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The integration of mixed-critical tasks into a platform is an increasingly important trend

in the design of real-time systems due to its efficient resource usage. With a growing

variety of activation patterns considered in real-time systems, some of them capture
arbitrary activation patterns. As a consequence, the existing scheduling approaches in

mixed-criticality systems, which assume the sporadic tasks with implicit deadlines, have

sometimes become inapplicable or are ineffective. In this paper, we extend the sporad-
ically activated task model to the arbitrarily activated task model in mixed-criticality

systems with the preemptive fixed-task-priority schedule. By using the event arrival
curve to model task activations, we present the necessary and sufficient schedulability

tests that are based on the well-established results from Real-Time Calculus. We propose

to use the busy-window analysis to do the sufficient test because it has been shown to be
tighter than the sufficient test of using Real-Time Calculus. According to our experimen-

tal results, for sporadic task sets, our proposed test can achieve the same performance as

the state-of-the-art schedulability test. However, compared with the previous schedula-
bility analysis of preemptive fixed-task-priority, our approaches can handle more general

tasks with blocking, jitter, and arbitrary deadlines.
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1. Introduction

Integrating tasks with different importance or criticality on a common comput-

ing platform has become a prevalent design paradigm in real-time and embedded

systems. One challenge of designing such a mixed-criticality system (Mcs) is how

to certify the tasks based on their own criticality levels. To address this concern,

an important character of the Mcs is that system parameters become dependent

on the criticality level of the tasks. Most paper (see a relevant survey [1]) assume

that in a dual-criticality system, a high criticality task has a low level worst case

execution time (Wcet) as its low level system guarantee and a high level Wcet

as its high level system guarantee, while a low criticality task only has a low level

Wcet because a low criticality task only needs to be guaranteed in a low level.

During the runtime, if any high criticality task overruns its given low level Wcet,

the system will abandon all low criticality tasks in order to leave enough system

resource to meet the high level guarantee of high criticality tasks. The system is

called mixed-criticality schedulable if all tasks meet their deadlines in the case all

tasks execute below their low level Wcets and high criticality tasks can meet their

deadlines even when they execute over their low level Wcets.

To simplify the schedulability analysis of a system following the above scheme,

tasks in Mcss are often modeled as the sporadic tasks that only define a minimum

inter-activation interval (also called period) [1,2]. Based on the sporadic task model,

the state-of-the-art schedulability test in the fixed-priority scheduled system is the

response time analysis proposed in [2]. In the earliest-deadline-first scheduled sys-

tem, the often used schedulability tests are EDF-VD [3] and those demand-based

schedulability analysis [4–6].

Although the sporadic task model simplifies the schedulability analysis and can

also represent many nondeterministic activation patterns by assuming that the

task can be activated in every period, such representation may not be effective in

the schedulability analysis. For instance, a simple approach to dealing a periodic

task with a jittery release pattern is to transform it into a new sporadic task with

a shorter period [7]. While this approach is safe, the transformation can lead to

overly pessimistic schedulability analysis results. If this shorter period is smaller

than the Wcet of this task, it is impossible to schedule this task by modeling it

as a sporadic task, because the sporadic task is assumed to be activated in every

shorter period and the deadlines deem to be missed. The real situation is that the

task cannot be activated in every shorter period. This task may be schedulable in

Mcss, which however will be determined as not schedulable by modelling it as a

sporadic task.

The periodic task with a jittery release or a task with burst activations, often

exists in many reactive embedded systems. The jitter may come from release-delay

overheads induced by tick-driven scheduling [8], execution of interrupt service rou-

tines [7], or I/O overheads. The delays by scheduling and data dependencies may

also cause the jitter. In ARINC avionics systems, different tasks scheduling parti-
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tions are connected over a switched Ethernet. Due to the network delay, tasks in a

partition are not always released strictly periodically, but with a certain jitter [9].

In the automotive systems [10], a lot of event streams that are used to activate tasks

suggest the use of more general event stream models. In the traditional real-time

systems, complex activation patterns are often modeled as the arrival curve or the

minimum distance function to compute the system throughput and delay by ap-

plying the Modular Performance Analysis [11] (under the framework of Real-Time

Calculus [12,13]) or the Compositional Performance Analysis [14]. In contrast with

certifying the system throughput and delay on one level, the throughput and delay

need to be certified based on the criticality of tasks in Mcss, which complicates the

analysis.

In this paper, the schedulability of dual-criticality system with arbitrarily acti-

vated tasks is analyzed. The schedulability analysis towards the arbitrarily activated

tasks in Mcss, however, is nontrivial. In contrast with that at most one carry-over

job (released but not finished) exists at the time of system mode switch for each

sporadic task, there will be several carry-over jobs at once for each arbitrarily ac-

tivated task. The exact number of carry-over jobs is difficult to obtain because the

carry-over jobs depend on the specific activation patterns of this task and all higher

priority tasks. This complicates the derivation of a tight bound of the worst-case

response time (Wcrt) of a task. Furthermore, for a given task set whose priorities

are to be assigned, the exhaustive searching over all possibilities of priority assign-

ment is time-consuming. Hence, a more effective approach should be used to assign

priorities.

Being aware of the above, this paper proposes a necessary and two sufficient

schedulability tests to extend the classical sporadic task model to the arbitrarily

activated task model in Mcss with the preemptive fixed-task-priority. The detailed

contributions are as follows:

• In Mcss, we extend the classic sporadic task model to the arbitrarily acti-

vated task model by presenting a necessary and two sufficient schedulability

tests. We also show that Audsley’s algorithm is applicable in all tests.

• By using the arrival curve to represent the upper bound of task activa-

tions, we integrate the well-established results from Real-Time Calculus to

analyze the schedulability of arbitrarily activated tasks in Mcss.

• By using the minimum distance function to model task activations and

using the busy-window analysis to compute the Wcrt of tasks, we present

a tighter sufficient schedulability test than the schedulability test of using

Real-Time Calculus framework.

• It is demonstrated that, for the sporadic tasks, the sufficient test using the

busy-window analysis can achieve the same schedulability as the AMC-

max test in [2]. However, compared with AMC-max, our test can handle

the tasks with blocking, jitter, and arbitrary deadlines. It is verified by

experiments that, the increase of jitter decreases the system schedulability,
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while the increase of relative deadlines increases the system schedulability.

The remainder of this paper is structured as follows. Next section reviews related

work. Section 3 presents the system model, settings and a motivation example.

Section 4 provides the background theory. Section 5 presents the necessary test,

and Section 6 presents two sufficient tests. Section 7 presents the experimental

results and the last section concludes this paper.

2. Related Work

Since the first paper on the verification of a proposed Mcs in 2007 [15], the design

and analysis towards a Mcs have ranged from the uniprocessor to the multipro-

cessor in many various aspects. For example, there is some research that focuses

on maintaining the system fault-tolerant property [?, 16], and there is also some

research focusing on memory architecture [17]. For more works in Mcss, we rec-

ommend the interested readers to a comprehensive review [1]. In this paper, we

mainly focus on the scheduling analysis of the uniprocessor with the fixed-task-

priority schedule.

In [15], Vestal proposed to use Audsley’s algorithm [18] to assign the priorities

in Mcss with fixed-priority policy. Audsley’s algorithm was proven in [19] to be

optimal for assigning priorities to sporadic tasks with different criticality levels. In

Vestal’s approach, the priorities of tasks with different criticalities are allowed to be

interleaved, leading all tasks to be evaluated as if they were of the highest criticality.

