respectively ((0.5 + 0.6 + 0.7)/3).

 The discussions with the experts and the numbers acquired through the questionnaire will
be discussed in the following sections.

7.3.1 Evaluation of the Applicability of the Approach

As the system under test used in the case study was provided by the company as a repre-
sentative example, the applicability of the support of industrial software properties was agreed
upon by the experts. The IEC 61131-3 programming languages used in the case study are the
only programming languages used by this company. The size of the code was also seen as
representative.

+144% +4,0% +0,0% +0,1% +0,1%

+16% +6% +0% +0% +0%

0

2

4

6

Original Test only Traversal Intensity Quickness All

Required memory [MB]

Total Code

92 7 Qualitative Evaluation of the Approach

Requirement RIEC and RSW were fulfilled.

The test cases were based on a test plan provided by the company and developed in coop-
eration with one of their experts, thus representing realistic test cases with realistic manipulation
tasks. Therefore, the requirement for allowing for the manipulation of hardware and process
during test execution was approved.

Requirements RInt and RHWB were fulfilled.

In addition, no simulations were required for test execution and valid hardware behavior
during testing was included.

Requirement RSim was fulfilled.

While the overhead in execution time did not represent a problem in the case study, the
experts agreed that this fact could be problematic for machines with very short scan cycle times,
e.g. highly automated mass production machines. In these cases, scan cycle times are kept as
low as possible to increase production speed. Even slight increases in scan cycle time can result
in noticeable and mostly unacceptable increases in production cycles (time needed for pro-
cessing one product). This is due to SFC steps being executed for at least one scan cycle, with
each increase in scan cycle time adding up for each step used in the production cycle. To quan-
tify the criticism mentioned by the experts in their questionnaire answers, it was estimated that
the presented approach – in its current state (not including the optimizations presented in Chap-
ter 8.1) – could only be applied to about 1/5 – 1/3 of the machines produced by the company
based on the increase in runtime overhead.

Requirement RRT was partially fulfilled.

The overhead regarding memory was not seen as critical at all. Although the percentage
increase seems large, current systems used by the company never came close to running into
problems regarding memory. The experts estimated the approach to be applicable to about 90%
of the machines produced by the company.

Requirement RMem was fulfilled.

7 Qualitative Evaluation of the Approach 93

7.3.2 Improvement of the Current Situation in System Testing

As shown in Figure 49, the potential for improvement of the current situation in system
testing in aPS using the presented approach was agreed upon by the experts.

Figure 49 Approval rating of improvements over current situation as extracted from the questionnaire

In the following sections, additional details about the experts’ opinions and arguments will
be given.

7.3.2.1 Improvement of Repeatability and Transparency of the Testing
Process

The improvement in repeatability was acknowledged by the experts in the questionnaire
(94% agreement) and discussion. Still, it was noted that the resources needed to specify the test
cases might not be reasonable for unique machines; reusing complex sub-modules several times
might help to distribute the initial specification costs between multiple machines. According to
the answers given in the questionnaire, it was estimated that the approach could be applied to
half of the machines produced by this company.

To get a differentiated view on this applicability property, a rating using a flipchart and the
possibility to attach stickers to a two-dimensional rating, relating to different types of machines
was performed. Each participant had three stickers in different colors, representing the applica-
tion of the approach on submodules of aPS (produced many times and not too complex), com-
plex aPS (small lot size) and complex aPS (larger lot size). The results of this process are shown
in Figure 50. As can be seen, the tradeoff between benefit and required resources was seen in
particular for submodules of aPS and complex aPS of larger lot sizes. The initial investment for
complex aPS in small lot sizes was seen as questionable.

0% 20% 40% 60% 80% 100%

System Tests are repeatable

Performed test steps are documented and comprehensible

Behavior of machine is documented and comprehensible

Identification of untested code parts is easily possible

Assessment of what tests need to be repeated after
changes is easily possible

Approval rating of improvements over current situation

currently with approach

94 7 Qualitative Evaluation of the Approach

Figure 50: Qualitative evaluation of benefit vs. cost (efficiency inverted) regarding semi-automatic

system testing (top right is best)

Yet, overall the requirement for improved repeatability was seen as fulfilled.

Requirement RRep was fulfilled.

 Regarding the improvements in documentation, the experts also agreed on the potential
benefit of the approach (see Figure 49, second and third line). The comparison of the current
situation with the approach showed that the experts would expect detailed documentation of
test steps and comprehensible documentation of machine behavior during testing to improve
significantly (~33% agreement currently to ~80% with new approach).

Requirement RDoc was fulfilled.

7.3.2.2 Support the Assessment of Test Adequacy

The experts evaluated the ability to quickly identify untested parts of the code as very ben-
eficial. It had previously not been possible to get an overview of the executed parts of the code
during testing, so test adequacy solely relied on the individual’s estimation. Through easy iden-
tification of untested parts, it is possible to (quickly) assess whether additional tests are needed
and adjust the test suite accordingly. This results in the experts’ opinion that the approach im-
proves the assessment of test adequacy (94% agreement).Yet, it was noted that marking the
code as “tested” could be misinterpreted as “sufficiently tested”.

In comparison to numbers, the visual approach was seen as more applicable. Numbers, such
as “90% coverage” were seen as misleading, as it is unclear if the missing 10% are important
or not. Still, numerical measurements could be interesting for controlling, e.g. as a key perfor-
mance index.

The approach in its current state was seen as applicable to an agreement of 63%. Again, a
flip chart was used to assess the benefit of the approach, yet this time in comparison to its

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

B
en

ef
it

Feasibility

Coverage Assessment Approach

7 Qualitative Evaluation of the Approach 95

feasibility (as technically, no extra cost would be required). As can be seen in Figure 51, the
experts saw benefit in the approach, yet the expectation of feasibility varied. It has to be noted
that due to a misunderstanding, some participants used three stickers, as in the previous exam-
ple, resulting in the high number of measurement points. The previously mentioned qualitative
conclusion is still possible in the author’s opinion.

Figure 51: Qualitative evaluation of benefit vs. feasibility regarding coverage assessment (top right is

best)

To conclude, an improvement by using the approach was agreed upon (94% agreement, see
also Figure 49, fourth line), yet applicability in the current state of the approach was still seen
as questionable (64%). The requirement for an improvement for test adequacy assessment by
identifying untested behavior is seen as fulfilled.

Requirement RTA was fulfilled.

As a further improvement, the experts noted that not all parts of a program are relevant for
tracing. The users should thus be given the possibility to exclude parts of the code from cover-
age assessment.

7.3.2.3 Increase in Efficiency During the Testing Process of Changes to a
Previously Tested Control Software

The requirement regarding the increase in efficiency during the testing process of changes
was seen as fulfilled. It was agreed upon that the approach would represent a valuable support
in preselecting and prioritizing suitable test cases, which then could be further prioritized by
the testing technician. This initial prioritization of test cases would save the involved personnel
significant amounts of scarcely available time. While this property of the approach could not
be quantified in the presented case study, the improvement of the regression testing process was
seen as improved significantly (see Figure 49, last line).

Regarding the applicability, the experts attributed 40% to this property in the current state
of the prototypical implementation. This was mostly due to two discussion points. Firstly, a

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

B
en

ef
it

Feasibility

Coverage Assessment Approach

96 7 Qualitative Evaluation of the Approach

fully automatic prioritization was seen as critical, as it might be misused for test selection (only
executing the first test cases), possibly missing important tests. Secondly, the prioritization pa-
rameters “intensity” and “quickness” did not fully convince the experts. This result can also be
extracted from Figure 52, where neither the efficiency nor benefit of the refined prioritization
techniques stands out.

