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Abstract—Pilot contamination is a throughput limiting factor
in cellular massive MIMO systems. Previous work has shown that
the impact of pilot-contamination can be reduced by exploiting
structural information in form of channel covariance matrices.
Additionally, significant gains can be obtained through coordi-
nated user assignment. In this paper, we extend these approaches
to a realistic scenario with imperfect knowledge of the channel
and its distribution at the base station. We formulate an optimiza-
tion problem for assigning users to the available pilot sequences,
which at the same time takes the estimation of the covariance
matrices into account and propose a suboptimal greedy algorithm
for efficient implementation. Simulation results with established
physical channel models demonstrate the significant performance
gains of the proposed method in the case of imperfect knowledge
of the covariance matrices at the base station.

I. INTRODUCTION

Massive MIMO is a promising technology for enhancing
the spectral efficiency of fifth generation cellular networks.
Asymptotically, it has been shown that the array gain increases
proportionally with the number of available antennas at the
base station. Moreover, under certain conditions on the distri-
butions of the channel vectors, the channels of different users
are asymptotically orthogonal making it possible to use very
simple signal processing techniques [1].

However, a major challenge of massive MIMO is the limited
number of available pilot sequences in the training phase.
To fully exploit the potential of a massive MIMO system,
several users have to share the same pilot sequence leading
to interference during the training phase, so called pilot-
contamination. Different methods have been proposed in the
literature to tackle this effect by exploiting the second order
statistics of the channel [2]–[5].

Additional gains can be achieved, if users and pilots are
assigned properly [2], [3] [6] [7]. These approaches require
knowledge about the covariance matrices at the base station
prior to resource allocation and beamformer design.

A novel approach for solving the covariance matrix esti-
mation problem in the presence of pilot-contamination has
been proposed in [8] based on a systematic allocation of
pilot sequences to users in consecutive coherence intervals.
We adapt this approach in our simulation for estimating the
covariance matrices, and afterwards we use this information
to adaptively assign users to groups based on an efficient
greedy algorithm. In contrast to state-of-the-art algorithms,
our approach takes into account that the covariance matrix
estimation requires different pilot allocations in consecutive

channel coherence intervals. Specifically, we optimize the
assignment problem over several coherence intervals.

II. SYSTEM MODEL

We consider a single cell scenario with one base station
having M antennas and communicating with K single-antenna
users in time division duplex transmission mode.

We assume a block fading model, i.e., the channel vectors
hk[t] ∼ NC (0,Chk

) between user k and the base station are
constant within a coherence interval t of T channel accesses.
In each coherence interval, we have an uplink training phase
where Ttr channel accesses are used to gather observations on
the channel vectors. We assume that Ttr is smaller than the
number of users K leading to pilot contamination.

In every coherence interval, each user k is assigned one
of Ttr orthogonal pilot sequences. Assuming a coherent and
synchronized reception at the base station, we can simply use
a least squares (LS) estimator and correlate the signal received
during the training phase with the different pilot sequences
yielding Ttr observations

yp[t] =
∑

k∈Ωp[t]

hk[t] + np[t] ∈ CM (1)

where Ωp[t] is the set of users sharing the pilot sequence p in
coherence interval t with p = 1, . . . , Ttr, and np ∼ NC (0,Cn)
is additive white Gaussian noise.

From (1), we obtain the covariance matrix of the LS channel
estimate

Cyp[t] =
∑

k∈Ωp[t]

Chk
+Cn ∈ CM×M (2)

where we assumed that the channel vectors of the individual
users are uncorrelated with each other, and uncorrelated with
the noise as well.

For a more convenient notation, we introduce the pilot
allocation matrix Π[t] = {0, 1}K×Ttr with

[Π[t]]k,p =

{
1 for k ∈ Ωp[t]

0 otherwise
.

