
Test-driven conceptual design of
cyber-physical manufacturing systems

Georg Hackenberg

Institut für Informatik

der Technischen Universität München

Test-driven conceptual design of cyber-physical
manufacturing systems

Georg Hackenberg

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Jörg Ott

Prüfer der Dissertation:

1. Prof. Dr. Dr. h.c. Manfred Broy

2. Prof. Dr.-Ing. Michael Zäh

Die Dissertation wurde am 26.04.2018 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 14.08.2018 angenommen.

Abstract

Today, manufacturing system engineering companies face three major trends: First, the
systems have to implement more functions and, hence, grow in complexity. Then, besides
mechanical engineering discipline the electrical and software engineering disciplines con-
tribute more and more to the functionality of the system and, hence, require increasing
efforts. And finally, the integration of the components from the individual engineering
disciplines has become a costly task taking up to 25% of the project budget.

When talking to management personnel from manufacturing system engineering com-
panies one can observe several practical challenges, which need to be addressed: For
one, todays projects are dominated typically by mechanical design decisions and, thus,
synergies between the different engineering disciplines cannot be exploited. Then, the
design decisions taken in one discipline are not synchronized properly with the other
disciplines leading to inconsistent and incompatible designs. Furthermore, the quality of
the overall system design is not evaluated sufficiently and, hence, design flaws remain un-
detected until commissioning. And finally, the different engineering activities are carried
out sequentially in a waterfall fashion potentially leading to costly design iterations.

In contrast, when looking at related work on the design of manufacturing systems, one
can observe a number of problems that remain unsolved until today: In the first place,
the approaches typically cover only a subset of design information and, therefore, do not
represent each engineering discipline appropriately and sufficiently. Secondly, even if the
approaches cover a wide range of design information an integrated formal foundation is
missing, which defines the syntactic and semantic relations between the design elements
precisely and unambiguously. As a consequence, an automated evaluation of the design
information cannot be performed or can be performed only over a limited subset of design
information. And finally, a practical methodology is missing fostering early verification
and validation of the design decisions.

To overcome the current situation, this doctoral thesis provides six contributions:
Foremost, the principles and ideas of test-driven and top-down, compositional software
development methods are adapted to the cyber-physical manufacturing system domain.
Then, an existing modeling technique and underlying formalism is adapted and extended
to cover design information about customer requirements, manufacturing processes, and
test cases in addition to part geometries, motion profiles, and energy as well as signal flow

v

behaviors. Subsequently, a taxonomy and formal definition of quality issues is developed
including syntactic completeness and consistency as well as extrinsic and intrinsic se-
mantic execution constraints. In the following, a prototypical tooling is proposed, which
demonstrates how the modeling technique and the quality issues can be implemented
in practice. Then, the overall approach is applied to an industry-close showcase, the
pick and place unit installed at the Institute for Automation and Information Systems,
Technical University of Munich. Finally, based on the experiment and data collected
during tool usage the feasibility of the test-driven method for the conceptual design of
cyber-physical manufacturing systems is discussed, the validity of the system model and
the underlying modeling technique is analyzed, and the relevancy of the syntactic and
semantic quality issues in practical applications is shown.

vi

Kurzfassung

Hersteller fertigungstechnischer Maschinen und Anlagen werden heutzutage mit drei zen-
tralen Trends konfrontiert: Zunächst müssen ihre Maschinen und Anlagen immer mehr
Funktionalitäten bieten, weshalb die Komplexität der Maschinen und Anlagen stetig
wächst. Dann tragen Software- und Elektrotechnikingenieure neben den klassischen
Maschinenbauingenieuren immer mehr zur Funktionalität der Maschinen und Anlagen
bei, weshalb sich die Arbeitsaufwände zwischen den Ingenieursdisziplinen verschieben.
Und schließlich hat sich die Integration der Komponenten aus den unterschiedlichen
Disziplinen zu einer kostspieligen Aufgabe entwickelt, welche bis zu 25% des Projekt-
budgets beanspruchen kann.

Wenn man mit Mitarbeitern aus dem Management der Hersteller fertigungstechnis-
cher Maschinen und Anlagen spricht, man kann unterschiedliche praktische Heraus-
forderungen erkennen, die adressiert werden sollten: Zunächst sind heutige Projekte typ-
ischerweise durch die Entwurfsentscheidungen von Maschinenbauingenieuren dominiert,
wes-halb Synergien zwischen den verschiedenen Ingenieursdisziplinen nicht ausgenutzt
werden können. Dann werden Entwurfsentscheidungen, die in einer Ingenieursdiszi-
plin getroffen wurden, nicht ordentlich mit den anderen Ingenieursdisziplinen synchro-
nisiert, was zu inkonsistenten und inkompatiblen Systementwürfen führt. Des Weit-
eren wird die Qualität des Gesamtsystementwurfs nicht ausreichend evaluiert, weshalb
Entwurfsmängel bis zur Inbetriebnahme der Systeme unerkannt bleiben können. Und
schließlich werden die verschiedenen Ingenieursaktivitäten sequenziell nach dem Wasser-
fallprinzip ausgeführt, was zu kostspieligen Überarbeitungsschleifen führen kann.

Demgegenüber kann man eine Reihe von ungelösten Problemen feststellen, wenn man
sich verwandte Arbeiten zum Entwurf von fertigungstechnischen Maschinen und Anlagen
ansieht: An erster Stelle decken bestehende Ansätze typischerweise nur eine Teilmenge
von Entwurfsinformationen ab und repräsentieren deshalb die eine oder andere Inge-
nieursdisziplin nur unzureichend. Zweitens fehlt Ansätzen, die prinzipiell eine gute Ab-
deckung der Entwurfsinformationen bieten, eine integrierte formale Grundlage, welche
die syntaktischen und semantischen Beziehungen zwischen den Entwurfs-elementen prä-
zise und eindeutig definiert. Daraus folgt dass eine automatische Bewertung der En-
twurfsinformationen entweder nicht erfolgen kann oder nur auf einer Teilmenge der En-
twurfsinformationen durchgeführt werden kann. Und schließlich fehlt eine praktische

vii

interdisziplinäre Entwurfsmethodik, welche eine frühe Verifikation und Validierung von
Entwurfsentscheidungen fördert.

Um die aktuelle Situation zu verbessern bietet diese Doktorarbeit sechs Beiträge: In
erster Linie werden die Prinzipien und Ideen der testgetriebenen und verfeinernden, kom-
ponentenbasierten Softwareentwicklungsmethoden auf die Domäne der cyberphysischen
fertigungstechnischen Maschinen und Anlagen übertragen. Dann wird eine bestehende
Modellierungstechnik und der darunter liegende mathematische Formalismus angepasst
und erweitert, sodass Entwurfsinformationen bezüglich der Kundenanforderungen, der
fertigungstechnischen Prozesse und der Testfälle zusätzlich zu Entwurfsinformationen
bezüglich der Bauteilgeometrien, der Bewegungsprofile, sowie der Energie- und Signal-
flüsse erfasst werden können. Danach wird eine Taxonomie und formale Definition
von Qualitätsproblemen entwickelt, welche syntaktische Vollständigkeit und Konsistenz
sowie extrinsische und intrinsische semantische Ausführungsbedingungen umfassen. Im
Folgenden wird ein prototypisches Werkzeug vorgestellt, welches demonstriert, wie die
Modellierungstechnik und die Qualitätsprobleme in der Praxis umgesetzt werden können.
Dann wird der vorgeschlagene Ansatz auf ein industrienahes Vorzeigeprojekt angewandt,
nämlich eine Hub- und Schwenkeinheit, welche am Institut für Automatisierungs- und In-
formationssysteme der Technischen Universität München aufgestellt ist. Schließlich wer-
den basierend auf dem Experiment und den Daten, die während der Werkzeugnutzung
gesammelt wurden, die Durchführbarkeit der testgetriebenen Methode für cyberphysische
fertigungstechnische Maschinen und Anlagen diskutiert, die Gültigkeit des Systemmod-
ells und der darunter liegenden Modellierungstechnik analysiert, und die Relevanz der
syntaktischen und semantischen Qualitätsprobleme in praktischen Anwendungen gezeigt.

viii

Acknowledgements

I am grateful to my doctoral advisors, my former colleagues at the Chair for Software &
Systems Engineering, Technische Universität München, my friends, my family, and my
wife for their valuable feedback and support during the past years.

ix

Publications

This doctoral thesis is based on a number of publications the author has contributed to.
In the following, the publications are listed distinguishing between publications as main
author and publications as co-author as well as advised Bachelor’s and Master’s theses.

Main author

– G. Hackenberg, M. Irlbeck, V. Koutsoumpas, and D. Bytschkow. Applying formal
software engineering techniques to smart grids. [HIKB12]

– G. Hackenberg and D. Bytschkow. Towards Early Emergent Property Under-
standing: Merging Behavior Space Exploration and Model-based Software Engi-
neering. [HB12]

– G. Hackenberg, C. Richter, and M. F. Zäh. Durchgängig modellbasierte Entwick-
lung von Werkzeugmaschinen. [HRZ13]

– G. Hackenberg, C. Richter, and M. F. Zäh. A Multi-disciplinary Modeling Tech-
nique for Requirements Management in Mechatronic Systems Engineering. [HRZ14]

– G. Hackenberg, M. Irlbeck, V. Koutsoumpas, and D. Bytschkow. A Rapid Pro-
totyping Approach for Smart Energy Systems Based on Partial System Mod-
els. [HIKB14]

– G. Hackenberg, A. Campetelli, C. Legat, J. Mund, S. Teufl, and B. Vogel-Heuser.
Formal Technical Process Specification and Verification for Automated Production
Systems. [HCL+14]

– G. Hackenberg. EnergyFOCUS Modellbasierte Entwicklungsmethode für die
Informations- und Kommunikationstechnologie (IKT) intelligenter Energiesysteme.
[Hac15]

– G. Hackenberg, C. Richter, and M. F. Zäh. From Conception to Refinement in
Mechatronic Systems Engineering. [HRZ15a]

xi

– G. Hackenberg, C. Richter, and M. F. Zäh. Integrierte modellbasierte Entwicklung
mechatronischer Systeme im Maschinen- und Anlagenbau (IMoMeSA). [HRZ15b]

– G. Hackenberg, M. Gleirscher, T. Stocker, C. Richter, and G. Reinhart. MaCon:
Consistent Cross-Disciplinary Conception of Manufacturing Systems. [HGS+16]

– G. Hackenberg and J. Mund. Cyber-physical manufacturing systems development:
A test-driven approach and exploratory case study. [HM16]

Co-author

– S. Eder, H. Femmer, and G. Hackenberg. ifedit ermglicht innovative Schnittstel-
lenspezifikationen. [EFH13]

– M. F. Zäh, C. Richter, and G. Hackenberg. Herausforderungen im mechatronischen
Entwicklungsprozess: Anforderungsanalyse bei ausgewählten Werkzeugmaschinen-
herstellern. [ZRH13a]

– M. F. Zäh, C. Richter, and G. Hackenberg. Integrierte modellbasierte Entwicklung
mechatronischer Systeme im Maschinen- und Anlagenbau (IMoMeSA). [ZRH13b]

– C. Richter, G. Hackenberg, and M. F. Zäh. Modellbasierte Entwicklungsmethode
für modulare Maschinen und Anlagen. [RHZ13]

– M. Irlbeck, D. Bytschkow, G. Hackenberg, and V. Koutsoumpas. Towards a
bottom-up development of reference architectures for smart energy systems.
[IBHK13]

– A. Campetelli, G. Hackenberg, M. Junker. Modelling of SPES XT Case Studies
with FOCUS Components. [CHJ13]

– C. Richter, G. Hackenberg, and M. F. Zäh. Interdisziplinäre Funktionsmodel-
lierung für die Generierung von robustem Steuerungscode für fehlertolerantes Sys-
temverhalten. [RHZ14a]

– C. Richter, M. F. Zäh, and G. Hackenberg. Interdisziplinäre Modellierungstechnik
zur Entwicklung mechatronischer Systeme. [RHZ14b]

– A. Vogelsang, S. Eder, G. Hackenberg, M. Junker, and S. Teufl. Supporting
Concurrent Development of Requirements and Architecture – A Model-based Ap-
proach. [VEH+14]

xii

– C. Legat, J. Mund, A. Campetelli, G. Hackenberg, J. Folmer, D. Schütz, M. Broy,
and B. Vogel-Heuser. Interface Behavior Modeling for Automatic Verification of
Industrial Automation Systems’ Functional Conformance. [LMC+14]

– C. Richter, M. F. Zäh, and G. Hackenberg. Integrierte modellbasierte Entwick-
lung von mechatronischen Systemen - Abschluss des AiF-Projektes “IMoMeSA”.
[RZH14]

– D. Ascher and G. Hackenberg. Early Estimation of Multi-Objective Traffic Flow.
[AH14]

– A. Campetelli, M. Gleischer, G. Hackenberg, M. Junker. Konzepte und Werkzeug-
Prototypen für die mechatronische Modellierung von Embedded Systems. [CGHJ14]

– A. Campetelli and G. Hackenberg. Performance Analysis of Adaptive Runge-Kutta
Methods in Region of Interest. [CH15]

– S. Teufl and G. Hackenberg. Efficient Impact Analysis of Changes in the Require-
ments of Manufacturing Automation Systems. [TH15]

– C. Richter, G. Hackenberg, P. Stich, and G. Reinhart. Modellbasierte Konzep-
tion von Benutzerschnittstellen im Entwicklungsprozess von mechatronischen Sys-
temen. [RHSR15]

– C. Richter, G. Hackenberg, and M. F. Zäh. Integrated Requirements and Systems
Modeling in the Mechatronic Development Process. [RHZR15]

– D. Ascher and G. Hackenberg. Integrated transportation and power system mod-
eling. [AH15]

– D. Ascher and G. Hackenberg. The TransP-0 framework for integrated transporta-
tion and power system design. [AH16]

– D. Ascher and G. Hackenberg. The passenger extension of the TRANSP-0 system
design framework. [AH17]

Advisor

– D. Ascher. A Model-based Approach for Specification and Validation of Smart
E-Mobility Control Requirements. [Asc13]

xiii

– J. Färber. Entwicklung eines Visualisierungsframeworks für das Verhalten intelli-
genter Energiesysteme auf Basis von XTREAM. [Fär14]

– S. Einwang. Entwurf, Implementierung und Demonstration eines 3D Animations-
framework für das Explorationswerkzeug XTREAM. [Ein14]

– L. Kaiser. Development of a model for the intelligent operation of a hydro power
plant chain. [Kai15]

– T. Stocker. Implementierung und Evaluation des Entwicklungsprozesses “IMo-
MeSA” für den Maschinen- und Anlagenbau. [Sto15]

– D. Ascher. Entwicklung eines verteilten Ansatzes zur näherungsweisen numerischen
Lösung von zeitdiskreten optimalen Steuerungsproblemen. [Asc15]

– T. Mulenko. Advanced experiment data collection and analysis for the MaCon
approach. [Mul16]

xiv

Contents

1 Introduction 1
1.1 Considered systems . 1

1.1.1 Manufacturing systems . 1

1.1.2 Machine tools . 3

1.2 Recent trends . 4

1.2.1 System complexities . 4

1.2.2 Engineering efforts . 5

1.2.3 Commissioning costs . 6

1.3 Practical challenges . 7

1.3.1 Mechanical dominance . 8

1.3.2 Lacking synchronization . 9

1.3.3 Insufficient evaluation . 9

1.3.4 Sequential engineering . 10

1.4 Claimed contributions . 10

1.4.1 Test-driven method . 12

1.4.2 Modeling technique . 12

1.4.3 Quality issues . 13

1.4.4 Prototypical tooling . 13

1.4.5 Industry-close showcase . 14

1.4.6 Critical discussion . 14

1.5 Intended audience . 14

1.5.1 System builders . 16

1.5.2 Tool providers . 16

1.5.3 Scientific researchers . 17

1.6 Summary and outlook . 18

2 Differentiation 19
2.1 Related work . 19

2.1.1 Diagram-based techniques . 20

2.1.2 Physics-based techniques . 22

xv

Contents

2.1.3 Component-based techniques . 25

2.1.4 Matrix-based techniques . 27

2.1.5 Function-based techniques . 30

2.1.6 Ontology-based techniques . 33

2.1.7 Commercial tools . 37

2.2 Remaining problems . 41

2.2.1 Information coverage . 43

2.2.2 Integrated formalism . 43

2.2.3 Automated evaluation . 44

2.2.4 Practical methodology . 45

2.3 Research objectives . 46

2.4 Summary and outlook . 46

3 Test-driven method 47

3.1 Preparation phase . 48

3.1.1 Requirement specification . 49

3.1.2 Process specification . 50

3.1.3 Test specification . 52

3.2 Implementation phase . 53

3.2.1 Test selection . 55

3.2.2 Architecture specification . 57

3.2.3 Behavior specification . 59

3.2.4 Part specification . 61

3.3 Summary and outlook . 63

4 Theoretical foundation 65

4.1 Focus on components and streams (FOCUS) 65

4.1.1 Streams . 65

4.1.2 Channels . 66

4.1.3 Components . 68

4.1.4 State transition systems . 70

4.2 Spatio-temporal engineering models (STEM) 72

4.2.1 Transformable collision spaces . 72

4.2.2 Spatio-temporal components . 73

4.2.3 Extended spatio-temporal components 78

4.3 Summary and outlook . 84

xvi

Contents

5 Modeling technique 85
5.1 Basic concepts . 85

5.1.1 Observations . 86

5.1.2 Executables . 87

5.1.3 Expressions . 89

5.1.4 Volumes . 92

5.1.5 Transforms . 94

5.2 Revised concepts . 95

5.2.1 Components . 95

5.2.2 Ports . 110

5.2.3 Channels . 115

5.2.4 Parts . 116

5.2.5 Behaviors . 117

5.3 Added concepts . 118

5.3.1 Requirements . 119

5.3.2 Properties . 119

5.3.3 Monitors . 121

5.3.4 Scenarios . 122

5.4 Summary and outlook . 124

6 Quality issues 125
6.1 Syntactic issues . 126

6.1.1 Incompleteness issues . 126

6.1.2 Inconsistency issues . 129

6.2 Semantic issues . 143

6.2.1 Extrinsic issues . 146

6.2.2 Intrinsic issues . 148

6.3 Summary and outlook . 155

7 Prototypical tooling 157
7.1 Modeling interface . 157

7.1.1 Toolbar view . 158

7.1.2 Explorer view . 158

7.1.3 Editor view . 159

7.1.4 Scene view . 163

7.1.5 Issues view . 164

7.1.6 Changes view . 165

7.1.7 Attributes view . 166

xvii

Contents

7.2 Testing interface . 167

7.2.1 Toolbar view . 168

7.2.2 Explorer view . 169

7.2.3 Editor view . 170

7.2.4 Scene view . 173

7.2.5 Issues view . 174

7.2.6 Results view . 175

7.2.7 Attributes view . 176

7.3 Summary and outlook . 177

8 Industry-close showcase 179

8.1 Templates . 180

8.1.1 White/gray/black workpiece . 180

8.1.2 Component sensor . 181

8.1.3 Workpiece sensor . 181

8.1.4 Abstract static cylinder . 182

8.1.5 Concrete static cylinder . 183

8.1.6 Concrete static cylinder / Piston 184

8.1.7 Concrete dynamic cylinder . 184

8.1.8 Concrete dynamic cylinder / Tip 186

8.2 Components . 186

8.2.1 PPU . 187

8.2.2 PPU / Distributor . 192

8.2.3 PPU / Distributor / Twister . 197

8.2.4 PPU / Distributor / Lifter . 198

8.2.5 PPU / Distributor / Lifter / Arm 199

8.2.6 PPU / Distributor / Controller . 200

8.2.7 PPU / Stamper . 201

8.2.8 PPU / Stamper / Basket . 205

8.2.9 PPU / Stamper / Stamp . 205

8.2.10 PPU / Stamper / Controller . 206

8.2.11 PPU / Sorter . 207

8.2.12 PPU / Sorter / Actuator . 211

8.2.13 PPU / Sorter / Controller . 212

8.3 Summary and outlook . 213

xviii

Contents

9 Critical discussion 215
9.1 Method feasibility . 216

9.1.1 Activity sequences . 216
9.1.2 Design revisions . 217
9.1.3 System increments . 219

9.2 Model validity . 220
9.2.1 System architecture . 221
9.2.2 System behavior . 226

9.3 Issue relevancy . 235
9.3.1 Syntactic issues . 235
9.3.2 Semantic issues . 238

9.4 Study validity . 242
9.4.1 Internal validity . 242
9.4.2 External validity . 245

9.5 Summary and outlook . 245

10 Conclusion 247
10.1 Summary . 247

10.1.1 Practical challenges . 247
10.1.2 Remaining problems . 248
10.1.3 Claimed contributions . 248

10.2 Outlook . 249
10.2.1 Method efficiency . 249
10.2.2 Model suitability . 250
10.2.3 Issue completeness . 251
10.2.4 Tool usability . 253

xix

1 Introduction

Test-driven conceptual design of cyber-physical manufacturing systems represents a novel
approach to manufacturing system engineering, which provides a number of advantages
over existing techniques. To introduce the interested reader, in this chapter first the
class of manufacturing systems is explained in Section 1.1, which the proposed approach
addresses specifically. Then, three major trends in the manufacturing systems domain
are described in Section 1.2, which have been documented in literature and shape to-
day’s and future manufacturing systems products and related manufacturing systems
engineering approaches. Subsequently, four practical challenges manufacturing systems
builders are facing today are illustrated in Section 1.3, which have been collected in
a number of interviews with practitioners from industry and from which the goals of
this doctoral thesis are derived. Thereafter, the contributions of this doctoral thesis
are summarized in Section 1.4, which are meant to tackle the practical challenges and,
thus, reach the underlying research goals and answer the respective research questions.
Finally, the intended audience of this document is described in Section 1.5, which is
targeted specifically and which is expected to benefit most from the research directions
explored and results achieved throughout the course of this work.

1.1 Considered systems

For those who are unfamiliar with the term “manufacturing systems”, some basic back-
ground information is provided here in this first section. Therefore, subsequently the
class of manufacturing systems is introduced in Section 1.1.1, before describing the sub-
class of machine tools in Section 1.1.2. Note that this thesis was elaborated in close
collaboration with seven small- and medium-size machine tool builders, which is why
the discussion concentrates on the subclass of machine tools. Also, note that machine
tools probably represent the most well-known subclass of manufacturing systems.

1.1.1 Manufacturing systems

Manufacturing systems fall into the more general class of production systems [Gro15].
The purpose of production systems is to transform resources into goods by means of one

1

1 Introduction

or more production processes. Hereby, both resources and goods can be (solid, liquid,
or gaseous) material, (electric, pneumatic, pneumatic, thermal, kinetic, kinematic, etc.)
energy, and information or any combination of them, while the production processes de-
scribe the transformation. In contrast, the more specific manufacturing systems typically
produce solid material goods only such as metal gears or motor blocks. Furthermore,
Warnecke and Westkämper [WW10] as well as the DIN 85801 provide a classification of
related production processes shown in Figure 1.1.

Forming

Shaping Cutting

Joining Coating

Changing

material

properties

Increasing cohesion

Changing material shape

Manufacturing processes

Figure 1.1: Production processes implemented by manufacturing systems [WW10].

According to the classification, in principle six main groups of production processes can
be distinguished, which are implemented typically by manufacturing systems: (1) Form-
ing, (2) shaping, (3) cutting, (4) joining, (5) coating and (6) changing material properties.
Hereby, forming is concerned with the production of solid bodies for example from the
suitable combination of fluids and powders. Shaping, on the other hand, refers to chang-
ing the shape of material while keeping its mass. Instead, cutting implies changing the
shape of material while reducing its mass. Then, joining refers to creating solid connec-
tions between two or more independent solid bodies. Furthermore, coating represents
superimposing thin layers of shapeless material onto solid bodies. Finally, changing ma-
terial properties denotes improving material characteristics such as hardness for future
use. One key characteristic of the production processes is that both input and output

1http://www.beuth.de/en/standard/din-8580/65031153

2

http://www.beuth.de/en/standard/din-8580/65031153

1.1 Considered systems

are determined mostly by their geometry, while only forming and changing material
properties represents an exception.

1.1.2 Machine tools

Machine tools represent one specific subclass of manufacturing systems, which is con-
cerned with only a subset of production processes introduced in the previous section.
Hirsch [Hir16] as well as the DIN 69651-12 provide a refined classification of related
production processes shown in Figure 1.2. Note that this thesis mainly refers to metal
processing machine tools as opposed to – for example – wood processing machine tools.

Shaping

Cutting

Joining

Dissecting Chipping Sparking

... ...

Manufacturing processes

Machine tool processes

Figure 1.2: Production processes implemented by machine tools [Hir16].

According to the refined classification, metal processing machine tools typically em-
ploy three main groups of production processes: (1) Shaping, (2) cutting, and (3) join-
ing. Shaping can be implemented for example by pressing or hammering the material.
Cutting, on the other hand, can be subdivided into (a) dissecting, (b) chipping, and
(c) sparking. Dissecting can be achieved for example by shearing, while chipping can
performed by means of grinding or milling, and sparking can be realized by electrochem-
ical processes. Finally, joining can be implemented by means of welding or soldering.
Furthermore, one can distinguish between the workpiece, that is being processed by a

2http://www.beuth.de/en/draft-standard/din-69651-1/2361625

3

http://www.beuth.de/en/draft-standard/din-69651-1/2361625

1 Introduction

machine tool, and the tool itself, that is being used. For example, the workpiece can
be a metal blank, while the tool can be a hammer or driller. Typically, machine tools
also are able to exchange their tools during system operation such that more flexible
production processes can be implemented using the same equipment / platform.

1.2 Recent trends

In recent years three major trends have been observed in the manufacturing systems do-
main, which are expected to have a significant impact on the way we design and develop
such systems: Increasing system complexities (see Section 1.2.1), shifting engineering
efforts (see Section 1.2.2), and high commissioning costs (see Section 1.2.3). In the
following, the trends as well as their implications are explained in more detail.

1.2.1 System complexities

In 2013, Gausemeier et al. [GTD13] described the relation between growing complexity
of industrial products and the performance of discipline-specific engineering methods
over time. Note that manufacturing systems (see Section 1.1.1) and machine tools (see
Section 1.1.2) represent industrial products according to their definition. The relation
between product complexity and method performance is depicted in Figure 1.3.

Time

Product complexity / Discipline-specific engineering method efficiency

Mechanical products Mechatronic products Cyber-physical systems

Figure 1.3: Relative product complexity and engineering method efficiency [GTD13].

4

1.2 Recent trends

Industrial products have evolved over time from purely mechanical products (compris-
ing only mechanical elements) over mechatronic products (adding electrics, electronics,
and information processing) to cyber-physical systems (adding networking capabilities).
Along this evolution both the product complexity and the performance of discipline-
specific engineering methods have increased. However, a much stronger growth of prod-
uct complexity can be observed indicating that discipline-specific engineering methods
are not suitable for the development of today’s and future industrial products anymore.
Consequently, Gausemeier et al. argue for novel multidisciplinary engineering approaches
that embrace all relevant aspects of the system under development.

1.2.2 Engineering efforts

Then, in 2007 Reinhart et al. [RW07] reported a drastic shift in engineering efforts for the
development of mechatronic and cyber-physical production systems. Again, note that
manufacturing systems (see Section 1.1.1) and machine tools (see Section 1.1.2) represent
mechatronic and cyber-physical production systems according to their definition. The
main result of the study is provided in Figure 1.4.

100%

80%

60%

40%

20%

0%

1970 1980 1990 2000 2010 2020

Mechanics

Software

Elec
trics

Figure 1.4: Relative efforts of mechanical, electrical and software engineering [RW07].

In the 1970ies mechanical engineering required more than 80% of the engineering
effort, while electrical engineering and software engineering took less than 20% only.
Then, in the 1990ies the share of mechanical engineering was reduced already to 60% of

5

1 Introduction

the engineering effort, while electrical engineering claimed slightly more than 10% and
software engineering demanded slightly less than 30%. Today, the effort for mechanical
engineering requires approximately 20%, while electrical engineering has grown to almost
20% and software engineering claims around 60%. In summary, a large portion of the
engineering efforts has shifted from mechanical engineering to the other engineering
disciplines, which needs to be reflected by the engineering approaches.

1.2.3 Commissioning costs

Finally, the same study by Reinhart et al. [RW07] also observed rather high commission-
ing cost in industrial practice. Hereby, commissioning refers to the physical assembly of
the mechatronic production system, the installation of the control software, the execu-
tion of test runs, and the removal of implementation bugs until the test runs are passed.
The main result of the study is shown in Figure 1.5.

Total project time Commissioning Control engineering

Up to 90%
comm. of

control
hard- and
software

70%
software

debugging

15 - 25%

10
0%

Figure 1.5: Relative efforts of control hard- and software commissioning [RW07].

Commissioning usually takes between 15% and 25% of the total project time. More-
over, 90% of the commissioning effort goes into control hardware and control software
commissioning. Finally, 70% of the control hardware and control software commission-
ing efforts are claimed by software debugging. Consequently, more than half of the
commissioning efforts are required for software debugging. The authors argue that novel
engineering methods are required, which allow one to reduce the commissioning costs.
As a solution, the authors propose the idea of virtual commissioning, which allows one

6

1.3 Practical challenges

to perform control hardware and/or software commissioning respectively debugging with
respect to a computer-based model of the electro-mechanical machine.

1.3 Practical challenges

Subsequently, prior to the actual research work of this doctoral thesis an empirical
study [HRZ13] was performed with seven small- and medium-size manufacturing system
builders to also learn about their engineering processes as well as practical challenges,
which hinder dealing with the increasing system complexity (see Section 1.2.1), the
shifting discipline efforts (see Section 1.2.2), and the high commissioning costs (see Sec-
tion 1.2.3). A slightly revised version of the study’s main result is provided in Figure 1.6.

Conceptual design Detailed design Physical assembly

Process engineeringProcess engineering

Mechanical engineeringMechanical engineering

Process engineeringProcess engineering

Mechanical engineeringMechanical engineering

Electrical engineeringElectrical engineering

Software engineeringSoftware engineering

PurchasingPurchasing

ManufacturingManufacturing

MountingMounting

CommissioningCommissioning

First force, velocity, etc. calculationsFirst force, velocity, etc. calculations

Assembly structure, coarse geometriesAssembly structure, coarse geometries

Process specification documentProcess specification document

Technical drawings, parts listTechnical drawings, parts list

Schematic diagrams, assembly planSchematic diagrams, assembly plan

PLC, NC and HMI programmingPLC, NC and HMI programming

Cross-phase time line

Intra-phase tim
e line

Mechanical dominanceMechanical dominance

Insufficient evaluationInsufficient evaluation

Practical challenges

1

C3

C1

Sequential engineeringSequential engineeringC4

Lacking synchronizationLacking synchronizationC2 Delayed purchasingDelayed purchasingC5

Figure 1.6: Practical challenges in manufacturing system engineering [HRZ13].

7

1 Introduction

In accordance to Pahl and Beitz [PBFG06], the observations showed that manufac-
turing system engineering projects are split typically into three phases, namely (1) a
conceptual design phase, (2) a detailed design phase, and (3) a physical assembly phase.
The conceptual design phase starts with process engineers decomposing the manufactur-
ing problem (e.g. manufacturing gears from blanks) into process steps (e.g. first milling,
then grinding the gear teeth) and performing first force and velocity calculations. Then,
mechanical engineers define the assembly structure as well as the coarse geometries and
motion profiles for achieving the defined manufacturing process. If the conceptual de-
sign is accepted, the detailed design phase is initiated. The detailed design phase, again,
starts with process engineers working out a detailed process specification. Then, me-
chanical engineers elaborate the technical drawings of mechanical parts and derive part
lists. Afterwards, electrical engineers construct schematic diagrams and assembly plans
of electrical components, from which, again, part lists are derived. Finally, software
engineers develop programmable logic controller (PLC), numerical control (NC), and
human-machine interaction (HMI) components. If the detailed design is accepted, the
physical assembly phase is initiated. The physical assembly phase starts with purchasing
third-party mechanical and electrical components from the part lists. Then, proprietary
mechanical and electrical components are manufactured in-house. Thereafter, the pur-
chased and manufactured physical components are mounted. Finally, the software com-
ponents are installed onto the computing equipment, before first commissioning tests are
performed. As noted previously (see Section 1.2.3), during commissioning typically de-
sign flaws are discovered which are resolved in a costly debugging process. Consequently,
practitioners were asked about the main reasons for commissioning failure. From the
obtained answers the following five key challenges have been extracted, which need to
be tackled by future approaches for cyber-physical manufacturing system engineering:
Mechanical dominance (see Section 1.3.1), lacking synchronization (see Section 1.3.2),
insufficient evaluation (see Section 1.3.3), sequential engineering (see Section 1.3.4), and
delayed purchasing. This doctoral thesis concentrates on the first four challenges leaving
the fifth challenge for future research.

1.3.1 Mechanical dominance

Firstly, mechanical dominance refers to the observation that during the conceptual design
phase typically only process and mechanical engineers are involved in the projects, while
electrical and software engineers do not enter before starting the detailed design phase.
Consequently, the conceptual design and, hence, the detailed design are dominated by
mechanical design decisions. However, the mechanical design decisions might have a
negative impact on the overall engineering effort, system quality, and project cost. For

8

1.3 Practical challenges

example, the engineering effort might increase or the system quality might decrease
because existing/tested electrical and software components cannot be reused with the
mechanical design.

Conclusion

Ideally, modern engineering methods, techniques, and tools enable electrical and software
engineers to contribute already during the conceptual design phase. Then, early design
decisions can be taken with respect to the expected impacts on all engineering disciplines
involved. Consequently, negative impacts can be avoided and synergies can be exploited
more easily.

1.3.2 Lacking synchronization

Then, lacking coordination refers to the observation that during the detailed design phase
(i.e. after including all engineering disciplines) design decisions might not be propagated
between mechanical, electrical, and software engineers. Consequently, design decisions
taken in one discipline might not be reflected by the other disciplines despite their
potential impact. For example, sensors added and/or removed in the mechanical and
electrical design have an impact on the control software because different information
might be available about the physical system state and different control strategies might
be required.

Conclusion

Ideally, modern engineering methods, techniques, and tools enable all design decisions
taken in one discipline to be propagated to all other disciplines as soon as possible. Con-
sequently, the other disciplines are able to react to the design decisions instantaneously.
In particular, the other disciplines can adapt their discipline-specific designs much earlier
to the new circumstances saving superfluous engineering efforts. Note that this approach
might entail much more iterations, but with much smaller scope.

1.3.3 Insufficient evaluation

Subsequently, insufficient evaluation refers to the observation that during the detailed
design phase (i.e. after including all engineering disciplines) quality assurance for the me-
chanical, electrical, and software design is not performed sufficiently. Consequently, the
developed design might include design flaws, which cannot be detected and resolved until
physical commissioning. However, detecting design flaws during physical commissioning

9

1 Introduction

can be costly, especially, in case the mechanical design has to be changed, which might
entail changes to the electrical and the software design. For example, one might notice
during physical commissioning that the system cannot be operated without collisions
and, thus, considerable damage to physical components.

Conclusion

Ideally, modern engineering methods, techniques, and tools enable quality assurance to
be performed frequently on the designs such that design flaws can be detected as early as
possible. Consequently, design flaws can be resolved much faster reducing their impact
on the overall system design and, hence, the overall costs of the engineering project.
Furthermore, note the close relation between this goal and the idea of virtual commis-
sioning [RW07].

1.3.4 Sequential engineering

Finally, sequential engineering refers to the observation that during the detailed design
phase mechanical engineering is performed before electrical engineering, and electrical
engineering is performed before software engineering. Consequently, the complete me-
chanical design must exist before the electrical design is elaborated and the complete
electrical design must exist before the software design is elaborated. However, mechani-
cal and electrical design flaws might not be detected until the software design is available.
For example, the software design might require an additional sensor, whose spatial extent
entails substantial mechanical and electrical design revisions.

Conclusion

Ideally, modern engineering methods, techniques, and tools enable all mechanical, elec-
trical, and software engineering to be performed in parallel. Consequently, design de-
cisions taken in one discipline can be considered much earlier by the other disciplines
and negative impacts can be avoided as well as synergies can be exploited more easily.
Furthermore, costly design revisions due to late feedback can be avoided.

1.4 Claimed contributions

To tackle the practical challenges in the engineering and – more specifically – the con-
ceptual design of cyber-physical manufacturing systems (see previous Section 1.3) this

10

1.4 Claimed contributions

doctoral thesis claims six contributions. Figure 1.7 provides an overview of these con-
tributions and their relationships.

Contribution 1:
Test-driven method

Contribution 2:
Modeling technique

Contribution 3:
Quality issues

Contribution 4:
Prototypical tooling

Contribution 5:
Industry-close showcase

Contribution 6:
Critical discussion

Implemented by

Demonstrated in

Evaluated in

Concretized by

Used in

Refined by

Implemented by

Figure 1.7: Overview of the claimed contributions and their relationships.

In the first step, (1) a test-driven method for the conceptual design of cyber-physical
manufacturing systems is proposed fostering initial requirement, material, manufactur-
ing process, and test specification, subsequent mechatronic and discipline-specific ar-
chitecture, behavior, and shape specification, fundamentally iterative and incremental
development, as well as frequent constraint- and test-based verification and validation of
iterations and increments (see Section 1.4.1). Then, to realize such test-driven method
(2) an interdisciplinary modeling technique is devised covering everything from customer
requirements and manufacturing processes to part geometries and control behaviors as
well as an underlying formalism defining the syntactic and semantic relations of the
design content (see Section 1.4.2). Furthermore, to support frequent verification and
validation activities (3) a taxonomy of syntactic and semantic quality issues is provided,
which allow one to assess the completeness and consistency of design content, as well
as a formal definition of the underlying structural and behavioral constraints for au-

11

1 Introduction

tomation purposes (see Section 1.4.3). Subsequently, to enable a practical evaluation of
the previous ideas (4) prototypical tooling is developed including complementary, but
integrated views onto and graphical editors for the design content as well as access to
the results of continuous syntactic and user-triggered (i.e. spontaneous) semantic quality
assessment (see Section 1.4.4). Then, (5) the approach is evaluated experimentally with
an industry-close showcase, which covers the selective transportation and manipulation
of different kinds of material, comprises three mechatronic subsystems, and comes with
publicly accessible documentation (see Section 1.4.5). And finally, (6) a critical discus-
sion of the feasibility of the test-driven method, the validity of the modeling technique,
and the relevancy of the quality issues is provided, which is based on data collected dur-
ing the experiment (see Section 1.4.6). In the following, each contribution is described
in more detail.

1.4.1 Test-driven method

Initially, in Chapter 3 a novel test-driven method is proposed for the conceptual design
of cyber-physical manufacturing systems. As known from the software domain, the pro-
posed test-driven approach promotes writing test cases before working on the details of
their implementation. Consequently, the verification of implementation details can be
automated to a large portion and verification can be performed much earlier in the de-
velopment process assuming that respective test cases have been specified. Furthermore,
the approach promotes developing the system in increments and testing the increments
thoroughly before extending the system scope. As a result, working virtual prototypes
are available much earlier in the process and validation can be performed in collabora-
tion with the customers and other stakeholders. Opposed to test-driven methods in the
software domain, the proposed approach includes dedicated activities for the concep-
tual design of cyber-physical manufacturing systems such as (input/output) material,
manufacturing process, and (mechanical) part specification.

1.4.2 Modeling technique

Then, in Chapter 5 a novel interdisciplinary modeling technique is devised for captur-
ing the design content generated by the test-driven method from the previous section.
In particular, the modeling technique provides an object-oriented data model for doc-
umenting requirement, manufacturing process, and test specifications, mechatronic and
discipline-specific architectures, part geometries and motion profiles, as well as energy
flow and signal flow (i.e. control) behaviors. Furthermore, the object-oriented data model
is underpinned with formal syntax and semantics, which is derived from previous work

12

1.4 Claimed contributions

explained in Chapter 4. In particular, the formal syntax and semantics gives precise
meaning to the elements of the design content and their relations. Consequently, not
only the structural dependencies among the elements of the design content can be ana-
lyzed automatically, but also the behavioral semantics regarding energy and signal flow
as well as motion of mechanical parts.

1.4.3 Quality issues

Subsequently, in Chapter 6 a taxonomy of quality issues is provided that can be detected
over design content expressed using the modeling technique from the previous section.
In accordance to the formal syntax and semantics, this thesis distinguishes between
syntactic and semantic quality issues. The syntactic issues cover the completeness and
consistency of the design content. Consequently, the engineers can be informed about
missing information (e.g. the geometry of a mechanical part) and contradictions within
existing information (e.g. the data types of two connected signal ports). Similarly, the
semantic issues cover aspects like the correct implementation of requirements and man-
ufacturing processes or the ability to operate the cyber-physical manufacturing system
without collisions of mechanical parts. Overall, a precise definition of the quality is-
sues is emphasized such that they can be evaluated automatically and implemented by
potential tool vendors easily.

1.4.4 Prototypical tooling

Thereafter, in Chapter 7 prototypical tooling is developed that tightly integrates the
modeling technique and the automated evaluation of the quality issues from the previ-
ous two sections. The prototypical tooling represents an answer to how the modeling
technique and the taxonomy of quality issues could be exploited in practice. In par-
ticular, the tooling provides fourteen different views onto the design content, which are
distributed across a modeling and a testing screen. Thereby, one key challenge lies in
displaying the relations between logical and geometrical elements such as component
architectures, state machines, part geometries, and motion profiles. Furthermore, the
tooling supports four graphical notations for different elements of the design content
as well as one three-dimensional view onto the system geometry. Finally, the tooling
integrates continuous evaluation and display of syntactic issues as well as spontaneous
evaluation and display of semantic issues.

13

1 Introduction

1.4.5 Industry-close showcase

Then, in Chapter 8 this thesis describes the result of applying the test-driven method,
the interdisciplinary modeling technique, the quality issues, and the prototypical tooling
to an industry-close showcase: The pick and place unit installed at the Institute for
Automation and Information Systems, Technische Universität München3. In particular,
all elements of the conceptual design are outlined from the overall system and the system-
level (mechatronic) modules to the module-level components. For each system, system-
level module, and module-level component information about the underlying design
decisions is provided from the requirement, manufacturing process, and test as well
as the mechatronic system, mechanical, electrical, and software engineers. In essence,
the chapter demonstrates how conceptual design documents could look like in the future
when using the proposed interdisciplinary approach. Implicitly, the showcase also proves
the maturity and usability of the prototypical tooling.

1.4.6 Critical discussion

Finally, in Chapter 9 this thesis discusses the results of the experiment critically with re-
spect to several research questions. In particular, the feasibility of the test-driven design
method for the domain of cyber-physical manufacturing systems is assessed. Then, the
validity of the interdisciplinary modeling technique and its formal foundation is evalu-
ated. Furthermore, the relevancy of the quality issues covered by the proposed taxonomy
is contemplated. And finally, the potential threats to the internal and external validity
of the study are analyzed. To show the feasibility of the test-driven design method, data
collected during usage of the prototypical tooling is studied with respect to modeling
and simulation activities. In contrast, to determine the validity of the interdisciplinary
modeling technique, the design content and its execution semantics are compared to the
original SysML documentation as well as the behavior of the physical system. Lastly, to
demonstrate the relevancy of the selected quality issues, the tool data is evaluated with
respect to the appearance and disappearance of quality issues.

1.5 Intended audience

At last, the audience is described this doctoral thesis is intended for. The first group
are system builders, i.e. people constructing cyber-physical manufacturing systems (see
Section 1.5.1). The second group are tool providers, i.e. people developing software

3http://www.ais.mw.tum.de/en/

14

http://www.ais.mw.tum.de/en/

1.5 Intended audience

tools that are used by system builders for designing cyber-physical manufacturing sys-
tems (see Section 1.5.2). Finally, the third and last group are scientific researchers, i.e.
people working on theoretical and practical contributions in the field of cyber-physical
manufacturing system design. Figure 1.8 provides an overview of the intended audience
and its relations to the contributions of this doctoral thesis. Note that additional rela-
tions might exist. However, the discussion concentrates on those relations only which
are considered to be most important.

Group 1:
System builders

Group 2:
Tool providers

Group 3:
Research scientists

Test-driven method
(agile, interdisciplinary)

Modeling technique
(multi-view, formal)

Quality issues
(syntactic, semantic)

Prototypical tooling
(practical implementation)

Industry-close showcase
(case-based demonstration)

Critical discussion
(data-based evaluation)

Apply

Use

Evaluate

Reuse

Adapt

Implement

Reuse

Compare

Improve

Extend

Develop

Deepen

Cl
ai

m
ed

 c
on

tr
ib

ut
io

ns

Intended audience

Figure 1.8: Overview of the indented audience of this doctoral thesis.

In the following, the intended audience is explained in more detail. In particular, the
description focuses on how each group of people introduced previously can benefit from
the different contributions claimed by this doctoral thesis (see Section 1.4). Note that
here intentions are stated only. Still, this section should help reading this doctoral thesis
from different points of view and different professional roles.

15

1 Introduction

1.5.1 System builders

System builders are expected to benefit from this doctoral thesis in several ways: Most
importantly, this thesis provides novel ideas on how to organize the conceptual design
process in a more agile fashion (see Chapter 3). In particular, the proposed approach
relies on iterations and increments for developing a common understanding of the de-
sign problem as well as the conceptual solution already early in the conceptual design
process. Hereby, the increments allow one to start with a reduced initial design scope,
which is extended gradually until the complete final design scope is reached. In contrast,
the iterations allow one to revise the documented understanding of a given increment
until a common understanding is reached. Consequently, misunderstandings between
the customer and the system builder as well as between the different engineering disci-
plines involved in the design process can be identified and resolved much earlier than
before. Similarly, actual design flaws introduced by the different engineering disciplines
can be uncovered and resolved much earlier also. Resolving misunderstandings and/or
design flaws already early in the process, in turn, reduces their impact on the overall
design process and, therefore, the project costs. Furthermore, this thesis provides novel
ideas on how to describe system requirements, manufacturing processes, and test cases
as well as implementation details (see Chapter 5) such that the implementation details
can be verified automatically both on a syntactic and a semantic level (see Chapter 6).
Automatic verification, in turn, allows one to reduce the verification costs as well as
to increase the verification frequency leading to better quality in shorter time and with
lower budget. Finally, this thesis includes an industry-close showcase (see Chapter 8)
demonstrating how the novel approach can be applied in practice. The industry-close
showcase can serve as a blueprint of how future design documents for cyber-physical
manufacturing systems could look like. System builders could use this blueprint for
structuring their own design documents more systematically. Furthermore, the show-
case also can help explaining the ideas and principles behind the proposed approach to
engineering personnel.

1.5.2 Tool providers

Similarly, tool providers are expected to benefit from this doctoral thesis in several
ways: Most importantly, this thesis provides novel ideas on how to model cyber-physical
manufacturing systems from several viewpoints as well as how to check the syntactic
and semantic quality of the models automatically. In particular, the viewpoints include
customer requirements, manufacturing processes and test cases as well as implemen-
tation details such as component architectures, part geometries, motion profiles, and

16

1.5 Intended audience

energy/signal flow behaviors. Consequently, the proposed approach provides a broad
coverage of design information which is relevant during the conceptual design phase.
Some commercial tools also provide such broad coverage of design information. How-
ever, these tools are lacking an underlying formalism describing the syntactic and se-
mantic relations between the design elements. As a result, the tools only support limited
checks of the syntactic and semantic quality of the design elements. Typically, the checks
are limited to a single viewpoint (e.g. the signal input/output behavior of the software
controller or the behavior of mechanical parts under physical stress) or a subset of view-
points (e.g. the motion of mechanical parts given some motion profiles). To overcome
this situation, the proposed multi-view modeling technique (see Chapter 5) comes with
an underlying formalism describing the syntactic and semantic relations of the design el-
ements within single and between different viewpoints. Furthermore, this thesis provides
formal definitions of the syntactic and semantic quality checks (see Chapter 6) which can
be applied to the design elements. Most importantly, the semantic quality checks cover
the behavior of the cyber-physical system in different scenarios, which has to satisfy cer-
tain geometrical as well as energy and signal flow related constraints. Tool providers can
use the results of this doctoral thesis to improve the syntactic and semantic foundation
of their own models and quality checking mechanisms. Furthermore, tool providers can
use the ideas provided on prototypical tooling (see Chapter 7) to integrate syntactic and
semantic quality checks over their multi-view models into their user interfaces.

1.5.3 Scientific researchers

Finally, research scientists are expected to benefit from this doctoral thesis in the fol-
lowing ways: First, this doctoral thesis contains novel ideas on how to approach the
conceptual design of cyber-physical manufacturing systems in a more agile, interdisci-
plinary fashion (see Chapter 3). However, the contribution is limited to showing that
such agile, interdisciplinary approach is feasible in the cyber-physical manufacturing sys-
tems domain. On the other hand, the questions remains open how efficient the proposed
method is in comparison to other agile and non-agile methods. Then, this doctoral
thesis proposes a novel formal modeling technique that covers a wide range of design
information from customer requirements, manufacturing processes, and test cases to im-
plementation details such as (cyber-physical) component architectures, part geometries,
motion profiles, as well as energy and signal flow behaviors (see Chapter 5). While this
contribution represents a significant advance in unifying the syntax and semantics of the
design models and languages of the different engineering disciplines there still is huge
space for improvement. In particular, the question remains how intuitive the prosed
modeling technique is for practitioners and whether more intuitive and, hence, appropri-

17

1 Introduction

ate modeling techniques exist. Similarly, huge potential lies in extending the taxonomy
of quality issues and their formal definitions (see Chapter 6). While this doctoral thesis
covers and structures a significant number of quality issues, the evaluation is limited to
showing their practical relevance. However, it remains unclear how complete the tax-
onomy of quality issues is. Hence, evaluating the completeness of the taxonomy and
extended the taxonomy if necessary remain a major challenge, for which this doctoral
thesis can serve as a solid foundation. Subsequently, a key contribution of this doctoral
thesis is the prototypical tooling (see Chapter 7). The prototypical tooling and its built-
in tracking allows one to perform a case-based empirical study easily. In particular, the
built-in tracking of user actions has proven to deliver useful data for empirical analysis.
Other researchers might adopt this tracking-based approach, also because it represents
no overhead to the study participants. Finally, the critical discussion based on tracking
data (see Chapter 9) can serve as a blueprint for the evaluation of other design methods
and modeling techniques. It will be interesting to see how the evaluation based on track-
ing data will evolve in the future. Possibly, standard measurement and interpretation
techniques will be developed to obtain more reliable evaluation outcomes.

1.6 Summary and outlook

This first chapter explained what cyber-physical manufacturing systems are (see Sec-
tion 1.1), what trends can be observed in the manufacturing system domain in the past
years and decades (see Section 1.2), what practical challenges manufacturing system
builders are facing today (see Section 1.3), what the claimed contributions of this doc-
toral thesis are to tackle the challenges (see Section 1.4), and who the intended audience
of this doctoral thesis is (see Section 1.5). The following chapter describes related work
on the conceptual design of cyber-physical manufacturing systems and compare existing
techniques to the proposed approach.

18

2 Differentiation

In principle, various approaches exist that can be used for the conceptual design of
cyber-physical manufacturing systems. To provide an overview over the field, the most
prominent approaches are summarized in Section 2.1, which have been proposed in the
past and get applied in industry today. In particular, their strengths and weaknesses
are discussed with respect to the practical challenges described in the previous chapter.
Then, remaining problems are pinpointed in Section 2.2, which have not been addressed
sufficiently by existing approaches so far and which differentiate the existing body of
scientific work from the contributions of this doctoral thesis. Finally, the research ob-
jectives of this doctoral thesis are summarized in Section 2.3, which aims at closing the
gaps left by the state of the art that is available today.

2.1 Related work

The related work is drawn from a number of review and survey papers published over
past twenty years. In 1998, Hsu and Woon [HW98] provide one of the first surveys on
conceptual design of mechanical products. Note that back then the integration of the dif-
ferent engineering disciplines was not as prominent as it is today. Two years later Regli
et al. [RHAS00] summarize work on design rationale systems. Compared to classical
design techniques, design rationale systems concentrate on the rationale behind design
decisions rather than the design itself. Subsequently, Sinha et al. [SPLK01] describe a
range of modeling and simulation methods, which can be applied to system design in
general. In particular, the authors already embrace the multidisciplinary nature of the
design task. Then, Wang et al. [WSX+02] review techniques for collaborative concep-
tual design, i.e. conceptual design in the context of teams and organizations. Hereby, the
techniques specifically focus on the parallel evolution and synchronization of the design
content. More recently, Jimeno and Puerta [JP07] describe applications of virtual reality
techniques in the design of manufacturing processes. Specifically, the authors focus on
assembly problems and human-machine interaction. In the same year, Estefan [Est07]
publishes a comprehensive survey of model-based systems engineering methodologies. In
particular, the author focuses on the design processes rather than the design deliverables.

19

2 Differentiation

One year later, Erden et al. [EKvB+08] summarize function modeling techniques. Com-
pared to other design techniques, function modeling techniques focus on the function
(or the purpose) of the designed system or product rather than its actual implementa-
tion. Finally, in 2013 Chandrasegaran et al. [CRS+13] provide a comprehensive survey
on knowledge representations in product design. Hereby, the term knowledge subsumes
everything from function respectively purpose to design rationale to implementation.

In the following, the most important approaches for the conceptual design of cyber-
physical manufacturing systems are discussed. Thereby, the description distinguishes
between diagram-based techniques (see Section 2.1.1), physics-based techniques (see Sec-
tion 2.1.2), component-based techniques (see Section 2.1.3), matrix-based techniques (see
Section 2.1.4), function-based techniques (see Section 2.1.5), and ontology-based tech-
niques (see Section 2.1.6) as well as commercial tools (see Section 2.1.7). As mentioned
previously, particularly the strengths and weaknesses of the techniques and / or tools
are focused with respect to the practical challenges posed in the previous chapter.

2.1.1 Diagram-based techniques

One of the most popular movements in conceptual design, which is rooted in object-
oriented programming [Ren82] and software design [RRE91], are what in this thesis is
called diagram-based techniques. Typically, diagram-based techniques provide different
types of diagrams for describing different aspects of the system under development at
different phases of the development process. Here, (1) the Unified Modeling Language,
(2) the Systems Modeling Language, and (3) the Specification Technique for the Consis-
tent Description of Manufacturing Operations and Resources are presented.

Unified Modeling Language (UML)

The most popular diagram-based technique for object-oriented analysis and design of
software systems is the Unified Modeling Language (UML) [BJR+96]. In the most re-
cent version the UML provides 14 different structural and behavioral diagrams. The
structural diagrams describe static (i.e. time-independent) aspects of the system under
development. The static aspects include, for example, the classes of objects the software
system is composed of or the packaging of these classes into reusable units. In contrast,
the behavioral diagrams describe dynamic (i.e. time-dependent) aspects of the system
under development. The dynamic aspects comprise, for example, the use cases of the
software system from the perspective of different actors (e.g. the machine operator) or
the activities performed by objects of the software system (e.g. updating the database).
Finally, the UML provides a clear methodology for the development of software systems

20

2.1 Related work

leading from customer requirements to implementation details [BME+07]. Furthermore,
a variety of commercial tools exist on the market.

An advantage of the UML is that it provides diagrams for many different aspects of
the system under development. Consequently, a large body of design knowledge can be
captured graphically. However, one major drawback of the UML is the lack of formal
semantics leading to misinterpretations and inconsistencies, which are hard to uncover
automatically. Furthermore, the UML mostly targets software systems neglecting phys-
ical aspects such as the geometry and spatial motion of components.

Systems Modeling Language (SysML)

Another popular diagram-based technique for the conceptual design of systems in gen-
eral, which can be considered as the de-facto industry standard, is the Systems Modeling
Language (SysML) [Hau06b]. At its core, the SysML is based on the UML described
in the previous section. However, compared to the UML the SysML provides only nine
different diagrams, which partially overlap with the UML diagrams. In particular, the
SysML reuses the specification of use cases from the perspective of actors (e.g. machine
operators) or activities performed by the system during operation (e.g. manipulating
workpieces). Furthermore, the SysML introduces new diagram types for specifiying the
requirements of the system under development (e.g. manufacturing some product from
given resources), designing the component structure of the system (e.g. tool and work-
piece fixtures), or reusing parameterized components (e.g. different tool sizes). Note
that compared to the UML and its object-oriented perspective, the SysML takes a more
component-oriented perspective on the system under development, where components
interact based on flows of material, energy, and information.

An advantage of the SysML compared to the UML is that requirements can be ex-
pressed explicitly. Furthermore, component reuse is fostered using an extended param-
eterization mechanism. Finally, the SysML adopts a component-oriented perspective,
which is more prominent in systems thinking than the object-oriented perspective of the
UML. However, similar to UML a rigorous formal foundation is missing rendering model
interpretation ambiguous and error-prone. Also, the language misses important design
knowledge such as component geometries.

Specification Technique for the Consistent Description of Manufacturing
Operations and Resources (CONSENS)

Finally, a more recent diagram-based technique, which is tailored to cyber-physical man-
ufacturing system domain, is the Specification Technique for the Consistent Descrip-

21

2 Differentiation

tion of Manufacturing Operations and Resources (CONSENS) proposed by Rehage et
al. [RBG14]. The CONSENS approach provides eight different views onto (or so-called
partial models of) the system under development. In the initial project phases the
environment, application scenario, requirement, and system of objectives models help
clarifying the task. For example, the environment model contains the system under de-
velopment as well as relevant spheres of influences such as the user or adjacent technical
systems. In contrast, the application scenario model describes high-level states of the
system under development as well as events and possible state transitions. Then, in
later project phases the function, active structure, behavior, and shape models allow one
to capture implementation details. For example, the active structure model decomposes
the system into system elements, their attributes, and the relations between the system
elements. Furthermore, system elements can be combined to from logical groups. In
contrast, the behavior model describes the system states, the activities that trigger state
transitions, and state sequences that describe the interaction between system elements.

An advantage of CONSENS compared to the UML or the SysML is that it includes ad-
ditional means for modeling the system context, usage scenarios, function hierarchies as
well as the geometric appearance of components. While the approach captures the mod-
eling needs for mechatronic product development more appropriately, again a rigorous
formal foundation is missing. In particular, the semantics of the different diagrams and
modeling elements are ambiguous, which hinders the automation of quality assessment
and verification tasks.

2.1.2 Physics-based techniques

The next category of techniques is concerned with describing directly the physical objects
and behaviors that comprise the designed system and / or product. Note that this
category is concerned mostly with mechanical and electrical phenomena, while software
aspects are ignored mostly. Consequently, the techniques are more appropriate for the
conceptual design of electromechanical rather than cyber-physical systems. Nevertheless,
the techniques contain interesting ideas worth mentioning in the context of this thesis.
Also, some of the subsequent techniques are based on the ideas and concepts introduced
in this category. In the following (1) multi-body system dynamics, (2) the qualitative
process theory, and (3) qualitative kinematics are presented.

Multi-body system dynamics

One of the most well-known techniques for the design of mechanical systems is multi-
body system dynamics. The technique has been developed originally in the field of

22

2.1 Related work

aerospace engineering in the late 1970s for the mechanical design of satellites [Sch97].
Then, in the late 1990s the technique has been adopted for machine tool design, e.g.
by Reinhart and Weissenberger [RW99] and later by Zäh and Seidl [ZS07]. Mutli-body
system dynamics allows one to describe the mechanical system in terms of solid bodies
and joints representing fixed mechanical connections between the bodies. The bodies
are described in terms of their shape, their mass, and their center of mass. In contrast,
the joints are decomposed into revolute joints supporting translation along a fixed axis,
prismatic joints supporting rotation about a fixed axis, and spherical joints supporting
rotation about a fixed point. Finally, one can specify external forces that are applied to
the bodies such as gravity. From the external forces and the joints the motion of the
bodies and potential collisions can be derived. Furthermore, from the collisions impact
forces can be derived, which, in turn, take effect on the motion of the bodies. While the
basic theory only supports solid bodies, extensions exist for describing flexible bodies
and their deformation [Sha97].

An advantage of multi-body system dynamics is that mechanical parts and connec-
tions can be described rather intuitively in terms of their shape, spatial arrangement, and
degrees of freedom with respect to motion. Furthermore, the motion profiles can be de-
rived easily from the underlying kinematic equations. In particular, possible side effects
can be discovered, e.g. due to undesired collisions. However, multi-body dynamics does
not cover electrical and software components at all. Furthermore, the technique bears
a practical design methodology starting with the customer requirements and leading to
implementation details systematically.

Qualitative process theory

Another successful technique providing a more abstract view on physical systems than,
for example, multi-body system dynamics is the qualitative process theory, which has
been proposed by Forbus in his doctoral thesis [For84]. As the name states, the theory
allows one to describe physical processes qualitatively rather than quantitatively (e.g.
using differential equations), while still enabling formal reasoning. The core building
blocks of the theory are physical objects such as liquids and solids, which are described
in terms of physical quantities such as temperature or pressure. Each physical quantity,
in turn, takes a value from a selected quantity space (i.e. an abstraction of concrete val-
ues). Finally, physical processes are described in terms of the interacting objects, general
preconditions on the relations between and the quantities of the interacting objects as
well as imposed relations between and influences on the quantities of the interacting
objects. Relations between quantities can be, for example, qualitative proportional. In-
fluences on the quantities, on the other hand, can be direct or indirect. Formal reasoning,

23

2 Differentiation

that is supported by the theory, includes finding all feasible physical processes as well
as analyzing the limits of certain quantities.

An advantage of the qualitative process theory is the high level of abstraction. In
particular, quantities such as temperature and pressure as well as their relations can
be described qualitatively (e.g. low and high, or slow and fast). However, the the-
ory does not provide much guidance on the representation of material geometries and
motion profiles, which limits the practical use for mechanical engineers. Furthermore,
software components and processes cannot be represented well, which limits the general
use of the theory for cyber-physical systems. Finally, the theory bears a practical design
methodology starting with customer requirements.

Qualitative kinematics

To cope with arbitrary material geometries and motion profiles, Faltings [Fal90] extended
the qualitative process theory to form qualitative kinematics. The main observation be-
hind qualitative kinematics is that the motion of mechanical parts usually is constrained
by joints. Consequently, the author argues that only the actual degrees of freedom
of each part have to be considered forming the configuration space of the mechanical
system. Hereby, each point in the configuration space represents a distinct spatial ar-
rangement of all mechanical parts involved. However, not all points in the configuration
space actually yield valid spatial arrangements, e.g. due to overlaps among the part vol-
umes. Consequently, the author decomposes the configuration space into the free space
(yielding valid configurations) and the blocked space (yielding invalid configurations).
Furthermore, the boundary between the two subspaces is given by constraints. In par-
ticular, the author distinguishes vertex constraints concerning a single touch point and
boundary constraints concerning multiple touch points of part volumes. Then, the au-
thor decomposes the free space further into places, i.e. configurations with similar touch
points and qualitative behavior over the configuration space parameters. Finally, the
author introduces the possible transitions between the places to from the place graph.
Hereby, the place graph describes the qualitative kinematic behavior of the mechanical
system in terms of place paths.

An advantage of qualitative kinematics over qualitative process theory is that a clear
guideline is provided for dealing with part geometries and motion profiles. Also, qualita-
tive kinematics achieves a higher degree of abstraction than multi-body system dynamics
due to the concepts of places and place graphs. However, software components and soft-
ware behavior still cannot be represented well, limiting the general use of the technique
for cyber-physical systems. Also, the theory bears a practical design methodology start-
ing with customer requirements.

24

2.1 Related work

2.1.3 Component-based techniques

While the physics-based techniques already capture certain implementation-level design
knowledge quite well, they lack one important aspect, namely the logical architecture of
the system. The logical architecture typically describes a decomposition of the system
into modules (or components) and their interactions with the goal to reduce complexity
and foster reuse. To address this issue, a wide variety of component-based techniques
has been proposed. In the following (1) Modelica, (2) the Mechatronic UML, and (3) the
Spatio-Temporal Engineering Models are presented, which are the most well-suited tech-
niques.

Modelica

One of the most popular component-based techniques for the (conceptual) design of
cyber-physical systems is the Modelica language [MEO98]. The core building block of
the Modelica language are so-called models (or classes of components), which comprise
parameters, subcomponents (i.e. instances of other models), connectors, and equations.
The parameters represent constants, which have to be defined during model instantiation
such as the actual electrical resistance of a concrete electrical resistor. Connectors, on
the other hand, represent ports for specifying interactions between components. Connec-
tors are described further using variables, which can be observed during simulation such
as the voltage and current at electrical pin connectors. Finally, equations relate the pa-
rameters and the connector variables of both the parent component and subcomponents.
Special expressions are provided for connecting connectors (and their variables respec-
tively). Furthermore, differential equations can be used to relate connector variables
such as acceleration and speed. At last, the Modelica language supports the specifica-
tion discrete-time control logic based on algorithms and state machines.

An advantage of the Modelica language is that the behavior of cyber-physical systems
can be described quite intuitively and accurately. Furthermore, new models can be com-
posed easily from existing models and their suitable parameterization. However, while
Modelica is well-suited for developing simulation models for cyber-physical systems, it
does not cover the entire engineering process from customer requirements to manufac-
turing process design, to test specification, to implementation properly. Furthermore,
important aspects such as the system geometry cannot be described as first-class model
citizens and potential collisions between mechanical parts cannot be studied.

25

2 Differentiation

Mechatronic UML

Another component-based technique, which provides formal verification in addition to
simulation support, is the Mechatronic UML proposed by Burmester et al. [BGT05].
Note that the Mechatronic UML is based on the UML, which has been described in
Section 2.1.1, but provides only a reduced set of diagram types and adds underlying
formal semantics. In particular, the Mechatronic UML provides three different types of
diagrams, namely component, coordination protocol, and real-time statechart diagrams.
The component diagrams describe the components of the system, their subcomponent
and ports, as well as the connections between the ports and coordination protocols gov-
erning the connections. Then, the coordination protocol diagrams distinguish between
roles, role connectors, which indicate message exchange between the roles, and qual-
ity of service assumptions, which constrain the message exchange over role connectors.
Finally, the real-time statechart diagrams allow one to describe both component and co-
ordination protocol behavior using states, transitions, guards, and actions. Alternatively,
MATLAB Simulink models (see Section 2.1.7) can be used to also. Finally, the Mecha-
tronic UML supports the verification of coordination protocol behavior with respect to
quality of service assumptions and component behavior with respect to coordination
protocol behavior.

