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ABSTRACT
In mixed-criticality scheduling, the widely assumed mode-
switch scheme assumes that both high- and low-criticality
tasks are schedulable when no tasks overrun (normal mode)
and all high-criticality tasks are schedulable even when
they overrun (critical mode, where low-criticality tasks are
abandoned/degraded). However, this scheme triggers a
mode-switch immediately after any task overruns, which
can be abrupt and pessimistic. In this paper, we tackle
dual-criticality systems scheduled by earliest-deadline-first,
and propose light-weight mode-switch schemes that are
effective in keeping the system “away” from the critical
mode. Our main idea is to perform overrun budgeting for
all tasks as a whole, by monitoring task executions and
updating a common overrun budget. This way, the overrun
budget is shared among all tasks, and adaptively replenished
leveraging run-time information; consequently, mode-switch
can be postponed as much as possible. Experimental
results demonstrate that the proposed mode-switch schemes
outperform existing solutions to a large extent, in reducing
the abandoned jobs and mode-switch frequencies, as well as
in increasing the time ratio that all tasks are scheduled in
the system.

1. INTRODUCTION
Nowadays, to reduce “SWaP” (Size, Weight, and Power)

related costs, integrating tasks of different criticality levels
into a shared computing platform has become a prevalent
design paradigm in real-time embedded systems. An
important feature of such mixed-criticality systems (MCSs)
is that tasks need to be certified to different criticality levels.
For example, the avionic DO-178B software standard [23]
defines 5 criticality levels from A to E, each of which requires
a different certification. In detail, the failure of A-criticality
tasks is catastrophic, whereas the failure of E-criticality
tasks has no effect on the airplane safety. Thus, A-criticality
tasks have more stringent certification requirements.
From a timing perspective, mixed-criticality systems often

model worst-case execution times (WCETs) on different
criticality levels, with the one on a higher criticality level
being more pessimistic [12]; for the same piece of code,
it will have a higher WCET if it is safety-critical than
it would if it is non-critical. Furthermore, by allowing
multiple level WCETs of one task, mixed-criticality systems
can deploy the commonly assumed mode-switch scheme to
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improve resource efficiency [12]: For dual-criticality systems
composed of low-criticality (LO-critical) and high-criticality
(HI-critical) tasks, the system starts with normal (LO) mode
where all tasks can guarantee their deadlines assuming low
level WCETs; if any HI-critical task overruns its low level
WCET, the system switches to the critical (HI) mode, where
HI-critical tasks can still meet their deadlines assuming high
level WCETs and LO-critical tasks are abandoned or their
services are degraded.
A plethora of scheduling techniques [3, 6, 10, 13–15] have

been proposed following such a mode-switch scheme, see [12]
for an excellent review. A common feature of them is that
they assume HI mode is immediately entered whenever any
HI-critical task overruns its low level WCET. Although such
a mode-switch scheme is effective in guaranteeing timeliness
of critical tasks, it is abrupt and pessimistic – abrupt in the
sense that LO-critical tasks are suddenly dropped/degraded
after a single HI-critical task overruns, and pessimistic in
the sense that the system may naturally have an overrun
budget due to free slacks. Such slacks exist either because
the system is underloaded (static slacks), or because tasks
will most likely finish before their WCETs at runtime,
giving space for other tasks to execute (dynamic slacks).
This, however, is not fully exploited in existing mode-switch
schemes, to keep the system “away” from the critical mode
where LO-critical tasks are abandoned or degraded.
Related Work. In fact, some “static” mechanisms were

already proposed by previous researches, allowing the delay
of mode-switch or switching back from HI to LO mode.
Santy et al. [24] presented a method to compute offline the
margins that HI-critical tasks are allowed to overrun without
triggering the mode-switch. This method was further refined
in [11] by using sensitivity analysis [9] to more effectively
utilize the statically available resources in the system. In [6],
a bailout protocol was developed to timely switch the system
back to the LO mode by relying on a so-called bailout
fund, instead of a system idle tick [12]. However, all those
techniques exploit only static slacks and do not efficiently
make use of dynamic slacks to postpone the mode-switch.
Contributions. In this paper, we propose an on-the-fly

fast overrun budgeting (FFOB) mode-switch scheme. FFOB
relies on the run-time information of tasks to compute
available slacks (both static and dynamic, denoted as the
overrun budget), which all tasks can spend on overrun
without triggering the switch to the critical mode. The
design and analysis of FFOB mode-switch scheme, however,
is nontrivial. The reason is multi-fold. First, the mode-
switch scheme should exploit free run-time slacks as much
as possible in order to increase its efficiency. Second, the
procrastination of mode-switch should not hamper dynamic
guarantees in MCSs, i.e. all tasks must be schedulable
in LO mode and HI-critical tasks must be schedulable in
both modes. Finding the maximal overrun allowance and
computing when to conduct the mode-switch with runtime
information are more involved. Last, the timing overhead



to compute the mode-switch decision should be kept a
minimum. Any mode-switch scheme would be useless if its
timing overhead is more than the allowance of task overrun.
Our proposed FFOB mode-switch scheme is inspired

by the task procrastination techniques in dynamic power
management [1, 20, 22], where the processing of incoming
tasks are deliberately postponed such that the processor
can reside in a sleep mode to reduce energy consumption.
Analogously, task overrun in this paper is considered as a
procrastination on the system, in the sense that it delays
resources available to other tasks. While a lot of effective
procrastination techniques are proposed for conventional
real-time systems, none of them can provide dynamic timing
guarantees for mixed-criticality systems. To solve this
problem, a distinguishing feature that makes the existing
procrastination techniques applicable in MCSs is explored.
This feature, called automatic schedulability guarantee, can
guarantee that if the system is schedulable in both modes
by offline analysis, then the schedulability of LO mode
at runtime automatically guarantees the schedulability of
HI mode. This way, the schedulability guarantee of dual-
criticality systems is transformed to the schedulability
guarantee of conventional real-time systems. Besides, FFOB
only needs to use a timer to manage the overrun budget,
which can be efficiently implemented in many embedded
systems. This timer can be renewed once it times out,
which can further explore the existing slack in the system to
schedule overrun tasks.
In the MCS scheduled by the EDF (earliest-deadline-

first), FFOB computes an overrun budget by using the
task procrastination technique and we theoretically prove
that the computed overrun budget still guarantees system
schedulability in both LO and HI modes. The detailed
contributions of this paper are as follows:

• We propose an on-the-fly mode-switch scheme for the
MCS scheduled by EDF to adaptively postpone system
mode-switch. Specifically, we develop a scheme to
manage system overrun budget, allowing all tasks to
overrun in normal mode.