By implementing the Mcs in Ada, it was reported in [20] that higher resource usage

can be achieved by monitoring task execution time and preventing execution time

overruns. With such a platform that can monitor how long individual jobs have

been executed, two new schemes called AMC-rtb and AMC-max that dominate

Vestal’s approach were proposed in [2, 21]. The AMC-rtb approach was extended

to incorporate preemption thresholds in [22, 23], where a reduction in stack usage

and an improved performance were demonstrated. The dual-criticality model was

extended to an arbitrary number of criticality levels by using the same analyzing

scheme as AMC-rtb [24]. In this paper, we take the same strategy in the scheduling

as [2,21], i.e., stop the execution of LO-critical tasks after any high criticality task

overruns its low level worst-case execution time.

All the aforementioned work is based on the task model that is activated spo-

radically and the assumption that its Wcrt is less than the minimum activation

interval. With this assumption, there is at most one carry-over job (released, but not

finished) when the system criticality switch is invoked. The computation of Wcrt

and the derivation of demand-bound function are often based on this carry-over

job [2, 4, 21]. Without this assumption, the previous methods of computing Wcrt

and deriving demand-bound function thus cannot be used.

The sporadic task model was extended to include the release jitter in [19], based

on which the sensitivity analysis was presented. However, there are fundamental

differences between this analysis and the one in this paper. First, the analysis
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in [19] does not consider the prevention of execution time overruns. Second, al-

though with a jitter, it still assumes that tasks are activated periodically, which

is not enough to represent the arbitrary activated tasks. Third, it assumes that

tasks have constrained-deadlines (i.e., relative deadlines are not greater than peri-

ods), while our schedulability tests do not need such assumption. Furthermore, the

detailed influence of jitter on the system schedulability is not evaluated in [19].

Despite of the unchanged period of sporadic tasks that were often modeled in

Mcss, a task model in which the period differs among different criticality modes,

instead of the Wcet, was introduced in [25]. While this setting allows the period

transformation, the sporadic task model is not changed in every mode. In [26,27], by

prioritizing all LO-critical tasks over HI-critical tasks in Mcss, two new monitoring

approaches were proposed to monitor the workload of LO-critical tasks at runtime.

Although the proposed monitoring approaches consider the arbitrarily activated

tasks, there is no mode switch in their Mcss. Thus, it is still not clear how to

monitor the workload in Mcss if a mode switch exists.

3. System Model and Motivations

In this section, we present the event model, our system settings, and a motivation

example to show the inadequacy of the existing approaches. The key notations

described in this Section and used in the rest of this paper is summarized in Tab. 1.

3.1. Event Model

We consider that a task is activated by an event [11]. Task activations in the system

can be expressed as an event stream. A trace of such an event stream is described

by means of an arrival function R[s, t) that denotes the sum of events arrived in

the time interval [s, t), with R[s, s) = 0, ∀s, t ∈ R. While any R always describes

one concrete trace, a 2-tuple α(∆) = [αu(∆), αl(∆)] of upper and lower arrival

curve provides an abstract event stream model that represents the maximum and

minimum number of events that are seen in a time interval.

Definition 1. (Arrival Curve [11]) Denote R[s, t) as the number of events that

arrive on an event stream in the time interval [s, t). Then, R, αu and αl represents

the upper and lower bound on the number of event in any interval t− s, that is,

αl(t− s) ≤ R[s, t) ≤ αu(t− s),∀t ≥ s ≥ 0,

with αl(∆) ≥ 0, αu(∆) ≥ 0 for ∀∆ ∈ R≥0.

A similar concept corresponding to the upper arrival curve is the minimum

distance function [14].

Definition 2. (Minimum Distance Function [14]) The minimum distance
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Table 1: Notations used throughout the paper

Symbol Description

n Number of tasks in the task set

τ Task set

τi i-th task ∈ τ
Li Criticality of τi
Di Relative deadline of τi

Ci(LO) LO mode Wcet of τi
Ci(HI) HI mode Wcet of τi
pi Period of τi
ji Jitter of τi
di Minimum distance of τi

hp(i) Tasks whose priorities are higher than τi
hpL(i) LO-critical tasks whose priorities are higher than τi
hpH(i) HI-critical tasks whose priorities are higher than τi

αui Upper arrival curve of τi
δi(k) Minimum interval among any k + 1 events of τi
βli Lower service curve for τi
βlLOi LO mode lower service curve for τi
βlHIi HI mode lower service curve for τi

Bufmax
j Maximum number of events backlogged in LO mode

BLOi (q, δi) q-event busy window of τi in LO mode

s System switches to HI mode at time s

Bsi (q, δi) q-event busy window of τi with switching time s

IL(s) Maximum interference from hpL(i) with switching time s

IH(s,Bsi (q, δi)) Maximum interference from hpH(i) with switching time s

Ri Worst-case response time of τi

function δ(q) is a pseudo super-additivea function, which returns a lower bound on

the time interval between the first and the last event of any sequence of q+ 1 event

occurrences.

The minimum distance function is an inverse description of upper arrival curve.

For example, δ(k) = ∆k denotes that, the first and the last event of any sequence

of k + 1 events is at least ∆k time units apart, i.e., α(δ(k)) = k + 1.

The concept of arrival curve or minimum distance function substationally gen-

eralizes conventional event stream models, such as sporadic, periodic, periodic with

aFor pseudo super-additive we denote the property of a function δ that ∀a, b ∈ N+ : δ(a + b) ≥
δ(a) + δ(b). It corresponds to the property of “good” arrival functions in [28].
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Fig. 1: The upper arrival curve of pjd event streams

jitter, and arbitrary event streams. For instance, for the arbitrary events modeled

with the period p, the jitter j, and the minimum inter arrival distance d between

successive two events, its upper arrival curve is

αu(∆) = min{d∆ + j

p
e, d∆

d
e}. (1)

This arrival pattern is called pjd pattern that is often used as a type of the complex

arrival pattern in many previous works [11, 29]. Some properties of pjd are shown

in Fig. 1(a), from which we find that: when the jitter j increases, the initial burst

increases; when d increases, the arrival interval between any two events increases;

when d = p, the event arrival pattern is sporadic.

Analogous to the arrival curve that provides an abstract event stream model, a

tuple β(∆) = [βu(∆), βl(∆)] of upper and lower service curve provides an abstract

resource model.

Definition 3. (Service Curve [11]) Denote C[s, t) as the available resource in

the time interval [s, t). Then, C, βu and βl represents the upper and lower bound

on the resource available in any interval t− s, that is,

βl(t− s) ≤ C[s, t) ≤ βu(t− s),∀t ≥ s ≥ 0,

with βl(∆) ≥ 0, βu(∆) ≥ 0 for ∀∆ ∈ R≥0.

As an arrival curve αi specifies the event and a service curve β specifies the

available processing time, the event arrival curve αi(∆) has to be transformed to

the workload arrival curve αi to indicate the amount of computation time required

for the arrived events in any time interval ∆. Suppose that the Wcet of an event

stream is ci. Then, the transformation can be done by αui = ciα
u
i , αli = ciα

l
i and

back by αui = αui /ci, α
l
i = αli/ci.

3.2. System Settings

Except the setting for task activations, our system settings are the same as a classic

setting for the Mcs in most previous papers [1,15,19]. Instead of the simple periodic
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or sporadic event stream, the task activations are modeled as an arbitrary event

stream. The event arrival curve is used to model the upper bound of the arbitrary

event stream.

