
Fakultät für Maschinenwesen
Lehrstuhl für Angewandte Mechanik

Multibody systems with lubricated contacts

Cavitation, interface coupling, reduction and

quasi-Newton techniques

Andreas Ludwig Krinner

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Georg Wachtmeister

Prüfer der Dissertation:

1. Prof. Dr. ir. Daniel Rixen

2. Assoc. Prof. Dr. ir. Ron van Ostayen

Die Dissertation wurde am 16. Januar 2018 bei der Technischen Universität München eingereicht
und durch die Fakultät für Maschinenwesen am 6. April 2018 angenommen.





i

Danksagung

Die vorliegende Dissertation entstand während meiner wissenschaftlichen Tätigkeit am
Lehrstuhl für Angewandte Mechanik der Technischen Universität München im Zeitraum
vom März 2013 bis April 2017. Ohne die Unterstützung einiger Leute wäre diese Arbeit
nicht möglich gewesen.

An erster Stelle gilt mein Dank meinem Doktorvater Professor Daniel Rixen. Dein ent-
gegengebrachtes Vertrauen, die eingeräumten Freiheiten und die fruchtbaren fachlichen
Diskussionen trugen erheblich zum Entstehen dieser Arbeit bei. Ich schätzte Deine of-
fene Art für Fragestellungen jeglicher Art und genoss die äußerst positive Atmosphäre
am Lehrstuhl unter Deiner Leitung. Vielen Dank dafür!

Weiterhin möchte ich Professor Georg Wachtmeister für die Übernahme des Vor-
sitzenden der Prüfungskommission sowie Professor Ron van Ostayen für das intensive
Interesse an meiner Arbeit und die Übernahme des Zweitgutachtens danken.

Mein gesonderter Dank gilt Thomas Thümmel für die stete Unterstützung während
meiner Zeit am Lehrstuhl. Ich danke Dir für das in mich gesetzte Vertrauen und die
Möglichkeiten, die du mir in Forschung und Lehre, aber auch in verschiedensten Indus-
trieprojekten eröffnet hast.

Die zahlreichen Kollegen, die mich in meiner Zeit am Lehrstuhl begleitet haben,
werde ich in bester Erinnerung behalten. Ich bin nicht nur dankbar für die stets posi-
tive fachliche Zusammenarbeit, sondern auch für die schönen Erlebnisse rund um den
Lehrstuhl. Einzelnen Personen möchte ich besonders danken: Thorsten Schindler danke
ich für die fachliche Unterstützung und das Korrekturlesen meiner Dissertation. Meinem
Bürokollegen Markus Roßner danke ich für die Unterstützung vor allem zu Beginn meiner
Zeit am Lehrstuhl und seine wertvollen Antworten zu fachlichen und außerfachlichen
Themen. Michael Häußler danke ich ebenfalls für die schöne gemeinsame Zeit im Büro
sowie für das Korrekturlesen meiner Dissertation. Der Rotordynamik Gruppe um Chris-
tian Wagner und Johannes Maierhofer danke ich für die lebhaften und zahlreichen Diskus-
sionen. Der elf-Uhr-Mensa-Gruppe um Christian Wagner, Oliver Hofmann, Michael
Leistner und Fabian Gruber danke ich dafür, dass der tägliche Mensabesuch nicht nur
ein kulinarisches Highlight war.

Weiterhin bedanke ich mich bei all den Studenten, die in Form von Studienarbeiten
oder hilfswissenschaftlichen Tätigkeiten ihren Beitrag zu dieser Arbeit geleistet haben.

Tiefe Dankbarkeit empfinde ich für die Unterstützung, die ich Zeit meines Lebens
durch meine Eltern Elisabeth und Hans-Jörg sowie meine Brüder Maximilian und Se-
bastian erfahren habe. Die Gewissheit um Eure Unterstützung ist von unschätzbarem
Wert.

München, Mai 2018 Andreas Krinner



ii

Abstract

Elastohydrodynamic lubricated contacts occur in various machine elements and allow
for a wear resistant power transmission while motion of rolling elements is present. Their
accurate modeling and simulation enables better system and component designs with
respect to lifetime, wear, vibration and material.

This work treats numerical methods for a more efficient simulation of multibody sys-
tems with elastohydrodynamic contacts. It deals with a stationary and a mass-conser-
vative cavitation model, which are reformulated using methods of convex analysis. It
suggests a monolithic solution strategy for the coupled problem of mechanic and hydro-
dynamic equations. A quasi-Newton method is analyzed as a solution technique. Dif-
ferent interface coupling methodologies are investigated for non-conforming fluid and
structural meshes for the elastohydrodynamic problem and a novel load dependent ap-
proach is developed to reduce the elastic degrees of freedom of the lubricated interfaces.
Numerical examples as well as an experimental validation of a rotor test rig demonstrate
the applicability of the developed calculation methods.
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Zusammenfassung

Elastohydrodynamisch geschmierte Kontakte treten in einer Vielzahl von Maschinenele-
menten auf und ermöglichen die reibungsarme Übertragung von Kräften und Momenten
bei vorhandener Bewegung von Wälzkörpern. Ihre detaillierte Abbildung in der Si-
mulation ermöglicht eine verbesserte Auslegung von Systemen und Komponenten hin-
sichtlich Lebensdauer, Verschleiß, Schwingungsverhalten und Material.

Diese Arbeit behandelt numerische Methoden für die effiziente Simulation von Mehr-
körpersystemen mit elastohydrodynamischen Kontakten. Behandelt werden ein statio-
näres sowie ein masse-erhaltendes Kavitationsmodell, welche mit Hilfe der konvexen
Analysis neu formuliert werden. Es wird ein monolithischer Lösungsansatz für das me-
chanisch-hydrodynamisch gekoppelte System vorgeschlagen. Als Lösungstechnik wird
u. a. eine quasi-Newton Methode untersucht. Verschiedene Kopplungsmethoden für
nicht-konforme Fluid- und Strukturnetze für das elastohydrodynamische Problem wer-
den analysiert und ein neuer Ansatz zur Reduktion der Schnittstellenfreiheitsgrade der
geschmierten Oberflächen entwickelt. Numerische Beispiele sowie ein experimenteller
Abgleich eines Rotorprüfstandes verdeutlichen die Anwendbarkeit der entwickelten Be-
rechnungsmethoden.
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Chapter 1

Introduction

Since decades, contacts between two or multiple bodies is a demanding task in me-
chanical engineering research. Adequate models have to cover the fundamental contact
physics and mathematical methods are needed in order to calculate the dynamic systems
behavior or contact characteristics like normal and friction forces, contact stiffnesses, lo-
cal deformations or stress distributions. An experimental verification with accurate mea-
suring devices has to prove the physical principles and mathematical results. In contact
mechanics, this research process is an ongoing task. [149]

In a general view, two types of contacts can be classified: the dry and the lubricated
contact.

On the field of the dry contact, also known as solid-to-solid contact, differences in
the modeling can be found, depending on the admittance of small penetrations of the
contacting bodies or not. HERTZ was the first to develop analytical solutions for a dry
contact by admitting small penetrations, by which he derived the local deformation of
the surfaces and the resulting contact pressure [84]. By this, he opened a wide field of
research. Usually in this modeling approach, a contact stiffness characterizes a single-
valued relation between force and penetration. The use of single-valued functions was
also adapted to friction force laws, even if their physics is non-smooth, e. g. looking at
the COULOMB friction model. In the opposite case, when the dry contact is assumed to
be ideal and no local penetration is admitted, a new field of contact mechanics arises,
as now the relation between contact force and gap becomes set-valued. For example, a
contact stiffness is not needed any more and non-smooth friction force laws fit well into
this framework. Both approaches are motivated by a different physics and philosophy
and require a different mathematical and numerical treatment. As an example, the non-
smooth behavior of dynamical systems is described by methods of the convex analysis,
see for instance [1, 69, 145].

The hydrodynamic lubricated contact is characterized by a thin fluid film between
the contacting bodies. This contact is said to be elastohydrodynamic lubricated (EHL),
when the pressure in the fluid film is affected by the elastic deformation of the contacting
surfaces. REYNOLDS derived in 1886 a partial differential equation in order to describe
the pressure distribution in the fluid film [156]. In the following years, efforts were made
to derive analytical solutions for an (elasto-)hydrodynamic lubricated contact and to get
relations between force and local body approach, similar to the classical HERTZ contact
model. However, an analytical solution can only be found in special cases. In the general
case, a numerical solution is needed.

There is a strong need for more accurate and more efficient modeling of hydrody-
namic lubricated contacts, for instance to have better designs with longer lifetime and
lower losses, to avoid unstable behavior leading to noise or catastrophic failures or to
have optimized geometries and materials saving weight and costs. A detailed numeri-

1
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cal calculation of the pressure distribution in an oil film can be a time-consuming task
and can affect heavily the overall simulation time of a mechanical system with lubricated
contacts. For instance, current modeling approaches lead to solution times of the order of
days when complex hydrodynamic bearings are involved. Therefore, this thesis is aimed
at the efficient numerical treatment of such systems by developing appropriate numerical
methods and solution techniques. It will be seen that mathematical formulations and nu-
merical methods from the single-valued but also from the set-valued modeling approach
of dry contacts are applicable during the simulation of lubricated contacts.

In the following, the state-of-the-art techniques in modeling and simulation of EHL
contacts are outlined (Section 1.1). On this basis, the aim and outline of this work is stated
in Section 1.2.

1.1 State-of-the-art in elastohydrodynamic lubrication

This section summarizes the fundamental developments on the field of elastohydrody-
namic lubrication. While Section 1.1.1 gives a general overview on developments in the
simulation of EHL contacts, Section 1.1.2 addresses the specific state-of-the-art techniques
in the modeling and simulation process.

1.1.1 General developments

Mainly, the research field of EHL contacts can be grouped into two parts: on the one
hand, there is a research field focused on the classical EHL problem of a local line or
point contact. It is characterized by non-conformal surface geometries, meaning that the
local elastic deformation due to compression has a main influence on the pressure distri-
bution. Such contacts occur e. g. in gear boxes or ball and roller bearings. On the other
hand, many researchers are focused on investigations of hydrodynamic bearings, e. g.
for automotive applications or rotor systems. The surface geometry of hydrodynamic
bearings is conformal. It means that the global elastic deformation affects the pressure
distribution [22]. Figure 1.1 shows a journal bearing as an example for conformal contact
surfaces. Besides, a ball bearing as well as a gear wheel contact represent examples for
contacts with non-conformal surfaces.

Developments on both research areas, addressing different issues of the specific prob-
lem, contributed to the current status quo in modeling and simulation of EHL contacts.
In the following, a literature overview is given by highlighting the most important mile-
stones of the history of EHL contacts. The overview is divided in a first part, addressing
the developments on the field of EHL line and point contact problems and a second part
focusing on the developments on the field of bearing simulation and cavitation model-
ing. It has to be noted that since 1886, when REYNOLDS derived the famous equation for
thin film lubrication, a huge number of research articles and text books were published
on the field of EHL contacts and hence, only a small amount of the existing literature can
be referenced in this work.

EHL line and point contact

For a detailed overview on the history of elastohydrodynamics and tribology, it is re-
ferred to the articles of SPIKES [177], of SCHOUTEN and LEEUWEN [168] or the textbook
of DOWSON [50]. In these references, also the experimental developments are described,
while here, the focus is on theoretical and numerical developments.

The work of ERTEL [126] of the year 1944 is referred as the origin of the EHL problem,
see for instance [150]. He was the first to find an approximation of the minimum film
height in the EHL line contact valid for heavy loads.
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journal bearing ball bearing gear wheel

Figure 1.1: Di�erent machine elements with lubricated contacts from [85].

In 1959, the first numerical solution by DOWSON and HIGGINSON [47] confirmed the
results of ERTEL. Further, they derived approximative formulas for the minimum film
height in the EHL line contact for different parameter sets. Later, MOES generalized these
formulas by treating the dimensionless problem [125].

Investigations of ARCHARD et. al. [7] contributed to the understanding of the EHL
point contact problem. In 1976, HAMROCK and DOWSON [80] published an extensive
study of elliptical EHL point contacts providing a numerical solution as well as approxi-
mative formulas for the minimum film height.

As a milestone in the development of EHL contacts, the work of CHENG and STERN-
LICHT [33] has to be mentioned, in which they included temperature effects into the REY-
NOLDS equation by solving an additional energy equation. In the same way, the articles
of PATIR and CHENG [142] and CONRY et. al. [36] are regarded as origins in the treatment
of surface roughness and non-NEWTONIAN fluid behavior, respectively.

In the 80s and 90s, various improvements in the numerical solution of the EHL line
and point contacts were achieved. As will be seen later, the numerical solution suffers
from instabilities in the high pressure regime. By the so-called inverse method developed
by EVANS and SNIDLE [56] and later refined by HUGHES et. al. [90], first stable numerical
solutions were achieved.

The great milestone towards a fast and stable solution was the successful application
of a multi-level multi-grid discretization to the EHL problem by LUBRECHT [121] and
VENNER [192]. WIJNANT [199] uses and enhances these methods for a thorough numer-
ical and experimental study of the circular point contact.

In this context, the differential deflection method outlined by HUGHES et. al. [91] in
the year 2000, has to be mentioned as a further approach towards a stable and efficient
solution of the EHL problem.

The first numerical solutions were calculated by using the finite difference method
(FDM). In 1972, TAYLOR and O’CALLAGHAN [186] were the first to apply the finite el-
ement method (FEM) to the EHL problem. Nowadays, the FEM is used by many re-
searchers, see for instance ROHDE and OH [160] or HABCHI et. al. [77]. An extensive
study of the FEM including stabilization techniques is shown by HABCHI et. al. [74]. Fur-
ther, the discontinuous GALERKIN method is also applied to the EHL problem, see LU

et. al. [120] or YANG and LAURSEN [209].
In the recent years, researchers are seeking for model-order reduction techniques for

the EHL line and point contact problem. For instance, HABCHI et. al. [75] and HABCHI [73]
apply "well-defined precomputed basis function" for the reduction of the elastic struc-
ture. In [76], HABCHI and ISSA apply a static condensation technique to the EHL prob-
lem. MAIER et. al. [122] treat the complete coupled problem and use techniques like a
proper orthogonal decomposition to reduce the system size. In [123], the same authors
apply a so-called trajectory piecewise linear method to the EHL line contact problem.
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Hydrodynamic bearings and cavitation

A wide range of relevant literature exists on the fundamentals of hydrodynamic bear-
ings: fundamentals of fluid film bearings can be found in the text books of HAMROCK

et. al. [81], SZERI [184] or BONNEAU et. al. [17]. The design and characteristics of journal
bearings are addressed by the books of LANG and STEINHILPER [116] or SOMEYA [174].
Bearing design with special focus on combustion engines is the focus of the text books
of BONNEAU et. al. [18] or ALLMAIER et. al. [5]. Further, the review article of BOOKER

et. al. [22] gives a detailed overview on the most important literature concerning confor-
mal EHL contacts for engine bearings. ALLMAIER and OFFNER outline in their review
article [6] challenges and frontiers of EHL bearing simulation and summarize existing
numerical solution methods.

Typical issues, which are analyzed in these text books, articles and their references
are [22]: cavitation, thermal effects, surface roughness effects, fluid pressure-viscosity ef-
fects, fluid non-NEWTONIAN effects, fluid and structural inertia effects and experimental
methods.

In the following, a short overview on the developments of the theory of hydrody-
namic bearings is given, with special focus on cavitation modeling, since later in this
work, this topic will be treated in more depth.

The early developments on the field of hydrodynamic (journal) bearings are closely
related to the researchers TOWER [191], REYNOLDS [156], STRIBECK [180], SOMMERFELD

[176], GUEMBEL [72] and VOGELPOHL [194].
In 1965, an eminent contribution on the dynamic characteristics of journal bearings

was the mobility method of BOOKER [20]. Further, the works of GLIENICKE [68] and
SOMEYA [175] account for bearing characteristics and studies on the stability of rotor
systems with journal bearings.

In 1973, the work of OH and HUEBNER [137] marked the beginning of the detailed
3D-simulation of EHL bearings.

Since ever, the modeling and simulation of cavitation in hydrodynamic bearings was
of great interest. DOWSON and TAYLOR [49] and BRAUN [25] outline detailed reviews on
this topic.

The early researchers applied a cavitation condition proposed by GUEMBEL [72] by
simply cutting off negative pressures in the numerical solution. A more sophisticated
cavitation model, which offers mass-conservation at the cavitation boundary, was pro-
posed by SWIFT [183] and STIEBER [179]. In 1941, CHRISTOPHERSEN [34] outlined a first
numerical solution for this cavitation problem. Further, a mass-conservative cavitation
condition was proposed by JACOBSSON [93], FLOBERG [59] and OLSSON [139]. In 1974, a
first cavitation algorithm based on this concept was proposed by ADAMS and ELROD [55].
Its numerical implementation with a finite difference scheme resulted in the popular EL-
ROD algorithm [54].

A further milestone in the cavitation modeling was the article of GOENKA [70]. In
that, a cavitation algorithm for the cavitation model of SWIFT and STIEBER is proposed,
which is based on a formulation as a linear complementarity problem, which was origi-
nally stated by KOSTREVA [99] and OH [135].

In 1991, KUMAR and BOOKER [111] proposed a mass-conservative cavitation algo-
rithm for a finite element discretization for the formulation of ADAMS and ELROD. For
its solution, they make use of the algorithm of GOENKA.

Over the years, further mass-conservative cavitation algorithms were proposed. Ex-
amples are the articles of GIACOPINI et. al. [67] or WOLOSZYNSKI et. al. [204], who both
solve the linear complementarity problem of the cavitation problem in different ways.
Further, there are modified formulations of the original formulation of ELROD for a more
efficient solution process, see VIJAYARAGHAVAN and KEITH [193] or ALAKHRAMSING
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et. al. [3]. A commonly used approach is to regularize the cavitation problem, as done for
instance by NOWALD et. al.[132] or NITZKSCHE et. al. [129]

Nowadays, the full transient analysis of combustion engines with EHL journal bear-
ings, including cavitation, surface roughness and/or thermal effects is state-of-the-art,
see for instance [98, 112, 136, 157, 167, 200]. In the same way, rotor systems like turbo-
charger are analyzed fully dynamically with either steady-state or mass-conservative
cavitation models, see for instance [52, 53, 130, 169, 205].

1.1.2 Solution strategies and methods

The numerical methods, which are applied for the solution of EHL problems, are now
outlined.

An important issue concerning the simulation of EHL problems is the strong nonlin-
earity between pressure and film height, specifically at high pressures, when the local
deformation is not negligible. In literature, different solution strategies and techniques
are applied during the solution process. They are reviewed in the following.

In the early simulations, the researchers used direct iteration methods and followed
a partitioned solution strategy. This means that first, for a given deformation, a pressure
distribution is calculated, which is then imposed via forces on the elastic structure. These
steps are repeated until convergence is achieved. For instance, STAFFORD et. al. [178] and
LABOUFF and BOOKER [112] use this classical approach for EHL bearing simulation. For
EHL line contacts, the article of TAYLOR and O’CALLAGHAN [186] is a classical reference.

Since this original approach suffered from stability problems at high pressures [186],
a full-system approach was followed for a stronger coupling. In this, pressure and defor-
mation are updated simultaneously and therefore, it is also known as monolithic solution
strategy. In 1977, this approach in combination with a Newton-Raphson scheme was first
applied by OH and ROHDE [138] for EHL point contacts. Later, many researchers fol-
lowed this approach, see for instance ELCOATE et. al. [51] or HUGHES et. al. [90]. In the
same way, the full-system approach was applied in the EHL bearing simulation process.
Again, OH [135] can be seen as the pioneer by applying the full-system approach in com-
bination with a Newton scheme. Further, the work of MCIVOR [124] contributed to a fast
convergence of the Newton-Raphson method in bearing simulation.

Nowadays, the use of the Newton method is the state-of-the-art technique to solve
EHL problems. An exception is the article of PROFITO et. al [154], in which the authors
apply a quasi-Newton method for the static solution of an EHL bearing problem.

A further issue in EHL simulation is the incorporation of an adequate cavitation con-
dition in the iterative solution process of the EHL problem. It is accomplished in different
ways in the literature.

The original strategy is to fulfill the stationary SWIFT-STIEBER cavitation condition
during a GAUSS-SEIDEL relaxation of the pressure equation as it was proposed by CHRISTO-
PHERSON [34] in 1941. Examples are the articles of ROHDE and OH [160] or HUGHES

et. al. [90].
With the outline of the ELROD algorithm [54], detailed solutions of transient problems

with mass-conservative cavitation condition were possible, e. g. in the work of WIJNANT

[199].
An often used approach for EHL line and point contacts is to use a penalization of

the pressure in order to obtain positive pressure values. This penalization is usually
combined with a full-system approach and a Newton method, see HABCHI et. al. [78] or
AHMED et. al. [2].

A sophisticated task is the treatment of EHL contacts in a multibody simulation. Here,
the dynamics of rigid and elastic bodies interacts with the hydrodynamics, while connect-
ing links, constraints and external forces need to be considered.
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The state-of-the-art technique for the incorporation of elastohydrodynamic revolute
joints in multibody systems uses a nonlinear force element, in which the hydrodynamic
pressure is calculated numerically [61, 189]. Hence, the solution strategy is usually par-
titioned. Commercial multibody simulation programs also follow this partitioned ap-
proach for the coupling of hydrodynamic and mechanical equations [115, 134].

A further partitioned approach for the coupled simulation is the use of co-simulation
techniques. In [31], BUSCH and SCHWEIZER propose a semi-implicit coupling approach
with a reduced computational effort for the Jacobian calculation. They treat a turbocharger
system as an example and couple a commercial multibody simulation code with a com-
mercial finite element code for the fluid film bearing calculation.

The large demand for simulation tools in research and industry becomes evident,
when looking at the variety of existing commercial software tools. Nowadays, software
tools like First, Excite, Simpack or Madyn 2000 cover a broad spectrum of applications and
services. It is noteworthy that the latter software tool was originally developed by the
research association FVV and includes the former bearing calculation tool Alp3t [63, 165].

1.2 Aim and outline of this work

Despite the already existing various simulation tools for EHL problems, including so-
phisticated numerical methods, there are still challenges and frontiers in the EHL sim-
ulation, see ALLMAIER and OFFNER [6]. This thesis aims at a unified treatment of EHL
contacts as well as the development of numerical methods contributing to a more effi-
cient simulation. These methods are applicable to the EHL line or point contact problem
in the same way as to the coupled dynamic problem of a multibody system including
EHL bearings. In detail, following issues are part of this work:

Cavitation problem The cavitation conditions in hydrodynamics show interesting par-
allels to the non-penetration condition of unilateral contacts of classical contact me-
chanics. Following the works of WOHLMUTH [202] and POPP [151], who treat me-
chanical contacts in great detail, a variational consistent discretization is outlined
also for the cavitation problem. Modern methods like the use of dual LAGRANGE

multipliers are applied. Two classical cavitation conditions are treated, namely the
SWIFT-STIEBER and the JACOBSSON-FLOBERG-OLSSON condition. For the solution
of the cavitation problems, a formulation by a projection function from convex anal-
ysis is proposed. Applying a semi-smooth Newton method results in a new cavita-
tion algorithm.

Interface coupling The pressure in the oil film and the elastic deformation of the surfaces
can be discretized on non-conforming meshes. The reason for non-conforming
meshes can be for instance, the use of different simulation codes for mechanics and
hydrodynamics. This work addresses the problem of interface coupling and ap-
plies different methods from fluid-structure interaction for the transfer of surface
tractions and deformations. Consistent and conservative coupling methodologies
based on the work of DEBOER [42] are analyzed and compared with each other for
the EHL problem.

Interface reduction In the simulation of EHL contacts, a large number of elastic degrees
of freedom is necessary in order to cover the elastic deformation of the interface.
This leads to a large number of overall degrees of freedom of a mechanical system
and influences strongly the simulation time, specifically in a dynamic analysis. So
far, classical reduction methods based on interface deformation are used in order
to decrease the number of elastic degrees of freedom of the interface. In this work,



Aim and outline of this work 7

reduction methods also based on interface loading are outlined and their applica-
bility is analyzed for different simulation examples. This dual approach can be well
adapted to specific pressure distributions arising for instance in EHL bearings.

Solution strategies and quasi-Newton method The state-of-the-art solution strategy for
EHL problems is partitioned. In case the problem is handled as monolithic, a pe-
nalization of the cavitation condition is usually used in order to get a nonlinear
residual, which is then solved by a Newton-Raphson scheme. This work proposes
a monolithic solution strategy with an exact fulfillment of the cavitation conditions.
It is possible by the use of the projection function introduced for the cavitation prob-
lem. Further, a quasi-Newton method of DEGROOTE et. al. [43] is applied in mod-
ified form for the solution of the coupled dynamic problem. The benefits of using
the projection formulation as well as the quasi-Newton method will be outlined.

Along these major topics, this thesis outlines a finite element discretization of the REY-
NOLDS equation including a consistent upwind stabilization technique for both the steady-
state as well as the transient case. The developed numerical methods are applied to simu-
lation examples. In addition, an experimental study proves the validity of the simulation
program and gives insights into experimental validation.