We then collect the vectorized covariance matrices in

BY [t] = [vec(Cy1[t]), . . . , vec(CyTtr [t]
)] ∈ CM2×Ttr

and

BH = [vec(Ch1), . . . , vec(ChK
)] ∈ CM2×K .



which allows us to rewrite (2) as

BY [t] = BHΠ[t] + vec(Cn)1
T (3)

where 1 is the all-ones vector.
To minimize the channel estimation error and reduce the

impact of pilot-contamination, the MMSE estimator is used
[cf. [3]] which gives the enhanced channel estimate of user k
employing the pilot sequence p in coherence interval t

ĥk[t] = Chk
C−1

yp[t]
yp[t]. (4)

The additional gain of the MMSE estimator compared to the
conventional LSE is substantial in scenarios where the ratio
of the number of antennas to the number of multipaths is
sufficiently large such that the channel covariance matrices
are rank deficient, i.e., the interference mitigation is enhanced
if users sharing the same training sequence have less structure
in common [3], [6].

III. ESTIMATION OF COVARIANCE MATRICES

The MMSE channel estimation presented in the previous
section requires perfect knowledge of the covariance matrices
Chk

and Cyp[t]. In practice, both are not known beforehand at
the base station and have to be estimated. Hence, the MMSE
estimate is actually calculated as

ĥk[t] = Ĉhk
Ĉ−1

yp[t]
yp[t] (5)

where Ĉhk
and Ĉyp[t] are now the estimates of Chk

and Cyp ,
respectively.

If we assume that the same pilot allocation Π[t] = Π
is used in each channel coherence interval, the estimation of
Cyp

, which then does not depend on t, is straightforward and
can be computed from the least squares estimates yp[t] using
rank-one updates in each channel coherence interval t

Ĉyp ← (1− α)Ĉyp + αyp[t]yp[t]
H (6)

with α ∈ (0, 1). For an efficient and implementation of the co-
variance matrix estimation, we refer to the works in [9]–[11].

In a subsequent step, we can estimate the channel covariance
matrices Ĉhk

. From (3), we have

BHΠ = BY − vec(Cn)1
T. (7)

Even if we assume that the noise covariance matrix is known
we cannot uniquely reconstruct the channel covariance matri-
ces since Π ∈ {0, 1}K×Ttr is a tall matrix (by assumption,
K > Ttr).

To be able to estimate the channel covariance matrices, we
adopt the approach proposed in [8] which requires a dynamic
assignment of pilots to users in consecutive channel coherence
intervals. Instead of using the same pilot allocation Π in
each coherence interval, we use N different pilot allocations
repeatedly. That is, we have different allocation matrices Πn,
n = 1, . . . , N , and in coherence interval t we use the allocation
n(t) = t mod N . Thus, we obtain in total NTtr different
combinations of the channel covariance matrices. Collecting

all least squares covariance matrices together and extending
(7), we get the linear equation system

BH [Π1, . . . ,ΠN ] = [B
(1)
Y , . . . ,B

(N)
Y ]− vec(Cn)1

T (8)

with
B

(n)
Y = [vec(C(n)

y1
, . . . , vec(C(n)

yTtr
)]

and C
(n)
yp is the covariance matrix of the LS estimate that

results from correlation with pilot sequence p in the coherence
intervals t in which Πn is used. For a full-rank matrix

Π̃ = [Π1, . . . ,ΠN ] ∈ CK×NTtr

with K independent rows, we can now apply the pseudo-
inverse to reconstruct the user covariance matrices

BH =
(
[B

(1)
Y , . . . ,B

(N)
Y ]− vec(Cn)1

T
)
Π̃+. (9)

The estimation of the noise covariance matrix could be
included in the estimation procedure but for simplicity we
assume that the noise covariance matrix is known.

IV. USER ASSIGNMENT

As mentioned in Section II, previous work indicates that
the performance of the MMSE channel estimation improves
if users sharing the same pilot sequence have less structure in
common. This insight is exploited in [3] [6] [7] by assigning
pilots to users depending on the properties of their covariance
matrices. Several greedy algorithms have been proposed to
solve the assignment problem. However, these papers assume
perfect knowledge of the covariance matrices at the base
station and hence the optimal assignment is identical in each
training phase. In our scenario, the covariance matrices are not
known at the base station and have to be estimated. Therefore,
the previously developed approaches do not apply, since the
pilot allocation matrix Π has to be full rank (cf. (8)).