Figure 52: Qualitative evaluation of benefit vs. cost (efficiency inverted) regarding prioritization (top

right is best)

Upon further inquiry, it was stated that the importance and quality of the test case are im-
portant factors for prioritization in current practice. The experts explained that different factors
influence this property: relation to safety features, the influence of the tested functionality on
product quality and more. Yet, some of these factors could not be extracted out of the source
code alone, according to the experts’ opinions. Thus, the prioritization was seen as a helpful
tool for an automatic suggestion for prioritization, yet a possibility for further changes of the
order was seen as mandatory.

In total, the experts agreed that using the approach, a more structured and thus improved
test prioritization can be achieved using the approach (72% agreement). Yet, more research
would have to be done to achieve full industrial applicability.

Requirement RReg was partially fulfilled.

7.3.3 Overall Satisfaction of Requirements

As shown in the previous sections, most requirements were approved to be fulfilled by the
group of industrial experts. The rating of the fulfillment of each requirement is summarized in
Table 13.

Most requirements were satisfied for the representative case study and discussion showed
that the approach in its current prototypical form (excluding the optimizations presented in

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

B
en

ef
it

Efficiency

Prioritization Approach

Intensity Quickness

7 Qualitative Evaluation of the Approach 97

Chapter 8.1) is already applicable for a significant part of the machines produced by this com-
pany and aPS engineering.

The main points still restricting applicability are the initial cost of test specification, espe-
cially for very complex systems that are built in small numbers, and the influence on real-time.
In the author’s opinion, properties relating to these factors could be streamlined significantly
for a commercial software product.

Table 13: Summary of the rating of the fulfillment of the requirements

 Requirement Rating Detailed Rating and Fulfillment of Requirements

A
pp

lic
ab

ili
ty

RIEC –
Support of IEC 61131-3

+ Fulfilled – An industrial example was used in the ex-
periments (7.2), which was confirmed to be repre-
sentative by the experts (7.3.1) RSW –

Support of industrial code
RInt – Support of
interaction with the
integrated system

+ Fulfilled – Manual manipulation was part of the test
cases in the experiments (7.2.1) and approved to be
realistic by the experts (7.3.1)

RHWB – Inclusion of valid
hardware behavior

+ Fulfilled – Real hardware in combination with the
software was used for system testing in the experi-
ments (7.2), approved to be an realistic example of an
aPS by the experts (7.3.1)

RSim – Independence from
behavior simulations

+ Fulfilled – No simulations were used or required in
the performed experiments (7.2)

RRT – Insignificant
influence on real-time
properties

○ Partially fulfilled – Influence of the approach was
measured in experiment IV (7.2.4) and rated by the
experts to result in an applicability of the approach on
1/5 - 1/3 of machines produced by the experts’ com-
pany (7.3.1)

RMem – Insignificant
influence on memory size

+ Fulfilled – Influence of the approach was measured in
experiment IV (7.2.4) and rated by the experts to re-
sult in an applicability on about 90% of machines
(7.3.1)

Im
pr

ov
em

en
t

RRep –
Improved Repeatability

+ Fulfilled – Investigated in experiment I (7.2.1) and
rated by the experts to be a significant improvement
regarding repeatability (7.3.2.1)

RDoc –
Improved Documentation

+ Fulfilled – Investigated in experiment I (7.2.1) and
rated by the experts to be a significant improvement
regarding documentation; applicable for about 1/2 of
machines (7.3.2.1)

RTA – Support for
Test Adequacy
Assessment

+ Fulfilled – Investigated in experiment II (7.2.2) and
rated by the experts to be a significant improvement
regarding identification of untested behavior and ex-
pected to increase overall test coverage; applicable for
about 2/3 of the machines (7.3.2.2)

RReg – Support for
Regression Testing

○ Partially fulfilled – Investigated in experiment III
(7.2.3) and rated by the experts to be a valuable sup-
port for pre-selection of test cases in case of changes;
applicable for about 1/3-1/2 of machines; more re-
search on prioritization factors needed (7.3.2.3)

8 Post-Evaluation Performance Optimization and Scalability Estimation 99

8 Post-Evaluation Performance Optimization
and Scalability Estimation

Summarizing the results of the case study and the expert evaluation, the approach was able
to address all requirements, while in some areas room for improvements were identified to ex-
tend the approach’s applicability. Especially the overhead in runtime in the current version of
the approach was seen as critical for some applications in the field of industrial production
automation. For this reason, an optimization of the approach regarding its performance was
performed. In addition, an estimation regarding the scalability of the tracing approach was per-
formed, to give an idea about the applicability on other projects. These findings will be pre-
sented in the following sections.

8.1 Optimization of the Runtime Overhead Generated
by the Approach

Due to the identified shortcomings of the approach regarding real-time performance that
were identified during the evaluation, several improvements were performed on the approach.
These included 1) using inline tracing statements rather than using call-by-value function calls
for each trace point, 2) using structures instead of arrays for saving traces during runtime and
3) the removal of unnecessary tracing functionality used for the debugging of the prototypical
tool. An example for 1) and 2) is the substitution of a call-by-value tracing function call
“tpr(i:=25);“ (with tpr() accessing an array using the passed trace point ID “i"), with
the inline call “tp.x25 := TRUE;”.

The resulting improvements of the approach regarding PLC scan cycle overhead are de-
picted in Figure 53 for the most important configurations of the approach. The data was col-
lected during the execution of twenty test case executions (ten repetitions of the two test cases
used in section 7.2.4)). The increase in average scan cycle time (Figure 53, bar chart, bottom)
of the old approach of up to 66% could be reduced to an increase of 12% of required execu-
tion time in comparison to the original, unchanged program. Regarding the maximum re-
quired scan cycle times (Figure 53, box chart, top), the longest observed scan cycle times of
the new versions of the approach were shorter in comparison to the original program (Figure
53, box chart, top, percentage values without parentheses). Within the interquartile range of
the observed values, however (Figure 53, box chart, top, percentage values in parentheses), an
increase of about 15% of the required maximum execution time was observed.

100 8 Post-Evaluation Performance Optimization and Scalability Estimation

Figure 53: Required maximum and average PLC scan cycle times for the different prioritization ap-

proaches (old version used in the evaluation and new, improved version) in comparison to the original
program.

Regarding the required memory, the optimized approach only required up to 22% more
memory (configuration “all”) compared to the 136% required in the old version. This was
mostly due to the removal of unneeded tracing functionality used for debugging the prototypical
implementation itself.

With the given improvements on the overhead characteristics of the approach, a higher ap-
plicability than identified in the evaluation would be possible.

8.2 Extrapolation of the Evaluation Results regarding
Scan Cycle Time Overhead

To gain a better understanding about the scalability of the approach, the data acquired dur-
ing the case study performed with the optimized tracing algorithms was extrapolated for other
numbers of scan cycle times and trace function invocations. With the given code, consisting of
119 POUs with an average cyclometric complexity of 9.47 and 372 actions with an average
complexity of 2.13, 728 statements were executed on average during the execution of the test
cases used in the evaluation. Using the average measured number of trace function invocations
per scan cycle (395) and the average increase of scan cycle time attributed to the tracing ap-
proach (“traversal” 0.02ms, “all” 0.12ms) with the given setup (701MHz, scan cycle of 10ms),
Table 14 was created. This data represents an estimation of the percentage of scan cycle time
solely required on average for the invocation of trace function calls in regards to different scan
cycle times. This was performed for the tracing configuration “traversal” and “all” (see Table
12). As expected, the percentage of required time rises with the number of trace function calls
and shorter scan cycle times. Whether the remaining scan cycle time suffices for holding real
time requirements (reading and writing input and output variables and executing the rest of the
statements) strongly depends on the amount of statements invoked in a worst-case scenario
(most computational intensive path through the code, including the trace function calls). This
property is very specific for different aPS and their control software.