In Fig. 1.2, a schematic overview shows the structure of a classical EHL simulation.
It is characterized by a mechanical system and a fluid model, which both have to be
coupled by adequate methods. Different solution methods are used to solve the coupled
system. Additionally, in Fig. 1.2, the major topics and methods investigated in this thesis
are highlighted for a better categorization.

by REYNOLDS equation
cavitation condition (Sommer-
feld, Gümbel, Swift-Stieber, JFO)
changing fluid properties (Barus,
Roelands, Dowson-Higginson)
further effects (surface rough-
ness, temperature effects, inertia
effects)

Coupling strategy (consistent,
conservative)
Transfer method (nearest
neighbour, mortar method)

Solution strategy (partitioned,
monolithic)
Solution technique (fix point
iteration, Newton Raphson,
quasi-Newton)

Fluid modelling, chap. 2

Coupling methods, chap. 3

Solution methods, chap. 5
Mechanical System, chap. 3
Multi-body System (rigid /
elastic bodies, constraints,
links, external forces)
Reduction method (CMS,
dual approach), chap. 4

x
y

z
ω

p

(q, u)

Figure 1.2: Schematic overview of EHL simulation and outline of topics addressed in this thesis.

Own contributions

The important novel contributions outlined in this thesis can be summarized as follows:

• Mathematical formulation of classical cavitation conditions by a projection func-
tion.
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• Novel cavitation algorithms by applying a non-smooth Newton method to the pro-
jection formulations of the cavitation problems.

• First time use of dual LAGRANGE multipliers for the discretization of the cavitation
problems.

• First time application and analysis of consistent and conservative coupling methods
of non-conforming meshes for EHL problems.

• Novel reduction method for reducing the elastic degrees of freedom of the interface
of a revolute EHL bearing; comparison of reduction methods for classical simula-
tion examples.

• Monolithic solution techniques for multibody systems with lubricated contacts by
applying the projection formulations of the cavitation conditions.

• Adaption of a quasi-Newton method for the solution of the coupled system and
development of solution algorithms for the coupled system.

• Simulation and experimental validation of a misaligned rotor in journal bearings.

Outline of this work

The structure of this work is as follows:
Chapter 2 treats the fundamentals of the EHL contact. It introduces the REYNOLDS

equation. A numerical discretization by the finite element method and an upwind sta-
bilization provide a first numerical solution for the pressure distribution in the fluid
film. Classical cavitation conditions are outlined, different mathematical formulations
are given and cavitation algorithms are analyzed. The fluid film kinematics and forces
are derived. Further effects in the REYNOLDS equation are discussed. Descriptive nu-
merical examples conclude the chapter.

Chapter 3 states the governing equations of the complete coupled system. Therefore,
the dynamic equations of rigid and elastic body motion are given and combined with the
hydrodynamic equations of Chapter 2. The interface coupling conditions for a consistent
and a conservative approach respectively, are outlined and different transfer methods
are compared. A convergence study for a numerical example allows the discussion of
the different coupling methodologies.

Chapter 4 addresses the reduction of elastic bodies having a lubricated interface. Two
state-of-the-art reduction methods and a novel dual reduction approach are outlined for
the use in a flexible multibody simulation. Their accuracy and efficiency is demonstrated
for two simulation examples of multibody systems with a EHL journal bearing.

Chapter 5 treats the time integration of the coupled system and provides different
solution strategies and techniques. Besides the state-of-the-art partitioned approach, a
monolithic solution strategy is outlined and a quasi-Newton method is applied to the
iteration process. An extensive study on a numerical example investigates the different
approaches and techniques in detail.

Chapter 6 gives numerical and experimental case studies of EHL contact problems
and bearing simulation. A simulation example of a flexible slider-crank mechanism is
investigated due to variations in physical and numerical modeling. An experimental
study of a rotor test rig is performed by the here developed simulation tools. Further, the
numerical methods are tested for the simulation example of an EHL point contact.

Chapter 7 summarizes the numerical methods proposed and outlined in this work. It
highlights existing challenges and outstanding topics in EHL simulation.



Chapter 2

The elastohydrodynamic lubricated contact

In this chapter, the fundamentals of the EHL contact are described, including the physical
model as well as the mathematical treatment. Starting with the description of the REY-
NOLDS equation, a finite element (FE) discretization is successively derived, resulting in
a stable numerical solution. The consideration of cavitation effects leads to a different
physical and numerical behavior of the REYNOLDS equation. Therefore, a concise treat-
ment of cavitation conditions is a special focus of this chapter. Further, the kinematics
and the forces in the fluid film are addressed, which play an important role for the cal-
culation of the hydrodynamic loads. Extended versions of the REYNOLDS equation and
numerical examples complete the chapter.

The detailed structure of the chapter is as follows: In the first Section 2.1, the REY-
NOLDS equation is stated in its classical form, being the fundamental equation for the
following sections.

In the second Section 2.2, a numerical discretization of the REYNOLDS equation by the
FEM is given and a stabilization technique is outlined in order to avoid oscillations in the
numerical solution of the REYNOLDS equation.

In Section 2.3, the most common cavitation conditions for the REYNOLDS equation
are explained first and second, their numerical discretizations are given. Different math-
ematical formulations are outlined, resulting in different cavitation algorithms. The use
of a projection function results in a novel cavitation algorithm.

Section 2.4 treats the kinematics and the forces in the fluid film. The kinematics is
derived not only for the general case, but also for two classical examples – a flexible
journal bearing and a EHL point contact.

Section 2.5 presents concepts for extending the REYNOLDS equation in order to cap-
ture effects, which are not covered by the classical hydrodynamic theory. In detail, these
are surface roughnesses, inertia effects and temperature effects.

The last Section 2.6 shows numerical examples, which underline the theory of the
previous sections. The different cavitation algorithms are compared, a solution from the
literature is verified and the effect of the numerical stabilization is demonstrated.

2.1 Reynolds equation

A lubricated contact between two deformable bodies is depicted in Fig. 2.1. For the pres-
sure distribution in the thin fluid film between the bodies, the REYNOLDS equation is
valid under the following assumptions:

• The fluid behaves like a NEWTONian fluid, meaning that the shear forces linearly
depend on the velocity gradient. The proportionality factor is the viscosity η.

9
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• The fluid flow is slow and viscous, meaning that pressure and viscosity terms pre-
dominate, while fluid inertia and gravity effects are negligible. The flow is laminar
and characterized by a small REYNOLDS number.

• The magnitude of the fluid height h(y, z) = h2 − h1 is one order smaller than the
magnitudes of the remaining two dimensions. This assumption results in a constant
fluid pressure over the fluid height in local x-direction.

(y, z): p, η, $

body 2

body 1

fluid

x

u2

u1

z

w2

w1

y

v2

v1

h2

h1

Figure 2.1: Notations in the lubricated contact.

The REYNOLDS equation can be derived from the NAVIER-STOKES equations by in-
troducing the analytical solution of the momentum equation over the height of the fluid
film into the mass conservation equation, see for instance HAMROCK et. al. [81]. A short
derivation is also outlined in Appendix A. It is noted that the REYNOLDS equation is still
valid for compressible fluids, meaning that the fluid properties (density $, viscosity η)
can change with the pressure or the temperature. This fact was originally neglected by
REYNOLDS, but later described by HARRISON. Here in this thesis, it is assumed that
the fluid properties behave isothermal. Nevertheless, Section 2.5.3 will later show the
extensions to be made for the inclusion of temperature effects. The effect of shear rate
on viscosity, describing a non-NEWTONian fluid behavior, is not treated here in this the-
sis, but may be taken into account in a generalized REYNOLDS equation, see for instance
SZERI [184].

The following partial differential equation for the pressure in the two dimensional
fluid domain Ω ⊂ R2 with descriptive coordinates (y, z) results from the REYNOLDS

equation (see for instance [81] or Appendix A):

−∇
(

h3$

12η
∇p
)

︸ ︷︷ ︸
POISEUILLE

+
∂

∂y

(
$h

v1 + v2

2

)
+

∂

∂z

(
$h

w1 + w2

2

)
︸ ︷︷ ︸

COUETTE

+ $
∂h
∂t︸︷︷︸

squeeze

+ h
∂$

∂t︸︷︷︸
loc. exp.

= 0, (2.1)

where ui, vi and wi are the absolute velocities of body i (i ∈ {1, 2}) in the local directions
(Fig. 2.1). The first term on the left hand side of Eq. (2.1) represents the POISEUILLE term,
describing the flow due to the change of the pressure gradient; the following two terms
represent the COUETTE term, describing the flow due to wedge and stretch effects in the
tangential plane; the fourth term represents the squeeze term, describing the mass change
due to squeezing motion of the surfaces; the last term represents the local expansion term,
describing the flow due to the change of density. Summarized, the REYNOLDS equation
is a flux balance equation in the two-dimensional fluid domain.
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For a better numerical treatment, the COUETTE flow is further split up into a flow qdens
describing the density wedge effect and a flow qstat describing the physical wedge and
stretch effects. Together with the squeeze flow qsqu and the flow qexp for the local expan-
sion of the density, it leads to following form:

−∇
(

h3$

12η
∇p
)
+ qdens + qstat + qsqu + qexp = 0. (2.2)

After splitting ∂h
∂t = ∂h2

∂t − ∂h1
∂t , the EULERian derivative ∂hi

∂t can be expressed in depen-
dence of local LAGRANGian velocities and height derivatives. Stating the total derivative
dhi
dt = ui =

∂hi
∂t + vi

∂hi
∂y + wi

∂hi
∂z , it decomposes

∂hi

∂t
= ui − vi

∂hi

∂y
− wi

∂hi

∂z
(2.3)

into normal and tangential squeezing (see [81]). Now, the fluxes are defined as follows:
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qexp = h
∂$

∂t
. (2.7)

Pressure dependent fluid properties

The effect of the pressure on the fluid parameters of the REYNOLDS equation can be in
the compressibility or in the change of viscosity. The dependency of fluid density and
viscosity on the pressure has to be taken into account in particular at high pressures,
which usually exist in non-conformal EHL contacts.

A classical relation between viscosity and pressure is given by BARUS [10] and de-
scribes an exponential dependence:

η(p) = ηp=0 eξ p, (2.8)

with the dynamic viscosity ηp=0 at zero pressure and the pressure-viscosity coefficient ξ.
Experimental studies revealed that this relation is only valid at moderately high pres-
sures. A better approximation even for high pressures gives the ROELANDS formula [159]:

η(p) = ηp=0

(
η∞

ηp=0

)1−(1+p/cp)
Z1

, (2.9)

with the oil specific constants η∞ and cp and the pressure-viscosity index Z1. Note that
Z1 is related to ξ of the BARUS formula according to Z1 = cp ξ/(ln(ηp=0)− ln(η∞)).

For oil, an often used relation between density and pressure is given by a formula,
proposed by DOWSON and HIGGINSON [48]:

$(p) = $p=0

(
1 +

a p
1 + b p

)
, (2.10)
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with the density $p=0 at zero pressure and the oil specific constants a and b. In literature,
a logarithmic or purely linear relation between pressure and density, based on a so-called
bulk modulus, can also be found, see [54, 193].

The effect of density variation due to the pressure is usually less important than the
effect of the variation of the viscosity when analyzing oil bearing forces. However, both
effects have to be considered for non-conformal EHL contacts [81].

When assuming non-constant fluid parameters and inserting the formulas for the
pressure dependences into REYNOLDS equation (2.2), the partial differential equation be-
comes nonlinear in the pressure variable p. Further, when accounting for compressibility,
an effect of the time variation of the pressure through the local expansion term (2.7) be-
comes evident.

Shear forces

The shear stresses τi on body i (i ∈ {1, 2}) can be derived from the pressure and the
kinematics as follows (see [81]):

τxy,1 = −h
2

∂ p
∂y
− η(v2 − v1)

h
, τxy,2 =

h
2

∂ p
∂y
− η(v2 − v1)

h
, (2.11)

τxz,1 = −h
2

∂ p
∂z
− η(w2 − w1)

h
, τxz,2 =

h
2

∂ p
∂z
− η(w2 − w1)

h
. (2.12)

They act in the local tangential y- and z-direction, respectively. Together with the pressure
in the normal direction, they are responsible for the forces in the hydrodynamic contact.

2.2 Numerical discretization

This section treats the numerical discretization of the REYNOLDS equation. Different tech-
niques are used in the literature. The FDM was the classical method to discretize the EHL
problem of the line or the point contact, respectively, see [47, 80] for the first numerical so-
lutions. Multigrid and multilevel methods in the solution process ensure an efficient and
stable solution [121, 192, 199]. In [160, 186], the FEM is used as an alternative method and
nowadays, it is applied to the EHL line and point contact problem in the same manner by
using adequate stabilization techniques, see for instance [2, 77]. In the classical bearing
simulation, the FDM was also used first [55], but the FEM rapidly became a widely used
method [70, 111, 135].

In this section, the FEM is used for a numerical discretization of the REYNOLDS equa-
tion in its strong form (2.2). In Section 2.2.1, the FE discretization is given and in Sec-
tion 2.2.2, the streamline upwind PETROV-GALERKIN (SUPG) stabilization technique is
applied in order to get a stable solution of the problem. The books of DONEA and
HUERTA [45] and ZIENKIEWICZ et. al. [212] serve as classical references for the FEM for
fluid dynamics.

2.2.1 Finite element (FE) discretization

For a numerical solution of Eq. (2.2), the FEM with iso-parametric mapping is applied.
It is started with the strong form of the transient problem, where the pressure p is the
only unknown, as the fluid properties are either constant or pressure dependent. This
means that the relations $ = $(p) and η = η(p) are considered in Eq. (2.2). For the
further analysis, a diffusion coefficient κ(p) and a convection velocity u(p) are defined as
follows:

κ(p) =
h3$(p)
12η(p)

, (2.13)
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u(p) =
h
2

(
v1 + v2
w1 + w2

)
∂$

∂p
. (2.14)

They arise in the POISEUILLE term of Eq. (2.2) and in the density flux (2.4), respectively.
With them, the strong form can be formulated as follows: Find the pressure p such that

−∇ (κ(p)∇p) + u(p)T∇p + h
∂$

∂p
ṗ = −qstat − qsqu on Ω×]0, T[, (2.15)

p = p̂ on Γp×]0, T[, (2.16)

κ(p)∇pT n = q̂ on Γq×]0, T[, (2.17)
p(t = 0) = p0 on Ω, (2.18)

where p̂ is the pressure at the DIRICHLET boundary Γp and q̂ the flux on the NEUMANN

boundary Γq
1. The two boundaries do not intersect (Γp ∩ Γq = ∅) and together they form

the boundary of the fluid domain (Γ = ∂Ω = Γp ∪ Γq). The initial value at t = 0 is p0
and the vector n is the outpointing normal vector on Γq. For simplicity, it is assumed
that ˙̂p = 0. The time interval is ]0, T[.

For the weak form, weighting functions w(y, z) ∈W are defined, which belong to the
function space W:

W = {w ∈ H1(Ω)|w = 0 on Γp}, (2.19)

which contains functions of the SOBOLEV space H1, which vanish at the DIRICHLET

boundary Γp. The SOBOLEV space H1(Ω) represents the functions with square-integrable
derivatives on Ω. Then, the weak form reads as follows: Find the pressure p ∈ S such
that ∫

Ω
κ(p)∇w

T∇p dΩ +
∫

Ω
w

(
u(p)T∇p + h

∂$

∂p
ṗ
)

dΩ =

−
∫

Ω
w (qstat + qsqu) dΩ +

∫
Γq

w q̂ dΓ, ∀w ∈W. (2.20)

Here in this form, the GAUSS divergence theorem is already applied. The solution space S
for the pressure is defined as:

S = {p ∈ H1(Ω)|p = p̂ on Γp} (2.21)

and contains all functions of the SOBOLEV space H1(Ω), which fulfill the DIRICHLET

boundary condition (DBC). For the discretization, the two-dimensional fluid domain Ω
is approximated by nele finite elements defining the discrete fluid domain Ωh:

Ω ≈ Ωh =
nele⋃
e=1

Ω(e).

Further, the space W of the weighting functions as well as the solution space S are ap-
proximated by the subspaces Sh ⊂ S and Wh ⊂ W, respectively. Following the BUBNOV-
GALERKIN method, the same function space is used for the description of both subspaces.
The pressure p(y, z) and the weighting function w(y, z) are approximated by the shape
functions N(y, z):

p(y, z) ≈ ph(y, z) =
n f ree

∑
i=1

Ni p f ree,i +
ndbc

∑
j=1

Nj pdbc,j, (2.22)

1
Note that here, the Neumann boundary condition q̂ addresses the flux due to the pressure gradient (i. e. the

Poiseuille flow) only. Alternatively, it may address the total flux consisting of Poiseuille and Couette flow. Then,

also a total flux has to be prescribed on Γq.
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w(y, z) ≈ wh(y, z) =
n f ree

∑
k=1

Nk w f ree,k, (2.23)

where p f ree,i belongs to the vector p of the n f ree unknown discrete pressure values, pdbc,j
belongs to the vector p̂ of ndbc known discrete pressure values at the DIRICHLET bound-
ary and w f ree,k belongs to the vector w of the n f ree discrete values of the weighting func-
tion. The shape functions Ni are usually defined locally on the finite element (e) and
belong to one specific node of the FE mesh.

A discretization of the weak form (2.20) is obtained, when ph ∈ Sh is found on Ωh
such that the weak form is fulfilled for every wh ∈ Wh. Inserting further the approxima-
tions (2.22) and (2.23) into Eq. (2.20) gives following discretized weak form:

n f ree

∑
k=1

[
wk

{ ∫
Ωh

(
κ(ph)∇N

T
k + Nk u(ph)

T
) n f ree

∑
i=1
∇Ni p f ree,i dΩ +

+
∫

Ωh

h
∂$

∂p
Nk

n f ree

∑
i=1

Ni ṗ f ree,i dΩ = −
∫

Ωh

Nk(qstat,h + qsqu,h) dΩ

+
∫

Γq,h

Nk q̂ dΓ −
∫

Ωh

(
κh∇N

T
k + Nk uT

h

) ndbc

∑
j=1
∇Nj pdbc,j dΩ

}]
. (2.24)

This form has to be fulfilled for each discrete value wk and leads to a system of equations
for the unknown pressure vector p. The integration over the domain Ωh can be split up
into the sum over the integrals on the finite elements Ω(e), due to the local definition
of the shape functions. After assembling the global matrices and vectors, the following
nonlinear system of equations for the discretized hydrodynamic pressure p results:

(A(p) + B(p)) p + C(p) ṗ = b(p), (2.25)

with the following FE matrices and vectors, for k, i ∈ {1, . . . n f ree}:

A =
nele

A
e=1

A(e)
k,i , A(e)

k,i =
∫

Ω(e)
κ(ph)∇N

T
k ∇Ni dΩ,

B =
nele

A
e=1

B(e)
k,i , B(e)

k,i =
∫

Ω(e)
Nk u(ph)

T∇Ni dΩ,

C =
nele

A
e=1

C(e)
k,i , C(e)

k,i =
∫

Ω(e)
h

∂$

∂p h
Nk Ni dΩ,

b =
nele

A
e=1

b(e)
k , b(e)

k = −
∫

Ω(e)
Nk (qstat,h + qsqu,h) dΩ +

∫
Γ(e)

q

Nk q̂ dΓ

−
∫

Ω(e)

(
κh∇N

T
k + Nk uT

h

) ndbc

∑
j=1
∇Nj pdbc,j dΩ.

The size of the system conforms to the number n f ree of the free nodes. Later, the complete
solution vector p̃ is needed, including the already known ndbc values at the DIRICHLET

boundary nodes. It is defined as p̃ =
(

pT p̂T)T and has the length of nnode = n f ree + ndbc
values.

Choice of shape functions

Typically in the FEM, polynomial LAGRANGE functions are used as shape functions, as
they fulfill well the differentiability requirements. Here in this work, quadrilateral ele-
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ments (4 nodes) with bi-linear LAGRANGE shape functions as well as incomplete quadri-
lateral elements (8 nodes) with bi-quadratic serendipity shape functions are used. In the
further reading, they are addressed as Lin4 and Quad8 elements, respectively.

Full-Sommerfeld solution

The first, stationary solution of the REYNOLDS equation is referred as the full-SOMMER-
FELD solution [176]. For that, constant fluid properties are assumed, meaning $ = $p=0
and η = ηp=0, which lead to a vanishing density and expansion flux in Eq. (2.2). Looking
at the discretized system of Eq. (2.25), the matrices B and C vanish as well as the pressure
dependency of matrix A and vector b. In addition, the squeeze flux vanishes, when
stationary conditions are considered, leading to b = bstat. As a result, the pressure can be
calculated directly by:

p = A−1 bstat (2.26)

2.2.2 FE stabilization

This subsection treats the numerical stability in the discretization of the strong form (2.15)
to (2.18). Equation (2.15) is a transient, convection-diffusion equation: the first term rep-
resents the diffusion term with the diffusion coefficient κ(p) and the second term rep-
resents the convection term with the convection velocity u(p). Typical for this class of
equations are numerical oscillations, when the convective term dominates the diffusive
term. The element PECLET number is a measure for the ratio between convective and
diffusive transport and is defined as follows:

Pe(e) =
‖u‖ h(e)

2 κ
, (2.27)

where h(e) is the characteristic length of the element (e). In detail, the numerical FE
solution becomes unstable, when the element PECLET number is larger than one. In
EHL theory, this can be the case in highly loaded contacts because at high pressures, the
diffusion coefficient (2.13) tends towards zero, as the viscosity increases exponentially
with the pressure. Note that these oscillation do not occur in the REYNOLDS equation,
when constant fluid parameters are assumed, as there is neither a convective flux qdens
nor the viscosity changes with the pressure.

The problem of numerical oscillations is originally known from the FDM. There, os-
cillations in convection-dominated flows occur, when the convective term is discretized
by a central difference scheme. In the FEM, this happens in the same way, when the
standard BUBNOV-GALERKIN discretization is used, since this scheme corresponds in its
linear form to a central difference scheme, see BROOKS and HUGHES [29].

In the FDM, the classical approach to avoid the oscillations is the use of a pure first
order upwind discretization for the convective term. It can be shown that this upwind
scheme corresponds to a central difference scheme with an artificial diffusion, which
damps out the oscillations, see for instance [29]. It can be further shown that there exists
an optimal choice of the artificial diffusion, which ensures exact values at the element
nodes for the one-dimensional case. These concepts of streamline upwind discretization
and optimal artificial diffusion are also applicable in the FEM. However, the simple ad-
dition of streamline upwind/artificial diffusion terms jeopardizes the consistency of the
FEM and the concept of weighted residues is not satisfied any more. A stabilization tech-
nique without this inconsistency is the SUPG method [29]. Its idea is to use streamline
upwind modified weighting functions according to the PETROV-GALERKIN discretiza-
tion. Thus, artificial diffusion is added in direction of the streamlines and further, the
residuum is weighted by these functions, which gives a consistent formulation.
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In the literature, further FE stabilization techniques can be found. These are the
GALERKIN/Least-Squares (GLS) method, the Variational Multiscale Stabilized (VMS)
method, the Finite Increment Calculus (FIC) method or the so-called Bubble methods,
see [45] for an overview. In the context of EHL contacts, the classical methods like the
artificial diffusion, the SUPG and the GLS method are applied for a stable FE solution.
Examples can be found in [74].

In the following, the SUPG method is applied to stabilize the FE discretization of the
strong form (2.15) to (2.18). In contrast to the standard BUBNOV-GALERKIN method of
the previous subsection, the SUPG method uses following streamline upwind modified
weighting functions for the discretization of the function space Wh:

w̃h = wh + vh = wh + τ uT
h ∇wh, (2.28)

with the stabilization parameter τ. Using the modified weighting function w̃h for the
discretization of the weak form (2.20) gives following stabilized discrete weak form: Find
ph ∈ Sh such that∫

Ωh

κ(ph)∇w
T
h ∇ph dΩ +

∫
Ωh

wh

(
u(ph)

T∇ph + h
∂$

∂p h
ṗh

)
dΩ =

−
∫

Ωh

wh (qstat,h + qsqu,h) dΩ +
∫

Γq,h

wh q̂ dΓ

+
nele

∑
e=1

∫
Ω(e)

h

v
(e)
h R(e)

h dΩ, ∀wh ∈Wh. (2.29)

The first two rows are equal to the standard BUBNOV-GALERKIN method, while the sum
in the third row represents the stabilization term. The latter is added to the interior of the
elements, where the discrete residuum Rh is weighted by the streamline upwind parts of
the weighting functions. The discrete residuum Rh is given according to Eq. (2.15):

Rh = −∇ (κ(ph)∇ph) + u(ph)
T∇ph + h

∂$

∂p h
ṗh + qstat,h + qsqu,h (2.30)

It becomes clear that the SUPG method is also residual-based.
The further proceeding is similar to the discretization with the BUBNOV-GALERKIN

method. In the stabilized discrete form (2.29), the approximations (2.22) and (2.23) are
inserted and the integration is performed on the finite elements. After assembling the
element matrices and vectors, a system of equations for the stabilized FE discretization is
obtained. It has the same form as the system of Eq. (2.25), but here the original matrices
and vectors are updated by the matrices and vectors coming form the SUPG stabilization:

A← A + ASUPG, B← B + BSUPG, C ← C + CSUPG, b← b + bSUPG, (2.31)

Choice of stabilization parameter

For linear elements in 1D, an optimal choice of the stabilization parameter τ exists for the
steady-state convection-diffusion equation:

τ(e) =
β(e) h(e)

2 u(e)
, β(e) = coth (Pe(e))− 1/Pe(e). (2.32)

This parameter ensures a solution with nodal exact values. For quadratic elements in 1D,
an optimal parameter can be found in the same way, see [45]. Even though the concept
of an optimal parameter can be generalized for bi-linear elements in 2D, the choice of
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an optimal parameter, e. g. for higher order elements or for general transient problems, is
still an open research field. A useful choice, which ensures that the stabilization vanishes,
when the element size is small enough, gives:

τ(e) =

(2 ‖u(e)‖
h(e)

)2

+ 9

(
4 κ(e)

h(e)2

)2

+ σ(e)2

−1/2

, (2.33)

where σ(e) takes into account reactive terms like the right hand side and the transient
term of Eq. (2.15). For instance for the transient problem, σ(e) may depend also on the
time-step of the time discretization, see [45].