• We explore the automatic schedulability guarantee
feature, reducing the dual-criticality schedulability guar-
antee to the schedulability guarantee of conventional
systems. The automatic schedulability guarantee feature
enables us to apply existing task procrastination tech-
niques for conventional real-time systems to the MCS.

• An industrial task set and extensive generated task sets
are used to test the performance of the known scheduling
approaches and the proposed FFOB. Experimental
results show that FFOB outperforms the static overrun
allowance [24] and the bailout protocol [11] to a large
extent in reducing the deadline misses, mode-switch
frequencies, and in increasing the time ratio that all tasks
are scheduled.

The remainder of this paper is structured as follows.
Section 2 presents our system settings. Section 3 provides
an overview of our techniques and proves the correctness
of the FFOB mode-switch scheme in EDF scheduled
MCS. Experimental results are presented in Section 4, and
Section 5 concludes the paper.

2. MODELS AND PRELIMINARIES
In this section, we introduce the related models and

present the preliminary knowledge of EDF-VD that will be
used in this paper.

2.1 Models and Notations
Mixed-Criticality System Model. We adopt the

classic dual-criticality system model [3, 6, 10, 12–15] in this
paper. A dual-criticality task set τ = {τ1, ..., τn} is given to
be scheduled on a uniprocessor. All tasks are independent.
Each task, τi, is characterized by a minimal inter-arrival
time Ti, relative deadline Di, WCET Ci and criticality Xi,
where Ci = (CL

i , C
H
i ) and Di = Ti. Each LO-critical task

only has a LO WCET CL
i , and each HI-critical task has

a LO WCET CL
i and a HI WCET CH

i . For HI-critical
tasks, their HI WCETs are not smaller compared to their
LO WCETs, i.e., CL

i ≤ CH
i ≤ Di. This corresponds to

the assumption that the execution time estimation on a
higher criticality level is more conservative. In the system,
since CL

i is less conservative, some tasks (including LO-
critical tasks) may overrun their given CL

i . However, we
suppose no HI-critical tasks can overrun their given CH

i .
The rationale behind this is that CH

i is obtained under very
strict and conservative assumptions and no task will overrun
this WCET.
Although the research on mixed-criticality system is quite

new (stemming from a seminar paper [25]), a standard model
already exists [3, 10,12–15].

• The system starts in LO mode, where all tasks are
assumed to not exceed/overrun their LO WCETs and
are guaranteed to meet their deadlines.

• If any HI-critical job exceeds its LO WCET, then the
system transits immediately to the HI mode, where all
LO-critical jobs are abandoned and HI-critical tasks are
guaranteed to meet their deadlines if they do not exceed
their HI WCETs.

• If any LO-critical job executes for its LO WCET without
completion, it is immediately aborted.

• When the system is in HI mode, an idle tick will trigger
the system to switch back to the LO mode.

This standard system model is called mixed-criticality
schedulable if the following two properties are guaranteed:

• Property 1: All jobs that are released and complete in LO
mode, are guaranteed to meet their deadlines.

• Property 2: HI-critical jobs released at any time are
guaranteed to meet their deadlines.

Task Demand Model. In order to analyze the system
schedulability of a task set, we need to know the demand
bound function (DBF) [4] of each task in this set.

Definition 1 (Demand Bound Function). A demand
bound function dbf(τi,Δ) is the maximum required execution
time of a task τi over any interval of length Δ to guarantee
that any job of this task that is released and has deadline
within this interval Δ will not miss its deadline.

For a sporadic task τi with relative deadline Di, its DBF is
already provided in [4]

dbf(τi,Δ) =

⌊
Δ+ Ti −Di

Ti

⌋
· Ci, ∀ Δ ≥ 0. (1)

Task Resource Model. The resource that the system
provides to a task is modeled by the supply bound
function (SBF) that specifies the minimum number of
execution time units available over any time interval of
length Δ. In this paper, the system resource is modeled
as a dedicated uniprocessor with a unit-speed.



Analogous to the denotation of DBF, the SBF of a unit-
speed processor system for the task set τ is thus denoted
as

sbf(τ,Δ) = Δ, ∀ Δ ≥ 0. (2)

Short Notations. For ease of expression in the sequel,
we adopt some short notations. We denote the subset of
all LO-critical tasks and all HI-critical tasks in τ as τL =
{τi ∈ τ |Li = LO} and τH = {τi ∈ τ |Li = HI}. Besides,
for simplicity, we use �a�b to represent max(a, b) and �a�c to
represent min(a, c).

2.2 EDF-VD Technique
Earliest-Deadline-First Virtual-Deadlines (EDF-VD) [2,

14] is a scheduling technique that makes the conventional
EDF applicable in the MCS. In this paper, the proposed F-
FOB mode-switch scheme relies on the EDF-VD algorithm.
A key feature of EDF-VD is to artificially shorten the

deadlines of HI-critical tasks when the system is in LO mode.
In this way, HI-critical tasks will finish earlier so that there
is enough time slack for them to catch their actual deadlines
after switching to the HI mode.

2.2.1 DBF in LO and HI modes
In order to schedule HI-critical tasks inMCSs, the relative

deadline Di of a HI-critical task is artificially shortened in
LO mode and returns to Di after the system switches to the
HI mode. We name the deadline in LO mode as the LO
mode deadline, and denote it as DL

i . Note that, for LO-
critical tasks, their deadlines do not need to be shortened,
thus DL

i = Di, ∀τi ∈ τL.
When the system is in LO mode, each task τi behaves as

a normal sporadic task with parameters CL
i ,D

L
i and Ti. A

DBF of such a task is known [4]:

dbfLO(τi,Δ) =

⌊
Δ+ Ti −DL

i

Ti

⌋
CL

i . (3)

When the system is in HI mode, LO-critical tasks are
abandoned, thus only the demands of HI-critical tasks need
to be considered. The DBF of a HI-critical task τi in HI
mode is that [14]:

dbfHI(τi,Δ) =

⌊
Δ+ Ti − (Di −DL

i )

Ti

⌋
CH

i − done(τi,Δ),

done(τi,Δ) =

{ �CL
i − l +Di −DL

i �0, ifDi > l ≥ Di −DL
i

0, otherwise,
,

(4)
where l = Δ mod Ti.