In general, in our settings, a dual-criticality task set τ = {τ1, ..., τn} is given

to be scheduled on a uniprocessor. All tasks are independent. Each task, τi, is

defined by its upper event arrival curve αui , relative deadline Di, Wcet Ci and

criticality Li, where Ci = (Ci(LO), Ci(HI)) . We call the dual-criticality level

as the LO criticality and the HI criticality. The Wcets of LO-critical tasks are

modeled on the LO criticality, and the Wcets of HI-critical tasks are modeled on

both criticalities. Namely, each LO-critical task only has a LO Wcet, and each

HI-critical task has a LO Wcet and a HI Wcet. For HI-critical tasks, the Wcets

on the HI criticality are non-decreasing when compared to their Wcets on the LO

criticality, i.e., ∀τi ∈ HI(τ) : Ci(LO) ≤ Ci(HI) ≤ Di. This corresponds to the

assumption that the execution time estimation on a higher criticality level is more

conservative.

The system has two modes at runtime and is supposed to be scheduled as the

adaptive run-time scheduling algorithm in [2]. That is, the system criticality starts

in LO mode, where all tasks are assumed to not exceed/overrun their LO Wcets.

If any task exceeds its LO Wcet, then the system criticality transits immediately

to the HI mode, where all LO-critical jobs or events are dropped and HI-critical

tasks are assumed to be within their HI Wcets. The system is mixed-criticality

schedulable if and only if all task deadlines can be met in LO mode and all HI-

critical task deadlines can be met in HI mode. The system can be safely switched

back to LO mode at any time that the system becomes idle [30,31].

For the ease of expression in the sequel, we provide some short notations. hp(i)

denotes the subset of all tasks with priorities higher than that of the task τi. hpH(i)

denotes the subset of HI-critical tasks with priorities higher than that of the task

τi. hpL(i) denotes the subset of LO-critical tasks with priorities higher than that

of the task τi.

3.3. Motivation Example

An arbitrary activation pattern that is modeled as the arrival curve can also be

represented by the sporadic pattern. Since the sporadic pattern defines a minimum

inter-activation interval, an arbitrary activation pattern can be represented by the

sporadic pattern by defining a minimum inter-activation interval. However, this

representation is pessimistic because it admits more events than the maximum

number of events that will actually arrive.

Example 1. In a uniprocessor system, there are three tasks, as shown in the

following (task activations are set as pjd patterns, whose upper arrival curve αui is

presented in Eq. 1):
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τ1
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τ2
0 10 20 40 70 100

τ3
0 5 10 80 180

(a) arrival curve model

τ1
0 2 4 6 8 10 1612 14 2018

τ2
0 10 20 30 40 50 6070 80 10090

τ3
0 5 10 15 20 25 3035 40 4550

(b) sporadic model

Fig. 2: The as-early-as-possible event trace of two different models

τi Li Ci(LO) Ci(HI) Di αui (p, j, d)

τ1 LO 3 - 7 (10, 30, 2)

τ2 HI 5 10 35 (30, 50, 10)

τ3 HI 20 40 300 (100,220,5)

From αui , the event trace that events arrive as early as possible is shown in

Fig. 2(a). In order to apply the existing approaches to schedule this task set in

Mcss, those event traces should be modeled as the sporadic tasks. Since sporadic

model only defines a period, the minimum distance between two activations of a task

is used as the period. The as-early-as-possible event traces under the assumption of

sporadic model is shown in Fig. 2(b). It is impossible to schedule this task set if

events arrive as the assumption of sporadic model because the LO Wcet of τ1 is

larger than the period of its sporadic model. However, in reality, the events will

not arrive as frequently as the sporadic model assumes. By the sufficient busy-

window schedulability test presented in Section 6.2, we find this task set is actually

schedulable.

4. Preliminaries

In this section, we introduce the well-established Modular Performance Analysis

under the framework of Real-Time Calculus [12, 13] and the known Audsley’s al-

gorithm, which are the basis of the necessary and sufficient tests for verifying the

schedulability of a given task set.

4.1. Modular Performance Analysis

In the framework of Real-Time Calculus, the task processing is often modeled by

abstract performance component that acts as curve transformer in the domain of

arrival and service curve, where the transferring function depends on the modeled

processing semantics. The Greedy Processing Component (GPC) models a task that

is triggered by the events which are queued up in the FIFO (first-in-first-out) buffer.

For example, as shown in Fig. 3(a), there are two tasks that are abstracted as

GPC1 and GPC2 in a preemptive fixed-priority scheduling system, where [αui , α
l
i]
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[αu

2 , α
l
2]

[αu
1 , α

l
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[βu
1 , β

l
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[βu
2 , β

l
2]

(a) System abstraction of

two tasks

workload arrival curve αu

service curve βlDel(αu, βl)

Buf(αu, βl)

∆ [ms]

#workload [ms]

(b) Computing Del(αu, βl) and Buf(αu, βl)

Fig. 3: Modular performance analysis

and [βui , β
l
i] (i = 1, 2) are the workload arrival curve and resource service curve of

GPC1 and GPC2, respectively. Since the priority of GPC1 is higher than GPC2,

GPC1 will be always be served ahead of GPC2. Thus, the lower service for GPC2

is the system resource left over after serving the GPC1. The maximum resource

amount that needs to serve GPC1 is represented by its upper arrival curve. Hence,

the lower service for GPC2 can be obtained by the following equation:

βl2(∆)
def
= sup

0≤λ≤∆
{βl1(λ)− αu1 (λ)}, (2)

where βl1(λ) represents the system resource. In this paper, our platform is sup-

posed to be with a dedicated unit-speed processor, then the system resource can

be βu1 (λ) = βl1(λ) = λ.
For any task, if its workload arrival curve and service curve are known, the

response time of this task will be the largest interval gap between the workload
arrival curve and service curve, and the maximum blocked workload will be the
largest workload gap between them. For example, as shown in Fig. 3(b), with the
provided lower service βl and upper arrival workload αu, the Wcrt and the max-
imum workload of backlogged events for an event stream processed at a GPC can
be computed as follows:

Del(αu, βl)
def
= sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ+ τ)}

}
, (3a)

Buf(αu, βl)
def
= sup
λ≥0
{αu(λ)− βl(λ)}, (3b)

where Eq. 3a finds the largest horizontal gap between αu(∆) and βl(∆) by searching

the whole ∆ and Eq. 3b finds the vertical gap between them by searching the whole

workload. For more details about the two equations, we refer the readers to a formal

introduction on the modular performance analysis in [11]. Note that, by applying

Eqs. 3a, 3b, we get an upper bound of the Wcrt, and the maximum backlogged

workload. Then, to get the maximum number nmax of backlogged events, the Wcet

c of this task should be considered, i.e., nmax = dBuf(αu, βl)/ce.
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Regarding to the system of two tasks as shown in Fig. 3(a), assume the deadlines

for the two tasks are D1 and D2, this task set can be scheduled if and only if

Del(αu1 , β
l
1) ≤ D1 and Del(αu2 , β

l
2) ≤ D2.

4.2. Audsley’s Algorithm

Audsley’s approach was proven by Dorin et al. in [19] as an optimal algorithm to

assign the task priorities in Mcss. Audsley’s algorithm starts with no task being

assigned a priority. Priorities are assigned from the lowest to the highest, so that,

at each step, a task that can be assigned with the lowest priority is selected out.