2.3 Cavitation conditions

So far, the REYNOLDS equation is considered in its original form (2.1) and first numeri-
cal pressure solutions, like the full-SOMMERFELD solution, can be calculated. However,
these solutions could give pressures below the atmospheric pressure. This would mean
physically that the fluid is exposed to tensile forces being much higher than the tensile
stresses, which a fluid could eventually sustain. In reality, in this case, a rupture of the
fluid film occurs and cavitation zones arise. As a consequence, an adequate cavitation
model needs to be imposed on the REYNOLDS equation in order to avoid these unphysi-
cal negative pressures in the solution.

As a wide range of cavitation models exist in the literature, Section 2.3.1 gives a re-
view on the most important models and outlines their differences in both their physical
appearance and their mathematical formulation.

Based on that, the FE treatment of two widely spread models, namely the SWIFT-
STIEBER and the JACOBSSON-FLOBERG-OLSSON models, are outlined in Section 2.3.2 and
Section 2.3.3, respectively.

2.3.1 Review on cavitation models

In the literature, many cavitation models exist, which differ in their physical approach,
but also in their mathematical formulation and consequently in their numerical calcula-
tion effort. In the following, the focus will be on the most popular models. For a more
detailed overview, it is referred to the review papers of DOWSON [49] and BRAUN [25].

For the purpose of comparison, the left diagram of Fig. 2.2 depicts amongst others the
full-SOMMERFELD solution for the pressure in the circumferential direction of an eccentric
journal bearing. As can be seen, the pressure is positive in the convergent zone and has
its maximum before the minimal height, which is located at ϕ = π. In the divergent zone,
where the height increases again, the pressure becomes negative, which is only possible
when no cavitation condition is imposed.

Guembel condition

The GUEMBEL condition [72] of the year 1914 represents a first cavitation model. It is
usually used for the steady-state case ṗ = 0 and simply cuts off pressures below the cav-
itation pressure pc in the full-SOMMERFELD solution, see left diagram in Fig. 2.2. There-
fore, it is also known as half-SOMMERFELD solution. It assumes that the film rupture
always occurs at the minimal film height, while film reformation is not considered phys-
ically. Due to the kink in the pressure at the film rupture, it is not mass-conservative
at the cavitation boundary; neither is it mass-conservative inside the cavitation region.
Nevertheless, it is often used due to its easy numerical treatment.
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Figure 2.2: Cavitation conditions.

Using the SOMMERFELD solution (2.26), the pressure of the GUEMBEL solution is de-
fined as:

p− pc = 〈A
−1 bstat〉, (2.34)

where the 〈 · 〉-operator is defined for an arbitrary vector v by returning for the i−th
component vi:

〈vi〉 =
{

vi if vi ≥ 0
0 else

. (2.35)

Swift-Stieber condition

A more sophisticated cavitation condition was formulated by SWIFT and STIEBER [179,
183], which is also referred to as REYNOLDS boundary condition [21, 49], as it goes back to
considerations made by REYNOLDS. It determines the position of the cavitation bound-
ary by the condition that the pressure p = pc is constant in the cavitation zone and the
pressure gradient ∇p vanishes at the film rupture. This leads to a smooth transition at
the film rupture, as can be seen in the left diagram of Fig. 2.2.
This assumption holds physically very well, when a stationary striated flow is established
over the complete clearance height. This flow is characterized by equally distributed gas
cavities, where the liquid is transported in-between of them, see Fig. 2.2 right. Such a flow
was observed in many experiments under steady-state operation and flow conditions,
meaning qsqu = 0 and ṗ = 0, see [49]. The SWIFT-STIEBER condition is mass-conservative
at the film rupture. This fact will be shown in more depth in the next subsection, when
highlighting mass-conservative models.

Mathematically, the SWIFT-STIEBER condition is formulated as a so-called free bound-
ary problem on the fluid domain: In the full fluid zone, the pressure has to be larger
than the cavitation pressure and the REYNOLDS equation has to be fulfilled such that the
change of density $̇ vanishes. It is different in the cavitation zone: here, the pressure
has to be constant and the change of density has to be negative, since the fluid cavitates.
Looking at the REYNOLDS equation (2.2), the change of density correlates to the local ex-
pansion flow by qexp = h ∂$

∂t . By this, it can be summarized that following two zones have
to be found in the fluid domain:

p > pc : qexp = ∇
(

h3$

12η
∇p
)
− qdens − qstat − qsqu = 0 (2.36)

p = pc : qexp < 0, (2.37)

with the pressure p as only unknown. This formulation assumes that the density remains
constant in the cavitation zone ($ = $c) at all time, only the time derivative of the density
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has to be negative. This fact is often referred as the condition of starting cavitation [111].
Note that the GUEMBEL condition, which computes the solution of the REYNOLDS equa-
tion as usual, and then only as a post-processing, puts all the pressures below the cavita-
tion pressure back to pc, differs from condition (2.37), as the flux qexp is at least a linear
function of the pressure and not the pressure itself.

The problem of Eqs. (2.36) and (2.37) was solved by a GAUSS-SEIDEL relaxation with
a if-else switching first by CHRISTOPHERSON [34]. Later, CRYER et al. formulated the
SWIFT-STIEBER cavitation condition for constant fluid properties as a linear complemen-
tarity problem (LCP) [40]. In the case of pressure dependent fluid properties, this formu-
lation becomes nonlinear and consequently a nonlinear complementarity problem (NCP)
has to be solved, see [99, 135]. These complementarity problems are usually solved by
a block-pivot based MURTY-algorithm [127], which was first applied by OH [135] and
described by GOENKA [70].

Good experimental results for moderately loaded bearings as well as its moderate nu-
merical implementation effort explain the broad use of the SWIFT-STIEBER condition, see
for instance [22, 70, 135, 136]. However, a detailed prediction of the fluid film reformation
is not possible, as mass-conservation is not fulfilled in the cavitation zone. This is due to
the fact of the remaining negative flow qexp in the cavitation zone.

It is worth noting that the assumptions of SWIFT and STIEBER are made originally for
steady-state operation conditions. However, in practice, this cavitation condition is also
applied under transient operation conditions, when the squeeze term qsqu is considered
like in Eq. (2.36).

Mass-conservative models

A widely spread transient and mass-conservative cavitation condition is the JACOBSSON-
FLOBERG-OLSSON (JFO) condition [59, 93, 139]. Similar to the SWIFT-STIEBER condition,
it assumes a striated flow in the cavitation zone like in Fig. 2.2 right. Contrarily to the
previous model, it incorporates an additional condition for the fluid film reformation and
ensures further mass-conservation in the cavitation zone. A typical pressure distribution
based on the JFO concept is shown in Fig. 2.3 left. Further, the distribution of the density
can be seen.

In order to gain deeper insight into the pressure and density distributions for the
mass-conservative models, the transient flow balance is analyzed in a 1D control volume
at the position of the film rupture 2, see Fig. 2.3 right. The stationary flows q−ϕ and q+ϕ in
circumferential direction immediately before and after the film rupture are defined as:

q−ϕ = −h3 $−

12 η

∂ p
∂ϕ

∣∣∣
2
+ h $−

v1 + v2

2
, q+ϕ = h $+

v1 + v2

2
, (2.38)

where q−ϕ belongs to the pressurized fluid zone with positive and q+ϕ to the cavitation
zone with constant pressure. The balance of incoming and outgoing flows induces the
change of mass in the control volume:

q−ϕ − q+ϕ = lim
dϕ→0

ϕ2+dϕ/2∫
ϕ2−dϕ/2

∂($ h)
∂t

dϕ = h ($+ − $−) ϕ̇2.

where ϕ̇2 is the velocity of the cavitation boundary. In this equation, the LEIBNIZ integral
rule is already applied. Inserting the flows of Eq. (2.38), one obtains the pressure gradient
immediately before the film rupture as:

∂ p
∂ϕ

∣∣∣
2
=

6 η

h2 (v1 + v2 − 2 ϕ̇2) (1− $+/$−). (2.39)
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Figure 2.3: Pressure and density distribution in a bearing with JFO condition (assuming incom-

pressible fluid behavior and pc = 0)

In this equation, the velocity ϕ̇2 of the cavitation boundary has to be smaller than the
convection velocity (v1 + v2)/2, otherwise the assumption for film rupture does not hold.
From the condition that the pressure in the pressurized fluid zone has to be positive, it
follows that the pressure gradient cannot be positive at the film rupture. Further, from the
condition that the density in the cavitation zone has to be smaller or equal than the den-
sity in the pressurized zone, it follows with ϕ̇2 < (v1 + v2)/2 in Eq. (2.39) that the pres-
sure gradient cannot be negative. As a consequence, a vanishing pressure gradient and
a continuous density distribution ($+ = $−) remain as the only possible solutions for the
fulfillment of the mass-conservation at film rupture. With this finding, it becomes clear
that the SWIFT-STIEBER condition from the previous subsection is mass-conservative at
the film rupture, as there is imposed a zero pressure gradient at film rupture and a con-
tinuous density distribution in the fluid film.

A similar analysis as done for the film rupture can be done for the film reformation.
Then, the transient flow balance in 1D gives the following equation for the pressure gra-
dient at the position 1 of the film reformation:

∂ p
∂ϕ

∣∣∣
1
=

6 η

h2 (v1 + v2 + 2 ϕ̇1) (1− $−/$+).

Here, the upper point with density $+ = $c lies in the pressurized fluid zone. The veloc-
ity ϕ̇1 of the cavitation boundary has to be smaller than the negative convection velocity,
meaning ϕ̇1 < −(v1 + v2)/2, otherwise the assumption of film reformation does not hold
any more. Due to the condition of a positive pressure in the pressurized fluid zone, the
pressure gradient cannot be negative at the film reformation. As a result, either a van-
ishing pressure gradient with a continuous density or a positive gradient with a discon-
tinuous density profile fulfills the mass-conservation. However, due to a discussion with
RIXEN and VAN OSTAYEN [158], it comes out that a discontinuity in the density arises at
the fluid film reformation with $− < $c and consequently, the pressure gradient has to
be positive at film reformation. The reason is that the film rupture usually occurs after
passing the minimal film height in the divergent zone of the film with ∂h

∂y > 0. From the
constant flow q−ϕ = h $− v1+v2

2 before the film reformation, it follows that the density can
only decrease in direction of the cavitated flow. Finally, it has to jump back to the value
$c at the film reformation. This topic is also discussed by WIJNANT [199].

Mathematically, the JFO condition can be formulated also as a free-boundary prob-
lem. In order to ensure mass-conservation, the transient REYNOLDS equation (2.1) has to
be valid in the full fluid zone, but also in the cavitation zone. In the cavitation zone, the
POISEUILLE term vanishes due to the condition of a constant pressure p = pc and hence,
the before elliptical REYNOLDS equation (2.2) degenerates in this case to a hyperbolic
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equation. In summary, following two equations have to be fulfilled on the fluid domain:

p > pc, $ = $c : −∇( h3 $

12 η
)∇p + qdens + qstat + qsqu + qexp = 0 (2.40)

p = pc, $ < $c : qdens + qstat + qsqu + qexp = 0. (2.41)

These are two equations for the two unknown field variables p and $. Their solution
automatically fulfills the conditions for fluid film reformation and rupture.

In the literature, many mathematical formulations and algorithms based on the JFO
concept exist. A first cavitation algorithm is given by ADAMS and ELROD [54, 55]. By
the definition of a void coefficient θ = $/$c and a switching function g(θ), the problem
of Eqs. (2.40) and (2.41) is solved in an iterative manner. Its numerical implementation
with a finite difference scheme is the popular ELROD-algorithm [54].

A similar implementation of the JFO concept is proposed in [193], where the switch-
ing function is combined with the bulk modulus of the density-pressure relation in the
cavitation zone.

KUMAR and BOOKER propose a mass-conservative cavitation algorithm for a FE dis-
cretization of the formulation of ADAMS and ELROD [111]. Unlike the ELROD algorithm,
they assume incompressible fluid behavior and use the description of a mixture-flow in
the cavitation zone. Further, they apply a pivot-based algorithm.

In [3], the ELROD-algorithm is modified for a better numerical efficiency by defining
an optimal value of the bulk modulus. A FE discretization with iterative fixed-point
solution strategy is used.

In [67], the free boundary problem is formulated as a LCP and a pivoting-based al-
gorithm is applied during the solution process. In [14], this concept is extended to a
compressible and non-NEWTONIAN fluid behavior.

In [204], the complementarity problem resulting from the stationary free boundary
problem is formulated as an unconstrained problem using a FISCHER-BURMEISTER func-
tion and a FE discretization. The formulation uses the pressure p and a cavity frac-
tion 1− θ as unknowns and assumes incompressible fluid behavior. The system is solved
by a NEWTON-RAPHSON method. A similar concept is followed in [117], while here a
projection function is used for the formulation of an unconstrained problem.
In [109], in a similar way, the mass-conservative cavitation problem is formulated by a
projection function, using p and $ as variables. As shown in [110], this formulation can
be extended to compressible fluid behavior and also to a transient analysis.

The mass-conservative cavitation condition due to the JFO concept shows in many
cases a very good agreement between experiments and simulation including highly loaded
bearings, see [59, 181] or the review papers [25, 49]. For the transient EHL point contact,
the ELROD algorithm agrees also well with experimental data, see for instance [199].

2.3.2 FE solution of the Swift-Stieber cavitation condition

This subsection treats the numerical FE solution of the cavitation problem resulting from
the SWIFT-STIEBER condition of the previous subsection. Different mathematical formu-
lations are presented: formulations as a complementarity problem and as a variational in-
equality, a penalty formulation and a projection formulation. Their different weak forms,
their solution spaces and the FE discretization are shown and discussed. A further focus
is placed on the different solution algorithms, resulting from the different formulations.

Formulation as a complementarity problem

According to [99, 135], the free boundary problem of Eqs. (2.36) and (2.37) can be formu-
lated as a NCP. By substituting pre f = p− pc, the pressure pre f has to be found such that:
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0 ≤ pre f ⊥ f (p) ≥ 0, f (p) = −∇
(

h3$

12η
∇p
)
+ qdens + qstat + qsqu, (2.42)

where the symbol⊥ stands for point-wise orthogonality (pre f f (p) = 0) and the nonlinear
function f (p) represents the negative expansion flux of the REYNOLDS equation (2.2), i. e.
f (p) = −qexp. This NCP ensures that in the pressurized zone (p > pc), the REYNOLDS

equation is fulfilled ( f (p) = 0), while in the cavitation zone (p = pc), the change of
density is negative, meaning f (p) > 0. Figure 2.4(a) explains the NCP graphically.

For the FE discretization, Eq. (2.15) of the original strong form has to be replaced
by Eq. (2.42). Then, the time-dependency drops and the DBC p̂ has to be greater or equal
to pc in order to fulfill Eq. (2.42) at the DIRICHLET boundary. By this, the weak form can
be stated. Find the pressure p ∈ S+ such that

0 ≤
∫

Ω
q pre f dΩ ⊥

∫
Ω

w f (p) dΩ ≥ 0, ∀ q ∈ Q+, w ∈W+, (2.43)

where S and W were defined in Eqs. (2.19) and (2.21). Due to the nonnegativity condi-
tions, the original solution space S and the original space W of the weighting functions
have to be restricted to the normal cones S+ and W+, respectively. Further, the integrals
have to be understood as a duality pairing and thus, the weighting function q is element
of the dual normal cone Q+. Obviously, the dual weighting function q corresponds to the
variation of the flux qexp = − f (p), which both are the dual counterparts of the pressure
p and its variation w.

For the weak formulation, adequate function spaces have to be defined. As both the
pressure pre f and the variation w have to be nonnegative, following normal cones S+ and
W+ are defined:

S+ = {p ∈ S |
∫

Ω
pre f q dΩ ≥ 0, q ∈ Q+}, (2.44)

W+ = {w ∈W |
∫

Ω
w q dΩ ≥ 0, q ∈ Q+}, (2.45)

Q+ = {q ∈ H−1(Ω) | q = 0 on Γp, q ≥ 0}. (2.46)

with H−1(Ω) as the dual space of the SOBOLEV space H1(Ω). Obviously, the former
strong nonnegativity conditions are replaced by their weaker duality pairings.

Applying a variationally consistent discretization, meaning that adequate discrete
spaces S+

h , W+
h and Q+

h are chosen, following discretized NCP can be derived for the
discrete pressure p:

0 ≤ N pre f ⊥ ((A(p) + B(p)) p− b(p)) ≥ 0. (2.47)

The symbol⊥ implies now orthogonality for each discrete node (yk, zk) on the FE mesh.
In the same way, the inequality conditions have to be fulfilled component-wise. The
matrix N corresponds to the so-called FE mass matrix and is calculated as:

N =
nele

A
e=1

N(e)
k,i , N(e)

k,i =
∫

Ω(e)
Mk Ni dΩ, (2.48)

with the corresponding dual shape functions Mk of the discretized weighting function qh =
n f ree

∑
k=1

Mk qk. This complementarity problem is valid in a weak sense on the discrete fluid

domain Ωh. Thus, it follows that negative pressure values may occur, depending on the
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Figure 2.4: NCP and regularized NCP

choice of the element shape functions. The specific requirements for the shape functions
are outlined in the next subsection.

In contrast to the weak formulation (2.43), the complementarity condition can also be
formulated for the discrete node values, only. Then, the discrete pressure pre f has to be
perpendicular to the discrete negative expansion flow −qexp, leading to:

(A(p) + B(p)) p− b(p) + N qexp = 0, (2.49)

0 ≤ pre f ⊥ −qexp ≥ 0. (2.50)

This NCP becomes linear, when constant fluid parameters are assumed. A unique so-
lution of this NCP requires the matrix N−1(A(p) + B(p)) to be a P-matrix. In the linear
case, this requirement is fulfilled, since matrices N and A are symmetric positive definite,
when using standard FE shape and weighting functions.

A precise overview on solution methods for linear and nonlinear complementarity
problems can be found in the text book of ACARY and BROGLIATO [1]. Splitting methods
can be used to solve the LCP by a fixpoint iteration. The method, which was originally
used by CHRISTOPHERSON for the solution of the LCP– a GAUSS-SEIDEL successive over-
relaxation method – belongs to this group. A second group are the pivot-based methods.
The MURTY algorithm, which was applied in [70] to the LCP, belongs to this group.
These pivot-based methods can be further used for the solution of the NCP by solving
successive LCP s and they are known as NEWTON-JOSEPHY’S or linearization methods.
In [135], a linearization method is applied to the solution of the NCP. The NCP (2.42) can
be linearized as follows:

0 ≤ pre f ,m+1 ⊥ f (pm) +
∂ f
∂p

∣∣∣
pm
(pm+1 − pm) ≥ 0. (2.51)

This resulting LCP for the new solution pre f ,m+1 has to be solved in each iteration m. It
converges against the solution of the NCP.

It has to be noted that existence and uniqueness of the nonlinear NCP for the cav-
itation problem is not yet proven [135]. However, in all practical cases, a convergent
solution is obtained.

Variational inequality and function spaces

In order to discuss the solution and the weighting space of the NCP as well as its nu-
merical solution in more detail, the cavitation problem is formulated as a variational
inequality (VI). Since a VI formulation is often used for unilateral contacts, especially for
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their weak formulation, equivalences between the hydrodynamic contact and the classi-
cal unilateral contact arise. The treatment of unilateral contacts as a VI can be found in
the classical textbooks of PANAGIOTOPOULOS [141], KIKUCHI and ODEN [96] or WRIG-
GERS [206]. The treatment of the hydrodynamic contact as a VI is given by BAYADA et al.
in [11, 12].

The NCP (2.42) is equivalent to the following nonlinear VI: Find pre f ∈ R+
0 such that

(w− pre f ) f (p) ≥ 0, ∀w ∈ R+
0 . (2.52)

The equivalence with the NCP can be verified by inserting w = 0, which gives−pre f f (p) ≥
0, and w = 2pre f , which gives pre f f (p) ≥ 0. Hence, since pre f ∈ R+

0 , both inequalities are
fulfilled if and only if pre f f (p) = 0.

For the weak formulation, the function spaces (2.44) to (2.46) are already defined.
With these function spaces, the weak formulation of the VI (2.52) is stated as follows:

Find p ∈ S+ such that∫
Ω
(w− pre f ) f (p) dΩ ≥ 0, ∀w ∈W+. (2.53)

For this weak form, a FE discretization is obtained by using consistent approxima-
tions S+

h , W+
h and Q+

h for the function spaces. A detailed discussion of a variationally
consistent discretization for variational inequalities in the case of unilateral contacts is
given in the work of HÜEBER [88] or WOHLMUTH [202]. These discretization techniques
can be applied in a similar way to the here stated cavitation problem.
In the following, the pressure and the weighting functions are approximated by its stan-
dard shape functions, see Eqs. (2.22) and (2.23), and in the same way, the function q is

approximated by q ≈ qh =
n f ree

∑
k=1

Mk qk. These shape functions need to fulfill special re-

quirements for a variationally consistent discretization of the function space Eqs. (2.44)
to (2.46).
In [88, 202] and also in [151, 203], necessary requirements for the standard shape func-
tions as well as the shape functions of the LAGRANGE multipliers of the unilateral con-
tact are outlined. They can be transfered to the cavitation problem, when using the
analogy that the negative expansion flow −qexp is equivalent to the LAGRANGE multi-
pliers of the unilateral contact. Then, beside the requirement that the shape functions
have to fulfill the partition of unity, it can be derived that the LAGRANGE shape func-
tions Mk (k ∈ {1 . . . nnode}) have to be positive integrable on the elements, meaning∫

Ω(e) Mk dΩ(e) > 0.
Mainly, there are two different choices for the LAGRANGE shape functions Mk. The

first choice is to set them equal to the standard shape functions, i. e. Mk = Nk. A second
choice is obtained by constructing Mk such that bi-orthogonality is fulfilled. The latter
choice was first introduced by WOHLMUTH in [201] for contact constraints and offers
some nice properties2. In detail, the shape functions Mk are constructed such that∫

Ω
Mk Ni dΩ = δki

∫
Ω

Ni dΩ = δkimk > 0, k, i ∈ {1 . . . nnode} (2.54)

where δki is the KRONECKER symbol. By using a discretization fulfilling this bi-orthogonality
condition, following point-wise decoupled constraint results from Eq. (2.53):

0 ≤ pre f ,k ⊥ −mk qexp,k ≥ 0,

2
As described by Popp [151], for an optimal convergence it is su�icient, when the dual Lagrange multipliers have

a polynomial reproduction one order smaller than the order of the standard shape functions. It means that they are

usually discontinuous.
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where the derivation is similar to that of HÜEBER for unilateral contacts in [88]. Further,
when using Eq. (2.49), one obtains the following NCP:

0 ≤ pre f ⊥ (A(p) + B(p)) p− b(p) ≥ 0. (2.55)

It has to be emphasized, that this NCP is derived from the duality pairing (2.53) and not
from the weak formulation of Eq. (2.43). They will result in different solutions, when
using for Mk the standard LAGRANGE shape functions. In contrast, when using the dual
LAGRANGE shape functions, both formulations become identical. The reason is that the
bi-orthogonality condition leads to a diagonal, positive definite matrix N. For the same
reason, the node-wise formulation of Eq. (2.50) is then equivalent to the formulation of
Eq. (2.55) and thus, also to the formulation of Eq. (2.50).

As already mentioned, the LAGRANGE shape functions Mk have to be positive in-
tegrable on the elements. The same requirement results for the standard shape func-
tions Nk, independently of using standard or dual LAGRANGE shape functions, see for
instance [202]. While this requirement is valid for the already introduced Lin4 element
shape functions, it is not fulfilled for the Quad8 element shape functions. One possibility
for remedy is to define modified Quad8Mod element shape functions, which fulfill the
requirement of positive integrability, see the work of POPP [151, 153]. Figure B.2 of Ap-
pendix B.2 shows such Quad8Mod element shape functions. Another possibility is to use
a node-based integration scheme like the LOBATTO-GAUSS integration for the numerical
evaluation of the element matrices, see LAMICHHANE et al. [113]. With such a node-
based integration, in some cases also the bi-orthogonality condition is fulfilled, when
using standard shape functions for Mk. Figure B.1 of Appendix B.1 shows dual bi-linear
and Fig. B.3 of Appendix B.3 dual bi-quadratic element shape functions, respectively. For
the further literature on the construction of bi-orthogonal shape functions, it is referred
to [58, 82, 88, 113, 114, 153, 202].

Penalty formulation

A penalty formulation is a convenient approach for solving a complementarity problem.
For the steady-state cavitation problem, it is applied in many cases, see for instance [74,
209]. The penalty formulation of NCP (2.42) reads:

f (p)− ε〈−pre f 〉 = 0, (2.56)

where the second term is the penalty term. It consists of the penalty parameter ε > 0
and the expression 〈−pre f 〉, which is defined like in Eq. (2.35) and returns the negative
pressure or zero else, meaning 〈−pre f 〉 = min (pre f , 0). The penalty formulation can be
understood as a regularized NCP as depicted in Fig. 2.4(b). It converges for ε → ∞
against the original NCP.

For the FE solution, the weak form of the residual (2.56) has to be used. It gives: Find
the pressure p ∈ S such that∫

Ω
w

(
f (p)− ε〈−pre f 〉

)
dΩ = 0, ∀w ∈W. (2.57)

It is noted that, when following the penalty approach, the solution space S and the
weighting space W do not have to be restricted to their normal cones, as claimed for
the complementarity formulations. The nonnegativity is ensured by the penalization.