In EDF-VD scheduled MCS, the DBF of a system is the
sum of DBFs of all tasks in this system [14]. That is,

dbfLO(τ,Δ) =
∑

∀τi∈τ

dbfLO(τi,Δ),

dbfHI(τ
H,Δ) =

∑
∀τi∈τH

dbfHI(τi,Δ).
(5)

2.2.2 Schedulability analysis
The following proposition presents the sufficient condi-

tions that can guarantee all tasks to meet their deadlines
in LO mode and all HI-critical tasks to meet their deadlines
in both LO and HI modes.

Proposition 1. [From [14]]: In MCSs, the taskset is
schedulable if the DBFs of LO and HI modes are not greater
than the SBFs of this system, i.e., ∀Δ ≥ 0,

Condition LO : dbfLO(τ,Δ) ≤ sbf(τ,Δ) = Δ, (6a)

Condition HI : dbfHI(τ
H,Δ) ≤ sbf(τH ,Δ) = Δ. (6b)

3. FFOB OF EDF SCHEDULE
In this section, we present the FFOB mode-switch scheme

in EDF scheduled MCS. We first present the schedulability
analysis with the task procrastination technique at runtime,
on top of which we compute an overrun budget and
theoretically prove the correctness of FFOB in guaranteeing
the system mixed-criticality schedulable.

3.1 Schedulability Analysis at Runtime
We have presented the schedulability analysis of the MCS

offline in Section 2.2. Now, we present the schedulability
analysis with the task procrastination online.
At runtime, the task information may be different with

the offline worst-case assumption. To denote the task
information at runtime, we use a form of f(obj,Δ, t) to
represent the function of a related object over any time
interval of length Δ after time t. The online DBF and SBF

of a task τi are thus denoted as dbf(τi,Δ, t) and sbf(τi,Δ, t).
Task Procrastination. Suppose at a time t when the

MCS is in LO mode, all tasks in τ are delayed for a time
length ρ(t) to be executed, then the SBF of τ after t is
that [21]

sbfLO(τ,Δ, t) = �Δ− ρ(t)�0. (7)

Denote tms as the time instant of a mode-switch and
sbfHI(τ

H ,Δ, tms) as the SBF of τH in HI mode after tms.
Straightforwardly extended from Proposition 1, we have the
following schedulability conditions.

Proposition 2. The schedulability conditions at runtime
are that, ∀ t, tms, Δ ≥ 0,

Condition LO-t : dbfLO(τ,Δ, t) ≤ sbfLO(τ,Δ, t), (8a)

Condition HI-t : dbfHI(τ
H ,Δ, tms) ≤ sbfHI(τ

H ,Δ, tms). (8b)

where dbfLO(τ,Δ, t) gives the upper bound on the maximum
possible execution demand of a task set τ over any time
interval of length Δ after time t in LO mode. Similarly,
dbfHI(τ

H,Δ, tms) gives the upper bound on the maximum
possible execution demand of tasks τH over any time interval
of length Δ after time tms in HI mode.

Note that the two conditions correspond to the two
properties of being mixed-criticality schedulable in Sec-
tion 2.1. The Condition LO-t corresponds to Property 1.
The Condition LO-t and Condition HI-t together correspond
to Property 2.
Intuition. In the conventional hard real-time system,

task executions can be delayed for a certain time length
without missing any deadlines. To get a feasible time length,
we have the following lemma.

Lemma 1. [From [19]] Suppose dbf(τ,Δ, t) denote the
DBF of a task set τ from time t. If there is a ρ (ρ > 0)
that satisfies

∀Δ > 0 : dbf(τ,Δ, t) ≤ �Δ− ρ�0, (9)

then the executions of all tasks can be immediately delayed
for ρ and there will be no deadline misses after t.

Inspired by Lemma 1, our idea is to allow tasks to overrun
for a time boundary, by ensuring that this time boundary
is not greater than the feasible task procrastination time
length (a time length that task executions are delayed).
Such idea is also exploited in [7, 16] to manage the runtime
workload, in which way the task executions are regulated
and no tasks will miss their deadlines [17,18].
To dynamically manage the time boundary that a task

is allowed to overrun, the overrun budget is introduced. In
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Figure 1: Overview of FFOB in EDF scheduled MCS

the following, we design a mode-switch scheme called FFOB
that relies on the overrun budget to allow tasks overrun.
The FFOB mode-switch scheme can adaptively postpone
the mode-switch, while sufficiently guaranteeing the two
properties of being mixed-criticality schedulable.

3.2 FFOB Mode-Switch Scheme
We now present the FFOB mode-switch scheme. First, we

give an overview of FFOB, followed by a running example to
further explain it. Then, we provide how to initialize, update
an overrun budget, and how to choose appropriate virtual
deadlines. Last, we theoretically prove the correctness of
FFOB that it can guarantee the two properties of being
mixed-criticality schedulable.

3.2.1 FFOB Overview
In the standard model of MCSs presented in Section 2.1,

no LO-critical job is allowed to exceed its LO WCET and
a HI-critical job’s overrun of its LO WCET immediately
triggers the mode-switch. However, in FFOB, by relying
on an overrun budget, all jobs are allowed to run over their
LO WCETs, without being dropped or triggering the mode-
switch. To denote the system state that a job overruns and
system is not in HI mode, the Border mode is introduced.
FFOB mainly relies on the overrun budget to schedule the

overrun jobs. The overrun budget denotes a capacity that
the MCS allow tasks to overrun, which is defined as follows.

Definition 2 (Overrun Budget). The overrun bud-
get OB at some time t is a safe upper bound on the total
amount of time that the processor can work on any overrun
task after time t. In other words, all LO mode deadlines can
be guaranteed after time t if the processor does not execute
overrun tasks for more than OB time units.

Based on the overrun budget OB, the system’s runtime
behavior and the working overflow of FFOB mode-switch
scheme is depicted in Fig. 1. At the beginning, the system
sets up the OB timer with an initial value. Then, the system
may go through the following modes.

LO mode:

(i) The scheduler maintains the overrun budget OB. If
there is an idle tick, OB is reset to the initial value.
(ii) While all jobs do not execute for more than their LO

WCETs, the MCS remains in LO mode.
(iii) If any job overruns its LO WCET (at time instant

t⊥), the system goes to Border mode.

