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On Policy Learning Robust to Irreversible Events:
an Application to Robotic In-Hand Manipulation

Pietro Falco1,2, Abdallah Attawia1, Matteo Saveriano1, and Dongheui Lee1,3 .

Abstract—In this paper, we present an approach for learn-
ing in-hand manipulation skills with a low-cost, underactuated
prosthetic hand in presence of irreversible events. Our approach
combines reinforcement learning based on visual perception with
low-level reactive control based on tactile perception, which aims
to avoid slipping. The objective of the reinforcement learning
level consists not only in fulfilling the in-hand manipulation goal,
but also in minimizing the intervention of the tactile reactive
control. This way, the occurrence of object slipping during the
learning procedure, which we consider an irreversible event, is
significantly reduced. When an irreversible event occurs, the
learning process is considered failed. We show the performance
in two tasks, which consist in re-orienting a cup and a bottle
only using the fingers. The experimental results show that the
proposed architecture allows reaching the goal in the Cartesian
space and reduces significantly the occurrence of object slipping
during the learning procedure. Moreover, without the proposed
synergy between reactive control and reinforcement learning it
was not possible to avoid irreversible events and, therefore, to
learn the task.

Index Terms—Dexterous Manipulation, Learning and Adaptive
Systems, Tactile Reactive Control

I. INTRODUCTION

IN the last decade, robotic systems are moving from indus-
trial applications to service applications in human-dwelled

environments. When the robots share the same environments
as humans, a crucial skill is the ability to use in a straight-
forward fashion also tools and objects designed for humans.
Hence, equipping robots with anthropomorphic hands and
providing in-hand manipulation skills is a crucial step towards
service robotics. When performing in-hand manipulation, the
robot changes the pose of an object with respect to the palm
using only the fingers. In in-hand manipulation applications,
planning reliable and robust trajectories offline still remains a
great challenge, since interaction forces between the object
and the robotic hand are difficult to predict, especially if
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Fig. 1. Overview of the proposed architecture.

the robot works in unstructured environments and the object
properties are not fully known. Moreover, low-cost robotics
hands, which are becoming increasingly popular in the robotic
community, are compliant and underactuated [1]–[4]. On one
side, those hands can simplify grasping and potentially in-hand
manipulation by exploiting compliance and hand synergies.
On the other side, it becomes also more difficult to derive
reliable mathematical models. For these reasons, reinforcement
learning can play a key role in this field, as it allows learning
control policies and object properties through the interaction
between the robot and the environment. However, a significant
limitation of strategies based on trial and error is that, in
complex tasks like in-hand manipulation, irreversible events
can occur during the learning process. For example, during a
manipulation task the object may fall down and the robot is not
able to easily pick it up and continue the learning procedure.
As a second example, during a task involving motion planning,
the robot could hit an obstacle damaging the environment
or itself. Irreversible events during the learning process limit
the applicability of reinforcement learning in industrial and
domestic environments. In order to reduce significantly the
probability of irreversible events, we introduced in previous
work lower-level reactive control modules that locally correct
the trajectories in position and force [5], [6]. The harmonic
integration of such reactive approaches in a reinforcement
learning framework is still an unsolved problem, especially
in the field of in-hand manipulation. Within the field of rein-
forcement learning, the recent trend is to exploit deep learning
approaches, especially to acquire object grasping skills [7] [8].
A limitation of actual deep reinforcement learning methods
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for in-hand manipulation is the relatively high number of
interactions with the external environment required to learn
the task. Hence, in real-world applications irreversible events
are likely to occur, especially in the beginning of the learning
process. In this work, we propose a framework to achieve in-
hand manipulation avoiding irreversible events such as object
slipping. Classical motion planning techniques are not easily
applicable, since the model of the hand and of the object are
not known. On the other hand, also sole reinforcement learning
is not easily applicable, since the object can slip and pick
it up again is time consuming and cannot be automatized.
For this reason, we propose an approach that exploits the
synergy between a reactive slipping avoidance control layer
and a reinforcement learning layer based on visual perception.
The proposed architecture is depicted in Fig. 1. The two
layers work in synergy though a bidirectional exchange of
information. The Reinforcement Learning (RL) layer sends to
the Reactive Control (RC) layer the trajectory associated to
the current policy. The RC layer locally corrects the trajectory
in order to avoid the object slipping during the learning
procedure. On the other hand, the control layer sends to
the learning layer information concerning the control energy
during the trajectory, which quantifies how strongly the tactile
reactions were needed. This way, the robot learns both to fulfill
the in-hand manipulation operation and, at the same time, to
avoid the intervention of instinctive reactions from the low-
level reactive control. A second limitation of current (deep)
reinforcement learning for in-hand manipulation is the lack
of integration between different sensing modalities. State-of-
the art learning approaches are mainly based on monomodal
perception, mostly visual. Although such modern approaches
can work for grasping tasks, they are not proven to be effective
for in-hand manipulation where robot and environment interact
tightly and the interaction forces play a key role. An important
part of the learning-control synergy proposed in this work is
the usage of higher-rate tactile perception for low-level reflexes
and both visual perception via a marker tracking algorithm and
tactile perception for the high-level learning.