Once a task is selected out, it is removed from the unassigned priority tasks, and

Audsley’s algorithm continues to assign the priority to the next task. Audsley’s

algorithm fails if there is no task that can be assigned with the lowest priority. The

condition of using Audsley’s algorithm to assign priorities [32] is that,

• The Wcrt for a task τi can be determined by knowing which subset of

tasks has higher priority than τi but without otherwise knowing what their

specific priority assignments are.

Audsley’s algorithm delivers an optimum priority assignment in a maximum of

n(n+ 1)/2 steps. If Audsley’s algorithm is not applicable, i.e., the above condition

is not satisfied, the worst case for assigning priorities is to search over all n! possible

priority orderings.

5. A Necessary Test - NEC

This section presents the necessary test for verifying the schedulability of Mcs

scheduled by fixed-task-priority. The necessary test is based on the fact that a

schedulable system should be able to schedule any event traces that comply with

the arrival curves. Hence, we set up two necessary conditions that should hold for

the system being schedulable. Audsley’s algorithm is applied to search the priority

assignment that makes the two conditions hold.

5.1. Two Necessary Conditions

Suppose that there are n tasks in an Mcs, as shown in Fig. 4(a). We suppose two

special situations, and the system should be schedulable under the following two

situations.

• Condition LO: Suppose when the system is in LO criticality, event traces

might occur in the worst-case patterns.

• Condition HI: Suppose there is no HI-critical event when the system is in

LO mode; after the system enters into HI mode, HI-critical event traces

might occur in the worst-case patterns.
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When the Mcs is in LO mode, no event will be dropped and the estimate

of execution time will not change. The Mcs in LO mode behaves as a non-Mcs.

Therefore, the Modular Performance Analysis in Section 4.1 can be used to verify

the Condition LO. For the Condition HI, since no HI-critical event exists in LO

mode, there will be no backlogged HI-critical events when the system enters into

HI mode. In this situation, the Mcs in HI mode can also be considered as a non-

Mcs on which only HI-critical tasks run. The Modular Performance Analysis is

also used for verifying the condition HI. Note that the above two situations are two

assumed situations that are just used for the necessary test.

5.2. Test by Applying Audsley’s Algorithm

In many previous works [11,13,29], the Modular Performance Analyis is only used

for analyzing the system with specific priority order. However, in order to apply

Audsley’s algorithm, the priority order of other tasks should have no effect on the

Wcrt of the lowest-priority task. Theorem 1 guarantees that the priority order has

no effect on computing the Wcrt of the lowest priority task, thus making Audsley’s

algorithm and the Modular Performance Analysis compatible for verifying the two

necessary conditions.

In a system, suppose there are n tasks whose priorities need to be assigned so

that all tasks can be schedulable, as shown in Fig. 4(a). For this system, we have

the following theorem.

Theorem 1. If the task τn is assigned the lowest priority without knowing the

priority ordering of other tasks, the system can be abstracted as Fig. 4(b), where

βl1 is the lower service curve of the processor and other terms are the same as

Section 3.2. When the system stays in LO mode, the lower service βlLOn for the task

τn is bounded by

βlLOn (∆)
def
= sup

0≤λ≤∆

{
βl1(λ)−

∑
j∈hp(n)

αuj (λ) · Cj(LO)

}
. (4)

When the system is in HI mode, with solely HI-critical tasks executing Ci(HI) and

no backlogged HI-critical events, the lower service βlHIn for the task τn is bounded

by:

βlHIn (∆)
def
= sup

0≤λ≤∆

{
βl1(λ)−

∑
j∈hpH(n)

αuj (λ) · Cj(HI)

}
. (5)

Proof. Without the loss of generality, the priority for the task τi is ordered in a

descending order, i.e., the priority of τi is greater than the priority of τj if i < j.

When the system is in LO mode, by iteratively using Eq. 2, we have

βli+1(∆) = sup
0≤λ≤∆

{βli(λ)− αui (λ) · Ci(LO)},∀ i ≤ n− 1,



Journal of Circuits, Systems and Computers

where βli is the lower service provided to the task τi. As

βli(∆) = sup
0≤λ≤∆

{βli−1(λ)− αui−1(λ) · Ci−1(LO)}, ∀ i ≤ n− 1,

we have

βli+1(∆) = sup
0≤λ≤∆

{βli(λ)− αui (λ) · Ci(LO)}

= sup
0≤λ≤∆

{
sup

0≤λ′≤λ
{βli−1(λ′)− αui−1(λ′) · Ci−1(LO)} − αui (λ) · Ci(LO)

}
.

As αui (λ) ≥ αui (λ′), we have

βli+1(∆) ≤ sup
0≤λ≤∆

{
sup

0≤λ′≤λ
{βli−1(λ′)− αui−1(λ′) · Ci−1(LO)} − αui (λ′) · Ci(LO)

}
= sup

0≤λ≤∆

{
sup

0≤λ′≤λ

{
βli−1(λ′)−

i∑
j=i−1

αuj (λ′) · Cj(LO)
}}

= sup
0≤λ≤∆

{
βli−1(λ)−

i∑
j=i−1

αuj (λ) · Cj(LO)

}
, ∀ i ≤ n− 1.

Besides, as sup
0≤λ′≤λ

{f(λ′)} ≥ f(λ), we have

βli+1(∆) ≥ sup
0≤λ≤∆

{
βli−1(λ)− αui−1(λ) · Ci−1(LO)− αui (λ) · Ci(LO)

}
= sup

0≤λ≤∆

{
βli−1(λ)−

i∑
j=i−1

αuj (λ) · Cj(LO)

}
,∀ i ≤ n− 1.

Therefore, we have

βli+1(∆) = sup
0≤λ≤∆

{
βli−1(λ)−

i∑
j=i−1

αuj (λ) · Cj(LO)

}
. (6)

Similarly, the index i in Eq. 6 can be extended from n− 1 to 1, thus

βlLOn (∆)
def
= sup

0≤λ≤∆

{
βl1(λ)−

∑
j∈hp(n)

αuj (λ) · Cj(LO)

}
. (7)

For the other priority settings, the lower service curve of Eq. 7 is unchanged, as

long as the task τn is set with the lowest priority. Thus, the theorem holds.

Eq. 5 can also be proved in the same steps as proving Eq. 4.

With βlLOn and βlHIn , Condition LO and Condition HI can be verified by checking

Del(αun(LO), βlLOn ) ≤ Dn (8a)

Del(αun(HI), βlHIn ) ≤ Dn, (8b)

where αun(LO) = αun · Cn(LO) and αun(HI) = αun · Cn(HI). If the task that is

assigned the lowest priority is a LO-critical task, only Eq. 8a needs to be verified
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Fig. 4: A mixed-criticality system with n tasks

because the Wcrt of this task does not need to be certified in HI mode. For the

HI-critical task, Eqs. 8a, 8b need to be verified.

Audsley’s algorithm searches the available task that can be assigned the lowest

priority by checking Eqs. 8a, 8b. If Eqs. 8a, 8b hold, this task is selected out with

the assigned priority and Audsley’s algorithm continues to assign priorities to the

left tasks. If not, Audsley’s algorithm will check Eqs. 8a, 8b by assigning the lowest

priority to another task. If no task can be assigned the lowest priority, the necessary

test fails and this task set is not schedulable.