A. Network Utility Maximization Problem

For perfect channel distribution information (CDI), i.e.,
perfect knowledge of the covariance matrices, the same pilot
allocation can be used in each coherence interval. Conse-
quently, given a utility function U(Π,BH) which returns
the utility achieved in one coherence interval for the pilot
allocation Π and the channel covariance matrices BH we
try to find the optimal allocation

{Ω?
1, . . . ,Ω

?
Ttr
} = argmax

Ω1,...,ΩTtr

U (Π(Ω1, . . . ,ΩTtr),BH) . (10)

Users which are in different sets Ωp do not interfere with each
other during the training phase. Thus a systematic allocation
helps to avoid unfavorable interference conditions.

The extension to the case where the channel covariance
matrices have to be estimated is not straightforward. Say
we have a method which, for a given number of users K
and available pilot sequences Ttr, generates the desired N
allocation matrices Πn, n = 1, . . . , N , such that accurate
estimation of the channel covariance matrices is possible. How
can we use this allocation matrices while still having some



degrees of freedom to optimize the allocation for a given
network utility function?

We define a certain number of groups G < Ttr for which,
analogously to the case with perfect CDI, we guarantee that
users in different groups do not interfere during the training
phase. To this end, we divide the available pilot sequences
in G disjoint subsets, one subset for each of the groups. For
notational simplicity, suppose that both the number of users
and the number of available training sequences is divisible by
G and we have K̃ = K/G users in each group which use
T̃tr = Ttr/G of the available pilot sequences.

Now we simply generate the desired schedule of pilot
allocations Πg

n ∈ {0, 1}K̃×T̃tr with n = 1, . . . , N , for each
group g = 1, . . . , G, and perform the channel covariance
matrix estimation separately.

For example, if we have K = 8 users and Ttr = 4 pilot
sequences, we can divide the users into G = 2 groups with
four users each. In group 1, we have the users Ω1 = {1, 2, 3, 4}
which use pilot sequences 1 and 2. In group 2, we have the
users Ω2 = {5, 6, 7, 8} which use pilot sequences 3 and 4.
The schedule of allocation matrices for K̃ = 4 and T̃tr = 2 is
given by

Πg
1 =


1 0
1 0
0 1
0 1

 Πg
2 =


1 0
0 1
1 0
0 1

 Πg
3 =


1 0
0 1
0 1
1 0

 (11)

which can be verified to lead to a full-rank matrix
[Πg

1 ,Π
g
2 ,Π

g
3 ]. The full assignment matrices are then given

by

Πn =

[
Π1

n 0
0 Π2

n

]
, n = 1, . . . , 3

i.e., we get block-diagonal matrices with the allocation ma-
trices of the sub-groups on the diagonal. Clearly, users in
different groups by design never use the same pilot sequence
and thus never interfere with each other during training.

With the proposed approach to design the pilot allocations
Πn, we are able to accurately estimate the covariance matrices
irrespective of how the users are divided into the groups.
On the other hand, we can now optimize the assignment of
the users into the groups to avoid unfavorable interference
conditions. Note that we need T̃tr ≥ 2 to be able to design the
pilot allocation schedule. Thus, the number of groups cannot
exceed Gmax = Ttr/2. This is in contrast to the case of perfect
CDI where we basically have Ttr groups and only have to
decide which user uses which pilot sequences.

Since the design of the pilot allocations Πn is fixed given
a partition of the users {Ω1, . . . ,ΩG} into the G available
groups, we can now formulate the utility maximization prob-
lem for imperfect CDI

max
Ω1,...,ΩG

N∑
n=1

U
(
Πn (Ω1, . . . ,ΩG) , B̂H

)
. (12)

Note that we now use the estimate of the channel covariance
matrices B̂H since the actual covariance matrices are not

available. We also have to combine the utility of the N
different pilot allocations Πn which are necessary to estimate
the covariance matrices.

The necessary number of different allocations N depends
on the number of groups G. From [8], we know that in
general the assignment interval N , i.e., the number of different
assignments Πn has to follow

N ≥ K − 1

Ttr − 1
(13)

to allow for unique identification of the channel covariance
matrices. With the proposed grouping strategy, we only have
K̃ = K/G users in each group which use T̃tr = Ttr/G pilots.
Since we treat the covariance matrix estimation separately in
each group we thus have

N ≥ K/G− 1

Ttr/G− 1
=

K −G

Ttr −G
≥ K − 1

Ttr − 1
(14)

which indicates that for a larger number of groups G, we
need a longer coherence interval of the covariance matrices to
obtain covariance matrix estimates with a similar accuracy.