An advantage of the Mechatronic UML over Modelica is that requirements can be
formulated precisely in terms of coordination protocols and quality of service assump-
tions. Furthermore, implementation details (i.e. component behavior) can be verified
with respect to the requirements. Consequently, the consistency checks can be performed
automatically and design flaws can be discovered more easily. However, a drawback of
the technique is that only message and signal flows can be considered, while aspects like
system geometry and motion are neglected. Also, coordination protocols might already
include design decisions blurring the distinction to the actual user requirements.

Spatio-Temporal Engineering Models (STEM)

Finally, another component-based technique, which takes into account geometrical as-
pects of the system under development, are the Spatio-Temporal Engineering Models
(STEM) proposed by Hummel [Hum09]. At its core, STEM is based on FOCUS [BS01],
a component-based technique for the design of embedded software systems. The core
concept of STEM is the spatio-temporal component, which provides a description of its
syntactic interface and semantic interface (or behavior). The syntactic interface is given
by the message input and output ports. Furthermore, the syntactic interface defines the
geometric parts of the component, movers for changing the translation and orientation

26

2.1 Related work

of components, detectors for reacting to spatial collision with other components, as well
as dynamic port bindings for interacting with colliding components. In contrast, the se-
mantic interface specifies the reaction of spatio-temporal components to (energy or data)
inputs and collisions. The reactions might include producing some (energy or data) out-
put, moving another component in space, changing the geometry of detectors and parts,
or adapting the dynamic bindings with colliding components. Finally, STEM provides a
composition operator which can be used to form larger, more complex spatio-temporal
components from smaller, less complex units and their interactions.

An advantage of STEM over Modelica and the Mechatronic UML is that geometry,
spatial motion, collision, and collision-based dynamic interaction are considered as first
class modeling entities. Consequently, geometrical design knowledge can be captured ex-
plicitly and its effect on system behavior can be studied. For example, one can determine
whether the parts of certain components collide during system operation. However, a
drawback of the technique is that customer requirements, manufacturing processes, and
test cases are not considered. Consequently, the approach also lacks a clear methodology
leading from customer requirements to implementation details systematically.

2.1.4 Matrix-based techniques

While the component-based techniques already provide the means for defining the logi-
cal architecture of the system in terms of reusable modules and their interactions, they
usually do not take the customer requirements into account. Furthermore, the question
remains what is an appropriate architecture for a given design problem. To tackle these
issues, matrix-based techniques have been proposed. Matrix-based techniques gener-
ally seek to capture certain design knowledge such as customer requirements or system
components as well as the relations between them (in terms of an adjacency matrix).
Then, different properties of the adjacency matrices are used to guide subsequent design
decisions such as the allocation of customer requirements to system components. In the
following (1) quality function deployment, (2) the design structure matrix, and (3) ax-
iomatic design are presented, which probably are the most well-known matrix-based
techniques.

Quality function deployment

Probably the most well-known and widely used matrix-based technique is the qual-
ity function deployment, developed in Japan in the late 1960s and early 1970s by
Akao [CW02]. Later, Hauser and Clausing [HC88] also coined the term house of quality.
The main goal of the technique is to increase the focus on the customer requirements

27

2 Differentiation

and to derive implementation details systematically. The proposed methodology com-
prises ten steps. In the first step, the type of product is defined, e.g. a vacuum cleaner.
Then, in the second step the types of customers are specified including the actual end
users as well as people potentially influencing the purchase decisions. In the third step,
the customer requirements are derived. Hereby, one can distinguish between expressed
and implicit requirements. The implicit requirements can be divided further into basic
(e.g. safety and reliability) and excitement (i.e. sales point) requirements. Afterwards, in
the fourth step an importance rating is performed over the customer requirements and
customer groups. In the fifth step, a competitive benchmarking is developed showing
the relation between different products on the market and the customer requirements.
Thereafter, in the sixth step the design parameters (i.e. observable product character-
istics) are derived based on available expertise as well as time and budget constraints.
In the seventh step, the relationship between the customer requirements and the design
parameters is specified using a weight matrix. Then, in the eighth step the targets for the
design parameters (such as the weight of the vacuum cleaner) are determined, e.g., from
an analysis of competitor products. In the ninth step, a performance benchmarking is
performed to cross-check whether important requirements are addressed by high-scored
design parameters. Finally, in the tenth step the correlations between the design pa-
rameters are estimated in terms of conflicting and supporting relationships, from which
points of conflict and trade-off can be derived.

An advantage of the quality function deployment is the strong focus on customer
requirements and the competition in the market. Furthermore, specific checks are sup-
ported such as the strong relation of important customer requirements with design pa-
rameters and the unique selling point of the product with respect to the competition.
Finally, the quality function deployment provides a high level of abstraction suitable for
early project phases. On the downside, the semantics of the customer requirements (e.g.
desired material in- and output) and design parameters (e.g. manufacturing processes
and component architectures) as well as the relation and correlation matrices are not
defined formally such that inconsistencies cannot be detected easily.

Design structure matrix

Another well-known and widely used matrix-based technique is the design structure
matrix proposed by Steward [Ste81]. Originally, the technique has been developed for
project planners dealing with circular dependencies among project tasks. However, in
the following years the design structure matrix has been applied to numerous problems
such as system modularization also [Bro01]. The core idea behind the technique is to
represent dependencies between arbitrary design variables (e.g. the passenger capacity

28

2.1 Related work

and the total weight of an electrical car) using matrices. Hereby, the design variables
define both the rows and the columns of the matrix, while the dependencies are stated
in the cells. Then, through reordering of rows and columns block triangular matrices or
even triangular matrices can be obtained. Triangular matrices directly determine the
order, in which the design variables can be resolved. In the case of block triangular
matrices the design variables contain circular dependencies. Consequently, estimates
(called tears) have to be provided for certain design variables, from which the remaining
design variables can be derived. This process might comprise several iterations and
reviews until adequate estimates are obtained.

An advantage of the design structure matrix is its high level of abstraction because
design variables can be anything from design activities to system components to orga-
nizational units. Also, the semantics of the dependencies between design variables can
be selected freely. On the other hand, the semantics of a design structure matrix cannot
be processed automatically, e.g., for detecting inconsistencies. Also, the technique does
not provide any guidance on the types of design variables and dependencies, which need
to be considered during cyber-physical manufacturing system design.

Axiomatic design

Another popular matrix-based technique is the axiomatic design, originally proposed by
Suh for mechanical systems [Suh95] and later extended to systems in general [Suh98] and
manufacturing systems specifically [SCL98]. The general idea behind the technique is
to represent the designed system in terms of functional requirements, design parameters,
and process variables. Hereby, the functional requirements represent the original cus-
tomer needs, while the design parameters represent physical objects or software codes,
and the process variables represent physical resources (e.g. human or financial) and
software subroutines. Then, design matrices describe the relationship between the func-
tional requirements and the design parameters as well as the design parameters and the
process variables. Hereby, both linear and non-linear relationships can be expressed.
Furthermore, modules can be used to capture and reuse the design information related
to one particular functional requirement. Finally, the technique states two design axioms
(hence the name axiomatic design), namely the independence axiom and the informa-
tion axiom. The independence axiom states that ideally diagonal or triangular design
matrices should be used as known from the design structure matrix approach from the
previous section. In contrast, the information axiom states that the design with the least
information content should be preferred.

An advantage of axiomatic design is that the customer needs are represented explicitly.
Furthermore, the technique enables reuse of design information, which is of special inter-

29

2 Differentiation

est for practical applications. Finally, the design axioms can be described formally over
the design theoretic concepts. However, the technique does not provide any guidance
on the design parameters and process variables to be used. Furthermore, the semantic
meaning of the design matrices and, hence, the dependencies among and between the
function requirements, design parameters, and process variables remains unclear.

2.1.5 Function-based techniques

While the matrix-based techniques already provide strong methodological focus, they
lack important semantical aspects such as the meaning of customer (respectively func-
tional) requirements, design parameters, and the relations between them. To overcome
this problem, function-based techniques provide more detailed models of the desired
system functions and their (physical) implementations, while still maintaining focus on
methodology. Furthermore, the techniques support advanced analyses such as the realiz-
ability of a function given the design parameters, which helps to uncover inconsistencies
and design flaws early in the design process. In the following, (1) design prototypes,
(2) the function-behavior-state approach, (3) the functional representation, and (4) the
Schemebuilder are introduced, which are the most prominent representatives of this
category.

Design prototypes

One of the first function-based techniques are the so-called design prototypes proposed
by Gero [Ger90]. The general idea behind the technique is to derive design prototypes
from similar design cases and to document the design prototypes using a predefined
schema. Then, given a design problem the designer can search the design prototypes
and instantiate them in the novel context. The schema itself separates between the func-
tion of the design prototype, its (physical) structure, as well as its expected and actual
behavior all expressed in terms of variables. Furthermore, the schema contains different
types of knowledge. The relational knowledge defines general relations between the func-
tional, structural, and behavioral variables similar to the matrix-based approaches (see
Section 2.1.4). Then, qualitative knowledge specifies qualitative relations between the
variables such as qualitative proportionality as known from physics-based approaches
(see Section 2.1.2). Moreover, computational knowledge determines computational rela-
tions between the variables, which can be used in simulations. At last, context knowledge
introduces exogenous variables, which describe the environment of and stimuli to the
system. Finally, design prototypes also can be partitioned into their constituents and
categorized within a classification system.

30

2.1 Related work

An advantage of the design prototypes is the integration of requirements and imple-
mentation details into a common framework. Furthermore, the relationships between
the variables can be expressed at various levels of detail (informally, qualitatively, and
computationally). However, it remains unclear how the composition of design proto-
types actually works. Furthermore, checks such as whether the implementation details
are consistent with the requirements are not supported hindering automated quality
assurance and verification tasks.

Function-behavior-state

Probably the most well-known function-based technique, which addresses design com-
position and function realizability, is the function-behavior-state approach proposed
by Umeda et al. [UTTY90, UIY+96]. The approach distinguishes between functional
knowledge and physical features. The functional knowledge comprises the functions
themselves, their decompositions into networks of sub-functions, and their embodiments.
Functions, in turn, are described in terms of verbs, objects, and modifiers (e.g. move ma-
terial fast). In contrast, decompositions are hierarchical relationships between functions.
Hereby, the authors distinguish between task and causal decomposition. In task decom-
position the sub-functions are rather independent (e.g. first mill, then grind), while in
causal decomposition the sub-functions are causally related (e.g. first generate voltage,
then generate light). Finally, embodiments are relations between functions and physical
features. Physical features, in turn, are described in terms of components (e.g. gears)
and physical phenomena acting on the components. Hereby, physical phenomena are
represented using qualitative process theory, which has been explained previously (see
Section 2.1.2). Consequently, the system behavior can be expressed using quantities,
qualitative conditions, qualitative relations, and influences.

An advantage of the function-behavior-state approach over, e.g. design prototypes, is
that compositional techniques can be used both for function and implementation details.
Furthermore, simulation can be used to check whether certain physical phenomena can
occur and, hence, whether certain functions are realizable. However, the specification
of functions remains informal. Consequently, one cannot determine whether the related
physical phenomena actually implement the desired functions. Hence, only limited sup-
port is provided for design verification. Furthermore, the approach does not represent
geometry and motion explicitly hindering its use by mechanical engineers.

31

2 Differentiation

Functional representation

Another function-based technique, which addresses function formalization and design
verification, is the functional representation proposed by Chandrasekaran et al. [CGI93].
The core element of the technique are components (e.g. devices), which provide ports for
their interaction with the environment. Then, components comprise subcomponents and
their relations (e.g. spatial or functional). Hereby, also relations between the ports of
these components are supported. Finally, components define functions that can be per-
formed. Functions, in turn, are described in terms of start conditions (or preconditions
over the input ports), a function predicate (or postconditions over the output ports),
and a causal process description. Finally, causal process descriptions are described in
terms of states and transitions. States are represented as predicates over so-called state
variables. Transitions can occur due to the completion of another causal physical process
(e.g. a light bulb turning from the inactive to the active state), due to the completion
of the function of a subcomponent (e.g. a light bulb producing light), or due to a do-
main law (e.g. incandescence, i.e. the electromagnetic radiation of hot bodies) that is
not specified further.

An advantage of the functional representation is that design verification can be per-
formed by means of simulation. Consequently, one can determine whether a component
is able to perform its provided functions by means of the causal processes. Furthermore,
the representation can be used to generate diagnostic knowledge from the causal pro-
cesses including their states and transitions. On the downside, the function formalization
and, hence, the design verification is limited to basic input-output patterns. Further-
more, the technique does not represent the shape and motion of mechanical components
explicitly. Consequently, the necessary design information cannot be captured, verified,
and validated holistically.

Schemebuilder

Then, a function-based technique, which comes with commercial tool integration, is the
Schemebuilder approach proposed by Bracewell and Sharpe [BS96]. The core of the
approach is a function-means tree. The function-means tree decomposes the function of
the entire system into sub-functions and eventually into means. Functions themselves are
represented in terms of their type and their interface. Function types can be arbitrary
human-readable character strings (e.g. generate voltage). Function interfaces, on the
other hand, are defined in terms of input and output ports (e.g. input control signal
and output voltage). Hereby, different types of ports can be distinguished, namely
material, power, and information, while power is subdivided further into mechanical

32

2.1 Related work

(i.e. rotational and translational), fluid, and electrical. Finally, means are described
in terms of the supported function types (i.e. human-readable character strings), their
interface (i.e. input and output ports), and a MATLAB Simulink model of the behavior
explained later (see Section 2.1.7). Note that the matching between functions and means
is achieved through the function types.

An advantage of the Schemebuilder approach is that system designs can be composed
quickly from existing means. In particular, available means can be discovered based on
the required function type and interface. Hereby, different alternatives can be retrieved,
e.g., for generating voltage. Furthermore, the approach is integrated with MATLAB
Simulink, which allows to model accurate physical behavior and which is used widely in
industry. However, a disadvantage of the approach is that the required function can be
specified only in terms of the ports, while desired input-output relations (also known as
the semantic interface [BS01]) cannot be described formally. Consequently, one cannot
determine whether a function actually can be realized given the means.

2.1.6 Ontology-based techniques

Function-based techniques already provide a strong methodological focus, a high level of
abstraction, and various simulation or formal verification capabilities to uncover certain
design flaws. However, still certain design knowledge cannot be captured and certain
relations among elements of the design knowledge cannot be expressed such as part
geometries, motion profiles, and collision-based interaction. To overcome this problem,
ontology-based techniques seek to structure design knowledge in terms of its concepts
and their relations. Note that the ontology-based movement was boosted particularly
by the development of the Web Ontology Language (OWL) [HPSvH03], which laid the
technical foundation for representing and reasoning about design knowledge in computer
programs. In the following (1) a requirement ontology, (2) the PhysSys ontology, (3) the
functional basis approach, (4) a functional concept ontology, and (5) a port ontology are
discussed each focusing a different and partially complementary aspect of the design
knowledge available at different phases of the design process.

Requirement ontology

One of the first ontological approaches taking customer requirements and their rela-
tion to implementation details into account is the requirement ontology proposed by Lin
et al. [LFB96]. The requirement ontology is based on a product ontology, which com-
prises parts, features, and parameters. Hereby, both parts and features are organized
in containment hierarchies such that one can distinguish primitive and composite ele-

33

2 Differentiation

ments. Furthermore, features such as nubs can associated with parts such as bricks.
Finally, parameters are used to describe certain properties of parts and features such
as the diameter of a nub or the size of a brick. Then, the requirement ontology com-
prises a representation of the requirements themselves. Requirements essentially define
logical expressions over the parts, features, and parameters such as the maximum di-
ameter of the nub (i.e. the so-called implementation details). Hereby, similar to parts
and features requirements are organized in a containment (or decomposition) hierarchy.
Consequently, the authors formalize certain properties such as faithful decomposition
(i.e. cases where the decomposition logically entails the original requirement), derived
or explicit requirement, external or internal requirement, and physical, structural, per-
formance, functional, or cost requirement.

An advantage of the requirement ontology is that both requirements and implemen-
tation details as well as their relations can be captured in a rather formal manner.
Consequently, it is possible to check the consistency among requirements (indicating
specification flaws) as well as between requirements and implementation details (indi-
cating implementation flaws). However, the design knowledge is limited to basic struc-
tural and parametric characteristics. In particular, the function and behavior of the
designed system or product is neglected, which plays an important role as described in
cyber-physical and, hence, software-intensive manufacturing systems.

PhysSys ontology

Then, Borst et al. [BAT97] proposed the PhysSys ontology, which concentrates on the
logical structure and physical behavior of systems. The PhysSys ontology is built in a
modular fashion and comprises a component ontology for describing the system struc-
ture, a process ontology for describing the system behavior from a high-level, structural
perspective, and a mathematical ontology for describing the system behavior from a low-
level, computational perspective. Hereby, the component ontology provides mereological
and topological information about components. The mereological information defines a
containment hierarchy over the components. In contrast, the topological information
adds connections between components for energy exchange. Then, the process ontology
comprises physical domains such as electric, magnetic, or thermal, which are defined in
terms of their effort and flow quantities such as charge and voltage. Furthermore, the
process ontology comprises typical mechanisms that can be found in every physical do-
main such as stores (e.g. electrical capacitors) and dissipators (e.g. electrical resistors).
Finally, the process ontology allows one to connect mechanisms with so-called bonds,
which represent the energy exchange in the component ontology. Note that the process
ontology is based on the bond graph theory [Pay60]. At last, the mathematical ontol-

34

2.1 Related work

ogy maps the mechanisms and bonds to mathematical equations describing the system
dynamics, which can be used by simulators.

An advantage of the PhysSys ontology is that physical systems can be described from
various viewpoints (i.e. structural, behavioral, and / or mathematical). Furthermore, the
ontology provides a unified abstraction of physical mechanisms across physical domains.
Consequently, complex physical systems can be described by engineers from different
domains (e.g. thermal and electric) using a shared vocabulary (e.g. stores and dissipa-
tors). However, a disadvantage of the technique is that design knowledge about software
components cannot be captured. Also, customer requirements and functional design de-
tails are not considered. Consequently, consistency checks and verification capabilities
are limited to implementation details only.

Functional basis

Then, a popular ontology-based approach for structuring functional design knowledge
is the functional basis proposed by Hirtz et al. [HSM+02]. The general idea behind
the approach is to provide a basic vocabulary for describing the functions of technical
systems. In particular, the functional basis approach distinguishes between function and
flow, while function is described in terms of a verb (or action) acting upon an object,
i.e. the flow. Note that this basic representation of function is taken from Pahl and
Beitz [PBFG06]. Then, the authors develop a three-level taxonomy for both function
and flow. Hereby, nine primary classes of function and three primary classes of flow can
be distinguished. The functions comprise branching, channeling, connecting, controlling
some magnitude, converting, provisioning, signaling, and supporting. In contrast, the
flows include material (e.g. solid or liquid material), signal (e.g. status or control signal),
and energy (e.g. acoustic or electric energy). The secondary and tertiary classes define
more specific functions and flows in each category. Consequently, one can describe the
function of a technical system using a combination of function and flow terms from any
level of the taxonomy. For example, some function might be the branching of material
(more abstract) or the removal of solid material (more concrete).

An advantage of the functional basis approach is that a rich set of standard terms is
provided for describing the functions of technical systems in a unique and repeatable
manner. Furthermore, the approach allows one to define and explore functional design
alternatives quickly enabling practical design optimization. However, the approach does
not cover customer requirements, structure, behavior, and other implementation details.
Consequently, the relations between the functions and other design knowledge cannot be
expressed and examined. Furthermore, the functional basis lacks a semantic foundation
leading to potential ambiguities.

35

2 Differentiation

Functional concept ontology

Another ontology-based approach concentrating on device functionality is the functional
concept ontology proposed by Kitamura et al. [KKFM04, KM04]. The functional concept
ontology comprises a device ontology and a functional ontology. The device ontology
allows one to describe physical systems in terms of devices with input and output ports
as well as operands, which represent the input and output flows such as substances,
energy, or information. Then, the device behavior is defined in terms of the change
of operand state between input and output ports. In contrast, the functional ontology
comprises a meta-function layer and a base-function layer. The meta-function layer
describes the types of base functions and their relationships. Typical meta-functions are
maintaining or making, which are similar to the functional packages of Keuneke [Keu91].
Instead, the base functions are concerned with the change of operand states such as
generating electricity. Furthermore, base functions can be decomposed into sub-functions
such as vaporizing fuel and steaming water, which represents the method of function
achievement. Additionally, any structural or physical justification for the decomposition
can be provided such as heat transfer, which is called the way of function achievement.

An advantage of the functional concept ontology is that it provides a clear separation
between the desired function and the way of function achievement. In particular, differ-
ent ways of function achievement can be explored in parallel during design optimization.
Furthermore, the ontology establishes a relationship between the implementation de-
tails (i.e. the device ontology) and the functional design (i.e. the functional ontology).
However, the approach lacks formal semantics leading to potential ambiguities and mis-
interpretation. Furthermore, customer requirements are not considered directly.

Port ontology

Finally, another interesting ontology-based approach concentrating on the connections
between different components of a technical system is the port ontology porposed by
Liang and Paredis [LP04]. The port ontology comprises an attribute layer and a port
ontology layer. The attribute layer distinguishes between form, function, and behavior
attributes of ports. Form attributes are, for example, the location and shape of ports,
while the shape is described using classical geometry representations such as constructive
solid geometry [RV77]. In contrast, function attributes are described in terms of the func-
tional basis approach introduced previously [HSM+02], i.e. standard function and flow
term pairs such as to convert (= function) electrical energy (= flow). Finally, behavior
attributes associate each port to variables in some behavioral model. As an example, the
authors provide a mapping between the port ontology and Modelica connectors, which

36

2.1 Related work

have been explained before (see Section 2.1.3). Furthermore, the approach supports the
specification of interaction models, which can be placed at the interface between two
components during simulation.

An advantage of the port ontology is that a wide variety of design knowledge about
ports can be captured, which is not represented holistically in other approaches. Further-
more, axioms can be defined to constrain possible instantiations of ports and connections
between them. Another strong feature are the interaction models, which allow one to
simulate different aspects of interaction. However, a disadvantage is that both behavior
and function attributes are described only informally. Furthermore, customer require-
ments and implementation details as well as their relation to the port ontology are not
discussed at all.

2.1.7 Commercial tools

Finally, some important commercial tools are mentioned, which are used for the (con-
ceptual) design of cyber-physical (manufacturing) systems. Note that the commercial
tools mostly pick up and integrate the ideas and concepts introduced in the previous sec-
tions such as component-based (see Section 2.1.3) and function-based (see Section 2.1.5)
modeling. Consequently, the previous techniques can be considered as the “theoretical”
foundations for the commercial tools, while the commercial tools provide practical imple-
mentations of the ideas and concepts with focus on quality aspects such as performance,
reliability, and usability. In particular, the discussion focuses on the tool suites offered
by (1) Siemens Product Lifecycle Management Software, (2) Dassault Systèmes, (3) The
MathWorks, and (3) No Magic, which all are leading tool vendors in their respective
field of expertise. Note that other tool vendors with similar tool suites exist, which are
neglected in the presentation.

Siemens Product Lifecycle Management (PLM) Software

One of the oldest tool vendors for system or product design is the Siemens Product Life-
cycle Management (PLM) Software1 with headquarters in Plano, Texas, United States.
Siemens PLM Software was formerly known as the UGS Corporation, which was founded
in 1963. Today, the Siemens PLM Software has more than 7,000 employees. The Siemens
PLM Software tool suite comprises Teamcenter, which represents a product lifecycle
management solution for the Siemens PLM Software tools. Consequently, Teamcenter
provides the means for capturing all information related to a product or system during
its lifetime. In particular, the Teamcenter user interface allows one to capture customer

1https://www.plm.automation.siemens.com/

37

https://www.plm.automation.siemens.com/

2 Differentiation

requirements in text documents as well as the functional design in diagram drawings,
while more specialized tools are provided for other product information. For example,
Siemens PLM Software provides the NX tool, which can be used for assembly structure
and part geometry design. NX also supports static and dynamic analysis techniques
such as the finite element method [Clo60] and the finite volume method [JST81]. Fur-
thermore, Siemens PLM Software supplies the Mechatronics Concept Designer, which
integrates NX-based structure and geometry as well as trigger- respectively sequence-
based behavior modeling. Hereby, the behavioral model integrates multi-body system
dynamics, which has been introduced previously (see Section 2.1.2). Consequently, re-
alistic kinematic and control behavior can be designed and evaluated. Other Siemens
PLM Software tools include Knowledge Fusion for capturing design knowledge and au-
tomating design processes, Tecnomatix for manufacturing process planning and discrete
event based process simulation, and PCBexchange for integrating NX-based assembly
structures and part geometries with electrical design information.

An advantage of the Siemens PLM Software tool suite is that a wide range of product
information can be captured and integrated using the Teamcenter platform. Further-
more, specialized tools exist for various design tasks from capturing customer require-
ments to defining function hierarchies, assembly structures, part geometries, control be-
haviors, and production processes. However, the design information is missing a seamless
semantic foundation such that inconsistencies might occur, which remain undiscovered.
For example, one has to decide manually whether the implementation details (e.g. part
geometries as well as physical and control behaviors) actually implement the production
processes and, hence, satisfy the customer requirements.

Daussault Systèmes

One of the largest tool vendors for system or product design is Dassault Systèmes2 with
headquarters in Vélizy-Villacoublay, France. Daussault Systèmes was founded 1981, 18
years after the Siemens PLM Software. Today, Dassault Systèmes has more than 13,000
employees. The Daussault Systèmes tool suite comprises Enovia, which provides a prod-
uct lifecycle management solution similar to Teamcenter from Siemens PLM Software.
In particular, Enovia provides features for capturing customer requirements in text doc-
uments, developing product configurations based on features and options, managing
part revisions including their geometry, mechanical connectivity, and function, as well
as performing annotation-based design reviews. Then, Dassault Systèmes provides CA-
TIA for assembly structure and part geometry design similar to NX from Siemens PLM

2http://www.3ds.com/

38

http://www.3ds.com/

2.1 Related work

Software. In particular, CATIA integrates electrical design capabilities from schematic
diagrams over geometry design to cable harness. Furthermore, CATIA provides means
for specifying system architectures in terms of components and their interactions based
on Modelica, which has been explained before (see Section 2.1.3). Finally, Dassault
Systèmes supplies Simulia, which comprises and integrates a variety of simulation tools
based on the functional mockup interface (FMI) standard [BOA+11]. In particular,
Simulia comprises multi-body system dynamics (see Section 2.1.2), the finite element
method [Clo60], and the finite volume method [JST81] similar to NX from Siemens
PLM Software. Other tools from Dassault Systèmes include Delmia for manufacturing
process planning based on products, resources, and their relationships, manufacturing
process simulation for virtual NC program testing, as well as assembly process simula-
tion based on collision-free product disassembly trajectories, or Geovia for modeling and
simulating, e.g., mining activities.

An advantage of the Dassault Systèmes tool suite over the Siemens PLM Software tool
suite is that cyber-physical system architectures are integrated more thoroughly into the
data model based on the Modelica language. Consequently, components can be defined
which comprise both mechanical and electrical interfaces respectively behavior. Still, the
tool suite lacks a seamless formal foundation such that certain inconsistencies and design
flaws can be detected only manually. In particular, the requirements and manufacturing
processes as well as their relation to implementation details remain informal hindering,
for example, automatic design verification.

The MathWorks

Then, another popular tool vendor for controller design is The MathWorks3 with head-
quarters in Natick, Massachusetts, United States. The MathWorks was founded in
1984, three years after Dassault Systèmes. Today, The MathWorks has more than 3,000
employees. The MathWorks tool suite comprises MATLAB, which provides a program-
ming language specifically designed for mathematical computations. In particular, the
language comes with native support for linear algebra operations over vectors and ma-
trices. Then, based on the MATLAB core The MathWorks ships Simulink, which allows
one to compose simulation models for complex cyber-physical systems from predefined
and / or user-defined blocks. Blocks may provide input and output signals, which can
be connected via signal lines. Furthermore, blocks may provide parameters (such as
the resistance of an electrical resistor) for configuring the block behavior. Finally, the
block behavior can be expressed in the MATLAB programming language or some other

3https://www.mathworks.com/

39

https://www.mathworks.com/

2 Differentiation

programming language, which is supported by the platform. Also, Simulink provides
simulation and debugging capabilities, design verifiers based on test case generators and
model checking technology [CGP99], as well as code generators for deploying blocks on
different hardware platforms. Then, based on Simulink, The MathWorks ships State-
flow for modeling and simulating decision logic based on state machines and flow charts
as well as Simspace for modeling and simulating physical systems based on differential
equations.

An advantage of The MathWorks tool suite over the previous tool suites is that much
more powerful support is provided for controller design and verification. In particular,
the controller design can be verified automatically with respect to the physical system
using test inputs and validation components. However, the tool suite is not suited
for designing part geometries or assembly structures. Furthermore, multi-body system
dynamics (see Section 2.1.2) is more difficult to describe in Simscape than in tradi-
tional tool suites. Also, The MathWorks does not provide support for the finite element
method [Clo60] and the finite volume method [JST81].

No Magic

Finally, one popular tool vendor for diagram-based software and system design is No
Magic4 with headquarters in Allen, Texas, United States. No Magic was founded in
1995, eleven years after The MathWorks. Today, No Magic has between 200 and 500
employees. The No Magic tool suite comprises Teamwork, which provides the means for
storing, versioning, and sharing system models as well as for enabling collaboration and
communication between the team members. In a sense, Teamwork is similar to product
lifecycle management solutions such as Enovia from Dassault Systèmes or TeamCenter
from Siemens PLM Software. However, Teamwork only provides limited functionality
with respect to manufacturing supplier integration, enterprise resource planning (e.g. bill
of materials), and workflow management. On top of Teamwork, No Magic supplies Mag-
icDraw, which provides the core graphical modeling and system design features based
on the UML (see Section 2.1.1). Besides the usual diagramming features, MagicDraw
integrates the object constraint language (OCL) [WK99]. The OCL can be used to
specify modeling constraints, which can be evaluated during system design to uncover
design flaws automatically. Alternatively, traditional programming languages can be
used for specifying and evaluating modeling constraints. Finally, based on MagicDraw,
No Magic ships Cameo, which provides a dedicated solution for conceptual system design
based on the SysML (see Section 2.1.1). Besides the classical SysML diagrams, Cameo

4https://www.nomagic.com/

40

https://www.nomagic.com/

2.2 Remaining problems

supports advanced requirements management based on storyboards and domain-specific
templates as well as mockup-based user interface design. Furthermore, Cameo inte-
grates a simulation toolkit based on FUML [MLK12], which allows one to investigate
the runtime behavior of the system.

An advantage of the No Magic tool suite over the previous tool suites is that the
requirements, system structure, and state-based system behaviors are moved into focus
rather than the part geometries, assembly structures, and differential equation-based
behaviors. Consequently, one can think more freely about the engineering problem that
needs to be solved and the principle solutions that exist. However, on the downside one
cannot go beyond this coarse picture of the system under development. In particular,
geometrical information might be relevant already during conceptual design (e.g. because
they have been prescribed by the customer or collision-free system operation cannot be
guaranteed easily).

2.2 Remaining problems

In the following, problems are summarized that remain unsolved by the approaches
presented in the previous section. In Table 2.1 an overview of the related work as well
as four evaluation criteria is provided, which have been derived from the challenges
presented in the first chapter (see Section 1.3). In particular, the evaluation criteria
include

– the coverage of design information (see Section 2.2.1),

– the integration of the underlying formalisms (see Section 2.2.2),

– the automation of verification tasks (see Section 2.2.3), and

– the practicability of the design method (see Section 2.2.4).

The table provides a numeric rating for each related approach and evaluation criterion,
which indicates a degree of satisfaction ranging between low (= 0.0 points), medium
(= 0.5 points), and high (= 1.0 points). Furthermore, the table provides an aggregate
numeric rating over all evaluation criteria. The aggregate rating is calculated from the
sum of the ratings for the individual evaluation criteria. Consequently, the aggregate
rating indicates how well the individual approaches address all evaluation criteria simul-
taneously with 4.0 points representing a perfect match. Subsequently, each evaluation
criterion is discussed in more detail before summarizing the derived research objectives
in the next section.

41

2 Differentiation

Related work Evaluation criteria

Sec. Approach
f(x) ∑

2.2.1 2.2.2 2.2.3 2.2.4

2.1.1
UML [BJR+96, BME+07] # G# G# # 1.0
SysML [Hau06b] G# G# G# G# 2.0
CONSENS [RBG14] G# G# 3.0

2.1.2
Multi-body system dynamics [Sch97, Sha97] G# G# # 2.0
Qualitative physics [For84] G# G# # 2.0
Qualitative kinematics [Fal90] G# G# # 2.0

2.1.3
Modelica [MEO98] G# G# # 2.0
Mechatronic UML [BGT05] G# G# 3.0
STEM [Hum09] G# G# # 2.0

2.1.4
Quality function deployment [CW02, HC88] G# G# G# G# 2.0
Design structure matrix [Ste81, Bro01] # G# G# G# 1.5
Axiomatic design [Suh95, Suh98, SCL98] # G# G# G# 1.5

2.1.5

Design prototypes [Ger90] G# # # # 0.5
Function-behavior-state [UTTY90, UIY+96] G# G# 3.0
Functional representation [CGI93] G# G# G# G# 2.0
Schemebuilder [BS96] G# G# G# G# 2.0

2.1.6

Requirement ontology [LFB96] G# G# G# 2.5
PhysSys ontology [BAT97] G# G# G# # 1.5
Functional basis [HSM+02] G# # # # 0.5
Functional concept ontology [KKFM04, KM04] G# G# G# G# 2.0
Port ontology [LP04] G# G# G# # 1.5

2.1.7

Siemens PLM Software 1 G# G# 3.0
Dassault Systèmes 2 G# G# 3.0
The MathWorks 3 G# G# G# 2.5
No Magic 4 G# G# G# G# 2.0∑

12.5 16.5 13.0 9.0

Table 2.1: Evaluation of the existing approaches with respect to four key criteria.

42

2.2 Remaining problems

2.2.1 Information coverage

From the challenge of mechanical dominance (see Section 1.3.1) the need for an improved
coverage of design information during the conceptual design phase is derived. Typically,
related approaches only consider a small portion of the conceptual design information,
while neglecting other aspects. For example, the physics-based approaches (see Sec-
tion 2.1.2) concentrate on implementation details, while omitting customer requirements
and system architectures. Similarly, function-based approaches (see Section 2.1.5) con-
centrate on customer requirements and function decomposition, while omitting part
geometries and spatial collisions as well as their effects on the system design. At least
commercial tools from Siemens PLM Software and Dassault Systèmes (see Section 2.1.7)
provide high coverage of design information through their product lifecycle management
solutions. However, coming from a mechanical engineering background these tools typ-
ically lack knowledge about the software design as well as corresponding verification
techniques. Also, the diagram-based technique CONSENS (see Section 2.1.1) provides
high coverage, but performs less well regarding the other evaluation criteria – amongst
other things – because it does not provide a complete integrated formalism underlying
the design information.

Conclusion

The next generation of conceptual design tools and techniques for cyber-physical manu-
facturing systems should provide a similar high coverage of design information as com-
mercial product lifecycle management solutions or CONSENS, while providing integrated
formalisms enabling automated evaluation of the design information and fostering prac-
tical design methodologies.

2.2.2 Integrated formalism

Then, from the challenge of lacking synchronization (see Section 1.3.2) the need for an
integrated formalism is derived underpinning the covered design knowledge, which de-
scribes the static and dynamic relationships among the individual pieces of the design
knowledge. For example, the diagram-based techniques (see Section 2.1.1) only provide
a semi-formal graphical syntax for capturing the design knowledge, while formal seman-
tics is missing completely. In contrast, the matrix-based approaches (see Section 2.1.4)
provide a formal mathematical syntax for describing some portions of design knowledge,
but the approaches still are lacking formal semantics. Then, commercial tools (see Sec-
tion 2.1.7) provide both formal syntax and semantics, but the capabilities are limited
to certain design knowledge only (such as part geometries as well as their motion and

43

2 Differentiation

deformation). In particular, the customer requirements and functional designs as well
as the relation between customer requirements, the functional design, and implemen-
tation details remain informal. Only, physics-based approaches (see Section 2.1.2) and
component-based approaches (see Section 2.1.3) as well as the function-behavior-state
approach (see Section 2.1.5) and the requirement ontology (see Section 2.1.6) provide
completely integrated formalisms both for syntax and semantics. However, these ap-
proaches provide only limited coverage of design knowledge.

Conclusion

The next generation of conceptual design tools and techniques for cyber-physical man-
ufacturing systems should provide similar well integrated formalisms as physics-based,
component-based, and some function-based approaches, while providing a higher cover-
age of the necessary design information and fostering practical design methodologies.

2.2.3 Automated evaluation

Furthermore, form the challenge of insufficient assurance (see Section 1.3.3) the need
for an automated evaluation of the design information with respect to relevant quality
criteria such as completeness and consistency is derived. Note that an automated eval-
uation requires an underlying formalism, such that quality properties can be expressed
unambiguously and calculated algorithmically. For example, approaches like the design
prototypes (see Section 2.1.5) or the functional basis (see Section 2.1.6) only support
very limited evaluation capabilities such as text-based search. Then, the diagram-based
techniques (see Section 2.1.1) already provide more advanced evaluation support regard-
ing the completeness and consistency of the design information based on the semi-formal
graphical syntax, while missing semantic evaluation capabilities, e.g., with respect to sys-
tem dynamics and satisfaction of requirements. Thereafter, the physics-based approaches
(see Section 2.1.2) in principle support the automated evaluation of the semantics, but
lack a representation of requirements against which the implementation details can be
checked. Only, the Mechatronic UML (see Section 2.1.3), the Function-behavior-state
approach (see Section 2.1.5), and The MathWorks tool suite (see Section 2.1.7) provide
comprehensive evaluation capabilities both for syntactic and semantic quality proper-
ties. However, all three approaches only capture limited design knowledge such that
important quality properties cannot be evaluated automatically. In particular, all three
approach miss an explicit representation of part geometries and spatial collision, which
might have a considerable effect on the system design.

44

2.2 Remaining problems

Conclusion

The next generation of conceptual design tools and techniques for cyber-physical man-
ufacturing systems should provide a similar high degree of automation of verification
tasks as the Mechatronic UML, the Function-behavior-state approach, and The Math-
Works tool suite, while covering more design information and defining suitable design
methodologies.

2.2.4 Practical methodology

Finally, form the challenge of sequential engineering (see Section 1.3.4) the need for a
practical methodology is derived, which reduces the time until electrical and software
engineers start taking design decisions and which promotes early design verification and
validation. For example, the physics-based approaches (see Section 2.1.2) do not provide
any practical methodology leading systematically from customer requirements to imple-
mentation details, but concentrate on the implementation details and their simulation
only. Similarly, the ontology-based approaches (see Section 2.1.6) provide only limited
insight regarding practical design methodologies. In contrast, the Mechatronic UML (see
Section 2.1.3) already provides an interdisciplinary approach to system decomposition
and behavioral design. However, design knowledge regarding manufacturing materials,
manufacturing processes, and part geometries is omitted. Similarly the matrix-based ap-
proaches (see Section 2.1.4) and the function-based approaches (see Section 2.1.5) contain
strong methodological ideas, but provide limited information coverage. Only CONSENS
(see Section 2.1.1) as well as the Siemens PLM Software and the Dassault Systèmes
tool suites (see Section 2.1.7) provide both a high degree of information coverage as well
as support for interdisciplinary design methodologies. However, though being interdis-
ciplinary, the methodologies typically are aligned with the V-model [BD93] hindering
early verification and validation of partial designs. Furthermore, the approaches lack
an integrated formalism as well as automated evaluation capabilities such that changes
might not be synchronized properly and design flaws might not be detected until late.

Conclusion

The next generation of conceptual design tools and techniques for cyber-physical man-
ufacturing systems should provide a similar strong support for interdisciplinary design
methodologies as the CONSENS approach or the Siemens PLM Software and the Das-
sault Systèmes tool suites, while supporting more agile design practices based on formal
models and automated evaluation capabilities.

45

2 Differentiation

2.3 Research objectives

As shown in the previous section none of the related approaches (see Section 2.1)
achieves a perfect rating indicating a general research gap. The diagram-based approach
CONSENS [RBG14], the component-based approach Mechatronic UML [BGT05], the
function-based approach Function-behavior-state [UTTY90, UIY+96], as well as the
commercial tools vendors Siemens PLM Software1 and Dassault Systèmes2 receive the
highest aggregate ratings with 3.0 points. While CONSENS, Siemens PLM Software,
and Dassault Systèmes provide highly suitable abstractions and practical methodologies,
they lack a high degree of integration of the underlying formalisms and automation of
verification tasks. In contrast, the Mechatronic UML and the Function-behavior-state
approach provide a high degree of integration of the underlying formalisms and automa-
tion of verification tasks, but lack highly suitable abstractions and practical methodolo-
gies. Consequently, either the degree of integration of the underlying formalisms and
automation of verification tasks has to be improved, or the suitability of the abstrac-
tions and the practicability of the methodologies has to be enhanced with respect to the
current state of the art.

Conclusion

The overall aim of this doctoral thesis is to propose a novel approach for the conceptual
design of cyber-physical manufacturing systems that provides a highly suitable abstrac-
tion of the relevant design information and a practical (i.e. interdisciplinary and agile)
design methodology, which both are complemented by a high degree of integration of the
underlying formalisms and automation of verification tasks.

2.4 Summary and outlook

This chapter summarized related work on conceptual design of cyber-physical manufac-
turing systems (see Section 2.1). Then, problems were derived that remain unsolved
with respect to the challenges from the first chapter (see Section 2.2). Finally, the re-
search objectives of this doctoral thesis were summarized (see Section 2.3). The next
chapter describes a novel test-driven method, which is meant to address the sequential
engineering challenge.

46

3 Test-driven method

To tackle the sequential engineering challenge described in the first chapter, a test-driven
method for the conceptual design of cyber-physical manufacturing systems is proposed.
The basic ideas are taken from test-driven software development [Bec02] and component-
based software development [BS01]. The key principle in test-driven development is to
write test cases first. Then, the implementation proceeds incrementally over the test
cases until the software is finished. In each increment the software structure is refactored
potentially to maintain the software quality. Studies exist that confirm the positive
impact of test-driven development on software quality [MW03, WMV03, GW03, BN06,
NMBW08]. In contrast, the key principle behind component-based software development
is to decompose systems into components. Consequently, complex engineering tasks can
be divided into less complex engineering tasks. Now, Figure 3.1 provides an overview of
the proposed test-driven design method for cyber-physical manufacturing systems.

Requirement
specification

Test
specification

Process
specification

Architecture
specification

Behavior
specification

Part
specification

Material specification

Quality assurance

Test
selection

Preparation phase Implementation phase

Figure 3.1: Proposed method for the conceptual design of manufacturing systems.

47

3 Test-driven method

The proposed method separates between a preparation phase and an implementation
phase. In the preparation phase, the requirements for the manufacturing system are
specified and (ingoing as well as) outgoing materials are defined. Afterwards, man-
ufacturing processes and test cases are derived including intermediate material states.
Typically, the manufacturing processes are designed to ensure an efficient transformation
from ingoing to outgoing materials through suitable intermediate material and system
states. In contrast, the test cases are intended to verify the upcoming implementation
with respect to the requirement and the process specifications. Then, in the implemen-
tation phase a subset of unimplemented test cases is selected and the implementation is
revised/extended until these test cases are passed. In particular, in this step the com-
ponent architecture, the component behavior and the component parts are modified.
Afterwards, one needs to decide whether to accept the system specification (including
requirement, process, test, architecture, behavior and part specification) or to revise the
specification in a subsequent iteration. Finally, syntactic quality assurance is carried out
continuously throughout the conceptual design process, while semantic quality assur-
ance is executed periodically at the end of each iteration and/or increment of the design
process. Note that the same procedure is applied also for each component of the internal
component architecture. Consequently, in each iteration each subcomponent has to pass
the implementation phase before the system can pass the implementation phase.

In the following, the preparation phase is explained in Section 3.1 and the implemen-
tation phase in Section 3.2. For each phase the associated activities as well as respective
quality assurance measures are described. Furthermore, for each activity its purpose,
the relevant background, as well as the specific approach are described.

3.1 Preparation phase

The preparation phase is concerned with understanding the customer needs, defining
appropriate manufacturing processes, and planning effective test procedures. The cus-
tomer needs concern the in- and output materials processed by the system as well as the
desired energy and data flows. In contrast, the manufacturing processes mostly com-
prise the admissible sequences of manufacturing operations. Finally, the test procedures
embrace the expected reaction of the system under different operative circumstances.
Subsequently, the requirement specification activity is explained in more detail in Sec-
tion 3.1.1, the process specification activity in Section 3.1.2, and the test specification
activity in Section 3.1.3. Note that the preparation phase also includes a material spec-
ification and a quality assurance activity (see Figure 3.1). However, these two activities
are not described separately, but they are referred to while describing the other activities.

48

3.1 Preparation phase

3.1.1 Requirement specification

The requirement specification activity is concerned with understanding and documenting
the operational context and the purpose of as well as constraints for the manufacturing
system from the viewpoint of the different stakeholders [KS98]. Typical stakeholders
are the purchaser and the provider of the manufacturing system as well as regulatory
institutions. Furthermore, typical sources of requirements are public standards, house
regulations of the purchaser and the provider, and country regulations of the purchaser
site and the provider site. In the following, first background information on requirement
specification is provided before sketching the proposed approach.

Background

The main purpose of the manufacturing system is to produce output materials from po-
tentially predefined input materials. For example, the purpose of a gear manufacturing
system is illustrated in Figure 3.2. Both input and output materials can be character-
ized by a number of different material properties, while each material property can have
an impact on the manufacturing process design and the manufacturing system imple-
mentation. In particular, in most cases the material geometry needs to be considered
to prevent undesired collisions during manufacturing system operation [Hum11]. More-
over, in the case of gear manufacturing the tooth strength needs to be considered to
prevent gear failure during usage [KS03]. The material properties considered here are
determined usually by the purchaser of the manufacturing system and the operational
context of the output material respectively.

process

Manufacturing

Input material Output material

Figure 3.2: Example material specification during requirement specification.

Additional requirements documented in literature concern the performance of the man-
ufacturing process [VN92] and the sustainability of the manufacturing process [GDT06].
The performance can be measured, for example, in terms of turnover, while the sustain-
ability can be measured in terms of waste or emissions. Then, the operational context of
the manufacturing system might include human operators and technical systems. Both
for human operators and technical systems appropriate interfaces have to be provided
that enable desired and disable undesired interactions. For example, human operators
might need to adjust parameters during manufacturing system operation, while technical

49

3 Test-driven method

systems such as the power grid might supply electric energy or a material flow system
might supply input materials and fetch output materials.

Approach

The proposed approach envisages first to collect requirements from possible sources
(such as standards and regulations) as well as in meetings with stakeholders. Ini-
tially, the requirements are documented in natural language and freehand sketches.
However, one key problem of natural language and freehand sketches is their inher-
ent ambiguity [Ber08, OSSJ09]. To overcome this problem, in accordance to other
work [FKV91] translating the original requirements to more formal representations is
proposed. Note that techniques exist that try automating the translation both for natu-
ral language [LB02, IO05] and for freehand drawings [SG00, DHT00]. Besides ambiguity
there exist numerous other qualities of requirement specifications such as completeness,
correctness, as well as internal and external consistency [DOJ+93]. Different approaches
have been proposed to address each of these qualities. For example, the complete-
ness of a requirement specification can be assessed by means of reviews and proto-
types [And89, Dav92]. In contrast, the internal consistency can be assessed using formal
languages and analysis techniques [Alf85, DMRT79]. However, this thesis concentrates
on manual quality assurance techniques for simplicity such as reviews. Furthermore,
the quality of the requirement specification is expected to improve across iterations and
increments.

3.1.2 Process specification

After completing the requirement specification activity (see Section 3.1.1), the process
specification activity is concerned with designing a suitable manufacturing process. In
particular, a suitable manufacturing process must produce the required output material
within the given constraints. As mentioned previously, constraints might be defined
regarding the process performance or the process sustainability. In the following, again
background information on process specification is provided before sketching the pro-
posed approach.

Background

In general, one can distinguish between macro-level process specifications and micro-level
process specifications depending on the level of abstraction [EN16]. Macro-level process
specifications select appropriate manufacturing operations (e.g. milling or sanding) and

50

3.1 Preparation phase

define their sequential order [ElM93]. For example, a possible macro-level process speci-
fication for gear manufacturing is illustrated in Figure 3.3. The depicted manufacturing
process uses three manufacturing operations for transforming the input material to the
desired output material. First, milling is used to transform the input material to the first
intermediate (or low-precision) material state. Then, sanding is used to transform the
first intermediate material state to the second intermediate (or high-precision) material
state. Finally, drilling is used to transform the second intermediate material state to the
output (or finished) material. Note that milling is quick and inaccurate, while sanding
is slow and accurate. Consequently, both the process speed and the process accuracy
benefit from using these manufacturing operations in combination.

DrillingSandingMilling

Input material Intermediate material 1 Intermediate material 2 Output material

Figure 3.3: Example material specification during process specification.

In contrast, micro-level process specifications define the actual parameters of the man-
ufacturing operations selected in a macro-level process specification. Important param-
eters are the duration of each manufacturing operation as well as respective tools (e.g.
drilling heads or cutting dies) and fixtures (e.g. clamps) [ElM93]. Hereby, in some cases
one might be able to reuse existing tools and fixtures developed in previous projects. In
many cases, however, new fixtures have to be developed to implement certain manufac-
turing operations. Typically, the fixtures have to be designed to avoid certain collisions
during system operation and to withstand certain forces. Finally, additional parame-
ters under consideration are datum surfaces, production tolerances, and cutting condi-
tions [AZ89]. For example, the cutting conditions include the cutting depth and the
cutting speed.

Approach

In accordance to previous work, the proposed approach envisages first to plan the man-
ufacturing process on a macro-level before determining the parameters of each man-
ufacturing operation on a micro-level. Note that computer-aided process planning
and computer-aided manufacturing tools exist that try automating this task [AZ89,
CWW05]. In particular, planning can be formulated also as an optimization problem
over possible manufacturing operations, their parameters, and selected optimization cri-
teria [JSJ98, CT98]. These tools can be used with the proposed method in principle as

51

3 Test-driven method

well. However, the remainder of this thesis concentrates on manual planning and quality
assurance for simplicity, which requires human expertise. Furthermore, the quality (e.g.
the optimality) of the process specification is expected to improve across iterations and
increments.

3.1.3 Test specification

After completing the requirement specification activity (see Section 3.1.1) and in parallel
to the process specification activity (see Section 3.1.2), the test specification activity is
concerned with deriving suitable test cases and test suites [Gon70, Cho78, FvBK+91].
Hereby, a suitable test suite is able to detect all possible faults in the system implemen-
tation. Faults are considered to be unacceptable behaviors of the system implementation
as perceived by, e.g., the customer. Note that in the context of the proposed method
the requirement specification and the process specification define the set of acceptable
behaviors. In the following, background information on test specification is provided
before sketching the proposed approach.

Background

Most fundamentally, test cases can be described as relation between selected system
inputs and expected system outputs [Tre99, DJK+99]. For example, in the case of the
gear manufacturing system described in the previous sections a selected input could be
the raw material, while the expected output would be the final product (see Figure 3.4).
Note that due to production tolerances the same raw material might lead to different
final products respectively product geometries. Then, during test execution the selected
input is provided to the system implementation and the actual output of the system
implementation is compared to the expected output. If the actual output matches the
expected output the system implementation passes the test case. Otherwise, the system
implementation fails the test case. Such failures indicate quality defects in the overall
system specification, which need to be resolved eventually. Note that both the system
implementation and the test specification could be defective in principle. Consequently,
one has to evaluate carefully which parts of the specification need to be revised.

,)(
Selected input Expected output

Figure 3.4: Example test specification.

52

3.2 Implementation phase

In addition to the previous input-output relationships one might also include timing
information into the test specification [KT04]. For example, in the previous case of
the gear manufacturing system one can specify that the final product must be provided
within a predefined duration (typically in the order of seconds today). Furthermore,
one can express that results must not be provided before a second duration has passed.
Then, during test execution not only the inputs and outputs have to be considered, but
also the duration between events has to be tracked. Consequently, one can compare also
the actual duration with the expected minimum and maximum durations. If the actual
duration lies in between the expected range the system implementation passes the test
case. Otherwise, the system implementation fails the test case. Again, a failure indicates
a quality defect which needs to be resolved.

Approach

The proposed approach envisages to derive the test cases from the requirement specifica-
tion and the process specification respectively. Note that numerous approaches exist that
try automating this task. For example, [Gon70, Cho78, FvBK+91] generate test suites
from finite state machine specifications of the system under development. More recently,
also other specification techniques are supported under the umbrella of model-based test-
ing [DJK+99]. One key quality criterion during test specification is the adequacy of the
resulting test suite. The adequacy can be understood as the ability to detect faults in
the system implementation [ZHM97]. Different measures have been proposed to describe
the adequacy of a test suite. For example, mutation-based measures randomly implant
defects into the system implementation and measure the ability of the test suite to un-
cover them. Note that all previous techniques can be used with the proposed method
in principle. The remainder of this thesis concentrates on manual test specification and
quality assurance across iterations and increments for simplicity.

3.2 Implementation phase

After finishing the preparation phase, the implementation phase is concerned with defin-
ing an appropriate technical solution for the original design problem comprising cyber-
physical as well as purely mechanical, electrical, and software elements. The implemen-
tation phase starts with selecting a subset of test cases (or system functionalities) from
the system’s test suite. Only the subset of test cases is considered in the following, hence,
effectively reducing the scope and complexity of the design problem. Subsequently, the
system implementation (i.e. its architecture, behavior, and parts) is revised and extended

53

3 Test-driven method

with the goal of passing the selected test cases. After revising and extending the sys-
tem implementation, the test cases are executed to check the overall specification for
potential flaws. Hereby, the execution of the individual test cases might pass or fail.

Passed test cases indicate that the requirement specification, the process specifica-
tion, the test specification, and the system implementation are consistent. A consistent
specification suggests that the engineers involved in the design process share a common
understanding and that the system was specified and implemented correctly according
to this common understanding. However, note that the common understanding of the
engineers involved in the design process still might deviate from the expectations of the
customers. Therefore, at this point the consistent specification can be presented to the
customers to check whether the system specification meets the customer expectations.
If the specification meets the expectations the specification is called valid. Otherwise
the specification is called invalid. Furthermore, if all test cases of the system’s test suite
have been implemented, the specification is called complete. Otherwise the specification
is called incomplete. In case of a valid and complete specification the design process can
be terminated. In contrast, in case of a valid and incomplete specification a subsequent
walk through the design process is triggered, within which unimplemented test cases
are added to the subset of selected test cases. This subsequent walk through the design
process is called an increment because the scope and complexity of the design problem
is increased gradually. Finally, an invalid specification indicates that there might be a
misunderstanding between the customers and the engineers. Consequently, the cause of
the problem has to be identified before triggering a subsequent walk through the design
process and revising the specification accordingly. This subsequent walk through the
design process is called an iteration because the scope of the design problem remains
untouched. Multiple iterations might follow until a valid specification is reached, which
can be either complete or incomplete. In case of an incomplete specification the iteration
is followed by an increment. Otherwise, the design process can be terminated.

In contrast, failed test cases indicate that the requirement specification, the process
specification, the test specification, and the system implementation are inconsistent. An
inconsistent specification suggests a that there might be a misunderstanding among the
engineers involved in the design process and/or that the overall specification might in-
clude a bug. Consequently, the engineers involved in the design process have to analyze
the cause of the problem. If the cause of the problem is a misunderstanding, the engi-
neers have to discuss their viewpoints and agree upon a common understanding before
triggering another walk through the design process and revising their specifications ac-
cordingly. Note that sometimes it might be necessary to include the customer into the
discussion to resolve the misunderstanding. If the cause of the problem is a bug instead,
another walk through the design process can be triggered directly to resolve the specifi-

54

3.2 Implementation phase

cation flaw. Note that in both cases changes might be required in any of the specification
parts, i.e. the requirement specification, the process specification, the test specification,
or the system implementation, which is why the entire design process is triggered from
the beginning. The subsequent walk through the design process is called an iteration
because the scope of the design problem (i.e. the subset of selected test cases) remains
untouched. Again, multiple iterations might follow each other until a consistent spec-
ification is reached, which can be either valid or invalid and complete or incomplete
according to the previous definitions. In case of a valid and complete specification the
design process can be terminated directly. In contrast, in case of a valid and incomplete
specification an increment follows increasing the scope of the design problem. Finally,
in case of an invalid specification an iteration follows including customer feedback.

Subsequently, the execution of test cases is called verification and the discussion
with customers validation. Test-based verification and discussion-based validation, in
turn, represent the two final steps of the quality assurance activity, which is carried
out throughout the entire design process and, hence, the implementation phase (see
Figure 3.1). Note that the time to verification and validation is reduced by focusing
on a subset of unimplemented test cases (or system functionalities) in each increment
and iteration only. Consequently, integration of mechanical, electrical, and software
concepts as well as customer feedback can be achieved much earlier than in traditional
design processes. As a result, flaws in interdisciplinary designs and misunderstandings in
project-related communication can be uncovered and resolved much quicker than before.
However, note that focusing on a gradually increasing subset of test cases during the
implementation phase also bares risks. In the worst case, the system implementation
has to be revised completely after extending the scope of the design problem, hence,
causing additional efforts and costs. Consequently, appropriate test selection and imple-
mentation strategies are required. Subsequently, the test selection activity is described
in Section 3.2.1, the architecture specification activity in Section 3.2.2, the behavior
specification activity in Section 3.2.3, and the part specification activity in Section 3.2.4.
Similar to the previous section, the quality assurance activity is not described separately,
but it is referred to while describing the other activities.

3.2.1 Test selection

The test selection activity is concerned with determining the subset of test cases that is
considered in the following implementation activities, namely architecture specification
(see Section 3.2.2), behavior specification (see Section 3.2.3), and part specification (see
Section 3.2.4). Note that the goal of the subsequent activities is to develop the system
design such that it is able to pass the test cases and, hence, to provide the respective

55

3 Test-driven method

functionalities desired by the customer. As mentioned previously, the test cases have to
be selected carefully to avoid negative impacts on the overall design efforts and costs.
For example, architectural design decisions taken in early increments might have to be
revised in later increments to keep the system design maintainable. However, if the
selection order of the test cases would have been reversed, it might have been possible to
avoid this problem. Consequently, effective test selection strategies are required, which
help identify the most appropriate test cases in each iteration or increment.

Background

Figure 3.5 illustrates an example test selection sequence covering two increments and n
iterations. For each increment and iteration the subset of test cases is depicted that has
been selected by the engineers involved in the design process. Furthermore, the test se-
lection activities represent the transitions between the individual increments, iterations,
and subsets of test cases respectively. Note that when transitioning to the next itera-
tion, the subset of test cases remains identical. In contrast, when switching to the next
increment, the subset of test cases changes. In particular, test cases, which have not
been considered previously, are added to the subset based on a test selection strategy.
Consequently, in subsequent walks through the design process additional test cases are
executed and, hence, the system implementation is verified and validated with respect
to additional system functionalities. Note that the design process ensures that the sys-
tem implementation remains correct with respect to system functionalities implemented
in previous increments and iterations. Furthermore, note that the test cases might be
revised across iterations due to flaws in the test specification. For example, in Figure 3.5
the first test case is revised in iteration 1 and in iteration n.

,)(
,)(

,)(
,)(

,)(
,)(,)(

Test
selection

Test
selection

Iteration 1.1Increment 1 Iteration 1.n

,)(,)(,)(
,)(
,)(Test

selection

Increment 2

Figure 3.5: Example test selection sequence covering two increments and n iterations.

Numerous test selection strategies are perceivable. For example, one could prefer test
cases that are easy to implement in earlier phases of the design process to reduce the
time until a working prototype is available. Alternatively, one could concentrate on test
cases (or system functionalities), which have been implemented in other projects before
to leverage available experience and reuse existing quality-controlled design decisions.
Moreover, one could focus on test cases, which have been communicated ambiguously

56

3.2 Implementation phase

during project meetings to tackle potential misunderstandings already early in the design
process. In general, test selection strategies determine the order, in which the test cases
are implemented. This ordering can be achieved, for example, by means of an objective
function assigning to each test case a utility value. Then, the test cases with highest
utility are selected first and test cases with lower utility are added later. The utility
function itself can take various information into account. Most importantly, information
about the test cases (e.g. complexity of the individual system functionalities), the project
team (e.g. experience of the individual team members), and the customer (e.g. number of
projects completed with the same customer) should be included. Note that – assuming
appropriate datasets – some information can be computed automatically (e.g. the number
of projects completed with the same customer), while other factors have to be determined
manually (e.g. the experience of the individual team members).

Approach

The proposed approach envisages to use a test selection strategy that minimizes the time
to verification and validation. Consequently, the test cases are prioritized according to
the complexity of the underlying system functionalities. Therefore, the approach relies
on a method called planning poker [Hau06a] for determining an objective measure of
complexity for each test case. Hereby, the project manager first explains the test cases
that need to be implemented. Then, the engineers can ask question about the test cases
to gain a better understanding of the required system functionality. In the next step,
each engineer makes an independent estimate of the complexity, e.g., in terms of man
hours. Thereafter, the engineers with the lowest and highest estimates explain their
viewpoints. Finally, the process is repeated until a consensus is reached. Note that
the planning poker method is used commonly in agile development processes such as
Scrum [SB02]. Furthermore, note that future research is required to gain more detailed
insight into the effect of test selection strategies on the design process and the system
quality respectively.

3.2.2 Architecture specification

After the test selection activity (see Section 3.2.1), the architecture specification activity
is concerned with decomposing the system under development into a suitable combi-
nation of less complex elements and their interactions [PW92]. Note that a combina-
tion of elements and interactions is considered to be suitable if its behavior conforms
to the requirements specification (see Section 3.1.1) and the process specification (see
Section 3.1.2) respectively. In this context, the question arises what characterizes the

57

3 Test-driven method

elements and interactions of an architecture. Several discipline-specific and interdisci-
plinary interpretations exist. In the following, background information on architecture
specification is provided before sketching the proposed approach.

Background

Figure 3.6 illustrates discipline-specific interpretations of the term “architecture”. The
mechanical architecture can be described by geometric elements [Ulr94]. Then, inter-
actions between elements appear (e.g. upon collision) through exchange of (potential,
kinetic, thermal, etc.) energy. Note that collision-based interactions can be forced stati-
cally by mechanical connectors (e.g. clamps). Such static interactions can be represented
by so-called constraints or joints. In contrast, the electrical architecture can be described
by both geometrical and logical elements such as current sources, resistors, or inductors,
which provide so-called pins at their interface [FB02]. Then, interactions between ele-
ments appear through exchange of electrical energy over connected pins. Furthermore,
effects like electromagnetism and thermoelectrics might cause desired/undesired electri-
cal and mechanical interactions. Finally, the software architecture can be described by
functional elements, which provide input and output ports with respective data types at
their interface [RJB10]. Then, interactions between elements appear through exchange
of information over connected ports.

Software architectureMechanical architecture Electrical architecture

Figure 3.6: Example discipline-specific architecture specifications.

An interdisciplinary interpretation of the term “architecture” requires its elements
to combine mechanic, electric, and software characteristics [ME98]. Consequently, the
elements of an interdisciplinary architecture might interact via both geometrical and
logical interfaces through the exchange of material, energy and information. These
characteristics are reflected by the concept of the mechatronic component [Thr05]. In
particular, a mechatronic component comprises mechanical ports, electrical ports, and
software ports. Mechanical ports represent both mounting ports and material or energy
flow ports. Hereby, mounting ports are connected typically using mechanical connec-
tors, material flow ports transport solid, liquid, or gaseous material, and energy flow
ports describe energy exchange. In contrast, electrical ports represent only energy flow
ports, while software ports represent information flow ports. Furthermore, note that in

58

3.2 Implementation phase

principle information might also flow over electrical ports and material ports directly.
However, in such cases the information has to be encoded using selected electrical or
mechanical properties such as voltage or shape.

Approach

The proposed approach envisages to derive the architecture from the requirement specifi-
cation and the process specification. First, one has to decide whether a decomposition of
the system under development is desired or not. For example, a decomposition might be
desired because elements can be reused from previous projects saving development cost
or developed in parallel saving development time [Thr05]. In contrast, a decomposition
might not be desired because additional elements respectively details would not provide
enough benefits during preliminary design. Then, one should prefer using mechatronic
components at the upper levels and discipline-specific components at the lower levels of
the decomposition hierarchy. Consequently, design decisions can be delayed such as us-
ing a robot arm or a conveyor belt for transporting solid material between two positions.
Note that approaches exist that try automating the decomposition task. For example,
for software systems the task can be formulated as optimization problem over measures
such as granularity, cohesion, and coupling [HHP02]. In contrast, for mechatronic sys-
tems the task can be formulated as clustering problem over system functions and their
interactions [vBET10]. These techniques can be used in principle with the proposed
approach as well. However, for simplicity the remainder of this thesis concentrates on
manual architecture specification and iteration- and increment-based quality assurance.

3.2.3 Behavior specification

In parallel with the architecture specification activity (see Section 3.2.2), the behavior
specification activity is concerned with describing the reaction of the architectural ele-
ments to stimuli from the environment. Note that typically the stimuli are exchanged
over the interfaces of the architectural elements such as mechanical, electrical, and digital
ports of mechatronic components [Thr05]. Different formalisms exist for describing this
reaction at various levels of detail from high-level logical processes to low-level physical
dynamics. In the following, background information on behavior specification is provided
before sketching the proposed approach.