Example 2. Returning to our motivation example, by using the necessary test,

the task τ1 can only be assigned with the highest priority. Its Wcrt is 6. The task

τ2 can only be assigned with the second priority. Its Wcrt is 20 in LO mode and

10 in HI mode. The task τ3 is assigned with the lowest priority. Its Wcrt is 139

in LO mode and 200 in HI mode. This task set passes the necessary test.

6. Two Sufficient Tests

The necessary test can only guarantee that a task set is not schedulable if the

necessary test fails, and cannot guarantee that a task set is schedulable if the

necessary test does not fail. In this section, we present two sufficient tests towards

the arbitrary activated tasks. The task set that succeeds with the sufficient test is

schedulable.

The idea of sufficient tests is to verify whether the upper bound of a task re-

sponse time is smaller than this task’s relative deadline. If so, this task is deemed

schedulable. The task is classified to be the LO-critical task or the HI-critical task.

Since the LO-critical task only runs in LO mode and the Mcs in LO mode can be

considered as a non-Mcs, the response time is bounded by Del(αun, β
lLO
n ) in Eq. 8a.

Hence, the Eq. 8a is also the sufficient verification for LO-critical tasks. For the

HI-critical task, however, computing the upper bound of response time is not so

straightforward.
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In the following, we present two approaches to compute the upper bound of

response time of HI-critical tasks. The first approach is called the workload arrival

curve approach. Suppose a task is set with the lowest priority. By deriving the

workload arrival curve of all higher-priority tasks in both LO and HI modes, the

lower bound of provided service to the lowest-priority task is derived. Then, the

response time of the lowest-priority task can be bounded by applying the Modular

Performance Analysis. The second approach is to apply the busy-window analysis to

compute the upper bound of response time. In non-Mcs systems, the busy-window

analysis allows to calculate an upper bound on the time interval the processor is

busy processing a task τi and its interferences hp(i). We extend the busy-window

analysis to Mcss to analyze the upper bound of response time of a HI-critical task.

6.1. Workload Arrival Curve Analysis - WAC

The idea of this approach is to derive a workload arrival curve αuhp(i) that upper

bounds the workload of all tasks with higher priorities than the HI-critical task τi
in both modes, including a mode switch. Hence, the remaining service for the task

τi can be safely bounded by using Eq. 2, and the Wcrt can be computed by using

Eq. 3a.

The system starts in LO mode. Before the mode switch, the Wcets of all tasks

are assumed to be Cj(LO). Then, the workload arrival curve of tasks with higher

priorities than τi is that

αLOhp(i)
def
=

∑
j∈hp(i)

αuj · Cj(LO).

Assume for the task τj , there are Buf j events that are backlogged when the mode

switch is triggered. Then, in HI mode, as the LO-critical tasks are not executed

and the Wcets for HI-critical tasks are assumed to be Cj(HI), we have

αHIhp(i)
def
=

∑
j∈hpH(i)

(αuj + Bufj) · Cj(HI). (9)

To safely bound αHIhp(i), the maximum number of events Bufmax
j that can be back-

logged in LO mode is used. The computation of Bufmax
j indicates the case that the

task τj receives the interference from all the other tasks in hp(i), i.e., the task τj is

set with the lowest priority in hp(i). For each task in hp(i), by setting its priority

as the lowest in hp(i), Bufmax
j can be computed by using Eqs. 3b, 4, i.e.,

Bufmax
j =

⌈
Buf

(
αuj (LO), βlLOj

)
Cj(LO)

⌉
. (10)

Since Bufmax
j is rounded up, the released but not finished event at the mode switch

is also included in Bufmax
j . As the backlogged events cannot be over Bufmax

j and

the released workload in HI mode cannot be over αuj ·Cj(HI), αHIhp(i) in Eq. 9 is an

upper bound of the workload in HI mode.
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To get a workload arrival curve that upper bounds the workload of hp(i) in both

modes, the following theorem can be used.

Theorem 2. For an Mcs with a setting described in Section 3.2. The workload

arrival curve that upper bounds the workload of hp(i) in both modes can be computed

by the following equation:

αuhp(i)(∆)
def
= sup

0≤λ≤∆

{ ∑
j∈hp(i)

αuj (∆− λ) · Cj(LO) +
∑

j∈hpH(i)

(αuj (λ) + Bufmax
j ) · Cj(HI)

}
.

(11)

Proof. We consider a time interval [s, t) with t− s = ∆, and set tc as the time of

mode switch. There are three possibilities, i.e.,

(1) t ≤ tc, the system stays in LO mode.

(2) s ≥ tc, the system stays in HI mode.

(3) s < tc < t, the system travels from LO mode to HI mode.

Since αLOhp(i) ≤ αuhp(i) and αHIhp(i) ≤ αuhp(i), Eq. 11 holds for the case 1 and the case

2.

For the case 3, we set aw[s, t) the arrival workload in the interval of [s, t). We

have
aw[s, t) = aw[s, tc) + aw[tc, t)

Subst. λ = t− tc
= aw[s, s+ ∆− λ) + aw[s+ ∆− λ, s+ ∆)

≤ αLOhp(i)(∆− λ) + αHIhp(i)(λ)

≤ αuhp(i)(∆)

Hence, the bound computed by Eq. 11 safely bounds the workload arrival curve in

both modes.

With the αuhp(i), the lower bound of remaining service for the HI-critical task τi
can be computed with Eq. 2, i.e.,

βli(∆)
def
= sup

0≤λ≤∆

{
βl1(λ)− αuhp(i)(λ)

}
.

Then, to compute the Wcrt of τi, every job of the HI-critical task τi is assumed to

be executed with the Ci(HI). This assumption sufficiently bounds the workload of

this task. Thus, the workload arrival curve of τi is αui = αui ·Ci(HI). This HI-critical

task τi can be scheduled if Del(αui , β
l
i) ≤ Di.

Since there is no assumption in the priority ordering of the task set hp(i) in

this approach, the condition of applying Audsley’s algorithm is satisfied. Audsley’s

algorithm is applicable for this approach.

Example 3. Returning to the motivation example, by deriving the workload ar-

rival curve of hp(3) of applying Eq. 11, the Wcrt of τ3 is 338. By deriving the
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workload arrival curve of hp(1), which is α1 · C1(LO), the Wcrt of τ2 is 37. This

task set cannot be scheduled.

6.2. Busy-Window Analysis - BW

In the non-Mcs, the busy-window analysis allows to calculate an upper bound on

the time interval that the processor is busy processing a task τi and its interferences

from hp(i) [33, 34]. Based on the busy-window, one can calculate an upper bound

on a task’s Wcrt. In this section, we present a method that can sufficiently bound

the response time of a HI-critical task in the Mcs by applying the busy-window

analysis. It first computes the maximum time to process any q HI-critical events of

a task, based on which the upper bound of this task’s Wcrt is calculated.

Similar to the busy-window formulation of equation 3 in [34], the multi-event

busy-window Bi(q, δi)
b is defined.

Definition 4. (Multi-Event Busy-Window) Assuming the processor is ini-

tially idle, the multi-event busy-window Bi(q, δi) describes an upper bound on the

amount of time that a resource requires to serve q activations of the HI-critical task

τi in Mcss.

During processing q activations of the HI-critical task τi, there can be two cases:

• case 1: the Mcs always stays in LO mode.

• case 2: the Mcs transits from LO mode to HI mode, or completely stays in HI

mode.

For the case 1, the multi-event busy-window is denoted as BLOi (q, δi), which can

be obtained by calculating the following formula until convergence [34,35].