+XX%:
Increase to original (Max. observed value)

Test only
old new

Traversal
old new

All
old new

Original

Task avg.

Task max.

+49%
+4%

+61%
+5%

+66%
+12%

+10%
(+36%)

+17%
(+41%)

+34%
(+57%)

-11%
(+1%) -22%

(+1%)

-7%
(+15%)

1,5

PLC task cycle time [ms]

3,55 (+YY%):
Increase (Max. observed value in
quartile range)

Inter-quartile
Range

8 Post-Evaluation Performance Optimization and Scalability Estimation 101

Table 14: Extrapolation of percentage of PLC scan cycle time required solely for execution tracing in
the configurations “traversal” and “all” (see Table 12)

Trace function calls
per scan cycle

PLC scan cycle time
(config. “traversal”)

PLC scan cycle time
(configuration “all”)

10ms 5ms 1ms 10ms 5ms 1ms
10 0.01% 0.01% 0.05% 0.03% 0.06% 0.31%
50 0.03% 0.05% 0.26% 0.15% 0.31% 1.53%
100 0.05% 0.11% 0.53% 0.31% 0.61% 3.06%
200 0.11% 0.21% 1.05% 0.61% 1.22% 6.12%
300 0.16% 0.32% 1.58% 0.92% 1.83% 9.17%
400 0.21% 0.42% 2.11% 1.22% 2.45% 12.2%
1000 0.53% 1.05% 5.27% 3.06% 6.12% 30.6%

While this extrapolation gives an idea about the scalability properties of the approach, fur-
ther investigation would be beneficial. Yet, many factors attribute to the real time capability of
a system, as mentioned above.

9 Conclusion and Outlook 103

9 Conclusion and Outlook
System tests in automated production system (aPS) engineering in production automation

are often performed under high time pressure, in an uncomfortable on-site environment at the
customer’s premises and lacking detailed specifications. This leads to insufficient repeatability
due to a lack of documentation, uncertainty of test adequacy and inefficient or inadequate test-
ing in case of changes. The rising complexity in the aPSs’ control software and a lack of tool
support increase this problem.

The aim of this thesis was to tackle these problems by developing an approach for a more
structured system testing approach that enables an analysis of test coverage and a support for
prioritizing test cases in case of changes to the system. The approach’s foundation is a guided
semi-automatic system testing approach that partially automates the system testing process
while including a human tester by giving her or him tasks via a Human Machine Interface.
During test execution, data regarding timing and executed statements in the code are recorded,
which allow for a subsequent analysis of test coverage to identify untested system behavior. In
case modifications are performed on an aPS, this information is reused in combination with a
change impact analysis to prioritize test cases for regression testing, i.e. to find newly intro-
duced faults in the code.

The approach was developed in accordance with industrial requirements, which were com-
piled in cooperation with several experienced experts from reputable companies active in the
field of aPS engineering development. Based on these requirements, the approach was evalu-
ated by performing several experiments in an industrial case study. The results were subse-
quently discussed and rated within an expert evaluation.

According to the industrial experts’ opinion, the approach shows promising results in tack-
ling the problems in aPS system testing, improving the system testing and regression testing
process of aPS regarding efficiency and testing quality. Evaluation results show that when using
the approach, system tests can be performed in a more repeatable manner, reducing deviations
in testing quality, and improving reproducibility through automated, detailed documentation.
In addition, untested functionality can be revealed, which was never possible before, increasing
test coverage and reducing the possibility of remaining critical faults in aPS software. Further-
more, previously tested systems can be retested more efficiently in case of changes: the priori-
tization helps saving time by proposing test sequences based on the performed changes that are
more likely to unveil regressions earlier.

The industrial requirements were satisfied for a representative case study and discussion
showed that the approach – in its current prototypical form – is already applicable for a signif-
icant part of the machines produced by this company and aPS engineering in general. To gain
a better understanding about the applicability of the approach regarding other companies and a

104 9 Conclusion and Outlook

wider range of applications, more case studies applying the approach should be conducted.
Here, interesting properties to investigate in more detail could be runtime properties and bene-
fits of the approach regarding coverage visualization and regression test prioritization with dif-
ferent case studies. In addition, several limits were identified in the approach’s current state,
which should be addressed in future research.

The runtime overhead reduces the applicability of the approach in is current state, even after
significant improvements were achieved during optimization. Theoretically, this limitation
stems from two factors: remaining execution time in each PLC scan cycle and complexity of
the code regarding its control flow. With more control statements, more code instrumentation
is required, requiring more execution time, as more inserted tracing functions need to be exe-
cuted. This might lead to breaking real time requirements if not enough remaining execution
time is available. Thus, the limit cannot be directly related to the code size, but might have to
be calculated for each individual application using worst-case execution time analysis (Wilhelm
et al., 2008), e.g. using static code analysis. Yet, code structure is not the only factor influencing
execution properties, but also others, such as task scheduling, caching and scan cycle time jitter.
In practice, the instrumented code could be treated as regular (more computationally expensive)
code and enforcing a minimum remaining execution time, e.g. using a maximum of 80% of
scan cycle time as a practical measure to avoid breaches of hard real time. The runtime overhead
could be improved by developing more efficient tracing algorithms or enabling coverage as-
sessment without code instrumentation. While significant improvements of the approach used
in the evaluation were achieved, efficient tracing approaches like the one proposed by Prähofer
et al. (Prähofer et al., 2011) that seems to have only minimal influence on runtime behavior,
while allowing for recording of detailed runtime information down to variable values, could
open up new possibilities for coverage analysis and regression test prioritization. Another ap-
proach, which currently is a work in progress, tries to calculate structural coverage without
instrumentation and even without the need for test execution (Ulewicz et al., 2017). This could
enable prioritization of programs not fully tested and without influencing runtime behavior.
This approach could complement the one presented in this thesis by supporting the estimation
of coverage for systems with severe restrictions regarding run-time overheads.

The prioritization criteria still showed room for improvement. According to the experts,
criteria such as testing modifications as quick or intensely as possible are only part of the con-
sidered properties when performing regression testing. The experts argued that relation of the
test case to critical functions or influences regarding product quality were most important when
selection and prioritizing test cases. Therefore, in this field, additional research regarding suit-
able prioritization criteria and methods for obtaining such information is required.

10 References 105

10 References
3S - Smart Software Solutions GmbH (2016a) CODESYS Development System. Available at:

https://www.codesys.com/products/codesys-engineering/development-
system.html (Accessed: 13 February 2018).

3S - Smart Software Solutions GmbH (2016b) CODESYS Static Analysis. Available at:
http://store.codesys.com/codesys-static-analysis.html?___store=en (Accessed:
13 February 2018).

3S - Smart Software Solutions GmbH (2016c) CODESYS Test Manager. Available at:
http://store.codesys.com/codesys-test-manager.html (Accessed: 13 February
2018).