After the discretization, following discrete residuum is obtained:

(A(p) + B(p)) p− b(p)− bε(pre f ) = 0 (2.58)
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with equivalent matrices and vectors like in Eq. (2.25) and the additional nonlinear vec-
tor bε(ppre f ) due to the regularization. When the numerical integration on the finite ele-
ments is performed by quadrature rules like the GAUSS integration, that need values in
the element interior, the integration and assembly of bε(pre f ) has to be done in every it-
eration step. In contrast, when using quadrature rules like the LOBATTO integration, that
need values at the nodes only, the 〈 · 〉-operator can be shifted on the discrete vector pre f ,
meaning bε(pre f ) = ε N〈− pre f 〉. In the same way, the 〈 · 〉-operator can be shifted, when
the FE shape functions Nk > 0 are strictly positive.

As far, the penalty formulation is applied to the strong form (2.56), which results in
the weak discrete form of Eq. (2.58). Differently, the penalty formulation is now applied
to the already discretized NCP (2.47), yielding following nonlinear residual:

(A(p) + B(p)) p− b(p)− ε 〈− N pre f 〉 = 0. (2.59)

Similarly, the discretized NCP (2.50) can be regularized as follows:

N−1 ((A(p) + B(p)) p− b(p))− ε 〈− pre f 〉 = 0. (2.60)

The system of Eqs. (2.59) and (2.60) differ from the discrete Eq. (2.58) in the sense that the
underlying weak forms and solution spaces are different. Further, as already mentioned,
the system of Eq. (2.60) is different to that of Eq. (2.59), except, when dual LAGRANGE

shape functions are used.
However, all the nonlinear systems of Eqs. (2.58) to (2.60) have in common that they

can be solved iteratively, e. g. with a NEWTON-RAPHSON method.

Projection formulation

The stationary cavitation problem of Eqs. (2.36) and (2.37) can also be formulated by a
projection function, see [109, 110]. The use of such a function was initially proposed for
plasticity problems and later for contact and friction problems in multi-body dynamics
[4, 89, 164]. It is based on an augmented LAGRANGIAN approach and gives an equivalent
formulation of a NCP. For the NCP (2.42) in its strong form, it reads:

pre f = projR+
0

(
pre f − r f (p)

)
=

{
pre f − r f (p), for pre f − r f (p) > 0
0 else

, r > 0. (2.61)

The projection operator is explained by Fig. 2.5: For an argument x belonging to the con-
vex set C, the projection operator projC(x) returns the argument itself. Otherwise, the
function returns the projection of the value onto the convex set C. The projection param-
eter r can be chosen arbitrarily greater than zero. For frictional contacts, this projection
formulation was first outlined in [4]. In nowadays multi-body dynamics, it is common
practice to consider non-smooth events like unilateral contacts by a projection formula-
tion [1, 211]. As an unconstrained problem results, it gives the opportunity to solve the
contact problem in a monolithic manner [166]. Nevertheless, partitioned strategies still
can be used, see [62, 164]

For the FE discretization, again the weak form of Eq. (2.61) has to be stated. It reads:
Find p ∈ S such that∫

Ω
w

(
pre f − projR+

0

(
pre f − r f (p)

))
dΩ = 0, ∀w ∈W. (2.62)

Similarly to the penalty formulation, the solution space S and the weighting space W
do not have to be restricted to the normal cones, as this is already accomplished by the
projection operator.



Cavitation conditions 27

C
x1 = projC(x1)

x2

projC(x2)

Figure 2.5: Projection function.

After discretization, a nonlinear residual results. During the solution process, it has
to be evaluated in the interior of the finite elements, when an integration method like the
GAUSS integration is used. In contrast, when using a node based integration method, the
projection operator can be shifted to the discrete values in a similar way as done for the
penalty formulation.

Instead of formulating a weighted residual with the projection function, the projection
formulation can also be applied to the already discretized NCP (2.47). Then, the following
nonlinear residual results:

N pre f − projR+
0

(
N pre f − r ((A(p) + B(p)) p− b(p))

)
= 0, r > 0. (2.63)

with equivalent matrices and vectors like in Eq. (2.25). Similarly, it can be applied to the
discretized NCP (2.50), leading:

pre f − projR+
0

(
pre f − r N−1 ((A(p) + B(p)) p− b(p))

)
= 0, r > 0. (2.64)

As mentioned in a similar fashion for the penalty approach, the systems of Eqs. (2.63)
and (2.64) differ from the discrete form obtained from the weak form (2.62). Again, the
reason is that different weak formulations and solution spaces are underlying. Besides,
the formulations (2.63) and (2.64) are only identical, when dual LAGRANGE shape func-
tions are used.

For all nonlinear projection formulation, the solution can be found by an iterative
scheme like a fix-point iteration or a semi-smooth NEWTON-RAPHSON method.

2.3.3 FE solution of the mass-conservative JFO cavitation condition

In this subsection, the FE solution of the mass-conservative free boundary cavitation
problem of Eqs. (2.40) and (2.41) is derived. In difference to the REYNOLDS equation with
its numerical treatment in Sections 2.2.1 and 2.2.2, the density $ has to be considered as
a further unknown variable. Hence, a new strong form for the pressure-density problem
needs to be stated. Again, the free boundary problem is formulated as a complementarity
problem. In addition, a density-dependent diffusion coefficient κ$ and a different, now
constant convection velocity u$ arise. They are defined as

κ$(p, $) =
h3 $

12 η(p)
, (2.65)

u$ =
h
2

(
v1 + v2
w1 + w2

)
. (2.66)

With them, the pressure p and the density $ have to be found such that

−∇
(
κ$(p, $)∇p

)
+ uT

$∇$ + h $̇ = −qstat − qsqu on Ω×]0, T[, (2.67)
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0 ≤ p− pc ⊥ f$(p)− $ ≥ 0 on Ω×]0, T[, (2.68)
p = p̂, $ = $̂ on Γp×]0, T[, (2.69)

0 ≤ p̂− pc ⊥ f$( p̂)− $̂ ≥ 0 on Γp×]0, T[, (2.70)

κ$(p, $)∇pT n = q̂ on Γq×]0, T[, (2.71)
p(t = 0) = p0, $(t = 0) = $0 on Ω, (2.72)
0 ≤ p0 − pc ⊥ f$(p0)− $0 ≥ 0 on Ω. (2.73)

The first equation is the original REYNOLDS equation (2.1), while the second equation
states a complementarity condition between pressure and density. They both fulfill equiv-
alently Eqs. (2.40) and (2.41) and even consider compressible fluid behavior: In the pres-
surized zone (p > pc), the density becomes a function of the pressure $ = f$(p) and the
full compressible REYNOLDS equation is valid. Note that the function f$(p) may repre-
sent a compressibility relation as stated by the DOWSON-HIGGINSON formula (2.10), but
may also be a constant value $0 when no compressibility is assumed. In the cavitation
zone, the pressure is constant (p = pc) and the density is smaller than the density at
cavitation pressure ($ < $c with $c = f$(pc)). Note that in the cavitation zone, the POIS-
SEUILLE term drops in the REYNOLDS equation. The pressure p̂ and the density $̂, respec-
tively represent the DBC at the DIRICHLET boundary Γp. Equation (2.71) represents the
NEUMANN boundary condition (NBC) for the pressure and Eq. (2.72) represents the ini-
tial time conditions for both, the pressure and the density, respectively. Equations (2.70)
and (2.73) ensure the complementarity condition for the DBCs and the initial conditions,
respectively.

Appendix C.1 derives the FE discretization of the strong form described by Eqs. (2.67)
to (2.73) by using the standard GALERKIN method. Therefore, the complementarity prob-
lem is treated as a VI, similar to Eq. (2.53). Then, following nonlinear system of equations
for the discrete vectors of the unknown pressure p and density $ results:

A$(p, $) p + B$ $ + C$ $̇ = b$(p, $) (2.74)

0 ≤ pre f ⊥ N
(

f $(p)− $
)
≥ 0. (2.75)

It is noted that, instead of using a VI formulation, the complementarity condition can also
be treated in a weak formulation, similar to Eq. (2.43), or formulated for the discrete nodes
only, similar to Eq. (2.50). Then a different discretization would be obtained. Further, the
application of the dual LAGRANGE multiplier used in this work is not valid anymore for
the here stated problem. The reason is that the density variable requires a C0 continuous
solution space, which can not guaranteed by the dual LAGRANGE multiplier spaces used
in this work.

Similar to the FE solution of the SWIFT-STIEBER condition of Section 2.3.2, the discrete
NCP (2.75) can be reformulated by using a penalty term or a projection function. The
penalty formulation gives:

N
(

f $(p)− $
)
− ε〈−pre f 〉 = 0, (2.76)

and the projection formulation gives:

pre f = projR+
0
(pre f − r N

(
f $(p)− $

)
), r > 0. (2.77)

Here, both formulations (2.76) and (2.77) are given for the already discretized comple-
mentarity problem (2.75). They could also be applied to Eq. (2.68) of the strong form.
Then, in combination with a GAUSS quadrature, the 〈·〉-operator and the projection func-
tion would have to be evaluated each time in the interior of the elements, see also [117].
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It was already stated that the POISSEUILLE term vanishes in the cavitation zone and,
therefore, the partial differential equation changes its character. While the REYNOLDS

equation is elliptical in the pressurized zone, it becomes hyperbolic in the cavitation zone,
meaning a remaining pure convection-dominated flow for the density. Therefore, simi-
lar as described in Section 2.2.2, numerical oscillations can occur in the solution of the
standard-GALERKIN discretization. They can be avoided by using again a SUPG stabi-
lized FE discretization. For the strong form, it is similar to Section 2.2.2 and is given in
Appendix C.2. The stabilization parameter τ$ for the Lin4 and Quad8 elements, respec-
tively, is chosen as follows (compare also Eq. (2.32)):

τ
(e)
$ =

(2 ‖u(e)
$ ‖

h(e)

)2

+
1
ε$

(
1

g(e)

)2

+ σ(e)2

−1/2

, (2.78)

with g(e) = ( f $(p) − $)/$p=0. This choice ensures with ε$ � 1 that the stabilization
is active only in the cavitation zone, where the flow is purely convection dominated.
In the pressurized zone, the stabilization is inactive since g(e) – and thus τ

(e)
$ – tends

towards zero. By this a smooth activation of the stabilization in the cavitation zone only
is guaranteed3 4.

It has to be noted that both, the standard-GALERKIN as well as the BUBNOV-GALERKIN

method use interpolation functions, which are continuous in the solution space. These
functions are not suitable to capture discontinuities, like the jump of the density at the
fluid reformation boundary. Due to the weak formulation and the continuous function
spaces, such jumps are smeared in the solution process. An adequate method to dissolve
discontinuities is the discontinuous-GALERKIN method as proposed in [118].

2.4 Kinematics and forces in the fluid film

The previous Sections 2.1 to 2.3 treat the constitutive equations and the numerical solu-
tion of the pressure in the EHL contact. This section now deals with the analytical and
numerical derivation of the kinematics and forces in the fluid film. While the kinematics
is needed for the pressure calculation, the forces can be computed, when the pressure
distribution is known.

Section 2.4.1 starts with an general introduction to the fluid film kinematics and gives
then the specific kinematic relations for two classical EHL contacts – for a cylindrical
journal bearing and an EHL point contact.

Section 2.4.2 shows the calculation of the forces in normal and tangential direction
due to the pressure and shear forces in the EHL contact.

2.4.1 Fluid film kinematics

In this section, the kinematic quantities, which are needed in the REYNOLDS equation,
are derived. These are the local heights, the local absolute velocities and their derivatives
with respect to (wrt.) y and z, as needed in Eqs. (2.4) to (2.7).

Figure 2.6 depicts the general notation for the kinematics in a lubricated contact. The
inertia frame is denoted by I. The fluid domain is characterized by the fixed coordinate
system F with the descriptive coordinates (y, z). The two bodies are characterized each
by a body-fixed coordinate system Bi (i ∈ {1, 2}).

3
By this choice of τ

(e)
$ , if-else conditions in order to check if an element is cavitated or not are avoided and due

to the experience of the author, no cycling occurs in the solution process.

4
During the practical examples of this work, the author made the experience that the best choice of the param-

eter σ(e)
, which accounts for reactive and/or time-depending terms, is to set it to zero for an e�icient stabilization.
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Figure 2.6: Notations in the lubricated contact.

At each position (y, z) of the fluid domain, the local height h(y, z) needs to be derived.
The position of the fluid point in the inertia frame is denoted by I x = I x(I xF, y, z), where
I xF is the absolute position of the fluid frame F. It is assumed that the surfaces of the
bodies are parametrized by respective surface parameters (ξi, ηi). Then, the position Pi,
which defines the distance between the surface of body i and the fluid point x in local
normal direction n, can be determined. For a given local position (y, z), the following
condition has to be fulfilled:

In(y, z) × I gi
!
= 0, I gi = IrBi + IrBi Pi(ξi, ηi)− I x(xF, y, z), i ∈ {1, 2}. (2.79)

It ensures that the distance vector gi is collinear to the normal vector n. With that, the
surface parameters (ξi(y, z), ηi(y, z)) can be determined. With them, the local heights
can be defined as the following projection onto the normal vector:

hi(y, z) = I(rBi + rBi Pi(ξi, ηi)− xF)
T

In(y, z). (2.80)

At the end, the local height is given by h(y, z) = h2 − h1.
When knowing the surface parameter (ξi(y, z), ηi(y, z)) for a given position (y, z) in

the fluid domain, the absolute local velocities can be determined. They are defined by
the absolute surface velocity of point Pi transformed into the local normal and tangential
directions, yielding:

ui = I ṙT
Pi In(y, z), vi = I ṙT

Pi Ity(y, z), wi = I ṙT
Pi Itz(y, z), (2.81)

where Ity and Itz are the tangents in local y- and z-direction, respectively. In most cases,
it is useful to decompose the absolute velocity into I ṙPi = I ṙBi + I ṙBi Pi .

Having the local heights and velocities, their derivations wrt. y and z can be calcu-
lated.

In the following, the specific kinematics for a cylindrical journal bearing and a lubri-
cated point contact are given. They can be classified as a cylinder-hollow/cylinder and a
plane/sphere contact pairing, respectively. It becomes clear that the film kinematics has
to be stated anew for each specific contact geometry.
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Kinematics for cylindrical journal bearing

The geometric and kinematic relations for a cylindrical joint with flexible bearing are
derived according to Fig. 2.7. For simplicity the procedure is explained for a 2-dimensio-
nal problem with a rigid shaft, but it can without difficulty be extended to the 3-dimensio-
nal case and to the case when both bodies are flexible. A similar but slightly different
derivation of the kinematics is given in [110].
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Figure 2.7: Kinematics in cylindrical journal bearing.

The fluid frame F is located in the center of the undeformed bearing and coincides
with its body-fixed frame B2, leading to xF = rB2 . Further, the cylindrical fluid domain is
described by the coordinates (ϕ, z) and is attached to the undeformed bearing. Following
relation between the new coordinate ϕ and the original coordinate y holds:

y = R2 ϕ, dy = R2 dϕ. (2.82)

This transformation corresponds to an unwrapping of the cylindrical fluid domain into
a plane, which is valid for a thin fluid film with h � R2. Then, it follows for a point x in
the fluid domain and its normal and tangential vectors n and tϕ, respectively:

I x =

xB2

yB2

0

+

R2 cos(ϕ)
R2 sin(ϕ)

z

 , In =

cos(ϕ)
sin(ϕ)

0

 , Itϕ =

− sin(ϕ)
cos(ϕ)

0

 .

Next, the position P2 of the deformable bearing house is described by the coordinates (ϕ, z)
in the following way:

IrP2 = IrB2 + IrB2P2 =

xB2

yB2

0

+

(R2 + δr(ϕ, z)) cos(ϕ)
(R2 + δr(ϕ, z)) sin(ϕ)

z

 ,

with the deformation δr(ϕ, z) in radial direction. This vector rP2 always fulfills condi-
tion (2.79) and hence, the local height is given due to Eq. (2.80) as h2(ϕ, z) = R2 + δr(ϕ, z).
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A position P1 on the surface of the rigid shaft is described by the surface parame-
ters (ξ1, η1) as:

IrP1 = IrB1 + IrB1P1 =

xB1

yB1

0

+

R1 cos(ξ1)
R1 sin(ξ1)

η1

 .

Inserting this relation into condition (2.79), it results analytical expressions ξ1(ϕ, z) and
η1(ϕ, z): for ξ1, it results sin(ξ1 − ϕ) = et/R1 and for η1, it results η1 = z. By defining the
eccentricity e with its radial and tangential components er and et, respectively:

Ie = IrB1 − IrB2 , er = IeT
In = ex cos ϕ+ ey sin ϕ, et = IeT

Itϕ = −ex sin ϕ+ ey cos ϕ,

the heights h1 and h can be calculated. Equation (2.80) yields:

h1(ϕ, z) = er + r1 = er + R1

√
1− (et/R1)

2 ≈ er + R1

h(ϕ, z) = h2 − h1 = R2 + δr − er − r1 ≈ h0 + δr − ex cos ϕ− ey sin ϕ.

Here, an approximation for et � R1 is used and the radial clearance h0 is defined as
h0 = R2 − R1.

For the local velocities, the absolute velocities I ṙPi of each body i ∈ {1, 2} are needed.
Considering the rotation to be described by the rotational vector Iωi, they are given by:

I ṙPi = I ṙBi + Iωi × IrBi Pi + IvBi Pi , i ∈ {1, 2},

with the relative velocity IvBi Pi in the inertia frame. Neglecting tilting rotational velocities
and assuming the shaft to be rigid, the rotational vectors and the relative velocities for
each body are given by:

Iω1 =

 0
0

ω1

 , Iω2 =

 0
0

ω2

 , IvB1P1 =

0
0
0

 , IvB2P2 =

δ̇x
δ̇y
δ̇z

 .

Here, the quantities δ̇x, δ̇y and δ̇z are the velocities due to the elastic deformation in the
inertia frame. From here, the local velocities ui, vi and wi can be calculated by using
Eq. (2.81). The results for the velocities as well as the derivatives wrt. to y and z of all
quantities can be found in Appendix D. There is also an order analysis given, where all
second order terms due to h� R2 are neglected.

Kinematics for the EHL point contact

An EHL point contact is depicted in Fig. 2.8 left. It consists of two rolling ellipsoids
separated by a thin lubricating fluid film. Its numerical solution is topic of many articles
in the literature, see [47, 48, 56, 77, 119, 121, 160, 192, 199] for an overview.

Under the assumption of a small contact zone compared to the curvature radii of the
elements, the surface can be approximated by local paraboloids. The latter are described
by the curvature radii Ri,y and Ri,z (i ∈ 1, 2) in the local y- and z-direction, respectively.
Further, this contact problem can be transformed into a contact problem of an elastic half-
space and a paraboloid with the reduced curvature radii Ry and Rz, see Fig. 2.8 right. The
elastic half-space takes into account the elastic deformation of both rolling elements. Its
deformation in x-direction is denoted by δx.

In the following, the fluid domain is attached to the undeformed surface of the half-
space and the position xF of the fluid frame F coincides with the position of both, the
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inertia frame I as well as the body-fixed frame B1. By using Eqs. (2.79) and (2.80), the
local heights can be derived as follows:

h1(y, z) = δx(y, z),

h2(y, z) = gN +
y2

2 Ry
+

z2

2 Rz
,

→ h(y, z) = gN +
y2

2 Ry
+

z2

2 Rz
− δx(y, z).

Usually, in the EHL point contact, constant velocities in only one direction of the
(y, z)-plane are analyzed. In the example of Fig. 2.8, the velocities w1 and w2 are set to
zero, while v1 = const. and v2 = const.. The velocities in normal direction effect the
squeezing motion by u1 = δ̇x and u2 = ġN . Note that in many cases of the literature, the
squeeze effect is not considered, since stationary operation conditions are analyzed.
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Figure 2.8: Kinematics in the EHL point contact.

2.4.2 Fluid film forces

It is outlined, how the acting forces can be calculated from the pressure and the shear
stresses in the lubricated contact. Section 2.1 already reveals the dependency of the shear
stresses from the pressure and the kinematics, respectively.

Integrating over the body surface of the pressure in normal direction and of the shear
stresses in tangential directions, respectively, gives the acting forces. They are defined on
body i (i ∈ {1, 2}) in the inertia frame I as follows:

F i =
∫

Γ f ,i

−
(

p ni + τxy,i ty,i + τxz,i tz,i
)

dA =:
∫

∂Bi

t̄i dA (2.83)

with the outpointing normal vector ni of the lubricated surface Γ f ,i of body i and the
tangential vectors ty,i and tz,i, respectively. The integration needs to be performed on
each surface individually, each described by the respective parameters (ξi, ηi).

However, due to the fact that the fluid film is thin, the assumption n ≈ n1 ≈ −n2
is often made. When further neglecting the influence of the shear stresses, which are
different on both surfaces, then, the integration has to be done only once on the fluid
domain Ω, yielding:

F1 ≈ −F2 ≈ −
∫

Ω
p(y, z) n(y, z) dΩ. (2.84)

As far, only the resulting force is calculated. Its acting position is still unknown. In
order to resolve this problem, the moment effect of the pressure has to be considered. The
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moment MBi
i on body i wrt. the position of the point Bi can be calculated as follows:

MBi = −
∫

Γ f ,i

rBi Pi ×
(

p ni + τxy,i ty,i + τxz,i tz,i
)

dA. (2.85)

By considering this moment, the resulting force F i is shifted to the point Bi.
In summary, Eqs. (2.83) and (2.85) give the force F i at position Bi and the moment MBi

wrt. the position of Bi, respectively. Looking at the example of the journal bearing of 2.4.1,
the pressure in the bearing does not induce a moment, as the normal vector ni always
points into the direction of the vector rBi Pi . However, the shear stresses induce a (friction)
moment around the z-axis of the inertia frame.

Numerically, the resultant forces and moments are calculated by the FEM. By using
the discrete values p̃ of the complete solution including the values at the DIRICHLET

boundaries, following equations can be stated:

F i = W p,i p̃ + W sy,i s̃y,i + W sz,i s̃z,i (2.86)

MBi = V p,i p̃ + V sy,i s̃y,i + V sz,i s̃z,i, (2.87)

where s̃x,i and s̃y,i denote the discrete values of the shear stresses at body i in y- and z-
direction, respectively. The force and moment matrices can be calculated element-wise
as follows, with k ∈ {1, . . . nnode}:

W p,i =
nele

A
e=1

w1(:, k), w1(:, k) =
∫

Ω(e)
ni Nk dAi(Ω),

W sy,i =
nele

A
e=1

w2(:, k), w2(:, k) =
∫

Ω(e)
ty,i Nk dAi(Ω),

W sz,i =
nele

A
e=1

w3(:, k), w3(:, k) =
∫

Ω(e)
tz,i Nk dAi(Ω),

V p,i =
nele

A
e=1

v1(:, k), v1(:, k) =
∫

Ω(e)
(rBi Pi × ni) Nk dAi(Ω),

V sy,i =
nele

A
e=1

v2(:, k), v2(:, k) =
∫

Ω(e)

(
rBi Pi × ty,i

)
Nk dAi(Ω),

V sz,i =
nele

A
e=1

v3(:, k), v3(:, k) =
∫

Ω(e)
(rBi Pi × tz,i) Nk dAi(Ω).

The integration of the element matrices has to be performed on the fluid domain by using
the surface parameters(ξi(y, z), ηi(y, z)) in dependency of (y, z). Attaching the fluid do-
main to one of both surfaces (for instance to surface 1) and using the simplification made
in Eq. (2.84) circumvents this issue, as then ξ1 = y and η1 = z.

It is noted that here, in this section, only the resultant fluid forces and moments are
calculated. For the case of an elastic surface with an additional FE mesh on the struc-
ture, methods from fluid-structure interaction have to be applied. This is treated in Sec-
tions 3.1.3 and 3.2.

2.5 Extended Reynolds equation and mixed lubrication

This section focuses on further physical effects in lubricated contacts. Here in this work,
influences of surface roughness, fluid inertia and temperature effects are treated exem-
plary and their main concepts are explained. The book of SZERI [184] gives a good
overview on the most common extensions based on the classical lubrication theory.
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Section 2.5.1 deals with the mixed lubrication regime, where surface roughnesses on
the one hand effect the pressure distribution and on the other hand can lead locally to a
rigid body contact. Sections 2.5.2 and 2.5.3 show the main concepts of considering inertia
and temperature effects in the EHL contacts, respectively

2.5.1 Mixed lubrication

The mixed lubrication theory takes into account the effects of surface roughness, see [19]
for an overview. Methods from statistics allow a convenient description of asperities.
Instead of modeling each singular asperity, they define average values and variances by
using probability functions.

A very often used model, is the flow averaged REYNOLDS equation from PATIR and
CHENG [142]. They use flow factors in order to adjust the flow between rough surfaces
(height ht) to the flow between smooth surfaces (height h). They derive following modi-
fied REYNOLDS equation:

−∇
(

h3$

12η

(
Φy 0
0 Φz

)
∇p
)
+

∂

∂y

(
$h̄t

v1 + v2

2
+ $σΦsy

v1 − v2

2

)
+

∂(h̄t $)

∂t
= 0. (2.88)

For simplicity, the COUETTE flow in z-direction is neglected here. The pressure flow fac-
tors are Φy and Φz and the shear flow factor is Φsy. Further, h̄t is defined as an averaged
fluid height of the local film height ht, which describes the rough surface. The variance σ
corresponds to the mean roughness of the surface. In [142], analytical equations for the
flow factors are given in dependence on the orientation of the roughness by assuming a
GAUSSian distribution of the asperities. The concepts of PATIR and CHENG is adopted
and enhanced by many researchers, see for instance [101, 157] or for an overview [19].

The surface roughnesses influence not only the flow between the surfaces, but they
can also lead to very local rigid body contact situation. The latter effect can be treated by
the same statistical methods as already mentioned.