II. RELATED WORK

Even though robust in-hand manipulation of unknown ob-
jects is not a mature field, in general dexterous manipula-
tion has been studied in the last decade. Many works, such
as [9]–[12], use motion planning and control techniques to
carry out dexterous manipulation tasks. In [13], the authors
introduce a planning method for the in-hand manipulation of
an object with an ellipsoid surface. Such methods assume
that the physical and geometric models of the object as well
as the model of the fingers are known beforehand. Hence,
those algorithms cannot be used easily for solving in-hand
manipulation tasks on compliant and underactuated hands. In
[14], an approach is presented, which exploits tactile-based
learning to manipulate an object supported by a planar surface
with two robotic fingers. A ReFlex robot hand is used, which
is compliant and underactuated. A method to learn finger-level
manipulation skills with a low-cost hand from human demon-
strations is presented in [15]. Even though this work does

not show case studies concerning in-hand manipulation, the
programming by demonstration approach can be interesting for
initializing the learning process of in-hand manipulation skills.
The authors of [16] show an approach to learn an in-hand
rotation task based on adaptive optimal control. The difference
with our approach is that in [16] the palm of the hand
supports the object and the tactile information is not exploited.
Moreover, our approach exploits reactive slipping avoidance
based on a low-level closed loop that works in synergy with
the reinforcement learning level. A deep learning approach
combined with demonstrations is adopted in [17], to perform
in-hand manipulation tasks in a simulated environment, while
in [18] an in-hand non-prehensile manipulation is executed
starting from human demonstration. In [19], an analytical hand
model is exploited with a constrained optimization scheme,
while machine learning techniques based on a random forest
classifier are used to select task-specific models. A method
using biomimetic active touch is shown in [20], in which a
robotic finger rolls a cylinder in contact with the fingertip
and in [21] a 3D-Printed Tactile Gripper is presented, able to
perform cylinder re-orienting operations.

We aim at achieving in-hand manipulation task, which
consists in changing the pose of an object the respect to
the hand palm, only using the fingers. Even though the task
may appear simple for a human, we need to tackle several
problems: the number of degrees of freedom of the used
robotic hand is limited compared to human hand, the object
can easily slip during the learning process, and, due to the
hand compliance, the position of the motor at each finger does
not give sufficient information on the position of fingertip.
Also, we want that the robot learns without the continuous
support of a human operator, which means that the occurrence
of irreversible events like slipping must be reduced as much
as possible. Due to those challenges, a traditional learning
approach based on vision is not sufficient to learn the task,
since it does not prevent irreversible events during the learning
phase. On the other hand, a classical control approach is
not applicable in a straightforward fashion since the hand is
compliant and underactuated. Hence, using a kinematic and
dynamic model is not directly possible. Our research question,
addressed in this work, is if a synergy between reactive control
and reinforcement learning, together with multimodal visuo-
tactile perception, is effective to tackle these challenges.