Abele, S. and Weyrich, M. (2016) ‘Supporting the regression test of multi-variant systems in
distributed production scenarios’, in IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, pp. 1–4. doi:
10.1109/ETFA.2016.7733652.

Abele, S. and Weyrich, M. (2017) ‘Decision Support for Joint Test and Diagnosis of Production
Systems based on a Concept of Shared Knowledge’, IFAC-PapersOnLine, 50
(1), pp. 15227–15232. doi: 10.1016/j.ifacol.2017.08.2374.

Abele, S., Zeller, A., Jazdi, N. and Weyrich, M. (2017) ‘Agentenbasierte Testplanung für
industrielle IT-Systeme in der Fertigung’, atp edition, 59 (9), p. 28. doi:
10.17560/atp.v59i09.1880.

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers - Principles, Technique and Tools.
Addison Wesley. doi: 10.1007/s13398-014-0173-7.2.

Akesson, K., Fabian, M., Flordal, H. and Malik, R. (2006) ‘Supremica - An integrated
environment for verification, synthesis and simulation of discrete event
systems’, in International Workshop on Discrete Event Systems. IEEE, pp. 384–
385. doi: 10.1109/WODES.2006.382401.

Alagöz, I., Herpel, T. and German, R. (2017) ‘A selection method for black box regression
testing with a statistically defined quality level’, in IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE, pp.
114–125. doi: 10.1109/ICST.2017.18.

ALL4TEC (2017) MaTeLo. Available at: http://www.all4tec.net/MaTeLo/homematelo.html
(Accessed: 13 February 2018).

Alvarez, M. L., Sarachaga, I., Burgos, A., Estevez, E. and Marcos, M. (2016) ‘A
Methodological Approach to Model-Driven Design and Development of
Automation Systems’, IEEE Transactions on Automation Science and
Engineering, pp. 1–13. doi: 10.1109/TASE.2016.2574644.

106 10 References

Ammann, P. E. and Black, P. E. (1999) ‘A specification-based coverage metric to evaluate test
sets’, in IEEE International Symposium on High-Assurance Systems
Engineering. IEEE, pp. 239–248. doi: 10.1109/HASE.1999.809499.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman, M.,
Harrold, M. J. and McMinn, P. (2013) ‘An orchestrated survey of methodologies
for automated software test case generation’, Journal of Systems and Software,
86 (8), pp. 1978–2001. doi: 10.1016/j.jss.2013.02.061.

Angerer, F., Prähofer, H., Ramler, R. and Grillenberger, F. (2013) ‘Points-to analysis of IEC
61131-3 programs: Implementation and application’, in IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE.
doi: 10.1109/ETFA.2013.6648062.

Atlassian (2016) Atlassian Clover. Available at: https://www.atlassian.com/software/clover
(Accessed: 13 February 2018).

Baller, H., Lity, S., Lochau, M. and Schaefer, I. (2014) ‘Multi-objective test suite optimization
for incremental product family testing’, in IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 303–312. doi:
10.1109/ICST.2014.43.

Barth, M. and Fay, A. (2013) ‘Automated generation of simulation models for control code
tests’, Control Engineering Practice. Elsevier, 21 (2), pp. 218–230. doi:
10.1016/j.conengprac.2012.09.022.

Basile, F., Chiacchio, P. and Gerbasio, D. (2013) ‘On the Implementation of Industrial
Automation Systems Based on PLC’, IEEE Transactions on Automation Science
and Engineering, 10 (4), pp. 990–1003. doi: 10.1109/TASE.2012.2226578.

Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M. and Stursberg, O.
(2004) ‘Verification of PLC Programs Given as Sequential Function Charts’, in
Integration of Software Specification Techniques for Applications in
Engineering. Springer Berlin Heidelberg, pp. 517–540. doi: 10.1007/978-3-540-
27863-4_28.

Biallas, S. (2016) Verification of Programmable Logic Controller Code using Model Checking
and Static Analysis. RWTH Aachen.

Biallas, S., Brauer, J. and Kowalewski, S. (2012) ‘Arcade.PLC: A verification platform for
programmable logic controllers’, in IEEE International Conference on
Automation Science and Engineering (CASE). IEEE, pp. 338–341. doi:
10.1145/2351676.2351741.

Bohlender, D., Simon, H., Friedrich, N., Kowalewski, S. and Hauck-Stattelmann, S. (2016)
‘Concolic test generation for PLC programs using coverage metrics’, in

10 References 107

International Workshop on Discrete Event Systems (WODES). IEEE, pp. 432–
437. doi: 10.1109/WODES.2016.7497884.

Bohner, S. A. and Arnold, R. S. (1996) Software Change Impact Analysis. Los Alamos, CA:
The Institute of Electrical and Electronic Engineers, Inc.

Bullseye (2016) BullseyeCoverage. Available at: http://www.bullseye.com/productInfo.
html (Accessed: 13 February 2018).

Burnstein, I. (2003) Practical Software Testing. New York: Springer-Verlag New York, Inc.
(Springer Professional Computing). doi: 10.1007/b97392.

Buzhinsky, I. and Vyatkin, V. (2017) ‘Testing automation systems by means of model
checking’, in IEEE Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, pp. 1–7. doi: 10.1109/ETFA.2017.8247579.

Caliebe, P., Herpel, T. and German, R. (2012) ‘Dependency-based test case selection and
prioritization in embedded systems’, in IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 731–735. doi:
10.1109/ICST.2012.164.

Cephalos GmbH (2017) Trysim. Available at: http://www.trysim.de/ (Accessed: 13 February
2018).

Dijkstra, E. W. (1972) ‘The humble programmer’, Communications of the ACM, 15 (10), pp.
859–866. doi: 10.1145/355604.361591.

Doganay, K., Bohlin, M. and Sellin, O. (2013) ‘Search based testing of embedded systems
implemented in IEC 61131-3: An industrial case study’, in IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, pp. 425–432. doi: 10.1109/ICSTW.2013.78.

Engström, E., Runeson, P. and Skoglund, M. (2010) ‘A systematic review on regression test
selection techniques’, Information and Software Technology, 52 (1), pp. 14–30.
doi: 10.1016/j.infsof.2009.07.001.

Enoiu, E. P., Doganay, K., Bohlin, M., Sundmark, D. and Pettersson, P. (2013) ‘MOS: An
integrated model-based and search-based testing tool for Function Block
Diagrams’, International Workshop on Combining Modelling and Search-Based
Software Engineering (CMSBSE), pp. 55–60. doi:
10.1109/CMSBSE.2013.6605711.

Enoiu, E. P., Sundmark, D. and Pettersson, P. (2013) ‘Model-based test suite generation for
Function Block Diagrams using the UPPAAL model checker’, in IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, pp. 158–167. doi: 10.1109/ICSTW.2013.27.

108 10 References

Ernst, M. D. (2003) ‘Static and dynamic analysis: synergy and duality’, ICSE Workshop on
Dynamic Analysis (WODA), pp. 24–27.

Estévez, E., Pérez, F., Orive, D. and Marcos, M. (2017) ‘A novel approach for Flexible
Automation Production Systems’, in IEEE International Conference on
Industrial Informatics (INDIN), pp. 695–699.

Feldmann, S., Hauer, F., Ulewicz, S. and Vogel-Heuser, B. (2016) ‘Analysis framework for
evaluating PLC software: An application of Semantic Web technologies’, in
IEEE International Symposium on Industrial Electronics (ISIE). IEEE, pp.
1048–1054. doi: 10.1109/ISIE.2016.7745037.