For instance, GREENWOOD and TRIPP [71] approximate a contact pressure for isotro-
pic and GAUSS-distributed rough surfaces under the assumption of an elastic deforma-
tion.

A further, often used model is proposed by BOWDEN and TABOR [24]. They take into
account plastic deformation and state following formula for the contact pressure pc in
dependence of the height h:

pc =
H
2

(
1− erf

(
h√
2σ

))
, (2.89)

with the error-function erf and the surface hardness H. The contact pressure, when de-
scribed by such an analytical formula, needs to be added to the fluid pressure. It can be
understood as a further force element with a high and nonlinear stiffness.

In summary, the concept of the modified REYNOLDS equation in combination with
an analytical formula for the contact pressure can be included very well in the numerical
framework described in the previous sections. For instance, it is shown in [133], where
also a detailed analysis of the physical and numerical influence of mixed lubrication in
the bearing simulation is given.

2.5.2 Inertia e�ects

The original REYNOLDS equation completely neglects inertia effects and assumes lam-
inar flow conditions. However, these assumptions may not hold any more, when the
fluid flow becomes turbulent, for example due to high rotational speeds, or when rapid



36 The elastohydrodynamic lubricated contact

squeezing motion is present. For this reason, OSTERLE and SAIBEL [140] as well as
PINKUS and STERNLICHT [147] follow the concept of an inertia extended REYNOLDS

equation. The idea is to use averaged flow velocities in the fluid domain, which take
into account the inertia effects. The resulting equations are often referred to as bulk flow
equations.

This concept is adopted by many researchers: for example in [190], inertia is con-
sidered in bearings with large squeezing motion; or in [37], the REYNOLDS equation is
extended to turbulent flow. Recently in [46], DOUSTI et al. give a review on the exist-
ing inertia averaged REYNOLDS equations and propose a unified extended REYNOLDS

equation, capturing all inertia effects for both laminar and turbulent flow conditions. By
neglecting the COUETTE flow in z-direction for simplicity, it reads as follows:

− ∂

∂y

(
h3$

kyη

∂ p
∂y

)
− ∂

∂z

(
h3$

kzη

∂ p
∂z

)
+

∂

∂y

(
$h

v1 + v2

2

)
+

∂(h $)

∂t
+ It + Ic + Γc = 0,

where ky and kz are the turbulence coefficients as proposed in [37], Γc is the convective
inertia term from [37] and It and Ic are a temporal and an additional convective inertia
term, respectively. All three inertia terms depend on the pressure through the pressure
driven average flow velocities. Thus, the equation can be solved in an iterative way,
starting with the pressure solution of the REYNOLDS equation without inertia effects.
In the temporal inertia term, the accelerations of the surfaces appear, ending up in a
lubricate added mass, e. g. like in [163].

The concept of an averaged REYNOLDS equation can also be used for textured bearing
surfaces, see [100], where a texture averaged REYNOLDS equation is developed.

In conclusion, the inertia effects can be included in the REYNOLDS equation by addi-
tional inertia terms in combination with flow factors. Their numerical treatment agrees
with the use of the FEM, as proposed in the previous sections.

2.5.3 Temperature e�ects

The fluid properties, mainly the viscosity, do not only depend on the pressure, but also
on the temperature. The theory of so-called thermal hydrodynamic lubricated (THL)
and thermal elastohydrodynamic lubricated (TEHL) contacts considers such temperature
effects. Here, only a short insight into the existing concepts is given. The interested reader
is referred to the corresponding chapters of HAMROCK [81] or SZERI [184] or to the book
of PINKUS [148] with their references inside.

In general, a 3-dimensional transient temperature field T(x, y, z, t) has to be solved in
the fluid film in order to capture all heat sources and heat transfer paths. By this, the REY-
NOLDS equation has to be modified for temperature averaged fluid properties. Effects
like heat convection in the fluid film or heat conduction in the contacting bodies can
be fully considered by this approach. Usually, the temperature field in the surrounding
bodies has to be solved additionally.

A simplification is often made by neglecting the heat conduction in the solid bod-
ies and considering the convective heat transfer in the fluid film only. Then, the heat
equation can be solved in the fluid domain (y, z) for the 2-dimensional temperature
field T(y, z, t). This temperature profile can be considered in the REYNOLDS equation
by adding a temperature dependency to the fluid properties, especially to the viscosity.

In [53], ELING makes an even more severe simplification by applying a thermal net-
work model to a rotor bearing system and considering one average temperature for the
fluid film. Measurement data and comparisons to more detailed thermal models under-
line the potential of this method.
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In conclusion, when considering temperature effects, an additional heat equation has
to be solved for the temperature distribution and the REYNOLDS equation has to be mod-
ified for the consideration of thermal fluid properties.

2.6 Numerical examples

Different simulation examples demonstrate the physical solution of the REYNOLDS equa-
tion, but also the numerical behavior of the FE discretization and the cavitation algo-
rithms.

The first example compares the different cavitation algorithms for the SWIFT-STIEBER

condition and analyses the convergence in space. The second example validates the FEM
solution of the mass-conservative cavitation condition by a reference solution from the
literature. The third example demonstrates the effect of the SUPG stabilization in the
FEM soluiton.

2.6.1 Swift-Stieber condition: comparison of cavitation algorithms

The pressure solution of a journal bearing with a fixed eccentricity is analyzed. The
SWIFT-STIEBER cavitation condition is imposed on the REYNOLDS equation and the nu-
merical solution is calculated by using the different formulations and algorithms of Sec-
tion 2.3.2. In detail, the SWIFT-STIEBER cavitation condition is imposed on the node val-
ues of the discretized REYNOLDS equation, meaning NCP (2.50) is solved.

First, the NEWTON-JOSEPHY algorithm explained by Eq. (2.51) is used for the solution
of the NCP (2.50). Second, the penalty formulation (2.60) and third, the projection formu-
lation (2.64) are applied. The latter two are solved by a NEWTON-RAPHSON method.

The rigid shaft has a fixed eccentricity of 0.5 h0 in negative y-direction. Compress-
ible fluid behavior is assumed by using the BARUS formula (2.8) for the viscosity and the
formula (2.10) of DOWSON-HIGGINSON for the density. The detailed simulation param-
eters are listed in Table E.1 and can be found in Appendix E.1, where also a picture of the
simulation example is given.

Figure 2.9 shows the numerical pressure distribution in the fluid domain (y, z). For
the FE solution, the Quad8-elements are used with 20 elements in y-direction and 5 ele-
ments in z-direction, respectively.

Table 2.1 left shows the number of global iterations, which are needed for each cavi-
tation algorithm. It can be stated that the NEWTON-JOSEPHY method needs the smallest
number of iterations, while the penalty-algorithm needs the largest number.

Looking at the norm of difference of the solutions in Table 2.1 right, reveals that the
NEWTON-JOSEPHY algorithm and the one based on the projection formulation give the
same solution. They both solve the NCP exactly. In contrast, the solution of the penalty
formulation slightly differs. The reason is the regularization of the NCP by the penalty
formulation.

Table 2.1: Comparison of cavitation algorithms for Swift-Stieber condition.

algorithm nb. of iterations comparison norm of difference

NEWTON-JOSEPHY 4 NEW.-JOS. – penalty 1.68e-5 Pa
penalty (ε = 1e7) 7 NEW.-JOS. – projection 4.21e-8 Pa
projection (r = 1) 6 projection – penalty 1.68e-5 Pa
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Figure 2.9: Pressure distribution for eccentric journal bearing.

Convergence study

Here, the convergence of the finite element solution of the complementarity problem and
its regularization by the penalty method are analyzed. In detail, the convergence of the
discretization error is studied for the NCP (2.55) and the penalty formulation (2.57) using
quadratic finite elements of the type Quad8Mod. For that purpose, a structured mesh is
refined by selecting (nele,y × nele,z) ∈ {(20 × 4), (40 × 8), (60 × 12), (80× 16), (120×
20)}. The discretization error is measured in the L2-norm, while a solution calculated on
a very fine mesh serves as a reference solution.

Figure 2.10 summarizes the convergence of the discretization error for both formula-
tions. While for the NCP, an O(h5/2) convergence is recognized, the error of the penalty
formulation converges with O(h3). The O(h5/2) convergence of the NCP solution is
in accordance with theoretical a priori error estimates given for unilateral contacts by
WOHLMUTH et. al. [203]. In addition, the O(h3) convergence of the penalty solution
agrees well with the a priori error estimate for the regularized EHL problem given by
WU and ODEN [208].
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Figure 2.10: Convergence of the discretization error for NCP and penalty formulation using

quadratic finite elements.
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2.6.2 JFO condition: validation with solution from the literature

The stationary FEM solution of the JFO cavitation problem is compared with the numer-
ical solution of an example from the literature. As reference solution serves the pressure
and density distribution of a finite grooved journal bearing as calculated in [193, 210].

The journal bearing has a fixed eccentricity of 0.6 h0. It is flooded at an inlet at the
position of the maximal height (ϕ = 0◦) by setting the void coefficient θ = $/$c to 1.0001
at this inlet. The pressure is set to zero at the inlet as well as at the two boundaries in
axial direction. A linear density-pressure relation and a constant viscosity are assumed.
By defining the normalized pressure p̄ = (p h2

0)/(R2 v1 ηp=0), the JFO problem can be
formulated dimensionless. In Appendix E.2, the dimensionless simulation parameters as
well as a figure of the simulation example are given.

Equation (2.74) is solved in combination with the projection formulation (2.77) for
stationary flow conditions ($̇ = 0). The SUPG stabilization with the parameter (2.78) is
absolutely necessary for a stable solution. The nonlinear set of equations is solved by the
NEWTON-RAPHSON method.

Figure 2.11 shows the distributions of the pressure and the void coefficient. It is the
same result as in [193, 210]. The smooth transition of the density at the film rupture as
well as the jump at the film reformation can be seen clearly. As mentioned, the jump is
smeared due to the continuous shape functions.
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Figure 2.11: Distributions of pressure and film content in angular direction of a grooved journal

bearing.

2.6.3 Swift-Stieber condition: SUPG stabilization

Similar to Section 2.6.1, the pressure solution of a journal bearing with a fixed eccentricity
is analyzed. Again, the SWIFT-STIEBER cavitation condition is imposed on the REYNOLDS

equation. However, in this example, a highly viscous oil is used, which leads to such
high pressure values that the SUPG stabilization of Section 2.2.2 has to be applied to the
numerical solution. This example is similar to that of HOFER in [85].

The rigid shaft has a fixed eccentricity of 0.245 h0 in negative y-direction. The density
and the viscosity are chosen to depend on the pressure by the DOWSON-HIGGINSON

formula (2.10) and the ROELANDS formula (2.9), respectively. The detailed simulation
parameters are listed in Table E.3 and can be found in Appendix E.3.

For the FE solution, linear finite elements are used with 30 elements in y-direction
and 5 elements in z-direction, respectively. While the pressure is discretized by the stan-
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dard Lin4 elements, the expansion flow is discretized by dual Lin4 elements, fulfilling the
bi-orthogonality condition (2.54). Thus, the NCP (2.55) is solved.

The numerical solution of the pressure distribution in angular direction in the middle
of the bearing width is depicted in Fig. 2.12. The first solution is calculated without
SUPG stabilization and therefore, numerical oscillations occur due to the dominating
convective term at high pressure values. In contrast, when adding SUPG stabilization
terms, the oscillations vanish in the numerical solution. The stabilization parameter is
chosen according to Eq. (2.32).
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Figure 2.12: Numerical pressure solution with and without SUPG stabilization in angular di-

rection of a journal bearing.



Chapter 3

Coupled system

The EHL contact represents a coupled system of hydrodynamic equations for the fluid
and solid equations of the mechanical system, respectively. The focus of this thesis is an
efficient coupling of both subsystems. Thus, after having introduced the hydrodynamic
equations in Chapter 2, this chapter outlines now the governing equations of a mechani-
cal multibody system (MBS) and realizes the numerical coupling of both subsystems.

Adequate interface coupling methodologies are important when the subsystems are
discretized differently, e. g. by the use of different partitioned solvers for each subsys-
tem. There can be differences in the discretization technique, in the mesh type or in the
interpolation scheme. As a consequence, one has to deal with nonconforming fluid and
structural meshes. Therefore, methods from fluid structure interaction (FSI) are applied
for the interface coupling in the EHL contact.

The structure of this chapter is as follows: in Section 3.1, the governing equations
of a rigid MBS are derived and the description of an elastic body by a floating frame
of reference (FFR) formulation is given. On these basic formulations, the weak form of
the coupled system is stated. Section 3.2 outlines a consistent and a conservative interface
coupling strategy, which are both combined with different FSI transfer methods. With the
described coupling conditions and methods, the discretized form of the coupled system
is stated in Section 3.3. The numerical behavior and differences of the different coupling
techniques are discussed in Section 3.4 for an academic example. A convergence analysis
of the errors for the different methods is given.

3.1 Multi-body system dynamics with lubricated contacts

In this section, the governing equations for a MBS including lubricated contacts are de-
rived. The procedure is as follows: in Section 3.1.1, the dynamic equations of motion
of a rigid MBS are derived from the principle of virtual work. Section 3.1.2 shows the
treatment of elastic bodies in a MBS by using the FFR formulation. It is derived from
the principle of virtual work as well. In Section 3.1.3, this principle of virtual work is
extended by adding the weighted residuum of the pressure in the fluid film. The result
is the weak form of the coupled system. For the following derivations, it is sufficient to
treat only two bodies, as the equations can be easily extended to many bodies.

LAGRANGE’s principle of virtual work is used for the derivation of the mechanical
equations. According to BREMER [27], it is stated for two bodies as follows:

2

∑
i=1

[ ∫
Bi

δrT
Pi

r̈Pi dmi − δWi

]
+ δVc = 0. (3.1)

The first integral represents the variation of the kinetic energy of body Bi and δWi repre-
sents the virtual work due to external and internal forces on body Bi. Similar to the text

41
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book of WRIGGERS [206], the variation of the potential Vc of the contact forces is added
in order to deal with constrained motion as well.

3.1.1 Rigid body motion

In this section, the dynamic equations of two rigid bodies with holonomic constraints are
derived. The aim is to demonstrate the concept of virtual work, as it is later used for the
coupled system as well. For detailed derivations and explanations, it is referred to the text
books of BREMER [26], BREMER and PFEIFFER [28] and PFEIFFER and SCHINDLER [146].

The position of a point Pi on the rigid body i is denoted by the vector rPi . It can be
split up into a position of a body reference point rCi and a relative position Ci rCi Pi denoted
in the body fixed frame Ci. Here, the center of gravity Ci is chosen as body fixed reference
point. It is noted that the left index of a vector signifies the referring coordinate system.
If there is no left index, it implicitly means that the inertia frame is considered. Then, the
vector rPi and its variation δrPi are given in the inertia frame, see for instance [26]:

rPi = rCi + I ACi(θi) Ci rCi Pi , (3.2)
δrPi = δrCi − I ACi Ci r̃Ci Pi δΘi, (3.3)

with the rotation matrix I ACi(θi), which transforms a vector from the body fixed frame Ci
into the inertia frame I. The rotation is described by the vector θi of rotational pseudo
parameters such that δΘi represents an infinitesimal virtual rotation. Together with the

vector rCi , it forms the vector of generalized pseudo coordinates qi =
(

rT
Ci

θT
i

)T
of

body i. The ˜-operator gives the skew-symmetric matrix corresponding to a matrix vector
representation ã b of the vector cross product a× b.

Next, the absolute velocity and acceleration of Pi are given as:

ṙPi = vCi + I ACi(θi) (Ci ωi × Ci rCi Pi), (3.4)
r̈Pi = v̇Ci + I ACi(θi) (Ci ω̇i × Ci rCi Pi + Ci ωi × Ci ωi × Ci rCi Pi). (3.5)

Here, vCi is the absolute velocity of the center of gravity and Ci ωi is the rotational vector

of body i. They are summarized as generalized velocities żi =
(
vT

Ci Ci ω
T
i
)T

and related
to the generalized pseudo coordinates by żi = H(qi)q̇i by the transformation matrix H.

Further, the virtual work δWi and the variation of the contact potential δVc are needed.
For δWi, the virtual work δWe

i of external forces FCi and moments Ci MCi is considered
only, without loss of generality. For δVc, the vector λ of LAGRANGE multipliers corre-
sponding to a vector Φ(r(q), t) of constraint functions is introduced. It follows:

δWi = δWe
i = δrT

Ci
FCi + δΘT

i Ci MCi , (3.6)

δVc = δ(−λTΦ) = −δλT Φ− δΦT λ. (3.7)

Inserting Eqs. (3.3) and (3.5) to (3.7) into the principle of virtual work (3.1) and integrating
over each body i, ends up with following system of equations for the constrained motion
of two rigid bodies:

m1 I
C1 JC1

m2I
C2 JC2




v̇C1

C1 ω̇1
v̇C2

C2 ω̇2

 =


FC1

C1 MC1

FC2

C2 MC2

−


0
C1 ω̃1 C1 JC1 C1 ω1

0
C2 ω̃2 C2 JC2 C2 ω2

+ Wλ,

(3.8)

Φ(r(q), t) = 0. (3.9)
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The matrix Ci JCi
represents the inertia tensor wrt. the center of gravity of body i and

the matrix W = ∂Φ
∂q

T
is the direction matrix of the LAGRANGE multiplier. The vectors

FCi and Ci MCi include all external forces and moments wrt. the center of gravity of each
body, respectively. For instance, the force of Eq. (2.83) and the moment of Eq. (2.85) of the
lubricated contact can be considered herein.

The system of Eqs. (3.8) and (3.9) represents the well known translational and rota-
tional momentum equations with LAGRANGE multipliers enforcing the holonomic con-
straints of Φ(r(q), t). They are referred to as LAGRANGE’s equations of the first kind,
see [26, 146].

3.1.2 Flexible multibody dynamics

Flexible bodies in a MBS can be treated in different ways. Classical methods are the
FFR, the absolute nodal coordinate (ANCF) or the co-rotated formulation, see for a re-
view [172, 198]. Nevertheless, the description of flexible bodies is still a topic of research,
as the generalized component mode synthesis approach in [143] shows for instance.

Here, the description of the FFR is used as a state-of-the-art formulation, since the
coupling procedure would be similar for all other descriptions. The FFR formulation of
one single elastic body is given in the following. As references serve the corresponding
text books [27, 28, 170, 172, 173].

rR
Iy

Ry

Iz

Rz
Rx

I

R

I x

P

x
uP

t̄f̄ dV

Figure 3.1: Kinematics and external forces in floating frame of reference formulation.

The kinematics of a body in the FFR formulation is depicted in Fig. 3.1. It is decom-
posed in a motion of the undeformed configuration wrt. the floating frame R and an
overlaying elastic deformation. For an elastic continuum, one obtains for the position rP
of an arbitrary point P on the body and its variation δrP, see for instance [173]:

rP = rR + I AR(θ) R(x + uP) (3.10)

δrP = δrR − I AR(θ) R
˜(x + uP) δΘ + I AR(θ) δRuP (3.11)

where rR is the position of the FFR, I AR(θ) is the rotation matrix depending on the vec-
tor θ of the rotational parameters of the FFR, x is the position of P in the undeformed
configuration and uP is the elastic deformation of P.

For the dynamics in the FFR, the velocity ṙP and the acceleration r̈P are needed. They
are given by:

ṙP = vR + I AR(θ) (Rω× R(x + uP) + Ru̇P), (3.12)
r̈P = v̇R + I AR(θ) (Rω̇× R(x + uP) + RüP)+
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I AR(θ) (Rω× Rω× R(x + uP) + 2 Rω× Ru̇P)︸ ︷︷ ︸
ξ

. (3.13)

Further, the virtual work δW is needed. It is split up into the variation of the inner
potential Vint of elastic deformation and the virtual work δWe of external forces. Assum-
ing isotropic linear elastic material behavior and small deformations, HOOKE’s law holds
for the elastic deformation. With the vectors f̄ and t̄ of external body forces and surface
tractions respectively (see Fig. 3.1), the virtual work yields:

δW = −δVint + δWe

= −
∫

B
δε(u)T G ε(u) dV +

∫
B

δrT
P f̄ dV +

∫
Γt

δrT
P t̄ dA, (3.14)

with the vector ε collecting the elastic strain components and the material matrix G, de-
scribing a linear relation between stress and strain. The NEUMANN boundary, where the
surface tractions act, is denoted by Γt.

In the following, the deformation field Ru(x, t) is approximated by the RITZ approach.
The RITZ approach claims linearly independent shape functions, which fulfill the geo-
metric boundary conditions of the elastic deformation field. The standard FEM is a spe-
cial form of the RITZ approach, using locally defined shape functions, see [28]. Hence,
following approximation is used:

RuP = Ru(x, t) ≈ N(x) d(t) = N(x)P qel(t), with d(t) = P qel(t) (3.15)

with the matrix N(x) of the shape functions and the time-depending vector d of the
discrete displacements. It is related to a vector qel of generalized elastic coordinates
by a transformation matrix P, which will be specified more below. By this, the vector
q =

(
rT

R θT qT
el

)T of generalized pseudo coordinates of the body can be defined as well

as the generalized velocities ż =
(
vT

R RωT q̇T
el
)T. The relation between generalized ve-

locities and coordinates is given by ż = H(q)q̇. With them, one obtains the velocity and
the acceleration of a point P on the body as:

ṙP =
(

I −I AR(θ) R
˜(x + N(x)P qel) I AR(θ)N(x)P

)
ż = T(q) ż, (3.16)

r̈P = T(q) z̈ + ξ, (3.17)

with the state-dependent matrix T and the abbreviation ξ of Eq. (3.13). In the same way,
the approximation of Eq. (3.15) can be used for the variation in Eq. (3.11) and the virtual
work of Eq. (3.14). Then, all these quantities can be inserted in the principle of virtual
work (3.1) and its discretized form is obtained. The first integral gives the mass matrix M
and the vector hω of nonlinear inertia forces. For the mass matrix M follows:

M =
∫

TTT dm =

 mI sym.
mR c̃ AT J
Ct AT Cr Mel

 , (3.18)

with

m =
∫

dm,

mR c̃ =
∫

R
˜(x + N(x)P qel) dm = mR c̃0 +

˜(CT
t qel),

J =
∫

R
˜(x + N(x)P qel)

T
R

˜(x + N(x)P qel) dm = J0 + J1 + J2,
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Ct =
∫

PT
N(x)T dm,

Mel =
∫

PT
N(x)T

N(x)P dm = PT MFE P,

Cr = −
∫

PT
N(x)T

R
˜(x + N(x)P qel) dm = Cr,0 + Cr,1.

Here, m is the mass of the body, c is the position of the center of mass in the deformed
configuration, J is the inertia tensor in the deformed configuration and Mel is the mass
matrix of the generalized elastic coordinates qel . The mass matrix MFE belongs to the
displacement vector d of the original FE system. The terms Ct and Cr couple the inertia of
the elastic degrees of freedom (DOFs) with the inertia of the translational and rotational
DOFs, respectively. As can be seen, the terms mc̃, J and Cr can be developed in zero,
first and second order terms (indicated by index 0, 1 and 2), while the zero order terms
correspond to the undeformed configuration. Usually, the second order term J2 of the
rotational inertia is neglected. A detailed description of the computation of the different
integrals of the generalized mass matrix (3.18) for a linear finite element model is given
in [170]. In addition, a standardization of the input data needed for flexible multibody
dynamics is outlined in [197].

According to [170], the vector hω of inertia forces is derived as follows:

hω = −
∫

TTξ dm =

 −
∫

A Rω̃ (Rω̃ R(x + N(x) d) + 2 N(x) ḋ) dm

−
∫

R
˜(x + N(x) d) Rω̃ (Rω̃ R(x + N(x) d) + 2 N(x) ḋ) dm

−
∫

PT
N(x)T

Rω̃ (Rω̃ R(x + N(x) d) + 2 N(x) ḋ) dm

 .

For the computation of the integrals, following form can be stated:

hω =

−2 A Rω̃ CT
t q̇el −m A Rω̃ Rω̃ c

−Rω̃ J Rω−Gr Rω
−RωT Oe Rω−Ge Rω

 ,

where some of the terms already appear in the mass matrix (3.18) and therefore, only the
remaining three integrals have to be solved:

Gr = −2
∫

R
˜(x + N(x)P qel)

˜(N(x)P qel) dm = Gr,0 + Gr,1,

Ge = −2
∫

PT
N(x)T ˜(N(x)P qel) dm,

Oe =
∫

Ñ(x)PR
˜(x + N(x)P qel) dm.

For the detailed computation of these terms with the input data of a linear finite element
model, it is referred again to [170].

Next, the evaluation of the virtual work (3.14) leads to the vector hel of elastic forces
and the vector hext of external forces. Further, the vector hg of the gravity force can
be computed by considering the constant gravity acceleration g. They are calculated
as follows:

hel =

 0
0

−Kel qel − Del q̇el

 , hext =
∫

B
TT f̄ dV +

∫
Γt

TT t̄ dA,

hg =
∫

TT g dm =

 m I
m R c̃ AT

Ct AT

 g.
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Here, the internal potential leads to the linear stiffness matrix Kel . A damping matrix Del
is added and can be chosen proportional to the stiffness and/or mass matrix or modal
damping can be used.

Summarized, following system of equations for the dynamics of a flexible body can
be written:

H(q) q̇ = ż, (3.19)
M(q) z̈ = hω + hg + hel + hext. (3.20)

Definition of the reference frame

In the FFR formulation, the rigid body motion is described by the motion of the refer-
ence frame R. Thus, for a unique description, the elastic deformation field Ru(x, t) is not
allowed to exhibit additional rigid body motion. In the following, the transformation ma-
trix P introduced in Eq. (3.15) is used to remove the rigid body motion from the discrete
displacement field d. There are different ways on how to restrict the rigid body motion,
leading to different definitions of the reference frame, see for instance [171].