III. SYSTEM SETUP

The experimental setup is constituted by an Openbionics
ADA hand, a RGB-D camera for visual perception, and simple
low-cost strain gauges sensors for tactile perception. In order
to collect the visual data, a Kinect depth camera is used,
as shown in Fig. 1. The pose of the manipulated object is
computed from the Kinect camera by placing a marker on the
object. To track the object pose, the ROS tool called AR Track
Alvar is employed [22]. A marker similar to one shown in Fig.
2 is glued on the object and tracked using Alvar to estimate
online the pose of the object. The ADA Hand shown in Fig. 1
is a 3D-printed low-cost robotic hand from Openbionics that
has 5 actuated degrees of freedom. Each finger is connected to
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Fig. 2. Marker sticked on the object for tracking.

a linear motor using a tendon and all the motors are controlled
by a printed circuit board (PCB) that is based around the
ATMEGA 2560 microcontroller. The PCB can be programmed
using the Arduino Software. Therefore, the control inputs of
the hand are the positions of the linear motors that pull the
tendons. The hand is provided with one tendon per finger.
Tactile perception is implemented with Interlink FSR 406
sensors. An Interlink FSR 406 is a force sensitive resistor that
measures the normal force applied on the manipulated object.
The sensor has 39mm square active diameter and shows a
decrease in resistance with the increase of force applied on
this area. It has a pressure reading range of 10 g to 10 kg.
One sensor is fixed on each fingertip to compute the force
with which the fingers press on the manipulated object. The
pressure sensors are connected to an Arduino Uno board. In
this work, the force is measured only on the thumb, the index
finger, and the middle finger. The tactile sensor is chosen to
have enough active area to cover the front as well as the sides
of the fingers.

IV. PROPOSED APPROACH

A. Mathematical description of the system

The first step of our approach consists in modeling the
structure of the system. We represent the dynamic of the
system as:

xt+1 = g(xt,ut) +wt, (1)

where xt ∈ X and ut ∈ U represent the state of the system
and the control input at the time frame t ∈ R, g is the state-
evolution function of the system, andw is zero-mean Gaussian
white noise.

In our particular application, the state of the system is
constituted by the vector x = (φ, f) ∈ R4, where φ ∈ R
is the orientation of the manipulated object described with the
yaw Euler angle (see Fig. 2) and f ∈ R3 are the interaction
forces at the sensorized fingertips, i.e., thumb, index, and
middle finger. The control input vector u ∈ R3 includes the
motor commands of the three fingers u = (u1, u2, u3) and the
function g is considered unknown. It is reasonable to consider
g unknown, since the hand is compliant and underactuated,
the contact forces exchanged between the fingertips and the
object are very difficult to predict and strongly depend on the
object material.

B. Reinforcement Learning Module

After defining a mathematical formalization for the system,
we need to define a cost function in order to apply reinforce-

ment learning. The cost is a function that maps the state space
to real numbers c : X → R. In our approach, the cost function
is defined as:

c(x) = λ1Ep(x) + λ2Er(er(x)). (2)

The proposed structure of c(x) is constituted by two terms,
denoted by the symbols Ep and Er. The term Ep takes into
account distance from the desired object configuration, and
the term Er, called in our framework reactive pseudoenergy,
takes into account how strongly the reactive control intervenes
during the task execution. Hence, Er is a function of the lower-
level control error er(x), which is in general a function of the
state.