Background

The most prominent formalisms probably are differential equations and finite-state ma-
chines. Differential equations can be used to model behavior over continuous time and

59

3 Test-driven method

continuous state variables. Consequently, differential equations are well suited to de-
scribe physical behavior such as the relationship between force, acceleration, velocity
and position. In practice, differential equations are used for modeling both mechanical
and electrical behavior [FB02]. In contrast, finite-state machines can be used to model
behavior over discrete time and discrete state variables [LT89]. Finite-state machines are
well suited to describe software behavior. Note that software behavior is based inherently
on electrical behavior over continuous time and continuous state variables. Consequently,
finite-state machine378s represent an abstraction from the underlying physical charac-
teristics. Finally, there also exist hybrid formalisms that integrate differential equations
and finite-state machines [LSV03]. Consequently, differential equations can be associ-
ated with the finite states such that in each state a different continuous behavior can be
observed. The hybrid approaches are well suited for coupling mechanical, electrical, and
software behavior.

Differential equations Finite-state machines

S1 S3S2A1 A2
f(x)

f'(x)

Figure 3.7: Example behavior specifications.

While the software behavior can be designed rather freely, the mechanical and elec-
trical behavior has to obey physical laws. In particular, mechanical behavior comprises
multi-body dynamics [Sch97, Sha97] and fluid dynamics [ADD+10]. Multi-body dy-
namics is concerned with the motion and collision-based interaction of multiple bodies
(see Section 2.1.2). Hereby, one can distinguish further between rigid multi-body dy-
namics [Sch97] and flexible multi-body dynamics [Sha97]. In rigid multi-body dynamics
forces only affect the motion of entire bodies, while in flexible multi-body dynamics forces
also might affect their shape. Consequently, in flexible multi-body dynamics also the de-
formation of mechanical elements can be studied. Note that rigid multi-body dynamics
represents a simplification of flexible multi-body dynamics. In contrast, fluid dynamics
is concerned with the behavior of fluids [ADD+10]. Typically, fluids are modeled using
particles with individual physical state and spontaneous interactions. Finally, electrical
behavior comprises Maxwell’s equations when working with alternating current [Mon03].
Instead, when working with direct current one can use the simplified Kirchhoff’s laws.

60

3.2 Implementation phase

Approach

For simplicity, the proposed approach envisages to use finite-state machines over discrete
time and (possibly) continuous state variables for specifying mechatronic, mechanical,
electrical, and software behavior (including spatial motion and its causes explicitly).
However, one also can argue that finite-state machines are well-suited for conceptual
design. First, they allow one to describe the physical behavior sufficiently precise de-
pending on the discretization. Second, they allow one to abstract from certain physical
details such as intermediate material positions during motion. Third, their semantics
are easy to explain to potential users (e.g. requirements and process engineers as well
as mechanical, electrical, and software engineers) and to implement by potential tool
providers. However, a major drawback of the discretization is that critical system states
might be neglected or the specified discrete behavior might diverge from the actual phys-
ical behavior. Consequently, one has to select carefully the discretization scheme and
one has to interpret carefully the model predictions [BR87]. In an advanced version of
the approach one might rely on differential equations directly. Additionally, one might
include the described laws of physics directly into the model semantics such that they
do not have to be modeled explicitly.

3.2.4 Part specification

In parallel with the architecture specification activity (see Section 3.2.2) and the behavior
specification activity (see Section 3.2.3), the part specification activity is concerned with
describing the geometric shape of mechanical and electrical elements. Note that the
geometric shape represents an important piece of information during conceptual design
of cyber-physical manufacturing systems. In particular, the geometric shape is needed to
involve the mechanical engineers in the design process as well as to communicate a clear
picture among the different stakeholders and to ensure the collision-free operation of the
system. In principle, a variety of techniques exist for describing geometric shapes coming
from various fields of research such as civil engineering, mechanical engineering, and
computer graphics. In the following, again background information on part specification
is provided before sketching the proposed approach.

Background

Fundamentally, one can distinguish between solid representations and boundary rep-
resentations [RV83], which have their own advantages and disadvantages. Figure 3.8
illustrates the difference between solid representations and boundary representations.
Solid representations describe the points in space that belong to a geometric shape,

61

3 Test-driven method

while boundary/shell representations describe the surface of the geometric shape in-
stead. Probably the most prominent solid representation is provided by constructive
solid geometry [RV77]. In constructive solid geometry geometric shapes are represented
as sets of points in space. At its core primitive geometric shapes are provided such as
cubes, spheres, and cylinders. Then, the classical set operations union, difference, and
intersection are provided to compose geometric shapes. Finally, classical geometric trans-
formations such as displacements, isometries, and similarities are provided to change,
for example, the position, orientation, and scale of geometric shapes. In contrast, a pop-
ular boundary representation is provided by non-uniform rational basis splines [Pie91].
Non-uniform rational basis splines allow one to describe the surface of geometric shapes
using control points, their weights, a parameter interval, and knots over the parameter
interval. Then, the surface can be defined as a function from the parameter interval to
the points in space. Hereby, each parameter value is mapped to a linear combination
of the control points. The coefficients of the linear combination are derived from the
weights and the knots respectively. In particular, the knots specify the parameter range
where certain control points are active.

Solid representation Boundary representation

Figure 3.8: Example part specifications.

Besides constructive solid geometry and non-uniform rational basis splines there exist
numerous other techniques for describing geometric shapes [Req80]. The most prominent
approaches are spatial occupancy enumeration, cell decomposition, and the sweep rep-
resentation. Spatial occupancy enumeration divides space into cubic cells respectively
voxels of equal size. Then geometric shapes are described in terms of the comprised
cells/voxels. A downside of the approach is that descriptions of geometric shapes tend
to be rather verbose. In contrast, cell decomposition divides space into cells of arbitrary
shape and size. Consequently, cell decomposition represents a generalization of spatial
occupancy enumeration. Furthermore, cell decomposition is able to produce less ver-
bose descriptions of geometric shapes than spatial occupancy enumeration. However,
typically such cell decompositions are difficult to generate/compute. Finally, the sweep
representation describes geometric shapes in terms of three-dimensional planes inter-
secting with the shape and the two-dimensional contours of the shape in these planes.
Hereby, one can distinguish between rotational and translational sweeping. In rotational
sweeping the planes rotate around one single axis, while in translational sweeping the

62

3.3 Summary and outlook

panes translate in one single direction. At last, it should be noted that approaches exist
to convert between the different representations of geometric shapes [Req80]. However,
in some cases only approximate representations can be produced.

Approach

The proposed approach envisages to use constructive solid geometry for describing the
geometric shape of mechanical and electrical parts. One can argue that constructive
solid geometry is well-suited for describing geometric shapes during conceptual design.
In particular, constructive solid geometry provides a solid representation of geometric
shapes, from which exact boundary representations can be calculated using boundary
evaluation algorithms [RV85]. Furthermore, constructive solid geometry representations
can be annotated with features, tolerances, and other attributes to guide the manufac-
turing process planning (see Section 3.1.2 and [RC86]). One downside is that smooth
contours of complex objects can be described using, for example, non-uniform rational
basis splines more easily. However, one can argue that during conceptual design the
exact geometric shape of mechanical and electrical parts is not important. Rather, the
proposed approach suggests working with coarse over-approximations of the geometric
shapes to save time, while retaining confidence, for example, on collision-free system
operation.

3.3 Summary and outlook

This chapter explained the test-driven design method, by means of which the challenges
of mechanical dominance and sequential engineering described in the first chapter are
tackled. First, the preparation phase has been described concentrating on the require-
ments, the input and output materials, the manufacturing processes, and test cases (see
Section 3.1). Then, the implementation phase is concerned with elaborating the imple-
mentation details incrementally consisting of architectural, behavioral, and geometrical
knowledge (see Section 3.2). The next chapter describes the theoretical foundations upon
which the modeling technique for capturing the related design information is built.four

63

4 Theoretical foundation

To realize the proposed test-driven method (see Chapter 3) an existing formalism is
exploited and extended for describing the structure and behavior of cyber-physical man-
ufacturing systems. In particular, this thesis bases on two corner stones: Section 4.1
presents a formal theory for the component-based specification of software systems called
FOCUS. In particular, the FOCUS theory provides mathematical notions of components
and their composition, which are key concepts for handling the complexity of modern
(software) systems. Then, Section 4.2 explains an extension of the original FOCUS the-
ory to spatio-temporal systems, i.e. systems having a potentially time variable spatial
extent, called STEM. Most notably, the STEM theory includes mathematical notations
of space, volume, position, motion, and collision. Note that the STEM theory is well
suited for describing the structure and behavior of cyber-physical manufacturing sys-
tems, whose spatial extent and motion are critical properties – besides others – during the
conceptual design phase. However, also note that the theory does not capture customer
requirements, manufacturing processes, and test cases yet as explained in Sections 2.1.3
and 2.2, which is why it cannot be used off the shelve for the given purposes.

4.1 Focus on components and streams (FOCUS)

FOCUS [BS01, Bro07, Bro10] provides a formal theory and engineering methodology
for the component-based development of software systems. The core concepts of the
theory are streams (see Section 4.1.1), channels (see Section 4.1.2), components and their
composition (see Section 4.1.3), as well as state transition systems and their computation
(see Section 4.1.4). In the following the concepts and their relations are explained in
detail.

4.1.1 Streams

Streams represent the most basic concept of the FOCUS theory. Streams are defined
as sequences of arbitrary messages. These sequences can be used for describing various
aspects of component-based software systems. For example, the reaction of components

65

4 Theoretical foundation

to stimuli from the environment or the interaction between components can be described
concisely in terms of input and output message streams.

Definition 4.1 (Streams) Let M be an arbitrary (message) set. We define the sets
Mn with n ∈ N, M∗, M∞, and Mω such that

Mn = {[0, n]→M}, M∗ =
⋃
n∈N

Mn, M∞ = N→M , and Mω = M∗ ∪M∞.

We call M∗ the set of finite streams over M , M∞ the set of infinite streams over M ,
and Mω the set of streams over M .

To work with streams one particular operator is needed, which is called the prefix
operator. The prefix operator allows one to extract a finite prefix stream of a predefined
length from a given infinite original stream. Note that various other operators exist for
stream such as the concatenation operator [BS01], which are not required for the given
purposes.

Definition 4.2 (Prefix operator) Let M be an arbitrary (message) set. We define
the binary operator ↓: M∞ × N→Mω such that

∀m ∈M∞, n ∈ N : (m ↓ n : [0, n]→M ∧ ∀i ∈ [0, n] : (m ↓ n)(i) = m(i)).

We call ↓ the (stream) prefix operator.

Note that – in contrast to other source [BS01] – the prefix operator is defined only
for infinite streams here. This limitation is sufficient for the given needs. In other cases
the prefix operator has to be defined for finite streams as well, which complicates the
previous definition and requires the stream length operator to be introduced as well.

4.1.2 Channels

Based on the concept of streams (see Section 4.1.1) the concept of channels is derived.
Channels essentially are labeled and typed message streams, which can be used – besides
others – for communication between components. While the channel labels are given
by a basic set of channel labels C, the channel types are defined by means of a type
mapping. The type mapping, in turn, is based on a basic set of type labels T .

Definition 4.3 (Type mapping) Let C be a set of channel labels and T be a set of
type labels. We call the function M ′ : C → T a type mapping.

66

4.1 Focus on components and streams (FOCUS)

Note that until now types are defined only by their label, but the relation to messages
remains unclear. In the following, each type is associated with a subset of messages
from an arbitrary, but predefined set of messages M by means of a message mapping.
The mapping defines for each type label the subset of messages that belong to the
type. Note that a very basic type system is used here, which is sufficient for the given
needs. More advanced type systems exist comprising, for example, type inheritance and
polymorphism, which are not required here.

Definition 4.4 (Message mapping) Let T be a set of type labels and M be an arbi-
trary (message) set. We call the function M ′′ : T → P(M) a message mapping.

Based on the concept of type and message mappings the concept of channel assign-
ments is introduced. A channel assignment maps each channel label to a type-compliant
message. To be type-compliant, the message has to belong to the subset of messages
associated to the respective channel type by means of the message mapping. Note that
channel assignments do not use the concept of streams yet, but represent time instants
of communication between components instead.

Definition 4.5 (Channel assignments) Let C be a set of channel labels, T be a set of
type labels, M be an arbitrary (message) set, ⊥ /∈M be the empty message, M ′ : C → T
be a type mapping, and M ′′ : T → P(M) be a message mapping. We define the set
C̄ ⊆ {C →M ∪ {⊥}} such that

C̄ = {a : C →M ∪ {⊥} | ∀κ ∈ C : a(κ) ∈M ′′(M ′(κ)) ∪ {⊥}}.

We call C̄ the set of channel assignments over C.

While channel assignments allow one to describe time instants of communication, they
cannot be used to describe communication over a longer range of time. To allow one to
describe communication over a longer range of time, the concept of channel histories is
introduced. Channel histories assign to each channel label a stream of type-compliant
messages instead of single type-compliant messages only. Then, to be type-compliant
each message of the stream has to belong to the subset of messages associated to the
respective channel type by means of the message mapping.

Definition 4.6 (Channel histories) Let C be a set of channel labels, T be a set of
type labels, M be an arbitrary (message) set, ⊥ /∈M be the empty message, M ′ : C → T
be a type mapping, and M ′′ : T → P(M) be a message mapping. We define the set
~C ⊆ {C → (M ∪ {⊥})∞} such that

~C = {h : C → (M ∪ {⊥})∞ | ∀κ ∈ C : h(κ) ∈ (M ′′(M ′(κ)) ∪ {⊥})∞}.

67

4 Theoretical foundation

We call ~C the set of channel histories over C.

Finally, to work with channel histories one particular operator is needed, which is
called the limitation operator. The limitation operator allows one the reduce a channel
history to only a subset of channels from the set of all possible channels. In particular,
the limitation operator is needed to define the composition operator for components in
Section 4.1.3. Note that many more operators exist for working with channel histo-
ries [BS01], which are not required here.

Definition 4.7 (Limitation operator) Let C be a set of channel labels and C ′ ⊆ C
be a subset of channel labels. We define the unary operator |C′ : ~C → ~C ′ such that

∀h ∈ ~C, κ ∈ C ′ : (h|C′(κ) = h(κ)).

We call |C′ the (channel history) limitation operator over C ′.

Note that in this work channel histories are defined over infinite message streams
only. Again, this limitation is sufficient for the given needs. In other cases channel
histories have to be defined over finite streams as well, which complicates the previous
definitions [BS01].

4.1.3 Components

Based on the concept of streams (see Section 4.1.1) and channels (see Section 4.1.2)
the concept of components is derived. Components are the structural building blocks of
software systems in FOCUS. Components provide a syntactic interface consisting of input
and output channels including their type information. Furthermore, components provide
a semantic interface describing the mapping from input to output channel histories.
Consequently, the semantic interface describes the reactions of components to different
stimuli. These reactions also represent the behavior of components.

Definition 4.8 (Components) Let I be a set of input channel labels and O be a set
of output channel labels. We call the function C : ~I → P(~O) a component over I and O.

In the previous formalism multiple reactions o ∈ C(i) to the same stimulus i ∈ ~I are
possible. Specifying multiple reactions is useful, for example, in the case of uncertainty.
However, in many cases one would like to specify only one possible reaction of the
component to the same stimulus, such that the component behaves predictably in every
situation. We call such components deterministic components.

68

4.1 Focus on components and streams (FOCUS)

Definition 4.9 (Deterministic components) Let C be a component over I and O
such that ∀i ∈ ~I : |C(i) = 1|. We call C a deterministic component.

Then, the previous definitions do not state anything about the messages contained in
the stimuli i ∈ ~I and the reactions o ∈ C(i) of component C. Consequently, reactions
o(ω)(n) at output channel ω ∈ O and time point n ∈ N might depend on stimuli i(ι)(m)
at input channel ι ∈ I and some future time point m ∈ N with m > n, which is hard to
realize in practice. To support the realizability of FOCUS specifications the concept of
weakly and strongly causal components has been introduced [Bro07].

Definition 4.10 (Weakly causal components) Let C be a component over I and O
such that for each i1, i2 ∈ ~I with C(i1) 6= ∅ and C(i2) 6= ∅:

∀n ∈ N : (i1 ↓ n = i2 ↓ n⇒ {o ↓ n ∈ C(i1)} = {o ↓ n ∈ C(i2)}).

We call C a weakly causal component.

Weakly causal components require that the reactions until some time point n ∈ N
depend only on the stimuli until the same time point. This property still supports the
immediate reaction o(ω)(n) at output channel ω ∈ O to stimulus i(ι)(n) at input channel
ι ∈ I without time delay. Specifying immediate reactions might be useful in some cases,
but unrealistic in other cases, e.g. due to computation time needed. An even stronger
restriction of the reaction time is given by the notion of strongly causal components,
which require a reaction delay of at least one time unit.

Definition 4.11 (Strongly causal components) Let C be a component over I and
O such that for each i1, i2 ∈ ~I with C(i1) 6= ∅ and C(i2) 6= ∅:

∀n ∈ N : (i1 ↓ n = i2 ↓ n⇒ {o ↓ (n+ 1) ∈ C(i1)} = {o ↓ (n+ 1) ∈ C(i2)}).

We call C a strongly causal component.

Based on the previous formulations the composition operator is derived. The compo-
sition operator allows one to construct a new component C over I,O from two given
components C1 over I1, O1 and C2 over I2, O2. In particular, the construction describes
how the original syntactic and semantic interfaces of components C1 and C2 are com-
bined to form a new syntactic and semantic interface of component C. Note that the
composition operations also define the internal structure of components and entire soft-
ware systems.

69

4 Theoretical foundation

Definition 4.12 (Composition operator) Let C be the set of all components. We
define the binary operator ⊗ : C × C → C such that for each component C1 ∈ C over
I1, O1 and component C2 ∈ C over I2, O2 with disjoint output channels O1 ∩ O2 = ∅ as
well as combined input channels I = (I1\O2)∪(I2\O1) and output channels O = O1∪O2:

C1 ⊗ C2 : ~I → P(~O)

and for each combined input history i ∈ ~I and output history o ∈ (C1 ⊗ C2)(i) there
exists an extended input history i′ ∈ ~Z with Z = I1 ∪ I2 and i′|I = i such that

o|O1 ∈ C1(i
′|I1) ∧ o|O2 ∈ C2(i

′|I2).

We call ⊗ the (component) composition operator.

In summary, note that the component formalism, which has been introduced here, uses
infinite input and output channel histories only. As mentioned previously, this limitation
is sufficient for the given needs. However, in other cases components have to be defined
over finite channel histories as well, which complicates the previous definitions [BS01].
In particular, the definition of the composition operator has to be revised to consider
channel histories of different lengths.

4.1.4 State transition systems

Then, the question arises how to describe the semantic interface of components (i.e. the
mapping from input to output channel histories as introduced in Section 4.1.3) in prac-
tical applications. One popular formalism for describing this simulus-reaction mapping
– besides input-ouput table specifications [Hum11] – are the so-called state transition
systems [Bro07]. State transition systems comprise the same input and output chan-
nels as components. Furthermore, state transition systems include variables and states.
The variables and states can be used to store information during execution of the state
transition system. Finally, state transition systems define a state transition function.
The state transition function describes how the states, output channel assignments, and
variable assignments evolve during execution based on the previous states, input channel
assignments, and variable assignments.

Definition 4.13 (State transition function) Let I be a set of input channel labels,
O be a set of output channel labels, V be a set of variable labels, and S be a set of state
labels. We define the function T such that

T : (S × Ī × V̄)→ P(S × Ō × V̄).

We call T a state transition function over I, O, V , and S.

70

4.1 Focus on components and streams (FOCUS)

Note that the state transition function T encodes the transitions from previous states
s ∈ S, input channel assignments i ∈ Ī, and previous variable assignments v ∈ V̄
to following states s′ ∈ S, output channel assignments o ∈ Ō, and following variable
assignments v′ ∈ V̄ . In particular, the definition of the state transition function is based
on channel assignments rather than channel histories. Consequently, the state transition
function describes reactions of the state transition system at time instants only. To
complete the definition of state transition systems, one has to introduce the initial state
and the initial variable assignments.

Definition 4.14 (State transition system) Let T be a state transition function over
I,O, V, S, s0 ∈ S be an initial state label, and v0 ∈ V̄ be an initial variable assignment.
We call the tuple (T, s0, v0) a state transition system over I,O,V , and S.

At last, one has to define the relation between the state transition system (T, s0, v0),
an arbitrary input channel assignment stream i ∈ Ī∞, as well as the generated output
channel assignment stream o ∈ Ō∞. Note that in contrast to components and their
semantic interface (see Section 4.1.3) infinite channel assignment streams are used here
rather than channel histories. However, the both concepts can be converted easily into
each other. In the following, the stimulus-reaction relationship of state transition systems
is described by means of state transition system computations. A state transition system
computation requires that the output channel assignments are generated from the input
channel assignments using the state transition function.

Definition 4.15 (Computation) Let (T, s0, v0) be a state transition system over
I,O, V, S and i ∈ Ī∞ be an arbitrary input stream. We define the state stream s ∈ S∞
with initial assignment s(0) = s0, the variable stream v ∈ V̄∞ with initial assignment
v(0) = v0, and the output stream o ∈ Ō∞ such that

∀n ∈ N : (s(n+ 1), o(n+ 1), v(n+ 1)) = T (s(n), i(n), v(n)).

We call the tuple (i, s, v, o) a (state transition system) computation over (T, s0, v0).

Finally, note that state transition system computations are strongly causal by defi-
nition. Consequently, state transition systems can be used to describe strongly causal
components, which are realizable by definition. The realizability is one reason, why state
transition systems are used widely in practice for describing stimulus-reaction mappings.
Also, techniques exist to generate program code from state transition systems, which can
be run on actual computing equipment [RHZ14a].

71

4 Theoretical foundation

4.2 Spatio-temporal engineering models (STEM)

While the FOCUS theory (see Section 4.1) is well suited for describing software systems,
it provides limited support for spatial aspects such as volumes, motions, and collisions.
To overcome this limitation, the STEM theory [HB08, BHHL09, Hum09, BH10, Hum11]
defines an extension to the original FOCUS theory tailored for the component-based
specification of spatio-temporal systems, i.e. systems comprising a potentially time vari-
able spatial extent. The core concepts of the STEM theory are transformable collision
spaces (see Section 4.2.1), spatio-temporal components (see Section 4.2.2), and extended
spatio-temporal components (see Section 4.2.3). Note that, in contrast to the FOCUS
theory, the STEM theory does not provide a particular engineering method, but concen-
trates on the specification formalism and its peculiarities. In the following each concept
of this formalism is described in detail.

4.2.1 Transformable collision spaces

Before defining the notion of spatio-temporal components one has to introduce a notion
of space. In principle, several notions of space can be used such as the two- or three-
dimensional Euclidean space with Cartesian coordinates. However, the core STEM the-
ory [Hum11] uses a more abstract notion of space, which is called the transformable
collision space. Fundamentally, a transformable collision space consists of volumes (e.g.
spheres), a collision relation between volumes (e.g. two intersecting spheres), a union
operator for constructing combined volumes (e.g. a cube and a sphere), and volume
transformations for changing volumes (i.e. mapping two different volumes onto each
other). The volume transformation can be used, for example, for translating and rotat-
ing volumes. But also more complex transformations can be described.

Definition 4.16 (Transformable collision spaces) Let V be a set of volumes, 0V ∈
V be the empty volume, ./⊆ V × V be a collision relation, t : V × V → V be a union
operator, and T = {V → V } be a set of volume transformations. We call the tuple
(V, 0V , ./,t, T) a transformable collision space.

To work with transformable collision spaces two particular operators are needed. The
first operator are the so-called spatial selection predicates. Spatial selection predicates
select specific volumes v ∈ V of a transformable collision space (V, 0V , ./,t, T), while
filtering out others. The selection itself is defined as a mapping from volumes v to
Boolean values b ∈ B = {true, false}.

Definition 4.17 (Spatial selection predicates) Let V be a set of volumes. We call
the function σ : V → B a spatial selection predicate over V .

72

4.2 Spatio-temporal engineering models (STEM)

The second operator, which is required for working with transformable collision spaces,
are the so-called integrated transformation streams. An integrated transformation stream
maps a stream of volume transformations t ∈ T∞ to a stream of integrated (i.e. con-
catenated) volume transformations t′ ∈ T∞ such that t′(0) = t(0), t′(1) = t(1) ◦ t(0),
t′(2) = t(2) ◦ t(1) ◦ t(0) and so on. Consequently, the integrated transformation stream
describes the intermediate results of successively applying a stream of transformations
to a volume. Note that in the following the operator ◦ represents the function concate-
nation operator with f ◦ g(x) = f(g(x)) rather than the stream concatenation operator
of the FOCUS theory.

Definition 4.18 (Integrated transformation streams) Let T be a set of volume
transformations and t ∈ T∞ be a stream of volume transformations. We define the
function its : T∞ → T∞ such that

its(t)(0) = t(0) ∧ ∀n ∈ N : its(t)(n+ 1) = t(n+ 1) ◦ its(t)(n).

We call its(t) the integrated transformation stream over t.

Finally, note that in concrete applications the abstract notion of transformable colli-
sion spaces (V, 0V , ./,t, T) can be substituted by any concrete notion of space. Proba-
bly the most widely used notion of space are the two- and three-dimensional Euclidean
spaces with Cartesian coordinate system [Cox61]. The three-dimension Euclidean notion
of space is used also in the remainder of this thesis.

4.2.2 Spatio-temporal components

Based on the original concept of components in the FOCUS theory (see Section 4.1.3)
and transformable collision spaces (see Section 4.2.2) the STEM theory introduces the
concept of spatio-temporal components. Before defining spatio-temporal components,
the concept of spatio-temporal functions needs to be introduced, which represents a
pre-stage of spatio-temporal components. In addition to input and output channels
spatio-temporal functions comprise detectors, parts, and movers. Detectors and parts,
in turn, are defined by volumes of the underlying transformable collision space (see
Section 4.2.1). Detectors can be used for modeling, e.g., light barriers and other kinds
of sensors. Hereby, the detector volume defines the portion of space observed by the
component. In contrast, parts describe the solid physical bodies of the component and,
hence, its spatial extent. Finally, movers can be used to model kinematic chains between
components and other motion effects.

73

4 Theoretical foundation

Definition 4.19 (Spatio-temporal functions) Let I be a set of input channel labels,
O be a set of output channel labels, D be a set of detector labels, P be a set of part labels,
M be a set of mover labels, and (V, 0V , ./,t, T) be a transformable collision space. We
define the set of detector volumes ~D = {D → V∞}, the set of part volumes ~P = {P →
V∞}, the set of mover transformations ~M = {M → T∞}, the set of detector activations
~A(D) = {D → B∞} and the function C : ~I × ~A(D)→ P(~O× ~D× ~P × ~M). We call C a
spatio-temporal function over I, O, D, P , M and (V, 0V , ./,t, T).

Note that the previous definition of spatio-temporal functions C does not make any
assumptions about the mapping from stimuli (i, a) ∈ ~I× ~A(D) to reactions (o, d, p,m) ∈
C(i, a). Similar to components in the FOCUS theory (see Section 4.1.3) one might re-
quire the mapping to be, e.g., strongly causal to be realizable. In addition, one important
property of spatio-temporal functions is that the detector activations a report collisions
between the detector volumes d and the part volumes p correctly. Such spatio-temporal
functions are called collision sensing spatio-temporal functions.

Definition 4.20 (Collision sensing spatio-temporal functions) Let (V, 0V , ./,t, T)
be a transformable collision space and C be a spatio-temporal component over I,O,D, P,M
and (V, 0V , ./,t, T) such that for each (i, a) ∈ ~I × ~A(D) and (o, d, p,m) ∈ C(i, a):

∀n ∈ N, δ ∈ D : (a(δ)(n)⇐
∨
π∈P

d(δ)(n) ./ p(π)(n)).

We call C a collision sensing spatio-temporal function.

Note that detector activations a(δ)(n) with detector δ ∈ D and time point n ∈ N
might also be caused by collisions between the respective detector volume d(δ)(n) and a
part volume from the environment. Consequently, the part activations a of component
C follow from collisions between detectors d and parts p of component C, but not vice
versa. In other words, a collision sensing spatio-temporal function might also specify the
reactions to detector activations caused by part volumes from the environment. From the
definition of collision sensing spatio-temporal functions one directly yields the definition
of spatio-temporal components.

Definition 4.21 (Spatio-temporal components) Let C be a collision sensing spatio-
temporal function. We call C a spatio-temporal component.

One important property of spatio-temporal components is their collision free oper-
ation. This property is useful particularly in domains where collisions between solid

74

4.2 Spatio-temporal engineering models (STEM)

physical parts might cause severe damage to the system, the business, and / or hu-
mans. Such situations can be found typically – besides other industries – in the machine
tools industry [LDK03], which is one of the key drivers for this doctoral thesis. Spatio-
temporal components that can be operated without collisions are called collision free
spatio-temporal components.

Definition 4.22 (Collision free spatio-temporal components) Let (V, 0V , ./,t, T)
be a transformable collision space and C be a spatio-temporal component over I,O,D, P,M
and (V, 0V , ./,t, T) such that for each (i, a) ∈ ~I × ~A(D) and (o, d, p,m) ∈ C(i, a):

∀n ∈ N, π1, π2 ∈ P : (p(π1)(n) ./ p(π2)(n)⇒ π1 = π2).

We call C a collision free spatio-temporal component.

Then, the question arises how spatio-temporal components C over I,O,D, P,M can be
constructed from existing spatio-temporal components C1 over I1, O1, D1, P1,M1 and C2

over I2, O2, D2, P2,M2. This construction is supported by means of the spatio-temporal
composition operator. Note that in addition to the composition operator of the FOCUS
theory (see Section 4.1.3), the spatio-temporal composition operator needs to ensure
that the result is a collision sensing spatio-temporal function. Consequently, the detector
activations of component C1 have to report also collisions between detector volumes of
component C1 and part volumes C2 and vice versa as defined in the following.

Definition 4.23 (Spatio-temporal composition operator) Let (V, 0V , ./,t, T) be
a transformable collision space and C be the set of all spatio-temporal components over
(V, 0V , ./,t, T). We define the binary operator � : C × C → C such that for each spatio-
temporal component C1 ∈ C over I1, O1, D1, P1,M1 and spatio-temporal component C2 ∈
C over I2, O2, D2, P2,M2 with disjoint outputs O1∩O2 = ∅, detectors D1∩D2 = ∅, parts
P1∩P2 = ∅, and movers M1∩M2 = ∅ as well as combined inputs I = (I1\O2)∪(I2\O1),
outputs O = O1 ∪ O2, detectors D = D1 ∪ D2, parts P = P1 ∪ P2, and movers M =
M1 ∪M2:

C1 � C2 : ~I × ~A(D)→ P(~O × ~D × ~P × ~M)

and for each stimulus (i, a) ∈ ~I × ~A(D) and reaction (o, d, p,m) ∈ (C1 � C2)(i, a) there
exists an extended input history i′ ∈ ~Z with Z = I1 ∪ I2 and i′|I = i such that

(o|O1 , d|D1 , p|P1 ,m|M1) ∈ C1(i
′|I1 , a|D1) ∧ (o|O2 , d|D2 , p|P2 ,m|M2) ∈ C2(i

′|I2 , a|D2)

and C1�C2 is a collision sensing spatio-temporal function. We call � the spatio-temporal
(component) composition operator over C.

75

4 Theoretical foundation

Note that, while the result of the composition operator is required to be a collision
sensing spatio-temporal function, the result might not be a collision free spatio-temporal
component, e.g., due to uncoordinated motions of the components C1 and C2. In other
words, the providers of the spatio-temporal components C1 and C2 have to ensure that,
when integrating C1 and C2, no severe damage occurs during system operation. Finally,
the effect of movers onto spatio-temporal components needs to be considered, which
has been neglected so far. Before describing this effect, position operator has to be
introduced. The position operator allows one to construct a possibly translated and
rotated version of some spatio-temporal component C. Hereby, a transformation stream
t ∈ T∞ defines the spatial transformations applied to component C throughout its
lifetime.

Definition 4.24 (Position operator) Let (V, 0V , ./,t, T) be a transformable collision
space and C be the set of all spatio-temporal components over (V, 0V , ./,t, T). We define
the binary operator pos : C×T∞ → C such that for each spatio-temporal component C ∈ C
over I,O,D, P,M and transformation stream t ∈ T∞:

pos(C, t) : ~I × ~A(D)→ ~O × ~D × ~P × ~M

and for each stimulus (i, a) ∈ ~I × ~A(D) and reaction (o, d, p,m) ∈ pos(C, t)(i, a) there
exists a reaction (o, d′, p′,m′) ∈ C(i, a) such that for each time point n ∈ N the detectors
are transformed by the integrated transformation stream over t, i.e.

∀δ ∈ D : d(δ)(n) = its(t)(n)(d′(δ)(n))

and the parts are transformed by the integrated transformation stream over t, i.e.

∀π ∈ P : p(π)(n) = its(t)(n)(p′(π)(n))

and the movers are transformed by the original transformation stream t, i.e.

∀µ ∈M : m(µ)(n) = t(n) ◦m′(µ)(n).

We call pos the (spatio-temporal component) position operator.

Note that the detector volumes d(δ)(n) with detector label δ ∈ D and the part volumes
p(π)(n) with part label π ∈ P are affected by the elements of the integrated transition
stream its(t)(n) at time point n ∈ N, while the mover transforms m(µ)(n) with mover
label µ ∈ M are transformed by the elements of the original transition stream t(n) di-
rectly. The reason is that the transformation stream t ∈ T∞ itself might be given by a

76

4.2 Spatio-temporal engineering models (STEM)

mover history m′′(µ′) ∈ T∞ of some positioned spatio-temporal component pos(C ′, t′)
over I ′, O′, D′, P ′,M ′ with mover label µ′ ∈ M ′ and transformation stream t′ ∈ T∞.
Therefore, the transformation stream elements t(n) = m′′(µ′)(n) at time point n ∈ N
might include the transformation stream elements t′(n). Now, remember that the po-
sition operator pos applies the integrated transformation stream elements its(t)(n) to
the detector volumes d(δ)(n) and the part labels p(π)(n). Consequently, the position
operator applies the integrated transformation stream elements its(m′′(µ))(n) to the de-
tector and part volumes. The integrated transformation stream elements its(m′′(µ))(n),
in turn, include the transformation stream elements t′(m) with m ∈ N,m ≤ n. In other
words, the position operator integrates the transformations applied to mover transforms
later, i.e. when applying the mover transforms to detector and part volumes [Hum11].
Finally, based on the position operator the motion operator can be introduced, which
allows one to link movers to spatio-temporal components. In particular, the motion
operator allows one to transmit some mover transformation stream m1(µ) ∈ T∞ with
µ ∈M1 of component C1 onto some component C2.

Definition 4.25 (Motion operator) Let (V, 0V , ./,t, T) be a transformable collision
space and C be the set of all spatio-temporal components over (V, 0V , ./,t, T). We define
for each spatio-temporal component C1 ∈ C over I1, O1, D1, P1,M1 and spatio-temporal
component C2 ∈ C over I2, O2, D2, P2,M2 with disjoint outputs O1 ∩ O2 = ∅, detectors
D1 ∩D2 = ∅, parts P1 ∩ P2 = ∅, and movers M1 ∩M2 = ∅ as well as combined inputs
I = (I1 \O2)∪(I2 \O1), outputs O = O1∪O2, detectors D = D1∪D2, parts P = P1∪P2,
and movers M = M1 ∪M2, as well as mover µ ∈M1 the binary operator `µ: C × C → C
such that

C1 `µ C2 : ~I × ~A(D)→ P(~O × ~D × ~P × ~M)

and for each stimulus (i, a) ∈ ~I × ~A(D) and reaction (o, d, p,m) ∈ (C1 `µ C2)(i, a):

(o, d, p,m) ∈ (C1 � pos(C2,m(µ)))(i, a)

We call `µ the (spatio-temporal component) motion operator over µ.

The motion operator allows one to build kinematic chains, e.g., for modeling robot
arms and other mechanical mechanisms [Hum11]. Hereby, each segment of the robot arm
C can be represented by a spatio-temporal component Ci with i, n ∈ N, i < n and n > 1
representing the length of the kinematic chain. Then, the individual segments can be
composed by means of the motion operator one after the other, i.e. C = C0 `µ0 (C1 `µ1
(C2 `µ2 (...))) with mover labels µj ∈ Mj and j ∈ N, j < n − 1. Hereby, the kinematic
chain is given by the order of composition. Finally, note that the position and motion
operators make sure that the mover transformation streams m(µi) are propagated along
the kinematic chain to all follow-up segments Ck with k ∈ N, i < k < n.

77

4 Theoretical foundation

4.2.3 Extended spatio-temporal components

Based on the concepts of transformable collision spaces (see Section 4.2.1) and spatio-
temporal components (see Section 4.2.2) the concept of extended spatio-temporal compo-
nents is derived. Extended spatio-temporal components add means for expressing, e.g.,
dynamic material handling operations in addition to fixed kinematic mechanisms. Again,
before introducing extended spatio-temporal coomponents, extended spatio-temporal
functions need to be defined, which represent a pre-stage of the former. In addition
to input and output channels as well as detectors, parts, and movers extended spatio-
temporal functions introduce bindings, entries, and exits. Entries can be used to generate
new spatio-temporal components at runtime, while exits can be used to remove the gen-
erated components later. A generated component typically is the material processed by
the material handling system. In contrast, bindings can be used to communicate with
generated components via input and output channels or to move generated components
via movers. Consequently, it also is possible to read information from generated compo-
nents. Technically, such information exchange can be implemented, for example, using
radio frequency identification (RFID) [Rob06] tags attached to the material and RFID
readers deployed to the material handling system.

Definition 4.26 (Extended spatio-temporal functions) Let (V, 0V , ./,t, T) be a
transformable collision space, S be the set of all spatial selection predicates over V , C be
the set of spatio-temporal components over (V, 0V , ./,t, T), I be a set of input channel
labels, O be a set of output channel labels, D be a set of detector labels, P be a set of
part labels, M be a set of mover labels, B be a set of binding labels, Y be a set of entry
labels, and X be a set of exit labels. We define the set of binding conditions ~B = {B →
(S×(I∪O∪M))∞}, the set of generation events ~Y = {Y → (T×C)∞}, the set of exit con-
ditions ~X = {X → S∞}, and the function C : ~I× ~A(D)→ P(~O× ~D× ~P× ~M× ~B×~Y × ~X).
We call C an extended spatio-temporal function over I, O, D, P , M , B, Y , X and
(V, 0V , ./,t, T).

Before deriving properties of extended spatio-temporal functions C the concept of
generated component streams needs to be defined. A generated component stream stores
for each time step n ∈ N of an execution (o, d, p,m, b, y, x) ∈ C(i, a) with stimulus
(i, a) ∈ ~I × ~A(D) the spatio-temporal components C ′ ∈ C generated by an extended
spatio-temporal function, but not yet removed until that time step. Furthermore, the
generated component stream captures the position t ∈ T of each generated spatio-
temporal component C ′ throughout its lifetime.

78

4.2 Spatio-temporal engineering models (STEM)

Definition 4.27 (Generated component streams) Let (V, 0V , ./,t, T) be a trans-
formable collision space, C be the set of spatio-temporal components over (V, 0V , ./,t, T),
C be an extended spatio-temporal function over I, O, D, P , M , B, Y , X and (V, 0V , ./
,t, T), (i, a) ∈ ~I × ~A(D) be an input stream, and (o, d, p,m, b, y, x) ∈ C(i, a) be an
output stream. We define the stream G ∈ P(T × C)∞ such that the first stream ele-
ment G(0) is the empty set, i.e. G(0) = ∅, and for each computation step n ∈ N and
generated component (t, C ′) ∈ G(n + 1) with transformation t ∈ T and spatio-temporal
function/component C ′ ∈ C as well as behavior (o′, d′, p′,m′) ∈ C ′(i′, a′) of component
C ′ the component C ′ existed in the previous computation step n, i.e.

∃t′ ∈ T : (t′, C ′) ∈ G(n),

or the component C ′ entered in the previous computation step n, i.e.

∃υ ∈ Y : y(υ)(n) = (t′, C ′),

and the component C ′ did not exit in the current computation step n+ 1, i.e.

@χ ∈ X :
∨
π′∈P ′

x(χ)(n+ 1)(t(p′(π′)(n+ 1))).

We call G the generated component stream over (i, a) and (o, d, p,m, b, y, x).

Based on the concept of generated component streams the properties of spatio-temporal
functions can be translated to extended spatio-temporal functions. The first derived
concept are collision sensing extended spatio-temporal functions, which require that the
detectors δ ∈ D of extended spatio-temporal functions C and the detectors δ′ ∈ D′

of generated components C ′ with (t, C ′) ∈ G(n), transformation t ∈ T and time point
n ∈ N are activated based on collisions between the respective detector volume and part
volumes of the extended spatio-temporal function or some generated component.

Definition 4.28 (Collision sensing extended spatio-temporal functions) Let
(V, 0V , ./,t, T) be a transformable collision space and C be an extended spatio-temporal
component over I, O, D, P , M , B, Y , X and (V, 0V , ./,t, T) such that for each stimulus
(i, a) ∈ ~I × ~A(D) and reaction (o, d, p,m, b, y, x) ∈ C(i, a), generated component stream
G over (i, a) and (o, d, p,m, b, y, x), as well as time point n ∈ N and detector δ ∈ D:

a(δ)(n)⇔
∨
π∈P

p(π)(n) ./ d(δ)(n) ∨
∨

(t,C′)∈G(n)

∨
π′∈P ′

t(p′(π′)(n)) ./ d(δ)(n)

79

4 Theoretical foundation

and for each generated component (t, C ′) ∈ G(n) over I ′, O′, D′, P ′,M ′, stimulus (i′, a′) ∈
~I ′ × ~A(D′), reaction (o′, d′, p′,m′) ∈ C ′(i′, a′), as well as detector δ′ ∈ D′:

a′(δ′)(n)⇔
∨
π∈P

p(π) ./ t(d′(δ′)(n)) ∨
∨

(t′,C′′)∈G(n)

∨
π′′∈P ′′

t′(p′′(π′′)(n)) ./ t(d′(δ′)(n))

We call C a collision sensing extended spatio-temporal function.

Note that in contrast to collision sensing spatio-temporal functions (see Section 4.2.2),
collision sensing extended spatio-temporal functions require detector activations a(δ)(n)
of detectors δ ∈ D and detector activations a′(δ′)(n) of detectors δ′ ∈ D′ of generated
component (t, C ′) ∈ G(n) with transformation t ∈ T at time point n ∈ N to be caused
by collisions between the respective detector volumes and part volumes of the extended
spatio-temporal function or some generated component only. The reason for this limita-
tion is that the STEM theory assumes a closed world for simplicity [Hum11]. However,
note that this closed world assumption also limits the composability of extended spatio-
temporal functions, which is why the assumption is dropped in the following chapter.

Then, the question arises how generated components (t, C ′) ∈ G(n) at computa-
tion step n ∈ N with transformation t ∈ T and underlying spatio-temporal func-
tion/component C ′ ∈ C as well as behavior (o′, d′, p′,m′) ∈ C ′(i′, a′) of component C ′

interact with the extended spatio-temporal function C. This interaction is captured
using the concept of channel binding extended spatio-temporal functions, which requires
that the input channels I and output channels O of the extended spatio-temporal func-
tion C and the channels I ′, O′ of the generated components (t, C ′) are connected based
on the bindings B of the extended spatio-temporal function C. Consequently, input and
output channels of both components can be either bound or not bound depending on the
binding histories of the extended spatio-temporal function C.

Definition 4.29 (Channel binding extended spatio-temporal functions) Let
(V, 0V , ./,t, T) be a transformable collision space, S be the set of all spatial selection
predicates over V , and C be an extended spatio-temporal function over I, O, D, P ,
M , B, Y , X and (V, 0V , ./,t, T) such that for each stimulus (i, a) ∈ ~I × ~A(D) and
reaction (o, d, p,m, b, y, x) ∈ C(i, a) with generated component stream G over (i, a) and
(o, d, p,m, b, y, x), computation step n ∈ N, as well as input channel ι ∈ I either the input
channel ι of function C is bound, i.e. there exists a generated component (t, C ′) ∈ G(n)
with, C ′ over I ′, O′, D′, P ′,M ′, stimulus (i′, a′) ∈ ~I ′× ~A(D′), and reaction (o′, d′, p′,m′) ∈
C ′(i′, a′) such that i(ι)(n) = o′(ι)(n) and

ι ∈ O′ ∧ ∃β ∈ B, σ ∈ S : b(β)(n) = (σ, ι) ∧
∨
π′∈P ′

σ(t(p′(π′)(n))),

80

4.2 Spatio-temporal engineering models (STEM)

or the input channel ι of function C is not bound, i.e. i(ι)(n) = ⊥ and for each generated
component (t, C ′) ∈ G(n) with C ′ over I ′, O′, D′, P ′,M ′, stimulus (i′, a′) ∈ ~I ′ × ~A(D′),
and reaction (o′, d′, p′,m′) ∈ C ′(i′, a′):

ι /∈ O′ ∨ @β ∈ B, σ ∈ S : b(β)(n) = (σ, ι) ∧
∨
π′∈P ′

σ(t(p′(π′)(n))),

and for each generated component (t, C ′) ∈ G(n) with C ′ over I ′, O′, D′, P ′,M ′, stimulus
(i′, a′) ∈ ~I ′ × ~A(D′), reaction (o′, d′, p′,m′) ∈ C ′(i′, a′), and input channel ι′ ∈ I ′ either
the input channel ι′ of generated component (t, C ′) is bound, i.e. i′(ι′)(n) = o(ι′)(n) and

ι′ ∈ O ∧ ∃β ∈ B, σ ∈ S : b(β)(n) = (σ, ι′) ∧
∨
π′∈P ′

σ(t(p′(π′)(n))),

or the input channel ι′ of component (t, C ′) is not bound, i.e. i′(ι′)(n) = ⊥ and

ι′ /∈ O ∨ @β ∈ B, σ ∈ S : b(β)(n) = (σ, ι′) ∧
∨
π′∈P ′

σ(t(p′(π′)(n))).

We call C a channel binding extended spatio-temporal function.

Note that, again, channel binding extended spatio-temporal functions obey the closed
world assumption because the empty message ⊥ /∈M is forced to unbound input chan-
nels ι ∈ I of the extended spatio-temporal function C as well as input channels ι′ ∈ I ′
of generated components (t, C ′) ∈ G(n). Consequently, the input channels cannot be
written by the environment of the extended spatio-temporal function C and the gener-
ated components (t, C ′). As mentioned previously, in the following chapter the closed
world assumption is dropped to support the composability of extended spatio-temporal
functions and components.

Finally, the question is answered how generated components (t, C ′) ∈ G(n) with time
point n ∈ N can be moved around the transformable collision space (V, 0V , ./,t, T).
This effect is achieved through binding movers µ ∈M of extended spatio-temporal func-
tions C to generated components (t, C ′) yielding the concept of mover binding generated
component streams. Note that the mover binding property applies to the definition of
the generated component stream G ∈ P(T × C)∞ (see Definition 4.27). Furthermore,
similar to channel bindings, the mover bindings are based on spatial selection predicates
σ ∈ S for selectively binding generated components (t, C ′) based on their spatial extent.

Definition 4.30 (Mover binding generated component streams) Let C be an ex-
tended spatio-temporal function over I, O, D, P , M , B, Y , X, (i, a) ∈ ~I × ~A(D) be a

81

4 Theoretical foundation

stimulus, (o, d, p,m, b, y, x) ∈ C(i, a) be a reaction, and G be the generated component
stream over (i, a) and (o, d, p,m, b, y, x) such that for each computation step n ∈ N and
generated component (t, C ′) ∈ G(n), which also exists in the subsequent computation
step n + 1, i.e. (t′, C ′) ∈ G(n + 1), either the position and orientation of the generated
component (t, C ′) has not changed, i.e. t = t′, because there is no mover binding, i.e.

@β ∈ B,µ ∈M,σ ∈ S : b(β)(n) = (σ, µ) ∧
∨
π′∈P ′

σ(t(p′(π′)(n)))

or the position and orientation of the generated component (t, C ′) has changed, i.e.
t′ = m(µ)(n) ◦ t, due to a mover binding, i.e.

∃β ∈ B,µ ∈M,σ ∈ S : b(β)(n) = (σ, µ) ∧
∨
π′∈P ′

σ(t(p′(π′)(n))).

We call G a mover binding generated component stream.

Consequently, a mover binding generated component stream makes sure that gener-
ated components (t, C ′) ∈ G(n) with computation step n ∈ N remain in the subsequent
computation step n + 1 where they were in the previous computation step n or mover
transformations m(µ)(n) ∈ T of movers µ ∈M of the extended spatio-temporal function
C are applied to them. Based on the concepts of collision sensing and channel binding ex-
tended spatio-temporal functions as well as mover binding generated component streams
the concept of extended spatio-temporal components can be introduced.

Definition 4.31 (Extended spatio-temporal components) Let C be a collision
sensing and channel binding extended spatio-temporal function such that for each stim-
ulus (i, a) ∈ ~I × ~A(D) and reaction (o, d, p,m, b, y, x) ∈ C(i, a) the generated component
stream G over (i, a) and (o, d, p,m, b, y, x) is mover binding. We call C an extended
spatio-temporal component.

Similar to components in FOCUS as well as the original spatio-temporal components
in the STEM theory, extended spatio-temporal components can be deterministic or non-
deterministic. Furthermore, extended spatio-temporal components can be weakly or
strongly causal depending on the reaction delay. The corresponding definitions can be
translated easily, which is why they are omitted here. For more information the in-
terested reader can have a look at the original work [Hum11]. However, one interesting
property of extended spatio-temporal components is whether they can be operated with-
out collisions or not. As mentioned previously, this property is particularly interesting

82

4.2 Spatio-temporal engineering models (STEM)

for the industrial context of this doctoral thesis because collisions might cause severe
damage to the system, the business, and / or humans involved. For dealing with colli-
sion free operation, the concept of collision free extended spatio-temporal components is
introduced. In addition to collision free spatio-temporal components, the extended case
has to take into account collisions between part volumes p(π)(n) ∈ V of the extended
spatio-temporal component C and part volumes p′(π′)(n) ∈ V of generated components
(t, C ′) ∈ G(n) at time point n ∈ N as well as between part volumes of two different
generated components.

Definition 4.32 (Collision free extended spatio-temporal components) Let
(V, 0V , ./,t, T) be a transformable collision space and C be an extended spatio-temporal
component over I, O, D, P , M , B, Y , X and (V, 0V , ./,t, T) such that for each stimulus
(i, a) ∈ ~I × ~A(D) and reaction (o, d, p,m, b, y, x) ∈ C(i, a) with mover binding generated
component stream G over (i, a) and (o, d, p,m, b, y, x), computation step n ∈ N, and
generated component (t, C ′) ∈ G(n) with C ′ over I ′, O′, D′, P ′,M ′, stimulus (i′, a′) ∈ ~I ′×
~A(D′) and reaction (o′, d′, p′,m′) ∈ C ′(i′, a′) the component C ′ is a collision free spatio-
temporal component (see Definition 4.22) and the parts of component C and generated
component (t, C ′) do not collide, i.e.

¬
∨
π∈P

∨
π′∈P ′

p(π)(n) ./ t(p′(π′)(n))

and for each other generated component (t′, C ′′) ∈ G(n) with (t′, C ′′) 6= (t, C ′) and C ′′

over I ′′, O′′, D′′, P ′′,M ′′, stimulus (i′′, a′′) ∈ ~I ′′ × ~A(D′′), and reaction (o′′, d′′, p′′,m′′) ∈
C ′′(i′′, a′′) the parts of generated component (t, C ′) and generated component (t′, C ′′) do
not collide, i.e.

¬
∨
π′∈P ′

∨
π′′∈P ′′

t(p′(π′)(n)) ./ t′(p′′(π′′)(n)).

We call C a collision free extended spatio-temporal component.

At last, note that the original STEM theory [Hum11] does not include a composition
operator for extended spatio-temporal components partly because of the assumptions
and limitations mentioned previously. Furthermore, the theory leaves some questions
open such as what happens when multiple mover transformations m(µ1)(n),m(µ2)(n) ∈
T with movers µ1, µ2 ∈ M of the extended spatio-temporal component C are bound to
the same generated component (t, C ′) ∈ G(n) at time point n ∈ N or when multiple
output channels are bound to the same input channel. Finally, the theory only supports
generating spatio-temporal components (see Section 4.2.2) instead of extended spatio-
temporal components. Consequently, generated components cannot define their own
bindings, entries, and exits, which might be desirable in practical applications.

83

4 Theoretical foundation

4.3 Summary and outlook

This chapter introduced the theoretical foundations for the proposed modeling technique.
In particular, the FOCUS theory for the design of software systems (see Section 4.1) has
been described. Then, the STEM extension for modeling spatio-temporal systems (see
Section 4.2) has been explained. The next chapter proposes an extended and revised
modeling technique based on FOCUS and STEM, which also captures knowledge about
customer requirements, manufacturing processes, test cases, discipline-specific interfaces,
and component reuse. Furthermore, the revised theory provides an extended composition
operator as well as custom bindings, entries, and exists of generated components. At
the same time, a concrete data model is proposed for capturing the conceptual design
knowledge. In particular, the concrete data model is required for deriving the syntactic
quality issues and the revised theory is needed for deriving the semantic quality issues
in Chapter 6.

84

5 Modeling technique

In this chapter a novel technique is introduced for describing cyber-physical manufactur-
ing systems during conceptual design. In particular, the technique integrates seamlessly
the aspects postulated by the test-driven design method introduced in Chapter 3. These
aspects include the customer requirements, manufacturing processes, and test cases dur-
ing the preparation phase as well as the component architecture, material, energy, and
signal flow behaviors, and physical parts of mechanical and electrical components dur-
ing the implementation phase. To achieve this goal, the FOCUS (see Section 4.1) and
STEM (see Section 4.2) formalisms presented in the previous chapter are revised and
extended. At the same time, a concrete data model is introduced for capturing the
static design knowledge in a machine-readable format (while a concrete data model for
the execution/computation semantics is not provided). In particular, the classes of de-
sign objects, their attributes, and their relations to other classes of design objects are
described using the UML [BJR+96] class diagram notation. Hereby, composition (i.e.
parent-child) and aggregation relations between design objects are distinguished. Note
that composition relations establish a hierarchy among the design objects, while aggrega-
tion relations introduce cross-references within this hierarchy. The data model is used for
deriving the syntactic quality issues of the modeling technique and the revised/extended
formalism for deriving the semantic quality issues in the following chapter.

Subsequently, three groups of modeling concepts are distinguished, namely basic con-
cepts (see Section 5.1), revised concepts (see Section 5.2), and added concepts (see Sec-
tion 5.3). Basic concepts exist in the original FOCUS and STEM theories in similar
forms, have undergone at most minor revisions, and are required for explaining the re-
maining concepts. In contrast, revised concepts exist in the original theories, but have
undergone a major revision to fit the particular needs. Finally, added concepts do not
exist in the original theories yet (particularly in the STEM theory), but have been intro-
duced to cover fully the needs of the test-driven design method proposed in Chapter 3.

5.1 Basic concepts

The most fundamental concepts of the modeling technique are observations (see Sec-
tion 5.1.1), executables (see Section 5.1.2), and expressions (see Section 5.1.3) as well

85

5 Modeling technique

as volumes (see Section 5.1.4) and transforms (see Section 5.1.5). In essence, observa-
tions, executables, and expressions provide the underlying model of computation, while
volumes and transforms provide the model of shape and motion. In the following, each
concept is described in more detail.

5.1.1 Observations

Observations provide information about the system state over time. Formally, observa-
tions correspond to the concept of channels with the sets of channel labels L, type labels
T , and messages M as well as the type mapping M ′ : L → T and message mapping
M ′′ : T → P(M) in the FOCUS theory (see Section 4.1.2). Note that the original con-
cepts cannot be reused directly without making modifications. Subsequently, Figure 5.1
describes the concrete data model for representing the observation concept.

Initial value

1
Observation

Name : String [1 .. 1]
ReadType : Type [1 .. 1]
WriteTypes : Type [1 .. *]

Expression

Figure 5.1: Abstract observation class.

The abstract observation class defines a name, a read type, at least one write type,
and an initial value expression. The name corresponds to the elements λ ∈ L of the set
of channel labels L. The read type corresponds to the type mapping M ′ and specifies
the type of messages M ′(λ) ∈ T , which can be read from corresponding observation
streams. Instead, the write types specify the types of messages which can be written to
these observation streams. Note that the concrete observation classes convert the mes-
sages implicitly in case the read and write types are different, which is supported also
in the FOCUS theory by means of the map operator [BS01]. In the following, boolean
(i.e. B), number (i.e. R), matrix (i.e. R4×3), and set types are used, from which the mes-
sage mapping M ′′ can be derived easily. In particular, 4× 3 matrices represent volume
transformations and, hence, motion in 3-dimensional Euclidean space with Cartesian co-
ordinates. Finally, the initial value expression of observations λ ∈ L determines the first
value l(λ)(0) ∈M ′′(M ′(λ)) in respective observation streams l ∈ ~L. Note that the initial
value expression has to be type-compatible with the write types of the corresponding
observation as detailed in Chapter 6. The proposed concept of expressions, in turn, is
explained in Section 5.1.3.

86

5.1 Basic concepts

5.1.2 Executables

Based on the concept of observations (see Section 5.1.1) the concept of executables is
defined. Executables are inspired by the concept of state transition systems (T, s0, v0)
with input channel labels I, output channel labels O, state labels S, variable labels
V , state transition function T : S × Ī × V̄ → P(S × Ō × V̄), initial state s0 ∈ S,
and initial variable assignment v0 ∈ V̄ (see Section 4.1.4). However, the original state
transition function only takes the current state, variable assignment, and input channel
assignment into account. Here, the finite stream of states, variable assignments, and
input observation assignments up to the current time point are used instead similar
to the test automata described in [KT04]. These modifications allow one to describe,
e.g., the duration of states, arbitrary signal delays, or integrals over time more easily.
Consequently, the state transition function changes to T ′ : (S× Ī× V̄)∗ → P(S× Ō× V̄).

Then, the computation of the revised state transition system (T ′, s0, v0) (see original
Definition 4.15) is defined for an input channel assignment stream i ∈ Ī∞ as the state
stream s ∈ S̄∞ with initial state s(0) = s0, the variable assignment stream v ∈ V̄∞ with
initial variable assignment v(0) = v0, and the output channel assignment stream o ∈ Ō∞
such that

∀n ∈ N : (s(n+ 1), o(n), v(n+ 1)) ∈ T ′(s ↓ n, i ↓ n, v ↓ n).

Note that the original definition of state transition system computations over T (see Sec-
tion 4.1.4) is contained by the revised definition of state transition system computations
over T ′. In particular, the original definition only used the latest states s(n) ∈ S, input
channel assignments i(n) ∈ Ī, and variable assignments v(n) ∈ V̄ at computation step
n ∈ N. In contrast, the revised definition uses the entire stream of states s ↓ n ∈ Sn,
input channel assignments i ↓ n ∈ Īn, and variable assignments v ↓ n ∈ V̄ n up to
the current computation step n ∈ N for deriving the follow-up states as well as output
channel and variable assignments.

Furthermore, causality can be defined for the revised state machine formalism at
different computation steps. The state machine (T ′, s0, v0) is called weakly causal with
respect to inputs I1 ⊆ I and strongly causal with respect to inputs I2 ⊆ I with I1∩I2 = ∅
and I1 ∪ I2 = I at computation step k ∈ N, if for each pair of input streams i1, i2 ∈ Ī∞
with matching input channel assignment stream prefixes∧

ι∈I1

∧
0≤k′≤k

i1(k
′)(ι) = i2(k

′)(ι) ∧
∧
ι∈I2

∧
0≤k′<k

i1(k
′)(ι) = i2(k

′)(ι)

the possible set of follow-up streams of states, variable assignments, and output channel
assignments for the first input channel assignment stream i1, i.e.

{(s1 ↓ (k + 1), o1 ↓ k, v1 ↓ (k + 1)) : (i1, s1, v1, o1) is a computation of (T ′, s0, v0)}

87

5 Modeling technique

equals to the possible set of follow-up streams of states, variables assignments, and
output channel assignments for the second input channel assignment stream i2, i.e.

{(s2 ↓ (k + 1), o2 ↓ k, v2 ↓ (k + 1)) : (i2, s2, v2, o2) is a computation of (T ′, s0, v0)}.

Note that revised state transition systems (T ′, s0, v0) can be both weakly and strongly
causal for the same input channel assignment stream i ∈ Ī∞ at computation step k ∈ N,
but with respect to different sets of input channel labels I1 and I2 with I1 ∩ I2 = ∅
and I1 ∪ I2 = I. Furthermore, note that the revised state transition system (T ′, s0, v0)
might be weakly and strongly causal with respect to different sets of input channel
labels at different computation steps k′ ∈ N with k′ 6= k. In contrast, the original state
transition systems (T, s0, v0) are strongly causal with respect to all input channels i ∈ I
and cannot change their causality at different computation steps k, k′ ∈ N with k 6= k′.
Consequently, the revised formalism subsumes the formalism from Section 4.1.4.

Finally, the question arises how to represent revised state transition systems (T ′, s0, v0)
in a machine-readable format such that they can be executed and analyzed automatically
using computer programs. As noted previously, a representation was developed, which is
based on the concept of observations introduced in the previous section. Subsequently,
the concrete data model is introduced for representing executables in Figure 5.2.

1

*

*

Source Target
1 1

* 1

1

*

1*

Executable Label

Transition Guard

Action

Expression

Observation

Name : String [1 .. 1]

Name : String [1 .. 1]

Name : String [1 .. 1]

Variable

Initial

Figure 5.2: Abstract executable class and associated classes.

The abstract executable class comprises a name, a set of (state) labels with one initial
(state) label, a set of transitions, and a set of variables. Variables, in turn, are derived
from the observation concept and correspond to the variable labels V . In contrast, (state)

88

5.1 Basic concepts

labels define a name and correspond to the state labels S. Finally, transitions comprise
a name as well as a source and a target state. Note that transitions correspond to the
state transition function T ′. Furthermore, transitions contain a guard, which, in turn,
contains one boolean expression (see Section 5.1.3). The guard expression tells whether
the transition is enabled in each computation step k ∈ N. Note that multiple transitions
might be enabled at the same time, which represents one cause for non-determinism
in the model (see Section 6.2.2). Moreover, transitions contain actions which, in turn,
reference an output observation and an expression. If the transition is enabled and
selected in the a computation step k ∈ N, its action expressions define the new values
o(ω)(k) ∈ M ′′(M ′(ω)) of the referenced output observations ω ∈ O. Finally, (state)
labels themselves also may contain actions. If no transition is enabled in a computation
step, the expressions of these actions define the new values of the referenced output
observation instead. Finally, note that action expressions must be type-compatible with
the corresponding observations as detailed in Section 6.1.2.

5.1.3 Expressions

Based on the observation concept (see Section 5.1.1) and the executable concept (see
Section 5.1.2) the concept of expressions is derived. Expressions map a finite stream
of (state) labels, input observation assignments, and variable assignments to one single
output value (e.g. a sum over time). Consequently, expressions are functions E : (S ×
Ī × V̄)∗ → D over state labels S, input observation labels I, variable labels V , and
target domain D ⊆M , where D can be any of boolean, number, matrix, string, and set.
Figure 5.3 shows the concrete data model for representing expressions in the specification.

Expression

AtomicExpression

CompositeExpressionType : Class [1..1]

Figure 5.3: Abstract expression class and subclasses.

The abstract expression base class only defines the return type of the expression, which
corresponds to the target domain D. Then, two abstract subclasses are distinguished,
namely atomic expressions and composite expressions. The difference between the two
classes is that composite expression contain argument expressions, while atomic expres-
sions are self-contained. In the following, each subclass is explained in detail. Thereby,

89

5 Modeling technique

the expression semantics is specified for data stream dsn ∈ (S × Ī × V̄)n with data
stream length n ∈ N and data stream elements dsn(m) = (sm, im, vm) with m ∈ N and
m ≤ n, as well as state accessor s(dsn,m) = sm, input channel assignment accessor
i(dsn,m) = im, and variable assignment accessor v(dsn,m) = vm.

Atomic expressions

In principle, a wide variety of atomic expressions are supported. Here, only the most
important expressions are presented, which also are used frequently in the industry-close
showcase for evaluation purposes (see Chapter 8). Figure 5.4 provides an overview of
the data model for the most important atomic expressions.

1

AtomicExpression

ObservationExpression

ConstantExpression

Value : Object [1 .. 1]

Delay : Number [1 .. 1]

Observation

DurationExpression

Figure 5.4: Abstract atomic expression class and subclasses.

The most important atomic expressions are the observation expression, the constant
expression, and the duration expression. The observation expression allows one to read
an observation λ ∈ I ∪V with delay d ∈ N. The semantics of the observation expression
is given by the function

Eλ,dObservation(dsn) =

i(dsn, n− d)(λ) if n− d ≥ 0 ∧ λ ∈ I
v(dsn, n− d)(λ) if n− d ≥ 0 ∧ λ ∈ V
⊥ if n− d < 0

.

In contrast, the constant expression returns for each data stream dsn a constant value
c ∈ D, where D ⊆M represents the target domain of the expression. Consequently, the
semantics of the constant expression is given by the function

EcConstant(dsn) = c.

90

5.1 Basic concepts

Finally, the duration expression allows one to determine the number of discrete time
steps, for which an executable resides in the same state. The semantics of the duration
expression is given by the function

EDuration(dsn) = Count(dsn, n, n).