Border mode:

(iv) The OB timer elapses, as an overrun job (denoted as
Jr in Fig. 1) runs.

t

t

t

t

τ3

x3

0 10 20 30 40 50 60 70 80 90 100

τ2

x2

τ1

x1
job release

update OB
LO mode deadline

OB

10

overrun

overrun

overrun idle

Figure 2: Illustration of task execution with FFOB

(v) If Jr stops running before OB times out, OB timer
stops and the system returns to LO mode.
(vi) Once OB timer times out, the scheduler calls a

procedure to update OB, then the overrun budget OB is
updated based on the current state of tasks’ executions. The
updating of OB will be detailed in Section 3.2.3. If the
updated OB is not 0, the OB timer (with this new value)
continues to elapse as Jr continues to run. If the updated
OB is 0, a decision procedure is called.
(vii) In this decision procedure, if the overrun job is LO-

critical, it is dropped and the system goes back to LO mode.
Otherwise, the system goes to HI mode.

HI mode:

(viii) Only HI-critical tasks run and all released LO-
critical jobs will be abandoned.
(ix) An idle tick (denoted as time instant t�) will set OB

to the initial value and trigger the system to switch to the
LO mode.

Even with the Border mode, theMCS is still called mixed-
criticality schedulable if the two properties described in
Section 2.1 are guaranteed, because the Border mode is an
extension of LO mode in the sense that all tasks in Border
mode are scheduled according to their LO mode deadlines.
The following example illustrates how the FFOB mode-

switch scheme works.

Example 1. In a uniprocessor system, three tasks are
scheduled by the EDF-VD algorithm. Task properties are
shown as follows.

τi Xi CL
i CH

i DL
i Di Ti

τ1 LO 20 - 70 70 70
τ2 HI 10 20 40 70 70
τ3 HI 20 40 30 80 80

Fig. 2 illustrates the system runtime behavior under
FFOB. Before the system runs, the OB timer is initialized
to 10. Suppose that the first jobs of all tasks are released
at time zero. Task τ3 executes first. Once τ3 overruns at
t = 20, the OB timer starts to elapse. When τ3 finishes,
the OB timer will hold its current value and stop elapsing.
τ2 starts to execute. After τ2 executes over 10, it overruns
and triggers the OB timer to elapse. Similarly, the OB
timer will stop when τ2 finishes. Then τ1 runs and further
overruns to the extent that OB timer elapses to 0. The
OB updating procedure is called and OB is updated to 10 by
the approach in Section 3.2.3. After that, τ1 runs until it
finishes. After τ1 finishes, the system returns to LO mode
as there is an idle tick; in the meanwhile OB is reset.

The FFOB mode-switch scheme outperforms the other
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known methods that fairly increase the allowance of task
overrun offline in two aspects. First, OB can be flexibly used
by all tasks. In the static method, the overrun allowance
is assigned to each individual task, and the mode-switch
is triggered once a task exceeds its own overrun allowance.
Such a scheme is not flexible as it cannot use the remaining
allowances of other tasks. Second, OB is updated at runtime
in FFOB, which can often replenish the overrun allowances
and postpone the mode-switch by exploring dynamic slacks.
Such slacks naturally exist as tasks will most likely take
less than their WCETs to finish. The updated OB is
able to collect those slacks to postpone the mode-switch.
Furthermore, since the remaining OB is still valid with the
time going on and OB will be automatically replenished to
the initial value whenever an idle tick emerges, FFOB does
not need to use a complex way to update OB every time a
task overruns.

3.2.2 Initialize OB

In order to get the initial OB, we compute the largest
procrastination interval that the system at the beginning can
accept. Suppose there is a initial procrastination interval
ρ on the processor when the system starts. Then, the
service bound function becomes �Δ − ρ�0. The longest
procrastination interval is defined as follows [20].

Definition 3 (Longest Procrastination Interval).

The longest procrastination interval ρ∗ with respect to a
given DBF dbfLO(τ,Δ) is

ρ∗ = max
{
ρ : �Δ− ρ�0 ≥ dbfLO(τ,Δ), ∀Δ ≥ 0

}
. (10)

Therefore, OB is initialized to the longest procrastination
interval with respect to dbfLO(τ,Δ). This longest procrasti-
nation interval is denoted as ρ∗(t0). For the task set in the
motivational example, the initial OB is set to 10 based on
Eq. 10, as shown in Fig. 3.

3.2.3 Update OB at runtime
While tasks are overrunning, OB may elapse to 0. The

system may be still able to postpone the mode-switch,
because the actual overrun allowance at this moment may be
greater than 0 based on the current tasks’ execution state,
i.e., dynamic slacks are available. We now derive the actual
DBF of a task τi at time t.

Lemma 2. At any time t, for a task τi that has no
backlogged job at t, its LO mode DBF is

dbfLO(τi,Δ, t) = dbfLO(τi,Δ). (11)

For a task τi that has one backlogged job at t, its LO mode
DBF is

dbfLO(τi,Δ, t) = max
(
dbfLO(τi,Δ), Dmdbk(τi,Δ, t)

)
, (12)

where Dmdbk(τi,Δ, t) is derived as follows

Dmdbk(τi,Δ, t) =

�⌊
Δ

ri(t) +DL
i − t

⌋�1

· �CL
i − ei(t)

�
0

+

�⌊
Δ+min

(
Ti, t− ri(t)

)−DL
i

Ti

⌋�
0

CL
i ,

(13)

and ri(t), ei(t) are the release time and the actual execution
time of the latest released job of τi at t, respectively.

Proof. Since the DBF for a task τi must upper-bound
the maximum execution demand of jobs from τi within any
scheduling interval after time t, the DBF will include the
demand from jobs that are backlogged and the future jobs.
As shown in Fig. 4, the release time of the latest released job
is ri(t), and at time t, the released job may have finished or
may not. Therefore, a task may have backlogged job or may
not. We consider the demand of the two cases, respectively.
First, we consider that the released job has been finished.

Since the released job has been finished, there is no demand
from this job in future. The DBF will only bound the
demand of future jobs. We assume future jobs are released
as early as possible. At time ri(t) + Ti, the jobs’ release
pattern is the same as the offline assumption. Then, the
maximum demand within an interval will be the same as
the DBF within the same interval in the offline analysis, as
the demand within the interval Δ′ seen in Fig. 4. Therefore,
we prove that dbfLO(τi,Δ, t) = dbfLO(τi,Δ).