In the literature on reinforcement learning, additive terms in
the cost can be used, for example, for regularization sake, in
order to prevent overfitting or to limit some state variables. In
this work, the meaning and the aim of the additional term is
different. Our idea is that the learning algorithm leverages the
reactive control module to avoid irreversible events especially
in the beginning of the learning process. The terms Er brings
an important benefit: it allows the system to learn, after a
few iterations, also to prevent the intervention of the reactive
control. The motivation of this strategy is that the reflexes are
not effective in 100% of the cases. Therefore, preventing in
advance the need of reactions further improves the robustness
of the system. This strategy allows a Tighter Interaction
between learning and Control modules (TIC strategy).

The complete task, then, consists in reaching the desired
configuration of the object and in avoiding irreversible events
such as object slipping. The terms λ1 and λ2 are the weights
of the convex combination. We have λ2 = 1 − λ1 and
λ1, λ2 ∈ [0, 1]. In our framework, Ep and Er have the
following properties:
• Ep, Er ∈ [0, 1].
• Ep is a function of the state x while Er is a function of

the reactive control error er.
• Ep = 0 in the states where the task is fulfilled and Ep > 0

when the task is not fulfilled.
• Er = 0 when the reactive control does not intervene and
Er is a crescent function of the magnitude of the reactive
control error signal.

In state of the art reinforcement learning approaches, the
cost function is typically constituted only by the term Ep,
which quantifies how well the task is executed. A classical
example of Ep is the distance between the final state and the
desired goal. In our approach, the term Er is also crucial.
We use a reactive control module to reduce the occurrence
of irreversible events. However, reactions do not succeed in
every case and in our approach the higher-level reinforcement
learning is in charge to learn how to avoid the need of such
reactions. We choose:

Ep = 1− e−||φ−φdes||2 , (3)

where φdes is the desired orientation of the object. We set
λ1 = λ2 = 0.5 to give equal importance to avoiding the
intervention of the reactive control and to reaching the goal.
In general, Ep can be a function of the state x according to the
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specific application. It is important to note that the term Er
is in the cost function of the reinforcement learning module
but it depends on the error in the low-level control layer. It
represents an important part of the connection between the two
layers. With the cost function in Eq. (3), we want to find a
policy up = πθ(x) such that (i) the robot reaches the desired
state and (ii) avoids the intervention of instinctive reactions as
much as possible. Due to its simplicity and effectiveness, we
choose a linear policy, leaving as future work the test of more
complex policies:

up = Ax+ b, (4)

with the controller parameters being θ = {A, b}. The goal is
to find the optimal policy π that maps from states to actions:
x→ π(x) = up. The long-term expected return

Jπ =

T∑
t=0

E[c(xt)] (5)

is used in order to evaluate the performance of the learned
controller π, where c(xt) is the instantaneous cost of being in
state x at time t and E[.] is the expectation operator.

In order to search for a policy that minimizes the cost
function, we can adopt any reinforcement learning approach.
In this work, we used PILCO (Probabilistic Inference for
Learning Control) which is introduced in [23]. PILCO is a
model-based policy search method that learns controllers from
scratch with random initializations and without informative
prior knowledge of the system. For each rollout, PILCO adopts
a Gaussian Process (GP) to learn a model of the system and
a gradient-based method for refining the policy. The GP,
which is completely defined by a mean function m(.) and
a positive semidefinite covariance function k(., .), infers a
distribution on the latent function g in Eq. (1). The prior
mean function is considered to be m ≡ 0 and the kernel to be
the squared exponential (SE) kernel. The aim of the GP is to
approximate the function g: (xt,ut) → xt+1 by using state-
action pairs (xt,ut) as training inputs and the next states xt+1

as training target. Using the learned GP model, PILCO carries
out probabilistic long-term predictions p(x1|π), ..., p(xT |π)
for a given policy π. The policy search consists of two parts:
the policy evaluation and the policy improvement. This process
is repeated until convergence, where an optimal policy π∗

is obtained. After the long-term predictions are computed,
the expected long-term cost Jπ in Eq. (5) is evaluated by
computing expected value of c(x). A gradient-based policy
improvement is carried out by computing the gradient Jπ with
respect to the policy parameters θ. Leveraging gradient-based
non-convex optimization methods, the (locally) optimal policy
parameter vector θ∗ is computed. After the optimized policy
parameters θ∗ are obtained, the optimal policy is applied to
the system and the new data are collected to update the GP
model. In this work, we repeat this procedure for a maximum
of 11 times (rollouts). For a complete description of PILCO,
please refer to [23].