BLOi (q, δi)
def
= q · Ci(LO) +

∑
j∈hp(i)

αj(B
LO
i (q, δi)) · Cj(LO). (12)

For the case 2, we define s as the time that the mode switch is triggered. s is

restricted in the interval [0, BLOi (q, δi)), because all q events would have been fin-

ished before the mode switch if s ≥ BLOi (q, δi). If s = 0, it means that the Mcs

completely stays in HI mode. Denote Bsi (q, δi) as the multi-event busy-window that

the mode switch is triggered at s. Compared with BLOi (q, δi) in Eq. 12, the compu-

tation of Bsi (q, δi) should separately consider LO-critical tasks and HI-critical tasks

because LO-critical tasks can interfere τi only in LO mode. Hence, we formulate

Bsi (q, δi) as follows:

Bsi (q, δi)
def
= q · Ci(HI) + IL(s) + IH

(
s,Bsi (q, δi)

)
, (13)

where IL(s) refers to the maximum interference from hpL(i) in the interval [0, s),

and IH(s,Bsi (q, δi)) refers to the maximum interference from hpH(i) in the interval

[0, Bsi (q, δi)).

bδi is the minimum distance function of the HI-critical task τi
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As LO-critical tasks are prevented from executing after s, the maximum inter-

ference from hpL(i) is bounded by:

IL(s)
def
=

∑
j∈hpL(i)

αj(s) · Cj(LO). (14)

Regarding to the computation of IH(s,Bsi (q, δi)), we first compute the maximum

interference of every task in hpH(i), and accumulate them together. Consider a

specific task τk ∈ hpH(i) and use Ik(s, t) to denote the maximum interference of

this task. The maximum number of events within [0, t) is αk(t). Suppose Ck(HI)

is the workload due to the release of m events in [s, t) and αk(t) − m events are

executed by Ck(LO). Hence,

Ik(s, t) = m · Ck(HI) + (αk(t)−m) · Ck(LO).

To maximize Ik(s, t), m should be as large as possible because Ck(HI) ≥
Ck(LO). There are two constraints on m. First, m should be less than the maximum
number of arrival events during [0, t), i.e., m ≤ αk(t). Second, m should be also less
than the sum of backlogged events at time s and arrival events during [s, t), i.e.,
m ≤ αk(t−s)+ Bufk(s), where Bufk(s) is the maximum backlogged events at time
s. We use Xk(s, t) to denote the maximum m and Yk(s, t) to denote the number of
events that are executed by Ck(LO). Therefore,

Xk(s, t)
def
= min

{
Bufk(s) + αk(t− s), αk(t)

}
, (15a)

Yk(s, t)
def
= αk(t)−Xk(s, t). (15b)

Exactly computing the Bufk(s) is difficult as Bufk(s) depends on the specific event

arrivals of τk and hp(k). Here, we provide an upper bound, i.e.,

Bufk(s)
def
= min{αk(s),Bufmaxk }, (16)

where Bufmax
k is computed with Eqs. 3b, 4 by setting τk with the lowest priority in

hp(i), which is the same as the Eq. 10 in deriving the workload arrival curve. Note

that Xk(s, t) is a valid upper bound on the events executed in [s, t), but Yk(s, t) is

neither an upper bound nor a lower bound. Nevertheless, the computed Ik(s, t) with

Xk(s, t) and Yk(s, t) is an upper bound. Then, the maximum interference IH(s, t)

is

IH(s, t)
def
=

∑
k∈hpH(i)

{
Xk(s, t) · Ck(HI) + Yk(s, t) · Ck(LO)

}
. (17)

With IL(s) and IH(s,Bsi (q, δi)), B
s
i (q, δi) can be computed by iteration. Then, the

Bi(q, δi) is the maximum Bsi (q, δi) over all possible s, i.e.,

Bi(q, δi)
def
= max(Bsi (q, δi))∀s, s ∈ [0, BLOi (q, δi)).

To compute Bi(q, δi), s should be scanned. But it is not necessary to scan every

s within [0, BLOi (q, δi)). After an examination over IL(s) and IH(s, t), we find that

only the points at which αj(s), ∀j ∈ hp(i) changes need to be checked.
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Proposition 1. Bsi (q, δi) can only increase at the points where αj(s) changes

∀j ∈ hp(i).

Proof. Suppose s1 and s2 are two successive points that αj(s) changes ∀j ∈ hp(i),
and s1 < s2. Since αj(s) does not change within (s1, s2), IL(s) will not change

within (s1, s2). When s increases from s1 to s2, from Eqs. 15a, 16, it can be known

that Xk(s, t) may decrease. Hence, Ik(s, t) may also decrease, which leads to the

decrease of IH(s, t). Therefore, Bsi (q, δi) will also decrease when s increases from s1

to s2. We have Bsi (q, δi) ≤ Bs1i (q, δi), ∀ s ∈ (s1, s2). This means that Bsi (q, δi) can

only increase at the points where αj(s) changes ∀j ∈ hp(i).

Since within any two successive points, Bsi (q, δi) will become smaller. To get

Bi(q, δi), only the points at which αj(s), ∀j ∈ hp(i) changes need to be checked. c

With Bi(q, δi), we know the Wcrt Ri(q) of the q-th job is bounded by

Ri(q)
def
= Bi(q, δi)− δi(q − 1), (18)

where δi(0) is set to be 0.

The computation of multi-event busy-window Bi(q, δi) assumes that all q events

arrive earlier than the completion of their prior jobs (the (q − 1)-event busy-time),

i.e.,
δi(q − 1) ≤ Bi(q − 1, δi).

We denote the maximum number of events that can be in a multi-event busy-

window as Qi, where Qi is the last event that arrives earlier than the completion

of its prior job, i.e.,

Qi
def
= max

(
n : ∀q ∈ N+, q ≤ n : δi(q) ≤ Bi(q, δi)

)
.

Then, the Wcrt Ri of the task τi can be found among the Qi events, i.e.,

Ri
def
= max
q∈[1,Qi]

(Ri(q)).

The task τi can be scheduled if and only if Ri ≤ Di. As Ri can be determined by

knowing hp(i) and without knowing their specific priority assignments, Audsley’s

algorithm can be used to check the schedulability of a task set by this approach.

Example 4. We now use the task set in the motivation example as a running

example to explain the procedures of using busy-window analysis. It can be observed

that only τ3 is possible to be assigned with the lowest priority. Suppose τ3 is set with

the lowest priority, the other higher priority and HI-critical task is τ2. By Eq. 10,

we get that the maximum number of backlogged events of τ2 in LO mode is 2, i.e.,

Bufmax2 = 2. The Wcrt of τ3 is computed by applying the following rounds.

cIf hp(i) is empty, i.e., task τi is set as the highest priority, s should be 0. This is because the
Wcrt will be the largest if every event of this task is executed with a large Wcet estimation.
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In the first round, only one event of τ3 is considered, i.e., q = 1. We first com-

pute the busy-window B3(1, δ3) in LO mode. By Eq. 12, B3(1, δ3) = 78. According

to Proposition 1, only the points in [0, 78) where αui , i ∈ 1, 2 change need to be

checked. We use s∗ to denote those points. Then, for every s∗, IL(s∗) of Eq. 14 is

computed. With Bufmax2 = 2 and by successively applying Eqs. 16, 15a, 15b, 17, 13,

Bs
∗

3 (1, δ3) can be computed. The maximum Bs
∗

3 (1, δ3) among all s∗ is picked out.