A first definition is given by restricting the deformation of different nodes of the elas-
tic body, such that the three translational and the three rotational DOFs of the rigid body
motion are omitted. One example would be to attach the floating frame to one single
node of the elastic body by clamping the six DOFs of this node. It means that the defor-
mation of the reference point R must vanish, i. e. RuR = 0. However, this choice requires
that the reference node has three translational and three rotational DOFs, which is for
instance not the case for a linear FE system with translational deformation degrees only.
Therefore, another choice would be to restrict six translational DOFs of three points on
the body, which do not lie on a line, such that no rigid body motion is possible. In all
cases, the matrix P can be constructed as a transformation matrix between the restricted
and unrestricted coordinates vectors qel and d, respectively.

Another definition of the reference frame is given by choosing it such that the linear
and angular momentum of the elastic deformation field are vanishing. Then, the follow-
ing two conditions have to hold, see for instance [171]:

CT
t q̇el = 0, CT

r q̇el = 0.

This condition leads to a vanishing center of gravity c at every time and thereby, the
floating frame is attached to the center of gravity of the deformed configuration, mean-
ing R → C. Such a frame is referred as TISSERANT frame or mean-axis frame, which has
the nice property of a block-diagonal mass matrix or of a minimum kinetic energy due to
elastic deformation. When fulfilling the linearized condition Cr,0 ḋ = 0 only, the frame is
referred to as BUCKEN’s frame, which has the property of leading the smallest deforma-
tions in the linearized configuration. It can be shown that the condition of the BUCKEN’s
frame holds, when the matrix P contains in its columns a set of vibration modes – and no
rigid body modes – of the free floating structure, see for instance [170].

3.1.3 Coupled system equations

This section outlines the weak form of the coupled system with the main focus on the lu-
bricated interfaces. The weak form of the previous section is extended for the constrained
motion of two elastic bodies having a lubricated interface. For the sake of clearness, in
the following, only bilateral constraints in normal directions are considered. However,
the treatment of unilateral and/or frictional contacts can be included as well into the
formulations.
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Figure 3.2: Computational domains for the coupled system.

The different computational domains of the coupled system are depicted in Fig. 3.2.
The surface ∂Bi of body Bi consists of the DIRICHLET boundary Γu,i, the NEUMANN

boundary Γt,i and the contact surface Γc,i, yielding:

∂Bi = Γu,i ∪ Γt,i ∪ Γc,i with Γu,i ∩ Γt,i ∩ Γc,i = ∅.

On the contact surface Γc,i, holonomic constraints given by the vector Φ of constraint
functions are taken into account. The contact potential is defined by Vc = λ Φ. Its varia-
tion is given as

δVc = −
∫

Γc

δΦT λ dA−
∫

Γc

δλT Φ dA = −
∫

Γc

δrT
P

∂Φ

∂rP

T
λ dA−

∫
Γc

δλT Φ dA.

This variation together with the virtual work (3.14) of an elastic body can be inserted in
the principle of virtual work (3.1). It gives the following weak form for the constrained
motion of two elastic bodies:

2

∑
i=1

[ ∫
Bi

δrT
Pi

r̈Pi dmi +
∫

Bi

δε(uPi)
T H ε(uPi) dV −

∫
Bi

δrT
Pi

f̄ i dV

−
∫

Γt,i

δrT
Pi

t̄i dA−
∫

Γc

δrT
Pi

W i λ dA
]
= 0,∫

Γc

δλT Φ dA = 0,

which must hold for all admissible δrPi and δλ.
Next, this weak form is extended by the weak form of the hydrodynamic equations.

For simplicity, it is assumed that the surface tractions from the hydrodynamics are the
only acting forces.

By adding the weak form (2.53) of the REYNOLDS equation with the SWIFT-STIEBER

cavitation condition, one obtains the following weak form for the constrained motion of
two deformable bodies with a lubricated contact:

2

∑
i=1

[ ∫
Bi

δrT
Pi

r̈Pi dmi +
∫

Bi

δε(uPi)
T H ε(uPi) dV −

∫
Bi

δrT
Pi

f̄ i dV

−
∫

Γ f ,i

δrT
Pi

t̄i(pi, rPi , ṙPi) dA−
∫

Γc

δrT
Pi

W i λ dA
]
= 0, (3.21)∫

Γc

δλT Φ dA = 0, (3.22)∫
Ω
(δp− pre f ) f (p, rP1 , rP2 , ṙP2 , ṙP2) dA ≥ 0. (3.23)
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Here, the weighting function w of Eq. (2.62) is replaced by δp, clearly indicating that δp
is the variation of p. This form must hold for all admissible δrPi , δλ and δp. The coupling
between the mechanical system and the hydrodynamics is indicated by the surface trac-
tion t̄i(pi, rPi , ṙPi) and the nonlinear function f of the REYNOLDS equation. They are both
depending on the pressure and the kinematics due to Eq. (2.83) and Eq. (2.42), respec-
tively. It is noted that all other weak formulations of Eqs. (2.43), (2.57) and (2.62) could
have been added instead of Eq. (2.53).

Also the mass conservative cavitation model can be added to the mechanical virtual
work. Then, instead of Eq. (3.23), the following two equations have to be considered, see
Section 2.3.3 and Appendix C.1:∫

Ω
δp (h(rP1 , rP2) $̇ + f (p, $, rP1 , rP2 , ṙP2 , ṙP2)) dA = 0,∫

Ω

(
δ$− ( f$(p)− $)

)
pre f dA ≥ 0,

with now the density as further state variable. The weighting function q of Eq. (C.3) is
replaced by δ$. Again, this form must hold for all admissible δrPi , δλ, δp and δ$. The
solution and weighting spaces are analyzed in more detail in Section 3.3.

3.2 Interface coupling methodologies

This section addresses the numerical coupling of the lubricated interfaces. During the
discretization of the solid and the fluid domain, non-conforming meshes may occur for
different reasons: For example, the elastic body may be discretized by a commercial FE
tool using an unstructured mesh, while the fluid domain is discretized on a structured
mesh. The use of different interpolation functions for deformation and pressure may also
lead to dissimilar meshes. These aspects require adequate coupling conditions between
the subdomains as well as properly defined transfer methods.

The problem of non-conforming meshes in FSI is treated by many researchers, see [41,
57, 87, 97, 152, 161]. YANG and LAURSEN [209] and POPP [151] treat the FSI problem in
EHL contacts by using the mortar method. However, a detailed study of the interface
problem for EHL contacts does not exist yet. Therefore, in this thesis, the most common
methods are analyzed for the EHL contact problem. These are the methods described in
the work of DEBOER [42] and the work of POPP [151].

First, this section outlines a consistent and a conservative coupling strategy. On their
basis, adequate transfer methods for the discrete surface fields are given in a second step.

3.2.1 Consistent and conservative coupling strategy

At the interface between fluid and structure, surface tractions as well as deformations
are exchanged; their numerical compatibility has to be enforced. In the following, the
surface tractions on the fluid domain are denoted by µF

i , with the index F denoting the
fluid domain and the index i denoting the interface to body i (i ∈ {1, 2}). According
to Eq. (2.83), the relation µF

i = t̄i on ΓF
f ,i holds and from now on, it is used in the EHL

interface problem described by Eqs. (3.21) to (3.23). The interface ΓF
f ,i is the projection of

the fluid domain Ω onto the surface of body i.
For the continuous system, the following three conditions hold for the surface trac-

tions and the deformation field on the interface Γ f ,i with i ∈ {1, 2}:

uF
i = uS

i on Γ f ,i, (3.24)

µF
i = µS

i on Γ f ,i, (3.25)
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Figure 3.3: Discretized surfaces and computational domain for the coupled system.∫
ΓF

f ,i

(µF
i )

T uF
i dA =

∫
ΓS

f ,i

(µS
i )

T uS
i dA. (3.26)

The index S denotes a surface field that belongs to the interface ΓS
f ,i of the elastic body i.

While the first two Eqs. (3.24) and (3.25) represent conditions for the individual interface
fields, the third condition ensures the conservation of the interface energy. For the con-
tinuous system, it follows that, if two of the three above stated conditions are fulfilled,
the third one is fulfilled automatically. The reason is that in the continuous system, the
lubricated interfaces are identical, meaning Γ f ,i = ΓF

f ,i = ΓS
f ,i.

This relation is not valid anymore, when the surfaces are discretized and thereby
non-matching meshes are used; the discretized surfaces – indicated in the following by
the subscript h – are not identical any more, see Fig. 3.3. Further, the three conditions
of Eqs. (3.24) to (3.26) in their discretized form can not be fulfilled all at once any more.
Depending on which two of the three conditions are maintained in the discrete setting,
denoted as a consistent or a conservative coupling approach. Both are described in the
following in more detail. As a reference serves the work of DE BOER [42].

Consistent coupling approach

The consistent coupling approach ensures compatibility such that constant distributions
of both deformations and surface tractions remain constant over the interfaces. Consis-
tency follows, when the first two conditions (3.24) and (3.25) hold. Besides the already
stated strong formulation, these conditions can also be given in a weak form. Then, it is
referred as mortar method, which is originally proposed by BERNARDI [13]. The weak
form of the strong conditions Eqs. (3.24) and (3.25) reads as:∫

Γ f ,i

(δµF
i )

T (uF
i − uS

i ) dA = 0, (3.27)∫
Γ f ,i

(δuS
i )

T (µF
i − µS

i ) dA = 0, (3.28)

with δµF
i and δuS

i being variations of the corresponding surface traction µF
i and deforma-

tion field uS
i , respectively. This form must be valid for all admissible δµF

i and δuS
i . Later

in Section 3.2.2, consistent transfer methods on the basis of both the strong and the weak
form will be presented.

Consistency of this coupling approach can also be interpreted as the preservation of
the linear momentum over the interface. However, the interface energy is not conserved.

Conservative coupling approach

The conservative coupling approach ensures compatibility of the total work at the fluid-
structure interface [57]. It follows that condition (3.26) must hold for the transfer of the
interface quantities. Condition (3.24) is chosen as a second condition, claiming that the
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deformation field is transfered consistently over the interface. This ensures that a de-
formation field which contains a rigid body motion still contains the rigid body motion,
when it is transferred to the other surface. The following two conditions have to be ful-
filled for all admissible δµF

i :∫
Γ f ,i

(δµF
i )

T (uF
i − uS

i ) dA = 0, (3.29)∫
ΓF

f ,i

(µF
i )

T uF
i dA =

∫
ΓS

f ,i

(µS
i )

T uS
i dA. (3.30)

Again, the consistent condition for the deformation field is stated in its weak form, while
the conservation of the interface energy represents a strong condition. Adequate coupling
methods are presented in the next section.

While by this approach, the interface energy is conserved and the deformation is
transfered consistently, the consistency of the surface tractions over the interface is given
up when dealing with non-matching meshes.

3.2.2 Transfer methods

In practice, different transfer methods exists for the realization of the above stated cou-
pling conditions. It is emphasized that they all address the transfer of discrete values
from one mesh to another. From these transferred values, one obtains a smooth field on
each mesh by an adequate interpolation rule.

For the EHL interface, the path of transfer is always as follows: the surface tractions
are calculated on the fluid domain and need to be transferred to the structural domain. It
is contrary for the displacements, as they are solved on each structural domain and serve
as inputs for the pressure calculation on the fluid domain. Hence, the displacements need
to be transferred from the fluid to the structural domain.

For the discrete values, the transfer process can be expressed by the following matrix
vector multiplication with i ∈ {1, 2}:

dF
f ,i = HFS

i dS
f ,i, (3.31)

µS
i = HSF

i µF
i , (3.32)

with the still unknown transfer matrices HFS
i and HSF

i . The vector d f is a subset of vec-
tor d and contains the discrete displacements belonging to the lubricated interface Γ f ,h,i.
The vector µ is the vector of the discrete surface tractions.

For sake of clearness, in the following studies, the index i is suppressed, as the transfer
process is identical for each surface of body i, i ∈ {1, 2}.

In the case, when following a conservative coupling strategy, condition (3.30) gives
a dependency between the transfer matrices HFS and HSF for all the transfer methods.
Its derivation is given in the following. Therefore, the two integrals of Eq. (3.30) need to
be discretized by introducing interpolation functions for each vector field. Using µF

h =

M
F(x)µF and uF

h |Γ f ,h = N
F
f (x) dF

f for the interpolation of quantities on the fluid mesh, the
left integral in its discretized form gives:∫

ΓF
f ,h

(µF
h )

T uF
h dA =

∫
ΓF

f ,h

(MF(x)µF)T (NF
f (x) dF

f ) dA = (µF)T (MFF)T dF
f .

Using further µS
h = M

S(x)µS and uS
h |Γ f ,h = N

S
f (x) dS

f for the interpolation of the quantities
on the structural mesh, the right integral of Eq. (3.30) in its discretized form gives:∫

ΓS
f ,h

(µS
h)

T uS
h dA =

∫
ΓS

f ,h

(MS(x)µS)T (NS
f (x) dS

f ) dA = (µS)T (MSS)T dS
f . (3.33)



Interface coupling methodologies 51

The equality of these two integrals in combination with the discrete condition (3.31) gives
the definition of HSF. It follows:

HSF = (MSS)−1 (HFS)T MFF, (3.34)

which is always valid for the conservative coupling strategy. A closer look identifies
the discrete forces FF = MFF µF and FS = MSS µS on the fluid and structural mesh,
respectively. Thus, it holds the relation FS = (HFS)T FF for the force transfer by the
conservative coupling approach.

In the following, three different transfer methods are outlined with the aim of deter-
mining HFS and also HSF in the case of a consistent coupling strategy. These are a nearest
neighbor (NN) method, a nearest neighbor projected (NNPro) method and a weighted
residual (WR) approach. The first two are based on the strong form of the coupling con-
ditions and therefore, are often referred as direct force motion transfer methods, see [161].
In contrast, the third method is based on the weak form of the coupling conditions, re-
quiring the definition of additional LAGRANGE multiplier λu and λµ.

Nearest neighbor

The NN approach approximates unknown values by known values of the nearest neigh-
bor.

First, the discretization of the continuous condition (3.24) by the NN approach is
demonstrated for the deformation field. The discrete value uF

h (xF
h,k) of the deformation

field at the discrete position xF
h,k at each node k ∈ {1 . . . nF

node} of the fluid mesh is approx-
imated as:

uF
h (xF

h,k) ≈ uS
h(xS

NN), xS
NN = arg{ min

l∈{1...nS
node}

(‖xS
h,l − xF

h,k‖)},

where xS
NN is the node on the structural mesh, which discrete position has the closest

distance to the given position xF
h,k. Since the deformation field is known on the structural

side, the transfer matrix HFS for the discrete values in Eq. (3.31) can be determined; it
results in a BOOLEAN matrix.

In the case of a consistent coupling strategy, in a similar way, the NN approach can
be used for the transfer of the surface tractions from the fluid mesh to the structural
mesh. By discretizing the condition (3.25), the transfer matrix HSF of Eq. (3.32) is again a
BOOLEAN matrix and a consistent transmitting also for the surface traction is realized.

In the contrary case, when following a conservative coupling strategy, condition (3.30)
has to be fulfilled instead of condition (3.28). Then, as already shown, Eq. (3.34) states the
definition of HSF.

Nearest neighbor projected

The NNPro approach determines unknown values by the direct projection of known val-
ues.

Like for the NN approach, the projection procedure is outlined for the deformation
field. The discrete value uF

h (xF
h,k) of the deformation field at the discrete position xF

h,k at
each node k ∈ {1 . . . nF

node} of the fluid mesh is obtained by

uF
h (xF

h,k) = uS
h(xS

NNP), xS
NNP = arg{ min

xS
h∈ΓS

f ,h

(‖xS
h − xF

h,k‖)} (3.35)

where xS
NNP is the projection of the point xF

h,k of the fluid mesh onto the structural mesh.
In the following, let the fluid domain be parametrized by the coordinates (y, z) and
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the surface of the body by the coordinates (ξ, η). Then, at each discrete position xF
h,k,

k ∈ {1 . . . nF
node}, of the fluid mesh, a nonlinear equation has to be solved for the surface

parameters, which describe the projected point xS
NNP. The solution of Eq. (2.79) exactly

defines the projection1. As a result, when evaluating Eq. (3.35) at the nodes of the fluid
mesh, the transfer matrix HFS for the discrete values is determined.

In the case of a consistent coupling strategy, this procedure can be applied in the same
manner to the transfer of the surface tractions from the fluid to the structural mesh. Then,
the transfer matrix HSF is obtained.

Otherwise, in the case of a conservative coupling strategy, Eq. (3.34) gives already the
definition of the transfer matrix HSF.

Weighted residual approach

By the mortar method, the interface conditions are fulfilled in a weak sense, see for in-
stance Eqs. (3.27) and (3.28). The respective variations δµF and δuS serve as weighting
functions and are used to enforce the coupling conditions.

In the following, the transfer matrix HFS for the discrete deformation values is de-
rived from the condition of Eq. (3.27). A discretization of the weak form is obtained by
using the approximations δµF

h , uF
h and uS

h . Further, the discrete surface ΓF
f ,h of the fluid

mesh serves as a slave surface, meaning that δµF
h is defined on the fluid mesh and the

integration is performed on the fluid mesh. The field values are interpolated by using
δµF

h = M
F(x)µF, uF

h |Γ f ,h = N
F
f (x) dF

f and uS
h |Γ f ,h = N

S
f (x) dS

f , where µF, dF
f and dS

f are the
vectors of discrete values of the surface traction and the deformation fields on each mesh,
respectively. Then, the following discretized condition results for Eq. (3.27):∫

ΓF
f ,h

(δµF
h )

T (uF
h − uS

h) dA =
∫

ΓF
f ,h

(δµF
u)

T (MF(x))T (NF
f (x) dF

f −N
S
f (ȳ) dS

f ) dA = 0. (3.36)

The first summand can be evaluated on the fluid mesh without difficulties, as all entities
are defined on it. It yields:

(δµF)T

(∫
ΓF

f ,h

(MF(x))T
N

F
f (x) dF

f dA

)
= (δµF)T CFF dF

f . (3.37)

The second summand is defined as

(δµF)T

(∫
ΓF

f ,h

(MF(x))T
N

S
f (ȳ) dS

f dA

)
= (δµF)T CFS dS

f . (3.38)

During the evaluation, one has to deal with the mapping ȳ, which projects points of
the structural mesh onto the fluid mesh. It is required here, as the matrix N

S
f of shape

functions is originally defined on the structural mesh, but the integration is performed
on the fluid mesh. Due to the discretization of the surfaces, they do not coincide any
more, when non-matching meshes are used. The mapping is defined by solving the same
nonlinear equation, as already used for the coupling by the NNPro method:

ȳ : xF
h → xS

h such, that nF
h (xF

h )× (xS
h(ξ, η)− xF

h ) = 0.

1
Usually in the FEM, an iso-parametric concept is applied during discretization, meaning that the geometry

is approximated by the same shape functions as the solution space. This may lead to surface gradients not being

continuous over the elements. Therefore, o�en mean surface gradients n̂F
h and n̂S

h , respectively, are used in order to

avoid numerical inconsistencies during the projection, see for instance [151].
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In conclusion, the discretization (3.36) of the weak condition gives the definition of
the transfer matrix HFS by

HFS = (CFF)−1 CFS. (3.39)

In the case of a consistent coupling strategy, the procedure has to be performed for
the weak condition (3.28) as well. Then, the structural mesh is chosen as a slave surface,
as the variation δuS is defined on the structural mesh. By using approximations similar
as for the coupling of the deformation field, one obtains following discretized condition:∫

ΓS
f ,h

(δuS
h)

T (µF
h − µS

h) dA =
∫

ΓS
f ,h

(δdS
f )

T (NS
f (x))T (MF(z̄)µF −M

S(x)µS) dA = 0,

with the discretized surface tractions µF
h = M

F(x)µF and µS
h = M

S(x)µS on the fluid and
structural mesh, respectively. The nonlinear mapping z̄ is now defined as:

z̄ : xS
h → xF

h such, that nS
h(xS

h)× (xF
h (y, z)− xS

h) = 0.

With this mapping, the integral can be solved, yielding following two matrices:

CSF =
∫

ΓS
f ,h

(NS
f (x))T

M
F(z̄) dA, (3.40)

CSS =
∫

ΓS
f ,h

(NS
f (x))T

M
S(x) dA, (3.41)

defining the transfer matrix HSF as:

HSF = (CSS)−1 CSF. (3.42)

It is noted that consistency and thus preserving of the linear momentum for the dis-
cretized weak forms of the mortar method, only hold, when choosing one discrete inter-
face as slave side and using a consistent integration scheme, as verified e. g. in [42, 151,
155].

In the case of a conservative coupling strategy, this transfer matrix HSF is again al-
ready defined by the relation (3.34).

3.3 Discretized form

The previous section highlights different coupling conditions with their numerical dis-
cretization for non-matching meshes. By considering them, a full discretization of the
coupled system of equations for two flexible bodies with lubricated contacts can be given.

In the following, the weak form of Eqs. (3.21) to (3.23) of the coupled system of equa-
tions is extended for the case of non-matching meshes. It is outlined for a consistent
coupling approach using the mortar method. This approach is chosen, since it requires
appropriate weighting and solution spaces also for the LAGRANGE multiplier, which
are explained in more detail. Nevertheless, the other coupling methods of Section 3.2.2
are applicable as well without any difficulties. A detailed discussion of function spaces
for flexible MBS including LAGRANGE multiplier for bilateral constraints is outlined by
SIMEON in [173]. As further references for the LAGRANGE multiplier spaces also for uni-
lateral contact problems serve the text book of KIKUCHI and ODEN [96] and the work of
WOHLMUTH [201, 202].



54 Coupled system

Adding the coupling conditions (3.27) and (3.28) to the weak form of Eqs. (3.21)
to (3.23) results in following weak form for the coupled system with non-matching in-
terfaces: Find uS

i ∈ Ui, p ∈ S+, λ ∈ Mc such that

2

∑
i=1

[ ∫
Bi

(δrS
Pi
)T r̈S

Pi
dmi +

∫
Bi

δε(uS
Pi
)T H ε(uS

Pi
) dV −

∫
Bi

(δrS
Pi
)T f̄ i dV

−
∫

ΓS
f ,i

(δrS
Pi
)T µS

i dA−
∫

Γc

δrT
Pi

W i λ dA
]
= 0, ∀δuS

i ∈ Vi, (3.43)∫
Γc

δλT Φ dA = 0, ∀δλ ∈ Mc, (3.44)∫
Ω
(δp− pre f ) f (p, rP1 , rP2 , ṙP2 , ṙP2) dA ≥ 0, ∀δp ∈W+, (3.45)∫

ΓF
f ,i

(δµF
i )

T (uF
i − uS

i ) dA = 0, ∀δµF
i ∈ Mt, (3.46)∫

ΓS
f ,i

(δuS
i )

T (µF
i − µS

i ) dA = 0, ∀δuS
i ∈ Vi. (3.47)

As already mentioned, the weak form requires the definition of adequate spaces for both
the solution and the weighting functions.

Standard FE solution and weighting spaces Ui and Vi respectively, are applicable for
the elastic deformation field uS

i of each body i. They are defined as:

Ui = {uS
i ∈ H1(Bi) | uS

i = ûi on Γu,i}, (3.48)

Vi = {δuS
i ∈ H1(Bi) | δuS

i = 0 on Γu,i}. (3.49)

These two spaces can be discretized by using classical shape functions like LAGRANGE

polynomials. Here in this thesis, the elastic structure is always discretized by 3-dimensio-
nal incomplete quadrilateral Hex20 elements (20 nodes) with serendipity shape functions.
On the facets, they degenerate to the already introduced Quad8 elements. The number
of nodes on each structural mesh of body i is denoted by mi,node. On the fluid mesh, the
deformation field is interpolated by the already existing shape functions of the pressure
discretization, meaning N

F
f ,k = Nk with k ∈ {1 . . . nnode}, see Section 2.2.1.

The solution and weighting spaces S+ and W+, respectively for the pressure solu-
tion p with its variation δp are already defined in Eqs. (2.44) to (2.46). For the definition
of S and W, see also Section 2.2.1 or Section 2.2.2, when using stabilization techniques.
For the sake of comprehension, they are repeated here:

S+ = {p ∈ S |
∫

Ω
(p− pc) q dΩ ≥ 0, q ∈ Q+},

W+ = {δp ∈W |
∫

Ω
δp q dΩ ≥ 0, q ∈ Q+}.

The surface tractions µF
i on the fluid mesh are approximated by the same shape functions

as used for the pressure interpolation, meaning M
F
k = Nk with k ∈ {1 . . . nF

node}. The sur-
face tractions µS

i on each structural mesh are approximated by the same shape functions
as used for the interpolation of the deformation field, i. e. M

S
k = N

S
k with k ∈ {1 . . . nS

i,node}.
The spaces Mc for the LAGRANGE multiplier λ and Mt for the variation δµF

i respec-
tively, are defined as:

Mc = H−1/2(Γc), (3.50)

Mt = H−1/2(Γ f ,i), (3.51)
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which are the dual trace spaces of Ui on the corresponding interfaces, see for instance [173].
Thus, the integrals in Eqs. (3.44), (3.46) and (3.47) have to be understood as duality pair-
ings. Note that the surface tractions µS

i and µF
i can be understood as further LAGRANGE

multiplier. In this thesis, their shape functions are chosen equal to the existing shape
functions of the deformation field on the corresponding mesh. However, they could be
also constructed bi-orthogonal to these shape functions, similar as already discussed in
Section 2.3.2. When using these dual LAGRANGE multiplier shape functions, the matri-
ces, defined in Eqs. (3.37) and (3.41), become diagonal matrices.