B. Greedy Algorithm
In the following, we propose an algorithm for the assign-

ment problem of K users to G groups. Similar work can be
found e.g. in [3] for perfect CDI or in [12] under perfect
knowledge of the channel at the transmitter. Here, we aim to
find a close-to-optimal choice for the mapping of the users to
groups based on their estimated covariance matrices.

Since the optimization problem in (12) is still combinatorial,
we use the typical greedy approach to find a suboptimal
solution. We start with empty sets Ωg and add one user after
the other, greedily optimizing the current utility. The optimal
greedy assignment in each iteration can be written as

(g∗, k∗) = argmax
g∈Γ̄,k∈Θ̄

U
(
Ω1, . . . ,Ωg ∪ {k} , . . . ,ΩG, B̂H

)
(15)

where Γ̄ and Θ̄ denote the set of still available groups and
users respectively.

Optimally, we would like to put users with mutually or-
thogonal covariance matrices in the same group. In this case,
the MMSE channel estimation can completely filter out pilot-
contamination. To determine the spatial correlation between
two users, we consider the performance metric of [6], i.e.,

∆kk′ =
tr
[
Ĉhk

Ĉhk′

]
∥∥∥Ĉhk

∥∥∥
F

∥∥∥Ĉhk′

∥∥∥
F

(16)

with ‖.‖F denoting the Frobenius norm. Based on the spatial
correlation, the utility function is expressed as

U (Ω1, . . . ,ΩG) = −
G∑

g=1

∑
k,k′∈Ωg

∆k,k′ . (17)

The complete greedy algorithm is given in Algorithm 1. The
first step is an initialization step that fills the groups with users
by maximizing their sum correlation using (16). The second
step is the iterative greedy assignment of users to groups.



Algorithm 1 Greedy Algorithm

Require: Ĉhk
with k ∈ {1, 2, . . . ,K}

Initial set of all users

Θ← {1, 2, . . . ,K}

Initial non-empty groups

Γ̄← {1, 2, . . . , G}

Assign one initial user to each group. The users of different
groups should have high correlation, that is,

(k?1 , k
?
2)← argmax

k1,k2∈Θ,k1 6=k2

∆k1k2

Ω1 ← {k?1} Ω2 ← {k?2} Θ̄← Θ̄ \ {k?1 , k?2}

for g = 3 to G do

k?g ← argmax
kg,∈Θ

g−1∑
i=1

∆k?
i kg

Ωg ←
{
k?g

}
Θ̄← Θ̄ \ {k?g}

Greedily assign remaining users
while Θ̄ 6= ∅ do

(g?, k?) = argmax
g∈Γ̄,k∈Θ̄

U
(
Ω1, . . . ,Ωg ∪ {k} , . . . ,ΩG, B̂H

)
Ωg? ← Ωg? ∪ k? Θ̄← Θ̄ \ {k?}

if |Ωg? | = K/G then

Γ̄← Γ̄ \ {g?}

V. RESULTS

We consider a single-cell configuration with a uniform
linear array (ULA) at the base station. The channel coherence
interval is assumed to be T = 96 channel accesses of which
Ttr slots are used for training. We focus on the steady state
case of the covariance matrix estimation, i.e., the covariance
matrices are constant over the simulated time-span and thus
the adaptivity constant α determines the accuracy of the
estimation. The covariance matrices are generated based on the
urban macro cell model in [13]. Due to the large ULA at the
base station, the covariance matrices have Toeplitz structure
and are approximately diagonalized by the DFT matrix. To
increase the performance of the numerical operations and the
accuracy of the covariance matrix estimation, we assume that
the DFT matrix perfectly diagonalizes the covariance matrices
(cf. [8]).

For our joint covariance matrix estimation and pilot alloca-
tion approach, the K users are divided into G groups. For
simplicity, we suppose that each group serves K/G users
and uses Ttr/G training slots. Finally, the performance of our
approach for covariance matrix estimation and pilot allocation

in massive MIMO is measured based on the achieved data
rate in the uplink, where we use linear MMSE filters based
on the MMSE channel estimates and the channel estimation
error covariance matrices [14]. As a comparison, we depict the
performance of a regularized zero-forcing filter which directly
uses the LS estimates yp[t] and the performance of the MMSE
filter with perfect knowledge of the channel vectors.