C. Reactive control module
The objective of the reactive control module is to reduce

the occurrence of irreversible events, that are in this case

Controller
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Systemu
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2

αdes er f

f

−
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Fig. 3. Architecture of the control system.

object slipping. In order to provide effective information to
the higher level, the reactive control module needs not only to
detect if the irreversible event is about to occur, but it needs
also to quantify the intensity of the required reaction. We call
this intensity reactive pseudo-energy Er. For example, if the
object is slowly slipping, a slight correction of the finger motor
position is needed and hence, the energy level will be close
to zero. When, on the other hand, the object is slipping very
fast, high level of reactive energy are required. The main task
of the reactive control level is to bring the energy Er to safe
levels and to communicate the higher reinforcement learning
level the values of Er during the policy execution, so that it
can be incorporated into the total cost.

In this particular application, the main irreversible event is
the slipping of the manipulated object. To quantify the entity
of the slipping, we use the following squared exponential
function, which we call slipping coefficient:

αslip = e−‖f‖
2

, (6)

where αslip has a value between 0 and 1. The value 0 indicates
that the object is firmly grasped and 1 is associated to an object
slippage. The vector f denotes the measured forces. When the
forces are near zero the slipping coefficient increases and vice
versa. The chosen squared exponential satisfies the properties
required to energy functions defined in Sec. IV-B.

The block diagram in Fig. 3 shows the reactive control
system we adopted in this work. The control commands are
given by the following equations:

u = up + ur, (7)
ur = Ker, (8)
er = αslip − αdes, (9)

where u is the vector of motor commands, up is the com-
mand from reinforcement learning level, and ur is the local
correction by the reactive control module. K ∈ R3×1 is the
control gain and er is the control error. We tuned the gain
K experimentally with a trial-and-error procedure. However,
in problems with a more complex reactive part, K could be
chosen with a standard model-free control technique [24], for
example Ziegler-Nichols tuning methods. Computing
analytically the relationship between the slipping coefficient
and the fingertip contact forces is a very complex problem
especially if the system is not in static or quasi-static condition.
Therefore, we use an empirical approach. We define a function
h : F 7→ O, where F =]0, 1] is the set of the forces measured
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Fig. 4. Slipping coefficient as a function of the measured force norm.

during the task execution normalized between 0 and 1 through
a squared exponential and, in our case, O is a set with three el-
ements, i.e. O = {firmly held, not firmly held, slipped}. The
class firmly held is associated to normalized forces such that
the object does not slip. The class not firmly held is associated
to normalized forces such that the object slowly slips, while
the class slipped is associated to normalized forces such that
the object falls down. In a preliminary calibration phase, we
collected 50 force samples using random motor commands
and deactivating the reactive control module. For each force
sample, we label the associated class and compute the slipping
coefficient αslip according to Eq. (6). As reported in Fig. 4,
we observed that for αslip ∈ [0, 0.3) the object is firmly held,
for αslip ∈ [0.3, 0.7) the object slips within 10 seconds, and
for αslip ∈ [0.7, 1] the object quickly slips. Therefore, we
set the desired slipping coefficient to αdes = 0.25 for each
finger, which is enough to hold the object without squeezing it.
In higher-dimensional cases, a machine learning classification
technique can be used such as support vector machines or
logistic regression [25].