With the defined solution spaces and shape functions, the overall discrete form of
the dynamic equations of the coupled system can be stated. It yields for the constraint
motion of two flexible bodies with lubricated contacts and non-conforming meshes:

H(q) q̇ = ż, (3.52)

M(q) z̈ = hω + hg + hel + hext + W(q)λ+ C(q)µS, (3.53)
g(q, ż) = 0, (3.54)

pre f = projR+
0

(
pre f − r

(
(A(p, qF) + B(p, qF)) p + b(p, qF, żF)

))
, r > 0, (3.55)

dF
f = HFS dS

f , (3.56)

µS = HSF µF(p̃, qF, żF). (3.57)

The state vector q =
(
qT

1 qT
2
)T as well as the vector of generalized velocities ż =(

żT
1 żT

2
)T assemble the vector qi and żi of each body i ∈ {1, 2}, respectively. They are

defined as qi =
(
rT

i θT
i (dS

i )
T
)T

and żi =
(

vT
i ωT

i (ḋ
S
i )

T
)T

, respectively, and de-
scribe the kinematics of each flexible body in the FFR formulation, see Section 3.1.2. The
system of the first two Eqs. (3.52) and (3.53) represents the dynamic equation of the two
flexible bodies, see Eq. (3.20). The vector λ of discrete LAGRANGE multipliers enforces
the discretized holonomic constraints g(q, ż) of Eq. (3.54). Equation (3.55) represents the
discretized SWIFT-STIEBER cavitation condition, formulated by the projection function,
see Section 2.3.2. As the pressure is calculated on the fluid mesh, the deformation field
has to be transfered, which is indicated by the superscript F in the vectors qF and żF. The
transformation of the deformation field is given by Eq. (3.56). With Eq. (3.57), the discrete
surface tractions µF, which depend on the pressure and the kinematics on the fluid mesh,
can be transfered to the structural mesh. The state dependent matrix C(q) in Eq. (3.53)
performs the numerical calculation of the forces due to the surface tractions in the proper
reference system.

Note that here in this thesis, the transfer matrices HFS and HSF are denoted as con-
stant matrices, since in the later examples, it is only considered the case where the fluid
mesh is attached to the deformable side and the other side is assumed to be non-deformable.
However, the matrices become state-dependent when dealing with two deformable sur-
faces which are rotating against each other or when treating large deformations, see [151,
206]

Instead of considering the SWIFT-STIEBER cavitation model for the hydrodynamic
pressure, the mass conservative cavitation model of Section 2.3 can also be used. Then,
the density is a further state variable and Eq. (3.54) has to be replaced by the discrete
Eqs. (2.74) and (2.75). It yields, when using the projection function:

A$(p, $, qF) p + B$(qF) $ + C$(qF) $̇ = b$(p, $, qF, żF)

pre f = projR+
0

(
pre f − r N

(
f $(p)− $

))
, r > 0.

Again, the dependency of the hydrodynamic equations on the state vectors qF and żF are
indicated by the superscript F.
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3.4 Numerical example

The described coupling strategies and methods of Sections 3.2.1 and 3.2.2 are analyzed
and compared for a simulation example of a rigid shaft in a flexible cylindrical bearing
housing. In contrast to the results published in [103], only the static solution is calculated
without performing a dynamic time integration. This has the benefit of analyzing the
space discretization only and thus, avoiding errors due to the time discretization.

x
y

z R2

L

ω1

bearing 2

Fr

Fx

Fy

R1

shaft 1
(do f = 3)

Figure 3.4: Simulation example of a rigid sha� in a flexible bearing.

The simulation example is depicted in Fig. 3.4. The rigid shaft 1 rotates with a constant
angular velocity about the z-direction and has two degrees of freedom for the translation
in the x-/y-plane of the inertial frame. It is represented by the generalized coordinates
q1 =

(
xC1 yC1 ϕ1

)T and the generalized velocities ż1 = q̇1 =
(
ẋC1 ẏC1 ω1

)T. The
shaft has the mass m1 and the inertia J1, which gives the mass matrix M1 of the rigid
shaft.

The flexible bearing 2 is represented by a linear flexible structure, which is fixed at
the bottom and has only elastic DOFs. The CRAIG-BAMPTON method is applied in order
to reduce the inner elastic DOFs and consequently the size of the matrices [9, 66]. As a
result, the interface DOFs dS

f are maintained, as they are needed for a detailed calculation
of the pressure, and the inner DOFs are replaced by a small number of normal modes
described by the modal coordinates qn. It yields for the vector of generalized coordinates

q2 =
(

qT
n (dS

f )
T
)T

and the vector of generalized velocities ż2 =
(

q̇T
n (ḋ

S
f )

T
)T

. The
CRAIG-BAMPTON method gives the reduced mass matrix M2 and the reduced stiffness
matrix K2 for the flexible structure.

On the shaft, the gravity force, an external constant force and a radial force, represent-
ing an unbalance, are acting. They yield:

hg,1 + hext,1 =

 0
−m g

0

+

Fx + Fr cos(ϕ1)
Fy + Fr sin(ϕ1)

0

 .

For the bearing housing, the elastic forces hel,2 = −K2 q2 are considered. The hydrody-
namic forces are acting on both the shaft and the bearing housing. For this simulation
example, the forces due to shear stresses are neglected.

As a result, the following dynamic equations of motion of the simulation example are
assembled:(

M1 0
0 M2

)(
q̈1
q̈2

)
=

(
hg,1 + hext,1

hel,2

)
+

(
C1 0
0 C2

) (
HSF

1 µF
1 (p̃, qF, q̇F)

HSF
2 µF

2 (p̃, qF, q̇F)

)
,
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Table 3.1: Simulation parameters for the rigid sha� in a flexible bearing.

parameter value parameter value

angular velocity ω1 500 rad/s fluid density ρp=0 800 kg/m3

clearance R2 − R1 17.0 µm dyn. viscosity ηp=0 0.005 kg/ms

radius bearing R2 2.25 cm cavitation pressure pc 0 N/m2

bearing width L 2.20 cm Young’s modulus E 2e11 N/m2

mass shaft m 1.0 kg force Fx 2.5 kN
forces Fy, Fr 0 kN

pre f = projR+
0

(
pre f − r

(
(A(p, qF) + B(p, qF)) p + b(p, qF, q̇F)

))
, r > 0.

Here, the pressure is calculated by the SWIFT-STIEBER cavitation condition. The matri-
ces HSF

1 and HSF
2 ensure the transfer of the surface tractions from the fluid to the structural

mesh. Due to the assumption of a rigid shaft, for the first body, only the resultant fluid
force and moment are needed. Using Eqs. (2.86) and (2.87) they are calculated on the
fluid mesh and therefore, no transfer operation is necessary, meaning HSF

1 = I. For the
pressure calculation, the vector dS

f of the interface DOFs needs to be transfered from the
structural to the fluid mesh, which is performed by the matrix HSF

2 .
For the following study, the static equilibrium position

(
xC1,0 yC1,0

)T of the system
is computed, when no radial force is acting. Therefore, constant velocities are consid-
ered; they are set to zero, except the rotational velocity ω1, which is set to 500 rad/s. The
horizontal force Fx is set to 2500 N and the vertical force Fy is zero. Further simulation
parameters of the system are listed in Table 3.1.

In the following, the convergence of the discretization error for the different coupling
methodologies is analyzed. Both the fluid and the structural interface are discretized
by a structured mesh using incomplete quadratic finite elements. While the modified
Quad8Mod elements are used for the pressure on the fluid mesh in order to fulfill the
requirement of positive integrability due to the cavitation condition, the standard Quad8
elements are used for deformation on the structural mesh. Consequently, the surface trac-
tions on the structural mesh are interpolated also by the shape functions of the Quad8Mod
element and the deformation field on the fluid mesh is interpolated by the shape func-
tions of the Quad8 element, respectively. The shape functions of the different interface
fields are summarized in Table 3.2.

A reference solution is created by using very fine and matching meshes with 40 ele-
ments in circumferential and 10 elements in z-direction. For the subsequent convergence
analysis, the fluid and the structural mesh are refined simultaneously in circumferential
and z-direction. The discretization error is measured in the L2-norm and normalized by
the maximal value of the corresponding interface field. For instance, the error in the
deformation on the structural mesh is calculated by

errL2 =
1

uS
h,re f ,max

√∫
ΓS

f

(
uS

h − uS
h,re f

)T (
uS

h − uS
h,re f

)
dA.

In a similar manner, the discretization error in the pressure on both the fluid and struc-
tural mesh is calculated. It is noted that finite elements with shape functions of polyno-
mial degree n converge in the L2-norm with order O(hn+1), when considering classical
problems of structural mechanics [92]. Herein, h is the characteristic element length.

First, the convergence of the discretization error of the coupled system is considered,
when using matching meshes. Therefore, the elements on both meshes are refined by se-
lecting (nF

ele,y× nF
ele,z) = (nS

ele,y× nS
ele,z) ∈ {(16 × 4), (20 × 5), (24 × 6), (28× 7), (32×
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Table 3.2: Shape functions for the di�erent fields on the fluid and structural mesh, respectively.

fluid structure
field element field element

µF
i,h Quad8Mod µS

i,h Quad8Mod
uF

i,h Quad8 uS
i,h Quad8

8)}. In the case of matching meshes, all coupling methodologies become identical and
the transfer of discrete values is both conservative and consistent, as the values can be
transferred directly from one mesh to the other.

In Fig. 3.5, the discretization errors in the pressure on the fluid mesh and the de-
formation on the structural mesh respectively, are shown. It can be seen that the dis-
cretization error converges with O(h5/2) for both solution fields. As already mentioned
in Section 2.6.1, the cavitation condition deteriorates the O(h3) convergence of the bi-
quadratic finite elements by an O(h1/2). As a consequence, this loss of convergence in
the pressure solution is also present in the O(h5/2) convergence of the error in the defor-
mation field. Due to the matching meshes, there is no coupling error, which could affect
the convergence of the discretization error.
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Figure 3.5: Convergence of discretization error for pressure on fluid and deformation on struc-

tural mesh respectively, using matching meshes.

In the following, the convergence of the discretization error is analyzed, when using
non-matching meshes. Therefore, the elements on the structural mesh are still refined by
selecting (nS

ele,y × nS
ele,z) ∈ {(16 × 4), (20 × 5), (24 × 6), (28× 7), (32× 8)}, whereas

the elements on the fluid mesh are refined such that the number of elements in each
direction is always one larger than the number of elements in the respective direction
of the structural mesh, i. e. nF

ele,y = nS
ele,y + 1 and nF

ele,y = nS
ele,z + 1. In this way, there is

always a small non-conformance between the meshes, while both meshes can be refined
simultaneously.

The different coupling strategies (consistent, conservative) and transfer methods (NN,
NNPro, WR) are compared by analyzing the discretization error for the system with now
non-matching meshes.

Consistent coupling Figures 3.6(a) and 3.6(b) show the discretization error in the pres-
sure on the fluid mesh and in the deformation on the structural mesh respectively,
for the different transfer methods, when following the consistent coupling approach.

It can be seen that, when using both the consistent WR and the NNPro transfer
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Figure 3.6: Convergence of the discretization error of the pressure on the fluid and the defor-

mation on the structural mesh respectively, for non-matching meshes with consistent coupling

technique.

methods, the discretization errors converge with the same order as the errors in the
case of matching meshes of Fig. 3.5. This means that the coupling error introduced
by these two coupling methods does not affect the discretization error, neither in its
convergence order nor in its magnitude.

In contrast, when using the NN transfer method, the convergence of the discretiza-
tion error in both the pressure on the fluid mesh and the deformation on the struc-
tural mesh reduces to the O(h1). The reason is that the NN method can approx-
imate only constant distributions exactly and hence, is only O(h1) convergent in
the L2-norm. In summary, the error of the NN coupling method dominates the
convergence of the coupled system significantly.

Conservative coupling Figures 3.7(a) and 3.7(b) show the discretization error in the pres-
sure field on the fluid mesh and in the deformation field on the structural mesh
respectively, for the different transfer methods, when following the conservative
coupling approach.

Looking at the discretization error, when using the WR transfer method, the con-
vergences and the magnitudes of the errors are identical to that of the system with
matching meshes. It can be deduced that the coupling error influences neither the
convergence nor the magnitude of the discretization error.

When using the NNPro transfer method, it can be recognized that the discretiza-
tion error of the pressure on the fluid mesh has still an O(h5/2) convergence and
the same magnitude as the error of the system with matching meshes. This is due
to the fact, that the deformations are transferred consistently from the structural
to the fluid mesh, whereby the coupling error is not influencing the discretization
error of the pressure at all. The discretization error of the deformation on the struc-
tural mesh converges with O(h2). Obviously, the conservative coupling technique
yields a coupling error, which deteriorates the convergence of the discretization er-
ror compared to the convergence of the error of the system with matching meshes.

When using the NN transfer method, both discretization errors converge with or-
der O(h1). The reason is similar to the above mentioned for the consistent approach
that the NN method is originally only first order accurate. This low convergence of
the coupling method becomes evident in the convergence of the overall discretiza-
tion error.
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Figure 3.7: Convergence of the discretization error of the pressure on the fluid and the deforma-

tion on the structural mesh respectively, for non-matching meshes with conservative coupling

technique.

From the convergence study of the coupled system with non-matching meshes, following
conclusions are derived:

• The consistent transfer with the NNPro and the WR as well as the conservative
transfer with the WR method maintain the O(h5/2) convergence of the errors of
the conforming coupled system in both the pressure on the fluid mesh and the
deformation on the structural mesh.

• The conservative NNPro transfer method leads to an O(h2) convergence of the er-
ror in the deformation on the structural mesh, while it maintains the O(h5/2) con-
vergence of the error in the pressure on the fluid mesh of the conforming coupled
system.

• Both the consistent and the conservative transfer by the NN method lead to an
O(h1) convergence of the discretization errors.

Further, it can be concluded that the conservative transfer with the WR method would
be the favorite transfer method, when being interested in long-time simulations, where
no artificial energy shall be created nor annihilated.

It is worth analyzing the difference between the consistent and the conservative cou-
pling technique in more detail: In Fig. 3.8, the convergence of the discretization error of
the pressure, which is received by the structural mesh, is depicted. Figure 3.8(a) shows
the error for the consistent and Fig. 3.8(b) for the conservative coupling technique, re-
spectively.

In Fig. 3.8, it can be seen that the discretization error in the pressure, which is trans-
ferred consistently by the WR and the NNPro as well as conservatively by the WR method,
shows an O(h5/2) convergence. In fact, for these three methods, the coupling error con-
verges with an O(h3) and hence, does not affect the convergence of the discretization
error.

In contrast, when transferring the pressure consistently by the NN method, the con-
vergence is only of O(h1). The reason is the natural low convergence of the NN method.

Further, Fig. 3.8(b) reveals that the error in the pressure received by the structure is
not convergent, when using the conservative NNPro or NN transfer method. At a first
glance, this is surprising, since the error in the deformation on the structural mesh is
still convergent. However, the explanation for this apparent contradiction is given by
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the definition of the conservative coupling technique of Eq. (3.34). Due to its construc-
tion, discrete interface forces – and not discrete surface tractions – are transfered from
the fluid to the structural mesh. The matrix (HFS)T serves as transformation matrix for
the discrete forces. It means that the surface tractions on the structural mesh do not have
to be necessarily convergent, as long as the surface forces are. This is the case for the
conservative coupling by the NNPro and the NN method, respectively. It follows further
that the convergence of the error in the deformation on the structural mesh also depends
on the transfer matrix (HFS)T. Obviously, for the NNPro transfer method, this transfor-
mation has only an O(h2) convergence, when comparing the convergence of the error
in the pressure on the fluid mesh with that in the deformation on the structural mesh,
see Fig. 3.7. The fact that the error in the pressure distribution on the structural mesh
for the conservative coupling technique is only convergent for the WR method, can be
explained by the smoothing character of the weighting functions of the WR method. The
non-convergence of the error for the NNPro and NN method is also shown in detail by
DEBOER in [42].

For the different coupling methodologies, the pressure distributions, which are re-
ceived by the structural mesh in the case of non-matching meshes, are shown in Fig. 3.9.
It can be seen that the pressure distributions are smooth, when using a consistent trans-
fer method. The low accuracy of the consistent NN transfer method becomes also vis-
ible. When using a conservative transfer method, only the WR method gives a smooth
pressure distribution. The NNPro and the NN method lead to very jagged pressure dis-
tributions on the structural mesh. This observation agrees with the results obtained by
the error analysis of Fig. 3.8.
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Figure 3.8: Convergence of the discretization error in the pressure on the structural mesh for

non-matching meshes with di�erent coupling techniques.
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WR consistent

WR conservative

NNPro consistent

NNPro conservative

NN consistent

NN conservative
(1:10)

Figure 3.9: Pressure distributions on the structural mesh for di�erent coupling techniques.



Chapter 4

Interface reduction methods

The numerical example of the previous chapter reveals that a large number of interface
DOFs is necessary for an accurate calculation of the pressure distribution. In practice,
when performing a simulation of a mechanical systems with lubricated joints or contacts,
the total number of DOFs is usually strongly dominated by the DOFs, which are required
for the lubricated interfaces. Therefore, adequate methods for reducing the DOFs of an
elastic structure having a lubricated interface are a further focus of this thesis. Of special
interest is their use in a flexible multibody simulation in the FFR formulation. Note that
the following essay is published in great detail also in [102, 107] and [108]

Review of existing methods

As mentioned, for further simulation purposes like a flexible multibody simulation, a
reduction of the elastic structure with the large coupling interface is inevitable. In the
context of component mode synthesis (CMS) [39], the classical approaches are based on a
static or a modal interface reduction, as described by CRAIG and CHANG [38]. On the ba-
sis of CMS, interface reduction methods for systems with fluid-structure interaction are
outlined in [83, 95]. However, dual approaches can also be used, which account for inter-
face loads by the use of attachment modes. Following this approach, a time dependent
parametric model order reduction scheme for systems with varying loads is given by
TAMAROZZI et. al. [185]. In the context of EHL lubrication, a dual approach is followed
by HABCHI et. al. [75] and HABCHI [73], where a set of basis vectors coming from a static
analysis at different load regimes is applied for the interface reduction of line and circular
point contacts, respectively. MAIER et. al. [122] use a proper orthogonal decomposition
of training sets at different load regimes for the reduction of the full nonlinear system of
the EHL line and point contact, respectively.

Outline of this chapter

In this chapter, three different reduction schemes for structures with lubricated interfaces
are applied and their numerical and computational efficiency are discussed in the con-
text of a multibody simulation by using a FFR formulation. The first method represents
a classical CRAIG BAMPTON [9] reduction of the structure without considering the lubri-
cated interface in particular. In the second method, which is applied by NOVOTNY [131],
first, a CRAIG BAMPTON reduction is applied to the elastic structure in order to main-
tain the degrees of freedom of the lubricated interface. In a second step, the already re-
duced structure is further reduced by a second CRAIG BAMPTON step. The third method,
proposed in [107], makes use of a dual reduction strategy as outlined by GERADIN and
RIXEN [65]. Within this concept, load dependent interface modes are used to represent
the elastic deformation of the interface due to pressure forces.
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All the methods are described for a linear finite element model (N degrees of freedom)
governed by the equation

MFE d̈ + KFE d = f (t) (4.1)

with mass matrix MFE, stiffness matrix KFE and a vector f (t) of external forces. For
further considerations, the displacement vector d of the finite element model (4.1) is par-
titioned into ni DOFs of inner nodes, n f DOFs of nodes of the lubricated interface and nb
boundary DOFs, yielding:

d =
(

dT
i dT

f dT
b

)T
.

In Section 4.1, a CRAIG BAMPTON procedure is applied, which does not particularly
take care of the lubricated interface. In Section 4.2, the CRAIG BAMPTON method is ap-
plied twice in sequence, in order to cover the deformation of the lubricated interface in a
better way. In contrast to the first two methods, which are based on fixed interface modes,
the third method in Section 4.3 describes a dual reduction scheme using vibration modes
of the free floating structure, attachment modes and additionally load dependent static
modes for the lubricated interface. In Section 4.4, the described reduction methods are
compared for two classical simulation examples – for a one-sided EHL joint of a slider-
crank mechanism in FFR formulation as well as for an elastic rotor in a flexible journal
bearing.

4.1 Craig Bampton reduction method

The first method is a classical CRAIG BAMPTON reduction [9] without considering the
lubricated interface in particular. Hence, the nodes d f of the lubricated interface are
treated like inner nodes, which leads to the following partitioned finite element system:[

M f̄ f̄ M f̄ b
Mb f̄ Mbb

] (
d̈ f̄
d̈b

)
+

[
K f̄ f̄ K f̄ b
Kb f̄ Kbb

] (
d f̄
db

)
=

(
f f̄
f b

)
,

with the partitioned displacement vector d f̄ =
(

dT
i dT

f

)T
. The CRAIG BAMPTON proce-

dure gives the following reduction of the displacement vector:

d =

[
Φ f̄ v̄ −K−1

f̄ f̄ K f̄ b

0bv̄ Ibb

] (
qv̄
db

)
= V̄

(
qv̄
db

)
, (4.2)

where qv̄ is the vector of the reduced modal coordinates, Ibb is the identity matrix and the
matrix Φ f̄ v̄ contains a subset of the first n̄v < ni + n f fixed-boundary vibration modes.
They correspond to the solution of the eigenvalue problem for the DOFs d f̄ :

(−ω2
i M f̄ f̄ + K f̄ f̄ )φi = 0, i = 1 . . . (ni + n f )

with eigenvalues ω2
i and eigenvectors φi. The CRAIG BAMPTON reduction matrix is de-

noted by V̄ , see Eq. (4.2). For its use in the FFR formulation, the rigid body motion has
still to be removed. It can be ensured by fixing specific boundary DOFs by the use of the
transformation matrix P̄. Then, the vector db of boundary DOFs is restricted to a reduced
vector qb,el and the overall reduction is given by

d = P̄ V̄

(
q f̄

qb,el

)
= V ηel , (4.3)

with the overall reduction matrix V and the vector ηel of reduced coordinates. This rela-
tion for d can now be used in the approximation (3.15) of the FFR formulation.
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4.2 Two-step Craig Bampton method

The second method, which is already used for mechanical systems with lubricated con-
tacts [131], is decomposed into two steps.

In the first step, the nodes of the lubricated interface of system (4.1) are treated like
boundary nodes and the CRAIG BAMPTON procedure is applied, leading to the following
transformation:

d =

Φ̂iv̂ −K−1
ii Ki f −K−1

ii Kib
0 f v̂ I f f 0 f b
0bv̂ 0b f Ibb

 qv̂
d f
db

 = V̂1 d̂, (4.4)

where the matrix Φ̂iv̂ contains a subset of the first n̂v < ni fixed-interface vibration modes
corresponding to the eigenvalue problem for the inner nodes di. Assuming the vibration
modes to be M ii-orthogonal, this first reduction step gives the reduced system matrices:

V̂1
T MFE V̂1 =

 I v̂v̂ M̂ v̂ f M̂ v̂ f
M̂ f v̂ M̂ f f M̂ f b
M̂bv̂ M̂b f M̂bb

 , V̂1
T KFE V̂1 =

Ω2
v̂ 0v̂ f 0v̂ f

0 f v̂ K̂ f f K̂ f b
0bv̂ K̂b f K̂bb

 . (4.5)

Due to the CRAIG-BAMPTON step, the matrix Ω2
v̂ is diagonal with the n̂v eigenvalues on

its diagonal.
In a second step, the already reduced system is reduced by a further CRAIG BAMP-

TON reduction step for the new coordinate vector d̂ =
(

qT
i dT

f dT
b

)T
. Maintaining the

boundary nodes db, the second transformation is given by

d̂ =

Φv̂ṽ 0v̂b

Φ f ṽ −K̂−1
f f K̂ f b

0bṽ Ibb

 (qṽ
db

)
= V̂2

(
qṽ
db

)
. (4.6)

The matrix
[
ΦT

v̂ṽ ΦT
f ṽ

]T
contains a subset of the first ñv < n̂v + n f fixed-boundary vi-

bration modes computed from the reduced system (4.5), where the boundary degrees of
freedom are fixed, namely(

−ω2
i

[
I v̂v̂ M̂ v̂ f

M̂ f v̂ M̂ f f

]
+

[
Ω2

v̂v̂ 0v̂ f
0 f v̂ K̂ f f

])
φi = 0 i = 1 . . . (n̂v + n f ).

This second reduction step couples the static interface modes with the fixed-interface
vibration modes of the first step. In conclusion, the complete procedure of the second
method is expressed by the reduction basis V̂ , see Eqs. (4.4) and (4.6):

d = V̂
(

qṽ
db

)
, V̂ = V̂1 V̂2.

In order to use the reduced coordinates in the FFR formulation, rigid body modes need
still to be removed. This is ensured by restricting the vector db of boundary nodes by the
transformation matrix P̂. Then, similar to Eq. (4.3), the overall reduction is obtained by

d = P̂ V̂

(
q f̃

qb,el

)
= V ηel . (4.7)
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4.3 Dual reduction approach

In this section, a load dependent reduction strategy is proposed. The general framework
of the procedure is based on a dual superelement formulation of GERADIN and RIXEN

[65]. Therefore, for a more detailed description of the surrounding framework, it is re-
ferred to [65] and here, only the main steps of the procedure and its specification for
lubricated interfaces are given.