Second, we consider that there is a backlogged job. The
demand of task τi within an interval may include the demand
of the backlogged job, or may not include this demand.
If the demand of the backlogged job is not included, the
upper bound of such a demand is the same as dbfLO(τi,Δ).
Therefore, dbfLO(τi,Δ, t) ≥ dbfLO(τi,Δ). Now we consider
the upper bound on the demand that includes the demand
of the backlogged job. To include the demand of this
backlogged job, an interval Δ should start from t and
end at t + Δ. We use Dmdbk(τi,Δ, t) to denote the
upper bound of the demand that includes the backlogged
job. The backlogged job may overrun or may not overrun.
If the backlogged job does not overrun, it will demand
CL

i − ei(t). Otherwise, its demand is 0, because instead of
contributing to the system demand, overrun in our technique
is considered as the processing procrastination. In short, we
use �CL

i − ei(t)�0 to denote the demand of the backlogged
job. This backlogged job should be given �CL

i −ei(t)�0 before
ri(t) +DL

i . Future jobs are assumed to be released as early
as possible in order to maximize its demand. The request
demand of every future job is CL

i . Within Δ, the maximum
number of arrival events is �(Δ+min

(
Ti, t−ri(t)

))
/Ti�, and

those jobs should be given their requested demand no later
than their LO mode deadlines. In summary, Dmdbk(τi,Δ, t)
is represented by Eq. 13, where its first part is the demand
of the backlogged job and its second part is the demand of
its future jobs.
Since dbfLO(τi,Δ, t) ≥ dbfLO(τi,Δ) and dbfLO(τi,Δ, t) ≥

Dmdbk(τi,Δ, t), Eq. 12 holds.

With Eqs. 11 and 12, we can get the dbfLO(τ,Δ, t) at
runtime. By applying the following equation (similar to
Eq. 10)

ρ∗(t) = max
{
ρ : �Δ− ρ�0 ≥ dbfLO(τ,Δ, t), ∀Δ ≥ 0

}
, (14)

we get ρ∗(t). This ρ∗(t) is used to renew the overrun budget
OB at runtime whenever it elapses to zero.
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Figure 4: Bounding the demand of a task

3.2.4 Setting LO mode deadlines
From Eqs. 10 and 14, we can see that the initial OB

and the updated OB depend on the task offline and online
demand bound functions, hence their LO mode deadlines.
We proceed now to optimize OB by configuring tasks LO
mode deadlines.
There can be a lot of options in setting DL

i for every HI-
critical task. Different options may have different runtime
effects. To illustrate this problem, we consider the task set
in the Example 1. There are two options of DL

i , as shown
in the following.

• Option 1: DL
2 = 40 and DL

3 = 30, which is the same as
the example.

• Option 2: DL
2 = 60 and DL

3 = 40, which is different with
the example.

In both options, the schedulability of this system in the
offline analysis is guaranteed. However, the second option
can initialize OB to 20, while the first option can only
initialize OB to 10. Option 2 is expected to have a better
performance because the initial OB is greater and DL

2 ,D
L
3

of option 2 are greater than those of option 1. When we
update an OB, the ρ∗(t) of using option 2 must be equal to
or greater than that of using option 1.
Motivated by this example, we need to carefully choose

DL
i for every HI-critical task so that OB will be replenished

the most in every update.
We propose three targets to configure DL

i . The first target
is to make the initial procrastination interval ρ∗(t0) the
largest. ρ∗(t0) is important because OB will be updated to
ρ∗(t0) whenever there is an idle tick and OB is constrained
within ρ∗(t0) in every OB update. Therefore, among
all DL

i configurations, those initializing OB the most are
preferable. If there exists more than one options that
have the same initial OB, we need to consider the second
target. The second target is to make the sum of all LO
mode deadlines the largest because a larger DL

i makes
dbfLO(τi,Δ, t) smaller, potentially leading to a larger ρ∗(t).
There may still exist a lot of options that meet the two
targets. For fairness, we prefer that the LO mode deadlines
have not much difference. Thus, the third target is to make
the variance of LO mode deadlines the least. If there are
more than one options that meet the above three targets,
we randomly pick one among them. Note that, in choosing
DL

i , the first consideration is the first target, then the second
target, and the last is the third target. If there is only one
option from the first target, the second and third targets
need not to be considered. The principles of choosing LO
mode deadlines only come from our intuitions that those
principles may improve system performance.
In the search of feasible DL

i , DL
i should not be smaller

than CL
i in order to keep the schedulability in LO mode.

DL
i should not be greater than DH

i − (CH
i −CL

i ) in order to
leave enough slack for processing the carry-on job (released
but not finished at the mode switch) [14].
In general, we formalize the problem of choosing DL

i as

the following optimization problem.

Constraint : Eqs. 6a, 6b,

Target 1 : maximize ρ∗,

Target 2 : maximize
∑

τi∈τH

DL
i ,

Target 3 : minimize variance(DL
i ),

where Eqs. 6a, 6b (Section 2.2) guarantee the schedulability
of the system in both modes.

3.2.5 Correctness of FFOB
This section proves the correctness of the FFOB mode-

switch scheme, i.e., the two properties of being mixed-
criticality schedulable are sufficiently guaranteed.
First of all, we need to clarify some denotations on SBF.

sbfLO(τ,Δ, t) and sbfHI(τ,Δ, t) define the system SBF for
the task set τ in LO mode and in HI mode after time t,
respectively. The system SBF for the task set τ in any mode
is denoted as sbf(τ,Δ), and sbf(τ,Δ) = Δ as the processor
constantly provides full processing service.
Property 1 is guaranteed.
We prove that Property 1 is guaranteed by dividing the

time interval into the busy interval and the idle interval.
The busy interval is an interval during which the system is
executing jobs. The idle interval is an interval in which no
jobs are executed. In the idle interval, no jobs will miss their
deadlines as no jobs exist with a work-conserving scheduler,
i.e., EDF-VD. We only need to guarantee Property 1 in any
busy interval.
For ease of the proof, we provide some denotations on the

time instants. Denote t0 as the starting time of the system.
Denote [tsn, ten) as the n-th busy interval where tsn and
ten are the starting and ending times of this busy interval,
respectively. We have ts1 = t0. In any busy interval, the
system will be switched to HI mode at most once because
otherwise there must be an idle tick to switch the system
from HI to the LO mode during this interval. If the system
switches to HI mode, we denote tms,n as the time instant
within [tsn, ten) at which time the system switches to the
HI mode. If the system does not switch to HI mode within
[tsn, ten), we set tms,n = ten for completeness.
We prove that Property 1 holds in the first busy interval.

The proof of other busy intervals are similar. During the
first busy interval, OB is initialized to ρ∗(t0) at ts1 and the
system will be in LO mode only within [t0, tms,1].