We define the reactive pseudoenergy as

Er = |αslip − αdes|. (10)

In practice, the reactive pseudoenergy is equal to the absolute
value of the control loop error defined in Eq. (9). In the liter-
ature, there are more complex slipping avoidance approaches
which leverage both normal and tangential contact forces, such
as [5]. Nevertheless, we use low-cost tactile sensors unable
to measure the tangential component of the force. A similar
approach to slipping avoidance is based on machine learning
and is proposed in [26], which was specifically tested on a
prosthetic hand and uses demonstrations from humans. In our
case, we do not exploit human demonstrations, but we use
executions from the robotic system to train our slipping model.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our approach with the re-
orienting task shown in Fig. 6. The experiment starts when
the coffee cup is grasped by the hand. The motor positions
for which the fingertips touch the cup are registered and used

as bounds, so that during the learning procedure the finger
are not open excessively. In order to show the performance of
our approach, we carry out three sets of experiments. In the
first set of experiments, the reinforcement learning algorithm
is executed without reactive control and without using tactile
data. In the second set of experiments, we include both the
visual perception and tactile perception in the cost function.
However, we do not activate the low-level reactive control.
In the third set, we use the synergy between tactile reactive
control and visual reinforcement learning. In the cost function,
we include information coming from the low-level reactive
control. In order to show the applicability of our approach to
a different object of different material and with a larger re-
orientation angle, we execute a bottle re-orienting task. For
each case, 10 consecutive experiments (trials) are performed.
For each experiment, we execute a maximum of 11 rollouts.
The parameters of the policy θ in the first rollout are randomly
initialized, as suggested in [23].

As depicted in Fig. 6, an experiment can have three pos-
sible outcomes: task learned, task not learned, and object
slipped. The task is considered learned if (i) executing a
maximum of 11 rollouts, the final orientation of the object
φ ∈ G = [φdes − 5 deg, φdes + 5deg], (ii) the object does
not slip for 10 s after the policy execution is over, and (iii)
in two consecutive rollouts we have that φ ∈ G. An example
of task learned is reported in Fig. 6(c). Note that a significant
advantage of the proposed approach is that the task is learned
directly in the operational space. We use the tolerance factor
of 5 deg to take into account the error of the tracker and the
limited repeatability of the object-hand system. If the object
slips during the learning procedure, the outcome is object
slipped. In Fig. 6(a) is reported an example of slipping. The
object seems to reach a desired state but the hand does not
hold the object firmly enough. The outcome is task not learned
when the object does not slip, but φ 6∈ G after 11 rollouts. An
experiment in which the task is not learned is reported in Fig.
6(b), in which the object slides improperly while the hand
performs the first rollouts. This is due to the fact that there is
no human operator who corrects the configuration of the cup
during the learning procedure. In Fig. 6(d) the learned policy
is executed to pour coffee in a cup.

In order to evaluate the performance, we define two indexes
(see Table I). The first is called success rate and is computed
as the ratio between the number of successful experiments
and the number of total experiments. An experiment is called
successful when the task is learned, i.e., (i), (ii), and (iii) are
satisfied. The second index is called object slipping rate. It is
computed by the ratio between the number of experiments in
which the object slips and the total number of experiments.

A. Learning with visual data

In this case, the system has only the reinforcement learning
level and the perception is only visual. The cost function is

c(φ) = 1− e−||φ−φdes||2 , (11)

where φdes is the desired yaw angle of the object and in this
case the only state variable of the system, i.e., x = φ. We
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specify the desired orientation of the object as φ = 70 deg.
The policy is structured as u = up = Aφ+b, with A, b ∈ R3.
Since the force information is totally missing and the reactive
control is not active, the object slipping occurs in all the cases,
as summarized in Table I.