Feldmann, S., Ulewicz, S., Diehm, S. and Vogel-Heuser, B. (2016) ‘Strukturelle Codeanalyse’,
atp edition, 58 (9), pp. 54–63. doi: 10.17560/atp.v58i09.578.

Fernández Adiego, B., Darvas, D., Blanco Viñuela, E., Tournier, J.-C., Bliudze, S., Blech, J. O.
and González Suárez, V. M. (2015) ‘Applying model checking to industrial-
sized PLC programs’, IEEE Transactions on Industrial Informatics, 11 (6), pp.
1400–1410. doi: 10.1109/TII.2015.2489184.

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A. and Marinov, D. (2013)
‘Comparing non-adequate test suites using coverage criteria’, in International
Symposium on Software Testing and Analysis (ISSTA). New York, New York,
USA: ACM Press, p. 302. doi: 10.1145/2483760.2483769.

Gopinath, R., Jensen, C. and Groce, A. (2014) ‘Code coverage for suite evaluation by
developers’, International Conference on Software Engineering (ICSE), pp. 72–
82. doi: 10.1145/2568225.2568278.

Gourcuff, V., de Smet, O. and Faure, J.-M. (2008) ‘Improving large-sized PLC programs
verification using abstractions’, IFAC Proceedings Volumes, 41 (2), pp. 5101–
5106. doi: 10.3182/20080706-5-KR-1001.00857.

Hackenberg, G., Campetelli, A., Legat, C., Mund, J., Teufl, S. and Vogel-Heuser, B. (2014)
‘Formal Technical Process Specification and Verification for Automated
Production Systems’, in International Conference on System Analysis and
Modeling (SAM): Models and Reusability, pp. 287–303. doi: 10.1007/978-3-
319-11743-0_20.

Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D. and Zoitl, A. (2011) ‘Test case
generation approach for industrial automation systems’, in International
Conference on Automation, Robotics and Applications (ICARA). IEEE, pp. 57–
62. doi: 10.1109/ICARA.2011.6144856.

Hametner, R., Zoitl, A. and Semo, M. (2010) ‘Automation component architecture for the
efficient development of industrial automation systems’, in IEEE International

10 References 109

Conference on Automation Science and Engineering (CASE). IEEE, pp. 156–
161. doi: 10.1109/COASE.2010.5584013.

Hoffmann, D. W. (2013) Software-Qualität. Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-35700-8.

IBM (2016) Rational DOORS. Available at: http://www-03.ibm.com/software/products/en/
ratidoor (Accessed: 13 February 2018).

IEC (2003) ‘IEC 61131 Programmable Controllers - Part 3: Programming Languages (Second
Edition)’. International Electrotechnical Commission Std.

IEC (2012) ‘IEC 61499 Function Blocks - Part 1: Architecture’. International Electrotechnical
Commission Std.

IEC (2013) ‘IEC 61131 Programmable Controllers - Part 3: Programming Languages (Third
Edition)’. International Electrotechnical Commission Std.

IEEE (2008) ‘IEEE Std 829-2008, IEEE Standard for Software and System Test
Documentation’. doi: 10.1109/IEEESTD.2008.4578383.

ISO/IEC/IEEE (2010) ‘ISO/IEC/IEEE 24765:2010 Systems and Software Engineering -
Vocabulary’. ISO/IEC/IEEE. doi: 10.1109/IEEESTD.2015.7106438.

Itris Automation (2017) PLC Checker. Available at: http://www.itris-automation.com/plc-
checker/ (Accessed: 13 February 2018).

Jee, E., Kim, S., Cha, S. and Lee, I. (2010) ‘Automated test coverage measurement for reactor
protection system software implemented in function block diagram’, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 6351 LNCS, pp. 223–236.
doi: 10.1007/978-3-642-15651-9_17.

Jee, E., Yoo, J. and Cha, S. (2005) ‘Control and data flow testing on function block diagrams’,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 3688 LNCS, pp.
67–80. doi: 10.1007/11563228_6.

Jee, E., Yoo, J., Cha, S. and Bae, D. (2009) ‘A data flow-based structural testing technique for
FBD programs’, Information and Software Technology. Elsevier B.V., 51 (7),
pp. 1131–1139. doi: 10.1016/j.infsof.2009.01.003.

Jones, J. A. and Harrold, M. J. (2001) ‘Test-suite reduction and prioritization for modified
condition/decision coverage’, in IEEE International Conference on Software
Maintenance. IEEE Comput. Soc., pp. 92–101. doi:
10.1109/ICSM.2001.972715.

110 10 References

Jung, S., Yoo, J. and Lee, Y.-J. (2017) ‘A PLC platform-independent structural analysis on
FBD programs for digital reactor protection systems’, Annals of Nuclear Energy.
Elsevier, 103, pp. 454–469. doi: 10.1016/j.anucene.2017.02.006.

Kim, J.-M. and Porter, A. (2002) ‘A history-based test prioritization technique for regression
testing in resource constrained environments’, in IEEE International Conference
on Software Engineering. New York, New York, USA: ACM Press, p. 119. doi:
10.1145/581339.581357.

Kormann, B., Tikhonov, D. and Vogel-Heuser, B. (2012) ‘Automated PLC software testing
using adapted UML sequence diagrams’, in IFAC Proceedings Volumes (IFAC-
PapersOnline). Bucharest, Romania, pp. 1615–1621. doi: 10.3182/20120523-3-
RO-2023.00148.

Kottler, S., Khayamy, M., Hasan, S. R. and Elkeelany, O. (2017) ‘Formal verification of ladder
logic programs using NuSMV’, in SoutheastCon 2017. IEEE, pp. 1–5. doi:
10.1109/SECON.2017.7925390.

Krause, J. (2012) Testfallgenerierung aus modellbasierten Systemspezifikationen auf der Basis
von Petrinetzentfaltungen. ifak Magdeburg.

Kumar, B., Gilani, S. S., Niggemann, O. and Schäfer, W. (2013) ‘Automated test case
generation from complex environment models for PLC control software testing
and maintenance’, in VDI-Kongress Automation, pp. 129–134.

Lauber, R. and Göhner, P. (1999) Prozessautomatisierung 1. Berlin, Heidelberg: Springer
Berlin Heidelberg. doi: 10.1007/978-3-642-58446-6.

Liu, Z., Magnus, S., Krause, J. and Diedrich, C. (2014) ‘Concept for modelling and testing of
individual mechatronic components for manufacturing plant simulation’, in
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, pp. 1–7. doi: 10.1109/ETFA.2014.7005147.

Ljungkrantz, O., Åkesson, K., Fabian, M. and Chengyin Yuan (2010) ‘Formal Specification
and Verification of Industrial Control Logic Components’, IEEE Transactions
on Automation Science and Engineering, 7 (3), pp. 538–548. doi:
10.1109/TASE.2009.2031095.

Lochau, M., Bürdek, J., Lity, S., Hagner, M., Legat, C., Goltz, U. and Schürr, A. (2014)
‘Applying model-based Software Product Line testing approaches to the
automation engineering domain’, at - Automatisierungstechnik, 62 (11), pp.
771–780. doi: 10.1515/auto-2014-1099.

Logic Design Inc. (2017) PLCLogix. Available at: https://www.plclogix.com/ (Accessed: 13
February 2018).

Louridas, P. (2006) ‘Static code analysis’, IEEE Software, 23 (4), pp. 58–61. doi:
10.1109/MS.2006.114.