Lemma 3. No tasks in LO mode will miss their LO mode
deadlines during [t0, tms,1].

Proof. According to FFOB mechanism in Fig. 1, LO
mode is sometimes interfered by Border mode, while
such interference is constrained by OB. Based on OB,
we consider the following cases that may happen during
[t0, tms,1].

• Case 1: OB does not elapse to 0.

If OB does not elapse to 0, the maximum accumulated
time of the system in Border mode within [t0, tms,1] is less
than ρ∗(t0), which means that the lower bound of resources
available within this interval for LO mode is greater than
�Δ− ρ∗(t0)�0. Since

dbfLO(τ,Δ) ≤ �Δ− ρ∗(t0)�0, ∀Δ ≥ 0, (15)

we conclude that the the lower bound of provided resources
to the task set τ within [t0, tms,1] is greater than its demand,
thus no tasks in τ will miss their deadlines in this case.



• Case 2: OB first elapses to 0 at a time tc1,1. At the time
tc1,1, OB is updated to a value OB(tc1,1).

According to the analysis of case 1, we know that no tasks
will miss their deadlines from time t0 to time tc1,1. At the
time tc1,1, OB = OB(tc1,1) that satisfies

dbfLO(τ,Δ, tc1,1) ≤ �Δ−OB(tc1,1)�0, ∀Δ > 0. (16)

Analogously, from time tc1,1 to the next time that
OB elapses to 0 or the system is idled, the maximum
accumulated time that the system is in Border mode is less
than OB(tc1,1). The lower bound of resources available for
the task set τ in LO mode is also greater than the LO mode
DBF of the task set τ . Tasks will not miss their LO mode
deadlines in this case.
Other cases just repeat case 1 and case 2.
Therefore, all LO mode deadlines can be met in LO mode

during the interval [t0,min(tms,1, te1)].

Lemma 4. The DBF of a task set τ in LO mode at time
tsn, n ∈ N

+ is the same as the DBF of a task set τ in LO
mode at time ts1.

Proof. At time tsn, there are no backlogged jobs.
According to Lemma 2, the LO mode DBF is the same,
as shown in the offline analysis.

Theorem 1. At any time tsn, n ∈ N
+, OB can be reset

to a value ρ∗(t0) that guarantees all tasks can meet their LO
mode deadlines in LO mode.

Proof. With Lemma 4, we know that dbfLO(τ,Δ, ts1) =
dbfLO(τ,Δ, tsn), where n ∈ N

+. Therefore, we have

dbfLO(τ,Δ, tsn) = dbfLO(τ,Δ, ts1) ≤ �Δ− ρ∗(t0).�0 (17)

Following a similar procedure used in proving Lemma 3,
we conclude that all tasks can meet their LO mode deadlines
in LO mode during the n− th busy interval, n ∈ N

+.

A property in Border mode.
An important property in Border mode is that the overrun

job in Border mode can also meet its LO mode deadline.
Such property will be used in proving Property 2 in the
following.

Theorem 2. Any job finished in Border mode meets its
LO mode deadline.

Proof. In LO mode, we guarantee that at any time t,
we have dbfLO(τ,Δ, t) ≤ �Δ − OB(t)�0. From Lemma 1,
we know that the task execution can be delayed for OB(t)
without missing any deadline, which also means that any
task can be allowed to overrun for OB(t). Therefore, there
will be no job missing its deadline in Border mode.

Property 2 is guaranteed.
To prove Property 2, we need to know some features in

the MCS scheduled with FFOB.

Proposition 3. In both LO and Border modes, FFOB
guarantees that HI-critical jobs will not be dropped, and all
HI-critical jobs can meet their LO mode deadlines even if
they overrun. If a HI-critical job runs across its LO mode
deadline without stopping, the system will be switched to HI
mode.

Proof. This comes from Property 1 and the Property in
Border mode.

Theorem 3. FFOB guarantees that dbfHI(τ
H ,Δ, tms) ≤

dbfHI(τ
H ,Δ).

time

tms

Switch to
HI mode

Release of
Carry-Over

Job

DL
i

DH
i

Δ

Ti Til

Figure 5: Illustration of the HI mode DBF of a HI-critical
task

Proof. In this proof, we need to introduce the carry-over
jobs. A carry-over job is a job from a HI-critical task that is
active (released, but not finished) at the time of the switch
to HI mode [14].
Since any HI-critical task will not miss its LO mode

deadline before the system switches to the HI mode, there
must be at least a slack of DH

i −DL
i for the carry-over job to

meet its HI mode deadline after the mode-switch. Therefore,
the smallest time interval that a carry-over job’s demand
must be met is DH

i −DL
i . Except the carry-over jobs, any

other jobs in HI mode have an interval of DH
i (DH

i = Ti)
from its release to meet their deadlines. It indicates that
the smallest time interval in which the demand of k jobs
must be met is (k − 1) · Ti + DH

i − DL
i . Then, for any

HI-critical task τi, its HI mode DBF is bounded by

DmdfullHI =

⌊
Δ+ Ti − (Di −DL

i )

Ti

⌋
CH

i , ∀Δ ≥ 0. (18)

For a carry-over job, its demand may not be CH
i because

it may have been executed for some time before the mode-
switch. Now we derive the least time that a carry-over job
must have executed within a time interval in the demand
Dmdfull

HI . The following observation is presented.

• Fact 1: If a job meets its LO mode deadline DL
i before the

system switches to the HI mode and this job has n time
units left until its HI mode deadline DH

i at the moment
of the mode-switch, then (1): this job has finished if l <
DH

i − DL
i ; (2): this job has finished at least �CL

i − (
l −

(DH
i −DL

i )
)
�0 if l ≥ DH

i −DL
i .

This fact comes from Lemma III.3 of [14]; it is proposed for
the carry-over job that does not overrun its LO WCET. For
a carry-over job that has overrun its LO WCET, however,
its execution time units before system switching to the HI
mode is more than the execution time in Fact 1. Suppose
a carry-over job exceeds its LO WCET by ε (ε > 0) before
switching to the HI mode, we conclude that (1): this job
has finished if l < DH

i − DL
i . (2): this job has finished at

least �ε + CL
i − (

l − (DH
i − DL

i )
)
�0 if l ≥ DH

i − DL
i . For

completeness, we set ε ≥ 0 to represent the carry-over job
that either overruns or not.
Now, we analyze how to get such l in Fact 1. As shown in

Fig. 5, for a time interval Δ, time units left for the carry-
over job are at most l = Δ mod Ti (0 ≤ l < DH

i = Ti).
If l < DH

i − DL
i , this carry-over job must have finished.