We get that Bs3(1, δ3) = max(Bs
∗

3 (1, δ3)) = 140. Since δ3(0) = 0, the Wcrt R3(1)

of one event is 140.

In the second round, two events of of τ3 are considered, i.e., q = 2. By the same

computing steps as the first round, we get that Bs3(2, δ3) = 207. As δ3(1) = 5, the

Wcrt R3(2) is that R3(2) = Bs3(2, δ3)− δ3(1) = 202.

We continue to increase q by one in every round and compute R3(q) in every

round, until we find that δi(q−1) > Bi(q−1, δi). In the motivation example, we find

that, when q = 10, Bs3(10, δ3) = 747. The earliest arrival time of the 11-th event

is 780, which is greater than 747. It indicates that, the workload of first 10 events

has no effect on the Wcrt of 11-th event. The 11-th event can be reconsidered as

q = 1. Therefore, the maximum R3(q) where q ≤ 10 represents the Wcrt of the

task τ3. In the motivation example, the Wcrt of τ3 is 261. Therefore, we testify

that τ3 is schedulable by setting τ3 with the lowest priority.

The task τ3 with the lowest priority can now be removed from this taskset. We

continue to assign priorities to τ1 and τ2. For the HI-critical task τ2, we follow the

same computation procedures as computing the Wcrt of τ3 to obtain the Wcrt of

τ2. For the LO-critical task, we only need to apply Eq. 8a to get its Wcrt because

LO-critical tasks are not processed in HI mode. Overall, we find that, τ1 with the

highest priority and τ2 with the second priority are schedulable.

6.3. Comparing WAC and BW

6.3.1. Complexity

The computational overhead related to our schedulability tests can be attributed

to two parts, i.e., the expense for searching feasible priority assignment, and the

expense for verifying the schedulability of the task being assigned the lowest prior-

ity. Since WAC and BW apply Audsley’s algorithm to search the feasible priority

assignment, the overhead of the first part is the same for both approaches.

The computational overhead mainly depends on the second part, i.e., verifying

whether a task can be assigned the lowest priority. If this task is a LO-critical task,

WAC and BW use the same method as verifying Condition LO of the necessary

test. If this task is a HI-critical task, the complexities of WAC and BW are differ-

ent. There are four steps of applying WAC, which are, computing the maximum

backlogged events Bufmax
j for every task in hp(i), computing the workload arrival

curve αuhp(i) that upper bounds the workload of hp(i), computing the lower bound

of provided service βli, and computing the Wcrt by Del(αui , β
l
i). For applying B-

W, there are two steps, which are, computing Bufmax
j of every task in hp(i), and
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computing the response time of every event within a maximum busy-window. Both

WAC and BW are the same in first step, but are different in other steps.

Among the different steps, the computational expense of WAC mainly depends

on the operations of curves, for instance, the max-convolution used in deriving the

αuhp(i). If the two curves are periodic, the computation expense depends on the

least common multiple of the two periods. If they are aperiodic, the computational

expense depends on the number of aperiodic segments. The computational expense

of BW mainly depends on computing the Wcrt of every event within a busy-

window. Specifically, it depends on how large a busy-window is, how many events

could be in the busy-window, and how many changes are there of αj(s), ∀j ∈ hp(i).
In our simulations, the WAC, with the support of RTC/S tool [36], is often

faster than the BW.

6.3.2. Tightness

Comparing with WAC, BW sets more constraints in deriving the interference from

hp(i), which results in that BW is tighter than WAC on the schedulability test.

In BW, Xk of Eq. 15a and Yk of Eq. 15b set a constraint that the maximum

events within [0, t) cannot exceed αk(t). Bufk in Eq. 16 sets a constraint that

the maximum backlogged events cannot exceed the arrival events before the mode

switch and the worst-case backlogged events. Since s is constrained by Eq. 12, the

interference from LO-critical tasks is also constrained. While for WAC, in order to

integrate the framework of Real-Time Calculus to do the sufficient test, it does not

explore so much constraints in deriving αuhp(i)(∆).

7. Schedulability Evaluation

In this section, towards the arbitrary event streams, we present the schedulability

evaluation on our proposed analyzing approaches. In specific, the proposed ap-

proaches are:

• NEC: The necessary test in Section 5, showing the necessary conditions that

tasks should meet in order to be scheduled by fixed priority. NEC provides an

upper bound for the sufficient tests, because task sets that are tested schedu-

lable by any sufficient test are deemed to pass this test.

• WAC: The sufficient test by deriving the workload arrival curve in Section 6.1.

• BW: The sufficient test by the busy-window analysis in Section 6.2.

Besides, for the sporadic tasks, an existing approach is used to compare with

our proposed approaches.

• AMC-max: The sufficient test by the most powerful response-time calculation

for fixed-priority scheduling from [2]. This method is only valid for sporadic

tasks whose relative deadlines are smaller than periods.
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The RTC/S tool is used to the NEC and WAC test. It is also used to compute

the maximum number of backlogged events in Eq. 10 for BW test. All the results

are obtained from a simulation host with Intel i7-4770 processor and 16GB RAM.

7.1. Task Set Generation

The task set is generated in the same way as [6]. A random task set is generated by

starting with an empty task set τ = ∅, where random tasks are successively added.

Although the four approaches can handle the task with any activation pattern,

for the easiness, the task is set as pjd pattern in our simulations. By artificially

varying the parameters, the effects of jitter and burst on the system schedulability

are evaluated.

The random task set is generated as follows:

• The task utilization is a value of (x+ 0.5)/30, where x ∈ {0, 1, ..., 29}.
• The probability of a random task being a HI-critical task is P.

• Ci(LO) is drawn from the uniform distribution over {1, 2, ..., Cmax
L }. There are

two settings for Cmax
L . The first setting is to set Cmax

L = 10, in order to make

the generated tasks mostly be light tasks (low utilization). The second setting

is to set Cmax
L = 40, in order to produce a task set mixed with light and heavy

tasks.

• Ci(HI) is drawn from the uniform distribution over {Ci(LO), Ci(LO)+1, ..., 4 ·
Ci(LO)} if Li = HI.

• The period pi is drawn from the uniform distribution over {Ci(Li), Ci(Li) +

1, ..., 200}.
• The jitter ji is set as X · pi, where X ∈ [0, 5).

• The minimum inter distance di is set as Y · pi, where Y ∈ [0, 1)

• The relative deadline is set as that Di(LO) = Di(HI) = Z·pi, where Z ∈ [0, 5).

We introduce that

ULO(τ)
def
=
∑
τi∈τ

(
Ci(LO)/pi

)
, UHI(τ)

def
=

∑
τi∈τH

(
Ci(HI)/pi

)
, (19)

where τH is the set of all HI-critical tasks in task set τ . The task set utilization is

defined as U(τ)
def
= (UHI + ULO)/2. For every task set generation, the utilization is

allowed to be located in [U∗−0.005, U∗+0.005], where U∗ is a targeted utilization.

If the generated utilization is smaller than U∗−0.005, a new random task is added.

If the generated utilization is greater than U∗ + 0.005, this task set is discarded,

and a new empty task set is started, until a task set with the allowed utilization is

found.

7.2. Evaluation Results

In our experiments, for each target utilization, 1000 task sets were generated, and

the schedulability of those task sets was determined by the four analyzing approach-
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(b) (X ,Y,Z) = (0, 0, 1)

Fig. 5: Schedulability results towards the sporadic light task sets (all subfigures

share the same color scheme)

es. The graphs are best viewed online in colour.