10 References 111

De Lucia, A., Fasano, F. and Oliveto, R. (2008) ‘Traceability management for impact analysis’,
in Frontiers of Software Maintenance. IEEE, pp. 21–30. doi:
10.1109/FOSM.2008.4659245.

Ma, C. and Provost, J. (2017a) ‘A model-based testing framework with reduced set of test cases
for programmable controllers’, IEEE International Conference on Automation
Science and Engineering (CASE), pp. 944–949.

Ma, C. and Provost, J. (2017b) ‘Using plant model features to generate reduced test cases for
programmable controllers’, IFAC-PapersOnLine, 50 (1), pp. 11163–11168. doi:
10.1016/j.ifacol.2017.08.1238.

Malz, C. and Göhner, P. (2011) ‘Agent-Based Test Case Prioritization’, in IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, pp. 149–152. doi: 10.1109/ICSTW.2011.81.

Malz, C., Jazdi, N. and Göhner, P. (2012) ‘Prioritization of test cases using software agents and
fuzzy logic’, in IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp. 483–486. doi: 10.1109/ICST.2012.131.

Maruchi, K., Shin, H. and Sakai, M. (2014) ‘MC/DC-like structural coverage criteria for
Function Block Diagrams’, in IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, pp. 253–259.
doi: 10.1109/ICSTW.2014.27.

Mewes & Partner GmbH (2017) WinMOD. Available at: http://www.winmod.de/en/
(Accessed: 13 February 2018).

Nair, S., Jetley, R., Nair, A. and Hauck-Stattelmann, S. (2015) ‘A static code analysis tool for
control system software’, in IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, pp. 459–463. doi:
10.1109/SANER.2015.7081856.

Neumann, P., Grötsch, E., Lubkoll, C. and Simon, R. (2000) SPS-Standard: IEC 61131:
Programmierung in verteilten Automatisierungssystemen. 3rd Editio. München:
Oldenburg Industieverlag.

NuSMV (2015). Available at: http://nusmv.fbk.eu/ (Accessed: 13 February 2018).

nuXmv (2014). Available at: https://nuxmv.fbk.eu/ (Accessed: 13 February 2018).

Orso, A., Apiwattanapong, T. and Harrold, M. J. (2003) ‘Leveraging field data for impact
analysis and regression testing’, ACM SIGSOFT Software Engineering Notes,
28 (5), p. 128. doi: 10.1145/949952.940089.

Parr, T. (2007) The Definitive ANTLR Reference - Building Domain-Specific Languages. The
Pragmatic Bookshelf.

112 10 References

Pinkal, K. and Niggemann, O. (2017) ‘A new approach to model-based test case generation for
industrial automation systems’, in IEEE International Conference on Industrial
Informatics (INDIN). IEEE, pp. 53–58. doi: 10.1109/INDIN.2017.8104746.

Piwowarski, P., Ohba, M. and Caruso, J. (1993) ‘Coverage measurement experience during
function test’, Proceedings of 1993 15th International Conference on Software
Engineering, pp. 287–301. doi: 10.1109/ICSE.1993.346035.

PLCopen (2013) PLCopen IEC 61131-3: a standard programming resource. Available at:
http://www.plcopen.org/pages/promotion/publications/downloads/intro_iec_ma
rch2013.pdf (Accessed: 5 May 2017).

PLCopen (2017) PLCopen Website. Available at: http://www.plcopen.org (Accessed: 13
February 2018).

Prähofer, H., Angerer, F., Ramler, R. and Grillenberger, F. (2016) ‘Static Code Analysis of IEC
61131-3 Programs: Comprehensive Tool Support and Experiences from Large-
Scale Industrial Application’, IEEE Transactions on Industrial Informatics,
3203 (ii), pp. 1–10. doi: 10.1109/TII.2016.2604760.

Prähofer, H., Angerer, F., Ramler, R., Lacheiner, H. and Grillenberger, F. (2012) ‘Opportunities
and challenges of static code analysis of IEC 61131-3 programs’, in IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA). doi: 10.1109/ETFA.2012.6489535.

Prähofer, H., Schatz, R., Wirth, C. and Mössenböck, H. (2011) ‘A comprehensive solution for
deterministic replay debugging of SoftPLC Applications’, IEEE Transactions
on Industrial Informatics, 7 (4), pp. 641–651. doi: 10.1109/TII.2011.2166768.

Provost, J., Roussel, J.-M. and Faure, J.-M. (2011) ‘Translating Grafcet specifications into
Mealy machines for conformance test purposes’, Control Engineering Practice,
19 (9), pp. 947–957. doi: 10.1016/j.conengprac.2010.10.001.

Provost, J., Roussel, J.-M. and Faure, J.-M. (2014) ‘Generation of Single Input Change Test
Sequences for Conformance Test of Programmable Logic Controllers’, IEEE
Transactions on Industrial Informatics, 10 (3), pp. 1696–1704. doi:
10.1109/TII.2014.2315972.

Puntel-Schmidt, P. and Fay, A. (2015) ‘Levels of Detail and Appropriate Model Types for
Virtual Commissioning in Manufacturing Engineering’, IFAC-PapersOnLine.
Elsevier Ltd., 48 (1), pp. 922–927. doi: 10.1016/j.ifacol.2015.05.027.

Puntel-Schmidt, P., Fay, A., Riediger, W., Schulte, T., Köslin, F. and Diehl, S. (2014)
‘Validierung von Steuerungscode fertigungstechnischer Anlagen mit Hilfe
automatisch generierter Simulationsmodelle’, in Entwurf komplexer
Automatisierungssysteme (EKA). Magdeburg. doi: 10.1515/auto-2014-1127.

10 References 113

Rösch, S., Ulewicz, S., Provost, J. and Vogel-Heuser, B. (2015) ‘Review of Model-Based
Testing Approaches in Production Automation and Adjacent Domains—Current
Challenges and Research Gaps’, Journal of Software Engineering and
Applications, 8 (9), pp. 499–519. doi: 10.4236/jsea.2015.89048.

Rösch, S. and Vogel-Heuser, B. (2017) ‘A light-weight fault injection approach to test
automated production system PLC software in industrial practice’, Control
Engineering Practice. Elsevier, 58 (March 2016), pp. 12–23. doi:
10.1016/j.conengprac.2016.09.012.

Rothermel, G. and Harrold, M. J. (1997) ‘A safe, efficient regression test selection technique’,
ACM Transactions on Software Engineering and Methodology, 6 (2), pp. 173–
210. doi: 10.1145/248233.248262.

Rothermel, G., Untch, R. H., Chengyun Chu and Harrold, M. J. (2001) ‘Prioritizing test cases
for regression testing’, IEEE Transactions on Software Engineering, 27 (10), pp.
929–948. doi: 10.1109/32.962562.

RTCA (1992) ‘RTCA DO-178B: Software Considerations in Airborne Systems and Equipment
Certification’.

Runeson, P., Höst, M., Rainer, A. and Regnell, B. (2012) Case Study Research in Software
Engineering, John Wiley & Sons, Inc. Hoboken, NJ, USA: John Wiley & Sons,
Inc. doi: 10.1002/9781118181034.

Sepp.med GmbH (2017) MBTsuite. Available at: https://www.seppmed.de/de/portfolio/
mbtsuite/ (Accessed: 13 February 2018).

Siegl, S. and Caliebe, P. (2011) ‘Improving model-based verification of embedded systems by
analyzing component dependences’, in IEEE International Symposium on
Industrial and Embedded Systems. IEEE, pp. 51–54. doi:
10.1109/SIES.2011.5953678.