Otherwise, it has finished �ε+CL
i −(

l− (DH
i −DL

i )
)
�0. The

lower bound of finished execution time units in Δ is then,

ExtdoneHI =

{ �ε+ CL
i − l +Di −DL

i �0, if Di > l ≥ Di −DL
i

0, otherwise,
,

(19)
where ε ≥ 0 and l = Δ mod Ti.
Therefore, the HI mode DBF of a task τi from time tms

is that
dbfHI(τi,Δ, tms) = DmdfullHI − ExtdoneHI . (20)

Compared to dbfHI(τi,Δ) in Eq. 4, we know for any
HI-critical task τi, dbfHI(τi,Δ) ≥ dbfHI(τi,Δ, tms) because



ε ≥ 0. Therefore, for a set of HI-critical tasks, we have
dbfHI(τ

H ,Δ, tms) ≤ dbfHI(τ
H ,Δ).

Theorem 4. If Condition LO and Condition HI hold,
Condition HI-t can be met by only guaranteeing Condition
LO-t.

Proof. Since the system provides full resource in HI
mode, sbfHI(τ

H,Δ, tms) = Δ. From Theorem 3, we know
that dbfHI(τ

H ,Δ) ≥ dbfHI(τ
H ,Δ, tms). Since the constraint

of Eq. 6b has guaranteed dbfHI(τ
H ,Δ) ≤ Δ, we have

dbfHI(τ
H ,Δ, tms) ≤ sbfHI(τ

H,Δ, tms) = Δ.

Automatic Schedulability Guarantee. From the
above we conclude that, if the schedulability of HI mode
needs to be guaranteed, we only need to choose appropriate
LO mode deadlines offline that can make Conditions LO
and HI hold. At runtime, task overrun will not change
the schedulability of HI mode if Condition LO-t holds.
Therefore, the FFOB mode-switch scheme only needs to
choose appropriate LO mode deadlines at the beginning. At
runtime, tasks are allowed to overrun by only guaranteeing
LO mode schedulability, because this can automatically
guarantee HI mode schedulability.

4. EVALUATION
We now evaluate the FFOB mode-switch scheme with

an avionic task set and extensive simulations on synthetic
task sets. In particular, we evaluate the performance of
the proposed FFOB in this paper and some other known
approaches; the compared approaches are:

1. EDF-B: The basic EDF-VD scheduling that forces the
mode-switch whenever a HI-critical task overruns.

2. EDF-FFOB-S: The EDF-VD scheduling with a simple
FFOB mode-switch scheme that resets OB to its initial
value ρ∗(t0) whenever there is an idle tick. This
approach does not update OB at runtime when OB
elapses to 0, in order to have O(1) online complexity.

3. EDF-FFOB-A: The EDF-VD scheduling with an
advanced FFOBmode-switch scheme that updatesOB
at runtime when OB elapses to 0 and resets to its
initial value ρ∗(t0) when an idle tick emerges.

4. FP-B: The basic FP scheduling that applies AMC-
rtb and Audsley algorithm to assign task priorities
and forces the mode-switch whenever a HI-critical task
overruns, see [3].

5. FP-SOA: The FP scheduling with the static overrun
allowance. CL

i of HI-critical tasks are fairly increased
while ensuring the MCS provably schedulable [24].

6. FP-SOA-B: The bailout protocol enhanced by offline
increasing CL

i [6].

The following metrics are used to evaluate the perfor-
mance of the listed approaches above.

• Dropped Jobs of LO-Critical Tasks (DJLO): This metric
represents the number of dropped jobs of LO-critical tasks
in an interval. Note that, no HI-critical jobs will be
dropped in all compared approaches.

• Time Ratio of HI-mode (TRHI): This metric represents
the time ratio within an interval that the system stays
in HI mode. The smaller TRHI is, the longer that the
system stays in LO mode where all tasks can run.

• Number of Mode-Switch (Nms): This metric represents
the number of mode-switches in an interval.

Table 1: Flight management system parameters

τi τ1 τ2 τ3 τ4 τ5

T/D 200 1000 1600 100 200
CL

i [0,20] [0,20] [0,20] [0,20] [0,20]
Xi HI HI HI HI HI

τi τ6 τ7 τ8 τ9

T/D 1000 1000 1000 1000
CL

i [0,200] [0,200] [0,200] [0,200]
Xi LO LO LO LO

Table 2: Number of dropped jobs (FMS)

OP EDF-FFOB-S EDF-FFOB-A FP-SOA-B

10−5 0 0 1
5 ∗ 10−5 8 2 17
10−4 24 18 40

5 ∗ 10−4 92 58 196
10−3 189 136 414

5 ∗ 10−3 924 616 1949
10−2 1896 1356 3971

5 ∗ 10−2 12153 7873 19854
10−1 29520 18848 40309

4.1 Flight management system
The first set of experiments is conducted on a subset of

the flight management system (FMS), which consists of 5
HI-critical tasks and 4 LO-critical tasks. Task parameters
come from an industrial partner and are shown in Tab. 1
with timing units of ms. We generate random LO WCETs
conforming to Tab. 1 and use a criticality factor (CF ) to get
HI WCETs: CH

i = CF · CL
i for HI-critical tasks.

In the experiments, we simulate the system for 108 ms
and record the TRHI , Nms, DJLO. We set CF = 7
so that the task set is unschedulable by the conventional
EDF or FP algorithms. The probability that any task
may overrun its LO WCET is denoted as OP . As we
want to investigate the effect of OP on the performance
of the compared approaches, OP is set to one of {10−5, 5 ·
10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2, 5 · 10−2, 10−1}.
OP is deliberately set to a relatively high value as we want
to evaluate the FFOB performance w.r.t. OP . Indeed,
this can happen if LO WCETs are estimated in a loose
way. Once a task (including LO-critical tasks) overruns,
the actual execution time is set as a random number in(
CL

i , CF · CL
i

]
; otherwise, the actual execution time is set

as a random number in [0.6 · CL
i , CL

i ].
The simulation results are presented in double logarithmic

coordinates in Fig. 6. All figures are best seen online in
color. Fig. 6(a) shows the number of dropped jobs w.r.t.
OP . From it, we get the overview that EDF-FFOB-A and
EDF-FFOB-S have the least number of dropped jobs. EDF-
B has the largest number of dropped jobs. FP-B, FP-
SOA and FP-SOA-B have similar number of dropped jobs.
This is because in EDF-B, all LO-critical jobs are dropped
whenever an overrun of a HI-critical job triggers the mode-
switch. However, in FP-B, FP-SOA and FP-SOA-B, the
LO-critical jobs at the moment of mode-switch can still run
until they use up their execution budget, i.e., CL

i . Among
FP-B, FP-SOA and FP-SOA-B, FP-SOA-B has the least
number of dropped jobs as FP-SOA-B statically increases
CL

i and applies the bailout protocol to timely switch back
to LO mode. The concrete number of dropped jobs of
EDF-FFOB-A, EDF-FFOB-S and FP-SOA-B are shown in
Tab. 2. Compared to FP-SOA-B, we find that EDF-FFOB-
A has around half dropped jobs and EDF-FFOB-S has three
quarters of dropped jobs.
Fig. 6(b) and Fig. 6(c) show the time ratio of HI mode