Hereby, the function Count : (S× Ī× V̄)∗×Z×N→ N counts the repetitive occurrences
of the state label s(dsn, n) ∈ S at the end of the data stream. Finally, for counting the
repetitive occurrences of the state labels the following algorithm is used:

Count(dsn, k,m) =

{
1 + Count(dsn, k − 1,m) if s(dsn, k) = s(dsn,m) ∧ k ≥ 0

0 if s(dsn, k) 6= s(dsn,m) ∨ k < 0
.

Note that especially the observation expression and the duration expression require the
stream of previous state labels, input channel assignments, and variable assignments to
describe their functional semantics.

Composite expressions

Similarly, a wide variety of composite expressions are provided. Again, due to space
limitations only the most important expressions are presented, which also are used fre-
quently in the industry-close showcase from Chapter 8. Figure 5.5 provides an overview
of the data model for the most important composite expressions.

1

2 .. *

CompositeExpression

NaryExpression

UnaryExpression

ArgumentType : Class [1..1]

NotExpression

AndExpression

CardinalityExpression

SumExpression

Expression

Figure 5.5: Abstract composite expression class and subclasses.

91

5 Modeling technique

Generally, unary and nary (composite) expressions are distinguished. Unary expres-
sions contain a single argument expression of a defined argument type, while nary ex-
pressions require two or more argument expressions of the defined argument type. The
most important unary expressions are the not expression and the cardinality expression.
In contrast, the most important nary expressions are the and expression and the sum
expression. The not expression expects a boolean argument expression and negates its
outcome. The semantics of the not expression is given by the function

ENot(s) = ¬EArgument(s).

In contrast, the cardinality expression expects a set argument expression and returns
the respective set cardinality. The semantics is given by the function

ECardinality(s) = |EArgument(s)|.

Then, the and expression calculates the logical conjunction of the m ∈ N boolean argu-
ment expressions. The semantics of the expression is given by the function

EAnd(s) =
∧

1≤k≤m
EArgumentk(s).

Finally, the sum expression calculates the arithmetic sum of the m ∈ N number argument
expressions. The semantics of the expression is given by the function

ESum(s) =
∑

1≤k≤m
EArgumentk(s).

Similar expressions are provided for other boolean, arithmetic, matrix and set operations
such as the logical disjunction, the arithmetic difference, the matrix product, or the set
union. Note that the argument expressions might require a stream of states, input
observation assignments, and variable assignments respectively.

5.1.4 Volumes

Subsequently, the concept of volumes is introduced. As mentioned in Section 4.2.1, a
three-dimensional Euclidean transformable collision space (V, 0V , ./,t, T) with Cartesian
coordinate system is used. Consequently, volumes v ∈ V correspond to a set v ⊆ R3 of
elements (i.e. points) in the Euclidean space. Then, the empty volume 0V corresponds to
the empty set ∅ ⊆ R3, the volume collision operator ./ corresponds to the set intersection
operator ∩, and the volume union operator t corresponds to the set union operator ∪.
Finally, Figure 5.6 shows the concrete data model behind the volume concept.

92

5.1 Basic concepts

* {ordered}

1 .. *

Volume

AtomicVolume

CompositeVolume

SphereVolume

BoxVolume

Width : Number [1..1]
Length : Number [1..1]
Height : Number [1..1]

Radius : Number [1..1]

CylinderVolume

Radius : Number [1..1]
Height : Number [1..1]

Figure 5.6: Abstract volume class and subclasses.

The abstract volume base class contains an ordered list of transforms t = t1 ◦ ... ◦ tn ∈
T with length n ∈ N (see Section 5.1.5), which represents the volume position and
orientation in the initial state. Then, atomic and composite volumes are distinguished.
Atomic volumes can be box volumes, sphere volumes, or cylinder volumes. Box volumes
t(vb) ∈ V define a width w ∈ R+

0 , height h ∈ R+
0 , and length l ∈ R+

0 such that

vb = {(x, y, z) ∈ R3 | −w/2 ≤ x ≤ w/2 ∧ −h/2 ≤ y ≤ h/2 ∧ −l/2 ≤ z ≤ l/2}.

In contrast, sphere volumes t(vs) ∈ V define a radius r ∈ R+
0 such that

vs = {(x, y, z) ∈ R3 |
√
x2 + y2 + z2 ≤ r}.

Then, cylinder volumes t(vc) ∈ V define a radius r ∈ R+
0 and a height h ∈ R+

0 such that

vc = {(x, y, z) ∈ R3 |
√
x2 + z2 ≤ r ∧ −h/2 ≤ y ≤ h/2}.

Moreover, composite volumes t(v∪) ∈ R3 define a set V ′ ⊆ V of child volumes such that

v∪ =
⋃
v′∈V ′

v′

Note that composite volumes only support the unified child volumes. Consequently, the
collision of composite volumes can be calculated easily based on the pairwise collision

93

5 Modeling technique

of the child volumes. However, in practice one might want to work also with volume
intersection and difference as known from constructive solid geometry [RV77], which
complicates the calculation of the collision relation and is omitted in this doctoral thesis.

5.1.5 Transforms

Based on the volume concept (see Section 5.1.4) the concept of transforms (or motion) is
introduced. As mentioned in the previous section, the Euclidean transformable collision
space (V, 0V , ./,t, T) (see Section 4.2.1) with Cartesian coordinate system is used such
that each volume v ∈ V represents a set of elements (i.e. points) v ⊆ R3. Consequently,
transformations t ∈ T are functions t : P(R3) → P(R3) that map point sets onto each
other. Figure 5.7 shows the underlying concrete data model.

Transform

RotationTransform

TranslationTransform

Distance : Number [1..1]

Angle : Number [1..1]

Axis : Vector [1..1]

Figure 5.7: Abstract transform class and subclasses.

The abstract transform base class defines a three-dimensional vector axis a ∈ R3

with |a| = 1 and the operator | · | : R3 → R representing the Euclidean norm. The
interpretation of the axis depends on the concrete transform type. Then, for simplicity
only two types of concrete transforms are considered, namely translation and rotation
transforms. Translation transforms tt ∈ T additionally define a distance d ∈ R such that

tt(v) = {p ∈ R3 | ∃p′ ∈ v : p′ = p− d ∗ a}

with ∗ : R×R3 → R3 representing the scalar product and − : R3×R3 → R3 representing
the vector difference operators. In contrast, rotation transforms tr ∈ T additionally
define an angle α ∈ R such that

tr(v) = {p ∈ R3 | ∃p′ ∈ v : p′ = (a · p) ∗ a+ cos(α) ∗ (a× p)× a+ sin(α) ∗ (a× p)}

with ∗ : R×R3 → R3 representing the scalar product, · : R3 ×R3 → R representing the
dot product, × : R3 × R3 → R3 representing the cross product, and + : R3 × R3 → R3

representing the vector sum operators.

94

5.2 Revised concepts

5.2 Revised concepts

Following the basic concepts, revised concepts are described that already existed in the
STEM theory (see Section 4.2), but have been adapted to meet the particular needs.
First, revised spatio-temporal components are introduced in Section 5.2.1, before turning
to ports in Section 5.2.2 and channels in Section 5.2.3. Finally, solid physical parts
are explained in Section 5.2.4 and behaviors are introduced in Section 5.2.5. Where
applicable the extensions and adaptations to the original theory are described.

5.2.1 Components

The revised component concept is inspired by the concept of extended spatio-temporal
components C : ~I× ~A(D)→ P(~O× ~D× ~P × ~M× ~B× ~Y × ~X) over input channel histories
~I, activation histories ~A(D) = {D → B∞}, output channel histories ~O, detector histories
~D = {D → V∞}, part histories ~P = {P → V∞}, mover histories ~M = {M → T∞},
binding histories ~B = {B → (S × (I ∪O∪M))∞}, entry histories ~Y = {Y → (T ×C)∞},
exit histories ~X = {X → S∞}, and transformable collision space (V, 0V , ./,t, T) as
well as the composition operator � and the motion operator `µ (see Section 4.2). The
original theory is modified to support customer requirement, manufacturing process, and
test case (see Section 5.3) as well as the remaining specification activities more naturally:

– The original concept is revised such that the transfer of kinetic energy (i.e. volume
transforms t ∈ T ; see Section 5.1.5) can be achieved via classical FOCUS channels.

– Furthermore, the concept of detectors D is replaced with a more general concept
of bindings B, which allows one to observe and identify each bound component.

– Then, means for modeling dynamic interactions between components of the static
system architecture are provided through a more general binding concept B.

– Moreover, generated components (t, C ′) ∈ G(n) with computation step n ∈ N are
allowed to define their own bindings B′, entries Y ′, and exits X ′.

– Additionally, means are integrated for embedding components dynamically and,
hence, forwarding kinetic energy applied to the embedder components.

– Finally, the collision relation ./ is used instead of spatial selection predicates σ ∈ S
to simplify the theory.

In the following, first the revised spatio-temporal component formalism is introduced,
before the data model for capturing the underlying design information is explained. In

95

5 Modeling technique

particular, the data model provides mean for reusing existing component specifications
in different contexts (i.e. a construction kit with instantiation support).

Revised component formalism

The revised component formalism is based on a revised syntactic and semantic interface
of spatio-temporal components. Similar to the introduction of spatio-temporal compo-
nents (see Section 4.2.2) and extended spatio-temporal components (see Section 4.2.3),
first revised spatio-temporal functions are introduced. Then, the definitions of revised
spatio-temporal components as well as the revised composition operator are derived.
Where necessary, additional properties and concepts are introduced.

Revised spatio-temporal functions Firstly, revised spatio-temporal functions C (see
Definition 4.26 for extended spatio-temporal functions) are defined as mappings from
input channel histories ~I, kinetic energy input channel histories ~IM = {IM → T∞},
kinetic energy forwarding histories ~IF = {C → T∞} with universe of revised spatio-
temporal components C (definition coming later), and activation histories ~A(B ∪ Y ∪
X) = {B ∪ Y ∪ X → P(C)∞} to output channel histories ~O, kinetic energy output
channel histories ~OM = {OM → T∞}, part histories ~P = {P → V∞}, binding histories
~B = {B → (V × P(O × I)× B)∞} with the universe of (kinetic energy) output channel
labels O and the universe of (kinetic energy) input channel labels I, entry histories
~Y = {Y → (T × C)∞}, and exit histories ~X = {X → V∞}, i.e.

C : ~I × ~IM × ~IF × ~A(B ∪ Y ∪X)→ P(~O × ~OM × ~P × ~B × ~Y × ~X).

Note that the spatial selection predicates σ ∈ S have been removed from the binding
histories ~B and exit histories ~X. Instead, collision volumes v ∈ V are used. Furthermore,
note that the original activation histories ~A(D) have been replaced by the activation
histories ~A(B∪Y ∪X). The revised activation histories provide access to the components,
which can be observed at each binding β ∈ B, entry υ ∈ Y , and exit ξ ∈ X, instead of
reporting collisions between parts π ∈ P and detectors δ ∈ D only. Consequently, the
concept of detectors is blended into a revised concept of bindings. Finally, note that
the kinetic energy input channel and forwarding histories ~IM and ~IF have been added.
The first allows one to transmit kinetic energy over classical FOCUS channels, while the
second allows one to describe, e.g., airflow not requiring kinematic chains.

Zero kinetic energy Before describing the reaction of revised spatio-temporal functions
C over I, IM , O,OM , P,B, Y,X to arbitrary kinetic energy input channel and forwarding

96

5.2 Revised concepts

histories iM ∈ ~IM and iF ∈ ~IF , first the zero kinetic energy input channel and forwarding
histories iM,0 ∈ ~IM and iF,0 ∈ ~IF are defined. Both histories are based on the identity
transformation stream t0 ∈ T∞ with

∀n ∈ N, v ∈ V : t0(n)(v) = v.

At each computation step n ∈ N the identity transformation stream t0 contains the
identity transformation, which maps each volume v ∈ V onto itself. Based on the
identity transformation stream t0 the zero kinetic energy input channel and forwarding
histories iM,0 and iF,0 can be defined such that

∀ι ∈ IM : iM,0(ι) = t0 and ∀C ∈ C : iF,0(C) = t0.

Note that each kinetic energy input channel ι ∈ IM and each component C ∈ C is mapped
to the identity transformation stream t0. Consequently, the zero kinetic energy input
channel and forwarding histories iM,0 and iF,0 can be used to describe the component C
at its default position and orientation.

Movable spatio-temporal functions Then, the reaction of revised spatio-temporal
functions C to arbitrary kinetic energy stimuli is constrained (replacing the pos op-
erator of the STEM theory introduced in Definition 4.24). A revised spatio-temporal
function C is called movable if for all stimuli (i, iM , iF , a) ∈ ~I × ~IM × ~IF × ~A(B ∪Y ∪X)
and reactions (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) there exists a stimulus with zero kinetic
energy (i, iM,0, iF,0, a) ∈ ~I×~IM×~IF × ~A(B∪Y ∪X) and reaction (o, oM,0, p0, b0, y0, x0) ∈
C(i, iM,0, iF,0, a), such that for each kinetic energy output channel ω ∈ OM the initial
kinetic energy output channel assignment oM (ω)(0) equals to the initial energy output
channel assignment oM,0(ω)(0), i.e. oM (ω)(0) = oM,0(ω)(0), and for each computation
step n ∈ N the follow-up kinetic energy output channel assignment oM (ω)(n + 1) can
be obtained from the follow-up kinetic energy output channel assignment oM,0(ω)(n)
through transformation by kinetic energy input channel and forwarding histories iM and
iF , i.e.

oM (ω)(n+ 1) = its(iF (C))(n) ◦©ι∈IM its(iM (ι))(n) ◦ oM,0(ω)(n+ 1)◦

©ι∈IM its
−1(iM (ι))(n) ◦ its−1(iF (C))(n).

Furthermore, for each part π ∈ P the initial part assignment p(π)(0) equals to the initial
part assignment p0(π)(0), i.e. p(π)(0) = p0(π)(0), and for each computation step n ∈ N
the follow-up part assignment p(π)(n + 1) can be obtained from the follow-up part

97

5 Modeling technique

assignment p0(π)(n) through transformation by kinetic input channel and forwarding
histories iM and iF , i.e.

p(π)(n+ 1) = its(iF (C))(n) ◦©ι∈IM its(iM (ι))(n)(p0(π)(n+ 1)).

Then, for each binding β ∈ B the initial binding assignment b(β)(0) equals to the initial
binding assignment b0(β)(0), i.e. b(β)(0) = b0(β)(0), and for each computation step
n ∈ N the follow-up binding assignment b(β)(n+ 1) = (v, c, f) can be obtained from the
follow-up binding assignment b0(β)(n+ 1) = (v0, c, f) through transformation by kinetic
energy input channel and forwarding histories iM and iF , i.e.

v = its(iF (C))(n) ◦©ι∈IM its(iM (ι))(n)(v0).

Subsequently, for each entry υ ∈ Y the initial entry assignment y(υ)(0) equals to the
initial entry assignment y0(υ)(0), i.e. y(υ)(0) = y0(υ)(0), and for each computation step
n ∈ N the follow-up entry assignment y(υ)(n + 1) = (t′, C ′) can be obtained from the
follow-up entry assignment y0(υ)(n + 1) = (t′0, C

′) through transformation by kinetic
energy input channel and forwarding histories iM and iF , i.e.

t′ = its(iF (C))(n) ◦©ι∈IM its(iM (ι))(n) ◦ t′0.

Finally, for each exit ξ ∈ X the initial exit assignment x(ξ)(0) equals to the initial exit
assignment x0(ξ)(0), i.e. x(ξ)(0) = x0(ξ)(0), and for each computation step n ∈ N the
follow-up exit assignment x(ξ)(n+1) can be obtained from the follow-up exit assignment
x0(ξ)(n + 1) through transformation by kinetic energy input channel and forwarding
histories iM and iF , i.e.

x(ξ)(n+ 1) = its(iF (C))(n) ◦©ι∈IM its(iM (ι))(n)(x0(ξ)(n+ 1)).

Consequently, the reaction of revised spatio-temporal function C to kinetic energy input
channel and forwarding histories iM and iF is obtained from the reaction of C to the zero
kinetic energy input channel and forwarding histories iM,0 and iF,0 through transforming
the kinetic energy output channel history oM,0, the part history p0, the binding history
b0, the entry history y0, and the exit history x0. Only the output channel history o
is not affected by the kinetic energy input channel and forwarding histories iM and
iF . Furthermore, note that the part, binding, entry, and exit histories p, b, y, and
x are affected by integrated transformation streams. In contrast, the kinetic energy
output history oM is affected by the inverse integrated transformation stream also. This
behavior is quite different from the behavior of the position operator pos of the original
STEM theory (see Section 4.2.2). The reason for this difference is that in the revised

98

5.2 Revised concepts

component formalism the position and orientation of revised spatio-temporal functions is
encoded explicitly in the kinetic energy input channel history iM and the kinetic energy
forwarding history iF . In the original STEM theory, the position and orientation is
defined only implicitly in the detector, part, mover, entry, and exit histories as well as
the position operator. Consequently, the position and orientation information can be
accessed more easily in the formalism, which helps defining certain properties later.

Revised spatio-temporal components Here, movable spatio-temporal functions C over
I, IM , O,OM , P,B, Y,X also are called revised spatio-temporal components here.

Revised composition operator Then, the question arises how revised spatio-temporal
components C1 and C2 can be composed, which is not possible in the original STEM
theory. Hereby, particularly the exchange of kinetic energy has to be considered. Sub-
sequently, the revised composition operator � : C × C → C is defined such that for
each revised spatio-temporal component C1 over I1, IM,1, O1, OM,1, P1, B1, Y1, X1 and
revised spatio-temporal component C2 over I2, IM,2, O2, OM,2, P2, B2, Y2, X2 the revised
composition operator yields

C1 � C2 : ~I × ~IM × ~IF × ~A(B ∪ Y ∪X)→ P(~O × ~OM × ~P × ~B × ~Y × ~X)

with input channels I = (I1 \ O2) ∪ (I2 \ O1) ∪ (IM,1 \ OM,2) ∪ (IM,2 \ OM,1), empty
kinetic energy input channels IM = ∅, output channels O = O1 ∪ O2, kinetic energy
output channels OM = OM,1 ∪OM,2, parts P = P1 ∪ P2, bindings B = B1 ∪B2, entries
Y = Y1 ∪ Y2, and exits X = X1 ∪ X2. Furthermore, for each stimulus (i, iM , iF,0, a) ∈
~I × ~IM × ~IF × ~A(B ∪ Y ∪X) with ∀C ∈ C : iF,0(C) = t0 and reaction (o, oM , p, b, y, x) ∈
(C1 � C2)(i, iM , iF,0, a) there must exist an extended (kinetic energy) input channel

history i′ ∈ ~Z with Z = I1 ∪ I2 ∪ IM,1 ∪ IM,2 and i′|I = i such that

(o|O1 , oM |OM,1
, p|P1 , b|B1 , y|Y1 , x|X1) ∈ C1(i

′|I1 , i′|IM,1
, iF,0, a|B1∪Y1∪X1)

∧

(o|O2 , oM |OM,2
, p|P2 , b|B2 , y|Y2 , x|X2) ∈ C2(i

′|I2 , i′|IM,2
, iF,0, a|B2∪Y2∪X2).

Note that i′ includes the histories of the hidden input channels I1 \O2 and I2 \O1 as well
as the hidden kinetic energy input channels IM1 \OM,2 and IM,2\OM,1. Furthermore, the
revised spatio-temporal function C1�C2 must be movable with respect to arbitrary iF ∈
~IF . Consequently, one needs to construct from each stimulus (i, iM , iF , a) ∈ ~I×~IM×~IF×
~A(B∪Y ∪X) with iF (C1�C2) = t0, already computed reaction (o, oM,0, p0, b0, y0, x0) ∈

99

5 Modeling technique

(C1 � C2)(i, iM , iF , a), and transformation stream t ∈ T∞ a transformed stimulus and
reaction (o, oM , p, b, y, x) ∈ C1�C2(i, iM , i

′
F , a) with i′F (C1�C2) = t and i′F |C\(C1�C2) =

iF |C\(C1�C2). This construction is left to the interested reader.

Motion interface operator Then, the question arises how to augment the composed
spatio-temporal component C : C1�C2 with its own kinetic energy input channels, which
only exist implicitly in the STEM theory (see motion operator `µ in Definition 4.25).
Therefore, the motion interface operator `I′M : C → C with additional kinetic energy
input channel labels I ′M ⊆ IM and the universe of kinetic energy input channel labels

IM is introduced such that for each revised spatio-temporal component C : ~I × ~IM ×
~IF × ~A(B ∪Y ∪X)→ P(~O× ~OM × ~P × ~B× ~Y × ~X) the motion interface operator yields

`I′M (C) = C ′ : ~I × ~I ′′M × ~IF × ~A(B ∪ Y ∪X)→ P(~O × ~OM × ~P × ~B × ~Y × ~X)

with augmented kinetic energy input channels I ′′M = IM ∪ I ′M . Furthermore, the revised

spatio-temporal function `I′M (C) must be movable with respect to iM ∈ ~I ′′M yielding a
revised spatio-temporal component by definition. The reactions of the revised spatio-
temporal component `I′M (C) to stimulus (i, iM , iF , a) ∈ ~I × ~I ′′M × ~IF × ~A(B ∪ Y ∪X)
can be derived easily from the reactions of the revised spatio-temporal component C to
the stimulus (i, iM |IM , iF , a) ∈ ~I × ~IM × ~IF × ~A(B ∪ Y ∪X). Again, the construction is
left to the interested reader.

Static component architectures Finally, the revised component formalism entails re-
vised definitions of the collision sensing and the channel binding properties (see Sec-
tion 4.2.3), while the mover binding property is subsumed by the channel binding prop-
erty and the definition of movable spatio-temporal functions. Before introducing the
revised property definitions, the notion of static component architectures is introduced.
A static component architecture is defined as a mapping A : C → P(IM) × P(C) with
the universe of kinetic energy input channel labels IM such that for each revised spatio-
temporal component C ∈ C the mapping A(C) = (IM , CC) provides the augmented
kinetic energy input channels IM and the child components CC such that

(CC = IM = ∅) ∨ (C =`IM (
⊙
C′∈CC

C ′)).

Consequently, a component is mapped (1) to the empty set of kinetic energy input
channels and child components or (2) to the child components, it is composed of, and
the kinetic energy input channels, the composition is augmented by. In the first case C is

100

5.2 Revised concepts

called an atomic component, while in the second case C is called a composite component
and A(C) its decomposition. Based on the concept of static component architectures A
the descendants mapping D : C → P(C) is introduced such that

D(C) = CC ∪
⋃

C′∈CC

D(C ′) with A(C) = (IM , CC).

Note that the descendants mapping D is defined recursively. Therefore, the descen-
dants mapping also can be used to retrieve second and lower level subcomponents, while
the static component architecture A only returns the first level subcomponents. Con-
sequently, with mapping D one can argue about all components, both composite and
atomic, which are contained in component C. Note that, hereby, the composite compo-
nents include their augmented kinetic energy input channels.

Generated component streams Furthermore, the revised definition of the collision
sensing and channel binding properties requires a revised definition of the generated
component stream G (see Definition 4.27). Given stimulus (i, iM , iF , a) ∈ ~I × ~IM ×
~IF × ~A(B ∪ Y ∪ X) and reaction (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) the generated com-
ponent stream G ∈ P(C)∞ is defined such that for each computation step n ∈ N it
contains in the follow-up computation step n + 1 a component C ′ ∈ G(n + 1) over
I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′ if the stream G contained the component C ′ in the previ-

ous computation step, i.e. C ′ ∈ G(n), and the component C ′ was not deleted, i.e.

@π′ ∈ P ′ : ∃ξ ∈ X : p′(π′)(n) ./ x(ξ)(n) ∨
∨

C′′∈G(n)

∃ξ′′ ∈ X ′′ : p′(π′)(n) ./ x′′(ξ′′)(n)

or the generated component stream G did not contain the component C ′ in the previous
computation step, i.e. C ′ /∈ G(n) and the component C ′ was created at some position
and orientation t′ ∈ T , i.e.

∃υ ∈ Y : y(υ)(n) = (t′, C ′) ∨
∨

C′′∈G(n)

∃υ′′ ∈ Y ′′ : y′′(υ′′)(n) = (t′, C ′).

Note that in the previous formulas (o′, o′M , p
′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′) refers to the be-

havior of revised spatio-temporal component C ′ ∈ G(n+1), while (o′′, o′′M , p
′′, b′′, y′′, x′′) ∈

C ′′(i′′, i′′M , iF , a
′′) refers to the behavior of revised spatio-temporal component C ′′ ∈ G(n).

Note that, in contrast to the original STEM theory (see Section 4.2.3), the revised def-
inition of the generated component stream G does not encode the position and orien-
tation t′ ∈ T of the generated revised spatio-temporal components. The reason for this

101

5 Modeling technique

difference is that in the revised component formalism the position and orientation of
components is encoded explicitly in the kinetic energy input channel and forwarding
histories i′M ∈ ~I ′M , i′′M ∈ ~I ′′M , and iF ∈ ~IF . Furthermore, note that the revised defi-
nition of the generated component stream G allows generated components to generate
and delete other components (including themselves). This behavior was not supported
by the original definition of the generated component stream. Consequently, the revised
definition is more powerful than the original definition.

Collision sensing behaviors Then, the collision sensing property (see Definition 4.28) is
extended such that only colliding components can be detected, which implement the syn-
tactic interface c ∈ P(O×I) prescribed by the bindings b(β)(n) = (v, c, f) at computation
step n ∈ N with binding label β ∈ B and binding history b ∈ ~B = {B → (V ×P(O×I)×
B)∞}. Furthermore, the colliding components might include subcomponents C ′ ∈ D(C)
of component C in addition to generated components C ′ ∈ G(n) with computation step
n ∈ N. Hence, the behavior (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) is called collision sensing,
when a revised spatio-temporal component C ′ ∈ C over I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′ with

behavior (o′, o′M , p
′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a

′) is bound to binding b(β)(n) = (v, c, f)
with binding label β ∈ B at computation step n ∈ N, i.e. C ′ ∈ a(β)(n), if the component
C ′ is part of the generated component stream G, i.e.

C ′ ∈ G(n)

or the component C ′ is a descendant of the component C and there exists another
revised spatio-temporal component C ′′ over I ′′, I ′′M , O

′′, O′′M , P
′′, B′′, Y ′′, X ′′, which also

is a descendant of C, is not related to C ′, and defines the binding β, i.e.

C ′ ∈ D(C) ∧ ∃C ′′ ∈ D(C) : β ∈ B′′ ∧ C ′ /∈ D(C ′′) ∧ C ′′ /∈ D(C ′)

and the component C ′, either part of the generated component stream G(n) or part
of the component architecture A, implements the syntactic interface prescribed by the
dynamic channels c ∈ P(O × I) of the binding b(β)(n) = (v, c, f), i.e.

∀(ω, ι) ∈ c : ω ∈ O′ ∨ ω ∈ O′M ∨ ι ∈ I ′ ∨ ι ∈ I ′M

and at least one part π′ ∈ P ′ of component C ′ must collide with the volume v of the
binding b(β)(n) = (v, c, f), where the volume v replaces the spatial selection predicate
σ ∈ S of the original STEM theory, i.e.

∃π′ ∈ P ′ : p′(π′)(n) ./ v.

102

5.2 Revised concepts

Note that the collision sensing property applies to the behaviors (o′, o′M , p
′, b′, y′, x′) ∈

C ′(i′, i′M , iF , a
′) of the generated components C ′ ∈ G(n) as well. Furthermore, note

that the revised collision sensing property is stronger than the original collision sensing
property. In particular, the syntactic interface of each bound component C ′ ∈ G(n)
at computation step n ∈ N can be constrained by means of the dynamic channels c ∈
P(O × I) of bindings b(β)(n) = (v, c, f). In contrast, the original collision sensing
property was based on the spatial extent (i.e. the parts) of components only.

Channel binding behaviors Based on the collision sensing property, the channel bind-
ing property (see Definition 4.29) is adapted to forward the output channel and kinetic
energy output channel assignments along the dynamic channels c ∈ P(O × I) of bind-
ings b(β)(n) = (v, c, f). A stimulus (i, iM , iF , a) ∈ ~I × ~IM × ~IF × ~A(B ∪ Y ∪ X) and
reaction (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) is called channel binding if for each binding
b(β)(n) = (v, c, f) with binding label β ∈ B and computation step n ∈ N, dynamic chan-
nel (ω, ι) ∈ c, and bound component C ′ ∈ a(β)(n) over I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′ with

behavior (o′, o′M , p
′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′), the component C ′ is a generated com-

ponent, i.e. C ′ ∈ G(n), and the (kinetic energy) output channels of bound component
C ′ are forwarded to the (kinetic energy) input channels of component C, i.e.

ω ∈ O′ ∧ ι ∈ I ⇒ o′(ω)(n) = i(ι)(n)

ω ∈ O′M ∧ ι ∈ I ⇒ o′M (ω)(n) = i(ι)(n)

ω ∈ O′M ∧ ι ∈ IM ⇒ o′M (ω)(n) = iM (ι)(n),

and the (kinetic energy) output channels of component C are forwarded to the (kinetic
energy) input channels of bound component C ′, i.e.

ω ∈ O ∧ ι ∈ I ′ ⇒ o(ω)(n) = i′(ι)(n)

ω ∈ OM ∧ ι ∈ I ′ ⇒ oM (ω)(n) = i′(ι)(n)

ω ∈ OM ∧ ι ∈ I ′M ⇒ oM (ω)(n) = i′M (ι)(n),

or the component C ′ is a descendant of component C, i.e. C ′ ∈ D(C), and there exists
another descendant component C ′′ ∈ D(C) over I ′′, I ′′M , O

′′, O′′M , P
′′, B′′, Y ′′, X ′′ of com-

ponent C, which is not related to C ′, i.e. C ′′ /∈ D(C ′) and C ′ /∈ D(C ′′), and C ′′ defines
the binding β, i.e. β ∈ B′′, and the (kinetic energy) output channels of C ′ are forwarded
to the (kinetic energy) input channels of C ′′, i.e.

ω ∈ O′ ∧ ι ∈ I ′′ ⇒ o(ω)(n) = i(ι)(n)

103

5 Modeling technique

ω ∈ O′M ∧ ι ∈ I ′′ ⇒ oM (ω)(n) = i(ι)(n)

ω ∈ O′M ∧ ι ∈ I ′′M ⇒ oM (ω)(n) = iM (ι)(n),

and the (kinetic energy) output channels of component C ′′ are forwarded to the (kinetic
energy) input channels of component C ′, i.e.

ω ∈ O′′ ∧ ι ∈ I ′ ⇒ o(ω)(n) = i(ι)(n)

ω ∈ O′′M ∧ ι ∈ I ′ ⇒ oM (ω)(n) = i(ι)(n)

ω ∈ O′′M ∧ ι ∈ I ′M ⇒ oM (ω)(n) = iM (ι)(n).

Note that the channel binding property applies to the behaviors (o′, o′M , p
′, b′, y′, x′) ∈

C ′(i′, i′M , iF , a
′) of the generated components C ′ ∈ G(n) as well. Furthermore, note that

the revised channel binding property not only enables communication between compo-
nent C and generated components C ′ ∈ G(n), but the property also supports energy
and data exchange between independent subcomponents C ′, C ′′ ∈ D(C). Consequently,
the formalism allows one to express dynamic interaction within a static component ar-
chitecture A. Additionally, the dynamic interaction includes exchange of kinetic energy
such that component C, some subcomponent C ′ ∈ D(C), or some generated compo-
nent C ′ ∈ G(n) can be moved. Consequently, the revised channel binding property in
conjunction with the definition of movable spatio-temporal functions also subsume the
original mover binding property (see Definition 4.30).

Motion forwarding behaviors Finally, the question arises how the kinetic energy for-
warding histories iF ∈ ~IF are computed. In the following, assume an arbitrary behavior
(o, oM , p, b, y, x) ∈ C(i, iM , iF , a) with generated component stream G ∈ P(C)∞, compu-
tation step n ∈ N, and generated component C ′ ∈ G(n) over I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′.

First the subset of bindings BC′
C ⊆ B of component C is derived which the component

C ′ is bound to in computation step n, i.e.

BC′
C = {β ∈ B | C ′ ∈ a(β)(n) ∧ ∃v ∈ V, c ∈ P(O × I) : (v, c, true) = b(β)(n)}.

Furthermore, for each other generated component C ′′ ∈ G(n), C ′′ 6= C ′ over label sets
I ′′, I ′′M , O

′′, O′′M , P
′′, B′′, Y ′′, X ′′ with behavior (o′′, o′′M , p

′′, b′′, y′′, x′′) ∈ C ′′(i′′, i′′M , iF , a′′)
the subset of bindings BC′

C′′ ⊆ B′′ of component C ′′ is defined which the component C ′

is bound to in computation step n, i.e.

BC′
C′′ = {β′′ ∈ B′′ | C ′ ∈ a′′(β′′)(n) ∧ ∃v ∈ V, c ∈ P(O × I) : (v, c, true) = b′′(β′′)(n)}.

104

5.2 Revised concepts

Note that only bindings b(β)(n) = (v, c, true) and b′′(β′′)(n) = (v′′, c′′, true) are consid-
ered where the boolean forwarding flag is true. Then, the set of components CC

′
C∗ ⊆ C

with C∗ ∈ {C} ∪ G(n) \ {C ′} is derived which include any of the selected bindings
β ∈ BC′

C∗ in their syntactic interface, i.e.

CC
′

C∗ = {C ′′′ ∈ D(C∗) | ∃β ∈ BC′
C∗ : β ∈ B′′}.

Subsequently, the kinetic energy input channels is calculated which take effect on the
selected components C ′′′ ∈ CC′C∗ over I ′′′, I ′′′M , O

′′′, O′′′M , P
′′′, B′′′, Y ′′′, X ′′′. Note that due

to the revised composition operator � the kinetic energy input channels can be found
in the regular input channels I∗ of component C∗, the kinetic energy input channels I∗M
of component C∗, or the kinetic energy output channels O∗M of component C∗, i.e.

IC
′

C∗ = {ι ∈ I∗ | ∃C ′′′ ∈ CC′C∗ : ι ∈ I ′′′M},

IC
′

M,C∗ = {ι ∈ I∗M | ∃C ′′′ ∈ CC
′

C∗ : ι ∈ I ′′′M} \ IC
′

C∗ ,

OC
′

M,C∗ = {ω ∈ O∗M | ∃C ′′′ ∈ CC
′

C∗ : ω ∈ I ′′′M} \ IC
′

C∗ \ IC
′

M,C∗ .

Finally, the initial kinetic energy forwarding iF (C ′)(0) ∈ T is set to the identity transfor-
mation, i.e. iF (C ′)(0)(v) = v, and the follow-up kinetic energy forwarding iF (C ′)(n+ 1)
is calculated from the kinetic energy forwarding of the components in CC

′
C∗ as well as the

kinetic energy input channels in IC
′

C∗ , I
C′
M,C∗ , and OC

′
M,C∗ such that

iF (C ′)(n+ 1) =©
C′′′∈CC′

C
iF (C ′′′)(n+ 1) ◦©C′′∈G(n)(©C′′∈CC′

C′′
iF (C ′′′)(n+ 1))◦

©
ι∈IC′C

i(ι)(n+ 1) ◦©C′′∈G(n)(©ι∈IC′
C′′
i′′(ι)(n+ 1))◦

©
ι∈IC′M,C

iM (ι)(n+ 1) ◦©C′′∈G(n)(©ι∈IC′
M,C′′

i′′(ι)(n+ 1))◦

©
ω∈OC′

M,C
oM (ω)(n+ 1) ◦©C′′∈G(n)(©ω∈OC′

M,C′′
o′′(ω)(n+ 1)).

Consequently, the kinetic energy of each binding component C ′′′ ∈ CC′C∗ is transferred to
each bound component C ′ ∈ C. Note that the order, in which the transformations are
applied, is not prescribed completely in the above equation. However, the kinetic energy
of lower level components C ′′′l ∈ CC

′
C∗ should be applied before the kinetic energy of higher

level components C ′′′h ∈ CC
′

C∗ with C ′′′l ∈ D(C ′′′h). Note that the composition operator �
and the motion interface operator `I′M entail the same behavior within static component
architectures A. Furthermore, note that two or more components might bind each other
mutually. In such cases, the above equation poses a fixed point problem, which has

105

5 Modeling technique

to be handled with appropriate means (see Section 6.2.2). Moreover, a component C ′

might not be bound by any binding β ∈ B and β ∈ B′′ with C ′′ ∈ G(n) at computation
step n ∈ N. In such cases, the kinetic energy forwarding iF (C ′)(n) is set to the identity
transformation, i.e.

iF (C ′)(n)(v) = v.

Finally, the behavior (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) of component C and the behaviors
(o′, o′M , p

′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′) of generated components C ′ ∈ G(n) with n ∈ N
are called motion forwarding, if the kinetic energy forwarding history iF ∈ ~IF satisfies
the above equations. Note that in the original STEM theory all bindings are motion
forwarding per definition (see Definition 4.30). Since the revised theory also supports
non-motion forwarding bindings, kinetic energy exchange, e.g., by means of airflow can
be described more naturally. In contrast, in the original STEM theory only fixed serial
kinematic chains can be described, which prevent, e.g., airflow modeling.

Revised spatio-temporal computations In the remainder of this thesis, only behaviors
(o, oM , p, b, y, x) ∈ C(i, iM , iF , a) of revised spatio-temporal components C with gener-
ated component stream G and behaviors (o′, o′M , p

′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′) of gener-
ated components C ′ ∈ G(n) at computation step n ∈ N are considered that are collision
sensing, channel binding, and motion forwarding according to the previous definitions.
Note that the underlying formalism of revised spatio-temporal component specifications
does not ensure these properties intrinsically. Rather, the desired properties have to be
encoded, e.g., into some underlying computation engine. In the following, such behaviors
are called revised spatio-temporal computations.

Modeling kinematic chains

In contrast to the original STEM theory (see Section 4.2), the revised component for-
malism supports three different ways of modeling kinematic chains. In the following,
the different ways are illustrated using a kinematic chain consisting of three elements
C1, C2, and C3. Note that in STEM the kinematic chain would be represented by
C1 `µ1 (C2 `µ2 C3) with mover label µ1 ∈ M1 of element C1 and mover label µ2 ∈ M2

of element C2. In contrast, in the revised formalism one way of modeling the chain is
to pull through the kinetic energy output channels from C1 to C3 as illustrated in Fig-
ure 5.8. Hereby, a direct and an indirect way can be distinguished. In the direct way, the
kinetic energy output channel oM,1 ∈ OM,1 of element C1 is connected to both C2 and
C3. In contrast, in the indirect way the kinetic energy output channel oM,1 of element
C1 is connect to C2 only, while C2 defines an extra kinetic energy output channel o′M,1

106

5.2 Revised concepts

forwarding the kinetic energy of oM,1 to C3. Note that one has to ensure the correct
order in which the two kinetic energy inputs to component C3 are applied to achieve the
same result than in the original STEM theory.

oM,1
C3

C2 oM,2

C1

(a) Direct way

C3C2

oM,2

C1 oM,1

o‘M,1

(b) Indirect way

Figure 5.8: Channel-based model of kinematic chains.

Alternatively, one can use the revised composition operator to model kinematic chains,
which yields similar models than the original STEM theory as illustrated in Figure 5.9.
Therefore, one needs to introduce two additional actuator components A1 and A2, which
are responsible for producing the kinetic energy acting upon the elements C2 and C3 of
the kinematic chain. Hereby, the revised composition operator ensures that the kine-
matic energy output channel oM,1 of actuator A1 is transfered also chain element C3.
Furthermore, from the point of view of the first element C1, the later segments C2 and
C3 form a single component. Note that this model of kinematic chains is more verbose
than the previous due to the need for additional actuator components. However, the
more verbose model also resembles reality more closely because actuators are needed to
operate, e.g., the segments of a robot arm.

C1

C2

C3A2 oM,2
A1 oM,1

Figure 5.9: Composition-based model of kinematic chains.

Finally, note that, in contrast to the original STEM theory, the revised formalism sup-
ports modeling kinematic chains with loops. Consequently, more complex interactions
can be described such as the last segment of the robot arm (i.e. the tip) hitting the first
segment of the robot arm (i.e. the root) and, hence, causing motion of the entire robot
arm. However, also unrealistic behaviors can be produced with the revised component

107

5 Modeling technique

formalism such as Baron Munchausen pulling himself out of the swamp [Hum11]. At
this point, the expressiveness of the modeling technique during conceptual design are
preferred over the realism of the models, which can be obtained. Consequently, creative
potentials can be exploited more easily. However, on the downside the engineers have
to check manually whether the models are realistic or not.

Concrete data model

Subsequently, the concrete data model for representing revised spatio-temporal compo-
nents in a machine-readable format is depicted in Figure 5.10. Note that in addition to
the changes in the underlying formalism, the data model supports multiple instantiations
of components. Instantiation has been added to the specification technique to enable
reuse. Reuse of existing components is an important factor in manufacturing systems
engineering [Thr05].

Component definition

1

{ordered} * * {ordered}

Component Component definitionComponent reference

Port

Name : String [1 .. 1]
Description : String [1 .. 1]

Transform

Figure 5.10: Abstract component class and subclasses.

The abstract component base class defines a human-readable name and a description
for documentation purposes. Then, abstract component objects contain an ordered list
of ports (see Section 5.2.2) and transforms, which have been introduced previously in
Section 5.1.5. The port objects represent the labels I, IM , O,OM , B, Y,X of the revised
spatio-temporal component C (note that the part labels P are excluded here), while
the transforms t = t1 ◦ ... ◦ tn ∈ T define the initial position and orientation of the
component in its superordinate coordinate system. Hereby, the port order determines
uniquely the order, in which the kinetic energy input channels ιM ∈ IM are applied in
the definition of movable spatio-temporal functions and motion forwarding behaviors.

108

5.2 Revised concepts

Hence, the degree of determinism can be increased. Furthermore, the transformation
t can be interpreted as the first entry iF (C)(0) = t in the kinetic energy forwarding
histories iF ∈ ~IF . Note that these two features are not described in the above theory for
simplicity. Finally, component definitions and component references are distinguished.
Component definitions allow one to specify new components, while component references
allow one to instantiate existing component definitions in a novel context instead. In
the following, both types of components are described in more detail.

Component definition A component definition not only consists of its syntactic in-
terface I, IM , O,OM , P,B, Y,X and initial transform t ∈ T , but provides much more
information. In particular, component definitions cover everything from customer re-
quirements, manufacturing processes, and test cases to subcomponents, behaviors, and
parts. The data model behind component definitions is depicted in Figure 5.11.

*

* *

**

* *

*

Component definition

Requirement

Component

Port

Channel

Property

Behavior

Monitor

Part

*

Scenario

Figure 5.11: Concrete component definition class.

The concrete component definition class contains nine classes of children. First, the
expectations of the different stakeholders (e.g. the customer) can be expressed in natural
language using the requirement concept (see Section 5.3.1). Then, the syntactic interface
of the component definition can be described using the port concept (see Section 5.2.2).
Afterwards, the natural language requirements can be formalized over the ports using the
property concept (see Section 5.3.2). Additionally, natural language requirements and
manufacturing processes can be formalized over the ports using the monitor concept (see
Section 5.3.3). Note that monitors are more expressive than the properties. Thereafter,
test cases can be described for verifying the implementation with respect to properties
and monitors using the scenario concept (see Section 5.3.4). Subsequently, both compo-

109

5 Modeling technique

nent definitions and component references and the channel concept (see Section 5.2.3)
can be used to define the decomposition of the containing component. Note that the
subcomponents and their interactions specify the behavior and the spatial extent of the
containing component. However, complementary (parts of) the behavior and the spatial
extent of the containing component can be described using the behavior concept (see
Section 5.2.5) and the part concept (see Section 5.2.4) directly. In the following each
concept is explained in more detail.

Component reference In contrast, in the concrete data model component references
only provide a link to an existing component definition. Consequently, component ref-
erences C ′ do not define their own syntactic interface I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′ and

semantic interface C ′ : ~I ′× ~I ′M × ~IF × ~A(B′∩Y ′∩X ′)→ P(~O′× ~O′M × ~P ′× ~B′× ~Y ′× ~X ′).
Rather, the syntactic and semantic interfaces of some referenced component definition
C is instantiated in an new context. Essentially, component references correspond to
renamed versions of the original component definition. In particular, the renaming ap-
plies to the inputs I, the kinetic energy inputs IM , the outputs O, the kinetic energy
outputs OM , the parts P , the bindings B, the entries Y , and the exists X of the original
component C.

5.2.2 Ports

Based on the observation concept (see Section 5.1.1) and the component concept (see Sec-
tion 5.2.1) the port concept is introduced. Ports represent the labels I, IM , O,OM , B, Y,X
of revised spatio-temporal components. Note that ports are used to model input and
output observations as well as movers, bindings, entries and exits at the same time. The
corresponding data model for representing ports is depicted in Figure 5.12.

Port
1

Observation Port

Direction : {I,O,IO} [1..1]
Port definition

Port reference

Figure 5.12: Abstract port class and subclasses.

Recall that the abstract observation base class defines a human-readable name, a read
type, and one or more write types (see Section 5.1.1). The abstract port base class adds a

110

5.2 Revised concepts

direction attribute, which determines whether the port is an input port, an output port,
or an input-output port from the perspective of the containing component. Note that
input-output ports appear on both sides of the semantic interface C : ~I×~IM×~IF× ~A(B∩
Y ∩X)→ P(~O× ~OM × ~P × ~B× ~Y × ~X). Consequently, input-output ports represent the
labels B, Y,X, while input ports represent the labels I, IM , and output ports represent
the labels O,OM . Finally, two subclasses are defined, namely port definitions and port
references. As the names suggests, port definitions are used to define the interface of
component definitions (see Section 5.2.1), while port references are used to represent the
renamed interface of component references (again see Section 5.2.1).

Port definitions

Then, the proposed modeling technique distinguishes four types of port definitions: Ma-
terial port definitions, energy port definitions, data port definitions, and generic port
definitions. Each type of port definition describes a different form of interaction between
revised spatio-temporal components. The corresponding extension of the previous data
model is illustrated in Figure 5.13.

Port definition

Material port Energy port Data port Generic port

Figure 5.13: Abstract port definition class and subclasses.

Material ports represent the labels B, Y,X and can be used for describing spatial
interaction between components (see Section 5.2.1). In contrast, energy ports represent
the labels I, IM , O,OM and can be employed for specifying energy exchange. Then, data
ports represent the labels I,O and are meant for modeling digital information exchange
instead. Finally, generic ports represent the labels I,O and are intended for representing
any other from of interaction between components not covered by the previous types.
Note that generic ports can be used also in case one is unsure about how to realize
some interaction between components. For example, it might be possible to implement
the interaction by means of data or energy exchange. Choosing either option represents
a design decision which can be delayed with the generic port concept. Furthermore,

111

5 Modeling technique

note that explicit mounting ports are missing in the specification technique [Thr05].
However, parts (see Section 5.2.4) can be considered to represent potential mounting
ports implicitly. In the following, each port definition subclass is discussed individually
in more detail.

Material ports As stated previously, material ports represent the labels B, Y,X of
revised spatio-temporal components C (see Section 5.2.1). Consequently, material ports
can be used for sensing material presence, interacting with present material, creating
material, or removing material. Recall the revised binding histories ~B = {B → (V ×
P(O×I)×B)∞} with the universe of (kinetic energy) output labels O and the universe
of (kinetic energy) input labels I, as well as the entry histories ~Y = {Y → (T×C)∞}, the
exit histories ~X = {X → V∞}, and the activation histories ~A(B∪Y ∪X) = {B∪Y ∪X →
P(C)∞} with transformable collision space (V, 0V , ./,t, T) and the universe of revised
spatio-temporal components C. Note that reading the material ports in a ∈ ~A(B∪Y ∪X)
returns a different result than writing the material ports in b ∈ ~B, y ∈ ~Y , x ∈ ~X. In
particular, reading material ports λ ∈ B ∪ Y ∪ X at time step n ∈ N returns a set of
components a(λ)(n) ∈ P(C). In contrast, writing, e.g., an exit label ξ ∈ X at time stamp
n ∈ N must provide a volume x(ξ)(n) ∈ V . This difference also is the reason why read
and write types are distinguished in the general observation concept (see Section 5.1.1),
from which ports, port definitions, and material ports are derived. Finally, the data
model for representing material ports is shown in Figure 5.14.

Component definition
*1 1

Material port

Material entry port

Material interaction port

Material exit port

Material life port

VolumeComponent definition Port definition

ReadType : {Set} [1..1]
WriteTypes : {Boolean} [1..1]
Direction : {IO} [1..1]

AlwaysActive : Boolean [1..1]
ForwardsMotion : Boolean [1..1]

Figure 5.14: Abstract material port class and subclasses.

112

5.2 Revised concepts

The abstract material port base class contains one volume t(v) ∈ V (see Section 5.1.4).
The volume t(v) defines the position and orientation t ∈ T as well as the spatial extent
v ∈ V of the material port. Note that the base volume v can be either atomic or
composite here. Furthermore, the read type of material ports is limited to sets (of
revised spatio-temporal components), while the write types are limited to boolean, and
the direction is limited to input-output. Then, two subclasses are defined, namely the
material life ports and the material interaction ports. Material life ports refer to a
component definition C ′ ∈ C (see Section 5.2.1) and are subdivided further into material
entry ports and material exit ports. Material entry ports represent the entry labels Y
and can be used to create instances of the associated component definition C ′ with the
defined volume transform t. An instance is created if true is written to the port. In
the same time step, also a set holding this instance can be read from the port. In
contrast, material exit ports represent the exit labels X and can be used to remove
respective instances C ′ whose parts collide with t(v). The instances are removed only if
true is written to the port. At the same time, the removed instances can be read from
the port. Finally, material interaction ports define an always active flag, a forwards
motion flag, and (may) contain multiple subordinate port definitions I ′, I ′M , O

′, O′M .
Material interaction ports represent the binding labels B and can be used to interact
with components C ′ ∈ C that provide the required syntactic interface I ′, I ′M , O

′, O′M and
whose parts collide with t(v). If the port is always active or true is written to the port,
upon collision as well as matching interfaces the port assignments are forwarded between
the ports I ′, I ′M , O

′, O′M of the material interaction port and the ports I ′, I ′M , O
′, O′M of

the component C ′. Note that this behavior corresponds to the revised channel binding
property (see Section 5.2.1). Furthermore, if the port forwards motion the transforms
applied to the parent component C are applied also to the colliding component C ′

according to the motion forwarding property (again see Section 5.2.1). Consequently,
revised spatio-temporal components can be glued together temporarily.

Energy ports Then, the energy ports represent the labels IE ⊆ I, IM , OE ⊆ O, and OM
of revised spatio-temporal components (see Section 5.2.1). Energy ports can be used for
moving components or exchanging other forms of energy between components. Recall the
kinetic energy input/output histories ~IM/ ~OM = {IM/OM → T∞} (see Section 5.2.1).
Consequently, the channels λ ∈ IM/OM allow revised spatio-temporal components to
receive or produce kinetic energy in the form of transforms t ∈ T . Other forms of energy
such as electric energy or thermal energy can be exchanged via the input and output
observations IE , OE instead. Finally, the data model for representing energy ports as
part of system specifications is depicted in Figure 5.15.

113

5 Modeling technique

0..1

Energy port Electric energy port

Kinetic energy port

Generic energy port

Transform

ReadType : {Transform} [1..1]
WriteTypes : {Number, Transform} [1..1]

ReadType : {Number} [1..1]
WriteTypes : {Number} [1..1]

Direction : {I,O} [1..1]

Figure 5.15: Abstract energy port class and subclasses.

The abstract base class for energy ports only permits the input and the output direc-
tions, while the input-output direction is not allowed. Then, three subclasses of energy
ports are defined, namely kinetic energy ports, electric energy ports, and generic en-
ergy ports. Kinetic energy port represent the kinetic energy input and output channels
IM , OM . The read type of kinetic energy ports is limited to transforms t ∈ T (see Sec-
tion 5.1.5), while the write types are limited to number and transforms alternatively.
Furthermore, kinetic energy ports contain at most one reference transform. Writing
a transform to a kinetic energy port causes this transform to be forwarded to the re-
ceiver components. Writing a number to a kinetic energy port, causes a multiple of the
reference transform to be forwarded to the receiver components instead. In contrast,
electric energy ports allow one to model the exchange of electric energy between revised
spatio-temporal components. Both the read and the write types of electric energy ports
are limited to number. A positive number represents energy surplus, while a negative
number represents energy demand [HIKB12]. Finally, generic energy ports represent
other forms of energy that are not covered by the previous port types. For example, one
might want to consider the effect of thermal energy during workpiece processing. Typ-
ically, the interaction between workpiece and tool generates thermal energy that needs
to be removed by means a cooling medium. At last, generic energy ports can be used
also in case the concrete form of energy does not have to be decided during conceptual
design. To support this flexibility, the read and write types of generic energy ports are
not limited, but have to be identical.

114

5.2 Revised concepts

Data ports Furthermore, data ports subsume the concepts of data input channel labels
ID ⊆ I and data output channel labels OD ⊆ O of revised spatio-temporal components
(see Section 5.2.1). Consequently, data ports can be used to model digital information
exchange within the revised component formalism. Note that digital information ex-
change is implemented typically using software components. However, in principle also
electronic components can be used. Again the direction of data ports is limited to input
or output. Furthermore, the read type and the write types remain unlimited, but have
to be identical. Finally, note that the physical representation of the data flow is not
specified as opposed to, e.g., the approach of Thramboulidis [Thr05].

Generic ports Finally, generic ports subsume the concepts of generic input channel
labels IG ⊆ I and generic output channel labels OG ⊆ O of revised spatio-temporal
components (see Section 5.2.1). As stated previously, generic ports can be used to
model interactions within the revised component formalism that are not covered by the
previous port types. Consequently, one does not have to decide whether the interaction
is implemented by means of data, energy, or material exchange. However, note that this
decision has to be made at some point during the development process. Again, generic
ports are limited to input and output directions. Furthermore, the read and write types
are unlimited, but have to be identical.

Port references

At last, the concrete port reference class allows one to instantiate existing port defini-
tions in another context. Hereby, the read type, the write types, and the direction of
the port reference equals to the read type, the write types, and the direction of the
associated port definition. Port references are used within component references, which
have been introduced previously in Section 5.2.1. Both port references and component
references allow us to reuse revised spatio-temporal component definitions within con-
ceptual design documents. As stated previously, component reuse is an important factor
in mechatronic system development [Thr05]. In particular, component reuse allows one
to reduce development effort while increasing system quality.

5.2.3 Channels

Based on the port concept (see Section 5.2.2) the channel concept is introduced. Chan-
nels represent one means to specify the interaction between components (in addition to
spatial collision and dynamic binding). Technically, channels represent directed connec-
tions between ports. Note that the revised channel concept differs a bit from the channel

115

5 Modeling technique

concept of the FOCUS theory, which is more similar to the proposed observation concept
(see Section 4.1.2). The data model for representing channels is depicted in Figure 5.16.

Target

Source1

1

Channel

Port
Name : String [1..1]
Description : String [1..1]

Figure 5.16: Abstract channel class and subclasses.

The concrete channel class defines a human-readable name and a description for doc-
umentation purposes. Then, each channel refers to one source and one target port.
Hereby, both the source and the target port can be port definitions or port reference.
Consequently, also the interaction between component definitions and component refer-
ences (see Section 5.2.1) can be specified. However, source and target ports must not
refer to material ports or to port references referencing material ports. The reason for
this limitation is that material ports are input-output ports, whose values are deter-
mined by the underlying computation engine based on spatial collision. Finally, during
execution channels transfer the values from the source to the target port as specified by
the revised composition operator � (see Section 5.2.1).

5.2.4 Parts

Then, based on the volume concept (see Section 5.1.4) the part concept is introduced.
The proposed part concept corresponds to the part labels P of revised spatio-temporal
components (see Section 5.2.1). Recall the part histories ~P : P → V∞. Note that the
theory supports specifying parts with changing volumes over time. In contrast, the part
concept only supports specifying constant shapes, positions and orientations. The data
model for representing parts during conceptual design is shown in Figure 5.17.

Volume 1
Part

Name : String [1 .. 1]
Description : String [1 .. 1]
Color : Color [1..1]

Volume

Figure 5.17: Concrete part class.

116

5.2 Revised concepts

The concrete part class defines a human-readable name and a description for docu-
mentation purposes. Furthermore, one must specify a color for each part representing
its material (e.g. concrete or steel). Note that alternatively more complex material spec-
ifications could be used [GBC+02]. However, the proposed approach relies on color for
simplicity. Finally, each part contains one volume t(v) ∈ V with transform t ∈ T and
base volume v ∈ V , where volume v can be either atomic or composite. Note that
the transformed volume t(v) is specified independent of state and time. Consequently,
the spatial extent of parts, as proposed in the concrete data model, cannot be changed
during execution of revised spatio-temporal components. However, the position and
orientation of part volumes can be changed implicitly through transmission of kinetic
energy to superordinate components (see Sections 5.2.1 and 5.2.2).

5.2.5 Behaviors

Finally, based on the concept of executables (see Section 5.1.2), the concept of re-
vised spatio-temporal components (see Section 5.2.1), and the concept of parts (see
Section 5.2.4) the concept of behaviors is defined in the following. Behaviors extend
the concept of executables and are intended to describe the reaction of revised spatio-
temporal components C over I, IM , O,OM , P,B, Y,X to stimuli from their environ-
ment. Now, recall that executables represent state transition systems (T, s0, v0) with
state transition function T : (S × Ī × V̄)∗ → P(S × Ō × V̄), state labels S, in-
put channel labels I, variable labels V , output channel labels O, initial state label
s0 ∈ S, and initial variable assignment v0 ∈ V̄ . Behaviors additionally include the
kinetic energy input channel assignments ĪM and the (material port) activation as-
signments Ā(B ∪ Y ∪ X) = {B ∪ Y ∪ X → P(C)} into their stimulus as well as the
kinetic energy output channel assignments ŌM , the part assignments P̄ = {P → V },
the binding assignments B̄ = {B → V × P(O × I) × B} with the universe of (ki-
netic energy) output labels O and the universe of (kinetic energy) input labels I, the
entry assignments Ȳ = {Y → T × C}, and the exit assignments X̄ = {X → V }
into their reaction. Consequently, the state transition function T is extended to T ′ :
(S × Ī × ĪM × Ā(B ∪ Y ∪ X) × V̄)∗ → P(S × Ō × ŌM × P̄ × B̄ × Ȳ × X̄ × V̄). Note
that the state transition function T ′ has to respect the revised collision sensing property
during computation (see Section 5.2.1). Consequently, the (material port) activation
assignments a ∈ Ā(B ∪ Y ∪ X) must reflect correctly the binding assignments b ∈ B̄,
entry assignments y ∈ Ȳ , and exit assignments x ∈ X̄. Furthermore, note that the
part assignments p ∈ P̄ allow one to model a variable spatial extent of revised spatio-
temporal components. Finally, the data model for representing the behavior of revised
spatio-temporal components is depicted in Figure 5.18.

117

5 Modeling technique

PartsLabels

Labels

*

1..*

1..*

Executable

Behavior State

Label

Part

Figure 5.18: Concrete behavior class.

The concrete behavior class extends the abstract executable class and contains con-
crete states instead of abstract (state) labels. The concrete state class itself extends the
abstract label class and contains parts, which were not support in the original STEM
approach (see Section 4.2 and [Hum11]). Note that still part objects are specified inde-
pendent of time as explained in the previous section. Consequently, changing the spatial
extent of revised spatio-temporal components has to be modeled using multiple behav-
ioral states s ∈ S with individual part objects p ∈ P , which – in turn – have their own
time-independent volumes t(v) ∈ V with transformation t ∈ T and base volume v ∈ V
(see Section 5.1.4). Note that the proposed model is suitable for describing few distinct
spatial configurations such as input, output, and intermediate material states (see Sec-
tion 3.1.1 and Section 3.1.2). In contrast, describing a greater number of distinct spatial
configurations can become cumbersome quickly. For that purpose, the models behind
flexible multibody dynamics [Sha97], computational fluid dynamics [Roa76], and mov-
able cellular automata [PHO+01] as well as parametric representations [Kul08] might
be more suitable. However, for the purpose of conceptual design the selected approach
should be sufficient in many cases. In contrast, during the transition to detailed design
the other models might prove more useful.

5.3 Added concepts

In the following, concepts are described that did not exist in the original STEM theory
(see Section 4.2), but which have been added to cover the needs of the test-driven
design method (see Chapter 3). In particular, concepts have been added for capturing
requirement, manufacturing process, and test specifications (see Sections 3.1.1, 3.1.2,
and 3.1.3). First, the concept of requirements is introduced in Section 5.3.1 before
turning to the concept of properties (see Section 5.3.2) and monitors in Section 5.3.3.
Finally, the concept of scenarios is described in Section 5.3.4.

118

5.3 Added concepts

5.3.1 Requirements

First, means are added for documenting requirements as part of the revised spatio-
temporal components (see Section 5.2.1). In principle, a wide variety of approaches exists
for capturing and structuring the information of requirement specifications. For example,
requirement templates can be used to ensure a certain degree of completeness [TMR13].
However, for simplicity only basic means are provided for representing requirements in
terms of natural language statements. The data model for representing requirements is
shown in Figure 5.19.

*

Requirement

Name : String [1 .. 1]
Description : String [1 .. 1]

Figure 5.19: Concrete requirement class.

The concrete requirement class only defines a human-readable name and a descrip-
tion. The name can be used for identifying the requirement. For example, the name
can be used in other engineering artifacts to establish cross-references. The description
represents the actual content of the requirement in natural language. Furthermore, re-
quirements can be decomposed into multiple child requirements. Consequently, larger
requirement specifications can be structured hierarchically. Finally, note that the re-
quirement traceability problem is not considered here [GF94].

5.3.2 Properties

Based on the concept of observations (see Section 5.1.1), the concept of expressions (see
Section 5.1.3), and the concept of revised spatio-temporal components (see Section 5.2.1)
the concept of properties is introduced. Properties essentially represents constraints
over the input and output observations of revised spatio-temporal components C over
I, IM , O,OM , P,B, Y,X. Note that properties have been added to the modeling tech-
nique to support the formalization of requirements (see Section 5.3.1). Formally, proper-
ties are modeled as boolean expressions E : (S×Ī×ĪM×Ā(B∪Y ∪X)×Ō×ŌM×V̄)∗ → B
with state labels S, input channel assignments Ī, kinetic energy input channel assign-
ments ĪM , (material port) activation assignments Ā(B∪Y ∪X) = {B∪Y ∪X → P(C)},
output channel assignments Ō, kinetic energy output channel assignments ŌM = {OM →
T}, and variable assignments V̄ . In particular, property expressions are able to access

119

5 Modeling technique

the material port activations a ∈ Ā(B ∪ Y ∪ X), e.g., for constraining the position of
generated components. A finite stream of state labels, channel assignments, activation
assignments, and variable assignments is considered to be accepted by the property if
the expression evaluates to the boolean value true (see Section 6.2.1). Note that prop-
erties can be attached to components directly (see Section 5.2.1) or to the activities of
monitors (see Section 5.3.3) as well as the steps of scenarios (see Section 5.3.4). In
the first case the state labels S and the variable assignments V̄ can be omitted in the
previous definition. In contrast, in the latter two cases monitors and scenarios represent
executables and, hence, the state labels S and the variable assignments V̄ are defined.
Finally, the data model for representing properties in a machine-interpretable format is
depicted in Figure 5.20.

1
Property

Name : String [1 .. 1]
Description : String [1 .. 1]

ExpressionObservation

Figure 5.20: Concrete property class.

The concrete property class is derived from the abstract observation class and de-
fines a human-readable name and a description. The name can be used to reference
properties across engineering artifacts, while the description can be used for docu-
mentation purposes. Then, each property contains a boolean expression (see Sec-
tion 5.1.3). The expression determines the property value for each data stream ds ∈
(S× Ī× ĪM×Ā(B∪Y ∪X)×Ō×ŌM× V̄)n with stream length n ∈ N, entry index k ∈ N
such that 0 ≤ k ≤ n, stream entry dsn(k) = (sk, ik, iM,k, ak, ok, oM,k, vk), state accessor
s(dsn, k) = sk, input channel accessor i(dsn, k) = ik, kinetic energy input channel acces-
sor iM (dsn, k) = iM,k, (material port) activation accessor a(dsn, k) = ak, output channel
accesor o(dsn, k) = ok, kinetic energy output channel accessor oM (dsn, k) = oM,k, and
variable accessor v(dsn, k) = vk. For example, some property expression E1 could state
that the assignment of some electric energy output port ω ∈ OE ⊆ O must not exceed
a predefined limit l ∈ R, i.e.

E1(dsn)⇔ |o(dsn, n)(ω)| ≤ l.

Similarly, some property expression E2 might require that material cannot be observed
at a particular location β ∈ B, i.e.

E2(dsn)⇔ |a(dsn, n)(β)| = 0.

120

5.3 Added concepts

Note that the property expressions are evaluated in every computation step n ∈ N.
Consequently, the constraints implied by the property expressions are imposed onto each
state of the superordinate revised spatio-temporal component. Essentially, properties
allow one to model invariants over certain data streams ds, which include the stimuli
and reactions of components as well as information about their internal state. Finally,
more information about the evaluation of properties during test execution and the impact
of the evaluation on the test result can be found in Section 6.2.1.