B. Learning with visual and tactile data

In this scenario, data from the reactive control are not used,
but force data are used directly in the cost function. The usage
of forces in the cost function can potentially let the robot
learn how to manipulate the object by maintaining suitable
contact between object and fingertips. The cost function for
this scenario is:

c(x) = 1− (0.5a+ 0.5b), (12)

a = exp(−||φ− φdes||2), (13)

b = exp(−||f − fdes||2), (14)

where fdes = [2, 2, 2]N and φdes = 70 deg. We performed 10
experiments. Each experiment is constituted by a maximum
of 11 rollouts. The total cost values for each experiment and
each rollout are plotted in Fig. 5. In this case study, the task
is learned in one experiment out of ten. In two experiments,
the object does not slip in none of the 11 rollouts, but the
cup does not reach the final goal. In seven experiments the
object slips. Even though the performance is better than in
the previous case study in terms of success rate and slipping
rate, this architecture achieves a success rate of 10%, which
can be considered not sufficient for real-world applications.
The slipping rate for this case is 70%, which means that the
object slips seven times out of ten experiments. Such a rate
is slightly better than in the previous case because the forces
are included in the cost function. Hence, the robot tries to
execute trajectories that maintain the required contact between
the objects and the fingertips. However, as expected and shown
in this set of experiments, using only the learning component
is not sufficient to avoid slipping, especially during the first
rollouts. In some experiments, even though the slipping is
avoided, the cup gradually slides and the hand is not able to
assign the desired object orientation, as shown, for example,
in Fig. 6(b).

Object slipped

(a) Object slipped

Task not learned

(b) Task not learned

Task learned

(c) Task learned

Task learned

(d) Execution of the learned policy

Fig. 6. Snapshots of three different experiment outcomes: (a) object slipped
during the learning procedure, (b) goal not reached after 11 rollouts, (c) task
learned, and (d) execution of the learned policy for pouring coffee into a cup.

C. Synergy between learning and control layers

The case in which both learning and control module work
in synergy is shown in this case study. First, we analyze
the performance of the proposed architecture. Then, we show
how including the reactive pseudoenergy in the cost function
reduces the intervention of the reactive control.

1) Performance Analysis: The total cost includes the goal
reaching component Ep, that shows how far the current angle
is from the target angle, as well as the reactive energy Er. In
particular, the cost function is the one described in Eq. (2):

c = λ1Ep + λ2Er,

Ep = 1− e−||φ−φdes||2 ,

Er = |αslip − αdes|,

where λ1 = λ2 = 0.5. We use the linear policy described
in Eq. (4). Differently from the case studies in Sections V-A
and V-B, the control input to the robot motors u is given
according to a combination of the learned policies and local
corrections. The results of this case study are shown in Fig. 7.
The object slipping during the learning process never occurs
in the performed experiments. The task is learned successfully
9 times out of 10. In one experiment, the robot performs
11 rollouts but the goal is not reached yet. Hence, the is

TABLE I
COMPARISON BETWEEN DIFFERENT LEARNING TECHNIQUES.

Learning Technique Success Rate Object Slipping Rate
Visual RL 0% 100%

Visuo-tactile RL 10% 70%
Learning-control synergy 90% 0%
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Fig. 7. Values of the cost function for 11 rollouts when the synergy between
learning and control module (TIC architecture) is adopted. At the first rollout,
the policy is initialized randomly. The green color indicates that the task is
learned, and blue that the task is not learned.
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Fig. 8. Median of the number of times the control system for slipping
avoidance is used in each iteration.

task not learned in this case. As summarized in Table I,
the proposed architecture achieves a 90% success rate. An
example of orientation trajectory when executing the learned
policy is shown in Fig. 10-a.

2) Intervention of Reactive Control: An additional set of
five experiments is taken to investigate if the robot learns to
prevent low-level reactions. The results are show in Fig. 8. The
control reactions are considered activated when Er > 0.25.
The figure shows the median number of times in which the
control loop intervenes to achieve a firm grasp. As we can
see from the diagram in Fig. 8, in the first rollouts we have
a significant number of reactions, which are needed to avoid
the slipping. This explains why the architectures in Sections
V-A and V-B are affected by a high object slipping rate. It
is interesting to note that the median number of low-level
reactions decreases to 0 after few rollouts. This means that, as
expected, the system learns to avoid in advance configurations
associated to unstable object grasping. This behavior is due to
the presence of the control energy in the cost function.