TRHI and mode switch times Nms. We find that EDF-
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Figure 6: FMS: simulation results of the compared approaches (subfigures share the same color scheme)

FFOB-A is two orders of magnitude lower than FP-SOA-B
in both TRHI and Nms, even though FP-SOA-B has the
least TRHI andNms among FP-B, FP-SOA and FP-SOA-B.
Furthermore, EDF-FFOB-S with an O(1) online complexity
also performs well in saving dropped jobs, reducing the
mode-switch times and increasing the time ratio that all
tasks are scheduled.

4.2 Extensive simulations
In order to validate our proposed techniques on general

task sets, we now apply them to randomly generated task
sets. We adopt a similar random task generator as used
in [6]. A task set consists of 8 tasks; the parameters of each
task are generated as follows.

• Periods and Deadlines - The period of each task is chosen
at random from a set of periods, {20, 25, 40, 50, 80, 100
200, 250, 400, 800, 1000}. Those periods are typically
found in automotive and avionics systems [5]. Task
deadlines are the same as their periods.

• Criticality - A task is generated as a HI-critical task with
50% probability.

• Execution Times - The LO WCETs are determined
according to the UUniFast algorithm [8], which ensures
that utilizations are distributed on tasks without bias.
We set the sum utilization of a task set as 0.7. Once a task
gets a utilization, its LO WCET is CL

i = Ui ·Ti, where Ui

is its utilization. If this task is HI-critical, its HI WCET

is CH
i = CF ·CL

i , where CF = 2. During simulations, the
actual execution time is within [0.6 · CL

i , CF · CL
i ]. Each

job has a probability OP to overrun its LO WCET. If
a task does not overrun, its actual execution time is a
random number in [0.6 · CL

i , C
L
i ]. If a task overruns, its

actual execution time is a random number in (CL
i , CF ·

CL
i ]. OP is set as one of {0.0001, 0.001, 0.01}.

Simulation: We generate 50 task sets and apply the
compared approaches to schedule them w.r.t. OP . The
simulation time on each task set is 107 time units.

Results: The simulation results are shown in Figs. 7, 8 and
9 by boxplot. The results of approaches without FFOB and
the approach with a simple implementation of FFOB, i.e.,
EDF-FFOB-S, are presented together in order to highlight
the difference between the state-of-art approaches and our
proposed approach. Since the metrics of EDF-FFOB-S
and EDF-FFOB-A are far smaller than other approaches,
we present the results of EDF-FFOB-S and EDF-FFOB-A
together to highlight the further improvement of the FFOB
mechanism by making use of dynamic slacks.
In the three figures, we find that EDF-FFOB-S outper-

forms other approaches to a large extent in reducing the
three metrics. In particular, for the median of the number of

dropped jobs across all approaches in Fig. 7, with regard to
OP = 0.0001/0.001/0.01, EDF-FFOB-S achieves 22/34/27
folds reduction compared to FP-B, 14/21/16 folds reduction
compared to FP-SOA, 10/16/12 folds reduction compared to
FP-SOA-B, and 21/31/23 folds reduction compared to EDF-
B. The right plots of Fig. 7 demonstrate that, by exploiting
the dynamic slack at runtime, FFOB can further reduce
the number of dropped jobs by 5/4.9/5.4 folds compared
to FFOB only making use of the static slack. The big
advantages of FFOB are also confirmed by investigating
the time ratio in HI mode and the mode-switch times, as
presented in Figs. 8 and 9.
In addition, by comparing the results of the EDF-FFOB-

S and EDF-FFOB-A under OP = 0.001 to the results of
other approaches under OP = 0.0001, we find that the two
FFOB approaches still perform better. This result is quite
useful for guiding us on how to assign tasks WCETs. The
overrun probability often represents the level of pessimism
of the used WCET, i.e., the WCET under OP = 0.001 is
less pessimistic and smaller than the WCET under OP =
0.0001. Then, if we artificially shorten tasks LO WCETs
and meanwhile apply the FFOB mechanism to postpone the
mode-switch, the system may schedule more tasks without
lowering the QoS for LO-critical tasks. Besides, by lowering
the LO WCETs, the system can harvest more static slacks,
which can be flexibly used to allow all tasks to overrun and
thus make the system switch the mode less frequent.
In summary, the FFOB mechanism can greatly improve

the MCS performance as it makes use of the possible slack
existing in the system to schedule the overrun jobs, without
jeopardizing the basic properties of MCSs.

5. CONCLUSIONS
We propose in this paper an on-the-fly fast overrun

budgeting scheme (FFOB) to allow tasks to overrun their
LO WCETs, while guaranteeing that the system is mixed-
criticality schedulable. This scheme is lightweight as it
only needs a timer in the system to manage the overrun
allowance. At runtime, the overrun budget can be
replenished if it runs up, which further extends the overrun
allowance and postpones the mode-switch. Experimental
results show that FFOB, even with a simple implementation,
outperforms other known methods to a large extent.
The proposed FFOB scheme provides an interesting

possibility. Since FFOB can make use of the system slack at
runtime to allow tasks to overrun their LO WCETs and
effectively postpone the mode-switch, it may be a good
option to artificially decrease the the tasks’ LO WCETs.
Compared to the system without FFOB, this can make the
system schedule more tasks, without lowering the QoS for
LO-critical tasks and the guarantee to all critical tasks.
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Figure 7: Box-Plot – number of dropped jobs with different
overrun probabilities (OP); -A in the right plots represents
the approach EDF-FFOB-A
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Figure 8: Box-Plot – HI mode time ratio with different
overrun probabilities (OP); -A in the right plots represents
the approach EDF-FFOB-A
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