5.3.3 Monitors

Then, based on the concept of executables (see Section 5.1.2), the concept of revised
spatio-temporal components (see Section 5.2.1), and the concept of properties (see Sec-
tion 5.3.2) the concept of monitors is defined. Monitors provide the second means
for formalizing the requirements a revised spatio-temporal component C over label
sets I, IM , O,OM , P,B, Y,X must satisfy. In particular, monitors are more powerful
than properties, but also yield more verbose models. Furthermore, monitors can be
used to model the manufacturing processes, that need to be implemented by com-
ponent C, in an intuitive manner. Technically, monitors extends the concept of ex-
ecutables. Recall that executables represent state transition systems (T, s0, v0) with
state transition function T : (S × Ī × V̄)∗ → P(S × Ō × V̄), state labels S, in-
put channels labels I, output channel labels O, variable labels V , initial state label
s0 ∈ S, and initial variable assignment v0 ∈ V̄ . Monitors additionally define prop-
erty labels PM (see Section 5.3.2) and replace the state transition function T through
T ′ : (S × Ī × ĪM × Ā(B ∪ Y ∪ X) × Ō × ŌM × V̄)∗ → P(S × P̄M × V̄) with input
channel assignments Ī, kinetic energy input channel assignments ĪM , (material port)
activation assignments Ā(B ∪ Y ∪X) = {B ∪ Y ∪X → P(C)}, output channel assign-
ments Ō, kinetic energy output channel assignments ŌM , variable assignments V̄ , and
property assignments P̄M = {PM → B}. Consequently, monitors read both the stimuli
and reactions of revised spatio-temporal component C and derive properties P ′ that
must be satisfied in each computation step n ∈ N. In particular, the monitors are able
to access the (material port) activations a ∈ Ā(B ∪ Y ∪ X), e.g., for constraining the
position of generated components, which is support also by properties. Note that, in
contrast to properties, monitors are able to track generated components during a moni-
tor computation by mean of the variable assignments V̄ . A finite stream of state labels,
channel assignments, activation assignments, and variable assignments is considered to
be accepted by the monitor if the monitor computation does not cause any property
violations, which is formalized in the following chapter (see Section 6.2.1). Finally, the
monitor data model is provided in Figure 5.21.

121

5 Modeling technique

PropertiesLabels

Labels

*

1..*

1..*

Executable

Monitor Activity

Label

Property

Figure 5.21: Concrete monitor class.

The concrete monitor class extends the abstract executable class and contains concrete
activities instead of abstract (state) labels. The concrete activity class extends the
abstract label class and may contain multiple properties. During execution, the monitor
switches activities based on the stimuli and reactions of the revised spatio-temporal
component C as well as the respective variable assignment stream v ∈ V̄ . Furthermore,
after each computation step the monitor evaluates the expressions associated with the
properties of the current activity. If at least one property is violated, the entire monitor
is considered to be violated. Consequently, the behavior of the revised spatio-temporal
component is not consistent with the monitor specification (see Section 6.2). Note that
monitors can be used for requirements or manufacturing process formalization [HCL+14]
depending on whether design decisions are included or not. For example, design decisions
might include activities, which have not been specified by the customer.

5.3.4 Scenarios

Finally, based on the concept of executables (see Section 5.1.2), the concept of re-
vised spatio-temporal components (see Section 5.2.1), and the concept of properties
(see Section 5.3.2) the concept of scenarios is defined. Scenarios can be used to de-
scribe the test cases, which are used to verify revised spatio-temporal components C
over I, IM , O,OM , P,B, Y,X. Technically, scenarios extend the concept of executables.
Again, recall that executables represent state transition systems (, s0, v0) with state
transition function T : (S × Ī × V̄)∗ → P(S × Ō × V̄), state labels S, input channels
labels I, output channel labels O, variable labels V , initial state label s0 ∈ S, and
initial variable assignment v0 ∈ V̄ . Scenarios additionally define custom entry labels
YS , custom exit labels XS , property labels PS , and a final state sf ∈ S such that the
state transition function T is extended to T ′ : (S × Ā(YS ∪ XS) × Ā(B ∪ Y ∪ X) ×
Ō × ŌM × V̄)∗ → P(S × Ī × ĪM × ȲS × X̄S × P̄S × V̄) with custom (material port)
activation assignments Ā(YS ∪XS) = {YS ∪XS → P(C)}, (material port) activation as-

122

5.3 Added concepts

signments Ā(B ∪Y ∪X) = {B ∪Y ∪X → P(C)}, output channel assignments Ō, kinetic
energy output channel assignments ŌM , input channel assignments Ī, kinetic energy
input channel assignments ĪM , custom entry assignments ȲS = {YS → (T ×C)}, custom
exit assignments X̄S = {XS → V }, variable assignments V̄ , and property assignments
P̄S = {PS → B}. Consequently, scenarios are able to read the output and input-output
ports as well as write the input ports of revised spatio-temporal components. Further-
more, scenarios may generate and remove revised spatio-temporal components during
execution via the custom entry ports YS and custom exit ports XS . Hereby, the cus-
tom entry and exit ports must be activated properly according to the revised collision
sensing property (see Section 5.2.1). Finally, during execution scenarios evaluate the all
ports of revised spatio-temporal components C, the custom entry and exit ports, and
the variables using the properties PS . A scenario execution is considered to be successful
if it reaches the final state sf without causing any property violations. Consequently,
scenarios can be thought of modeling the behavior of the environment of a revised spatio-
temporal component including accepting and rejecting states. Finally, the data model
for describing scenarios as part of system specifications is provided in Figure 5.22.

1

Final state

Ports

*

PropertyLabels

Labels

*

1..*

1..*

Executable

Scenario Step

Label

Property
Material life

port

Figure 5.22: Concrete scenario class.

The concrete scenario class extends the abstract executable class and contains material
life ports (see Section 5.2.2), concrete steps instead of abstract (state) labels, and one
final step. The concrete step class extends the abstract label class and may contain
multiple properties (see Section 5.3.2), which act similar to assertions in classical unit
testing frameworks [Bec02]. The material life ports represent the custom entry labels YS
and the custom exit labels XS , while the final step represents the variable sf . During
execution the scenario switches between the steps depending on the transitions and
their guards respectively. Hereby, the guards read the input-output and output ports of
the revised spatio-temporal component. In contrast, the actions write the input ports
of the revised spatio-temporal component as well as the custom entries υS ∈ YS , exit

123

5 Modeling technique

labels ξS ∈ X∗, and variables λ ∈ V . Consequently, in every time step the scenario
may create and remove revised spatio-temporal components via the custom material life
ports YS and XS . Additionally, in every time step the properties πS ∈ PS associated
with the current step object are evaluated. If at least one property is violated, the revised
spatio-temporal component behavior is considered to be inconsistent with the scenario
specification. A typical test case creates input material at some entry port and waits for
the material to appear in a modified state at some exit port within a limited duration.
Hereby, the duration limit can be expressed as a property of the respective wait step (see
the industry-close showcase in Chapter 8). Finally, more information about the formal
semantics of test execution is provided in Section 6.2.

5.4 Summary and outlook

This chapter introduced an integrated modeling technique for capturing knowledge about
customer requirements, manufacturing processes, test cases, discipline-specific interfaces,
and component reuse. Therefore, basic concepts were explained that are reused across
many aspects of the modeling technique (see Section 5.1). Then, concepts were described
that have been taken from the original STEM theory (see Section 4.2) and have under-
gone a major revision to fit the particular needs (see Section 5.2). Finally, concepts were
introduced that have been added to the original STEM theory (see Section 5.3) to cover
the aspects considered by the test-driven design method proposed in Chapter 3. Sub-
sequently, the next chapter describes quality issues that can be evaluated automatically
over the presented modeling technique.

124

6 Quality issues

After having introduced the revised formalism and the concrete data model for capturing
design knowledge in Chapter 5 a systematic view onto the quality issues is developed,
which might arise during conceptual design and test-based verification. According to
Lindland et al. [LSS94] syntactic and semantic quality issues are distinguished in the
following. The authors additionally define pragmatic quality issues, which are neglected
here because they are much harder to evaluate automatically. Subsequently, Figure 6.1
provides an overview of the quality issues that are supported by the proposed technique.

Quality issues

Syntax

Semantics

Incompleteness

Inconsistency

Intrinsic

Extrinsic

Attribute

Child

Reference

Fixed-type

Variable-type

Write

Read

Channel

Permission

Expression

Channel

Multiple transitions

Computation timeout

Part collision

General fixed point

Multiple bindings

Property violation

Multiple actions
Non-determinism

Hierarchy

Reuse

Uniqueness

Type

Basic

Component

Monitor

Scenario

Figure 6.1: Overview of the quality issues that might arise during conceptual design.

125

6 Quality issues

In the following, first the syntactic quality issues are described in Section 6.1 before
the semantic quality issues are explained in Section 6.2. In particular, the classification
schemes are introduced, which have been selected for each category of issues. Further-
more, a precise and unambiguous definition is provided for each issue, such that the
issue detection can be implemented by potential tool vendors easily.

6.1 Syntactic issues

According to Lindland et al. [LSS94], syntactic issues represent violations of the language
rules. In the given case, the “language” is defined in terms of classes of objects, their
attributes, and their relations to other classes of objects as introduced in the previous
chapter (see Chapter 5). In particular, in the following attribute and relationship rules
are introduced, whose violation leads to syntactic quality issues. Furthermore, according
to Mohagheghi et al. [MDN09] incompleteness and inconsistency issues are distinguished.
Note that the authors also define correctness, comprehensibility, and changeability is-
sues. However, syntactic correctness is neglected because this goal is more suitable for
grammar-based languages than object-based modeling techniques. Furthermore, com-
prehensibility and changeability are neglected because these goals are much harder to
assess automatically than completeness and consistency.

In the following, first the incompleteness issues are described in Section 6.1.1 that
are supported by the proposed approach. Then, the consistency rules and respective
inconsistency issues are detailed in Section 6.1.2. Finally, for each of the two categories
a specific way of describing the underlying syntactic rules and their relation to the
modeling technique from the previous chapter are used.

6.1.1 Incompleteness issues

As mentioned previously, the proposed modeling technique (see Chapter 5) consists of
UML (see Section 2.1.1) classes and attributes as well as composition and aggregation re-
lations. Note that compositions are relations between classes with filled diamond shape
ending, while aggregations are relations between classes with unfilled diamond shape
ending. Furthermore, compositions define parent-child relationships between objects of
the associated classes with the class next to the filled diamond shape ending representing
the parent object and the other class representing the child object. In contrast, aggre-
gations define general relationships between objects of the associated classes with the
class next to the unfilled diamond shape representing the referencer object and the other
class representing the referenced object. Incompleteness issues appear in case mandatory
attributes, compositions, or aggregations are missing. Consequently, attribute, child,

126

6.1 Syntactic issues

and reference incompleteness issues are distinguished. Note that whether an attribute,
composition, or aggregation is mandatory depends on its multiplicity.

In the following, the attribute incompleteness issue are described before explaining the
child incompleteness issue and introducing the reference incompleteness issue. Further-
more, UML (see Section 2.1.1 and [BJR+96]) specification patterns are used to describe
the concepts of the modeling technique from the previous chapter and situations, for
which the respective issues appear.

Attribute incompleteness

The attribute incompleteness issue is based on the required attribute UML specification
pattern. The required attribute specification pattern is depicted in Figure 6.2. The
pattern states that every instance of class Class A should define exactly one (non-null)
value for attribute Attribute of type Type. Note that the modeling technique from
the previous chapter only uses the Boolean, Number, and String attribute types, while
in principle much more data types are supported. Instances of the class Class A that
define an appropriate value for attribute Attribute are said to conform to the required
attribute pattern, while instances of the class Class A that do not define an appropriate
value for the attribute Attribute are said to violate the required attribute pattern.

Class A

Attribute : Type [1..1]

Figure 6.2: UML specification pattern for required attributes.

Examples for this specification pattern are the name of components (see Section 5.2.1)
or the value of constant number expressions (see Section 5.1.3). If required attributes are
not defined, the attribute incompleteness issue is raised. As soon as the user defines the
value of the attribute, the attribute incompleteness issue disappears. Note that some
attributes define a default value such that respective attribute incompleteness issues
might never appear during development even though the attribute is mandatory.

Child incompleteness

In contrast, the child incompleteness issue is based on the required fixed- or variable-type
child UML specification pattern. The required fixed- or variable-type child specification

127

6 Quality issues

pattern is shown in Figure 6.3. Note that the parent-child relationship is expressed using
a UML composition association with multiplicity Multiplicity M (e.g. “between m ∈ N
and n ∈ N with m ≤ n” or “greater k ∈ N”). The pattern states that every instance of
the class Class A should have as many associated child instances of the class Class B

as prescribed by the multiplicity Multiplicity M. In the fixed-type case of the pattern
the concrete class Class B must be instantiated directly, while in the variable-type case
some subclass of the abstract class Class B must be used instead. Instances of the class
Class A with an adequate number of associated child objects are said to conform to the
pattern, while instances of the class Class A with an inadequate number of associated
child objects are said to violate the pattern.

Child / Children

Mul. M
Class A Class B ...

Child / ...

Multiplicity M
Class A Class B

Va
ria

bl
e-

ty
pe

Fi
xe

d-
ty

pe

Figure 6.3: UML specification pattern for required fixed- or variable-type children.

Examples for this specification pattern are the argument expression of unary expres-
sions (see Section 5.1.3) or the expression of transition guards (see Section 5.2.5). The
variable- or fixed-type child incompleteness issue is raised when an adequate number
of child object is missing and disappears as soon as sufficiently many child objects are
added. Note that in principle fixed-type child incompleteness issues can be resolved
automatically, while variable-type child missing defects require user intervention. This
difference is also the reason why the two cases are distinguished.

Reference incompleteness

Finally, the reference incompleteness issue is based on the required fixed- or variable-
type reference UML specification pattern. The required fixed- or variable-type reference
specification pattern is depicted in Figure 6.4. Note that reference relationships are
expressed using UML aggregation associations with multiplicity Multiplicity M (e.g.
“between m ∈ N and n ∈ N with m ≤ n” or “greater k ∈ N”) as opposed to UML
composition associations for parent-child relationships. The pattern states that every

128

6.1 Syntactic issues

instance of the class Class A should have as many associated instances of the class
Class B as prescribed by the multiplicity Multiplicity M, while both instances do not
have to be in a parent-child relationship. Also, the fixed- and the variable-type cases are
distinguished depending on whether class Class B represents a concrete or an abstract
class. Instances of the class Class A with an adequate number of associated referenced
objects are said to conform to the pattern, while instances of the class Class A with
and inadequate number of associated referenced objects are said to violate the pattern.

Mul. M
Class A Class B ...

Reference(s)

Multiplicity M
Class A Class B

Reference(s)

Va
ria

bl
e-

ty
pe

Fi
xe

d-
ty

pe

Figure 6.4: UML specification pattern for required fixed- and variable-type references.

Examples for this specification pattern are the observation object referenced by obser-
vation expressions (see Section 5.1.3) or the source and target port objects referenced by
channels (see Section 5.2.3). The fixed- or variable-type reference incompleteness issue
is raised when an adequate number of object references is missing and disappears as
soon as an adequate number of object references is added. Note that in the general case
both the fixed- and the variable-type reference incompleteness issues cannot be resolved
automatically, but require user intervention.

6.1.2 Inconsistency issues

While the incompleteness issues (see Section 6.1.1) only state that certain design infor-
mation is missing, they do not check the plausibility of the design information. At this
point, the inconsistency issues come into play. According to Mohagheghi et al. [MDN09]
inconsistencies refer to contradictions in the design knowledge, i.e. the existence of two
independent, but contradictory statements. Note that inconsistencies directly reveal
implausible design information because at least one of the statements of the design
knowledge corpus cannot be valid. Three types of inconsistencies are distinguished,
namely basic, permission, and type inconsistencies each addressing a different aspect of
the modeling technique from the previous chapter.

129

6 Quality issues

Instead of UML (see Section 2.1.1 and [BJR+96]) specification patterns a custom
constraint notation is used for specifying the consistency rules. The custom constraint
notation is based on the hierarchical structure of the design objects, their class and
attribute annotations, as well as their cross relations, which are depicted schematically in
Figure 6.5. Note that a number of different cross relations are distinguished in the figure
(e.g. descendant-ancestor or nephew-uncle associations), but the list is not complete.

U
nc

le
-n

ep
he

w
ag

gr
eg

at
io

n

N
ep

he
w

-u
nc

le
ag

gr
eg

at
io

n

Parent-child composition

Parent-child compositions

Parent-child compositions

D
es

ce
nd

an
t-

an
ce

st
or

ag
gr

eg
at

io
n Ch

ild
-p

ar
en

t
ag

gr
eg

at
io

n

Pa
re

nt
-c

hi
ld

ag
gr

eg
at

io
n

a1

...
an1

v1

vn1

...

a1

...
an1.1

v1

vn1.1

...

o1.1

a1

...
an1.m

v1

vn1.m

...

o1.m

a1

...
an1.1.1

v1

vn1.1.1

...

o1.1.1

a1

...
an1.1.k

v1

vn1.1.k

...

o1.1.k

An
ce

st
or

-d
es

ce
nd

an
t

ag
gr

eg
at

io
n

Sibling-sibling
aggregation

Sibling-sibling
aggregation

... ...

...

... ...

...

... ...

Object identifier

Attribute value

Class identifier

Attribute name

...

o1 (root)

Rectangle legend

Figure 6.5: Hierarchical structure of the design objects with class and attribute annota-
tions as well as cross references.

In the following, first the mathematical foundation of the custom constraint notation
is described, before introducing the constraint notation itself. Then the basic inconsis-

130

6.1 Syntactic issues

tency issues are explained before elaborating on the permission inconsistency issues and
introducing the type inconsistency issues.

Mathematical foundation

The mathematical foundation comprises a hierarchical structure of classes, the instanti-
ation of these classes in terms of design objects, the hierarchical structure of the design
objects, the cross references between the design objects, as well as the attributes of the
design objects.

The core of the mathematical foundation is given by the set of classes Classes, which
have been introduced in Chapter 5. These classes are connected by an inheritance hi-
erarchy (e.g. the classes Port and Variable both inherit from the class Observation).
For representing this inheritance hierarchy, the mapping SuperClass : Classes →
Classes ∪ {⊥} is defined. Given the relation

SuperClass(c) = c′

the class c ∈ Classes is called the subclass and the class c′ ∈ Classes the superclass.
Furthermore, if c′ = ⊥ holds, class c does not have a superclass and, hence, represents a
baseclass. Then, the direct subclasses of a given superclass c ∈ Classes can be derived
using the mapping DirectSubClasses : Classes→ P(Classes) such that

DirectSubClasses(c) = {c′ ∈ Classes | SuperClass(c′) = c}.

Finally, based on the DirectSubClasses mapping the set of all subclasses both direct and
indirect of a given superclass c ∈ Classes can be derived using the mapping SubClasses :
Classes→ P(Classes) such that

SubClasses(c) =
⋃

c′∈DirectSubClasses(c)

{c′} ∪ SubClasses(c′).

Hereby, it is required that a class c ∈ Classes cannot be a subclass of itself, i.e. c /∈
SubClasses(c). Consequently, the SuperClass mapping defines an acyclic, forest-like,
hierarchical structure over the classes c ∈ Classes.

Based on the set of classes Classes the set of design objects Objects can be intro-
duced. The design objects o ∈ Objects represent instances of the classes c ∈ Classes.
The instance relationship between classes and design objects is given by the mapping
Constructor : Objects→ Classes. Given the instance relation

Constructor(o) = c

131

6 Quality issues

the class c is called the class of design object o. Then, based on the Constructor mapping
all design objects can be derived that belong to a given class. Therefore, the mapping
Instances : Classes→ P(Objects) is introduced such that

Instances(c) = {o ∈ Objects : Constructor(o) ∈ {c} ∪ SubClasses(c)}.

Note that the Instances mapping uses the transitive SubClasses relationship. Conse-
quently, each design object o may belong either to the class c directly, or to any of the
direct or indirect subclasses of class c.

Next, the parent-child composition relation and, thus, the hierarchical structure among
the design objects is formalized. First, the mapping Parent : Objects → Objects
is introduced establishing a parent-child relationship between different design objects.
Given design objects o, o′ ∈ Objects with

Parent(o) = o′

design object o is called the child and design object o′ the parent. Furthermore, in
case o = o′ the object o respectively o′ is called the root of the hierarchical structure.
In practice, the root design object typically is a workspace or project object. Then,
based on the Parent mapping the mapping Children : Objects→ P(Objects) is defined
returning all child design objects for a given parent design object o ∈ Objects, i.e.

Children(o) = {o′ ∈ Objects | Parent(o′) = o}.

Furthermore, based on the Children mapping the mapping Descendants : Objects →
P(Objects) can be introduced finding all descendant design objects for a given ancestor
design object o ∈ Objects, i.e.

Descendants(o) =
⋃

o′∈Children(o)

{o′} ∪Descendants(o′).

Consequently, the Descendants mapping calculates the transitive hull over the Children
relation and, hence, the Parent relation. Furthermore, a design object o ∈ Objects is
required to not being part of its own descendants relation, i.e. o /∈ Descendants(o). As
a result, the Parent mapping defines an acyclic, tree-like, hierarchical structure over the
design objects.

However, as noted previously, also cross references between design objects spanning the
hierarchical structure are supported. In particular, named cross references are included
in the approach. Therefore, first the set of reference names ReferenceNames needs to

132

6.1 Syntactic issues

be introduced. Then, cross references themselves are given by the mapping Reference :
Objects×ReferenceNames→ Objects. Given the cross reference

Reference(o, rn) = o′

object o ∈ Objects is called the referrer design object, rn the name of the reference, and
o′ ∈ Objects the referee design object. Note that the transitive hull over the Reference
relation is not needed here. Instead, only the directly referred design objects are used,
which is covered by the Reference relation already.

Finally, the attributes of the design objects need to be formalized. Therefore, first
the set of admissible attribute names AttributeNames as well as the set of admissi-
ble attribute values AttributeV alues are introduced. Then, the mapping Attribute :
Objects×AttributeNames→ AttributeV alues can be defined assigning to each design
object o ∈ Objects and attribute name an ∈ AttributeNames a corresponding attribute
value av ∈ AttributeV alues such that

Attribute(o, an) = av.

Note that typically the set of admissible attribute names depends on the class c ∈
Classes of the design object o with Constructor(o) = c. Furthermore, note that the
admissible attribute values typically depend on the class c and the attribute name an.
However, the following syntactic constraints to not depend on these relationships. There-
fore, the respective relationships are omitted here to keep the mathematical foundations
as simple as possible.

Constraint notation

Finally, the constraint notation used here comprises the a number of operators for ac-
cessing the design objects, their hierarchical relationships, their attribute values, and
their cross references in a more compact manner. First, the design objects belonging to
a particular class are made accessible:

– The set of design objects belonging to a specific class c ∈ Classes can be obtained
using the 4(·) operator such that 4(c) = Instances(c).

Then, being able to access design objects of different classes different operators for
accessing the children, the descendants, the references, and the attribute values of these
design objects are provided:

– Children of a design object o ∈ Objects, which belong to a specific subset of
design object s ⊆ Objects, can be obtained using the (·) c©(·) operator such that
o c©s = Children(o) ∩ s.

133

6 Quality issues

– Descendants of a design object o ∈ Objects, which belong to subset of design
objects s ⊆ Objects, can be obtained using the (·)//(·) operator such that o//s =
Descendants(o) ∩ s.

– References of a design object o ∈ Objects with a specific reference name rn ∈
ReferenceNames can be obtained using the (·) R©(·) operator such that o R©rn =
Reference(o, rn).

– Attributes of a design object o ∈ Objects with a specific attribute name an ∈
AttributeNames can be obtained using the (·)@(·) operator such that o@an =
Attribute(o, an).

The previous operators only work with single design objects as input. To ease the
formulation of the syntactic inconsistency constraints, the previous operators also work
with subsets of design objects as input:

– Children of a subset of design objects s1 ⊆ Objects, which belong to another subset
of design objects s2 ⊆ Objects, can be obtained using the (·) c©(·) operator such
that s1 c©s2 =

⋃
o∈s1 Children(o) ∩ s2.

– Descendants of subset of design objects s1 ⊆ Objects, which belong to another
subset of design objects s2 ⊆ Objects, can be obtained using the (·)//(·) operator
such that s1//s2 =

⋃
o∈s1 Descendants(o) ∩ s2.

– References of subset of design objects s ⊆ Objects with a specific reference name
rn ∈ ReferenceNames can be obtained using the (·) R©(·) operator such that
s R©rn = {Reference(o, rn) | o ∈ s}.

– Attributes of a subset of design objects s ⊆ Objects with a specific attribute
name an ∈ AttributeNames can be obtained using the (·)@(·) operator such that
s@an = {Attribute(o, an) | o ∈ s}.

Note that essentially single design objects o ∈ Objects and attribute values av ∈
AttributeV alues are used interchangeable with sets of single design objects {o} and
attribute values {av}. Finally, also sets of design objects need to be filtered:

– Arbitrary sets of design objects can be filtered using the (·)[(·) | (·)] operator based
on, for example,

– their children from a specific subset of design objects such that Objects[o |
|o c©s| = 0] ⊆ Objects with subset of design objects s ⊆ Objects, or

134

6.1 Syntactic issues

– their descendants from a specific subset of design objects such that Objects[o |
|o//s| = 0] ⊆ Objects with subset of design objects s ⊆ Objects, or

– their references such that Objects[o | o R©rn ∈ 4(c)] ⊆ Objects with reference
name rn ∈ ReferenceNames and class c ∈ Classes, or

– their attributes such that Objects[o | o@an = av] ⊆ Objects with attribute
name an ∈ AttributeNames and attribute value av ∈ AttributeV alues.

Note that the constraint notation combines ideas from the object constraint language
(OCL) [WK99] for UML models (see Section 2.1.1]) and the XPath language [CFGR02]
for extensible markup language (XML) documents. In particular, the OCL provides the
means for navigating composition and aggregation associations, while XPath supports
the facilities for filtering and navigating the descendants in tree hierarchies.

Basic inconsistencies

The basic inconsistency issues are concerned with basic properties of conceptual design
models. In particular, basic hierarchy issues, basic uniqueness issues, and basic reuse
issues are distinguished. In the following, each subtype is described in more detail.

Hierarchy basics A hierarchy can be defined over the design objects, which is based on
the parent-child relationships and the composition associations respectively. The first
rule requires this object hierarchy to be sound:

– ∀p1, p2, c ∈ Objects : c ∈ p1 c©Objects ∧ c ∈ p2 c©Objects⇒ p1 = p2

The intention of the constraint is that an unambiguous hierarchical relationship exists
between the design objects, i.e. each object is associated to at most one parent ob-
ject. The second basic hierarchy issue concerns the use of the duration expression (see
Section 5.1.3):

– ∀d ∈ 4DurationExpression : ∃e ∈ 4Executable : d ∈ e//Objects

A duration expression can be used only inside executables and refers to the number
of computation steps, for which the executable has been residing in the same state.
Consequently, the duration expression cannot be used inside default expressions of, e.g.,
ports (see Section 5.2.2), which are defined outside of executables. Furthermore, the
duration expression cannot be used inside expressions of properties (see Section 5.3.2),
which are attached to components directly.

135

6 Quality issues

Uniqueness basics Then, the first basic uniqueness constraint makes sure, that the
names of the design objects are unique within their scope. Hereby, the scope is defined
by the respective parent object:

– ∀p ∈ Objects, c1, c2 ∈ p c©Objects[o | o@Name 6= null] : c1@Name = c2@Name⇒ c1 = c2

Note that the constraint applies to ports (see Section 5.2.2), which are contained inside
components (see Section 5.2.1), scenarios (see Section 5.3.4), and material interaction
ports. Actually, the unique port naming is essential for the dynamic binding of com-
ponents during execution (see Section 4.2.3). Furthermore, the constraint applies to
properties (see Section 5.3.2), which are attached to components or executable states
(see Section 5.1.2), as well as executables (i.e. scenarios, monitors, and behaviors) and
parts (see Section 5.2.4), which are contained inside components. Finally, the constraint
also applies to states and transitions inside executables. In particular, unique naming is
important to identify design objects unambiguously within their context. Furthermore,
the names might carry human-interpretable semantics, which is not taken into consid-
eration here. Note that one might require, e.g., unique human-interpreted semantics,
which is hard to evaluate automatically. Then, the following two basic uniqueness issues
apply to the actions, which are contained inside states and transitions of executables:

– ∀l ∈ 4Label, a1, a2 ∈ l c©4Action : a1 R©Observation = a2 R©Observation⇒ a1 = a2

– ∀t ∈ 4Transition, a1, a2 ∈ t c©4Action : a1 R©Observation = a2 R©Observation⇒ a1 = a2

Consequently, at most one (write) action can be provided inside executable (state) labels
and transitions for each observation. The constraint makes sure that in each execution
step the observation assignment can be determined unambiguously. Note that in case an
action has not been provided, the observation assignment defaults to the empty message
⊥ /∈M (see Section 4.1.1). The last basic uniqueness constraint states that a port might
serve only as the target of one channel:

– ∀c1, c2 ∈ 4Channel : c1 R©Target = c2 R©Target⇒ c1 = c2

The reason for this limitation is that two channels with the same target port introduce
a non-determinism (see Section 6.2.2 for more information). Consequently, one cannot
decide unambiguously, which value to forward from which channel. Note that in some
cases such non-determinisms might be desired, e.g., if both channels are feasible and
the design decision, which alternative to prefer, is delayed. However, such cases are not
considered in the limited scope of this doctoral thesis for simplicity.

136

6.1 Syntactic issues

Reuse basics Finally, the reuse inconsistency issues make sure that components and
their ports are reused correctly. The first rule states that the port references must reflect
correctly the information stored in the associated port definitions (see Section 5.2.2):

– ∀p1 ∈ 4PortReference, p2 = p1 R©Definition : p1@Name = p2@Name ∧ p1@ReadType =
p2@ReadType ∧ p1@WriteTypes = p2@WriteTypes ∧ p1@Direction = p2@Direction

In particular, the name, the type, and the direction attributes of the port reference and
its definition must be equal. Then, the second reuse consistency rule makes sure, that
the port references of each component reference (see Section 5.2.1) are valid:

– ∀c1 ∈ 4ComponentReference, p1 ∈ c1 c©4Port, c2 = c1 R©Definition : p1 R©Definition ∈
c2 c©4Port

Consequently, each port reference must point to a port definition of the associated com-
ponent definition. Finally, one has to make sure that the port references of each compo-
nent reference are complete:

– ∀c ∈ 4ComponentReference, p ∈ c R©Definition c©4Port : p ∈ c c©4Port R©Definition

Consequently, each port definition has to be associated to a port reference. Note that
the reuse information is limited to the port-based interface definition of the compo-
nent. In contrast, “internal” details of the component definition such as behaviors (see
Section 5.2.5) and parts (see Section 5.2.4) do not have to be referenced.

Permission inconsistencies

Subsequently, permissions are defined for reading and writing observations (see Sec-
tion 5.1.1) from within properties (see Section 5.3.2) and executables (see Section 5.1.2)
as well as for drawing channels (see Section 5.2.3) between ports (see Section 5.2.2). In
the following, first the write permission issues are described before explaining the read
permission issues and detailing the channel permission issues.

Write permissions The write permission issues concern the observations (i.e. ports or
variables; see Section 5.1.1), which can be written by actions inside states and transitions
of executables (i.e. behaviors, monitors, and scenarios; see Section 5.1.2):

– ∀c ∈ 4Component, b ∈ c c©4Behavior, o ∈ b//4Action R©Observation : o ∈
b c©4V ariable ∪ c c©4Port[p | p@Direction 6=
input] ∪ c c©4MaterialInteractionPort c©4Port[p | p@Direction = input]

– ∀c ∈ 4Component,m ∈ c c©4Monitor, o ∈ m//4Action R©Observation : o ∈ m c©4V ariable

137

6 Quality issues

– ∀c ∈ 4Component, s ∈ c c©4Scenario, o ∈ s//4Action R©Observation : o ∈
s c©4V ariable ∪ s c©4Port ∪ c c©4Port[p | p@Direction =
input] ∪ c c©4MaterialInteractionPort c©4Port[p | p@Direction = input]

The constraints say that behaviors may write their variables, the input and input-output
ports of the containing component, as well as the input ports of the material interac-
tion ports of the containing component. Consequently, behaviors can interact with
dynamically bound components directly, which is not defined in the theory explicitly
(see Section 5.2.5), but helps simplifying the models. In contrast, monitors may write
only their variables, e.g., for tracking information across their activities. Finally, sce-
narios may write their variables, their custom material life ports, the input ports of the
containing component, as well as the input ports of the material interaction ports of
the containing components. Consequently, scenarios may provide inputs to the system
under test, which is common practice in test-based approaches [Bec02]. Furthermore,
scenarios are able to interact with components bound dynamically to the system under
test, e.g., for preparing their state during test setup. Note that, alternatively, scenarios
could have defined their own custom material interaction ports and, hence, bind com-
ponents dynamically themselves instead. Such custom material interaction ports could
yield more intuitive models. Therefore, in the future the proposed modeling technique
should be revised accordingly. However, for assessing the feasibility of the test-driven
design method the current version of the modeling technique is sufficient.

Read permissions Then, read permissions refer to the observations (i.e. ports and
variables), which can be read by state and transition actions as well as transition guards
inside executables (i.e. behaviors, monitors, and scenarios):

– ∀c ∈ 4Component, b ∈ c c©4Behavior, o ∈ b//(4Guard ∪
4Action)//4ObservationExpression R©Observation : o ∈ b c©4V ariable ∪ c c©4Port[p |
p@Direction 6= output] ∪ c c©4MaterialInteractionPort c©4Port[p | p@Direction = output]

– ∀c ∈ 4Component,m ∈ c c©4Monitor, o ∈
m//(4Guard ∪4Action)//4ObservationExpression R©Observation : o ∈
m c©4V ariable ∪ c c©4Port ∪ c c©4MaterialInteractionPort c©4Port

– ∀c ∈ 4Component, s ∈ c c©4Scenario, o ∈
s//(4Guard ∪4Action)//4ObservationExpression R©Observation : o ∈
s c©4V ariable ∪ s c©4Port ∪ c c©4Port[p | p@Direction 6=
input] ∪ c c©4MaterialInteractionPort c©4Port[p | p@Direction = output]

The constraints say that behaviors may read their variables, the input and input-output
ports of the containing component, as well as the output ports of the material interac-
tion ports of the containing component. Consequently, behaviors are able to activate

138

6.1 Syntactic issues

material ports, observe the components bound dynamically, and read outputs from the
dynamically bound components. In contrast, monitors may read their variables, the
ports of the containing component, as well as the ports of the material interaction ports
of the containing component. Note that monitors may read ports independent of their
direction. Finally, scenarios may read their variables, their material life ports, the out-
put and input-output ports of the containing component, as well as the output ports of
the material interaction ports of the containing component. Again, direct interaction
with dynamically bound components has been added, e.g., to observe their state during
test execution. Subsequently, the following two read permission issues concern the ob-
servations (i.e. ports and variables), which can be read by property expressions inside
executables (i.e. monitors and scenarios):

– ∀c ∈ 4Component,m ∈ c c©4Monitor, o ∈
m//4Property//4ObservationExpression R©Observation : o ∈
m c©4V ariable ∪ c c©4Port ∪ c c©4MaterialInteractionPort c©4Port

– ∀c ∈ 4Component, s ∈ c c©4Scenario, o ∈
s//4Property//4ObservationExpression R©Observation : o ∈
s c©4V ariable ∪ s c©4Port ∪ c c©4Port ∪ c c©4MaterialInteractionPort c©4Port

The constraints say that properties inside monitors may read the variables of the contain-
ing monitor, the ports of the containing component, as well as the ports of the material
interaction ports of the containing component. In contrast, properties inside scenarios
may read the variables of the containing scenario, the ports of the containing scenario,
the ports of the containing component, as well as the ports of the material interaction
ports of the containing component. Consequently, both monitors and scenarios may
constrain also the inputs and outputs of dynamically bound components as well as the
identity dynamically bound components themselves. In particular, scenarios are able
to track the components generated through their custom material life ports during test
execution. Finally, the last read permission issue concerns the observations that can be
read by properties, which are attached to component directly:

– ∀c ∈ 4Component, o ∈ c c©4Property//4ObservationExpression R©Observation :
o ∈ c c©4Port ∪ c c©4MaterialInteractionPort c©4Ports

The rule says that properties attached to components directly may read the ports of
the containing component as well as the ports of the material interaction ports of the
containing component. Consequently, data and energy inputs or outputs of the contain-
ing component can be accessed as well as material port activations and the inputs and
outputs of dynamically bound components.

139

6 Quality issues

Channel permissions The last group of permission inconsistencies are the so-called
channel permission issues, which are concerned with the correct use of channels (see
Section 5.2.3) for connecting ports (see Section 5.2.2). The first rule states that channels
cannot be used to connect material ports:

– ∀s ∈ 4Channel, p ∈ s R©Source : p /∈ 4MaterialPort ∪4PortReference[r | r R©Definition ∈
4MaterialPort]

– ∀s ∈ 4Channel, p ∈ s R©Target : p /∈ 4MaterialPort ∪4PortReference[r | r R©Definition ∈
4MaterialPort]

The reason for this limitation is that, in contrast to energy and data, material does not
flow through (logical) channels, but it flows through space and it is bound dynamically
to material ports based on entry and exit as well as binding conditions (see Sections 4.2.3
and 5.2.2). Then, the next two rules state the circumstances, under which a channel and
source or target port might belong to the same parent component:

– ∀c ∈ 4Component, p ∈ c c©4Channel R©Source[s | s@Direction = input] : p ∈ c c©4Port

– ∀c ∈ 4Component, p ∈ c c©4Channel R©Target[t | t@Direction = output] : p ∈ c c©4Port

Consequently, input ports of the same component might serve as source ports and out-
put ports of the same component might serve as target ports. Also, the rule allows
one to model channels forwarding values from input ports to output ports of the same
component directly. However, channel source and target ports might refer also to ports
of some subcomponent. In such cases, the next two rules have to be considered:

– ∀c ∈ 4Component, p ∈ c c©4Channel R©Source[s | s@Direction = output] : p ∈
c c©4Component c©4Port ∪ c c©4MaterialInteractionPort c©4Port

– ∀c ∈ 4Component, p ∈ c c©4Channel R©Target[t | t@Direction = input] : p ∈
c c©4Component c©4Port ∪ c c©4MaterialInteractionPort c©4Port

Hence, output ports of subcomponents might serve as source ports of channels and input
ports of subcomponents might serve as target ports of channels. Hereby, both the source
and the target ports might belong to the same subcomponent for modeling feedback cy-
cles. Alternatively, both the source and target ports might belong to material interaction
ports and, hence, describe dynamic interactions based on collisions (see Section 5.2.2).
Again, feedback cycles are supported in principle as well.

Type inconsistencies

At last, the type inconsistency issues are concerned with the consistency of design ob-
jects carrying user-defined type information. Consequently, type inconsistencies can be

140

6.1 Syntactic issues

caused by ports (see Section 5.1.1), which are connected by channels (see Section 5.2.3).
Alternatively, type inconsistencies might arise inside expressions (see Section 5.1.3) in-
cluding their argument expressions and referenced observations. Consequently, in the
following expression type issues and channel type issues are distinguished, which are
explained one after the other.

Expression types The first two expression type issues concern the expressions contained
in properties (see Section 5.3.2) and executable guards (see Section 5.1.2), which both
have to return boolean values:

– ∀p ∈ 4Property, e ∈ p c©4Expression : e@Type = Boolean

– ∀g ∈ 4Guard, e ∈ g c©4Expression : e@Type = Boolean

Then, the default expressions contained in observations (i.e. the expressions for comput-
ing the observation assignments of the initial state as described in Section 5.1.1) and the
expressions contained in executable actions (see Section 5.1.2) must return a variable
type, which is prescribed by the associated observation:

– ∀o ∈ 4Observation, e = o c©4DefaultExpression : e@Type ∈ o@WriteTypes

– ∀a ∈ 4Action, o = a R©Observation, e = a c©4Expression : e@Type ∈ o@WriteTypes

However, one needs to consider an exception here: Kinetic energy ports might have an
associated transform object or not (see Section 5.2.2). When a kinetic energy port has
an associated transform object, the respective default expressions must return numbers,
otherwise they must return transform objects directly:

– ∀k ∈ 4KineticEnergyPort : k c©4Transform 6= null⇒ k c©4DefaultExpression@Type =
Number

– ∀k ∈ 4KineticEnergyPort : k c©4Transform = null⇒ k c©4DefaultExpression@Type =
Transform

Note that in the first case the number is converted into a multiple of the respective
reference transform. In the same manner, expressions of actions inside behaviors (see
Section 5.2.5) writing kinetic energy output ports must be aware of the transform object.
If the transform object exists, the action expressions must return numbers, otherwise
they must return transform objects directly:

– ∀a ∈ 4Action, o = a R©Observation, e = a c©4Expression : o ∈
KineticEnergyPort ∧ o c©4Transform 6= null⇒ e@Type = Number

– ∀a ∈ 4Action, o = a R©Observation, e = a c©4Expression : o ∈
KineticEnergyPort ∧ o c©4Transform = null⇒ e@Type = Transform

141

6 Quality issues

Subsequently, the next two expression type issues refer to the type of the argument ex-
pressions, which are contained inside unary expressions and nary expressions, i.e. expres-
sions that contain one or more argument expressions (e.g. the set cardinality expression
or the set union expression):

– ∀e1 ∈ 4UnaryExpression, e2 ∈ e1 c©4Expression : e1@ArgumentType = e2@Type

– ∀e1 ∈ 4NaryExpression, e2 ∈ e1 c©4Expression : e1@ArgumentsType = e2@Type

The two constraints say that the argument expression of a unary expression must return
the argument type of the unary expression, while the nary argument expressions must
return the argument type of the nary expression. For example, both the unary cardinality
and the nary union expressions require argument expressions of type set. Finally, the
last expression type inconsistency refers to the type of observation expressions:

– ∀o ∈ 4ObservationExpression : o@Type = o R©Observation@ReadType

Consequently, the observation expression must return the read type of the referenced ob-
servation. Note that the observation expression allows one to read the value of variables
and ports during system execution.

Channel types Finally, the first channel type issue concerns the types of ports (see
Section 5.2.2), which are connected by channels (see Section 5.2.3) inside components
(see Section 5.2.1):

– ∀s ∈ 4Channel, p1 ∈ s R©Source, p2 ∈ s R©Target : p1@ReadType ∈ p2@WriteTypes

The constraint says that for each channel the read type of the source port must be
included in the write types of the respective target port. Note that the constraint only
refers to the data type of the ports and not to the different port classes (i.e. energy or
data, while material as been excluded before). Additional connectivity constraints of
energy ports are provided in the following:

– ∀s ∈ 4Channel, p1 = s R©Source, p2 = s R©Target : p1 ∈
4GenericEnergyPort ∪4PortReference[r | r R©Definition ∈ 4GenericEnergyPort]⇒ p2 ∈
4GenericEnergyPort ∪4PortReference[r | r R©Definition ∈
4GenericEnergyPort]∪4GenericPort∪4PortReference[r | r R©Definition ∈ 4GenericPort]

– ∀s ∈ 4Channel, p1 = s R©Source, p2 = s R©Target : p1 ∈
4KineticEnergyPort ∪4PortReference[r | r R©Definition ∈ 4KineticEnergyPort]⇒ p2 ∈
4KineticEnergyPort ∪4PortReference[r | r R©Definition ∈
4KineticEnergyPort] ∪4GenericEnergyPort ∪4PortReference[r | r R©Definition ∈
4GenericEnergyPort]∪4GenericPort∪4PortReference[r | r R©Definition ∈ 4GenericPort]

142

6.2 Semantic issues

– ∀s ∈ 4Channel, p1 = s R©Source, p2 = s R©Target : p1 ∈
4ElectricEnergyPort ∪4PortReference[r | r R©Definition ∈ 4ElectricEnergyPort]⇒ p2 ∈
4ElectricEnergyPort ∪4PortReference[r | r R©Definition ∈
4ElectricEnergyPort] ∪4GenericEnergyPort ∪4PortReference[r | r R©Definition ∈
4GenericEnergyPort]∪4GenericPort∪4PortReference[r | r R©Definition ∈ 4GenericPort]

Consequently, generic energy ports can be connected to generic energy ports or generic
ports only. Then, kinetic energy ports can be connected to kinetic energy ports, generic
energy ports, or generic ports. Furthermore, electric energy ports can be connect to
electric energy ports, generic energy ports, or generic ports. Finally, the connectivity of
data ports has to be constrained:

– ∀s ∈ 4Channel, p1 ∈ s R©Source, p2 ∈ s R©Target : p1 ∈ 4DataPort ∪4PortReference[r |
r R©Definition ∈ 4DataPort]⇒ p2 ∈ 4DataPort ∪4PortReference[r | r R©Definition ∈
4DataPort] ∪4GenericPort ∪4PortReference[r | r R©Definition ∈ 4GenericPort]

It follows that data ports can be connected to data port or generic ports. Note that
the port connectivity rules prescribe that the target port can be more generic than the
source port. In contrast, the source port cannot be more generic than the target port.
Similar mechanisms can be found also in modern type-safe programming languages such
as Java [vON99] or C++ [WNST06]. Finally, note that the last four rules could also
indicate incompleteness issues rather than inconsistency issues, e.g., when connecting
a data port to an electric energy port. In this case, a mechanism might be missing,
which is responsible for the conversion between data and energy. However, such in-
completeness might be acceptable during conceptual design, but critical during design
refinement [HRZ15a].

6.2 Semantic issues

Having introduced the syntactic issues in the previous section, now the semantics of
the design objects is focused. According to Lindland et al. [LSS94], semantic issues are
concerned with the meaning of the design information. Here, the meaning of the design
information is given by the execution semantics, which has been defined in the theoret-
ical foundations (see Chapter 4) and revised as well as extended while introducing the
modeling technique (see Chapter 5). In particular, revised spatio-temporal components
C over I, IM , O,OM , P,B, Y,X (see Section 5.2.1) are executed in the context of scenar-
ios (T, s0, sf , v0) with state transition function T : (S × Ā(YS ∪XS)× Ā(B ∪ Y ∪X)×
Ō × ŌM × V̄)∗ → P(S × Ī × ĪM × ȲS × X̄S × P̄S × V̄), state labels S, custom entry
labels YS , custom exit labels XS , custom property labels PS , variable labels V , initial

143

6 Quality issues

state label s0 ∈ S, final state label sf ∈ S, and initial variable assignment v0 ∈ V̄ (see
Section 5.3.4) to discover semantic issues fully automatically.

Formally, a test execution is defined as collision sensing state transition system com-
putation (a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over (T, s0, sf , v0) such that there exists

a collision sensing, channel binding, and motion forwarding behavior (o, oM , p, b, y, x) ∈
C(i, iM , iF , a) of component C with matching (energy and data) input channel assign-
ment streams i∗ ∈ Ī∞ of the scenario computation and (energy and data) input channel
histories i ∈ ~I of the revised spatio-temporal computation, i.e.

∀n ∈ N, ι ∈ I : i(ι)(n) = i∗(n)(ι),

and matching kinetic energy input channel assignment streams i∗M ∈ Ī∞M of the scenario

computation and kinetic energy input channel histories iM ∈ ~IM of the revised spatio-
temporal computation, i.e.

∀n ∈ N, ι ∈ IM : iM (ι)(n) = i∗M (n)(ι),

and matching (material port) activation assignment streams a∗ ∈ Ā(B∪Y ∪X)∞ of the
scenario computation and (material port) activation histories a ∈ ~A(B ∪ Y ∪X) of the
revised spatio-temporal computation, i.e.

∀n ∈ N, λ ∈ B ∪ Y ∪X : a(λ)(n) = a∗(n)(λ),

and matching (energy and data) output channel assignment streams o∗ ∈ Ō∞ of the
scenario computation and (energy and data) output channel histories o ∈ ~O of the
revised spatio-temporal computation, i.e.

∀n ∈ N, ω ∈ O : o(ω)(n) = o∗(n)(ω),

and matching kinetic energy output channel assignment streams o∗M ∈ Ō∞M of the scenario

computation and kinetic energy output channel histories oM ∈ ~OM of the revised spatio-
temporal computation, i.e.

∀n ∈ N, ω ∈ OM : oM (ω)(n) = o∗M (n)(ω).

The previous equations require the behavior (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) of com-
ponent C to coincide with the computation (a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) of

scenario (T, s0, sf , v0). Note that the equations do not make any assumptions about the
custom entry and exit assignments y∗S ∈ Ȳ∞S and x∗S ∈ X̄∞S of the scenario as well as the
respective activation assignments a∗S ∈ Ā(YS ∪ XS)∞. To describe their behavior, the
definition of the generated component stream G (see Section 5.2.1) needs to be revised.

144

6.2 Semantic issues

The generated component stream G ∈ P(C)∞ is redefined over the custom entries YS
and exists XS of the scenario (T, s0, sf , v0), the entries Y and exits X of the revised
spatio-temporal component C, and the entries and exits of the generated components
themselves. Consequently, for each computation step n ∈ N and generated component
C ′ ∈ G(n + 1) with behavior (o′, o′M , p

′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a
′) the component C ′

must have existed in the previous computation step, i.e.

C ′ ∈ G(n)

or the generated component C ′ must have entered in the current time step n + 1 ∈ N
through the entries Y of component C, i.e.

∃t′ ∈ T, υ ∈ Y : y(υ)(n+ 1) = (t′, C ′),

or through the entries Y ′′ of some other generated component C ′′ ∈ G(n + 1) with
C ′′ 6= C ′ and behavior (o′′, o′′M , p

′′, b′′, y′′, x′′) ∈ C ′′(i′′, i′′M , iF , a′′), i.e.

∃t′ ∈ T, υ′′ ∈ Y ′′ : y′′(υ′′)(n+ 1) = (t′, C ′),

or through the custom entries YS of scenario (T, s0, sf , v0), i.e.

∃t′ ∈ T, υS ∈ YS : y∗S(n+ 1)(υS) = (t′, C ′),

and the generated component C ′ must not have been deleted in the next time step
n+ 1 ∈ N through the exits X of component C, i.e.

@ξ ∈ X :
∨
π′∈P ′

x(ξ)(n+ 1) ./ p′(π′)(n+ 1),

or through the exists X ′′ of another generated component C ′′ ∈ G(n+ 1) with C ′′ 6= C ′

and behavior (o′′, o′′M , p
′′, b′′, y′′, x′′) ∈ C ′′(i′′, i′′M , iF , a′′), i.e.

@ξ′′ ∈ X ′′ :
∨

π′′∈P ′
x′′(ξ′′)(n+ 1) ./ p′(π′)(n+ 1),

or through the custom exists XS of scenario (T, s0, sf , v0), i.e.

@ξS ∈ XS :
∨
π′∈P ′

x∗S(n+ 1)(ξS) ./ p′(π′)(n+ 1).

Consequently, the collision sensing property, the channel binding property, and the mo-
tion forwarding property (see Section 5.2.1) can be redefined over the revised definition

145

6 Quality issues

of the generated component stream G. In particular, the revised definitions have to
respect the entries and exits caused by the component C, some generated component
C ′′ ∈ G(n + 1), and the scenario (T, s0, sf , v0). Note that mostly the definition of the
generated components stream G needs to be substituted, which is why the revised def-
initions of the properties mentioned above is omitted. Finally, the semantic issues over
test executions can be defined. Subsequently, intrinsic and extrinsic semantic issues
are distinguished, depending on whether the execution constraints are predefined (i.e.
intrinsic) or user-defined (i.e. extrinsic).

In the following, first the extrinsic semantic issues are introduced in Section 6.2.1
before explaining the intrinsic semantic issues in Section 6.2.2. Furthermore, precise
and unambiguous explanations and definitions of the execution constraints underlying
each semantic issue are provided, such that the proposed constraint checks can be im-
plemented by potential tool vendors easily.

6.2.1 Extrinsic issues

As mentioned previously, extrinsic semantic issues represent user-defined (or custom)
execution constraints. In particular, one type of extrinsic semantic issue is supported,
namely the so-called property violations. In the following, property violations are ex-
plained in more detail.

Property violations

Properties (see Section 5.3.2) allow one to encode custom execution constraints. Hereby,
properties can be attached to components directly (see Section 5.2.1) or the the state
labels of monitors (see Section 5.3.3) and scenarios (see Section 5.3.4). These three
cases are distinguished in the following, while commonly referring to the test execution
(a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and component C.

Scenario properties Recall the definition of scenarios (T, s0, sf , v0) with transition
function T : (S × Ā(YS ∪ XS) × Ā(B ∪ Y ∪ X) × Ō × ŌM × V̄)∗ → P(S × Ī ×
ĪM × ȲS × X̄S × P̄S × V̄) and property assignments P̄S = {PS → B}. Further-
more, note that p∗S ∈ P̄∞S represents the property assignments of the test execution
(a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and revised spatio-

temporal component C. The given test execution is said to violate some property
πS ∈ PS at computation step k ∈ N if

p∗S(k)(πS) = false.

146

6.2 Semantic issues

Note that in case the property πS is contained in the state s∗(k) the value p∗S(k)(πS) is
computed using a boolean expression EπS : (S × Ā(YS ∪ XS) × Ā(B ∪ Y ∪ X) × Ō ×
ŌM × Ī × ĪM × V̄)∗ → B such that

p∗S(k)(πS) = EπS (s∗ ↓ k, a∗S ↓ k, a∗ ↓ k, o∗ ↓ k, o∗M ↓ k, i∗ ↓ k, i∗M ↓ k, v∗ ↓ k).

Otherwise, the value p∗S(k)(πS) defaults to true, i.e. the property is not violated. Note
that properties inside scenarios represent user-defined execution constraints of test en-
gineers rather than requirement engineers or manufacturing process engineers. For ex-
ample, a scenario might require the system to provide a predefined response to some
input within a maximum duration. Hereby, the duration constraint can be encoded as
a property of some wait step of the respective scenario (see the industry-close showcase
in Chapter 8 for more details).

Monitor properties Subsequently, recall the definition of monitors (T ′, s′0, v
′
0) with

transition function T ′ : (S′ × Ī × ĪM × Ā(B ∪ Y ∪ X) × Ō × ŌM × V̄ ′)∗ → P(S′ ×
P̄ ′M × V̄ ′) and property assignments P̄ ′M = {P ′M → B}. Given the test execution
(a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and component C,

the monitor execution (i∗, i∗M , a
∗, o∗, o∗M , s

′∗, v′∗, p′∗M) over the monitor (T ′, s′0, v
′
0) is de-

fined. Note that the input channel assignment streams i∗ ∈ Ī∞, kinetic energy input
channel assignment streams i∗M ∈ Ī∞M , (material port) activation assignment streams
a∗ ∈ Ā(B ∪ Y ∪X)∞, output channel assignment streams o∗ ∈ Ō∞, and kinetic energy
output channel assignment streams o∗M ∈ Ō∞M are shared between the test execution and
the monitor execution. Only, the state streams s′∗ ∈ S′∞, variable assignment streams
v′∗ ∈ V̄ ′∞, and property assignment streams p′∗M ∈ P̄ ′∞M are computed individually.
Then, the monitor execution is said to violate property π′M ∈ P ′M at computation step
k ∈ N if

p′∗M (k)(π′M) = false.

Again, note that in the case the property π′M is contained in the state s′∗(k) the value
p′∗M (k)(π′M) is computed using a boolean expression Eπ′M : (S× Ī× ĪM × Ā(B∪Y ∪X)×
Ō × ŌM × V̄)∗ → B such that

p′∗M (k)(π′M) = Eπ′M (s′∗ ↓ k, i∗ ↓ k, i∗M ↓ k, a∗ ↓ k, o∗ ↓ k, o∗M ↓ k, v′∗ ↓ k).

Otherwise, the value p′∗M (k)(π′M) defaults to true, i.e. the property is not violated. Note
that monitor properties represent user-defined execution constraints of requirement and
manufacturing process engineers rather than test engineers depending on whether the
monitor includes design decisions (e.g. states / activities not prescribed by the customer).

147

6 Quality issues

Finally, note that the monitor property violation issue can be caused also by the monitors
of generated components C ′ ∈ G(k). For example, a manufacturing process monitor
might require the system to finish a manufacturing operation (e.g. milling or grinding
the workpiece) within a predefined maximum duration. Again, the duration constraint
can be encoded as a property of the corresponding monitor activity (see the industry-
close showcase in Chapter 8 for more details).

Component properties Finally, recall the definition of properties πC , which are at-
tached to components directly. Such properties are represented by some boolean ex-
pression EπC : (Ī × ĪM × Ā(B ∪ Y ∪ X) × Ō × ŌM)∗ → B. The test execution
(a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and component C is

said to violate property πC at computation step k ∈ N if

EπC (i∗ ↓ k, i∗M ↓ k, a∗ ↓ k, o∗ ↓ k, o∗M ↓ k) = false.

Otherwise, the test execution does not violate property πC . Note that properties, which
are attached to components directly, represent user-defined execution constraints of re-
quirement engineers rather than manufacturing process engineers and test engineers.
Finally, note that the component property violation issue can be caused also by the
properties of generated components C ′ ∈ G(k). For example, a component property
might require the demand for electric energy in each computation step not to exceed a
predefined limit. If the implementation satisfies such property, the electric energy supply
can be dimensioned accordingly.

6.2.2 Intrinsic issues

As noted previously, the intrinsic semantic issues are based on predefined execution con-
straints, which hold for each design case equally, as opposed to the user-defined extrinsic
execution constraints introduced previously. In particular, three types of intrinsic seman-
tic issues are distinguished, namely part collisions, non-determinisms, and computation
timeouts. In the following, each type of intrinsic semantic issue is explained individually,
while introducing further subtypes where necessary.

Part collisions

Part collision issues indicate that the manufacturing system cannot be operated with-
out the danger of severe damages. Therefore, in the following the original collision
free property (see Definition 4.32) is adapted to the revised formalism. Given test
execution (a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S) and the respective component behavior

148

6.2 Semantic issues

(o, oM , p, b, y, x) ∈ C(i, iM , iF , a) a part collision issue is said to appear at computa-
tion step k ∈ N if two different parts of component C collide, i.e.

∃π1, π2 ∈ P, π1 6= π2 : p(π1)(k) ./ p(π2)(k)

or a part of component C and a part of some generated component C ′ ∈ G(k) with
behavior (o′, o′M , p

′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′) collide, i.e.

∃π ∈ P, π′ ∈ P ′ : p(π)(k) ./ p′(π′)(k)

or two different parts of the same generated component C ′ ∈ G(k) with behavior
(o′, o′M , p

′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′) collide, i.e.

∃π′1, π′2 ∈ P ′, π′1 6= π′2 : p′(π′1)(k) ./ p′(π′2)(k)

or a part of some generated component C ′ ∈ G(k) with behavior (o′, o′M , p
′, b′, y′, x′) ∈

C ′(i′, i′M , iF , a
′) and a part of some different generated component C ′′ ∈ G(k) with

C ′ 6= C ′′ and behavior (o′′, o′′M , p
′′, b′′, y′′, x′′) ∈ C ′′(i′′, i′′M , iF , a′′) collide, i.e.

∃π′ ∈ P ′, π′′ ∈ P ′′ : p′(π′)(k) ./ p′′(π′′)(k).

Note that the collision relation ./⊆ V ×V is expected to report penetration between the
two volumes rather than zero-dimensional point, one-dimensional line, or two-dimensional
plane touching. Obviously, touching volumes might be desired, e.g., while manipulating
a workpiece with a tool. In contrast, real penetration between different part volumes
does not appear in practice due to physical laws.

Non-determinisms

Subsequently, non-determinism issues indicate that multiple possible test executions
(a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) exist over the same scenario (T, s0, sf , v0) and

component C and / or that multiple monitor executions (i∗, i∗M , a
∗, o∗, o∗M , s

′∗, v′∗, p′∗M)
exist over some monitor (T ′, s′0, v

′
0) for a given test execution. In principle, several reasons

might exist for a non-determinism, namely multiple simultaneously enabled transitions,
multiple simultaneously writing behaviors, multiple simultaneously active bindings, and
general fixed points. In the following, each case is explained in more detail.

Multiple transitions Multiple simultaneously enabled transitions can be found in all
types of executables (see Section 5.1.2), i.e. scenarios (see Section 5.3.4), monitors (see
Section 5.3.3), and behaviors (see Section 5.2.5). In general, an executable (T, s0, v0)

149

6 Quality issues

with transition function T : (S × Ī × V̄)∗ → P(S × Ō × V̄), initial state s0 ∈ S, and
initial variable assignments v0 ∈ V̄ includes a non-determinism, if for a given input state
multiple target states exist, i.e.

∃(s, i, v) ∈ (S × Ī × V̄)∗, s(0) = s0, v(0) = v0 : |T (s, i, v)| > 1.

Hence, given some test execution (a∗S , a
∗, o∗, o∗M , s

∗, v∗, i∗, i∗M , y
∗
S , x

∗
S , p
∗
S) over scenario

(T, s0, sf , v0) and component C the scenario might include a multiple transitions non-
determinism at computation step k ∈ N if

|T (s∗ ↓ k, a∗S ↓ k, a∗ ↓ k, o∗ ↓ k, o∗M ↓ k, v∗ ↓ k)| > 1.

In contrast, a monitor computation (i∗, i∗M , a
∗, o∗, o∗M , s

′∗, v′∗, p′∗M) over monitor (T ′, s′0, v
′
0)

for the same test execution might cause a multiple transitions non-determinism at com-
putation step k ∈ N if

|T ′(s′∗ ↓ k, i∗ ↓ k, i∗M ↓ k, a∗ ↓ k, o∗ ↓ k, o∗M ↓ k, v′∗ ↓ k)| > 1.

Finally, a behavior computation (i∗, i∗M , a
∗, s′′∗, v′′∗, o∗, o∗M , p

∗, b∗, y∗, x∗) over behavior
(T ′′, s′′0, v

′′
0) for the same test execution might have raised a multiple transitions non-

determinism issue at computation step k ∈ N if

|T ′′(s′′∗ ↓ k, i∗ ↓ k, i∗M ↓ k, a∗ ↓ k, v′′∗ ↓ k)| > 1.

Note that multiple transitions are enabled simultaneously, if their source states are
equal and their guard expressions return true for the same stimulus. However, such
stimuli might not occur during test execution such that possible non-determinism issues
remain undetected. To overcome this problem, advanced reasoning tools are required
such as SAT solvers [MMZ+01] or SMT solvers [dMB08]. Finally, note that the multiple
transitions non-determinism issue can be caused also by the monitors and behaviors of
generated components C ′ ∈ G(k).

Multiple behaviors Then, the second cause for a non-determinism issue might be multi-
ple simultaneously writing behaviors (see Section 5.2.5). Assume that component C over
I, IM , O,OM , P,B, Y,X is composed of two behaviors (T ′, s′0, v

′
0) and (T ′′, s′′0, v

′′
0) with

transition functions T ′ : (S′×Ī×ĪM×Ā(B∪Y ∪X)×V̄ ′)∗ → P(S′×Ō×ŌM×P̄ ′×B̄×Ȳ ×
X̄×V̄ ′) and T ′′ : (S′′×Ī×ĪM×Ā(B∪Y ∪X)×V̄ ′′)∗ → P(S′′×Ō×ŌM×P̄ ′′×B̄×Ȳ ×X̄×
V̄ ′′), initial labels s′0 ∈ S′ and s′′0 ∈ S′′, as well as initial variable assignments v′0 ∈ V̄ ′ and
v′′0 ∈ V̄ ′′ such that the part labels of the behaviors are disjoint, i.e. P ′∩P ′′ = ∅, and com-
plete with respect to component C, i.e. P ′∪P ′′ = P . Furthermore, assume that given test

150

6.2 Semantic issues

execution (a∗S , a
∗, o∗, o∗M , s

∗, v∗, i∗, i∗M , y
∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and compo-

nent C the related behavior computations are (i∗, i∗M , a
∗, s′∗, v′∗, o′∗, o′∗M , p

′∗, b′∗, y′∗, x′∗)
over behavior (T ′, s′0, v

′
0) and (i∗, i∗M , a

∗, s′′∗, v′′∗, o′′∗, o′′∗M , p
′′∗, b′′∗, y′′∗, x′′∗) over behavior

(T ′′, s′′0, v
′′
0). A multiple behaviors non-determinism is said to occur at computation step

k ∈ N if the behaviors (T ′, s′0, v
′
0) and (T ′′, s′′0, v

′′
0) write the same output channel ω ∈ O

of component C simultaneously, i.e.

∃ω ∈ O : o′∗(k)(ω) 6= ⊥ ∧ o′′∗(k)(ω) 6= ⊥

or the behaviors (T ′, s′0, v
′
0) and (T ′′, s′′0, v

′′
0) write the same kinetic energy output channel

ωM ∈ OM of component C simultaneously, i.e.

∃ωM ∈ OM : o′∗M (k)(ωM) 6= ⊥ ∧ o′′∗M (k)(ωM) 6= ⊥

or the behaviors (T ′, s′0, v
′
0) and (T ′′, s′′0, v

′′
0) write the same material interaction port

β ∈ B of component C simultaneously, i.e.

∃β ∈ B : b′∗(k)(β) 6= ⊥ ∧ b′′∗(k)(β) 6= ⊥

or the behaviors (T ′, s′0, v
′
0) and (T ′′, s′′0, v

′′
0) write the same material entry port υ ∈ Y of

component C simultaneously, i.e.

∃υ ∈ Y : y′∗(k)(υ) 6= ⊥ ∧ y′′∗(k)(υ) 6= ⊥

or the behaviors (T ′, s′0, v
′
0) and (T ′′, s′′0, v

′′
0) write the same material exit port ξ ∈ X of

component C simultaneously, i.e.

∃ξ ∈ X : x′∗(k)(ξ) 6= ⊥ ∧ x′′∗(k)(ξ) 6= ⊥.

If both behaviors (T ′, s′0, v
′
0) and (T ′′, s′′0, v

′′
0) write the same port simultaneously, one of

the values has to be selected randomly leading to a multiple behaviors non-determinism
issue. On the other hand, if one behavior writes the empty message ⊥ the value of the
other behavior can be used. Consequently, if both behaviors write the empty message ⊥
the component output also is the empty message ⊥. In the latter two cases, no intrinsic
semantic issue is raised. Finally, note that the multiple actions non-determinism issues
can be caused also by the behaviors of generated components C ′ ∈ G(k).