Siemens (2016) Polarion. Available at: https://polarion.plm.automation.siemens.com/
(Accessed: 13 February 2018).

Simon, H., Friedrich, N., Biallas, S., Hauck-Stattelmann, S., Schlich, B. and Kowalewski, S.
(2015) ‘Automatic test case generation for PLC programs using coverage
metrics’, in IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE. doi: 10.1109/ETFA.2015.7301602.

Sinha, R., Pang, C., Martínez, G. S. and Vyatkin, V. (2016) ‘Automatic test case generation
from requirements for industrial cyber-physical systems’, at -
Automatisierungstechnik, 64 (3), pp. 216–230. doi: 10.1515/auto-2015-0075.

Srikanth, H., Williams, L. and Osborne, J. (2005) ‘System test case prioritization of new and
regression test cases’, in International Symposium on Empirical Software
Engineering. IEEE, pp. 62–71. doi: 10.1109/ISESE.2005.1541815.

114 10 References

Stattelmann, S., Biallas, S., Schlich, B. and Kowalewski, S. (2014) ‘Applying static code
analysis on industrial controller code’, in IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). doi:
10.1109/ETFA.2014.7005254.

Süß, S., Magnus, S., Thron, M., Zipper, H., Odefey, U., Fassler, V., Strahilov, A., Klodowski,
A., Bar, T. and Diedrich, C. (2016) ‘Test methodology for virtual commissioning
based on behaviour simulation of production systems’, in IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
pp. 1–9. doi: 10.1109/ETFA.2016.7733624.

Thonnessen, D., Reinker, N., Rakel, S. and Kowalewski, S. (2017) ‘A concept for PLC
hardware-in-the-loop testing using an extension of structured text’, in IEEE
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
pp. 1–8. doi: 10.1109/ETFA.2017.8247580.

Ulewicz, S., Feldmann, S., Vogel-Heuser, B. and Diehm, S. (2016) ‘Visualisierung und
Analyseunterstützung von Zusammenhängen in SPS-Programmen zur
Verbesserung der Modularität und Wiederverwendung’, in VDI-Kongress
Automation.

Ulewicz, S., Schütz, D. and Vogel-Heuser, B. (2014) ‘Software changes in factory automation:
Towards automatic change based regression testing’, in Annual Conference of
the IEEE Industrial Electronics Society (IECON). IEEE, pp. 2617–2623. doi:
10.1109/IECON.2014.7048875.

Ulewicz, S., Simon, H., Bohlender, D., Obster, M., Kowalewski, S. and Vogel-Heuser, B.
(2017) ‘A priori test coverage estimation for automated production systems:
Using generated behavior models for coverage calculation’, in IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, pp. 1–4. doi: 10.1109/ETFA.2017.8247704.

Ulewicz, S., Ulbrich, M., Weigl, A., Kirsten, M., Wiebe, F., Beckert, B. and Vogel-Heuser, B.
(2016) ‘A verification-supported evolution approach to assist software
application engineers in industrial factory automation’, in IEEE International
Symposium on Assembly and Manufacturing (ISAM). IEEE, pp. 19–25. doi:
10.1109/ISAM.2016.7750714.

Ulewicz, S. and Vogel-Heuser, B. (2016a) ‘Guided semi-automatic system testing in factory
automation’, in IEEE International Conference on Industrial Informatics
(INDIN). IEEE, pp. 142–147. doi: 10.1109/INDIN.2016.7819148.

Ulewicz, S. and Vogel-Heuser, B. (2016b) ‘System regression test prioritization in factory
automation: Relating functional system tests to the tested code using field data’,

10 References 115

in Annual Conference of the IEEE Industrial Electronics Society (IECON).
IEEE, pp. 4619–4626. doi: 10.1109/IECON.2016.7792997.

Ulewicz, S. and Vogel-Heuser, B. (2018a) ‘Increasing system test coverage in production
automation systems’, Control Engineering Practice, 73, pp. 171–185. doi:
10.1016/j.conengprac.2018.01.010.

Ulewicz, S. and Vogel-Heuser, B. (2018b) ‘Industrially Applicable System Regression Test
Prioritization in Factory Automation’, Transactions on Automation Science and
Engineering, accepted publication.

Unicom (2016) PurifyPlus. Available at: https://teamblue.unicomsi.com/products/ purifyplus/
(Accessed: 5 May 2017).

Uppsala University (UPP) and Aalborg University (AAL) (2010) UPPAAL. Available at:
http://www.uppaal.org/ (Accessed: 13 February 2018).

Utting, M., Pretschner, A. and Legeard, B. (2012) ‘A taxonomy of model-based testing
approaches’, Software Testing, Verification and Reliability, 22 (5), pp. 297–312.
doi: 10.1002/stvr.456.

Vogel-Heuser, B., Fay, A., Schaefer, I. and Tichy, M. (2015) ‘Evolution of software in
automated production systems: Challenges and research directions’, Journal of
Systems and Software. Elsevier Ltd., 110, pp. 54–84. doi:
10.1016/j.jss.2015.08.026.

Vogel-Heuser, B., Kormann, B., Tikhonov, D. and Rösch, S. (2013) ‘Automatisierter
modellbasierter Applikationstest für SPS Steuerungsprogramme auf der Basis
von UML’, at - Automatisierungstechnik, 61 (6), pp. 382–392. doi:
10.1524/auto.2013.0033.

Vyatkin, V. (2013) ‘Software Engineering in Industrial Automation: State-of-the-Art Review’,
IEEE Transactions on Industrial Informatics, 9 (3), pp. 1234–1249. doi:
10.1109/TII.2013.2258165.

Whalen, M. W., Rajan, A., Heimdahl, M. P. E. and Miller, S. P. (2006) ‘Coverage metrics for
requirements-based testing’, in International Symposium on Software Testing
and Analysis. New York, New York, USA: ACM Press, p. 25. doi:
10.1145/1146238.1146242.

Wilhelm, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.,
Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C. and Heckmann, R. (2008) ‘The worst-case execution-time
problem—overview of methods and survey of tools’, ACM Transactions on
Embedded Computing Systems, 7 (3), pp. 1–53. doi: 10.1145/1347375.1347389.

116 10 References

Wu, X., Li, J. J., Weiss, D. and Lee, Y. (2007) ‘Coverage-based testing on embedded systems’,
IEEE International Conference on Software Engineering. doi:
10.1109/AST.2007.8.

Yang, M. C. K. and Chao, A. (1995) ‘Reliability-Estimation & Stopping-Rules for Software
Testing, Based on Repeated Appearances of Bugs’, IEEE Transactions on
Reliability, 44 (2), pp. 315–321. doi: 10.1109/24.387388.

Yang, Q., Li, J. J. and Weiss, D. M. (2009) ‘A Survey of Coverage-Based Testing Tools’, The
Computer Journal, 52 (5), pp. 589–597. doi: 10.1093/comjnl/bxm021.

Yoo, S. and Harman, M. (2012) ‘Regression testing minimization, selection and prioritization:
a survey’, Software Testing, Verification and Reliability, 22 (2), pp. 67–120. doi:
10.1002/stvr.430.

Zeller, A. and Weyrich, M. (2015) ‘Test case selection for networked production systems’, in
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). doi: 10.1109/ETFA.2015.7301604.

Zhu, H., Hall, P. A. V. and May, J. H. R. (1997) ‘Software unit test coverage and adequacy’,
ACM Computing Surveys, 29 (4), pp. 366–427. doi: 10.1145/267580.267590.