A. Performance with Respect to the Number of Users

We investigate the behaviour of the system for a fixed
amount of training slots and different numbers of simultane-
ously served users. Figure 1 shows the results for Ttr = 20,
G = 10 and M = 400. For all curves which exploit the
CDI, the rate improves first by increasing the number of users
due to the multiplexing gains. For large numbers of users, the
additional interference and pilot-contamination dominates and
the rates start to decrease. The optimal amount of users in the
case of imperfect CDI (ICDI) is around K = 60. For K = 60
users, our method for pilot-allocation leads to a gain in total
throughput of 22%.

As can be inferred, the LS based filter has the worst perfor-
mance due to pilot contamination. A substantial improvement
is achieved using the MMSE filter based on the MMSE esti-
mates, and additional gain can be observed by an appropriate
user assignment. For the case of perfect CDI we could have,
as mentioned earlier, used the same pilot allocation in each
channel coherence interval, i.e., chose the allocation which
allows for the most effective mitigation of pilot-contamination.
However, to get a better comparison between the CDI and the
ICDI case, we use the greedy algorithm in Algorithm 1 also
for perfect CDI. That is, the gap between perfect and imperfect
CDI depends only on the accuracy of channel estimation and
the choice of α. For the simulation, we chose α = 0.01 which
should provide a reasonable trade-off between adaptivity and
accuracy in practice.

B. Performance with Respect to Adaptivity

To investigate the impact of the adaptivity of the covariance
matrix estimation on the user rate, simulations were performed
for different values of α. The results are shown with respect
to 1/α which can be interpreted as the implicitly assumed
coherence interval of the covariance matrices. Of course, for a
longer coherence interval, we expect a more accurate estima-
tion and thus better performance in the case of imperfect CDI.
In Figure 2, the curves for full channel state information, LS
based filter and perfect CDI are obviously independent of α.
On the contrary, imperfect (coordinated) CDI strongly depends
on the value of α, since the estimation of the covariance
matrices improves for smaller values. The gap between perfect
and imperfect CDI can be further reduced, e.g., by extending
the estimator introduced in Section III to maximum-likelihood
estimation [8].

C. Performance with Different Group Sizes

In this scenario, we analyze the effect of G on the data rate.
It can be clearly seen from Figure 3 that the rate improves



20 30 40 50 60 70

50.0

100.0

150.0

200.0

250.0

Number of users

To
ta

l
ce

ll
th

ro
ug

hp
ut

in
B

it/
s/

H
z

Perfect CSI CDI with allocation
CDI without allocation ICDI with allocation
ICDI without allocation LS based filter

Fig. 1. Cell throughput for different numbers of users K in a single-cell with
Ttr = 20, G = 10 and M = 400. We compare previous results with perfect
knowledge of the covariance matrices (CDI) with our novel approach for pilot
allocation based on estimated covariance matrices (ICDI).
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Fig. 2. User rate for different values of α with M = 400, K = 60, Ttr = 20
and G = 10.

with larger G for coordinated pilot assignment with perfect
and imperfect CDI at the base station, since more degrees
of freedom are available for mapping the users to groups. In
an uncoordinated scenario, the assignment is done at random
and hence the performance is independent of G. Note that,
as mentioned before, the choice of G is a trade-off between
accuracy of the covariance matrix estimation and degrees of
freedom for the user allocation. However, for practical system
parameters, the accuracy of the covariance matrix estimation is
of minor concern and the number of groups should be chosen
as large as possible, i.e., G = Ttr/2.
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Fig. 3. Cell throughput for different values of G with M = 400, K = 60,
Ttr = 20 and α = 0.01.

VI. CONCLUSION

This paper presents a new approach for allocation of users
to pilot sequences in a practical massive MIMO systems with
imperfect knowledge of the channel covariance matrices at the
base station. We formulated an optimization problem with re-
spect to the pilot allocation which considers the dynamic pilot
allocation necessary for the estimation of the covariance ma-
trices. We showed that the allocation problem can be reduced
to assigning users to groups, and proposed a greedy algorithm
for efficient implementation. Simulation results demonstrated
an additional gain with greedy user assignment compared to
the uncoordinated scenario.
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