Multiple bindings Subsequently, the third cause for a non-determinism issue might
be multiple simultaneously active bindings to different material interaction ports (see
Sections 4.2.2 and 4.2.3). Hereby, two cases are distinguished, namely conflicting dy-
namic channels and multiple kinetic energy forwarding. As previously, given the test

151

6 Quality issues

execution (a∗S , a
∗, o∗, o∗M , s

∗, v∗, i∗, i∗M , y
∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and compo-

nent C over I, IM , O,OM , P,B, Y,X a multiple bindings non-determinism issue occurs
at computation step k ∈ N due to conflicting dynamic channels if two (possibly identi-
cal) binding labels β1, β2 ∈ B of component C exist, which bind component C ′ ∈ C over
I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′, i.e.

C ′ ∈ a(β1)(k) ∧ C ′ ∈ a(β2)(k)

and the binding assignments b(β1)(k) = (s1, c1, f1) and b(β2)(k) = (s2, c2, f2) bind dif-
ferent (kinetic energy) output channels ω1, ω2 ∈ O ∪OM of component C with ω1 6= ω2

to the same (kinetic energy) input channel ι′ ∈ I ′ ∪ I ′M of component C ′, i.e.

∃ω1, ω2 ∈ O ∪OM , ω1 6= ω2, ι
′ ∈ I ′ ∪ I ′M : (ω1, ι

′) ∈ c1 ∧ (ω2, ι
′) ∈ c2

or the binding assignments b(β1)(k) = (s1, c1, f1) and b(β2) = (s2, c2, f2)(k) bind different
(kinetic energy) output channels ω′1, ω

′
2 ∈ O′∪O′M of component C ′ with ω′1 6= ω′2 to the

same (kinetic energy) input channel ι ∈ I ∪ IM of component C, i.e.

∃ω′1, ω′2 ∈ O′ ∪O′M , ω′1 6= ω′2, ι ∈ I ∪ IM : (ω′1, ι) ∈ c1 ∧ (ω′2, ι) ∈ c2.

Alternatively, a multiple bindings non-determinism issue occurs at computation step
k ∈ N due to conflicting dynamic channels if there exist two components C ′1 ∈ C over
I ′1, I

′
M,1, O

′
1, O

′
M,1, P

′
1, B

′
1, Y

′
1 , X

′
1 and C2 ∈ C over I ′2, I

′
M,2, O

′
2, O

′
M,2, P

′
2, B

′
2, Y

′
2 , X

′
2 with

C ′1 6= C ′2, which are bound to two (possibly identical) binding labels β1, β2 ∈ B, i.e.

C ′1 ∈ a(β1)(k) ∧ C ′2 ∈ a(β2)(k)

and the binding assignments b(β1)(k) = (s1, c1, f1) and b(β2)(k) = (s2, c2, f2) bind dif-
ferent (kinetic energy) output channels ω′1 ∈ O′1 ∪ O′M,1 and ω′2 ∈ O′2 ∪ O′M,2 of the
components C ′1 and C ′2 to the same (kinetic energy) input channel ι ∈ I ∪ IM of compo-
nent C, i.e.

∃ω′1 ∈ O′1 ∪O′M,1, ω
′
2 ∈ O′2 ∪O′M,2, ι ∈ I ∪ IM : (ω′1, ι) ∈ c1 ∧ (ω′2, ι) ∈ c2.

Finally, a multiple bindings non-determinism issue is raised at computation step k ∈ N
due to multiple kinetic energy forwarding if a revised spatio-temporal component C ′ ∈ C
over I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′ is bound to two different binding labels β1, β2 ∈ B1

with β1 6= β2, i.e.
C ′ ∈ a(β1)(k) ∧ C ′ ∈ a(β2)(k)

and the binding labels β1 and β2 belong to two different subcomponents C1 ∈ D(C) over
I1, IM,1, O1, OM,1, P1, B1, Y1, X1 and C2 ∈ D(C) over I2, IM,2, O2, OM,2, P2, B2, Y2, X2 of

152

6.2 Semantic issues

component C with C1 6= C2, β1 ∈ B1, and β2 ∈ B2, and the components C1 and C2 are
not related to each other, i.e.

C1 /∈ D(C2) ∧ C2 /∈ D(C1)

and the binding assignments b(β1)(k) = (s1, c1, f1) and b(β2)(k) = (s2, c2, f2) both
forward kinetic energy from component C1 and C2 respectively to the bound component
C ′, i.e.

f1 = f2 = true.

Note that the original channel binding and mover binding properties (see Section 4.2.3)
do not consider such cases. In the proposed approach conflicting dynamic channels and
kinetic energy forwarding are considered as non-determinisms. Consequently, choosing
either of the dynamic channels and forwarding the port assignments as well as choosing
either order of kinetic energy transforms yields a valid execution trace of the system.
During test execution, the selection can be done randomly and a non-determinism issue
can be reported. Alternatively, one could generate all possible traces during test execu-
tion, which can become a computationally intensive task. Then, also the question arises
how the test results are aggregated across all possible execution traces and presented
to the user. Such advanced considerations are omitted here. Finally, note that the
multiple bindings non-determinism issue can be caused also by the binding assignments
b′(β′)(k) = (v′, c′, f ′) with β′ ∈ B′ of generated components C ′ ∈ G(k).

General fixed points The last cause of a non-determinism issue might be a general
fixed point problem. Again, the general fixed point problem can have two possible
causes: (1) The composition of weakly causal executables (see Section 5.1.2) or (2) the
mutual binding of components with kinetic energy forwarding (see Section 5.2.1).

In the case of weakly causal executables, the composition might include (a) the scenario
and the component behavior or (b) the behaviors of two different subcomponents, while
monitors can be neglected. In the first case, it is assumed that component C is tested
with scenario (T, s0, sf , v0) and the reaction of component C is given by the behavior
(T ′, s′0, v

′
0). Then, the general fixed point problem arises at computation step k ∈ N if

there exists a (kinetic energy) input channel ι ∈ I ∪ IM and a (kinetic energy) output
channel ω ∈ O ∪ OM of component C such that the scenario (T, s0, sf , v0) is weakly
causal with respect to ω and the behavior (T ′, s′0, v

′
0) is weakly causal with respect to

ι at computation step k (see Section 5.1.2 for the definition of weak causality). In the
second case, it is assumed that component C is composed of two subcomponents C1 and
C2 with C =`IM (C1 �C2). Furthermore, it is assumed that the reaction of component
C1 is given by the behavior (T ′1, s

′
0,1, v

′
0,1) and the reaction of component C2 is given by

153

6 Quality issues

the behavior (T ′2, s
′
0,2, v

′
0,2). Then, the general fixed point problem arises at computation

step k ∈ N if there exists a (kinetic energy) input channel ι1 ∈ I1 ∪ IM,1 of component
C1, which is a (kinetic energy) output channel of component C2, i.e. ι1 ∈ O2∪OM,2, and
there exists an (kinetic energy) input channel ι2 ∈ I2∪ IM,2 of component C2, which is a
(kinetic energy) output channel of component C1, i.e. ι2 ∈ O1 ∪OM,1, and the behavior
(T ′1, s

′
0,1, v

′
0,1) is weakly causal with respect to ι1 and the behavior (T ′2, s

′
0,2, v

′
0,2) is weakly

causal with respect to ι2 at computation step k. Note that the second cause might also
appear inside the static component architecture of generated components C ′ ∈ G(k).

Instead, in the case of mutual bindings with kinetic energy forwarding assume a test
execution (a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and compo-

nent C with behavior (o, oM , p, b, y, x) ∈ C(i, iM , iF , a) and generated component stream
G. Then, a general fixed point issue appears due to mutual bindings with kinetic en-
ergy forwarding at computation step k ∈ N if there exist two components C ′ ∈ C over
I ′, I ′M , O

′, O′M , P
′, B′, Y ′, X ′ and C ′′ ∈ C over I ′′, I ′′M , O

′′, O′′M , P
′′, B′′, Y ′′, X ′′ with C ′ 6=

C ′′, behavior (o′, o′M , p
′, b′, y′, x′) ∈ C ′(i′, i′M , iF , a′), and behavior (o′′, o′′M , p

′′, b′′, y′′, x′′) ∈
C ′′(i′′, i′′M , iF , a

′′) such that component C ′ participates in the test execution, i.e.

C ′ = C ∨ C ′ ∈ D(C) ∨ ∃C ′′′ ∈ G(k) : C ′ = C ′′′ ∨ C ′ ∈ D(C ′′′)

and component C ′′ participates in the test execution, i.e.

C ′′ = C ∨ C ′′ ∈ D(C) ∨ ∃C ′′′ ∈ G(k) : C ′′ = C ′′′ ∨ C ′′ ∈ D(C ′′′)

and C ′′ is bound to C ′ and the binding forwards kinetic energy, i.e.

∃β′ ∈ B′ : C ′′ ∈ a′(β′)(k) ∧ ∃v ∈ V, c ∈ P(O × I) : b′(β′)(k) = (v, c, true)

and C ′ is bound to C ′′ and the binding also forwards kinetic energy, i.e.

∃β′′ ∈ B′′ : C ′ ∈ a′′(β′′)(k) ∧ ∃v ∈ V, c ∈ P(O × I) : b′′(β′′)(k) = (v, c, true).

Consequently, the kinetic energy forwarding iF (C ′)(k) depends on the kinetic energy
forwarding iF (C ′′)(k) and vice versa (see Section 5.2.1 for more details on how to com-
pute the kinetic energy forwarding). Consequently, the fixed point of the kinetic energy
forwarding equation has to be found. Note that an appropriate solver is not provided
for simplicity, but a semantic issue is raised and the test execution is terminated in-
stead. Consequently, the general fixed point problem has to be resolved manually by
the engineers. Finally, note that the general fixed point problem might appear also
due to mutual binding caused by the binding assignments b′′′(β′′′)(k) with β′′′ ∈ B′′′ of
generated components C ′′′ ∈ G(k).

154

6.3 Summary and outlook

Computation timeouts

Finally, computation timeout issues indicate that the computation of a test execu-
tion (a∗S , a

∗, o∗, o∗M , s
∗, v∗, i∗, i∗M , y

∗
S , x

∗
S , p
∗
S) over scenario (T, s0, sf , v0) and component

C could not be completed within a predefined time window w ∈ R+
0 with arbitrary

time unit. The underlying assumption is that computing the successor state (s∗(n +
1), i∗(n), i∗M (n), y∗S(n), x∗S(n), p∗S(n), v∗(n + 1)) ∈ T (s∗ ↓ n, a∗S ↓ n, a∗ ↓ n, o∗ ↓ n, o∗M ↓
n, v∗ ↓ n) takes some time tn ∈ R+ at computation step n ∈ N. Then, after k ∈ N
computation steps a timeout issues appears if the time window w is exceeded, i.e.∑

0≤i<k
ti > w

and the final scenario state sf ∈ S has not been reached, i.e.

∀0 ≤ i < k : s(i) 6= sf

and no severe semantic issue (i.e. a property violation, a part collision, or a non-
determinism due to multiple behaviors, multiple bindings with conflicting dynamic chan-
nels, or a general fixed point) has been detected in the first k computation steps. The
computation timeout issue is particularly useful in case the final state sf can never
be reached. However, the issue does not indicate such state reachability problems.
To uncover state reachability problems, advanced model-checking techniques are nec-
essary [ACJT96], which are not considered in this doctoral thesis. In particular, the
technique has to take into account the collision-based binding mechanism.

6.3 Summary and outlook

This chapter introduced a number of quality issues, which can be evaluated fully au-
tomatically over the conceptual design models expressed with the modeling technique
from the previous chapter (see Chapter 5). In particular, syntactic issues concerning
the correct use of the modeling language (see Section 6.1) and semantic issues concern-
ing the meaning of the design knowledge (see Section 6.2) were distinguished. Hereby,
syntactic issues have been described using UML [BJR+96] specification patterns and a
custom mathematical notation, while semantic issues have been described based on the
revised formalism (see Chapters 4 and 5). The following chapter answers the question
how prototypical tool support could look like for the presented modeling and quality
assurance technique.

155

7 Prototypical tooling

In the following, the question is answered how the modeling technique from Chapter 5
and the quality issues from Chapter 6 can be implemented into a software tool. In
particular, the question arises how an integrated user interface could look like that
covers the modeling technique and the quality issues described previously. The proposed
software design consists of a modeling interface (see Section 7.1) and a testing interface
(see Section 7.2). In the following each interface is explained in more detail.

7.1 Modeling interface

The modeling interface integrates modeling and continuous syntactic quality checking
features. A screenshot of the modeling interface is provided in Figure 7.1.

Figure 7.1: Modeling interface integrating modeling and syntactic quality checking.

157

7 Prototypical tooling

The modeling interface consists of seven views each serving a different purpose during
manufacturing systems modeling using the presented approach (see Chapters 3 to 6):
The toolbar view (see Section 7.1.1), the explorer view (see Section 7.1.2), the editor view
(see Section 7.1.3), the scene view (see Section 7.1.4), the issues view (see Section 7.1.5),
the changes view (see Section 7.1.6), and the attributes view (see Section 7.1.7). In
the following each view is described in detail including their purpose, their contents,
supported user interactions, as well as events published and consumed. Note that the
views interact with each other by means of events published to and received from a
common event bus. This mechanism allows one to decouple the view implementations.

7.1.1 Toolbar view

Firstly, the toolbar view can be found at the top of the modeling interface. The tool-
bar view provides two functionalities, namely (1) changing the layout of the modeling
interface and (2) providing access to information about the software tool and related
resources. An enlarged screenshot of the toolbar view is provided in Figure 7.2.

Figure 7.2: Toolbar view of the modeling interface.

The toolbar view is structured into the sections layout and about. The layout section
provides buttons for three different layouts: A layout for large screens, a layout for
medium screens, and a layout for small screens. The large screen layout defines six view
areas (black boxes), while the medium screen only provides four view areas, and the small
screen only contains three view areas. The button of the active layout is disabled (e.g. in
the screenshot the large screen layout is active). In contrast, the about section contains
two buttons, one for accessing the software manual, the other for viewing the credits
(i.e. information about the developers as well as associated projects and organizations).
The remaining space of the toolbar view is left empty.

7.1.2 Explorer view

Then, the explorer view can be found at the left of the modeling interface. The ex-
plorer view allows the user to browse and filter the model of the manufacturing system.
Furthermore, the explorer view provides means to create new model elements, select
existing model elements and delete previously created model elements. A screenshot of
the explorer view is given in Figure 7.3.

158

7.1 Modeling interface

Figure 7.3: Explorer view of the modeling interface.

The explorer view is structured into three sections: A top toolbar, a left toolbar, and a
center tree view. The top toolbar provides a text field for keyword-based searching and
filtering the tree view contents. Hereby, the tree nodes remain visible in case their own or
any descendant’s name matches the keyword. The left toolbar provides toggle buttons for
filtering the tree view contents according to the features of the modeling technique (i.e.
requirements, ports, properties, scenarios, monitors, components, channels, behaviors,
and parts; see Chapter 5). If some toggle button is active, the respective feature is visible.
Otherwise, the feature is hidden from the display. Finally, the tree view shows the entire
model of the manufacturing system starting with the workspace, its projects, templates
(i.e. reusable component definitions), and main components. Templates and components
contain folder nodes for each feature of the modeling technique. Then, each folder node
contains the instances of the respective feature (e.g. the requirements node contains
requirements for the superordinate component/template). At last, model elements can
be created and deleted via the context menu of the tree nodes. In particular, folder
nodes allow one to add subordinate instances of the respective feature.

7.1.3 Editor view

The editor view can be found in the middle top left of the modeling interface. The editor
view contents depend on the element selected in the tree view of the explorer view (see

159

7 Prototypical tooling

Section 7.1.2). Depending on the selection three different cases can be distinguished:
(1) Workspace, project, and component nodes, (2) scenario, monitor, and behavior nodes,
as well as (3) component folder nodes. In the following the editor view contents are
described for each of these cases in more detail.

Workspace, project, and component nodes

For workspace, project, and component nodes the editor view allows one to generate
a test report covering all subordinate components and scenarios. To generate the test
report all scenarios are simulated and the results (i.e. success, failure, and timeout) are
collected. The test report itself aggregates the results hierarchically. A screenshot of the
editor view for workspace, project, and component nodes is provided in Figure 7.4.

Figure 7.4: Editor view for workspace, project, and component nodes.

The editor view is structured into a top toolbar and a center tree table view. The top
toolbar contains a number field for defining the maximum time in milliseconds, which is
provided for each scenario simulation until a timeout issue is raised (see Section 6.2.2).
Then, the top toolbar includes a button for starting the test report generation and
a progress bar for tracking the progress of report generation. The progress is calcu-
lated from the total number of scenarios and the number of scenarios already processed.
Finally, the tree table view shows the actual test report. The test report is structured hi-
erarchically starting with the workspace, project, or component selected in the explorer

160

7.1 Modeling interface

view (see Section 7.1.2). For each component node the tree table view also includes
subordinate component and scenario folder nodes. Finally, for each tree table node also
the aggregate number of subsidiary successful, failed, and timed-out test executions is
visualized. The aggregate numbers are intended as a measure of implementation progress
(i.e. the more scenarios can be completed successfully, the larger is the progress is).

Scenario, monitor, and behavior nodes

For scenario, monitor, and behavior nodes the editor view provides different variants
of a graphical state machine editor showing the executables’ labels and transitions (see
Section 5.1.2). The graphical editors allow one to select states and transitions. Further-
more, the position of states as well as the out- and ingoing positions of transitions can be
changed. Finally, transitions between states can be added and removed. A screenshot
of the editor view for scenario, monitor and behavior nodes is depicted in Figure 7.5.

Figure 7.5: Editor view for scenario, monitor, and behavior nodes.

The editor contains a top toolbar and a center diagram area. The toolbar provides
buttons for setting initial (and potentially final) states and removing transitions. The
buttons are enabled depending on and act upon the states and transitions currently
selected in the diagram area. The diagram area itself provides a graphical representation
of the executable. States are shown as labeled ellipses and transitions are depicted as
labeled lines with arrow endings. Furthermore, for each transition small circular markers
are added to the source and the target states. Selected states can be moved around the

161

7 Prototypical tooling

diagram area and selected transition markers can be moved around the ellipse borders
of the respective state. Both the diagram area and the ellipse borders define a grid to
which the moved objects snap unless the Alt key is pressed. Finally, new transitions
can be created by pressing the Ctrl key, pressing the left mouse button on the desired
source state, dragging the mouse to the desired target state, and releasing the left mouse
button. More advanced interactions are not supported currently.

Component folder nodes

For component folder nodes the editor view provides a graphical component diagram
editor showing the subcomponents (see Section 5.2.1), ports (see Section 5.2.2), and
channels (see Section 5.2.3) of the superordinate component as well as the ports of sub-
components and material interaction ports. Furthermore, the editor supports creating
and removing channels as well as rearranging the subcomponents, ports, and channels.
A screenshot of the editor view for component feature nodes is provided in Figure 7.6.

Figure 7.6: Editor view for component feature nodes.

Again, the editor view is divided into a top toolbar and a center diagram area. The
toolbar provides one button for removing channels. The button is enabled based on the
selection in the diagram area. In contrast, the diagram area shows the system boundary
of the superordinate component including its ports. Then, the subcomponents and ma-
terial interaction ports are displayed as labeled gray and orange rectangles. Note that
template instances (such as the basket cylinder or the stamp cylinder in Figure 7.6) are

162

7.1 Modeling interface

distinguished by dashed borders. Finally, the diagram area represents the channels be-
tween the ports of the superordinate component, the subcomponents, and the material
interaction ports with labeled lines and arrow endings. All, components, ports and chan-
nels can be selected by clicking with the left mouse button. Then, components and ports
also can be moved by pressing the left mouse button and dragging the object around.
Again, the Alt key can be used to disable grid snapping on the diagram background
and at rectangle borders. Finally, new channels can be created by pressing the Crtl

key, pressing the left mouse button on the source port, dragging the mouse to the target
port, and release the left mouse button.

7.1.4 Scene view

Then, the scene view can be found in the middle top right of the modeling interface.
The scene view is responsible for displaying the volumes of material ports and (physical)
parts as well as respective transforms, which can be found underneath the component
selected in the explorer view (see Section 7.1.2). Furthermore, ports, parts, and specific
volumes can be highlighted. A screenshot of the scene view is provided in Figure 7.7.

Figure 7.7: Scene view of the modeling interface.

The scene view consist of a top toolbar and a center canvas. The toolbar provides
three check boxes for enabling or disabling respective options. The first option concerns
the display of the coordinate system. The second option allows one to show and hide

163

7 Prototypical tooling

the outline of part volumes. And the third option can be used to enable or disable
the highlighting. In contrast, the canvas displays the part volumes as solid shapes and
material port volumes as wire frame shapes respecting associated transforms. If the
coordinate system option is enabled, the canvas also displays the x-, y-, and z- axes
as well as a grid in the x-z-plane. Then, if the outline option is enabled, the canvas
displays black borders around each (phyiscal) part volume. Finally, if the highlight
option is enabled, the canvas contents are shaded or lightened based on the selection in
the explorer view (see Section 7.1.2) and the editor view (see Section 7.1.3). For example,
in Figure 7.7 all part volumes of the pink crane component are highlighted. Alternatively,
single part and material port volumes can be highlighted as well. Consequently, the
spatial elements of the system model can be identified more easily. At last, the mouse
can be used for changing the camera perspective. A separate perspective is stored for
each component. The left mouse button can be used for rotating, the right mouse button
for translating, and the mouse wheel can be used for zooming the perspective.

7.1.5 Issues view

The issues view can be found in the middle bottom left of the modeling interface. The
issue view is responsible for displaying the active syntactic issues (see Section 6.1) to
the user. Furthermore, the user is able to sort the active issues by different aspects such
as the issue message, the type of the associated modeling element, and the path to the
associated element. A screenshot of the issue view is given in Figure 7.8.

Figure 7.8: Issue view of the modeling interface.

The issues view consists of a table view with three columns: The syntactic issue type,
the associated element type, and the associated element path. The rows of the table repre-

164

7.1 Modeling interface

sent the active syntactic issues. Issues are added to the table as soon as they are detected
in the model and removed from the table as soon as they are resolved. Technically, each
(potential) syntactic issue is represented as an object, which acts as an observer over
the model and reevaluates itself every time the underlying data changes. Finally, in
the table syntactic defects (i.e. severe issues) and syntactic deficiencies are distinguished
using icons. Note that defects have to be resolved by the user, while deficiencies can be
left untouched, which is why this visual distinction has been introduced.

7.1.6 Changes view

The changes view can be found in the middle bottom right of the modeling interface.
The view displays a chronological stream of changes (i.e. change events), which have been
made on the model by any connected software client. Possible events are the creation of
new model elements, the modification of element attributes, and the deletion of model
elements. A screenshot of the change view is provided in Figure 7.9.

Figure 7.9: Change view of the modeling interface.

The changes view consists of a table view with four columns: The change message, the
change timestamp, the key of the software client causing the change, and the database
key of the model element, to which the change applies. Then, each row of the table
represents one change event in the stream of change events. The different types of events
(i.e. model element creation, element attribute modification, and element deletion) are
distinguished with icons. Technically, every change to the model is pushed to a central
database server, which stores the event information into a log file and synchronizes all
connected clients automatically. Consequently, for each model the entire change history
is persisted and can be analyzed. Furthermore, collaboration between different engineers

165

7 Prototypical tooling

and, hence, concurrent engineering [WSX+02] is facilitated in principle. However, note
that this research direction is not investigated further in this doctoral thesis. Rather,
the prototypical tooling focuses on the single user case.

7.1.7 Attributes view

Finally, the attributes view can be found at the right of the modeling interface. The
attribute view is responsible for displaying the attributes of the last object selected in
the explorer view (see Section 7.1.2) or the editor view (see Section 7.1.3). Furthermore,
the attribute view allows one the change the values of certain attributes. A screenshot
of the attribute view is shown in Figure 7.10.

Figure 7.10: Attribute view of the modeling interface.

The attributes view is structured into several sections and one attribute table per
section. Each section represents one class in the class hierarchy of the selected design
object (e.g. Element, Volume, and AtomicVolume in the depicted case). Then, the
rows of the section tables represent the attributes associated with the respective class
(e.g. key and path for the class Element or color for the class AtomicVolume). Hereby,
the first table column shows the attribute name, while the second column provides a
control for its value (e.g. text fields for the key and path attributes of the class Element

166

7.2 Testing interface

or color choosers for the color attribute of the class AtomicVolume). Technically, the
attribute view is realized using table templates for each class of design object introduced
in Chapter 5. Furthermore, reflection is used for selecting and displaying the right table
templates. This mechanism allows one to reuse large parts of the code and to integrate
new modeling elements easily with the existing implementation.

7.2 Testing interface

The testing interface integrates spontaneous (i.e. user-triggered) semantic quality check-
ing capabilities into the tool, which has been explained formally in Section 6.2. A
screenshot of the testing interface is provided in Figure 7.11.

Figure 7.11: Testing interface integrating semantic quality checking.

Analogous to the modeling interface (see Section 7.1), the testing interface consists of
seven views each serving a different purpose: The toolbar view (see Section 7.2.1), the
explorer view (see Section 7.2.2), the editor view (see Section 7.2.3), the scene view (see
Section 7.2.4), the issues view (see Section 7.2.5), the results view (see Section 7.2.6),
and the attributes view (see Section 7.2.7). In the following, each view is described in
detail including their purpose, contents, user interactions, as well as events published

167

7 Prototypical tooling

and consumed. Note that, again, the views interact by means of events published and
received over a common event bus to decouple their implementations.

7.2.1 Toolbar view

The toolbar view can be found at the top of the testing interface. The toolbar provides
four functionalities: (1) Changing the layout of the testing interface, (2) stepping forward
and backward between the simulation steps, (3) animating the simulation steps, and
(4) jumping between the simulation steps. A screenshot of the toolbar view is given in
Figure 7.12 cropping contents at the left and right sides due to space limitations.

Figure 7.12: Toolbar view of the testing interface.

The toolbar view is structured into the sections layout, step, animation, and timeline.
Analogous to the toolbar view of the modeling interface (see Section 7.1.1), the layout
section provides buttons for switching between a large screen, a medium screen, and
a small screen layout. In the large screen layout a separate screen region is assigned
to each view of the testing interface. In the medium screen layout the editor view
(see Section 7.2.3) and the scene view (see Section 7.2.4) as well as the issue view (see
Section 7.2.5) and the result view (see Section 7.2.6) share a common region, and in the
small screen layout the previous four views share the same screen region. In contrast, the
step section provides two button for stepping forward and backward in the simulation.
The backward button is disabled at the first simulation step, while the forward button
is disabled at the last simulation step (i.e. when a timeout, a severe semantic issue,
or the final step of the scenario is reached). Then, the animation section provides a
number field for adjusting the number of milliseconds used per simulation step and a
play/pause button. When the animation is active the simulation step is incremented
automatically after the defined number of milliseconds. Note that the simulation step
can be incremented only in case the simulation engine has calculated the respective step
information in the background. If the step information is not available, the animation
waits for another period of milliseconds. When the end of the simulation is reached, the
animation stops automatically. Finally, the timeline section provides a number slider
for jumping between the simulation steps. The slider interval ranges from the first
simulation step to the last simulation step, which has been calculated in the background
by the simulation engine. Consequently, the slider interval increases constantly until the
end of the simulation is reached.

168

7.2 Testing interface

7.2.2 Explorer view

Then, the explorer view can be found at the left of the testing interface. The explorer
view provides access to the model elements, which are relevant for the current simulation
run (in particular the components as well as their ports, properties, monitors, behaviors,
and scenarios). Moreover, the explorer view allows one to select the respective model
elements to obtain further information in the other views of the testing interface. A
screenshot of the explorer view is shown in Figure 7.13.

Figure 7.13: Explorer view of the testing interface.

The explorer view consists of a top toolbar and a left toolbar as well as a center tree
view. The top toolbar provides a text field for keyword-based searching and filtering
the tree view contents. Similar to the explorer view of the modeling interface (see
Section 7.1.2), the tree nodes remain visible in case their label or the label of any
descendant tree node matches the search string. Then, the left toolbar contains toggle
buttons for filtering the tree view contents according to the features of the modeling
technique (i.e. ports, properties, scenarios, monitors, components, and behaviors). Note
that the other features (i.e. requirements and parts) are not displayed during simulation
because they are not affected by the system state. Finally, the tree view itself shows
a simulation node at its root containing the main component (e.g. the pick and place
unit in Figure 7.13) as well as template instances generated at runtime (e.g. Generated
component 5 in Figure 7.13). Then, each component node contains folder nodes for
the features relevant during simulation. In turn, the folder nodes contain the respective
child elements of the superordinate component. At last, each template instance node
(e.g. Generated component 5) contains a node for the respective component template.

169

7 Prototypical tooling

7.2.3 Editor view

Subsequently, the editor view can be found at the middle top left of the testing in-
terface. The editor view contents depend on the type of node selected in the explorer
view (see Section 7.2.2). Different implementations are provided for observation nodes,
scenario, monitor, and behavior nodes as well as component folder nodes. The different
implementations are explained in the following.

Observation nodes

For observation nodes (i.e. ports of components, material interaction ports, and scenarios
as well as variables of scenarios, monitors, and behaviors) the editor view displays the
observation valuations over time as well as their relative frequencies. The visualizations
are intended to help understanding the system dynamics. A screenshot of the editor
view for observation nodes is provided in Figure 7.14.

Figure 7.14: Observation view of the testing interface.

The editor view is divided into two charts, namely the time series chart and the value
distribution chart. The time series chart depends on the data type of the observation.
For numeric observations, matrix-valued observations, and set-valued observations a line

170

7.2 Testing interface

chart is presented (i.e. the data points are connected), while for boolean observations
a scatter chart is provided instead (i.e. the data points remain unconnected). The x-
axis of the time series charts represents the simulation step and the y-axis depicts the
observation valuations. For matrices the norm of the largest eigenvector is used as a
measure of the matrix effect, while for sets the set cardinality is displayed. For numbers
and booleans the original value is depicted instead. Finally, the value distribution chart
shows the relative frequencies of the possible observation valuations across all simulation
steps. For the value distribution chart all original values are used instead. Consequently,
matrices can be distinguished also by their individual coefficients.

Scenario, monitor, and behavior nodes

For scenario, monitor, and behavior nodes the editor view shows the same state machine
diagram as the editor view of the modeling interface (see Section 7.1.3). However, this
time interaction with the diagram elements is disabled. Instead, the diagram view is used
to display the active states and transitions of the underlying executable. A screenshot
of the editor view for scenario, monitor, and behavior nodes is given in Figure 7.15.

Figure 7.15: Scenario view of the testing interface.

The editor view only contains one single part, namely the diagram area. The diagram
area shows a boundary box for the underlying scenario (see Section 5.3.4), monitor (see
Section 5.3.3), or behavior (see Section 5.2.5). At the top of the boundary box the name

171

7 Prototypical tooling

of the state machine as well as contained variables (and material entry/exit ports in the
case of scenarios) are displayed. Then, inside the box the states are depicted as ellipses
and the transitions are visualized as lines with arrow ending. Finally, the active state
and (if available) the active transition of the current simulation step are highlighted. For
example, in Figure 7.15 the final step of the scenario is reached through the transition
Finished?. Note that when a transition is executed in the current simulation step, the
active state is given by the target state of the executed transition. However, it is also
possible that no transition can be executed in the current simulation step such that only
the active state exists.

Component folder nodes

For component folder nodes the editor view shows the same component diagram as the
editor view of the modeling interface (see Section 7.1.3). Again, interaction with the
diagram elements is disabled during simulation. Instead, the diagram view is used to
display the port and channel assignments for the current simulation step. A screenshot
of the editor view for component folder nodes is provided in Figure 7.16.

Figure 7.16: Components/channels view of the testing interface.

The editor view only consists of a single diagram area. The diagram area shows a
boundary box for the superordinate component. At the top left of the boundary box
the name of the superordinate component is displayed (e.g. Stamper in the upper case).

172

7.2 Testing interface

Then, on the border of the boundary box the ports of the superordinate component are
shown (e.g. Ready, Start, and Finished in Figure 7.16). The interior of the boundary
box depicts the subcomponents and material interaction ports as labeled rectangles
including their own child ports. The label of the material interaction ports includes
the set of components bound to the port in the current simulation step (e.g. none for
the Entry/Exit port and White workpiece for the Stamp port in Figure 7.16). Finally,
the diagram shows the channels between the ports as labeled lines with arrow ending.
Again, the line labels include the channel assignments in the current simulation step,
which is equal to the port assignments of the connected ports. In case a port remains
unconnected in the diagram, the port assignment is displayed next to the port name.

7.2.4 Scene view

The scene view can be found at the middle top right of the testing interface. The scene
view is responsible for displaying the material ports and the parts of the components.
Note that during simulation the position and orientation of the components depends on
the kinematic energy transmitted to the components up to the current simulation step.
A screenshot of the scene view is provided in Figure 7.17.

Figure 7.17: Scene view of the testing interface.

The scene view is divided into a top toolbar and a center canvas. The top toolbar pro-
vides three check boxes. The first checkbox allows one to enable and disable the display
of the coordinate system. The second checkbox can be used to show and hide the outline

173

7 Prototypical tooling

of physical parts. And the third checkbox controls whether model elements selected in
the explorer view (see Section 7.2.2) and the editor view (see Section 7.2.3) should be
highlighted. In contrast, the canvas displays an optional coordinate system as well as
the material interaction ports and the parts of the selected component and all its sub-
components. The coordinate system includes three colored axes as well as a grid in the
x-z-plane. The material interaction ports are displayed as wire-framed volumes, while
the physical parts are shown as solid shapes with optional black outline. Furthermore,
if selection highlighting is enabled, the color of parts is darkened or lightened based on
the current selection in the explorer or the editor views. Finally, the canvas implements
mouse-based interaction for changing the camera perspective (see Section 7.1.4).

7.2.5 Issues view

The issues view can be found can be found at the middle bottom left of the testing
interface. The issues view is responsible for showing the semantic issues (see Section 6.2),
which have been discovered during the current simulation run. Note that simulation does
not guarantee to find all semantic issues that are present in the model. A screenshot of
the issue view is provided in Figure 7.18.

Figure 7.18: Issue view of the testing interface.

The issues view only contains a table view with three columns: The first column dis-
plays the type of the semantic issue, the second column shows the path of the associated
component, and the third column denotes the simulation step during which the semantic
issue has been discovered. Then, the rows of the table represent the semantic issues,
which have been discovered so far during the current simulation run. Note that the list
of semantic issues might grow while the simulation engine in running in the background.

174

7.2 Testing interface

For example, in the above case multiple non-determinism issues (see Section 6.2.2) in
the scenario Ten random workpieces of the component Pick and place unit as well as
one timeout issue (see Section 6.2.2) have been discovered. Finally, for each semantic
issue an icon is provided indicating the severity of the issue. Hereby, three cases are
distinguished: Semantic deficiencies that can be resolved, semantic defects that must be
resolved, and timeouts. A warning sign is used for deficiencies, a stop sign is used for
defects, and a clock icon is used for timeouts.

7.2.6 Results view

The results view can be found at the middle bottom right of the testing interface. The
results view is responsible for displaying a summary of the current and all previous
simulation runs of the selected scenario. Consequently, the view provides a historical
perspective on the simulation activity for each scenario of the system model. A screen-
shot of the result view is given in Figure 7.19.

Figure 7.19: Result view of the testing interface.

The results view only contains one table view with four columns: The first column
shows a message for each simulation run. Initially, the message says that the simulation
is running. When the simulation terminates, the message says whether the simulation
could be terminated successfully and whether semantic issues (see Section 6.2) have been
discovered. Additionally, the message column contains an icon illustrating the result of
the simulation run. A warning sign is used in case semantic deficiencies were found, an
error sign is displayed in case at least one semantic defect (i.e. a severe semantic issue
that has to be resolved) has been detected, and a timeout sign is depicted in case the
simulation could not be completed within the prescribed time window. In contrast, the
second column summarizes the semantic issues, which have been discovered during each

175

7 Prototypical tooling

simulation run. In particular, counts for each type of semantic issue are provided. Then,
the third column displays the time, which has been required to finish each simulation
run (e.g. between 6 and 30 seconds in Figure 7.19). Finally, the fourth column depicts
the time that has passed since executing the different simulation runs (e.g. between 36
seconds and 3 minutes in Figure 7.19).

7.2.7 Attributes view

The attributes view can be found at the right of the testing interface. The attributes
view shows detailed information about the last element selected in the explorer view
(see Section 7.2.2) or the editor view (see Section 7.2.3). The displayed information
includes static model data as well as dynamic simulation data highlighted with yellow
background color. A screenshot of the attributes view is provided in Figure 7.20.

Figure 7.20: Attributes view of the testing interface.

176

7.3 Summary and outlook

The attributes view contains a single table view showing relevant static and dynamic
attributes of the selected element. For example, in the above case the static key, path,
name, and description as well as the dynamic bindings and transform attributes of the
Pick and place unit component are shown. Note that the static attributes have been
defined during the specification activities of the test-driven design method (see Chap-
ter 3) using the modeling interface (see Section 7.1), while the dynamic attributes relate
to the current simulation step during test-based verification. In particular, the bind-
ings attribute shows to which material interaction port the selected component is bound
(i.e. none in the upper case). The transform attribute shows the position and orienta-
tion of the selected component in the world coordinate system instead (i.e. the identity
transform in Figure 7.20). Note that the position and orientation of each component C
depends on the kinetic energy input history iM ∈ ~IM and the kinetic energy forwarding
history iF ∈ ~IF (see Section 5.2.1). Finally, the attributes are grouped by the classes of
the inheritance hierarchy. E.g., as shown in Figure 7.20, the class DefinitionComponent
inherits from the class Component, which extends the class NamedElement, which finally
originates from the class Element. Exploiting the inheritance hierarchy also enables
reuse of user interface elements and improves the extensibility of the software tool.

7.3 Summary and outlook

This chapter presented a prototypical tool support for the modeling technique (see Chap-
ter 5) and the quality issues (see Chapter 6). In particular, the results showed how to
integrate conceptual design information from customer requirements and manufacturing
processes to mechatronic architectures and software behaviors into a common modeling
interface (see Section 7.1). Furthermore, the prototypical tool continuously monitors
the syntactic quality of the model and displays immediate feedback in the modeling
interface. Then, the testing interface was explained (see Section 7.2), which provides
access to test execution results and displays semantic issues, which have been discov-
ered. Subsequently, the test-driven design method, the modeling technique, the quality
issues, and implicitly the prototypical tooling are evaluated based on an industry-close
showcase. Therefore, the following chapter first presents the conceptual design model
obtained during the experiment.

177

8 Industry-close showcase

For evaluation purposes the test-driven design method (see Chapter 3), the revised and
extended modeling technique (see Chapter 5), the quality assurance mechanisms (see
Chapter 6), and the prototypical tooling (see Chapter 7) are applied to an industry-
close showcase: The pick and place unit developed at the Institute of Automation
and Information Systems, Prof. Dr.-Ing. Birgit Vogel-Heuser, Technische Universität
München1. The study is based on a detailed description of the pick and place unit pro-
vided in [VHLFF14]. The description includes several stages of expansion of the pick and
place unit, from which the most complex one is selected. The configurations, on the other
hand, are explained in terms of their geometry, their structure (using SysML [FMS14]
block definition diagrams) as well as their behavior (using SysML [FMS14] state machine
diagrams). Figure 8.1 depicts the assembled unit deployed at the institute.

Figure 8.1: Pick and place unit [HCL+14].

In the following, the obtained model of the pick and place unit is explained in terms of
its (reusable) template component definitions in Section 8.1 and its (non-reusable) system
component definitions in Section 8.2. For each template and system component defini-
tion the requirements, ports, properties, scenarios, monitors, subcomponents/channels,

1https://www.ais.mw.tum.de/en/homepage/

179

https://www.ais.mw.tum.de/en/homepage/

8 Industry-close showcase

behaviors, and parts are described. This chapter is intended mainly for demonstrating
the modeling technique in practice. Furthermore, the chapter resembles a possible de-
sign document, which can be obtained with the proposed approach. Note that in the
next chapter a more thorough discussion of the suitability of the test-driven method, the
validity of the model, and the relevancy of the quality issues is provided.

8.1 Templates

The model of the pick and place unit contains the following template component def-
initions: White, gray and black workpiece (see Section 8.1.1), component sensor (see
Section 8.1.2), workpiece sensor (see Section 8.1.3), abstract static cylinder (see Sec-
tion 8.1.4), concrete static cylinder (see Section 8.1.5), and concrete dynamic cylinder
(see Section 8.1.7). In the following each template is explained briefly in terms of its
geometry and its internal structure. Further details are omitted due to space limitations.

8.1.1 White/gray/black workpiece

The pick and place unit processes three types of workpieces, which are distinguished by
their colors (i.e. white, gray and black). Depending on their type the pick and place unit
is required to sort and optionally stamp the workpieces. Figure 8.2 provides the scene
views for the possible combinations of workpiece types and states.

(a) Unstamped white workpiece (b) Unstamped gray workpiece (c) Unstamped black workpiece

(d) Stamped white workpiece (e) Stamped gray workpiece (f) Stamped black workpiece

Figure 8.2: Workpiece scene views.

The different workpiece models themselves consist of two energy input ports for moving

180

8.1 Templates

and stamping workpieces as well as two generic output ports for observing the workpiece
type (i.e. white, gray, or black) and state (i.e. unstamped or stamped). Then, the models
comprise two behaviors, one for describing the state output and the tip part (i.e. the
white, gray, black, or red cylinder on the top) in reaction to the stamp energy input, the
other for describing the constant type output. Finally, the models include a base part
(i.e. the white, gray, or black cylinder on the bottom), which remains constant.

8.1.2 Component sensor

Then, for sensing component presence the model of the pick and place unit includes a
(generic) component sensor template shown in Figure 8.3. Note that a very basic sensor
model is provided, which neglects physical parts and therefore potential collisions within
its environment. In practice, one can imagine several realizations such as circuit breakers,
which require a physical contact between the sensor and the observed component, or light
barriers, which do not require a physical contact.

Figure 8.3: Generic sensor scene view.

The sensor model contains a cuboid material interaction port representing the observed
physical space as well as a boolean data output port for reporting collisions with this
physical space. The material interaction port, in turn, does not require any specific
syntactic interface and, hence, binds all possible components during execution. Finally,
the sensor behavior reports at time point n ∈ N whether collisions with the material
interaction port β ∈ B can be observed based on the cardinality |a(β)(n)| of the material
port activation history a ∈ ~A(B ∪ Y ∪X).

8.1.3 Workpiece sensor

While the component sensor from Section 8.1.2 provides general means for sensing com-
ponent presence at some physical space, the workpiece sensor reacts to instances of
the workpiece template from Section 8.1.1 only. Consequently, a slightly more complex
sensor model was developed including basic physical parts as shown in Figure 8.4.

181

8 Industry-close showcase

Figure 8.4: Workpiece sensor scene view.

The sensor model comprises one cylindrical material interaction port representing the
observed physical space, which requires the syntactic interface of the workpiece template
(see Section 8.1.1). Furthermore, the model contains two data output ports for reporting
workpiece presence and the type of the workpiece. Then, one sensor behavior specifies
the reactions to workpiece collisions with the material interaction port. The presence
output is calculated analogous to the presence output of the generic component sensor
template (see Section 8.1.2). The type output is derived from the type output of colliding
workpieces instead. If no workpiece is bound to the material interaction port, however,
the type output defaults to the empty message ⊥ /∈M . Finally, two cuboid parts model
an emitter and a collector.

8.1.4 Abstract static cylinder

Besides the workpiece and sensor models described in the previous sections, the pick
and place unit also includes a number of mechanical cylinder models for generating
translational kinematic energy. The most basic cylinder model is the abstract static
cylinder depicted in Figure 8.5. Note that again the model does not include any physical
parts and, thus, neglects collisions within its environment.

Figure 8.5: Abstract static cylinder scene view.

The model includes one boolean data input port for (de-)activation and one kinematic
energy output port with an associated reference transform. Upon activation the behav-
ior generates translation energy along the axis of the reference transform (i.e. the white

182

8.1 Templates

arrow in Figure 8.5) for at most five steps until being in extracted state. Upon deacti-
vation the behavior generates opposite translation energy for the same number of steps
until being in retracted state again. Hence, the abstract static cylinder model resembles
a monostable cylinder, which is stable in retracted state only.

8.1.5 Concrete static cylinder

The next more complex cylinder model is the concrete static cylinder. The model of the
concrete static cylinder reuses the model of the abstract static cylinder from the previous
section and adds a basic physical representation shown in Figure 8.6. In particular, this
model allows one to detect undesirable collision within its environment.

Figure 8.6: Concrete static cylinder scene view.

To reuse the definition of the abstract static cylinder, a decomposition into subcom-
ponents and channels is defined as shown in Figure 8.7. The subcomponents include an
instance of the abstract static cylinder template from Section 8.1.4 as well as a piston,
which is explained in more detail in Section 8.1.6. Note that the instance of the tem-
plate is depicted using a light gray rectangle with rounded corners and dashed outline
as opposed to a solid outline for the piston component. Furthermore, note that a reuse
mechanism such as inheritance is not supported in the proposed modeling technique yet,
which is why an internal template instance has to be used.

Figure 8.7: Concrete static cylinder components/channels view.

Moreover, the syntactic interface of the concrete static cylinder is identical to the syn-
tactic interface of the abstract static cylinder when neglecting the physical parts (which

183

8 Industry-close showcase

are part of the syntactic interface of revised spatio-temporal components according to
the underlying theory; see Section 5.2.1). However, internally the kinematic energy gen-
erated by the abstract static cylinder is not transmitted to the environment directly.
Rather, the kinematic energy is transmitted to the piston first by means of a channel,
which forwards the energy to the environment by means of a second channel. Finally,
the concrete static cylinder comprises four (mechanical) parts modeling the cuboid case
holding and guiding the piston.

8.1.6 Concrete static cylinder / Piston

Subsequently, the piston of the concrete static cylinder from the previous section is
responsible for transferring kinematic energy from some input location to some output
location. Usually, to implement the energy transfer a solid body is used, where one end
serves as the receiver and the other end serves as the emitter. Accordingly, the geometric
model of the piston is shown in Figure 8.8.

Figure 8.8: Concrete static cylinder piston scene view.

The model of the piston contains one kinematic energy input port and one kine-
matic energy output port. Hereby, the kinematic energy output port does not require
a reference transform. Instead, a behavior specifies the direct and immediate (i.e. non-
delayed) transfer from kinematic energy at the input port to kinematic energy at the
output port. Finally, one constant part defines the cuboid piston geometry depicted in
Figure 8.8, which is guided by the case explained in the previous section.

8.1.7 Concrete dynamic cylinder

Then, the next more complex cylinder model is the concrete dynamic cylinder as shown
in Figure 8.9. Compared to the concrete static cylinder the concrete dynamic cylinder
supports collision-based interaction by means of a material interaction port at the tip of
the piston described in the previous section. In particular, the concrete dynamic cylinder
can be used to move generated components C ′ ∈ G(n) with computation step n ∈ N

184

8.1 Templates

during system execution. In the given model, generated components C ′ typically are
instances of the workpiece template (see Section 8.1.1).

Figure 8.9: Concrete dynamic cylinder scene view.

Similar to the previous cylinder model, the concrete dynamic cylinder model reuses
the concrete static cylinder template from Section 8.1.5 and adds a tip component as
shown in Figure 8.10. While the concrete static cylinder is responsible for generating
the translation energy, the tip is responsible for transmitting the translation energy to
colliding components. Note that, again, template instantiation is used to achieve reuse
in the proposed model instead of inheritance or other mechanisms.

Figure 8.10: Concrete dynamic cylinder components/channels view.

Furthermore, note that the syntactic interface of the concrete dynamic cylinder changes
with respect to the syntactic interface of the concrete static cylinder. While a boolean
data input port is provided for (de-)activating the cylinder, a kinematic energy output
port is omitted. The boolean data input is used for (de-)activating both the internal con-
crete static cylinder component and the internal tip component. Based on the boolean
(de-)activation input, the internal cylinder component generates kinematic energy, which
is transfered to the internal tip component by means of a channel. The internal tip com-
ponent, in turn, is responsible for implementing the interaction with the environment of
the concrete dynamic cylinder including generated components C ′ ∈ G(n) with computa-

185

8 Industry-close showcase

tion step n ∈ N. Hereby, the tip component also requires the activation input to prevent
kinematic energy from being forwarded when retracting the piston. This behavior is
explained in more detail in the following section.

8.1.8 Concrete dynamic cylinder / Tip

Finally, the tip of the concrete dynamic cylinder template is responsible for binding col-
liding components in case of activation (i.e. while extending the piston of the underlying
concrete static cylinder; see Sections 8.1.5 and 8.1.6) and, hence, transferring kinematic
energy. The activation option has been added to enable energy transfer in one direction
of motion of the piston and to disable energy transfer in the opposite direction. The
geometric model of the tip is shown in Figure 8.11.

Figure 8.11: Concrete dynamic cylinder tip scene view.

The tip model comprises one generic boolean activation input port ι ∈ I and one
cuboid material interaction port β ∈ B representing the location of the tip. Hereby,
the material interaction port β is deactivated by default and is configured to forward
kinematic energy (see Section 5.2.2). During system execution, the internal behavior
of the tip component (de-)activates the material interaction port b(β)(n) = (vn, ∅, true)
at computation step n ∈ N with binding history b ∈ ~B based on the generic activation
input i(ι)(n) with input channel history i ∈ ~I such that vn 6= ∅ ⇔ i(ι)(n). Consequently,
bindings C ′ ∈ a(β)(n) with material port activation history a ∈ ~A(B ∪ Y ∪ X) only
appear upon activation.

8.2 Components

In the following, the (non-reusable) component definitions of the system model are ex-
plained. The components include the pick and place unit itself (i.e. the actual system
under development, see Section 8.2.1) as well as respective subcomponents and template
instances. The direct subcomponents of the pick and place unit are the distributor (for
moving workpieces between different working positions, see Section 8.2.2), the stamper

186

8.2 Components

(for stamping workpieces, see Section 8.2.7), and the sorter (for sorting workpieces into
different exit locations, see Section 8.2.11). Each of the direct subcomponents contains
further subcomponents such as distributed, but interacting software controllers as well
as specific sensors and actuators forming self-contained mechatronic subsystems. Note
that this component architecture has been selected specifically for demonstrating the
mechatronic modularization capabilities of the approach. Subsequently, the first two
levels of the component hierarchy are described in greater detail including requirements,
scenarios, monitors, subcomponents and channels, behaviors, and parts. For the re-
maining levels of the component hierarchy (i.e. subcomponents of the distributor, the
stamper, and the sorter) brief descriptions are provided only similar to the descriptions
of the templates in Section 8.1 due to space limitations.

8.2.1 PPU

As mentioned previously, in the performed study the actual system under development is
the pick and place unit (PPU) depicted in Figure 8.12. In general, the PPU is responsible
for stamping and sorting workpieces, which have been introduced in Section 8.1.1. In
fact, the purpose of the PPU is similar to the purpose of waste sorting plants processing
different kinds of potentially contaminated containers.

Figure 8.12: PPU scene view.

187

8 Industry-close showcase

The model of the pick and place unit encompasses eight informal/natural language
requirements. One requirement concerns the types of workpieces (i.e. white, gray, and
black) to be processed by the system. Six requirements relate to the activities to be
performed with the workpieces instead. The activities include sorting and optionally
stamping the workpieces. Hereby, sorting is expressed in terms of moving the workpieces
to different exist locations depending on their type. Finally, one requirement holds
respective timing constraints regarding the activities.

Classification Description

1 Input/Output Handle white, gray and black workpieces
2 Activity Move white workpieces from the entry to the exit one
3 Activity Move gray workpieces from the entry to the exit two
4 Activity Move black workpieces from the entry to the exit three
5 Activity Stamp white workpieces
6 Activity Do not stamp gray workpieces
7 Activity Do not stamp black workpieces
8 Property Move and stamp workpieces within 150 seconds

Subsequently, the syntactic interface of the pick and place unit contains eight ports
(five material interaction and three data ports). Four material interaction ports represent
the entry and exit locations of workpieces and can be derived from the requirements
directly. The fifth material interaction port describes the location, where workpieces are
stamped. Not that the stamp location cannot be derived from the requirements, but
has to be defined by the engineers during process specification instead. Finally, all three
data ports have been added during scenario specification, where the communication
protocol with the environment has been concretized. In particular, the pick and place
unit provides an initial ready signal, after which start signals can be issued for each
workpiece. After processing the respective workpieces, the start signals, in turn, are
acknowledged by finished signals.

Source Name Type (Parameters) Description

Requirement Entry Material interaction port (Workpiece) Entry location
Requirement Exit one Material interaction port (Workpiece) Exit location one (white w.)
Requirement Exit two Material interaction port (Workpiece) Exit location two (gray w.)
Requirement Exit three Material interaction port (Workpiece) Exit location three (black w.)
Monitor Stamp Material interaction port (Workpiece) Stamp location
Scenario Start Data port (Input, Boolean) Start signal
Scenario Ready Data port (Output, Boolean) Ready signal
Scenario Finished Data port (Output, Boolean) Finished signal

188

8.2 Components

Then, for each type of workpiece (i.e. white, gray, and black) one scenario has been
defined. Hereby, the structure of the three scenarios is identical as shown in Figure 8.13.
Each scenario waits for the ready signal to be received from the pick and place unit
before generating a workpiece at the entry location, starting workpiece processing, and
testing the outcome for compliance with the requirements. In particular, the scenarios
verify the exit locations, workpiece states, and respective timing constraints.

Figure 8.13: PPU single workpiece scenario view.

Technically, each scenario consists of two material life ports entry and exit (different
locations for each workpiece type), five steps initial step, start step, wait step, remove
step, and final step as well as four transitions create, start, finished, and removed. The
scenario entry port corresponds to the PPU entry port introduced previously. The
scenario exit port corresponds to the PPU exit port instead. First, the scenario waits
for the ready signal to be received from the PPU. The waiting time is limited by a
duration constraint. Then, a workpiece of the specific type is created at the entry
location. Afterwards, the start signal is sent to the PPU. Now the scenario waits for
the finished signal to be received from the PPU. Again, the waiting time is limited by a
duration constraint. After receiving the finished signal, the scenario tries to remove the
workpiece at the exit location. If the workpiece can be removed, the scenario terminates
successfully. In all other cases the scenario fails.

In addition to the scenarios the pick and place unit comprises a (process) monitor,
which is shown in Figure 8.14. The monitor defines the sequences of activities that
need to be taken after receiving a start signal from the environment and observing a
workpiece at the entry port. In particular, the monitor adds the stamp location as well
as timing constraints for the individual activities, which have not been defined as part
of the requirement specification. Note that the entry port has been defined as part of
the syntactic interface of the pick and place unit before. In the future, one might want

189

8 Industry-close showcase

to decouple monitor-specific material interaction ports from the syntactic interface of
revised spatio-temporal components. The decoupling, however, requires a substantial
revision of the modeling technique (see Chapter 5) and the prototypical tooling (see
Chapter 7), which is why it has not been carried out yet.

Figure 8.14: PPU monitor view.

Internally, the monitor model includes five activities wait, move white workpiece to
stamp, stamp white workpiece, and move white workpiece to exit one as well as move
gray/black workpiece. Furthermore, the specification contains six transitions unstamped
white workpiece @ entry, unstamped white workpiece @ stamp, stamped white workpiece
@ stamp, stamped white workpiece @ exit one, unstamped gray/black workpiece @ entry,
and unstamped gray/black workpiece @ exit two/three. Initially, the monitor waits for
an unstamped workpiece to be observed at the entry port. Then, depending on the
workpiece type (i.e. white, gray, or black) the monitor switches to either the move
white workpiece to stamp or the move gray/black workpiece activity. In both cases the
moving time is limited by a duration constraint. Subsequently, in case of gray and black
workpieces the monitor switches back to the wait activity as soon as an unstamped
workpiece of the respective type is observed at the exit two/three port. Instead, in case
of white workpieces the monitor switches to the stamp white workpiece activity as soon

190

8.2 Components

as the unstamped workpiece can be observed at the stamp location. Again the stamping
activity is limited by a duration constraint. The stamp activity finishes as soon as a
stamped workpiece can be observed at the stamp location. Then, the monitor switches
to the move white workpiece to exit one activity, which is also limited by a duration
constraint. Finally, the monitor switches back to the Wait activity in case stamped
white material can be observed at the exit one location.

Subsequently, the decomposition of the pick and place unit is shown in Figure 8.15.
The pick and place unit comprises three subcomponents, namely a distributor, a stamper,
and a sorter. Note that the diagram also shows the material interaction ports of the
pick and place unit. However, at this level interactions between the subcomponents and
the material interaction ports were not used yet. Rather, the ports are used by the test
and process specifications from before as discussed previously.

Figure 8.15: PPU components/channels view.

Internally, the distributor component is responsible moving workpieces between and
coordinating the other two subcomponents (see Section 8.2.2). In contrast, the stamper
component is responsible for stamping workpieces (see Section 8.2.7). Finally, the sorter
component is responsible for moving workpieces to their respective exit location (see Sec-
tion 8.2.11). Note that more detailed descriptions of the three components are provided
in the subsequent sections. At last, the pick and place unit component also includes two
physical/geometrical parts, namely the base and the stack. The base defines a large cube

191

8 Industry-close showcase

onto which the other components are mounted permanently. The stack defines a small
cube underneath the entry material ports instead, on which workpieces can be placed
initially before starting workpiece processing.

8.2.2 PPU / Distributor

The distributor is the first subcomponent of the pick and place unit (see Section 8.2.1).
As the name states, the distributor is responsible for distributing workpieces between the
other subcomponents of the pick and place unit, namely the stamper (see Section 8.2.7)
and the sorter (see Section 8.2.11). Furthermore, the distributor is responsible for coor-
dinating the the subcomponents as well as communicating with the environment of the
pick and place unit. The geometric model of the distributor is shown in Figure 8.16.

Figure 8.16: PPU distributor scene view.

The distributor model includes six original informal/natural language requirements.
Similar to the pick and place unit, the first requirement concerns the types of workpieces
(i.e. white, gray, and black) being processed. Then, four requirements describe the ac-
tivities to be performed with the workpieces. As opposed to the pick and place unit, the
distributor component is responsible for moving workpieces between different locations
only. Finally, one requirement limits the duration of the activities. Note that the coordi-
nation and communication responsibilities are not part of the requirement specification,
which has been derived from the original documentation [VHLFF14]. The reason is
that the original documentation does not include much information about the software
controllers. Furthermore, opposed to the original documentation a distributed control

192

8.2 Components

approach was targeted for demonstrating the capabilities of the proposed approach.
Consequently, control responsibilities were assigned to the distributor component, which
is not the case in the original documentation.

Classification Description

1 Input/Output Handle white, gray and black workpieces
2 Activity Move white workpieces from the entry to the stamper
3 Activity Move gray workpieces from the entry to the sorter
4 Activity Move black workpieces from the entry to the sorter
5 Activity Move white workpieces from the stamper to the sorter
6 Property Move workpieces within 50 seconds

The syntactic interface of the distributor component contains 15 ports (six mate-
rial interaction ports and nine data ports). Three material interaction ports describe
the locations, where workpieces are expected to be received from and returned to the
environment, and can be derived from the requirements directly. The other three mate-
rial interaction ports describe intermediate workpiece locations, which have been added
during (manufacturing) process specification. Finally, the nine data ports are required
for implementing the coordination and communication responsibilities and have been
introduced during test specification.

Source Name Type (Parameters) Description

Requirement Stack low Material interaction port (Workpiece) Stack location low
Requirement Stamper low Material interaction port (Workpiece) Stamper location low
Requirement Sorter low Material interaction port (Workpiece) Sorter location low
Monitor Stack high Material interaction port (Workpiece) Stack location high
Monitor Stamper high Material interaction port (Workpiece) Stamper location high
Monitor Sorter high Material interaction port (Workpiece) Sorter location high
Scenario Stamper ready Data port (Boolean, Input) Stamper ready signal
Scenario Sorter ready Data port (Boolean, Input) Sorter ready signal
Scenario Start Data port (Boolean, Input) Start signal
Scenario Stamper finished Data port (Boolean, Input) Stamper finished signal
Scenario Sorter finished Data port (Boolean, Input) Sorter finished signal
Scenario Ready Data port (Boolean, Output) Ready signal
Scenario Start stamper Data port (Boolean, Output) Start stamper signal
Scenario Start sorter Data port (Boolean, Output) Start sorter signal
Scenario Finished Data port (Boolean, Output) Finished signal

Then, for each activity-related requirement one scenario is defined as shown in Fig-
ure 8.17. The structure of the distributor scenarios is identical to the structure of the
scenarios of the pick and place unit (see Section 8.2.1). The reason is that all scenarios

193

8 Industry-close showcase

share identical interaction protocols. The interaction protocol expects the system under
test (i.e. the pick and place unit or the distributor) to send a ready signal. Then, the
environment may place a workpiece at some entry location and start workpiece process-
ing. Finally, the system under test has to return the workpiece at some exit location
and send the finished signal. Note that such patterns could be exploited in the future
to save modeling effort. However, first the question has to be answered, which patterns
appear in practice frequently.

Figure 8.17: PPU distributor scenario view.

Technically, each distributor scenario consists of two material life ports entry and exit,
five steps, and four transitions. The entry ports correspond to the stack and the stamper
locations, while the exit ports correspond to the stamper and the sorter locations. First,
the scenario sends the stamper and sorter ready signal to the distributor. Then, the
scenario waits for the distributor to send its own ready signal to the environment within
a predefined duration. Note that the distributor is responsible for communicating with
the environment, while the stamper (see Section 8.2.7) and the sorter (see Section 8.2.11)
communicate with the distributor. Consequently, the distributor is responsible also for
coordinating the stamper and the sorter. Other system architectures might allocate
the responsibilities differently. For example, the coordination responsibility could be
allocated to a dedicated software component. However, the coordination responsibility
matches well with the material distribution responsibility of the distributor component.
Then, the scenario creates a workpiece at the entry location and sends the start signal.
Subsequently, the scenario waits for a maximum duration until the finished signal is
received. Finally, the scenario tries to remove the workpiece at the exit location.

Then, the model of the distributor includes on process specification, which is depicted
in Figure 8.18. The process specification defines three alternative activity sequences,
which correlate to the three activity-based requirements/scenarios. Additionally, the
process specification introduces three intermediate workpiece locations, namely stack,

194

8.2 Components

stamper, and sorter high. The intermediate workpiece locations are not part of the
requirement specification, but have been introduced by the process engineers instead.

Figure 8.18: PPU distributor monitor view.

Technically, the process monitor contains ten activities and twelve transitions. Ini-
tially, the monitor waits for the start signal to be received from the environment and a
workpiece to be observed at one of the entry locations. Then, the monitor expects the
workpiece to be lifted from the respective low to the respective high location within a
predefined duration (e.g. from stack low to stack high). Afterwards, the monitor expects
the workpiece to be moved/twisted to the target high location within a second predefined
duration (e.g. to sorter high). Finally, the monitor requires the workpiece to be dropped
at the respective low or exit location (e.g. to sorter low) and the finished signal to be
sent within a third, and last predefined duration. Subsequently, the monitor goes back
to the initial activity and waits for the next workpiece to be processed.

195

8 Industry-close showcase

To implement the process and test specifications introduced previously, the distributor
component employs eight subcomponents depicted in Figure 8.19. The subcomponents
include five sensors (see the left side of the diagram), one controller (see the middle of
the diagram) and two actuators (see the right side of the diagram). The purpose of each
subcomponent is explained in the following.

Figure 8.19: PPU distributor components/channels view.

Two instances of the workpiece sensor template (see Section 8.1.3) are used for detect-
ing workpiece presence and the type of the workpiece at each potential entry location

196

8.2 Components

(i.e. stack low and stamper low). Then, a lifter component (see Section 8.2.4) is used
for lifting and dropping workpieces from and to respective low and high locations. In
contrast, a twister component (see Section 8.2.3) is used for rotating the twister compo-
nent and, therefore, the lifted workpieces around a predefined rotation axis. Note that
the channel-based model of kinematic chains is used here (see Section 5.2.1 for more
information). Furthermore, three instances of the component sensor template (see Sec-
tion 8.1.2) are used to detect the rotational position of the lifter at discrete locations.
Finally, the controller component (see Section 8.2.6) is used for communicating with the
environment and coordinating the actuator movements. At last, the distributor compo-
nent also includes parts, namely one base as well as different mounts for the emitters
and collectors of the workpiece sensors, which can be seen also in Figure 8.16. The
base comprises a cylinder volume, which is aligned with the rotation axis of the twister.
Instead, the mounts contain box volumes underpinning the collector and emitter parts
of the respective workpiece sensors.

8.2.3 PPU / Distributor / Twister

The twister component is used inside the distributor component from Section 8.2.2 for
rotating the lifter component from Section 8.2.4 around a predefined axis, which is
shown in Figure 8.20. A very basic model of the twister is provided neglecting physical
parts and, hence, potential collisions within its environment. To implement the twister
behavior, for example, electric drives can be used.

Figure 8.20: PPU distributor twister scene view.

The model of the twister component includes two boolean data input ports, one for
clockwise rotation, the other for counter-clockwise rotation, and one kinematic energy
output port with a rotational reference transform. Furthermore, one behavior is defined
producing (counter-)clockwise rotation energy depending on the input assignments. Note
that two data input ports are provided for security reasons. Consequently, only one di-
rection must be activated at a time for kinematic energy to be produced by the actuator.

197

8 Industry-close showcase

If none of the directions is activated or both are activated, the actuator is turned off.
This behavior coincides with commercial actuator equipment.

8.2.4 PPU / Distributor / Lifter

Then, the lifter component is employed inside the distributor component from Sec-
tion 8.2.2 for lifting and dropping instances of the workpiece template from Section 8.1.1.
The geometric model of the lifter component is shown in Figure 8.21. The model rep-
resents a basic crane with gripper. The lifter can be implemented, for example, with
pneumatic components for both lifting and gripping.

Figure 8.21: PPU distributor lifter scene view.