7.2.1. Schedulability Test on Sporadic Task Sets

First, we evaluate the four schedulability test approaches towards the sporadic task

sets with implicit deadlines.

Fig. 5(a) and Fig. 6(a) show the percentage of light and mixed task sets that

are tested schedulable. By setting (P,X ,Y,Z) = (0.5, 0, 0, 1), tasks are generated

as implicit-deadline sporadic tasks with 50% being HI-critial. In both figures, we

observe that BW achieves exactly the same schedulable percentage as AMC-max,

while outperforms the WAC by a large margin. This is expected as BW explores the

same constraints as AMC-max to compute the Wcrt. WAC pessimistically derives

the workload arrival curve of higher-priority tasks, thus resulting in an overestimate

of Wcrt. Besides, we also observe that, the schedulable percentages of BW and

AMC-max are slightly less than the limit illustrated by NEC upper bound, which

indicates that schedulability tests of BW and AMC-max are very tight.

Next, we study the effects of the parameters (P,X ,Y,Z) on the system schedu-

lability by our proposed tests. To evaluate those parameters, the weighted schedu-

lability ratio W (P,X ,Y,Z) [37] is used, which is defined as follows:

W (P,X ,Y,Z)
def
=
(∑
∀τ

U(τ) · S(τ,P,X ,Y,Z)
)
/
∑
∀τ

U(τ),

where S(τ,P,X ,Y,Z) is the schedulability ratio of the task set whose utilization

and parameters are U(τ) and (P, X , Y, Z).

In order to generate implicit-deadline sporadic tasks, (X , Y, Z) must be

(0, 0, 1). Hence, only P can be investigated. The weighted schedulability ratio

w.r.t., P is shown in Fig. 5(b) and Fig. 6(b). It shows that the achieved weighted
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Fig. 6: Schedulability results towards the sporadic mixed task sets (all subfigures

share the same color scheme)

schedulability ratios of BW and AMC-max are exactly the same and are slightly

lower than the upper bound of NEC. The performance gap between BW and NEC

is small when P is small and becomes large when P increases. This is because,

when P is small, most tasks are LO-critical. Since the schedulability test towards

the LO-critical tasks are the same in the four approaches, i.e., Eq. 8a is used as

the sufficient and necessary test, the schedulability ratio of the four approaches

are expected to be close if P is small. From the four figures, it is observed that

the superiority of BW/AMC-max over WAC is greater in scheduling light task sets

than in scheduling mixed task sets.

7.2.2. Schedulability Test on Arbitrarily Activated Task Sets

Except the schedulability evaluations on arbitrarily activated task sets, we also

evaluate how the results are changed towards the arbitrarily activated task sets by

varying the parameters (P,X ,Y,Z) (one parameter each time), whose meanings

have been presented in Section 7.1.

Since the activation patterns of tested tasks are not sporadic and the relative

deadlines are arbitrary, AMC-max cannot be directly used in testing the schedula-

bility of those tasks. However, in a pessimistic way, sporadic model with implicit

deadlines can still be used to model the tasks with arbitrary activations and arbi-

trary relative deadlines. Here is the way we take: suppose for a task τi, the minimum

interval between any two task activations is di and its relative deadline is Di. This

task can be modeled as a sporadic task whose minimum inter distance and relative

deadline is min(di, Di). In this way, AMC-max can be used to test the schedulability

of those tasksd.

dIf there are burst events for activating a task, i.e., di = 0, this task is unschedulabled by AMC-
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(d) (P,X ,Y) = (0.5, 3, 0.2)

Fig. 7: The effects of parameters (P,X ,Y,Z) on the system schedulability towards

light task sets (all subfigures share the same color scheme as the first figure)

Fig. 7 and Fig. 8 show the effects of (P,X ,Y,Z) on the system schedulability

towards light task set and mixed task set, respectively. Fig. 9 and Fig. 10 show

the time expense of the proposed approaches to get one point of Fig. 7 and Fig. 8,

respectively. From those figures, we can conclude that,

• Fig. 7(a) shows that, for the light task set, it is good to improve the sys-

tem schedulability with the same portion of LO-critical and HI-critical tasks.

Fig. 8(a) shows that, for the mixed task set, the system schedulability is better

with a higher portion of HI-critical tasks. AMCmax performs the worst be-

cause it pessimistically estimate that there will be a task activation within any

0.2 ·pi. However, the truth is that the task can only be activated every 0.2 ·pi in

a short run and will be activated at least every pi in the long run. In this way,

AMCmax assumes more events than the reality in the long run. Our proposed

max test.
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Fig. 8: The effects of parameters (P,X ,Y,Z) on the system schedulability (all

subfigures share the same color scheme as the first figure)

approaches are able to incorporate this reality to the schedulability analysis,

thus performing than AMCmax.

• Fig. 7(b) and Fig. 8(b) show that, the increase of jitter decreases the system

schedulability. This is expected as the increase of jitter will also increase the

number of task activations within a short interval. However, AMCmax does not

change with increasing X . This is because the jitter change will not affect the

task minimum inter distance and relative deadline, thus it will not change the

AMCmax estimation on task activations and deadlines.

• Fig. 7(c) and Fig. 8(c) show the increase of minimum inter-arrival distance

between two events improves the system schedulability, because this parameter

decreases the number of task activations within a certain interval. When Y = 1,

BW and AMC-max perform the same. This is expected because tasks become

sporadic tasks with implicit deadlines when Y = 1.

• Fig. 7(d) and Fig. 8(d) show that, the increase of relative deadline is helpful to
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Fig. 9: The time expense of the schedulability test approaches towards light task

sets (all subfigures share the same color scheme as the first figure)

increase the system schedulability. This is straightforward because increasing

the relative deadline allows much longer response times, thus increasing the

system schedulability. However, the increase of relative deadlines has no impact

on the AMCmax. This is still because increasing relative deadlines does not

change the pessimistic estimate of AMCmax towards those tasks.

Overall, in all those figures, we observe that: the BW constantly outperforms the

WAC, and keeps close results to NEC. This shows that BW is a very effective

approach of analyzing the system schedulability towards the arbitrary activated

tasks. Besides, from the performance of AMC-max, it can be observed that using

sporadic task model to model arbitrary activated tasks leads to very pessimistic

schedulability test results. Fig. 9 and Fig. 10 show that, AMC-max needs the least

time to get the results and BW needs the most time to get the result.
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Fig. 10: The time expense of the schedulability test approaches (all subfigures share

the same color scheme as the first figure)

8. Conclusion

In this paper, we proposed to use the arrival curve to more accurately represent the

upper bound of task activations; based on this representation, one necessary and

two sufficient schedulability tests are proposed. The sufficient test of BW is proved

to be more effective than the sufficient test of NEC. The experimental results show

that, for scheduling implicit-deadline sporadic tasks, BW can achieve the same

effectiveness as the state-of-the-art AMC-max. The results of BW are also close to

the NEC result. which is an upper bound of schedulability result.

From the experimental results, we found that, the decrease of the jitter, the

increase of minimum interval between any two task activations, and the increase of

the relative deadlines will increase the system schedulability. Using sporadic tasks

to model arbitrary tasks with arbitrary deadlines will result in very pessimistic

schedulability test results, especially for scheduling tasks whose minimum task ac-

tivation interval and relative deadlines are small.
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