11 Table of Figures 117

11 Table of Figures
Figure 1: The schematic structure of a process automation system (translated from (Lauber

and Göhner, 1999, p. 7)) ... 5

Figure 2: Schematic of the standard PLC scan cycle: Inputs values are read, computation is
performed, output values are written (based on (Lauber and Göhner, 1999, p. 281)) 6

Figure 3: Levels of testing (Burnstein, 2003, p. 134) ... 10

Figure 4: The process of model-based testing according to (Utting, Pretschner and Legeard,
2012) ... 15

Figure 5: An Abstract Syntax Tree (AST) for the expressions “3+4*5” (Parr, 2007) 16

Figure 6: Code sample (top) and resulting control flow graph (bottom) (Burnstein, 2003) 17

Figure 7: Relation of the requirements RInt and RHWB to the SUT ... 21

Figure 8: Coverage Assessment Overview ... 43

Figure 9: Overview of the concepts developed for prioritization of regression tests 44

Figure 10: Inclusion of stimulation and behavior assessment into a system testing
approach is currently not regarded in most approaches in research................................ 45

Figure 11: Inclusion of a human test engineer or technician into the testing process 47

Figure 12: HMI example for including a manipulative action into a test case 48

Figure 13: HMI example for including a diagnostic action into a test case 48

Figure 14: HMI template for manipulative and diagnostic actions using a customizable
interface ... 48

Figure 15: Metamodel for system tests based on joint concepts developed in project
MOBATEST ... 50

Figure 16: System Test Loop ... 51

Figure 17: Basic System Test: The schematic test case (left) will change the test HMI
(right) to display different tasks, which have to be acknowledged
(Ulewicz and Vogel-Heuser, 2016a) ... 52

Figure 18: Metamodel for storing information about test suites and the test history of a
PLC software project... 53

Figure 19: Test project generation (based on (Ulewicz and Vogel-Heuser, 2016a)) 54

Figure 20: A method to record statement coverage: insertion of a record function call just
before the statement of interest, which changes entries in an array 56

Figure 21: A detailed overview of the coverage calculation concept: the PLC software
project is instrumented on the engineering system, executed on the PLC while traces
are recorded. Traces are subsequently imported into the engineering system and
analyzed... 58

Figure 22: Dependency metamodel for code analysis and instrumentation (extension of
(Feldmann, Hauer, et al., 2016); extensions filled light gray) .. 59

118 11 Table of Figures

Figure 23: Example for a CFG (bottom) generated from code (top left) and an excerpt of
contained information in the dependency model (top right) ... 60

Figure 24: Instrumentation example: The original code (left) is extended by function calls
resulting in instrumented code (right) ... 62

Figure 25: Generic example for combining statement coverage traces 63

Figure 26: Connection to code and test cases ... 64

Figure 27: Hierarchical coverage views as developed for the approach: A software project
call graph (left) gives a quick overview of covered (light gray and white) and
uncovered (dark gray) POUs. More detailed views can unveil uncovered parts of the
code from SFC level (upper right) to ST level (lower right). .. 66

Figure 28: Coverage Visualization Concept ... 66

Figure 29: System test prioritization in three steps ... 67

Figure 30: Process of the fine-grained change identification resulting in a set of changed
basic blocks (white: SFC, gray: ST) .. 70

Figure 31: Change impact due to 1. modified assignments, 2. modified calls and 3.
modified decisions; influenced basic blocks are light gray ... 71

Figure 32: Process of the Change Impact Analysis: BasicBlocks are analyzed for changed
statements for whose impact on other statements and thus BasicBlocks is analyzed 72

Figure 33: Basic prioritization: Test case a, b, and c are prioritized higher as they traversed
the parts of the code that have now been changed (change 1 and 2). 73

Figure 34: Refined prioritization: For a more detailed prioritization, the intensity of
traversal and first traversal of each change by each test case is regarded in addition
to the total runtime of the tests. ... 74

Figure 35: Comparing modification traversing test combinations (MTTC): MTTC1 will
traverse both changes earlier (after t1) than MTTC2 (after t2), yet MTTC3 is the
quickest (t3) ... 76

Figure 36: Test cases can be directly added to the object tree of the PLC software project
(still called UnitTest for historic reasons; screenshot translated, as prototype is in
German). .. 77

Figure 37: Prototypical implementation of the test case definition using table calculation
tools: the left rows define the interfacing variables (top: inputs to set, bottom: outputs
to check). The test case is progressing from left to right. .. 78

Figure 38: Implementation of the test suite editor (screenshot translated, as prototype is in
German) ... 78

Figure 39: The implementation of the automated generation of the test project and retrieval
of test data after testing .. 79

Figure 40: Prototypical coverage browser .. 80

11 Table of Figures 119

Figure 41: The aPS used in the case study including electric cabinets and embedded PC
depalletizes trays filled with needles (bottom left) ... 82

Figure 42: Schematic view of the system under test (SUT) ... 82

Figure 43: Description of the HMI used in the case study ... 83

Figure 44: Coverage assessment unveils untested fault handling routine: The code branch
for documenting faulty cycle timing was never executed during the tests 86

Figure 45: Coverage assessment uncovers unneeded legacy code: A complete branch of
the SFC code was never used and turned out to be obsolete upon closer inspection 86

Figure 46: Experiment III: Influence of a software change regarding a global variable
assignment, possibly influencing the control flow through several Basic Blocks (BB). 87

Figure 47: Comparison of the needed maximum and average PLC scan cycle time for the
different prioritization approaches .. 90

Figure 48: Comparison of the required memory for the different prioritization approaches ... 91

Figure 49 Approval rating of improvements over current situation as extracted from the
questionnaire ... 93

Figure 50: Qualitative evaluation of benefit vs. cost (efficiency inverted) regarding semi-
automatic system testing (top right is best) ... 94

Figure 51: Qualitative evaluation of benefit vs. feasibility regarding coverage assessment
(top right is best) ... 95

Figure 52: Qualitative evaluation of benefit vs. cost (efficiency inverted) regarding
prioritization (top right is best) ... 96

Figure 53: Required maximum and average PLC scan cycle times for the different
prioritization approaches (old version used in the evaluation and new, improved
version) in comparison to the original program. ... 100

12 Table of Tables 121

12 Table of Tables
Table 1: Rating scheme for the evaluation of existing, related approaches 27

Table 2: Evaluation of related approaches in the field of static code analysis 29

Table 3: Evaluation of related approaches in the field of formal verification 31

Table 4: Evaluation of related approaches in the field of (model-based) testing 32

Table 5: Evaluation of related approaches in the field of requirements-based coverage
assessment ... 34

Table 6: Evaluation of related approaches in the field of structure-based coverage
assessment ... 36

Table 7: Evaluation of related approaches in the field of static regression test selection and
prioritization .. 38

Table 8: Evaluation of related approaches in the field of dynamic regression test selection
and prioritization ... 39

Table 9: Evaluation of requirements: An overview over the connection of requirements and
performed experiments.. 84

Table 10: List of test cases as compiled for the test suite used in the case study 85

Table 11: Timing information of all system test cases from experiment II regarding the
identified change and change impact .. 88

Table 12: Configurations of the control program for experiment IV 89

Table 13: Summary of the rating of the fulfillment of the requirements 97

Table 14: Extrapolation of percentage of PLC scan cycle time required solely for
execution tracing in the configurations “traversal” and “all” (see Table 12) 101

	Leere Seite