For implementation of the lifter component two subcomponents are used as shown
in Figure 8.22, namely an instance of the abstract static cylinder template from Sec-
tion 8.1.4 and an arm component described in more detail in Section 8.2.5. The arm
component is responsible for gripping workpieces, while the (mechanical) cylinder com-
ponent is responsible for lifting the arm component and, hence, gripped workpieces.
Note that the physical shape of the cylinder is omitted in the model for simplicity. Fur-
thermore, note that the cylinder is aligned with the y-axis and covered completely by
the arm geometry, which is why the rotation axis of the reference transform the the
cylinder’s kinematic energy output port is not visible in Figures 8.21 and 8.23.

Figure 8.22: PPU distributor lifter components/channels view.

198

8.2 Components

During execution the boolean data input of the lifter component is forwarded directly
to the cylinder for controlling its kinematic energy output. Then, the kinematic energy
output is forwarded to the arm component for changing its elevation along the y-axis.
Again, note that the channel-based model of kinematic chains is used here (see Sec-
tion 5.2.1 for more information). Moreover, a second boolean data input of the lifter
is forwarded directly to the arm component for controlling its gripper state. The grip-
per state can be active and, thus, binding colliding workpieces or inactive and, hence,
non-binding instead. Note that internally the binding mechanism is realized by means
of a kinematic energy forwarding material interaction port not visible in the compo-
nents/channels view from Figure 8.22. At last, the lifter component includes one physi-
cal part, namely a small cuboid nub. Similar to the cylinder and the arm components,
the nub is rotated by the twister component from Section 8.2.3. Consequently, the nub
collides with the instances of the (generic) component sensor template (see Section 8.1.2)
of the distributor component (see Section 8.2.2). These collisions allow one to derive the
rotational position of the lifter component at discrete locations.

8.2.5 PPU / Distributor / Lifter / Arm

Subsequently, the arm component is used inside the lifter component (see Section 8.2.4)
of the distributor component (see Section 8.2.2) for gripping instances of the workpiece
template (see Section 8.1.1). The geometric model of the arm is shown in Figure 8.23.
Note that compared to the lifter component only the nub part is missing, which must not
be elevated because otherwise the rotational position cannot be determined anymore.

Figure 8.23: PPU distributor lifter arm scene view.

Internally, the arm component includes one boolean data input port and one kinematic
energy forwarding material interaction port representing the gripper location. The grip-
per location corresponds to the small black wire frame box volume shown in Figure 8.23.
Furthermore, one behavior is defined (de-)activating the material interaction port based
on the boolean data input similar to the tip component of the concrete dynamic cylinder

199

8 Industry-close showcase

template (see Section 8.1.8). Consequently, in case the material interaction port is ac-
tive, colliding instances of the workpiece template are bound to the port and kinematic
energies are forwarded, which are applied to any of the port’s parent components (i.e.
the arm component, the lifter component, the distributor component, or the pick and
place unit itself). Note that at this point also defective gripper behavior can be modeled
to design the system for robustness against component failure [RHZ14a]. Finally, the
arm model also defines two physical parts, namely a cylinder and a box. The cylinder is
aligned with the rotation axis of the twister component, while the box connects the tip
of the cylinder to the material interaction port introduced previously. A more detailed
model of the actual gripper is omitted here.

8.2.6 PPU / Distributor / Controller

Finally, the distributor component from Section 8.2.2 also includes a controller compo-
nent for coordinating the twister component (see Section 8.2.3) and the lifter component
(see Section 8.2.4) based on sensor measurements. The controller model contains data
input ports for each sensor measurement (e.g. presence and type of workpiece at stack
and stamp locations) and data output ports for each actuator control value (i.e. cylinder
or gripper activation). In contrast, the controller dynamics is specified by means of a
behavior depicted in Figure 8.24.

Figure 8.24: PPU distributor controller behavior.

200

8.2 Components

The behavior consists of four variables, seven states and 15 transitions. Initially,
the controller raises the lifter component and waits for the stamper component (see
Section 8.2.7) and the sorter component (see Section 8.2.11) to send the ready signal
before informing the environment about its own ready state and switching to the still high
state. In still high state the controller waits for workpieces to be detected at the entry
locations and the start signal to be received from the environment. Then, the controller
updates internal variables to remember the workpiece type and the target location.
Afterwards, the controller switches to the twisting clockwise or the twisting counter-
clockwise state to move the lifter component to the location, where the workpiece has
been detected. Being at the correct location, the controller switches to the dropping state
to lower the lifter component. Then, in still low state the controller activates the gripper,
determines the new target location, and starts raising the lifter component again. In
still high state, the controller decides in which direction to twist the lifter component
to. Then, dropping is triggered a second time until in still low state is reached. Now,
the controller decides to deactivate the gripper and raise the lifter component again.
Finally, the controller waits in still high state for another workpiece to be detected and
a start signal to be received.

8.2.7 PPU / Stamper

The stamper component is the second subcomponent of the pick and place unit as
introduced in Section 8.2.1. The stamper is responsible for stamping (i.e. transferring
stamp energy to) instances of the workpiece templates (see Section 8.1.1). The geometric
model of the stamper component is shown in Figure 8.25.

Figure 8.25: PPU stamper scene view.

201

8 Industry-close showcase

Initially, five requirements have been defined for the stamper module one regarding
the types of workpieces being processed (i.e. white, gray, and black), three regarding the
processes (or activities) to be performed with the workpieces, and one regarding the time
limits of the processes respectively activities. Note that, in contrast to the distributor
component (see Section 8.2.2), the main purpose of the stamper component is stamping
workpieces rather than moving workpieces between different locations. However, the
requirement specification defines only the entry and exit locations of workpieces, while
the stamp location itself is left undecided.

Classification Description

1 Input/Output Handle white workpieces
2 Activity Receive workpieces at the entry location
3 Activity Stamp workpieces
4 Activity Provide workpieces at the exit location
5 Property Handle workpieces within 50 seconds

Then, the model of the stamper comprises five ports, two material interaction ports
and three data ports. One material interaction port represents can be derived from
the requirement directly, namely the entry/exit location (which is identical in case of
the stamper component). The second material interaction port is required for manu-
facturing process (or monitor) specification, namely the location where the instances of
the workpiece template are stamped. Finally, the data ports are added during scenario
specification to specify signal-based communication as part of the interaction protocol,
which has been described previously. In particular, the interaction protocol requires the
stamper to send a ready signal, before workpieces can be processed. Furthermore, a
start signal is required for triggering workpiece processing. Finally, a finished signal has
to indicate the end of workpiece processing.

Source Name Type (Parameters) Description

Requirement Entry/exit Material interaction port (Workpiece) Entry location
Monitor Stamp Material interaction port (Workpiece) Stamp location
Scenario Start Data port (Boolean, Input) Start signal
Scenario Ready Data port (Boolean, Output) Ready signal
Scenario Finished Data port (Boolean, Output) Finished signal

From the requirements one scenario was derived for white workpieces (see Section 8.1.1)
only. The scenario is structured identically to scenarios of the distributor component
(see Section 8.2.2) and the pick and place unit (see Section 8.2.1). Finally, a screenshot
of the stamper scenario is shown in Figure 8.26.

202

8.2 Components

Figure 8.26: PPU stamper scenario view.

In the initial step the scenario waits for the stamper component to send the ready signal
within a predefined maximum duration. Then, the scenario creates a white workpiece at
the entry/exit location and switches to the start step. Next, the scenario sends the start
signal to the stamper component and goes to the wait step. In the wait step the scenario
waits for a maximum duration until the stamper component sends the finished signal.
Thereafter, in the remove step the scenario tries to remove the stamped workpiece at
the entry/exit location. If the removal succeeds, the scenario reaches the final step and
terminates successfully. Otherwise, the scenario fails and produces a semantic issue.

From the scenarios one process specification (i.e. a monitor) was derived, which de-
termines the intermediate process steps as depicted in Figure 8.27. In particular, the
monitor adds the actual stamp location to the entry/exit location. Also, the monitor
defines tighter time frames for moving and stamping activities. Both the dtamp location
and the time frames are not defined in the requirement specification and, thus, represent
design decision taken by the process engineers.

Figure 8.27: PPU stamper monitor view.

203

8 Industry-close showcase

Initially, the monitor waits for an unstamped workpiece to be observed at the en-
try/exit location and the start signal to be received from the environment. Then, the
monitor switches to the move to stamp activity for a maximum duration until the un-
stamped workpiece can be observed ad the stamp location. Afterwards, the monitor
resides in the stamp activity for second maximum duration until a stamped workpiece
is present at the stamp location. Afterwards, the monitor changes to the move to en-
try/exit activity for a third, and last, maximum duration until a stamped workpiece
can be observed at the entry/exit location and the stamper sends the finished signal.
Finally, the monitor goes back into the wait activity.

For implementing the scenario and process specifications five subcomponents were
employed as shown in Figure 8.28. The subcomponents include one instance of the
concrete static cylinder template (see Section 8.1.5), one instance of the abstract static
cylinder template (see Section 8.1.4), a basket component (see Section 8.2.8), a stamp
component (see Section 8.2.9), and a controller component (see Section 8.2.10).

Figure 8.28: PPU stamper components/channels view.

The controller component is responsible for communicating with the environment
and coordinating the other subcomponents. In particular, the controller receives the
start signal from the environment, controls the cylinder components, and provides the
ready and finished signals back to the environment. In contrast, the cylinders repre-
sent the actuators of the subsystem. More specifically, the cylinder components transfer
their translation energy to the basket and stamp components respectively. The basket
component is responsible for transporting workpieces from the entry/exit to the stamp
location. Therefore, the basket component binds workpieces and moves in horizontal di-
rection between the entry/exit and stamp locations. Furthermore, the stamp component
is responsible for transferring the actual stamp energy to the workpieces. Therefore, the

204

8.2 Components

stamp moves in vertical direction between its initial position and the stamp location,
where it collides with the workpieces and transmits the energy. Finally, the stamper
model also includes four parts, namely a base and three stamp mounts depicted in
Figure 8.25. The base is represented by a flat horizontal box volume, while the stamp
mounts are defined by two elongated vertical box volumes at the sides and one elongated
horizontal box volume at the top forming a frame.

8.2.8 PPU / Stamper / Basket

As mentioned previously, the basket component of the stamper component from Sec-
tion 8.2.7 is responsible for carrying instances of the workpiece template (see Sec-
tion 8.1.1) from the entry/exit location of the stamper component to the stamp location
of the stamper component and back. The geometric model of the basket is provided in
Figure 8.29 including basic physical parts and one kinematic energy forwarding material
interaction port.

Figure 8.29: PPU stamper basket scene view.

The physical parts of the basket component provide the frame where instances of
the workpiece template need to be placed. In particular, the parts allow one to test
during simulation whether the workpieces are placed at the correct location or not.
Slight misplacements are reported typically using part collisions (see Section 6.2.2). In
contrast, the material interaction port is configured to be always active, binds any type
of colliding component, and forwards kinematic energy (see Section 5.2.1).

8.2.9 PPU / Stamper / Stamp

Then, the stamp component of the stamper component from Section 8.2.7 is responsible
for transferring stamp energy to colliding instances of the workpiece template (see Sec-
tion 8.1.1). Note that the name “stamper” is supposed to represent a more functional
unit, while the name “stamp” ought to represent a more physical unit. The model of

205

8 Industry-close showcase

the stamp component includes basic physical parts and one material interaction port for
binding colliding workpieces dynamically as shown in Figure 8.30.

Figure 8.30: PPU stamper stamp scene view.

Internally, the stamp component comprises one behavior producing a constant stamp
energy output at the respective generic energy input port of the material interaction port.
Consequently, stamp energy can be transferred to colliding instances of the workpiece
template. The material interaction port itself is always active in the given model, but
could be activated when moving downwards only to be more realistic. Note that input
ports of material interaction ports can be written directly by behaviors for simplicity.
Similarly, output ports of material interaction ports can be read by behaviors directly.
This feature is not supported explicitly by the underlying theory (see Section 5.2.5).

8.2.10 PPU / Stamper / Controller

Finally, the controller of the stamper component from Section 8.2.7 is responsible for
(de-)activating the cylinder components, which move the basket component (see Sec-
tion 8.2.8) and the stamp component (see Section 8.2.9) towards each other. The be-
havior of the controller component is depicted in Figure 8.31.

Figure 8.31: PPU stamper controller behavior view.

206

8.2 Components

In opening basket state the controller activates the basket cylinder such that the bas-
ket moves from the stamp location to the entry/exit location (note that the basket
component resides at the stamp location initially due to deactivation of the monostable
cylinder component; see Section 8.1.4). Then, after a predefined number of time steps
the controller switches to the open basket state. Note that sensors were not used to
detect the position of the basket component (see Section 8.2.8) for simplicity. Conse-
quently, the given system design might be susceptible to malfunctions of the monostable
cylinder. However, such malfunctions can be neglected during conceptual design to re-
duce the complexity of the design problem and, hence, the time until verification and
validation. Note, however, that a methodology has been devised for introducing mal-
functions in later stages [RHZ14a] (which includes extending the behavior specifications
with malfunctioning states, adding scenarios for testing the response to malfunctioning
states, and extending the implementation to handle malfunctioning states appropri-
ately). Then, in the open basket state the controller waits for the start signal to be
received from the environment before switching in the closing basket state. In this state
the (monostable) basket cylinder component is deactivated such that the basket com-
ponent moves from the entry/exit location back to the stamp location. Again, after a
predefined duration the controller goes into the opening stamp state assuming that the
basket cylinder component was retracted successfully and the basket component resides
at the stamp location. Note that, here, sensors also could have been used to improve
the robustness of the system with respect to malfunctions. In the opening stamp state
the (monostable) stamp cylinder component is activated such that the stamp compo-
nent (see Section 8.2.9) moves from its initial location to the stamp location. Note that
the motion of the stamp component causes the material interaction port of the stamp
component to collide with the workpiece, which, in turn, causes generic stamp energy
to be transferred from the stamp component to the workpiece. Then, after a predefined
duration the controller switches to the closing stamp state. In this state the stamp cylin-
der component is deactivated such that the stamp component moves back to its initial
position. After a predefined duration the controller switches back to the opening basket
state and reiterates through the described procedure.

8.2.11 PPU / Sorter

The sorter component is the last subcomponent of the pick and place unit as introduced
in Section 8.2.1. The sorter component is responsible for moving instances of the work-
piece template (see Section 8.1.1) from the entry location of the subcomponent to their
respective exit locations, which depends on the type of the workpieces. The geometric
model of the sorter component is provided in Figure 8.32.

207

8 Industry-close showcase

Figure 8.32: PPU sorter scene view.

The sorter component comprises six requirements, one regarding the types of work-
pieces being processed (i.e. white, gray, and black), four regarding the processes and
activities to be performed (i.e. moving workpieces), and one regarding constraints for
the respective processes and activities (i.e. time limits). Note that, as opposed to the
stamper component (see Section 8.2.7), the main purpose of the sorter component is
moving potentially stamped workpieces instead of stamping workpieces itself.

Classification Description

1 Input/Output Handle white, gray and black workpieces
2 Activity Receive workpieces at the entry location
3 Activity Move white workpieces to the exit one location
4 Activity Move gray workpieces to the exit two location
5 Activity Move black workpieces to the exit three location
6 Property Handle workpieces within 50 seconds

Then, the sorter component contains five material interaction ports and three data
ports. Four material interaction ports represent the entry and exit location of workpieces,
which can be derived from the requirements directly (i.e. entry and exit one/two/three).
The other material interaction port has been added during behavior specification (i.e.
the belt surface) to transfer kinematic energy to workpieces being process by the sorter

208

8.2 Components

component. Finally, the three data ports have been added during scenario specification.
Again, the data ports are required to implement the interaction protocol introduced
previously (see Sections 8.2.1, 8.2.2, and 8.2.7). Remember that the interaction protocol
comprises a ready signal, a start signal, and a finished signal.

Source Name Type (Parameters) Description

Requirement Entry Material interaction port (Workpiece) Entry location
Requirement Exit one Material interaction port (Workpiece) Exit one location
Requirement Exit two Material interaction port (Workpiece) Exit two location
Requirement Exit three Material interaction port (Workpiece) Exit three location
Behavior Belt surface Material interaction port (Workpiece) Belt surface location
Scenario Start Data port (Boolean, Input) Start signal
Scenario Ready Data port (Boolean, Output) Ready signal
Scenario Finished Data port (Boolean, Output) Finished signal

Subsequently, the model of the sorter component comprises three structurally identical
scenarios (one for each type of workpiece, i.e. white, gray, and black) as depicted in
Figure 8.33. Similar to the pick and place unit (see Section 8.2.1) the scenarios differ
only in the types of workpieces created and the exit locations, where workpieces are
expected to be returned. Again, note the recurring specification pattern here, which
could be exploited in future version of the approach.

Figure 8.33: PPU sorter scenario view.

In the initial step the scenario waits for the sorter component to send the ready signal
for a maximum duration. After receiving the ready signal the scenario creates a workpiece
of the respective type at the entry location and switches to the start step. Then, the
scenario sends the start signal to the sorter component and goes into the wait step for
a second maximum duration. After receiving the finished signal from the sorter the
scenario changes to the remove step. Thereafter, if a workpiece can be removed at the

209

8 Industry-close showcase

expected exit location the scenario reaches the final step and terminates successfully.
Otherwise, the scenario fails with a semantic issue (see Section 6.2).

This time, the monitor specification is omitted for simplicity. Note that, similar to
the previous components, the monitor specification could add intermediate workpiece
locations as well as additional timing constraints. Then, to implement the scenario spec-
ifications eight subcomponents are used as shown in Figure 8.34. The subcomponents
include four instances of the workpiece sensor template (see Section 8.1.3), two instances
of the concrete dynamic cylinder template (see Section 8.1.7), one actuator component,
which is described in more detail in Section 8.2.12, and one controller component, which
is explained in Section 8.2.13 instead.

Figure 8.34: PPU sorter components/channels view.

Again, the controller component is responsible for communicating with the environ-
ment and coordinating the other subcomponent. In particular, the controller component

210

8.2 Components

receives the start signal from the environment and provides the ready and finished sig-
nals back to the environment. Furthermore, the controller component uses the inputs
from the workpiece sensor template instances to determine the location and the type of
workpieces at discrete locations along the belt surface. Finally, the controller component
coordinates the instances of the concrete dynamic cylinder template and the actuator
component such that the workpieces are moved to the correct exit location. Note that,
as opposed to the previous components, this time dynamic cylinders are used because
workpieces are generated components C ′ ∈ G(n) with computation step n ∈ N. Finally,
the sorter also includes 14 physical parts. The first part represents the elongated box
geometry of the underlying conveyor belt. Then, eight small box geometries constitute
the mounts for the collectors and emitters of the four instances of the workpiece sensor
template. Another two box geometries stand for the mounts of the two instances of the
concrete dynamic cylinder template. Finally, three box geometries represent the ramps
underpinning the three exit locations.

8.2.12 PPU / Sorter / Actuator

The actuator component of the sorter component (see Section 8.2.11) is responsible for
generating translational kinematic energy. The translation energy is used for moving
workpieces along a predefined motion axis (i.e. the belt surface) towards their exit loca-
tion. The geometric model of the actuator component is shown in Figure 8.35.

Figure 8.35: PPU sorter actuator scene view.

Furthermore, the actuator component comprises one boolean data input port for (de-
)activation of the kinematic energy output. Based on the data input the internal behavior
decides to generate a constant kinematic energy output along the depicted axis or not.
Note that in this basic model acceleration as well as the weight of the workpiece are
not considered. The weight could be modeled, for example, as a generic output of
the workpiece template (see Section 8.1.1). Consequently, one could adjust the belt
velocity with respect to the sum of weights of the bound workpieces. Note, however,

211

8 Industry-close showcase

that more accurate physical models require increased modeling efforts. Such modeling
efforts might be necessary in some cases for catching the critical system states during
conceptual design. However, in case of the pick and place unit the simple model is
considered to be sufficient. Note that a more thorough discussion of the validity of the
model is provided later in Section 9.2.

8.2.13 PPU / Sorter / Controller

Finally, the controller component of the sorter component from Section 8.2.11 is respon-
sible for communicating with the environment and coordinating the sorter actuators
based on the sorter sensor measurements. The respective behavior of the controller
component is depicted in Figure 8.36.

Figure 8.36: PPU sorter controller behavior view.

In the initial state the controller sends the ready signal and switches to the wait-
ing state. Note that the sorter component is ready immediately, while the distributor
component (see Section 8.2.2) and the stamper component (see Section 8.2.7) need to
perform actions first. Then, if the start signal is received from the environment and a

212

8.3 Summary and outlook

workpiece is detected by the workpiece sensor at the entry location of the sorter compo-
nent the controller switches to the moving state and activates the actuator component
(see Section 8.2.12). Afterwards, three cases can be distinguished: (1) If a white work-
piece is detected by the workpiece sensor at the exit one location the controller switches
to the moving to exit one state. (2) If a gray workpiece is detected by the workpiece
sensor at the exit two location the controller switches to the moving to exit two state.
And (3) if a black workpiece is detected by the workpiece sensor at the exit three loca-
tion the controller switches to the moving to exit three state. In the first two states the
controller waits for a predefined duration before deactivating the actuator component
and activating the respective instances of the concrete dynamic cylinder template (see
Section 8.1.7), which pushes the workpiece to its expected exit location. In the third
case an extra instance of the concrete dynamic cylinder template can be omitted. In-
stead, the controller only waits for a predefined duration before deactivating the actuator
component and switching to the finish state. Note that, in the last case, the controller
assumes that the workpiece has be moved past the end of the conveyor belt, where the
exit three location can be found. Finally, in the finish state the controller sends the
finished signal to environment and changes to the initial waiting state for reiterating
the described procedure. Note that, again, malfunctions of the conveyor belt or the
(monostable) cylinders were not considered, which is why additional sensors could be
omitted.

8.3 Summary and outlook

This chapter demonstrated the result of applying the test-driven method (see Chapter 3),
the underlying modeling technique (see Chapter 5), the quality issues (see Chapter 6),
and the prototypical tooling (see Chapter 7) to an industry-close showcase: The pick and
place unit. In particular, the reusable components of the model (called templates; see
Section 8.1) such as the workpieces, typical sensors, and typical actuators were explained.
Then, the main system component as well as the three top-level subcomponents were
described: The distributor, the stamper, and the sorter (see Section 8.2). Hereby, the
presentation concentrated on the requirements, properties, monitors, and scenarios of
the components. Together, the described components provide an example of how future
design documents could look like with the proposed approach. The next chapter discusses
critically the results, which have been obtained during the experiment.

213

9 Critical discussion

Subsequently, the feasibility of the test-driven design method (see Chapter 3), the va-
lidity of the system model (see Chapter 8) and the underlying modeling technique (see
Chapter 5), as well as the relevancy of the quality issues (see Chapter 6) are discussed.
To support an objective discussion, the prototypical tooling (see Chapter 7) was instru-
mented for collecting usage data. The data comprises (1) tool session start and end
events, (2) model element creation, modification, and deletion events, (3) test execution
start and end events, and (4) syntactic issue appearance and disappearance as well as
semantic issue appearance events. Note that for each event its global time stamp was
recorded to be able to reconstruct the temporal order of as well as the durations between
the individual events. At first, Table 9.1 provides an overview over the collected data.

Category Measurement Value Unit

Tool sessions
Tool session start events 49.00 Events
Tool session end events 49.00 Events
Tool session duration 18.44 Hours

Model elements
Model element creation events 3,397.00 Events
Model element modification events 145,785.00 Events
Model element deletion events 903.00 Events

Test executions
Test execution start events 686.00 Events
Test execution end events 686.00 Events
Test execution duration 3.72 Hours

Quality issues
Syntactic quality issue appearance events 2,574.00 Events
Syntactic quality issue disappearance events 2,574.00 Events
Semantic quality issue appearance events 340.00 Events

Table 9.1: Overview of the data collected during tool usage (see Chapter 8).

Overall, the prototypical tool was started and ended 49 times. Hereby, the tool session
end events indicate that the prototypical tool did not crash once during the experiment.
Furthermore, the 49 tool sessions amount to 18.44 hours of tool usage, during which
the entire showcase (see Chapter 8) has been developed from scratch. Then, during
development of the showcase 3,397 model elements were created, 145,785 modification

215

9 Critical discussion

events were recorded, and 903 model elements were deleted again. Note that the modifi-
cation events include every little change to any attribute of any model element or to any
association between any two model elements. Subsequently, during tool usage 686 test
executions have occurred including individual test runs as well as the generation of test
reports (see Section 7.1.3). Again, none of the test executions crashed, which is indicated
by the same number of test execution end events. Moreover, 3.72 hours of tool usage
can be attributed to test execution and inspection of the test results, which amounts to
20% of the total tool session duration. Finally, during modeling 2,574 syntactic issues
appeared, which all could be resolved successfully as indicated by the respective number
of disappearance events. In contrast, during test execution 340 semantic issues could be
detected. Note that for semantic issues disappearance events are not recorded because
semantic issues are detected only sporadically during test execution.

In the following, first the feasibility of the test-driven method is evaluated in Sec-
tion 9.1. Then, the validity of the obtained model is discussed in Section 9.2. Sub-
sequently, the relevancy of the quality issues is analyzed in Section 9.3. Finally, the
validity of the presented study is explained in Section 9.4.

9.1 Method feasibility

First, one needs to consider whether the test-driven design method (see Chapter 3)
could be applied successfully during the experiment. From a successful application one
can conclude that the test-driven design method is feasible, in principle, for the cyber-
physical manufacturing system domain. To answer the question of method feasibility,
the actual design process is reconstructed from the usage data, which has been carried
out during the experiment. In particular, the model change events are analyzed with
respect to the activity sequences (see Section 9.1.1) as well as potential design revisions
(see Section 9.1.2). Furthermore, the test execution events are evaluated with respect
to potential system increments (see Section 9.1.3).

9.1.1 Activity sequences

Subsequently, the order, in which the design information has been added to the system
model (see Chapter 8), is evaluated with respect to the order prescribed by the test-
driven design method (see Chapter 3). For this purpose, Figure 9.1 shows the model
change events over time assigned to the top-level components of the system model (i.e.
the pick and place unit, the distributor, the stamper, and the sorter; see Chapter 8) and
classified by the features of the modeling technique (i.e. requirements, ports, scenarios,
monitors, components, behaviors, and parts; see Chapter 5).

216

9.1 Method feasibility

Figure 9.1: Model element creation, modification, and deletion events associated with
the top-level components over time.

The diagram shows that for each top-level component of the design indeed the prepa-
ration (shades of red) and the implementation (shades of blue) phases can be distin-
guished. In particular, the scenarios (or test cases) are specified before working on the
implementation-level details, which represents a core principle and prerequisite of test-
driven development [Bec02]. Furthermore, one can observe that mechanical parts are
added in the later phases of the development project. This observation indicates an
effective resolution of the mechanical dominance challenge described in Section 1.3.1.
Consequently, the sequence of modeling activities adheres mostly to the process pre-
scribed in Chapter 3. Furthermore, the diagram shows that the process indeed proceeds
in iterations because work on components, behaviors and parts (i.e. the implementation
phase elements) might be followed by work on requirements, ports, scenarios, and mon-
itors (i.e. the preparation phase elements). The iterative process is most distinct for the
distributor component and least distinct for the stamper component. However, from the
picture it does not become clear whether the iterations represent revisions of existing
design knowledge or additions of novel design knowledge. Still, from the iterations one
can conclude that a more agile approach has been selected over the traditional waterfall
approach, which requires a strict order of the activities.

9.1.2 Design revisions

Next, the question arises whether and how much of the design information has been
revised during the iterations observed in the previous section. To answer this question,
the model element creation and deletion events are analyzed over time with respect to
the features of the modeling technique (i.e. requirements, ports, scenarios, monitors,

217

9 Critical discussion

components, behaviors, and parts; see Chapter 5). The result of this second analysis is
shown in Figure 9.2. Note that this time the elements of the modeling technique are
ordered by their absolute frequencies.

Figure 9.2: Model element creation and deletion events associated with the features of
the modeling technique over time.

The diagram shows that during the course of the experiment 903 model elements
have been deleted from the model, while 3,397 model elements have been created in
total. Consequently, around 27% of the design knowledge was obsolete at some point
of the development project and, hence, could be removed completely. Then, 489 out of
the 903 deleted model elements represent behaviors (see Section 5.2.5), which amounts
to approximately 54% of the deletions. Another 262 deleted model elements can be
attributed to scenarios (see Section 5.3.4), which amounts to approximately 29% of the
deletions. Furthermore, the most scenario deletion events have been recorded between
10.5 and 11.5 hours after starting the experiment, while the most behavior deletion
events could be observed two hours later. When comparing this data to the figure from
the previous section (see Figure 9.1), one can see that the scenarios of the pick and place
unit have been revised before revising the sorter and distributor components. During the
revision, the interaction protocols between the components and their environments have
been changed. In particular, the original versions of the pick and place unit and the sorter
component started autonomously when observing a workpiece at their start locations,
while in the revisions an additional start signal was added. The revisions served to align

218

9.1 Method feasibility

the interaction protocols of the pick and place unit and the sorter component with the
interaction protocols of the distributor and stamper components, which both required a
start signal from the beginning. In summary, one can conclude that indeed a substantial
amount of design knowledge (i.e. at least 27%) has been revised during the experiment.

9.1.3 System increments

Finally, the question arises whether the system model has been developed in increments,
which is particularly characteristic for test-driven development [Bec02]. To answer this
question, the test execution events and the semantic issue appearance events are ana-
lyzed. In particular, the points in time are reconstructed when the individual scenarios
(or test cases) could be terminated successfully and, thus, when partially complete sys-
tem models were available. The result of this analysis is provided in Figure 9.3.

Figure 9.3: Test execution events and respective outcomes associated with the individual
components and their scenarios over time.

219

9 Critical discussion

The diagram shows that first the sorter component (see Section 8.2.11) is implemented.
After 2.5 hours the sorter scenarios are executed for the first time leading to severe se-
mantic issues. Then, one hour later all three scenarios terminate successfully. In between
the white workpiece scenario is used for testing only, while the gray and black workpiece
scenarios are omitted. Nevertheless, all three scenarios are passed simultaneously, which
was possible due to the strong similarity in control behavior. Subsequently, the imple-
mentation of the distributor component (see Section 8.2.2) started after approximately
4 hours. Between hour 9 and 10 of the experiment the white, gray, and black workpiece
at stack scenarios terminate successfully before passing the white workpiece at stamp
scenario about 20 minutes later. Again, towards the end of this phase mostly the white
workpiece at stack scenario is executed, while the gray and black workpiece at stack
scenarios are neglected. However, all three scenarios pass almost simultaneously due
to similar control behaviors. In contrast, the white workpiece at stamp scenario took
some more time due to significant differences in the control behavior. Thereafter, the
sorter and the distributor component are integrated to pass the gray and black work-
piece scenarios of the pick and place unit (see Section 8.2.1). The integration of the two
components took approximately 3 hours. Most of the time was spent on aligning the
interaction protocols of the pick and place unit as well as the distributor and the sorter
components. After successful integration the implementation of the stamper component
(see Section 8.2.7) started around 12.5 hours after experiment initiation. The implemen-
tation of the stamper component took around 1 hour. Then, the stamper component is
integrated into the pick and place unit to pass the white workpiece scenario. This time
the integration only took about 30 minutes. Consequently, after 14 hours a complete
conceptual design of the pick and place unit was available. In the remaining 4.5 hours
the behavior of the distributor component is revised to improve readability and main-
tainability. Furthermore, an additional pick and place unit scenario was created testing
ten random workpieces in sequence, which has been omitted in Chapter 8 and is not dis-
cussed further due to space limitations. Finally, the mechanical parts of the distributor
are revised to reflect more closely a potential physical implementation. In summary, one
can conclude that the system model indeed has been developed in increments over the
test cases of the pick and place unit and its top-level subcomponents.

9.2 Model validity

Then, the question arises whether the system model from Chapter 8 and, hence, the un-
derlying modeling technique from Chapter 5 indeed provide a valid representation for the
conceptual design of cyber-physical manufacturing systems. Note that the validity of the

220

9.2 Model validity

theoretical concepts underlying the notion of revised spatio-temporal components (see
Section 5.2.1) has been discussed already in [Hum11]. Similarly, test automata [KT04]
resembling scenarios (see Section 5.3.4) and observer automata [BHJP05] resembling
monitors (see Section 5.3.3) are well-known concepts at least for a decade. Therefore,
the question is tackled from a different, more practical angle here: In Section 9.2.1 the
component architecture of the system model is evaluated, which has been developed dur-
ing the experiment. Then, in Section 9.2.2 the behavior of the developed system model
is analyzed. In both cases, the results of the experiment are compared to an appropri-
ate baseline. In particular, the comparison emphasizes the similarities and differences
between the obtained system model and the respective baseline.

9.2.1 System architecture

For assessing the validity of the component architecture of the system model from Chap-
ter 8 the original SysML documentation of the pick and place unit [LFVH13] is used
as a baseline. Note that the SysML documentation is assumed to contain a valid and
practically relevant architectural description though it has been developed in an aca-
demic context only. Subsequently, first the top-level decomposition of the pick and place
unit (i.e. the distributor, the stamper, and the sorter components) is compared, before
considering the decomposition of the top-level subcomponents.

Pick and place unit

Figure 9.4 provides the component architecture of main the pick and place unit com-
ponent (see Section 8.2.1), as it has been defined in the original SysML documenta-
tion [LFVH13]. Note that the SysML block definition diagram notation is used here. In
this notation, the block represent components, while the edges represent containment (or
part of) relationships. Furthermore, the black color marks strong similarities between
the system model and the baseline, while the red color indicates discrepancies.

Figure 9.4: Component architecture of the pick and place unit in the SysML documen-
tation [LFVH13].

221

9 Critical discussion

Fundamentally, both the SysML documentation as well as the system design, which
has been developed during the experiment (see Chapter 8), decompose the pick and
place unit into three components (or modules), namely the distributor, the stamper,
and the sorter. Note, however, that the SysML documentation additionally defines a
stack module providing a workpiece buffering mechanism at the entry location, which
has been neglected in the experiment to reduce the overall effort. Furthermore, note that
in the SysML documentation the modules where called differently, namely crane, stamp,
and conveyor. The renaming has been carried out to reflect more closely the functions
of the different modules rather their physical implementations. Still, one can conclude
that the top-level component architectures of the system model and the baseline are
identical. Consequently, the decomposition at this stage is assumed to be valid.

Distributor component

Then, Figure 9.5 provides the component architecture of the crane module (or the dis-
tributor component; see Section 8.2.2) as defined in the SysML of the pick and place
unit documentation [LFVH13]. Again, the black color marks strong similarities between
the system model and the baseline, while the red color indicates discrepancies instead.
Furthermore, the orange color indicates only minor discrepancies (e.g. different naming
or slightly different assignment of responsibilities).

Figure 9.5: Component architecture of the crane module in the SysML documenta-
tion [LFVH13].

Some more differences can be observed between the distributor component of the sys-
tem model and the crane module of the SysML documentation. For example, the system

222

9.2 Model validity

design assigns two material sensors to the distributor component, while the SysML doc-
umentation assumes that the sensor signals are provided by the environment of the
distributor component (i.e. no sensors are assigned). Consequently, a more autonomous
distributor component design was chosen, while the original design assigned less respon-
sibilities and, hence, more dependencies to the crane module. Furthermore, the system
design combines the monostable cylinder and the vacuum gripper of the SysML doc-
umentation into a single lifter component (see Section 8.2.4), which is rotated by the
turning table (or the twister component; see Section 8.2.3). In particular, in the model
the effect of the turning table is stated more explicitly. Then, the system model uses
only three micro switches (or generic sensor components; see Section 8.1.2), which are
assigned to the distributor component directly rather than to the turning table. Note
that the additional micro switch is obsolete, which is why it has been omitted. Fur-
thermore, the micro switches were factored out from the turning table and moved them
closer to the software controller (see Section 8.2.6) because this design was considered
to be more flexible. Finally, the motor left and motor right components as well as the
vacuum switch and the valve components are contained only implicitly in the system
model. In particular, the model only uses one numeric motor control input, whose sign
indicates the turning direction, instead of two boolean control inputs, one for turning
left, the other for turning right. Hence, the model reflects more closely the function
of the distributor component, while the SysML documentation reflects its physical im-
plementation. Furthermore, the model does not prescribe the use of a vacuum gripper
and, consequently, leaves some degrees of freedom for the implementation of the lifter
component. For example, one could imagine using tong instead of vacuum grippers.
Finally, the SysML documentation does not mention anything about the software con-
troller and its integration with the electromechanical system, which represents one of the
core components in the system design. In summary, one can conclude that the system
architecture contains some modifications, which make interactions more explicit, im-
prove the device flexible, and leave design decisions open. However, these modifications
still yield a valid component architecture. In particular, the simplification of the vacuum
gripper is considered to be even more appropriate for the conceptual design stage.

Stamper component

Subsequently, Figure 9.6 provides the component architecture of the stamp module (or
the stamper component; see Section 8.2.7) as defined in the SysML of the pick and place
unit documentation [LFVH13]. Again, the black color marks strong similarities between
the system model and the baseline, while the orange color indicates minor discrepancies
and the red color indicates major discrepancies.

223

9 Critical discussion

Figure 9.6: Component architecture of the stamp module in the SysML documenta-
tion [LFVH13].

Both the SysML documentation and the system model from Chapter 8 assign two
cylinders to the stamp module (or the stamper component), one for moving the stamp
head, the other for moving the workpiece basket. Then, however, the stamp head (see
Section 8.2.9) and the basket (see Section 8.2.8) are not part of the SysML documenta-
tion. Consequently, the system design models the interaction between the stamp module
and the workpiece in greater detail. This difference can be attributed to the ability of
the modeling technique to represent dynamic interactions based on collisions between
the stamp head or the basket and the workpiece, which is not available in SysML. On
the other hand, the SysML documentation includes a proportional valve and a pressure
sensor as well as operation panel component, which are not contained in the system
model developed during the experiment. The proportional valve and the pressure sensor
component are used to physically implement the stamping process. Consequently, the
system model leaves some more degrees of freedom. For example, an engineer could
decide to spray the label onto the workpiece instead of stamping the label onto the
workpiece. In contrast, the operation panel provides buttons to start the stamp module,
to switch to manual control, and to stop the stamp module in the case of emergency.
Note that such functionality was neglected in the experiment to reduce the overall effort.
Furthermore, the stamp module includes a micro switch for sensing the basket location
in extended state. This functionality was covered partly using the workpiece sensor (see
Section 8.1.3) at the Stamp location of the distributor component (see Section 8.2.2).
However, note that the micro switch is important to guarantee exact positioning of the
basket and to detect malfunctions. Exact positioning could be achieved easily in the
model and malfunctions were not considered during the experiment, which is why the
micro switch could be omitted. Finally, the SysML documentation again omits the
integration of a software controller, which represents a core component in the devel-
oped system design. In summary, one can conclude that the developed system design
describes some interactions more precisely, while leaving open their physical implemen-

224

9.2 Model validity

tation. Describing the interactions more precisely has the advantage that the system
model is executable and, hence, can be tested automatically. Furthermore, implemen-
tation details such as the micro switches were omitted, which were not necessary in the
system model to achieve the same functionality as in the physical system. Still, one can
conclude that a valid component architecture was obtained due to the strong similarities.

Sorter component

Finally, Figure 9.6 provides the component architecture of the conveyor module (or the
sorter component; see Section 8.2.7) as defined in the SysML documentation of the pick
and place unit [LFVH13]. Again, the black color marks strong similarities between the
system model and the baseline, while the orange color indicates minor discrepancies and
the red color indicates major discrepancies.

Figure 9.7: Component architecture of the conveyor module in the SysML documenta-
tion [LFVH13].

The conveyor module (or the sorter component) is defined almost identically in the
SysML documentation and the developed system design. In particular, both the SysML
documentation and the system model include a motor (or actuator component; see
Section 8.2.12) and two monostable cylinders (or concrete dynamic cylinders; see Sec-
tion 8.1.7) for moving workpieces to their target locations. Then, the SysML documen-
tation includes two presence sensors, two optical sensors, and two inductive sensors for
detecting the location and type of workpieces on the conveyor belt at four distinct points.
The same functionality was covered using only four workpiece sensor components (see
Section 8.1.3), which are able to detect both workpiece presence and the workpiece type.
Consequently, the SysML documentation is closer to the physical implementation of the
sensors, while developed model combines the functionality of the individual sensor types
into one component. Hence, the developed model leaves additional degrees of freedom
for the actual implementation of the functionality, which is desired during conceptual

225

9 Critical discussion

design. Finally, the SysML documentation again includes an operation panel module for
starting the conveyor, switching to manual operation, and stopping the conveyor in case
of emergencies. Analogous to the stamper component this functionality was omitted to
reduce the scope of the experiment. In summary, one can conclude that a component
architecture of the sorter component was obtained, which shows strong similarity to the
component architecture of the SysML documentation. Furthermore, the developed com-
ponent architecture simplifies implementation details about the different sensor types,
which is desired during conceptual design.

9.2.2 System behavior

Then, for assessing the validity of the system behavior of the model from Chapter 8 the
physical system installed at the Institute for Automation and Information Systems, Tech-
nische Universität München, Prof. Dr.-Ing. Vogel-Heuser1 is used as a baseline rather
than the SysML documentation [LFVH13]. Note that the SysML documentation is not
suited for this task due to its informal semantics, which entails ambiguities and poten-
tial misinterpretation. However, in the case of the physical system one is limited to the
observable states, which most importantly include the position and orientation of the
individual components as well as critical states reachable during system operation. In
the following, first the validity of the spatial configurations is discussed before evaluating
the reachability of critical states.

Spatial configurations

Subsequently, the spatial configurations of the individual components during system
operation both of the physical system and the system model are compared. In particular,
the white workpiece scenario (see Section 8.2.1) is considered, which entails the most
complex behavior of the pick and place unit and which subsumes the behaviors entailed
by the gray and black workpiece scenarios. In the following, first the sequences of
spatial configurations during workpiece processing are analyzed. Second, the timing of
the spatial configurations relative to the entire processing time is evaluated.

Sequence of spatial configurations For comparing the sequences of spatial configura-
tions, photographs of the physical system (see Figure 9.8) and screenshots of the system
model (see Figure 9.9) during system operation are provided. Furthermore, in each
photograph and screenshot the workpiece location is marked with a red circle. Also,
the durations are provided after which each individual spatial configuration is reached

1https://www.ais.mw.tum.de/en/homepage/

226

https://www.ais.mw.tum.de/en/homepage/

9.2 Model validity

(a) 0 seconds = 0% (b) 1 second = 5% (c) 2 seconds = 9% (d) 7 seconds = 32%

(e) 8 seconds = 36% (f) 8 seconds = 36% (g) 9 seconds = 41% (h) 9 seconds = 41%

(i) 10 seconds = 45% (j) 11 seconds = 50% (k) 11 seconds = 50% (l) 12 seconds = 55%

(m) 15 seconds = 68% (n) 16 seconds = 73% (o) 16 seconds = 73% (p) 22 seconds = 100%

(q) 22 seconds = 100%

Figure 9.8: Sequence of spatial configurations in the physical system.

227

9 Critical discussion

(a) 0 steps = 0% (b) 7 steps = 7% (c) 13 steps = 12% (d) 26 steps = 25%

(e) 32 steps = 30% (f) 38 steps = 36% (g) 45 steps = 42% (h) 51 steps = 48%

(i) 56 steps = 53% (j) 63 steps = 59% (k) 69 steps = 65% (l) 76 steps = 72%

(m) 83 steps = 78% (n) 90 steps = 85% (o) 97 steps = 92% (p) 105 steps = 99%

(q) 106 steps = 100%

Figure 9.9: Sequence of spatial configurations in the developed system model.

228

9.2 Model validity

both in absolute and relative numbers. For the physical system the absolute numbers
are measured in seconds, while for the system model they are measured in computation
steps (see Section 6.2 for more information about scenario computations). In contrast,
the relative numbers are calculated with respect to the overall workpiece processing
durations, i.e. the durations after which the final spatial configurations are reached.

The two figures reveal that both the physical system and the virtual system traverse
almost the same 17 spatial configurations in exactly the same order. First, both the
workpiece and the vacuum gripper of the crane module are located at the stack, while
the vacuum gripper is in extended state (see Figures 9.8a and 9.9a), before the vacuum
gripper is moving down and gripping the workpiece (see Figures 9.8b and 9.9b). Then,
the vacuum gripper is moving up again and, hence, lifting the workpiece (see Figures 9.8c
and 9.9c) and, subsequently, turning to the stamp (see Figures 9.8d and 9.9d). At the
stamp, the vacuum gripper is moving down and releasing the workpiece into the basket of
the stamper component (see Figures 9.8e and 9.9e) before moving up again and waiting
(see Figures 9.8f and 9.9f). In the next step, the basket of the stamper component is
retracted (see Figures 9.8g and 9.9g) and the stamp head is pressed onto the workpiece
(see Figures 9.8h and 9.9h) before retracting the stamp head again (see Figures 9.8i
and 9.9i). Then, the basket of the stamper component is extended (see Figures 9.8j
and 9.9j) and the vacuum gripper of the crane module is moving down and gripping the
workpiece (see Figures 9.8k and 9.9k). Subsequently, the vacuum gripper is moving up
again and, hence, lifting the workpiece (see Figures 9.8l and 9.9l) before turning to the
conveyor component (see Figures 9.8m and 9.9m) as well as moving down and releasing
the workpiece (see Figures 9.8n and 9.9n). In the next step, the vacuum gripper is moving
up again (see Figures 9.8o and 9.9o). Finally, in the physical system the workpiece is
moved to the second exit location and ejected, while the vacuum gripper is turning to
the stack (see Figures 9.8p and 9.8q). In contrast, in the system model the workpiece
is moved to the first exit location and ejected, while the vacuum gripper is staying at
the conveyor (see Figures 9.9p and 9.9q). Hence, one can observe a slight difference
in the exit location of the stamped workpiece as well as the control behavior of the
crane component. In particular, in the physical system the control behavior of the crane
component assumes that the next workpiece will be found at the stack location. In
contrast, in the system model the control behavior of the crane component assumes that
the next workpiece can be found also at the stamp location (or some other location).
Hence, the control behavior of the system model is more flexible with respect to potential
changes in the material flow, but the control behavior of the physical system is more
efficient with respect to the current requirements. Which version to prefer depends on
the importance of flexibility over efficiency, which was not considered further during the
experiment. In summary, one can conclude that the spatial configurations and their

229

9 Critical discussion

sequential order – as found in the virtual system – are valid with respect to the physical
system. In particular, only minor differences could be observed, which can be traced
back to minor differences in functional and non-functional requirements.

Timing of spatial configurations Then, the question arises whether the transitions
between the spatial configurations are valid. To answer this questions, the relative
durations after which the spatial configurations are reached and, hence, the durations
of the transitions between the spatial configurations are compared. The results of this
evaluation is shown in Figure 9.10. The x-axis of the diagram shows the individual
spatial configurations from the previous section. In contrast, the y-axis shows the relative
duration, after which the respective spatial configuration is reached. Finally, the diagram
contains one curve for the physical system and a second curve for the system model. Note
that one curve being above the other curve indicates the one system being slower than
the other system in achieving the respective spatial configuration and vice versa. Also,
note that the gradient between two subsequent spatial configurations denotes the speed
and duration of the respective transition. In particular, the gradients of the physical
system and the system model can be used to compare the duration of transitions.

Figure 9.10: Relative timing of the spatial configurations in the physical system and the
developed system model.

230

9.2 Model validity

The diagram shows that some transitions are similarly fast in the physical system and
the system model (e.g. the transition from spatial configuration 1 to spatial configuration
2 and 3). These transitions do not impair the validity of the system behavior. Conse-
quently, the discussion focuses on the significant differences between the two systems.
The first significant deviation between the two systems can be observed during the transi-
tion from spatial configuration 3 to spatial configuration 4, which represents turning the
vacuum gripper and, hence, the workpiece from the stack to the stamp location. Hereby,
the physical system uses more than 20% of the overall workpiece processing time, while
the system model uses only slightly more than 10%. Consequently, the vacuum gripper
turns faster in the system model than in the physical system. Then, the next deviation
can be observed in the transition from spatial configuration 5 to spatial configuration 6,
namely moving up the vacuum gripper after releasing the workpiece at the stamp. In
this case, the physical system requires almost no time, while the system model requires
slightly more than 5% of processing time. Similar deviations can be observed for the
transition from spatial configuration 7 to spatial configuration 8 (i.e. pressing the stamp
head onto the workpiece), the transition from spatial configuration 10 to spatial con-
figuration 11 (i.e. moving the vacuum gripper down and gripping the workpiece at the
stamp), and the transition from spatial configuration 14 to spatial configuration 15 (i.e.
moving the vacuum gripper down at the conveyor location). The reason for these devia-
tions is that the monostable cylinder (or the abstract static cylinder; see Section 8.1.4),
which is built into the crane module, switches much faster into the stable configuration
in the physical system than in the virtual system. Subsequently, the transition from spa-
tial configuration 12 to spatial configuration 13 again indicates that the vacuum gripper
turns faster in the virtual system than in the physical system. Finally, a deviation can
be observed for the transition from spatial configuration 15 to spatial configuration 16,
namely moving the workpiece from the conveyor location to the respective exit location.
In particular, the physical system uses approximately 30% of the processing time, while
the system model uses only 10%. Consequently, the conveyor motor is faster in the
system model than in the physical system. Note, however, that in the system model the
first exit is used, while in the physical system the second exit is used. Consequently, in
the system model the workpiece has to travel less distance than in the physical system.
In summary, one can conclude that there are significant differences in the timing of the
spatial configurations, which can be attributed to the different behaviors of monostable
cylinders as well as the crane and conveyor motors. However, such behaviors are not
expected to be exact during conceptual design to reduce effort and maintain focus on
important aspects such as causalities and the logics of material flow as well as energy
and data exchange. Consequently, the obtained timing behavior can be considered to
be valid for the purpose of conceptual design.

231

9 Critical discussion

Critical states

Finally, the reachability of critical states both in the physical system and in the system
model are compared. In particular, critical states are distinguished that (1) could be
observed in both the physical system and the system model, (2) could be observed in
the physical system only, and (3) could be observed in the system model only. Hereby,
critical states refer to states that inhibit the correct functioning of the pick and place
unit as prescribed by its requirements and test cases (see Section 8.2.1). Such states
include, for example, the collision between parts of different components.

Observable in both systems Some critical states could be observed both in the physical
system and in the system model. One example is discussed here, namely the angular
positioning of the vacuum gripper, which depends on the angular velocity of the turning
table, the signal delays of sensors and actuators (including conversion between analog
and digital representations, communication via network equipment and protocols), and
the cycle time of the programmable logic controller (PLC). Only if the correct ratio
between the parameters is achieved, correct angular positioning of the vacuum gripper
can be guaranteed. This problem is illustrated in Figure 9.11.

(a) Low angular velocity versus signal delay (b) Medium angular velocity versus signal delay

Figure 9.11: Critical state observed in both the physical and the system model.

The problem can be explained as follows: If the angular velocity of the vacuum gripper
is low compared to the signal delays and the PLC cycle time (see Figure 9.11a), then
the vacuum gripper stops too early. Consequently, the workpiece cannot be placed into
the basket correctly. In the best case, only the current workpiece is lost and the system

232

9.2 Model validity

can return to normal operation autonomously. In the worst case, the stamp module
is not usable anymore and human operator intervention is required. The problem can
be solved by adjusting the ratio between the angular velocity, the signal delays, and
the PLC cycle time (see Figure 9.11b). If the ratio is correct, then the reaction of
the vacuum gripper is delayed. Consequently, the vacuum gripper can be stopped at the
correct location and the workpiece can be placed exactly into the basket. Note, however,
that the angular velocity can be too high as well. As a result, the vacuum gripper might
overshoot. The fine-tuning of the respective parameters requires more precise physical
behavior. However, the fine-tuning is considered to be inappropriate during conceptual
design. Rather, the conceptual design is required to indicate such potential problems,
as observed during the experiment.

Observable in the physical system only Then, some critical states could be observed
in the physical system, but not the system model. Again, one example is provided,
namely the unexpected intervention of a human operator. Note that, in principle, any
other environmental component could be used instead, which has spatial extent and / or
is able to exert kinetic energy. Furthermore, note that the selected example is somewhat
artificial, but represents well a broader class of environmental interferences potentially
leading to the malfunctioning of the pick and place unit. Subsequently, Figure 9.12
shows the unexpected human intervention and the unpredictable physical effect.

(a) Unexpected human intervention (b) Unpredictable physical effect

Figure 9.12: Critical state observed in the physical system only.

In the selected example, the human operator places a workpiece manually into the bas-
ket of the stamp module (see Figure 9.12a). At the same time, the crane module already

233

9 Critical discussion

has picked up a workpiece at the stack and is turning towards the stamp location. When
the crane reaches the stamp location, the workpiece picked up by the vacuum gripper and
the workpiece placed into the basket by the human operator collide (see Figure 9.12b).
Consequently, the vacuum gripper loses the workpiece and the lost workpiece performs
an uncontrolled motion due to gravity and impact forces. Depending on where the lost
workpiece comes to rest, the functioning of the pick and place unit is impaired or not.
For example, sensor areas might be obscured or motion paths might be jammed. Note
that such situations could have been covered in separate scenarios of the pick and place
unit (see Section 8.2.1) placing one workpiece at the start and the other workpiece at the
stamp location. Consequently, the collision between the two workpieces could have been
detected already during conceptual design. However, the uncontrolled motion is difficult
to describe in the model. Here, multi-body system dynamics (see Section 2.1.2) might
be more suited to analyze the effects. Furthermore, it requires experience to select the
scenarios that need to be considered during conceptual design.

Observable in the system model only Finally, some critical states could be observed
in the system model, while not being observable in the physical system. For example,
a problem with the spatial extent and location of workpiece sensors (see Section 8.1.3)
has been detected while integrating the stamper component (see Section 8.2.7) into
the pick and place unit (see Section 8.2.1). Note at this point the distributor and sorter
components have been integrated successfully already. Figure 9.13 illustrates the original
problem and its solution by means of resizing and repositioning the workpiece sensors.

(a) Erroneous stamper integration (b) Revised stamper integration

Figure 9.13: Example of a critical state not covered by the physical system.

234

9.3 Issue relevancy

As mentioned previously, the problem occurred when integrating the stamper compo-
nent into the pick and place unit after approximately 13.5 hours. At that point in time
the pick and place unit already was able to pass the gray and black workpiece scenar-
ios. Furthermore, the implementation of the stamper component has been completed
successfully. However, during integration of the stamper component into the pick and
place unit, it was detected that the basket did not fit between the emitter and collector
of the workpiece sensor installed at the stamp location (see Figure 9.13a). Note that the
workpiece sensor belongs to the distributor component (see Section 8.2.2) and not to the
stamper component, which is why the problem has not been detected earlier. To resolve
the problem, the spatial extent of the workpiece sensor as well as its mounts has been
reduced. Consequently, the basket did not collide with the respective parts anymore and
the system was able to pass the white workpiece scenario also (see Figure 9.13b). Note
that alternatively the emitter and the collector could have been placed further apart or
the spatial extent of the basket could have been reduced. Furthermore, note that these
design decision might constrain the technologies and principles that can be used for their
physical implementation. Consequently, the presented example represents an important
case for conceptual design. Also, note that these problems could not be observed in the
physical system, but might have occurred during the original design and implementation
phases. However, information about these phases was not available.

9.3 Issue relevancy

After having evaluated the feasibility of the test-driven design method in Section 9.1
as well as the validity of the system model and the underlying modeling technique in
Section 9.2, the question arises whether and to what degree the quality issues (see Chap-
ter 6) are relevant during conceptual design of cyber-physical manufacturing systems.
Note that, here, an objective rather than a subjective relevancy measure is used, which
can be derived from the data collected during tool usage. In the following, the relevancy
of the quality issues is discussed separately for the syntactic quality issues in Section 9.3.1
and the semantic quality issues in Section 9.3.2.

9.3.1 Syntactic issues

First, the relevancy of the syntactic issues is discussed (see Section 6.1), which are
concerned with the rules and constraints of the modeling technique (see Chapter 5).
Subsequently, it is evaluated how often syntactic issues of a certain kind appeared during
the experiment. Then, the time it took until the quality issues could be resolved is
analyzed. Both measures together determine an objective notion of relevancy.

235

9 Critical discussion

Frequencies of syntactic issues

The first diagram (see Figure 9.14) provides for each kind of syntactic issue the rela-
tive frequency of appearances throughout the experiment. Note that the incompleteness
issues (see Section 6.1.1) are listed in detail, while the inconsistency issues (see Sec-
tion 6.1.2 are aggregated into a single value. The reason for the aggregation is that only
few inconsistency issues appeared throughout the experiment (i.e. 16 events or 1% of
appearances) compared to the large number of incompleteness issues (i.e. 2,558 events
or 99% of appearances).

Figure 9.14: Relative frequency of the appearances of syntactic issues.

The diagram reveals that most appearances (i.e. 43%) are variable-type reference
missing issues (see Section 6.1.1). When looking deeper into the data, one can observe
that one third of the variable-type reference missing issues relates to the observation
read by observation expressions (see Section 5.1.3) and another third relates to the
observation written by actions (see Section 5.1.3). The remaining variable-type reference
missing issues are spread across the model. Then, 42% of the issue appearances fall into
the variable-type child missing category (see Section 6.1.1). When looking closer at the
data, one can observe that 40% of the variable-type child missing issues relate to the
arguments of nary expressions (see Section 5.1.3), one third relates to the expression of
actions (see Section 5.1.2), and one fourth relates to the default expression of observations
(see Section 5.1.1). Again, the remaining variable-type child missing issues are spread
across the model. Thereafter, 7% of the appearances are fixed-type child missing issues
(see Section 6.1.1). Hereby, all but one fixed-type child missing issues relate to the guard
of transitions (see Section 5.1.2), while the remaining issue refers to the main component
of the project. Note that, in principle, these issues could be resolved automatically.
Hence, there is space for improvement of the prototypical tooling. Subsequently, 5%

236

9.3 Issue relevancy

belong to fixed-type reference missing issues (see Section 6.1.1). Finally, 3% of the
appearances concern missing attributes (see Section 6.1.1). One third of the attribute
missing issues relate to the name of transitions (see Section 5.1.2) and 20% relate to the
name of observations (see Section 5.1.1). Again, the remaining attribute missing issues
distribute across the model. One can conclude that most syntactic issues relate to the
incompleteness of the model. One possible reason might be, that the model was built
from scratch. Consequently, the numbers might look different when revising an existing
design. However, these correlations are not investigated further here. Furthermore, most
of the incompleteness issues relate to the behavioral aspects of the system rather than the
static structure and spatial extent. A possible interpretation is that the behavior is much
more complex to describe than the static aspects. Finally, the analysis revealed potential
for improvement of the prototypical tooling. In particular, certain design objects could
created automatically and, hence, some issue appearances could be avoided.

Durations of syntactic issues

Then, the second diagram (see Figure 9.15) provides for each kind of syntactic issue the
minimum, average, and maximum absolute duration in minutes between appearance and
disappearance of the respective issues. Note that again the incompleteness issues (see
Section 6.1.1) are listed individually, while the inconsistency issues (see Section 6.1.2)
are aggregated into one single node. Furthermore, note that the issue categories are
sorted by average duration in descending order.

Figure 9.15: Absolute duration until the disappearances of syntactic issues.

237

9 Critical discussion

The diagram shows that the fixed-type child missing issues (see Section 6.1.1) take
the longest to be resolved with 1:50 minutes on average and 14:29 minutes in the worst
case. The fixed-type child missing issues mostly comprise the guard of transitions (see
Section 5.1.2) as well as the main component of the project. Again, note that these
issues could be resolved automatically and, hence, the issue duration could be reduced.
Then, the fixed-type reference missing issues (see Section 6.1.1) take 1:38 minutes on
average to be resolved, while in the worst case 24:08 minutes are used. The fixed-type
reference missing issues comprise the final step of scenarios (see Section 5.3.4) with 4:11
minutes on average and 24:08 minutes in the worst case, the initial state of executables
(see Section 5.1.2) with 1:58 minutes on average and 9:41 minutes in the worst case,
the component definition of material life ports (see Section 5.2.2) with 14 seconds on
average and 52 seconds in the worst case, and the component definition of component
references (see Section 5.2.1) with 12 seconds on average and 37 seconds in the worst case.
Subsequently, the inconsistency issues (see Section 6.1.2) take 1:21 minutes on average
and 5:15 minutes in the worst case to be resolved. The inconsistency issues comprise
the type of expressions contained in actions (see Section 5.1.2) as well as the type of
default expressions contained in observations (see Section 5.1.1). Then, the variable-
type child missing issues take 45 seconds on average and 28:56 minutes in the worst
case to be resolved. The variable-type child missing issues comprise, besides others, the
expression of guards (see Section 5.1.2) with 2:22 minutes on average and 28:56 minutes
in the worst case, the volume of material ports (see Section 5.2.2) with 1:02 minutes on
average and 2:45 minutes in the worst case, and the default expression of observations
(see Section 5.1.1) with 42 seconds on average and 9:57 minutes in the worst case. Then,
the variable-type reference missing issues take 5 seconds on average and 1:44 minutes
in the worst case to be resolved. The variable-type reference missing issues comprise
the observation written by actions (see Section 5.1.2) as well as the observation read by
observation expressions (see Section 5.1.3). Finally, the attribute missing issues take 1
second on average and 13 seconds in the worst case to be resolved. The attribute missing
issues comprise the name of various model elements such as the states and transitions
of executables (see Section 5.1.2) or observations (see Section 5.1.1). One can conclude
that most time is spend on resolving incompleteness issues while working on behavioral
aspects of the system. Also, inconsistencies can be resolved in comparably little time.

9.3.2 Semantic issues

Subsequently, the relevancy of the semantic issues is evaluated (see Section 6.2), which
are concerned with the meaning of the design information expressed using the modeling
technique from Chapter 5. Again, first the kinds of semantic issues, which appeared

238

9.3 Issue relevancy

during the experiment, are analyzed before considering the time it took to resolve them.
Together these measures constitute an objective notion of relevancy.

Frequencies of semantic issues

The first diagram (see Figure 9.16) provides for each kind of semantic issue the relative
frequency of appearances throughout the experiment. Note that only semantic issues
(and their causes) are listed, which actually appeared during the project. Furthermore,
the issues are sorted by relative frequency in descending order both in the figure and in
the following discussion.

Figure 9.16: Relative frequency of the appearances of the semantic issues.

The diagram shows that more than half (i.e. 55%) of the semantic issues are con-
straint violations (see Section 6.2.1). When looking closer at the data, one can observe
that 13% of the constraint violations can be assigned to moving gray and black work-
pieces from start to exit in time, which were the first functions implemented during the
experiment. The remaining constraint violations distribute rather equally across the
properties of the system model (see Chapter 8). Thereafter, 20% of the semantic issues
are computation timeouts (see Section 6.2.2). 62% of the computation timeouts relate
to the scenarios of the pick and place unit (see Section 8.2.1), while only 29% of the
issues can be assigned to the distributor (see Section 8.2.2). Obviously, computation
timeouts are more likely the more complex the respective component is. Note that com-
plexity comprises both static spatial extent and dynamic state space. Then, 14% of the
semantic issues are non-determinisms caused by general fixed points of weakly causal
behaviors (see Section 6.2.2). Hereby, 60% of the generic fixed point non-determinisms
are caused by the distributor component (see Section 8.2.2), while 34% can be assigned
to the pick and place unit (see Section 8.2.1). The data indicates that generic fixed point

239

9 Critical discussion

non-determinisms are more likely the more complex the component architecture is. This
correlation is not surprising when considering that generic fixed-point issues only occur
when composing behaviors of different components (see Section 6.2.2). Subsequently, 5%
of the semantic issues represent non-determinisms caused by multiple enabled transitions
in the same executable (see Section 6.2.2). A more detailed analysis shows that 89%
of the multiple-transitions non-determinisms are caused by the ten random workpieces
scenario, which was not described in Chapter 8. In particular, the non-determinism was
added on purpose to generate random sequences of workpieces during testing. Further-
more, 5% of the semantic issues indicate part collisions (see Section 6.2.2). Hereby, 48%
of the part collisions were detected when integrating the stamper component (see Sec-
tion 8.2.7) into the pick and place unit (see Section 8.2.1). Note that this case has been
discussed previously in Section 9.2.2. Finally, 1% of the issues are non-determinisms
caused by multiple behaviors writing the same output port (see Section 6.2.2), which
occurred during distributor component development (see Section 8.2.2). The reason for
the occurrence of this issue was a software bug in the simulation engine of the proto-
typical tooling, which could be identified and resolved quickly. Consequently, the issue
occurrence can be neglected with respect to issue relevancy. At last, non-determinism
issues due to multiple bindings or generic fixed points with mutual forwarding of kinetic
energy did not occur during the experiment. In summary, one can conclude that the
proposed approach indeed is able to detect a wide variety of semantic issues in concep-
tual designs. Most importantly, test execution can be used effectively to uncover issues
with the implementation of requirements and manufacturing processes, which are for-
malized as properties (see Section 5.3.2). But, also intrinsic semantic issues such as part
collisions and non-determinisms can be detected in practice. Finally, the experiment
has shown that semantic issues might also occur due to software bugs in the simulation
engine. However, this problem decreases with simulation engine maturity.

Durations of semantic issues

Subsequently, the second diagram (see Figure 9.17) provides for each kind of seman-
tic issue the minimum, average, and maximum absolute duration in minutes between
appearance and disappearance of the respective issues. Again, the semantic issues are
sorted by average duration in descending order. Furthermore, note that disappearance
events are not recorded explicitly for semantic issues. Rather, a semantic issue is said
to disappear, if it has been detected in the preceding scenario execution, but not in
the current scenario execution. However, note that the semantic issue might not have
disappeared, but might be occluded by another semantic issue. Furthermore, semantic
issues also might have disappeared much earlier than revealed by test execution.

240

9.3 Issue relevancy

Figure 9.17: Absolute duration until the disappearances of the semantic issues.