D. Experiments with a different object

In order to validate our approach with a different object
and a different material, we performed a second experiment
with the system shown in Fig. 9. In this setup, the robotic
hand re-orients a plastic bottle. The material is more slippy
and a desired re-orientation angle is bigger with respect to
the previous task. In this case, the initial orientation of the
bottle is around 70 deg and the desired goal is φdes = 10 deg.

The performance, in terms of success rate, is summarized in
Fig. 11. Also in this experiment, we perform 10 learning
experiments. In each experiment, we perform 11 rollouts
starting with a random policy. If the task is not learned after
11 rollouts, we consider the learning procedure not successful.
If the object slips, we assume that an irreversible event has
occurred and the learning procedure is not successful. As
shown in Fig. 11, the task is successfully learned in 80% of
the cases. An irreversible event (object slipping) occurs in one
case. The task is not learned after 11 rollouts in 10% of the
cases, i.e., in one experiment the final desired orientation is
not in the interval G = [φdes − 5 deg, φdes + 5deg] after 11
rollouts. An example of orientation trajectory when executing
the learned policy is shown in Fig. 10-b.

VI. CONCLUSION AND FUTURE WORK

We proposed an approach for the harmonic combination
of tactile reactive control and visual reinforcement learning.
The reinforcement learning module aims not only at reaching
a goal in the operational space, but also at minimizing the
intervention of the reactive control. Since reactive control
cannot success in all the cases, learning to avoid the need
of reactions can improve the performance. The experiments
show that with our approach it is possible for a robotic
hand to learn an in-hand manipulation task avoiding critical
events such as object slipping. Another interesting aspect is
that without the learning-control synergy the task was learned
only in 10% of cases, since it was not possible to avoid the
cup slipping during the learning procedure. In fact, when
we apply the classical RL strategy, irreversible events easily
occur in the first rollouts, when the robot did not gain yet
enough knowledge of the environment. The TIC architecture
allowed the robot to improve the knowledge of the world while
having a-priori, very simple reflexes that reduce irreversible
events in the first rollouts. Moreover, thanks to the learning-
control synergy, the system learns also how to prevent the
intervention of reactive control on the long run, enhancing
further the robustness. If we do not consider the object slipping
as irreversible event, a human operator can put again and again
the object in the robotic hand after it has slipped. In such a
case, we expect that the task could be in theory learned without
the synergy with the control level. The experiments show also
that the success of the learning-control synergy is connected
to multimodality. In fact, marker-based visual perception is
a good way to estimate with low-frequency the pose of the
object. Higher-rate tactile perception is not sufficient for easily
estimating the object pose but it is essential to prevent slipping.
We applied this framework to an in-hand manipulation task.
However, this is a general framework that can be applied in
tasks which involve motion and force control of autonomous

Fig. 9. Snapshot of the bottle re-orienting task.
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Fig. 10. Orientation of the cup (a) and the bottle (b) during the execution of
the learned policy.
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Fig. 11. In the experiment of in-hand re-orienting of a plastic bottle, values
of the cost function for 11 rollouts when the synergy between learning and
control module (TIC) is adopted. At the first rollout, the policy is initialized
randomly. The green color indicates that the task is learned, blue means that
the task is not learned, and red indicates that an irreversible event occurred.

systems, by defining the task pseudoenergy Ep and reactive
pseudoenergy Er accordingly.

A first direction for the future work is to introduce an explo-
ration step to estimate automatically the slipping coefficient.
The second direction will be to use different robotic hands
to fulfill more complex in-hand manipulation tasks such as
spinning a pen. We will also apply the proposed strategy to
enrich our previous work on impedance learning [27] and
manipulation for humanoids [28]. Moreover, we can use a
residual-based learning approach [29], [30] which exploits a
very rough system model in order to reduce the number of
rollouts and the learning time.
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