The diagram shows that non-determinisms caused by generic fixed points of weakly
causal behaviors (see Section 6.2.2) take the longest to disappear with 36:02 minutes
on average and 2:55 hours in the worst case. When looking closer at the data, the
generic fixed points of the pick and place unit (see Section 8.2.1) took 1:02 hours on
average and 2:55 hours in the worst case to disappear, while the generic fixed points of
the distributor component (see Section 8.2.2) took 25:03 minutes on average and 56:11
minutes in the worst case. The difference can be explained with the fact that first the
distributor component had to be implemented correctly, before the scenarios of the pick
and place unit could be considered any further. Then, constraint violations (see Sec-
tion 6.2.1) took 24:21 minutes on average and 2:30 hours in the worst case to disappear.
The largest durations have been recorded for moving gray and black workpieces from
entry to exit with 1:10 hours on average and 2:30 hours in the worst case. Note that
this function was the first to be implemented during the experiment, which explains its
dominant position here and in the frequencies discussed in the previous section. The
second largest durations have been recorded for positioning workpieces under the stamp
head with 1:03 hours both on average and in the worst case. Note that this duration also
correlates with the duration that was needed for implementing the stamper component
(see Section 9.1.3). Subsequently, the computation timeouts (see Section 6.2.2) took 3:26
minutes on average and 31:59 minutes in the worst case to disappear. The computation
timeouts distribute among the stamper component (see Section 8.2.7) with 6:20 minutes
both on average and in the worst case, the distributor component with 3:31 minutes on
average and 8:17 minutes in the worst case, and the pick and place unit with 3:22 minutes

241

9 Critical discussion

on average and 31:59 minutes in the worst case. Note that computation timeouts only
appear when generating test reports for selected subsystems (see Section 7.1.3). Conse-
quently, the numbers indicate the durations between generating subsequent test reports.
Then, part collisions took 3:15 minutes on average and 5:48 minutes in the worst case
to disappear. The longest duration has been recorded for resolving the collision between
the stamper basket (see Section 8.2.8) and the workpiece sensor of the distributor com-
ponent installed at the stamp location (see Section 8.2.2). Note that this example has
been discussed previously in Section 9.2.2. Afterwards, the non-determinisms caused by
multiple behaviors writing the same output port (see Section 6.2.2) took 2:02 minutes
to disappear. Note that the duration in fact represents the time it took to identify the
semantic issue as a software bug in the simulation engine. Finally, the non-determinisms
caused by multiple enabled transitions of the same executable (see Section 6.2.2) took
29 seconds to be disappear. Note that such non-determinisms can be resolved easily
by correcting the guard expressions (see Section 5.1.2). Furthermore, note that not all
such non-determinisms have been resolved. In particular, the non-determinism of the
random workpiece scenario, which has been omitted in Chapter 5, has been added on
purpose. One can conclude that the time until semantic issues disappear depends on a
number of factors. In particular, the more local the semantic issue is, the faster it can be
resolved (e.g. the part collisions and the non-determinisms caused by multiple enabled
transitions). In contrast, the more global a semantic issue is, the harder it might be
to resolve (e.g. the constraint violations of the pick and place unit or the distributor
component).

9.4 Study validity

Finally, according to common practice in experimental research [SCC01], the internal
and external validity of the study are discussed. Hereby, the internal validity (see Sec-
tion 9.4.1) is concerned with the reliability of the conclusions that have been drawn from
the data collected during the experiment (see Chapter 8) with respect to (1) the method
feasibility, (2) the model validity, and (3) the issue relevancy. Instead, the external va-
lidity (see Section 9.4.2) is concerned with the degree to which those conclusions can be
generalized from the experiment to the entire domain of cyber-physical manufacturing
systems.

9.4.1 Internal validity

In the following, the internal validity of the conclusions drawn from the experiment is
discussed with respect to the three main research questions: (1) The feasibility of the

242

9.4 Study validity

test-driven method for the conceptual design of cyber-physical manufacturing systems,
(2) the validity of the system model obtained during the experiment and the modeling
technique in general, and (3) the relevancy of the syntactic and semantic quality issues
in practical applications.

Method feasibility

To guarantee internal validity with respect to the question of method feasibility, (1) tool
instrumentation was used for collecting data automatically during tool usage, (2) appro-
priate aggregations and visualizations of the collected data were developed, and (3) the
results of these visualizations were interpreted. Note that a high degree of automation
in the process was targeted to remove the bias of subjective interpretation. However,
one can question whether the right data has been collected, whether the aggregations
and visualizations are appropriate, and whether the interpretation of the visualizations
is valid. For data collection only the most basic events were used, which can be obtained
from tool usage. In particular, the events cover all possible changes to the system model
as well as all possible outcomes of test execution. Then, the aggregations by compo-
nent of the system model (see Section 9.1.1), feature of the modeling technique (see
Section 9.1.2), and result of the test execution (see Section 9.1.3) were calculated fully
automatically. Again, the aggregation can be derived unambiguously. The same holds
for the visualization using time lines. Finally, the interpretation included mapping the
time line information back to the phases and activities of the test-driven design method
(see Chapter 3). In particular, the mapping to phases can be achieved unambiguously,
because the phases do not share any model elements. However, some ambiguity can be
found in the mapping to the activities of the phases, as the requirement specification
(respectively formalization) and the process specification potentially share the monitor
elements. However, this ambiguity can be foreclosed because the explicit formalization
of requirements was omitted in the experiment to save effort.

Model validity

Then, to guarantee internal validity with respect to the model validity, the authors have
had access to the SysML documentation [LFVH13] as well as the physical system at
the Institute of Information and Automation Systems, Technical University of Munich.
Again, the comparison of the system architectures is rather straight forward. In SysML,
the architecture is specified in terms of block diagrams consisting of blocks, which cor-
respond to the components introduced in Section 5.2.1, and containment relationships,
which correspond to subcomponents in the proposed modeling technique. In contrast,

243

9 Critical discussion

the interactions between the components are defined only implicitly as part of the tex-
tual descriptions and the behavioral diagrams in the SysML documentation, while in the
developed system model interactions are defined explicitly using ports (see Section 5.2.2)
and channels (see Section 5.2.3). The comparison of the system behaviors, on the other
hand, is more difficult to achieve. For this purpose, the observable component loca-
tions and the reachable critical states during operation of the physical system and the
system model were used. Hereby, the simplifications are known that have been made
with respect to the physical behavior (e.g. omitting the weight of workpieces as well as
acceleration and deceleration phases of workpiece motion). As stated previously, such
simplifications are considered to be valid during conceptual design. Furthermore, such
effects can be modeled with sufficiently large efforts. Also, critical states have been ob-
served in system model, which can be observed in the physical system also (e.g. the effect
of sensor and actuator signal delays on the correct positioning of the vacuum gripper).

Issue relevancy

Finally, to guarantee internal validity with respect to the issue relevancy, again tool
instrumentation for data collection as well as various aggregations and visualizations
of the collected data were used. Consequently, one might question the appropriateness
of the collected data, the developed aggregations, and the employed visualizations. In
contrast to the process feasibility, this time the appearance and disappearance events
of syntactic issues as well as the appearance events of semantic issues during test exe-
cutions were used. Furthermore, disappearance events of semantic issues were derived
from subsequent test executions with changing outcomes. Note that the collected events
and derived events are completely objective and unambiguous. However, also note that
the derived disappearance events of semantic issues do not necessarily mean that the
semantic issues have been resolved, but they might be occluded by other semantic is-
sues. Furthermore, the semantic issues might have been resolved already earlier than
uncovered by test execution, but not any later. Then, the aggregations by issue category
(i.e. incompleteness or inconsistency and their subclasses or extrinsic and intrinsic and
their subclasses) and duration until disappearance can be performed automatically and,
hence, unambiguously as well. Finally, the comparison of the relative frequencies of
appearances as well as the minimum, average, and maximum durations until disappear-
ance provide good overall measures for how long certain issues are active. The activity
of the quality issues determine an objective measure of relevance. Note, however, that
in the perception of engineers certain issues might be more relevant than others (e.g.
the inconsistency issues might be more relevant than the incompleteness issues). The
subjective relevancy was not evaluated in this doctoral thesis.

244

9.5 Summary and outlook

9.4.2 External validity

In contrast, the external validity of the study is limited mainly due to the academic case
(i.e. the pick and place unit). Originally, the case has been designed to resemble indus-
trial plants closely [LFVH13]. Consequently, the case comprises a number of important
features that can be found in industrial systems. Such features include the transporta-
tion, selective manipulation, and separation of different types of material within certain
timing constraints. However, the case mainly lacks functional, structural, and behav-
ioral complexity. In fact, the individual functions to be performed by the pick and place
unit (i.e. processing white plastic, metallic, and black plastic material) can be separated
rather easily and have limited influence on each other. It will be interesting to see how
the test-driven approach performs on systems, where the different functions cannot be
separated that easily. For example, one could think about a system where multiple ma-
terials can be processed in parallel to increase productivity. Such investigations are left
to future research. Another deficiency of the study is that the target design existed prior
to executing the study. Hence, the developed design is influenced by a priori knowledge.
To circumvent this deficiency an experimental setup is required, where the participants
are not aware of the target design. Then, however, evaluation of the model validity
would have become more difficult as no baseline exists to compare the system model to.

9.5 Summary and outlook

This chapter discussed critically the results of applying the proposed approach to an
industry-close example: The pick and place unit. In particular, the feasibility of the test-
driven method for the conceptual design of cyber-physical manufacturing systems was
evaluated (see Section 9.1). Then, the validity of the obtained model and the underlying
modeling technique was analyzed (see Section 9.2). Subsequently, the relevancy of the
individual quality issues was discussed (see Section 9.3). Finally, the validity of the entire
study and the respective conclusions was considered (see Section 9.4). The following
chapter summarizes the contributions of this doctoral thesis and point to future work in
the area of conceptual design of cyber-physical manufacturing systems.

245

10 Conclusion

In the following, first the content of this doctoral thesis is summarized in Section 10.1.
Then, an outlook on potential future work is provided in Section 10.2.

10.1 Summary

The summary first concentrates on the practical challenges explicated by management
personnel of six German machine tool builders in Section 10.1.1. Then, the problems
are revised that remain unsolved by related approaches and commercial tools in Sec-
tion 10.1.2. Finally, the scientific contributions claimed by this doctoral thesis in order
to fill the gaps are explained in Section 10.1.3.

10.1.1 Practical challenges

In several interviews with management personnel of six German machine tool builders
four practical challenges have been identified, which served as the starting point for this
doctoral thesis. First, the conceptual design of cyber-physical manufacturing systems
is dominated by mechanical engineers, while electrical engineers and software engineers
get on board in later phases only (see Section 1.3.1). Consequently, synergy potentials
between the different engineering disciplines cannot be exploited. Then, as soon as the
other engineering disciplines get involved, design decisions are not synchronized among
the engineering disciplines sufficiently (see Section 1.3.2). Consequently, the individual
engineering disciplines might work with out-to-date design knowledge and, hence, com-
patibility issues might arise. Furthermore, the design information created by the different
engineering disciplines is evaluated only within the discipline boarders, but rarely with
respect to the design information from other engineering disciplines (see Section 1.3.3).
Consequently, design flaws spanning different engineering disciplines remain hidden and,
hence, might have considerable effects on the design process. Finally, the design pro-
cess itself is arranged typically sequentially starting with mechanical engineering, then
electrical engineering, and finally software engineering (see Section 1.3.4). Consequently,
complete system designs are available only late in the project and design flaws might
cause costly design iterations.

247

10 Conclusion

10.1.2 Remaining problems

When looking at related work on conceptual design of cyber-physical manufacturing
systems from both academia and industry, one can observe four remaining challenges,
which are addressed by this doctoral thesis. First, the existing approaches typically
cover only a limited part of the information relevant during conceptual design (see Sec-
tion 2.2.1). Consequently, the individual engineering disciplines might not be able to
express certain design knowledge regarding the customer requirements, the manufac-
turing processes, test cases, or the implementation details including the spatial extent
and discipline-spanning behaviors. Then, even if many design details are covered, the
approaches typically lack an integrated formalism describing the syntactic and seman-
tic relations between the design elements (see Section 2.2.2). Consequently, the design
documents might be ambiguous leading to misinterpretation and misunderstanding be-
tween team members and across engineering disciplines. Furthermore, the lack of an
integrated formalism prevents the automated evaluation of the design information (see
Section 2.2.3). Consequently, only parts of the design information can be evaluated or
the evaluation has to be carried out manually, which is a costly process. And finally, the
existing approaches with sufficient information coverage lack a practical methodology,
which engages all engineering disciplines equally, delays assignment of responsibilities to
specific engineering disciplines where possible, and fosters early verification and valida-
tion of system functions (see Section 2.2.4). Consequently, suboptimal and inappropriate
solutions might be developed consuming unnecessary project budget.

10.1.3 Claimed contributions

To overcome the remaining problems and, hence, address the practical challenges, this
doctoral thesis claims six contributions. First, test-driven [Bec02] and top-down, com-
positional [BS01] software development ideas and principles were adapted to the cyber-
physical manufacturing system domain (see Chapter 3). Therefore, material, manufac-
turing process, and part specification activities were integrated, which are not relevant
for pure software systems. Then, a modeling technique and integrated formalism was
devised for capturing design knowledge as well as the underlying syntactic and semantic
relations (see Chapter 5). In particular, the modeling technique and integrated formal-
ism is based on an existing approach covering the spatial extent as well as spatial, energy,
and data interactions between components [Hum11]. The approach is adapted and ex-
tended to enable the formal specification of requirements, manufacturing processes, and
test cases in relation to the spatial extent, behavior, and interaction of components.
Subsequently, a taxonomy of quality issues is developed, which is intended to be used

248

10.2 Outlook

for the (possibly automated) evaluation of design information (see Chapter 6). For this
purpose, the taxonomy covers syntactic and semantic aspects and provides formal defini-
tions of the underlying design constraints. In the following, it was demonstrated how the
modeling technique and the automated evaluation of quality issues can be implemented
into a software tool (see Chapter 7). In particular, the software tool demonstrates how
the variety of design information as well as the evaluation results can be integrated into
a common user interface consisting of different views onto the design information with
filters for the individual aspects of the modeling technique. After having devised the
various parts of the proposed approach, the approach was applied to an industry-close
example: The pick and place unit installed at the Institute for Information and Automa-
tion Systems, Technical University of Munich (see Chapter 8). The showcase already
demonstrates how conceptual designs and design documents could look like when using
the proposed approach. Furthermore, the showcase demonstrates the maturity of the
prototypical tooling. Finally, the test-driven method was shown to be indeed feasible for
the conceptual design of cyber-physical manufacturing systems, the model of the pick
and place unit can be considered to be valid, and the quality issues prove to be rele-
vant in practical applications (see Chapter 9). In particular, the analysis showed that
iterative and incremental development is possible and that both syntactic and seman-
tic quality issues can be discovered effectively. Consequently, partially complete system
designs are available much earlier in the process, which enables early design validation.
Furthermore, most syntactic issues indicated that the system model is incomplete, while
the semantic issues indicated that the requirements and / or manufacturing processes
were not implemented correctly.

10.2 Outlook

Finally, an outlook on potential future work in the field of conceptual design of cyber-
physical manufacturing systems is provided. First, the question arises how efficient
the test-driven design method really is (see Section 10.2.1). Then, one has to evaluate
the practical suitability of the modeling technique and the integrated formalism (see
Section 10.2.2). Furthermore, one might question whether all quality issues are covered
by the taxonomy or not (see Section 10.2.3). And at last, one can be concerned with
the usability of the prototypical tooling (see Section 10.2.4).

10.2.1 Method efficiency

Regarding the efficiency of the test-driven method two critical directions for future work
are foreseen: (1) Method comparison and (2) design refinement.

249

10 Conclusion

Method comparison

First, one needs to compare the test-driven method to other design methods to get an
objective measure of efficiency. Hereby, it is easier to compare different methods based on
the same modeling technique because different modeling techniques might cover different
design information. Furthermore, one might need to consider different situations such
as greenfield development and design evolution as well as different application domains
such as automation systems and machine tools.

Design refinement

Second, one needs to think about how to work with the design information after finishing
the conceptual design phase. Note that preliminary thoughts on design refinement have
already been described in [HRZ15a], which include an extension of the modeling tech-
nique, the systematic refinement of individual components, and model transformations
to feed other engineering tools and tool chains. Alternatively, one might think about
switching the engineering tools completely and feeding them manually.

10.2.2 Model suitability

Then, regarding the suitability of the modeling technique five critical directions for future
work are foreseen: (1) Spatio-temporal logics, (2) advanced geometry representations,
(3) continuous time dynamics, (4) flexible multi-body dynamics, and (5) computational
fluid dynamics.

Spatio-temporal logics

First, spatio-temporal logics [MWZ03] could be used to formalize the requirements
and, possibly, the manufacturing processes. Note that, currently, expressions (see Sec-
tion 5.1.3) contained in properties (see Section 5.3.2) and monitors (see Section 5.3.3)
are employed to accomplish this task. A suitable dialect of spatio-temporal logics might
provide more concise means for formalization. However, today, spatio-temporal logics
typically is used for querying movie databases [BVZ95] rather than the conceptual design
of cyber-physical manufacturing systems.

Advanced geometry representations

Thereafter, the modeling technique should be extended to support the full set of con-
structive solid geometry (CSG) operations including the intersection and the difference

250

10.2 Outlook

of volumes [RV77]. Note that, currently, the proposed modeling technique only supports
the union of volumes (see Section 5.1.4), which simplifies the detection of collisions. How-
ever, the full set of CSG operations would allow one to model more complex geometries
more easily. Alternatively, boundary representations (e.g. [Pie91]) could be used.

Continuous time dynamics

Then, it might be worthwhile to integrate facilities for modeling continuous-time dynam-
ics. For example, one could use differential equations as provided by Modelica [Hau06b]
or hybrid input-output automata [LSV03], which provide more intuitive graphical mod-
eling means. Being able to express continuous-time dynamics, one could develop more
realistic models. However, then, simulation and simulation-based testing of semantic
execution constraints becomes more difficult to achieve.

Flexible multi-body dynamics

Subsequently, it might be interesting to integrate flexible multi-body dynamics [Sha97]
into the approach. Consequently, more realistic motion behaviors could be described
with less effort. Note that, currently, each motion has to be described explicitly in-
dependent of what causes the motion (e.g. an impact force or gravity). Furthermore,
the deformation of bodies could be studied, which can have considerable effects on the
system behavior [ZOM04] and, hence, on the correctness of the implementation.

Computational fluid dynamics

Finally, computational fluid dynamics [ADD+10] could be added to the approach. Con-
sequently, one could describe more precisely the behavior of liquids and gases and their
effect on the system behavior. For example, liquids and gases are used to cool workpieces
and tools or to clean the working space during operation. Furthermore, liquids and gases
can be found in hydraulic and pneumatic components, which have not been considered
in detail in this doctoral thesis.

10.2.3 Issue completeness

Subsequently, regarding the completeness of the quality issues five critical directions for
future work are foreseen: (1) natural language processing, (2) test coverage criteria,
(3) test case generation, (4) semantic consistency, and (5) continuous integration.

251

10 Conclusion

Natural language processing

First, natural language processing techniques [Man99] could be used to analyze textural
requirements as well as the name and description of different model elements. For ex-
ample, one could prevent the use of synonyms to avoid confusion during communication
between different stakeholders. Furthermore, one might indicate the use of passive voice,
which might hinder the correct and unambiguous interpretation of natural language re-
quirements [BK04].

Test coverage criteria

Then, the question arises which kind of test coverage criteria [ZHM97] could be used
with the presented approach. Typically, test coverage for pure software systems concerns
the possible sequences of code statements. Furthermore, test coverage can be defined
over the possible sequences of states and transitions of state machines [Cho78]. How-
ever, the proposed modeling technique additionally includes spatial characteristics and
manufacturing process specifications, which are not covered by the existing approaches.

Test case generation

At the same time, one might think about the generation of test cases from the formalized
requirements and the manufacturing process specifications. For example, approaches ex-
ist to generate test cases using a model checker and the coverage criteria from the previ-
ous section [RH01]. However, here, again the question remains how such techniques can
be adapted to the coverage of spatial configurations of the system. In particular, it might
be difficult to find relevant spatial configurations among all possibilities. Furthermore,
one has to think about the methodological integration.

Semantic consistency

Subsequently, the question arises how the semantic consistency among different require-
ments as well as among manufacturing process specifications and test cases can be en-
sured. Note that, currently, only the consistency between the implementation and the
requirements as well as between the implementation and the manufacturing process
specifications is checked using test cases. Note that requirements consistency has been
addressed, for example, in [HJL96]. Again, one has to think about how to adapt the
ideas to spatio-temporal semantics.

252

10.2 Outlook

Continuous integration

At last, having devised a test-driven method for the conceptual design of cyber-physical
manufacturing systems, one could think about extending the ideas to continuous integra-
tion [DMG07]. Consequently, semantic issues could be evaluated much more frequently
and reported much earlier to the engineers. However, note that continuous integration
only exists for pure software systems. Consequently, it is not obvious how the spatio-
temporal semantics can be supported effectively.

10.2.4 Tool usability

Finally, regarding the usability of the prototypical tooling two critical directions for
future work are foreseen: (1) Usability evaluation, and (2) usability improvement.

Usability evaluation

First, one needs to evaluate the usability of the prototypical tooling (see Chapter 7).
During the experiment the prototypical tooling was observed to be mature enough to
accomplish the individual design tasks. However, a couple of usability flaws have been
observed as well. For example, currently adding and removing model elements is done
via the explorer view (see Section 7.1.2), which is rather inconvenient for expressions
and state machine elements.

Usability improvement

Then, one has to think about possible improvements to the user interface and test their
implementation. In particular, the improvements should target the collaboration and
communication of as well as the synchronization between different engineers working on
the same project. Note that the synchronization comprises the changes made by each
individual engineer to the model. Hereby, an agile approach with tight integration of
user feedback is suggested.

253

Bibliography

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability
theorems for infinite-state systems. In 11th Annual IEEE Symposium on
Logic in Computer Science, LICS’96, pages 313–321, New Brunswick, NJ,
USA, July 1996. IEEE.

[ADD+10] J. Anderson, E. Dick, G. Degrez, R. Grundmann, J. Degroote, and J. Vieren-
deels. Computational fluid dynamics – An introduction. Springer, Berlin,
Heidelberg, Germany, 3rd edition, November 2010.

[AH14] D. Ascher and G. Hackenberg. Early estimation of multi-objective traffic
flow. In International Conference on Connected Vehicles and Expo, IC-
CVE’14, pages 1056–1057, Vienna, Austria, November 2014. IEEE.

[AH15] D. Ascher and G. Hackenberg. Integrated transportation and power system
modeling. In International Conference on Connected Vehicles and Expo,
ICCVE’15, pages 379–384, Shenzhen, China, October 2015. IEEE.

[AH16] D. Ascher and G. Hackenberg. The transp-0 framework for integrated trans-
portation and power system design. In 19th IEEE International Confer-
ence on Intelligent Transportation Systems, ITSC’16, pages 945–952, Rio
de Janeiro, Brazil, November 2016. IEEE.

[AH17] D. Ascher and G. Hackenberg. The passenger extension of the transp-0
system design framework. In 5th IEEE International Conference on Models
and Technologies for Intelligent Transportation Systems, MT-ITS’17, pages
256–261, Naples, Italy, June 2017. IEEE.

[Alf85] M. Alford. Srem at the age of eight; the distributed computing design
system. Computer, 18(4):36–46, April 1985.

[And89] S. J. Andriole. Storyboard Prototyping: A New Approach to User Require-
ments Analysis. QED Information Sciences, Inc., London, UK, August 1989.

255

Bibliography

[Asc13] D. Ascher. A model-based approach for specification and validation of smart
e-mobility control requirements. Bachelor’s thesis, Fakultät für Informatik,
Technische Universität München, Garching, Germany, October 2013.

[Asc15] D. Ascher. A distributed approach to approximate numerical solution of
discrete-time optimal control problems. Master’s thesis, Fakultät für In-
formatik, Technische Universität München, Garching, Germany, December
2015.

[AZ89] L. Alting and H. Zhang. Computer aided process planning: the state-of-
the-art survey. International Journal of Production Research, 27(4):553–585,
1989.

[BAT97] P. Borst, H. Akkermans, and J. Top. Engineering ontologies. International
Journal of Human-Computer Studies, 46(2–3):365–406, February 1997.

[BD93] A.-P. Bröhl and W. Dröschel. Das V-Modell: Der Standard für die Soft-
wareentwicklung mit Praxisleitfaden. Oldenbourg Wissenschaftsverlag, Mu-
nich, Germany, 1993.

[Bec02] K. Beck. Test-driven development: by example. The Addison-Wesley Sig-
nature Series. Addison-Wesley, Boston, MA, USA, November 2002.

[Ber08] D. M. Berry. Innovations for Requirement Analysis. From Stakeholders’
Needs to Formal Designs: 14th Monterey Workshop 2007. Monterey, CA,
USA, September 2007. Revised Selected Papers, volume 5320 of Lecture
Notes in Computer Science, chapter Ambiguity in Natural Language Re-
quirements Documents, pages 1–7. Springer, Berlin, Heidelberg, Germany,
2008.

[BGT05] S. Burmester, H. Giese, and M. Tichy. Model Driven Architecture: Euro-
pean MDA Workshops: Foundations and Applications, MDAFA 2003 and
MDAFA 2004, Twente, The Netherlands, June 26–27, 2003 and Linköping,
Sweden, June 10–11, 2004. Revised Selected Papers, volume 3599 of Lec-
ture Notes in Computer Science, chapter Model-Driven Development of
Reconfigurable Mechatronic Systems with Mechatronic UML, pages 47–61.
Springer, Berlin, Heidelberg, Germany, 2005.

[BH10] J. Botaschanjan and B. Hummel. Theoretical Aspects of Computing – IC-
TAC 2010: 7th International Colloquium, Natal, Rio Grande do Norte,
Brazil, September 1–3, 2010. Proceedings, volume 6255 of Lecture Notes

256

Bibliography

in Computer Science, chapter Material Flow Abstraction of Manufacturing
Systems, pages 153–167. Springer, Natal, Rio Grande do Norte, Brazil,
2010.

[BHHL09] J. Botaschanjan, B. Hummel, T. Hensel, and A. Lindworsky. Integrated
behavior models for factory automation systems. In IEEE Conference on
Emerging Technologies Factory Automation, ETFA’09, pages 1–8. IEEE,
September 2009.

[BHJP05] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Formal Approaches to
Software Testing: 4th International Workshop, FATES 2004, Linz, Austria,
September 21, 2004, Revised Selected Papers, volume 3395 of Lecture Notes
in Computer Science, chapter Specifying and Generating Test Cases Using
Observer Automata, pages 125–139. Springer, Berlin, Heidelberg, Germany,
2005.

[BJR+96] G. Booch, I. Jacobson, J. Rumbaugh, et al. The unified modeling language.
Unix Review, 14(13):5, 1996.

[BK04] D. M. Berry and E. Kamsties. Ambiguity in requirements specification. In
J. H. Doorn J. C. Sampaio do Prado Leite, editor, Perspectives on software
requirements, volume 753 of Springer International Series in Engineering
and Computer Science, pages 7–44. Springer, New York, NY, USA, 2004.

[BME+07] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen,
and K. A. Houston. Object oriented analysis and design with application.
Addision-Wesley Object Technology Series. Addison-Wesley, Boston, MA,
USA, 3rd edition, April 2007.

[BN06] T. Bhat and N. Nagappan. Evaluating the efficacy of test-driven develop-
ment: Industrial case studies. In ACM/IEEE International Symposium on
Empirical Software Engineering, ISESE’06, pages 356–363, Rio de Janeiro,
Brazil, September 2006. ACM.

[BOA+11] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Junghanns,
J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz,
and C. Wolf, S. Clauß. The functional mockup interface for tool independent
exchange of simulation models. In 8th International Modelica Conference,
number 63 in Linköping Electronic Conference Proceedings, pages 105–114,
Dresden, Germany, March 2011. Linköping University Electronic Press.

257

Bibliography

[BR87] C. Beck and G. Roepstorff. Effects of phase space discretization on the long-
time behavior of dynamical systems. Physica D: Nonlinear Phenomena,
25(1–3):173–180, March–April 1987.

[Bro01] T. R. Browning. Applying the design structure matrix to system decom-
position and integration problems: a review and new directions. IEEE
Transactions on Engineering Management, 48(3):292–306, August 2001.

[Bro07] M. Broy. SOFSEM 2007: Theory and Practice of Computer Science: 33rd
Conference on Current Trends in Theory and Practice of Computer Science,
Harrachov, Czech Republic, January 20–26, 2007. Proceedings, volume 4362
of Lecture Notes in Computer Science, chapter Interaction and Realizability,
pages 29–50. Springer, Berlin, Heidelberg, Germany, 2007.

[Bro10] M. Broy. A logical basis for component-oriented software and systems en-
gineering. The Computer Journal, 53(10):1758–1782, December 2010.

[BS96] R. H. Bracewell and J. E. E. Sharpe. Functional descriptions used in
computer support for qualitative scheme generation – schemebuilder. Ar-
tificial Intelligence for Engineering, Design, Analysis and Manufacturing,
10(4):333–345, September 1996.

[BS01] M. Broy and K. Stølen. Specification and development of interactive systems:
focus on streams, interfaces, and refinement. Monographs in Computer
Science. Springer, New York, NY, USA, May 2001.

[BVZ95] A. Del Bimbo, E. Vicario, and D. Zingoni. Symbolic description and visual
querying of image sequences using spatio-temporal logic. IEEE Transactions
on Knowledge and Data Engineering, 7(4):609–622, August 1995.

[CFGR02] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of
xml documents with xpath expressions. The VLDB Journal, 11(4):354–379,
December 2002.

[CGHJ14] A. Campetelli, M. Gleirscher, G. Hackenberg, and M. Junker. Konzepte und
werkzeug-prototypen für die mechatronische modellierung von embedded
systems. Project report, Fakultät für Informatik, Technische Universität
München, Garching, Germany, 2014.

[CGI93] B. Chandrasekaran, A. K. Goel, and Y. Iwasaki. Functional representation
as design rationale. Computer, 26(1):48–56, January 1993.

258

Bibliography

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. Mit University
Press Group, Cambridge, MA, USA, December 1999.

[CH15] A. Campetelli and G. Hackenberg. Performance analysis of adaptive runge-
kutta methods in region of interest. In 2nd International IFIP Workshop
on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems,
EITEC’15, Seattle, WA, USA, April 2015.

[CHJ13] A. Campetelli, G. Hackenberg, and M. Junker. Modelling of spes xt case
studies with focus components. Project report, Fakultät für Informatik,
Technische Universität München, Garching, Germany, 2013.

[Cho78] T. S. Chow. Testing software design modeled by finite-state machines. IEEE
transactions on software engineering, 4(3):178, May 1978.

[Clo60] R. W. Clough. The finite element method in plane stress analysis. In 2nd
ASCE Conference on Electronic Computation, pages 345–378, Pittsburgh,
Pennsylvania, September 1960. A.S.C.E. Structural Division, American So-
ciety of Civil Engineers.

[Cox61] H. S. M. Coxeter. Introduction to geometry. Journal of Philosophy,
60(1):19–21, 1961.

[CRS+13] S. K. Chandrasegaran, K. Ramani, R. D. Sriram, I. Horvth, A. Bernard,
R. F. Harik, and W. Gao. The evolution, challenges, and future of knowl-
edge representation in product design systems. Computer-Aided Design,
45(2):204 – 228, February 2013.

[CT98] J. V. Camahan and D. L. Thurston. Trade-off modeling for product and
manufacturing process design for the environment. Journal of Industrial
Ecology, 2(1):79–92, January 1998.

[CW02] L.-K. Chan and M.-L. Wu. Quality function deployment: A literature re-
view. European Journal of Operational Research, 143(3):463–497, December
2002.

[CWW05] T.-C. Chang, R. A. Wysk, and H.-P. Wang. Computer-aided manufacturing.
Prentice Hall International Series in Industrial and Systems Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, July 2005.

[Dav92] A. M. Davis. Operational prototyping: a new development approach. IEEE
Software, 9(5):70–78, September 1992.

259

Bibliography

[DHT00] C. H. Damm, K. M. Hansen, and M. Thomsen. Tool support for coop-
erative object-oriented design: Gesture based modelling on an electronic
whiteboard. In SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI’00, pages 518–525, The Hague, The Netherlands, April 2000.
ACM.

[DJK+99] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz. Model-based testing in practice. In 21st International
Conference on Software Engineering, ICSE’99, pages 285–294, Los Angeles,
CA, USA, May 1999. ACM.

[dMB08] L. de Moura and N. Bjørner. Tools and Algorithms for the Construction and
Analysis of Systems: 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29–April 6, 2008. Proceedings,
volume 4963 of Lecture Notes in Computer Science, chapter Z3: An Efficient
SMT Solver, pages 337–340. Springer, Berlin, Heidelberg, Germany, 2008.

[DMG07] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. The Addision-Wesley Signature Series.
Addison-Wesley, Boston, MA, USA, July 2007.

[DMRT79] A. M. Davis, T. J. Miller, E. Rhode, and B. J. Taylor. Plp: an auto-
mated tool for the processing of requirements. In 3rd IEEE Computer
Society’s International Computer Software and Applications Conference,
COMPSAC’79, pages 289–299, Chicago, IL, USA, November 1979. IEEE.

[DOJ+93] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G. Kin-
caid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos. Iden-
tifying and measuring quality in a software requirements specification. In 1st
International Software Metrics Symposium, METRICS’93, pages 141–152,
Baltimore, MD, USA, May 1993. IEEE.

[EFH13] S. Eder, H. Femmer, and G. Hackenberg. ifedit ermöglicht innovative
schnittstellenspezifikationen. VDW Branchenreport, March 2013.

[Ein14] S. Einwang. Entwurf, implementierung und demonstration eines 3d ani-
mationsframework für das explorationswerkzeug xtream. Bachelor’s thesis,
Fakulät für Informatik, Technische Universität München, Garching, Ger-
many, December 2014.

260

Bibliography

[EKvB+08] M. S. Erden, H. Komoto, T. J. van Beek, V. D’Amelio, E. Echavarria, and
T. Tomiyama. A review of function modeling: Approaches and applications.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
22(2):147–169, March 2008.

[ElM93] H. A. ElMaraghy. Evolution and future perspectives of capp. CIRP Annals
– Manufacturing Technology, 42(2):739–751, 1993.

[EN16] H. ElMaraghy and A. Nassehi. CIRP Encyclopedia of Production Engineer-
ing, chapter Computer-Aided Process Planning, pages 266–271. Springer,
Berlin, Heidelberg, Germany, February 2016.

[Est07] J. A. Estefan. Survey of model-based systems engineering (mbse) method-
ologies. Technical Report Rev. B, INCOSE, San Diego, CA, USA, May
2007.

[Fal90] B. Faltings. Qualitative kinematics in mechanisms. Artificial Intelligence,
44(1–2):89–119, July 1990.

[Fär14] J. Färber. Entwicklung eines visualsierungsframeworks für das verhalten
intelligenter energiesysteme auf basis von xtream. Bachelor’s thesis, Fakulät
für Informatik, Technische Universität München, Garching, Germany, May
2014.

[FB02] P. Fritzson and P. Bunus. Modelica – a general object-oriented language
for continuous and discrete-event system modeling and simulation. In 35th
Annual Simulation Symposium, ANSS’02, pages 365–380, San Deigo, CA,
USA, April 2002. IEEE.

[FKV91] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Informal and formal re-
quirements specification languages: bridging the gap. IEEE Transactions
on Software Engineering, 17(5):454–466, May 1991.

[FMS14] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the
systems modeling language. Mk/Omg Press. Morgan Kaufmann, Burlington,
MA, USA, 3rd edition, October 2014.

[For84] K. D. Forbus. Qualitative process theory. Artificial Intelligence, 24(1–3):85–
168, December 1984.

261

Bibliography

[FvBK+91] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi.
Test selection based on finite state models. IEEE Transactions on Software
Engineering, 17(6):591–603, June 1991.

[GBC+02] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rig-
nanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy,
M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan. First-principles com-
putation of material properties: the abinit software project. Computational
Materials Science, 25(3):478–492, November 2002.

[GDT06] T. Gutowski, J. Dahmus, and A. Thiriez. Electrical energy requirements for
manufacturing processes. In 13th CIRP International Conference on Life
Cycle Engineering, volume 31 of LCE’06, pages 623–638, Lueven, Belgium,
May 2006.

[Ger90] J. S. Gero. Design prototypes: a knowledge representation schema for de-
sign. AI magazine, 11(4):26, 1990.

[GF94] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements
traceability problem. In 1st IEEE International Conference on Requirements
Engineering, RE’94, pages 94–101, Colorado Springs, CO, USA, August
1994. IEEE.

[Gon70] G. Gonenc. A method for the design of fault detection experiments. IEEE
Transactions on Computers, 19(6):551–558, June 1970.

[Gro15] M. P. Groover. Automation, production systems, and computer-integrated
manufacturing. Pearson Education, London, UK, 4th edition, March 2015.

[GTD13] J. Gausemeier, C. Tschirner, and R. Dumitrescu. Der weg zu intelligenten
technischen systemen. Industrie Management, 29(1):49–52, January 2013.

[GW03] B. George and L. Williams. An initial investigation of test driven devel-
opment in industry. In ACM Symposium on Applied Computing, SAC’03,
pages 1135–1139, Melbourne, FL, USA, March 2003. ACM.

[Hac15] Georg Hackenberg. Energyfocus – modellbasierte entwicklungsmethode
für die informations- und kommunikationstechnologie (ikt) intelligenter en-
ergiesysteme. Project report, Fakultät für Informatik, Technische Univer-
sität München, Garching, Germany, 2015.

262

Bibliography

[Hau06a] N. C. Haugen. An empirical study of using planning poker for user story
estimation. In Agile Conference, AGILE’06, pages 9–34, Minneapolis, MN,
USA, July 2006. IEEE.

[Hau06b] M. Hause. The sysml modelling language. In 5th European Systems Engi-
neering Conference, EuSEC’06, Edinburgh, UK, September 2006. INCOSE.

[HB08] B. Hummel and P. Braun. Towards an integrated system model for testing
and verification of automation machines. In International Workshop on
Models in Software Engineering, MiSE’08, pages 51–56, Leipzig, Germany,
May 2008. ACM.

[HB12] G. Hackenberg and D. Bytschkow. Towards early emergent property un-
derstanding: Merging behavior space exploration and model-based software
engineering. In Extreme Modeling Workshop, XM’12, pages 39–44, Inns-
bruck, Austria, October 2012. ACM.

[HC88] J. R. Hauser and D. Clausing. The house of quality. Harvard business
review, 66(3), May 1988.

[HCL+14] G. Hackenberg, A. Campetelli, C. Legat, J. Mund, S. Teufl, and B. Vogel-
Heuser. Formal technical process specification and verification for auto-
mated production systems. In D. Amyot, P. Fonseca i Casas, and G. Muss-
bacher, editors, 8th International Conference on System Analysis and Mod-
eling: Models and Reusability, SAM’14, pages 287–303, Valencia, Spain,
September 2014. Springer.

[HGS+16] G. Hackenberg, M. Gleirscher, T. Stocker, C. Richter, and G. Reinhart. Ma-
con: Consistent cross-disciplinary conception of manufacturing systems. In
8th IFAC Conference on Manufacturing Modelling, Management and Con-
trol, MIM’16, pages 1175–1180, Troyes, France, June 2016. Elsevier.

[HHP02] M. Harman, R. M. Hierons, and M. Proctor. A new representation and
crossover operator for search-based optimization of software modulariza-
tion. In 4th Annual Conference on Genetic and Evolutionary Computation,
GECCO’02, pages 1351–1358, New York, NY, USA, July 2002. Morgan
Kaufmann.

[HIKB12] G. Hackenberg, M. Irlbeck, V. Koutsoumpas, and D. Bytschkow. Apply-
ing formal software engineering techniques to smart grids. In Interna-

263

Bibliography

tional Workshop on Software Engineering Challenges for the Smart Grid,
SE4SG’12, pages 50–56, Zurich, Switzerland, June 2012. IEEE.

[HIKB14] G. Hackenberg, M. Irlbeck, V. Koutsoumpas, and D. Bytschkow. A rapid
prototyping approach for smart energy systems based on partial system
models. In IEEE International Computer Software and Applications Con-
ference Workshops, COMSACW’14, pages 596–601, Vasteras, Sweden, July
2014. IEEE.

[Hir16] A. Hirsch. Werkzeugmaschinen: Anforderungen, Auslegung,
Ausführungsbeispiele. Springer Vieweg, Berlin, Heidelberg, Germany,
3rd edition, November 2016.

[HJL96] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Software
Engineering Methodology, 5(3):231–261, July 1996.

[HM16] G. Hackenberg and J. Mund. Cyber-physical manufacturing systems devel-
opment: A test-driven approach and exploratory case study. Technical Re-
port TUM-I1664, Fakultät für Informatik, Technische Universität München,
Garching, Germany, 2016.

[HPSvH03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From shiq and rdf
to owl: the making of a web ontology language. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(1):7–26, December 2003.

[HRZ13] G. Hackenberg, C. Richter, and M. F. Zäh. Durchgängig modell-
basierte entwicklung von werkzeugmaschinen. VDI-Z Integrierte Produk-
tion, 155(9):24–28, September 2013.

[HRZ14] G. Hackenberg, C. Richter, and M. F. Zäh. A multi-disciplinary model-
ing technique for requirements management in mechatronic systems engi-
neering. In 2nd International Conference on System-Integrated Intelligence:
Challenges for Product and Production Engineering, SysInt’14, pages 5–16,
Bremen, Germany, July 2014. Elsevier.

[HRZ15a] G. Hackenberg, C. Richter, and M. F. Zäh. From conception to refinement
in mechatronics systems engineering. International Journal of Materials,
Mechanics and Manufacturing, 4(1):66–73, February 2015.

264

Bibliography

[HRZ15b] G. Hackenberg, C. Richter, and M. F. Zäh. Imomesa – abschlussbericht.
Project Report TUM-I1519, Fakultät für Informatik, Technische Universität
München, Garching, Germany, 2015.

[HSM+02] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood. A
functional basis for engineering design: Reconciling and evolving previous
efforts. Technical Report 1447, National Institute of Standards and Tech-
nology, Gaithersburg, MD, USA, February 2002.

[Hum09] B. Hummel. A semantic model for computer-based spatio-temporal sys-
tems. In 16th Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems, ECBS’09, pages 156–165, San
Francisco, CA, USA, April 2009. IEEE.

[Hum11] B. Hummel. Integrated Behavior Modeling of Space-Intensive Mechatronic
Systems. Doctoral thesis, Fakultät für Informatik, Technische Universität
München, Garching, Germany, January 2011.

[HW98] W. Hsu and I. M.Y. Woon. Current research in the conceptual design of
mechanical products. Computer-Aided Design, 30(5):377–389, April 1998.

[IBHK13] M. Irlbeck, D. Bytschkow, G. Hackenberg, and V. Koutsoumpas. Towards
a bottom-up development of reference architectures for smart energy sys-
tems. In International Workshop on Software Engineering Challenges for
the Smart Grid, SE4SG’13, pages 9–16, San Francisco, CA, USA, May 2013.
IEEE.

[IO05] M. G. Ilieva and Olga Ormandjieva. Natural Language Processing and Infor-
mation Systems: 10th International Conference on Applications of Natural
Language to Information Systems, NLDB 2005, Alicante, Spain, June 15–
17, 2005. Proceedings, volume 3513 of Lecture Notes in Computer Science,
chapter Automatic Transition of Natural Language Software Requirements
Specification into Formal Presentation, pages 392–397. Springer, Berlin,
Heidelberg, Germany, 2005.

[JP07] A. Jimeno and A. Puerta. State of the art of the virtual reality applied
to design and manufacturing processes. International Journal of Advanced
Manufacturing Technology, 33(9–10):866–874, July 2007.

265

Bibliography

[JSJ98] S. H. Jacobson, K. A. Sullivan, and A. W. Johnson. Discrete manufacturing
process design optimization using computer simulation and generalized hill
climbing algorithms. Engineering Optimization, 31(2):247–260, June 1998.

[JST81] A. Jameson, W. Schmidt, and W. Turkel. Numerical solutions of the eu-
ler equations by finite volume methods using runge-kutta time-stepping
schemes. In 14th Fluid and Plasma Dynamics Conference, page 1981, Palo
Alto, CA, USA, June 1981. American Institute of Aeronautics and Astro-
nautics.

[Kai15] L. Kaiser. Development of a model for the intelligent operation of a hydro
power plant chain. Project thesis, Fakulät für Maschinenbau, Technische
Universität München, Garching, Germany, 2015.

[Keu91] A. M. Keuneke. Device representation-the significance of functional knowl-
edge. IEEE Expert, 6(2):22–25, April 1991.

[KKFM04] Y. Kitamura, M. Kashiwase, M. Fuse, and R. Mizoguchi. Deployment of an
ontological framework of functional design knowledge. Advanced Engineer-
ing Informatics, 18(2):115–127, April 2004.

[KM04] Y. Kitamura and R. Mizoguchi. Ontology-based systematization of func-
tional knowledge. Journal of Engineering Design, 15(4):327–351, March
2004.

[KS98] G. Kotonya and I. Sommerville. Requirements Engineering: Processes and
Techniques. John Wiley & Sons, Hoboken, NJ, USA, September 1998.

[KS03] A. L. Kapelevich and Y. V. Shekhtman. Direct gear design: Bending stress
minimization. Gear Technology, 20(5):44–47, September/October 2003.

[KT04] M. Krichen and S. Tripakis. Model Checking Software: 11th International
SPIN Workshop, Barcelona, Spain, April 1–3, 2004. Proceedings, volume
2989 of Lecture Notes in Computer Science, chapter Black-Box Conformance
Testing for Real-Time Systems, pages 109–126. Springer, Berlin, Heidelberg,
Germany, 2004.

[Kul08] B. M. Kulfan. Universal parametric geometry representation method. Jour-
nal of Aircraft, 45(1):142–158, January/February 2008.

266

Bibliography

[LB02] B.-S. Lee and B. R. Bryant. Automated conversion from requirements doc-
umentation to an object-oriented formal specification language. In ACM
Symposium on Applied Computing, SAC’02, pages 932–936, Madrid, Spain,
March 2002. ACM.

[LDK03] B. Lauwers, P. Dejonghe, and J.P. Kruth. Optimal and collision free tool
posture in five-axis machining through the tight integration of tool path
generation and machine simulation. Computer-Aided Design, 35(5):421–
432, April 2003.

[LFB96] J. Lin, M. S. Fox, and T. Bilgic. A requirement ontology for engineering
design. Concurrent Engineering, 4(3):279–291, September 1996.

[LFVH13] C. Legat, J. Folmer, and B. Vogel-Heuser. Evolution in industrial plant
automation: A case study. In 39th Annual Conference of the IEEE In-
dustrial Electronics Society, IECON’13, pages 4386–4391, Vienna, Austria,
November 2013. IEEE.

[LMC+14] C. Legat, J. Mund, A. Campetelli, G. Hackenberg, J. Folmer, D. Schütz,
M. Broy, and B. Vogel-Heuser. Interface behavior modeling for automatic
verification of industrial automation systems’ functional conformance. at –
Automatisierungstechnik, 62(11):815–825, November 2014.

[LP04] V.-C. Liang and C. J. J. Paredis. A port ontology for conceptual design
of systems. Journal of Computing and Information Science in Engineering,
4(3):206–217, September 2004.

[LSS94] O. I. Lindland, G. Sindre, and A. Solvberg. Understanding quality in con-
ceptual modeling. IEEE Software, 11(2):42–49, March 1994.

[LSV03] N. Lynch, R. Segala, and F. Vaandrager. Hybrid i/o automata. Information
and Computation, 185(1):105–157, August 2003.

[LT89] N. Lynch and M. Tuttle. An introduction to input/output automate. CWI
quarterly, 2(3):219–246, September 1989.

[Man99] C. D. Manning. Foundations of statistical natural language processing. Mit
University Press Group, Cambridge, MA, USA, May 1999.

[MDN09] P. Mohagheghi, V. Dehlen, and T. Neple. Definitions and approaches to
model quality in model-based software development – a review of literature.
Information and Software Technology, 51(12):1646–1669, December 2009.

267

Bibliography

[ME98] T. D. Miller and P. Elgard. Defining modules, modularity and modulariza-
tion. In 13th IPS Research Seminar on Design for Integration in Manufac-
turing, IPS’98, Fuglsø, Denmark, April 1998.

[MEO98] S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling with
modelica. Control Engineering Practice, 6(4):501–510, April 1998.

[MLK12] T. Mayerhofer, P. Langer, and G. Kappel. A runtime model for fuml. In 7th
Workshop on Models@Run.Time, MRT’12, pages 53–58, Innsbruck, Austria,
October 2012. ACM.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In 38th Annual Design Automation Con-
ference, DAC’01, pages 530–535, Las Vegas, Nevada, USA, June 2001. ACM.

[Mon03] P. Monk. Finite element methods for Maxwell’s equations. Numerical Anal-
ysis and Scientific Computation Series. Oxford University Press, Oxford,
UK, April 2003.

[Mul16] T. Mulenko. Advanced experiment data collection and analysis for the ma-
con approach. Master’s thesis, Fakulät für Informatik, Technische Univer-
sität München, Garching, Germany, November 2016.

[MW03] E. M. Maximilien and L. Williams. Assessing test-driven development at
ibm. In 25th International Conference on Software Engineering, ICSE’03,
pages 564–569, Portland, OR, USA, May 2003. IEEE.

[MWZ03] S. Merz, M. Wirsing, and J. Zappe. Fundamental Approaches to Software
Engineering: 6th International Conference, FASE 2003 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2003 Warsaw, Poland, April 7–11, 2003 Proceedings, volume 2621 of Lec-
ture Notes in Computer Science, chapter A Spatio-Temporal Logic for the
Specification and Refinement of Mobile Systems, pages 87–101. Springer,
Berling, Heidelberg, Germany, 2003.

[NMBW08] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams. Realizing qual-
ity improvement through test driven development: results and experiences
of four industrial teams. Empirical Software Engineering, 13(3):289–302,
February 2008.

[OSSJ09] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based
modeling: A survey. Computers & Graphics, 33(1):85–103, February 2009.

268

Bibliography

[Pay60] H. M. Paynter. Analysis and design of engineering systems. Mit University
Press Group, Cambridge, MA, USA, June 1960.

[PBFG06] G. Pahl, W. Beitz, J. Feldhusen, and K.-H. Grote. Engineering design: a
systematic approach. Springer, London, UK, 3rd edition, December 2006.

[PHO+01] S. G. Psakhie, Y. Horie, G. P. Ostermeyer, S. Y. Korostelev, A. Y. Smolin,
E. V. Shilko, A. I. Dmitriev, S. Blatnik, M. Špegel, and S. Zavšek. Movable
cellular automata method for simulating materials with mesostructure. The-
oretical and Applied Fracture Mechanics, 37(1–3):311–334, December 2001.

[Pie91] L. Piegl. On nurbs: a survey. IEEE Computer Graphics and Applications,
11(1):55–71, January 1991.

[PW92] D. E. Perry and A. L. Wolf. Foundations for the study of software architec-
ture. SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.

[RBG14] G. Rehage, F. Bauer, and J. Gausemeier. Specification technique for the
consistent description of manufacturing operations and resources. In M. F.
Zäh, editor, Enabling Manufacturing Competitiveness and Economic Sus-
tainability: Proceedings of the 5th International Conference on Changeable,
Agile, Reconfigurable and Virtual Production (CARV 2013), Munich, Ger-
many, October 6th–9th, 2013, pages 47–53. Springer, Berlin, Heidelberg,
Germany, 2014.

[RC86] A. A. G. Requicha and S. Chan. Representation of geometric features,
tolerances, and attributes in solid modelers based on constructive geometry.
IEEE Journal on Robotics and Automation, 2(3):156–166, September 1986.

[Ren82] T. Rentsch. Object oriented programming. ACM Sigplan Notices, 17(9):51–
57, September 1982.

[Req80] A. A. G. Requicha. Representations for rigid solids: Theory, methods, and
systems. ACM Computing Surveys, 12(4):437–464, December 1980.

[RH01] S. Rayadurgam and M. P. E. Heimdahl. Coverage based test-case generation
using model checkers. In 8th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, ECBS’01, pages
83–91, Washington, DC, USA, April 2001. IEEE, IEEE.

269

Bibliography

[RHAS00] W. C. Regli, X. Hu, M. Atwood, and W. Sun. A survey of design rationale
systems: Approaches, representation, capture and retrieval. Engineering
with Computers, 16(3–4):209–235, December 2000.

[RHSR15] C. Richter, G. Hackenberg, P. Stich, and G. Reinhart. Modellbasierte
konzeption von benutzerschnittstellen im entwicklungsprozess von mecha-
tronischen systemen. In Tag des Systems Engineering: Verteiltes Arbeiten
mit ganzheitlicher Kontrolle, TdSE’15, pages 81–90, Herzogenaurach, Ger-
many, October 2015. Carl Hanser Verlag.

[RHZ13] C. Richter, G. Hackenberg, and M. F. Zäh. Modellbasierte entwick-
lungsmethode für modulare maschinen und anlagen. Zeitschrift für
wirtschaftlichen Fabrikbetrieb (ZWF), 108(11):818–822, November 2013.

[RHZ14a] C. Richter, G. Hackenberg, and M. F. Zäh. Interdisziplinäre funktionsmodel-
lierung für die generierung von robustem steuerungscode für fehlertolerantes
systemverhalten. In 15. Branchentreff der Mess- und Automatisierungstech-
nik: Smart X – Powered by Automation, AUTOMATION ’14, pages 107–
128, Düsseldorf, Germany, July 2014. VDI-Verlag.

[RHZ14b] C. Richter, G. Hackenberg, and M. F. Zäh. Mit interdisziplinärer model-
lierungstechnik mechatronische systeme entwickeln. VDW Branchenreport,
May 2014.

[RHZR15] C. Richter, G. Hackenberg, M. F. Zäh, and G. Reinhart. Integrated re-
quirements and systems modeling in the mechatronic development process.
In International Conference on Developments of E-Systems Engineering,
DeSE’15, pages 324–331, Dubai, UAE, December 2015.

[RJB10] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Ref-
erence Manual. Pearson Education, London, UK, 2nd edition, April 2010.

[Roa76] P. J. Roache. Computational fluid dynamics. Hermosa publishers, Socorro,
NM, USA, revised edition, June 1976.

[Rob06] C.M. Roberts. Radio frequency identification (rfid). Computers & Security,
25(1):18–26, February 2006.

[RRE91] J. Rumbaugh, J. Rumbaugh, and F. Eddy. Object-oriented modeling and
design. Prentice Hall, Upper Saddle River, NJ, USA, December 1991.

270

Bibliography

[RV77] A. A. G. Requicha and H. B. Voelcker. Constructive solid geometry. CAD-
line, 36(3):31–33, November 1977.

[RV83] A. A. G. Requicha and H. B. Voelcker. Solid modeling: current status and
research directions. IEEE Computer Graphics and Applications, 3(7):25–37,
October 1983.

[RV85] A. A. G. Requicha and H. B. Voelcker. Boolean operations in solid modeling:
Boundary evaluation and merging algorithms. Proceedings of the IEEE,
73(1):30–44, January 1985.

[RW99] G. Reinhart and M. Weissenberger. Multibody simulation of machine tools
as mechatronic systems for optimization of motion dynamics in the design
process. In IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, AIM’99, pages 605–610, Atlanta, GA, USA, September 1999.
IEEE.

[RW07] G. Reinhart and G. Wünsch. Economic application of virtual commissioning
to mechatronic production systems. Journal of Production Engineering -
Research and Development, 1(4):371–379, December 2007.

[RZH14] C. Richter, M. F. Zäh, and G. Hackenberg. Modellbasierte entwick-
lungsmethodik hilft mechatronische systeme zielgerichtet zu entwickeln.
VDW Branchenreport, December 2014.

[SB02] K. Schwaber and M. Beedle. Agile software development with Scrum. Pren-
tice Hall, Upper Saddle River, NJ, USA, February 2002.

[SCC01] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and quasi-
experimental designs for generalized causal inference. Cengage Learning,
Boston, MA, USA, January 2001.

[Sch97] W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multi-
body System Dynamics, 1(2):149–188, June 1997.

[SCL98] N. P. Suh, D. S. Cochran, and P. C. Lima. Manufacturing system design.
CIRP Annals - Manufacturing Technology, 47(2):627 – 639, 1998.

[SG00] E. Schweikardt and M. D. Gross. Digital clay: deriving digital models
from freehand sketches. Automation in Construction, 9(1):107–115, January
2000.

271

Bibliography

[Sha97] A. A. Shabana. Flexible multibody dynamics: Review of past and recent
developments. Multibody System Dynamics, 1(2):189–222, June 1997.

[SPLK01] R. Sinha, C. J. J. Paredis, V.-C. Liang, and P. K. Khosla. Modeling and
simulation methods for design of engineering systems. Journal of computing
and information science in engineering, 1(1):84–91, November 2001.

[Ste81] D. V. Steward. The design structure system: A method for managing the de-
sign of complex systems. IEEE Transactions on Engineering Management,
28(3):71–74, August 1981.

[Sto15] T. Stocker. Implementierung und evaluation des entwicklungsprozesses
“imomesa” für den maschinen- und anlagenbau. Master’s thesis, Fakulät für
Informatik, Technische Universität München, Garching, Germany, Septem-
ber 2015.

[Suh95] N. P. Suh. Axiomatic design of mechanical systems. Journal of Mechanical
Design, 117(B):2–10, June 1995.

[Suh98] N. Suh. Axiomatic design theory for systems. Research in Engineering
Design, 10(4):189–209, December 1998.

[TH15] S. Teufl and G. Hackenberg. Efficient impact analysis of changes in the
requirements of manufacturing automation systems. In 15th IFAC Sympo-
sium on Information Control Problems in Manufacturing, INCOM’15, pages
1482–1489, Ottawa, Canada, May 2015. IFAC.

[Thr05] K. Thramboulidis. Model-integrated mechatronics - toward a new paradigm
in the development of manufacturing systems. IEEE Transactions on In-
dustrial Informatics, 1(1):54–61, February 2005.

[TMR13] S. Teufl, D. Mou, and D. Ratiu. Mira: A tooling-framework to experiment
with model-based requirements engineering. In 21st IEEE International Re-
quirements Engineering Conference, RE’13, pages 330–331, Rio de Janeiro,
Brazil, July 2013. IEEE.

[Tre99] J. Tretmans. International Conference on Concurrency Theory: CONCUR
1999: CONCUR99 Concurrency Theory pp 46-65, volume 1664 of Lecture
Notes in Computer Science, chapter Testing Concurrent Systems: A Formal
Approach, pages 46–65. Springer, Berlin, Heidelberg, Germany, 1999.

272

Bibliography

[UIY+96] Y. Umeda, M. Ishii, M. Yoshioka, Y. Shimomura, and T. Tomiyama. Sup-
porting conceptual design based on the function-behavior-state modeler.
Artificial Intelligence for Engineering, Design, Analysis and Manufactur-
ing, 10(4):275–288, September 1996.

[Ulr94] K. Ulrich. Management of Design: Engineering and Management Per-
spectives, chapter Fundamentals of Product Modularity, pages 219–231.
Springer, Dordrecht, The Netherlands, 1994.

[UTTY90] Y. Umeda, H. Takeda, T. Tomiyama, and H. Yoshikawa. Function, be-
haviour, and structure. Applications of artificial intelligence in engineering
V, 1:177–194, July 1990.

[vBET10] T. J. van Beek, M. S. Erden, and T. Tomiyama. Modular design of mecha-
tronic systems with function modeling. Mechatronics, 20(8):850–863, De-
cember 2010.

[VEH+14] A. Vogelsang, S. Eder, G.. Hackenberg, M. Junker, and S. Teufl. Supporting
concurrent development of requirements and architecture – a model-based
approach. In International Conference on Model-Driven Engineering and
Software Development, MODELSWARD’14, pages 587–595, Lisbon, Portu-
gal, January 2014. IEEE.

[VHLFF14] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann. Researching evo-
lution in industrial plant automation: Scenarios and documentation of the
pick and place unit. Technical report, Fakultät für Maschinenbau, Technis-
che Universität München, Garching, Germany, 2014.

[VN92] N. Viswanadham and Y. Narahari. Performance modeling of automated
manufacturing systems. Prentice Hall Information and System Sciences Se-
ries. Prentice Hall, Upper Saddle River, NJ, USA, February 1992.

[vON99] D. von Oheimb and T. Nipkow. Formal Syntax and Semantics of Java, vol-
ume 1523 of Lecture Notes in Computer Science, chapter Machine-Checking
the Java Specification: Proving Type-Safety, pages 119–156. Springer,
Berlin, Heidelberg, Germany, 1999.

[WK99] J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise
Modeling With Uml. Addison-Wesley Object Technology Series. Addison-
Wesley, Boston, MA, USA, March 1999.

273

Bibliography

[WMV03] L. Williams, E. M. Maximilien, and M. Vouk. Test-driven development as a
defect-reduction practice. In 14th International Symposium on Software Re-
liability Engineering, ISSRE’03, pages 34–45, Denver, CO, USA, November
2003. IEEE.

[WNST06] D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational semantics
and type safety prooffor multiple inheritance in c++. ACM SIGPLAN
Notices, 41(10):345–362, October 2006.

[WSX+02] L. Wang, W. Shen, H. Xie, J. Neelamkavil, and A. Pardasani. Collaborative
conceptual design – state of the art and future trends. Computer-Aided
Design, 34(13):981–996, November 2002.

[WW10] H.-J. Warnecke and E. Westkämper. Einführung in die Fertigungstechnik.
Vieweg + Teubner, Wiesbaden, Germany, 8th edition, July 2010.

[ZHM97] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4):366–427, December 1997.

[ZOM04] M. F. Zäh, T. Oertli, and J. Milberg. Finite element modelling of ball screw
feed drive systems. CIRP Annals - Manufacturing Technology, 53(1):289–
292, 2004.

[ZRH13a] M. F. Zäh, C. Richter, and G. Hackenberg. Herausforderun-
gen im mechatronischen entwicklungsprozess: Anforderungsanalyse
bei ausgewählten werkzeugmaschinenherstellern. Newsletter der Wis-
senschaftlichen Gesellschaft für Produktentwicklung (WiGeP), 1:4–5, June
2013.

[ZRH13b] M. F. Zäh, C. Richter, and G. Hackenberg. Integrierte modell-
basierte entwicklung mechatronischer systeme macht fortschritte. VDW-
Branchenreport, June 2013.

[ZS07] M. F. Zäh and D. Siedl. A new method for simulation of machining perfor-
mance by integrating finite element and multi-body simulation for machine
tools. CIRP Annals - Manufacturing Technology, 56(1):383–386, 2007.

274

	Introduction
	Considered systems
	Manufacturing systems
	Machine tools

	Recent trends
	System complexities
	Engineering efforts
	Commissioning costs

	Practical challenges
	Mechanical dominance
	Lacking synchronization
	Insufficient evaluation
	Sequential engineering

	Claimed contributions
	Test-driven method
	Modeling technique
	Quality issues
	Prototypical tooling
	Industry-close showcase
	Critical discussion

	Intended audience
	System builders
	Tool providers
	Scientific researchers

	Summary and outlook

	Differentiation
	Related work
	Diagram-based techniques
	Physics-based techniques
	Component-based techniques
	Matrix-based techniques
	Function-based techniques
	Ontology-based techniques
	Commercial tools

	Remaining problems
	Information coverage
	Integrated formalism
	Automated evaluation
	Practical methodology

	Research objectives
	Summary and outlook

	Test-driven method
	Preparation phase
	Requirement specification
	Process specification
	Test specification

	Implementation phase
	Test selection
	Architecture specification
	Behavior specification
	Part specification

	Summary and outlook

	Theoretical foundation
	Focus on components and streams (FOCUS)
	Streams
	Channels
	Components
	State transition systems

	Spatio-temporal engineering models (STEM)
	Transformable collision spaces
	Spatio-temporal components
	Extended spatio-temporal components

	Summary and outlook

	Modeling technique
	Basic concepts
	Observations
	Executables
	Expressions
	Volumes
	Transforms

	Revised concepts
	Components
	Ports
	Channels
	Parts
	Behaviors

	Added concepts
	Requirements
	Properties
	Monitors
	Scenarios

	Summary and outlook

	Quality issues
	Syntactic issues
	Incompleteness issues
	Inconsistency issues

	Semantic issues
	Extrinsic issues
	Intrinsic issues

	Summary and outlook

	Prototypical tooling
	Modeling interface
	Toolbar view
	Explorer view
	Editor view
	Scene view
	Issues view
	Changes view
	Attributes view

	Testing interface
	Toolbar view
	Explorer view
	Editor view
	Scene view
	Issues view
	Results view
	Attributes view

	Summary and outlook

	Industry-close showcase
	Templates
	White/gray/black workpiece
	Component sensor
	Workpiece sensor
	Abstract static cylinder
	Concrete static cylinder
	Concrete static cylinder / Piston
	Concrete dynamic cylinder
	Concrete dynamic cylinder / Tip

	Components
	PPU
	PPU / Distributor
	PPU / Distributor / Twister
	PPU / Distributor / Lifter
	PPU / Distributor / Lifter / Arm
	PPU / Distributor / Controller
	PPU / Stamper
	PPU / Stamper / Basket
	PPU / Stamper / Stamp
	PPU / Stamper / Controller
	PPU / Sorter
	PPU / Sorter / Actuator
	PPU / Sorter / Controller

	Summary and outlook

	Critical discussion
	Method feasibility
	Activity sequences
	Design revisions
	System increments

	Model validity
	System architecture
	System behavior

	Issue relevancy
	Syntactic issues
	Semantic issues

	Study validity
	Internal validity
	External validity

	Summary and outlook

	Conclusion
	Summary
	Practical challenges
	Remaining problems
	Claimed contributions

	Outlook
	Method efficiency
	Model suitability
	Issue completeness
	Tool usability