General framework

In [65], for the finite element system (4.1), a reduction basis

Ṽ =
[
U Φv Ga Gr

]
=
[
U V

]
(4.8)

is proposed. The matrix U collects the nu rigid body modes of the floating structure, the
matrix Φv collects the nv vibration modes of the free floating structure (usually nv �
(N − nu)), the matrix Ga collects the na attachment modes obtained by the static re-
sponses of a unit loading at the attachment nodes and the matrix Gr collects nr residual
modes, which can be chosen in different ways in order to enrich the reduction basis, e. g.
in the case of nonlinear external forces like contact forces. In this work, the set of residual
modes will be created by static responses due to pressure forces.

In the following, the main steps of the mode computation and preparation are out-
lined according to [65]:

• The eigenvalue problem of system (4.1)

(−ω2
i MFE + KFE)φi = 0 i = 1 . . . N

→ rigid body modes: U =
[
φ1 . . . φnu

]
for ω2

i = 0,

→ vibration modes: Φv =
[
φnu+1 . . . φnu+nv

]
for ω2

i 6= 0,

gives the nu rigid body modes belonging to the zero eigenvalues and the (N − nu)
vibration modes belonging to the remaining eigenvalues. A modal reduction is
obtained, when only a reduced set of nv < (N − nu) vibration modes is used. The
vibration modes can be mass normalized in such a way that

ΦT
v KFE Φv = Ω2

v, ΦT
v MFE Φv = Ivv.

• For the na attachment modes, a loading matrix Ja is constructed, in which each
column belongs to a unit force vector at a single attachment node. In a similar way,
for the residual modes, a loading set Jc is constructed, which contains nc arbitrary
load cases not necessarily being unit force vectors or belonging to an attachment
node. The static responses Ga and Gc are calculated by solving:[

KFE MFE U
UT MFE 0

] [
Ga Gc
λa λc

]
=

[
Ja Jc
0 0

]
, (4.9)

where the LAGRANGE multiplier λa and λc ensure mass orthogonality of the static
mode sets with respect to the rigid body modes.

• The directions of the static mode set
[
Ga Gc

]
, which are already covered by the

vibration modes Φv, are filtered out by the following transformation:[
Ga Gc

]
←

[
Ga Gc

]
−Φv Ω−2

v ΦT
v
[

Ja Jc
]

.
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• For the mass normalization of the static modes, the following Cholesky factoriza-
tion is outlined:[

Ga Gc
]T MFE

[
Ga Gc

]
= CTC,

[
Ga Gc

]
←

[
Ga Gc

]
C−1,

which gives a fully diagonal mass matrix, meaning GT
a MFEGa = Iaa, GT

c MFEGc =
Icc and GT

a MFEGc = 0.

• For the attachment modes, the previous step yields GT
a MFEGa = Iaa and GT

a KFEGa =
Kaa. For a further diagonalization of the stiffness matrix Kaa, the eigenvalue prob-
lem

KaaZ = ZΩ2
a

has to be solved, yielding a transformation for a diagonal stiffness matrix

Ga ← GaZa, Ω2
a ← Kaa.

• A reduced set Gr of residual modes can be obtained from the static set Gc by dif-
ferent approaches, e. g. by selecting these modes, which contribute the most to the
strain energy. In this contribution, they are computed by an eigenvalue problem for
the reduced stiffness matrix Kcc = GT

c KFE Gc:

(−ω2
i Icc + Kcc) Zi = 0, i = 1 . . . nc,

and choosing the set of eigenvectors Zr belonging to the first nr smallest eigenval-
ues ω2

i . Then, a reduction of the static modes Gc is achieved by following transfor-
mation:

nr ← nc, Gr ← Gc Zr, Ω2
r ← Kcc. (4.10)

• To obtain a fully diagonal stiffness matrix, a further eigenvalue calculation for the
static stiffness matrix Ks =

[
Ga Gr

]T KFE
[
Ga Gr

]
, namely[

Ω2
a Kar

Kra Ω2
r

]
Z = ZΩ2

s ,

can be solved, yielding the transformation:

Gs ←
[
Ga Gr

]
Zs, Ω2

s ← Ks.

At the end of this procedure, a reduction of the mass matrix MFE and the stiffness matrix
KFE with the reduction matrix V gives fully diagonal superelement matrices Mel and Kel :

Mel = VTMFEV =

[
Ivv 0
0 Iss

]
, Kel = VTKFEV =

[
Ω2

v 0
0 Ω2

s

]
,

which can be used directly in the FFR formulation. Since in the reduction d = V ηel , the
rigid body modes are already projected out, see Eq. (4.8), no further transformation like
in Eqs. (4.3) and (4.7) is needed. As a result, this reduction fulfills the condition of the
BUCKEN’s frame, see Section 3.1.2.
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Construction of interface modes

The set Gr of the static residual modes is a subset of the static set Gc, which is defined
by an arbitrary load set Jc, see Eqs. (4.9) and (4.10). In the following, the load set Jc
is specified for pressure forces coming from the surface tractions of the hydrodynamic
equations, see Sections 3.2 and 3.3. By Eq. (3.33), which defines the forces on the structural
domain, the load set Jc can be defined generally as:

Jc = MSS (NSS PS
c ),

where PS
c is a set of discrete pressure distributions and the matrix NSS contains in its

columns the discrete normal vectors of each structural interface node and hence trans-
forms each discrete pressure distribution to a discrete surface traction in normal direc-
tion. The surface tractions in tangential directions are not considered here, as the shear
forces are usually negligible compared to the pressure forces. Setting

PS
c,1 = Icc (4.11)

to the identity matrix, gives an overall definition of the pressure set, as unit pressure
values are applied at the interface nodes. This choice already reduces the 3 nS

node DOFs of
the interface to nS

node DOFs, since only pressure forces in normal direction are considered.
As the number nS

node still can be large, it is proposed to build a set of pressure dis-
tributions, which is applicable for lubricated revolute joints, where the relative rotation
occurs about the Fz-direction only (no tilting), like in Fig. 2.7. In this case, analytical
solutions for the pressure distribution in Fz-direction exist for an infinite long and an in-
finite short bearing respectively, see Fig. 4.1. The solution pl(z) of an infinite long bearing
gives a constant pressure distribution and the solution ps(z) of an infinite short bearing
a quadratic distribution:

pl(z) = pm, ps(z) =
4 p0

L2

(
L2

4
− z2

)
,

where L is the bearing width. The respective mean pressure pm of the long and the max-
imal pressure p0 of the short bearing solution still have to be specified in circumferential
direction. Next, it is proposed to build a set of pressure distributions by assuming the
analytical axial distribution at several circumferential positions:

PS
c,2 =

[
Pl,1 . . . Pl,nS

node,y
, Ps,1 . . . Ps,nS

node,y

]
. (4.12)

With this pressure set Pc,2, the 3 nS
node interface DOFs are reduced to 2 nS

node,y from the
beginning.

FzFz

Fx, pBy

Bx Fz

pl(z) ps(z)

pm

L� R2 L� R2

R2 R2

C2 C2C2

C1

ϕ
p0

Figure 4.1: Pressure distributions for infinitely long (middle) and infinitely short bearing (right),

computed in a discrete (Fx, Fz)-plane (le�).
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4.4 Numerical applications

In the following two sections, the introduced reduction methods are analyzed and com-
pared for two different simulation examples. Therefore, the three reduction methods of
Sections 4.1 to 4.3 are abbreviated by M1, M2 and M3, respectively.

4.4.1 Simulation example 1: flexible slider-crank mechanism

Here, the described reduction methods are compared for a simulation example of a slider-
crank mechanism with an elastic connecting rod between a rigid crank shaft and a rigid
piston. Hence, the connecting rod is the only body with flexible behavior. This sim-
plification is made in order to better demonstrate and compare the different reduction
methods. Note that the elastic structure deforms three-dimensionally, while the main
rigid body motion of the rod takes place in the I x/Iy-plane. Due to the rotation about the
Iz-axis only, the concept of combining the short and long bearing solutions in the third
reduction scheme is well applicable. The more general case will be considered in Sec-
tion 4.4.2.

Flexible slider-crank mechanism

The flexible slider-crank mechanism is shown in Fig. 4.2. A hydrodynamic revolute cylin-
drical joint links the rigid shaft with the flexible connecting rod. A constant rotation
speed ω1 = 500 rad/s is enforced. At the beginning of the simulation, the slider is posi-
tioned at I x = l1 + l2, i. e. the relative eccentricity in the bearing is zero.

The mass and stiffness matrix of the flexible rod come from a finite element software
tool. They are embedded in the multibody simulation by the FFR formulation as de-
scribed in Section 3.1.2. For the first two CMS-based reduction methods, the floating
frame is attached to the center C2 of the hydrodynamic bearing by constraining the rigid
body translation and rotation of point C2. Note that the point C2 accounts for the mean
deformation of the interface DOFs, which is ensured by adequate constraint definitions
in the FE model. For the third reduction method, where the dual approach is followed
and free-interface normal modes are used, the floating frame is automatically located in
the deformed configuration of the center of mass.

The cylindrical interface for the bearing is meshed with 20× 5 bi-quadratic elements
in circumferential and z-direction respectively, which results in nS

node = 340 interface

rigid
crank shaft rigid

piston

ω1

l1

l2
I x

Ry

Iy

fluid film

elastic
connecting rodC2

A

C1R2

Rx

Figure 4.2: Slider-crank mechanism with flexible connecting rod and lubricated joint.
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Table 4.1: Simulation parameters for the slider crank mechanism.

parameter value parameter value

angular velocity ω1 500 rad/s dyn. viscosity η 0.01 kg/m s

radius bearing R2 2.25 cm fluid density ρ 800 kg/m3

clearance h0 = R2 − R1 17.0 µm nb. fluid nodes nF
node 340

bearing width L 2.20 cm nb. interface nodes nS
node 340

crank length l1 0.048 m damping factor ζ 0.001
rod length l2 0.160 m E-Modul E 210e9 N/m2

rod center of mass c2,x 0.0677 m tolerances tolAbs, tolRel 1e-7

crank mass m1 1.00 kg crank inertia J1,zz 1e-3 kg m2

rod mass m2 0.973 kg rod inertia J2,zz 4e-3 kg m2

piston mass m3 0.500 kg

nodes on the structure with nS
node,y = 40 equally distributed circumferential positions.

Structural damping is applied by choosing the reduced damping matrix Del = ζ Kel
proportional to the reduced stiffness matrix with damping factor ζ. For the fluid mesh,
a structured mesh with 20× 5 bi-quadratic elements in circumferential and z-direction
respectively is used, leading to nF

node = 340 fluid nodes. The fluid mesh is assumed to
be attached to the housing, meaning it is always conforming with the structural mesh.
Further simulation parameters and fluid properties are listed in Table 4.1.

Comparison of the three reduction methods

Global simulation outputs of the flexible slider-crank mechanism are compared for the
three reduction methods of Sections 4.1 to 4.3. In detail, the maximal pressure and the
minimal height during one rotation are analyzed, meaning the simulation time T is 2 π/ω1.

A reference solution is created with the third reduction method (M3) by applying the
general choice PS

c,1 = Icc for the pressure set. A large number of nr = 60 residual modes is
used ensuring a reduction basis, which is rich enough to cover the interface behavior. The
maximal pressure and minimal height over time are shown in Fig. 4.3(a) and Fig. 4.3(b),
respectively. The number of vibration modes is nv = 6.
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Figure 4.3: Reference solution with (M3) by using Pc,1 = Icc, nr = 60 residual modes and

nv = 6 vibration modes.
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Figure 4.4: Craig Bampton scheme (M1).
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Figure 4.5: Two-step Craig Bampton scheme (M2).

In order to compare the three methods, the results of the maximal pressure and the
minimal height are analyzed for a comparable number of modes. Point A of the flexible
rod is considered as a boundary node in the reduction methods M1 and M2 and as an
attachment mode in method M3, respectively. In the first two methods, nb = 2 static
deformation modes and in the third method, na = 2 attachment modes, respectively are
used by applying unit displacements and unit forces in Rx/ Ry-direction, respectively.
For the load dependent reduction method (M3), it can be well distinguished between
vibration modes and residual modes, which allows one to use a fixed number of 6 vibra-
tion modes (nv = 6) and vary the number nr of residual modes. For the two-step CRAIG

BAMPTON method (M2), the number of overall vibration modes is varied in dependence
of nr by ñv = nr + 6 and n̂v = 6 vibration modes are used in the first CRAIG BAMPTON

step. Making the CRAIG BAMPTON method (M1) comparable as well, the number n̄v of
vibration modes is varied in the same way, yielding n̄v = nr + 6.

In Fig. 4.4, the results for the first reduction method (M1) are shown. Compared to
the reference solution, it is obvious that a large number of modes is required to cover
the interface deformation. In particular, in the segments of high loads of Fig. 4.4(a), the
pressure is overestimated, as the reduction basis is too poor.

Figure 4.5 shows the maximal pressure and minimal height obtained by the second
reduction method (M2). Compared to M1, for similar results, less modes are required.
However, the number ñv of modes has still to be large, when the reference solution should
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be well approximated. As can be seen in Fig. 4.5(a), the elastic structure with ñv = 127
modes behaves still too stiff in the high pressure segments.

The maximal pressure and minimal height for the load dependent reduction scheme
(M3) with PS

c,2 are depicted in Fig. 4.6. The analytical pressure distributions in Fz-direction
of the bearing width are normalized by setting pm = 1 and p0 = 1.5. It becomes clear
that the reference solution is well approximated when using nr = 31 residual modes
only. Compared to M2, for similar results, less than a quarter of the number of modes
are required. It is noteworthy that the combination of short and long bearing solution in
Eq. (4.12) is mainly necessary in order to account properly for the bending deformation
of the bearing in Fz−direction. The application of only one of the two analytical solutions
would not converge to the reference solution.
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Figure 4.6: Load dependent reduction scheme (M3) with PS
c,2 (pm = 1 and p0 = 1.5).

4.4.2 Simulation example 2: elastic rotor in flexible journal bearing

Here, the second simulation example of an elastic rotor in a flexible journal bearing is
analyzed. In contrast to the simulation example of the previous section, unsymmetrical
pressure distributions occur now along the axial direction in the journal bearing. Again,
the three reduction methods are compared with each other.

Elastic rotor in flexible journal bearing

The simulation model of the elastic rotor in the flexible journal bearing is depicted in
Fig. 4.7.

The elastic rotor consist of an elastic shaft with a rigidly attached disk in the middle.
The shaft is modeled by 20 BERNOULLI beam elements, each with two nodes and 4 DOFs
per node for the bending deformation in x- and y-direction respectively. A modal reduc-
tion gives 20 modes for the elastic deformation of the rotor, leading together with the
shaft rotation to 21 overall DOFs. Gyroscopic effects are considered, see for instance [27,
162]. The rotor with the length l is supported at both ends elastically by a stiffness c and
at half length by a flexible journal bearing. Modal damping with the damping ratio ζ for
each mode is considered. The rotor rotates with a constant rotation speed ω1 = 600 rad/s

and at three quarter length of the rotor an unbalance force Fr acts in radial direction.
The flexible bearing house is modeled as a linear finite element system (N = 8931)

with mass and stiffness matrix coming from a finite element software tool. Damping in
the bearing house is not considered. The cylindrical interface of the bearing consists of
20 × 5 bi-quadratic elements in circumferential and z-direction respectively, leading to
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nS
node = 340 interface nodes on the structure with nS

node,y = 40 circumferential positions.
A conformal mesh is applied to the fluid zone, resulting in nS

node = 340 fluid nodes.
In summary, the elastic structure deforms three-dimensionally and the rotor performs

a bending motion in the x/y-plane while rotating about the initial z-axis. This motion
results in unsymmetrical 3D pressure distributions in the journal bearing.

Further simulation parameters of the rotor model and the fluid properties are listed
in Table 4.2.
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(DOF = 21)
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l/4

l/4

l/2

disk

Figure 4.7: Elastic rotor with unbalance in flexible journal bearing.

Table 4.2: Simulation parameters for the elastic rotor in flexible journal bearing.

parameter value parameter value

angular velocity ω1 600 rad/s dyn. viscosity η 0.01 kg/m s

radius bearing R2 2.25 cm fluid density ρ 800 kg/m3

clearance h0 = R2 − R1 17.0 µm nb. fluid nodes nF
node 340

bearing width L 2.20 cm nb. interface nodes nS
node 340

rotor length l 1.00 m damping factor ζ 0.001
rotor diameter dr 2.25 cm E-Modul E 210e9 N/m2

steel density ρr 7446 kg/m3 simulation time T 2 π/ω1

rotor inertia Jr,zz 1e-3 kg m2 tolerances tolAbs, tolRel 1e-8
stiffness c 1.58e8 N/m radial force Fr 3.60 kN

Comparison of the three reduction methods

For the simulation example, the maximal pressure and minimal height are compared for
the three reduction methods. The simulation time T is 2 π/ω1, meaning that one rotation
is analyzed. In contrast to the simulation example of the slider-crank mechanism, un-
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symmetrical pressure distributions in axial direction now occur due to the small tilting of
the rotor shaft about the x- and y-directions, respectively. Therefore, the load dependent
method (M3) is applied with the more general choice PS

c,1, see Eq. (4.11).

Similar to Section 4.4.1, the three reduction methods are compared for a comparable
number of modes. For the load dependent method (M3), nv = 10 vibration modes are
used and the number nr of residual modes is varied. For the two-step CRAIG BAMPTON

method (M2), the number ñv of overall modes is chosen in dependence of nr by ñv =
nr + 10. In a similar way, the number n̄v of overall modes of the CRAIG BAMPTON method
(M1) is chosen by n̄v = nr + 10.

A reference solution is created by M2, using n̂v = 10 vibration modes and maintaining
all interface DOFs. In Fig. 4.8, the error in the maximal pressure and minimal height
are shown for all the three methods by using for each method 30 modes, which for the
third method, are decomposed into nr = 20 residual and nv = 10 vibration modes. It
can be seen that the error in the maximal pressure is large, especially in time intervals,
which belong to high pressure situations. However, it becomes also clear that the load
dependent method M3 comes closer to the reference solution than the two CMS-based
methods. The classical CRAIG-BAMPTON method (M1) shows the largest deviations. In
Fig. 4.9, the number of residual modes nr in method M3 is increased to 40, leading to 50
overall modes. While the first two methods still behave too stiff, the error by the third
method is relatively small.
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Figure 4.8: Comparison of the three reduction methods, each with 30 overall modes.
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Figure 4.9: Comparison of the three reduction methods, each with 50 overall modes.
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When analyzing the errors in the minimal height, it can be seen that there are situa-
tions with high errors at t ≈ 5.9 ms and t ≈ 9.8 ms. In these situations, the tilting of the
rotor shaft causes sharp pressure distributions close to the bearing edges. The reduction
basis of all the three methods is still to poor to cover the very local deformation of such
load situations.

4.4.3 Concluding remarks

Different reduction schemes for structures with lubricated interfaces are presented and
compared for classical simulation examples.

The first two reduction methods are based on classical component mode synthesis.
The first method does not take into account the lubricated interface in particular. The
second method – a two-step CRAIG BAMPTON scheme – gives a reduced set of modes
by combining static interface deformation and the vibration modes of a interface-fixed
structure. By this, the interface deformation is covered in a better way, but still a large
number of modes is required.

The best results are obtained by a load dependent reduction strategy, where the in-
terface modes are computed as static responses due to pressure forces. Within this dual
approach, it is possible to use analytical pressure distributions like the infinitely short and
long bearing solution. These analytical solutions are well applicable during the reduction
process for 3D elastic revolute joints with a shaft rotating about one axis only, as the ex-
ample of the slider crank mechanism demonstrates. A more general choice is required,
when unsymmetrical pressure distributions occur, like in the example of a flexible rotor
in a flexible bearing housing.

As a further advantage, this load dependent reduction strategy allows a clear decom-
position of vibration modes of the free floating structure and static modes belonging to
attachment points and interface nodes. As a consequence, the number of modes for the
lubricated interface can be adjusted independently of the vibration modes.





Chapter 5

Time integration and solution techniques

This chapter is dedicated to the time discretization of mechanical systems with EHL con-
tacts. A special focus is placed on the solution of the dynamic equilibrium between pres-
sure and deformation. Since the elastic deformation enters the REYNOLDS equation by
the height in the third power, the relation between pressure and elastic deformation is
highly nonlinear and thus, iterative solution techniques need to be applied during time
integration.

The state-of-the-art technique to solve the coupled equations of EHL problems in
MBS, is a partitioned approach, where the hydrodynamic pressure is considered inside
a nonlinear force element, see for instance [61, 136, 189]. Further, in static as well as
dynamic simulations of systems with EHL joints, the Newton-Raphson method is the
favored solution technique for the nonlinear equations, see for instance [124, 135, 136].

In this chapter, alternative solution approaches and techniques are outlined and com-
pared with the existing ones.

Besides the partitioned solution approach, this chapter also outlines a monolithic so-
lution approach. It is achieved by coupling the hydrodynamic equations to the MBS by
an additional algebraic equation using the projection formulation, which leads to a dif-
ferential algebraic equation (DAE) of index 1.

As an alternative to the Newton-Raphson method, quasi-Newton algorithms are pro-
posed for the solution of the nonlinear equations coming from the time-discretization. It
will be shown that the Newton-Raphson method has the drawback of a time-consuming
calculation of the Jacobian – especially in the case of a numeric differentiation, since a
large number of elastic DOFs at the interface is considered. Therefore, partitioned quasi-
Newton methods from FSI are applied to find the pressure-deformation equilibrium.
A method with an inverse approximation of the Jacobian from a least-squares model,
named interface quasi Newton - inverse least squares (IQN-ILS) method, is stated by
DEGROOTE et al. [43]. Further quasi-Newton methods are described by DEGROOTE et al.
[44] and BOGAERS et al. [16], where comparisons of the different methods are also given.
For EHL joints, the partitioned IQN-ILS method is applied amongst others to the static
solution by PROFITO et al. [154]. Here in this chapter, the IQN-ILS method of DEGROOTE

is applied in modified form to the dynamic solution of the EHL problem.
Section 5.1 outlines the partitioned and the DAE formulation for the incorporation of

the hydrodynamic equations into a MBS. Solution strategies by the simplified Newton
and the IQN-ILS method are proposed.

Section 5.2 compares and discusses the different solution approaches and techniques
for a numerical example.

It is noted that main parts of the following sections are published in the article of
KRINNER et al. [110].

77
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5.1 Formulations and time discretization

In this section, two different formulations for the incorporation of the pressure distri-
bution into an arbitrary mechanical system are presented. The first one is a partitioned
formulation, in which the hydrodynamic pressure is considered inside a nonlinear force
element, which implies a staggered solution strategy for the dynamic equilibrium and
the cavitation problem (Section 5.1.1). The second formulation is a DAE formulation
and accounts for the cavitation problem in a monolithic manner using the projection for-
mulation. This is possible since with the projection formulation of the cavitation prob-
lem the iterations can be computed with a tangent matrix. It will be shown, that the
DAE formulation is well applicable for both the steady-state (Section 5.1.2) and the mass-
conservative cavitation condition (Section 5.1.3).

The dynamic equations of motion are discretized in time by a generalized-α method [8,
35]. This integration scheme, which belongs to the class of NEWMARK integrators, is cho-
sen because it introduces damping for the parasitic high frequencies in the solution while
affecting only marginally the important lower frequencies.

For each of the formulations, an adequate solution technique is proposed: For the par-
titioned incorporation, a simplified Newton method as well as a quasi-Newton method
are adapted to the solution of the nonlinear system of equations resulting from time dis-
cretization. In detail, it is shown, how the quasi-Newton algorithm of DEGROOTE [43] can
be used in order to avoid calculation of the most time-consuming parts of the Jacobian
during time integration.

For the DAE formulation with the projection function, the simplified Newton method
is presented first. Second, it is shown, how the quasi-Newton algorithm can also be
applied to the DAE formulation.

For the further analysis, the coupled system of Eqs. (3.52) to (3.57) is written in the
following more compact and simplified form:

M(q) q̈ = hr(q, q̇, t) + W p(q) p, (5.1)
0 ≤ p ⊥ ((A(p, q) + B(p, q)) p + b(p, q, q̇)) ≥ 0, (5.2)

where, for simplicity, q̇ = ż is assumed, although considering a transformation matrix
H(q) would be straightforward. For the same reason, constraint equations are not con-
sidered. Further, only hydrodynamic forces due to the pressure in the normal direction
are considered and viscous forces neglected. However, their consideration would be
straightforward. The force direction matrix of the pressure is denoted by W p(q). The
vector hr summarizes all remaining non-hydrodynamic forces.

Again, when considering the mass-conservative cavitation condition, the following
two equations are considered instead of Eq. (5.2):

C$(q) $̇ = b$(p, $, q, q̇)− A$(p, $, q) p− B$(q) $ (5.3)

0 ≤ p ⊥
(

f $(p)− $
)
≥ 0. (5.4)

Note that the complementarity condition is formulated for the node values only, without
loss of generality.

For the further analysis in this chapter, the vector q of generalized coordinates is de-
composed into a vector of generalized coordinates of the global DOFs (subscript r) de-
scribing the global motion of the bodies and a vector of the elastic DOFs (subscript el)
describing the deformation of the bodies:

q =

(
qr
qel

)
.
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Compared to the coordinates of the FFR formulation of Section 3.1.2, the vector qr con-
tains the vectors rR and θ of the motion of the reference frame, while qel represents the
generalized coordinates of the overlayed small deformations.

5.1.1 Partitioned formulation

In the first formulation, the hydrodynamic pressure is considered inside a nonlinear force
element. By defining the vector hHD(q, q̇) = W p(q) p(q, q̇) of hydrodynamic forces, the
pressure p is regarded as an internal algebraic state. It is computed in each call of the
vector hHD by solving the complementarity problem (5.2) for given position and velocity
states by one of the outlined algorithms of Section 2.3.2.

A time discretization of Eq. (5.1) with the generalized-α scheme [8, 35] can be sum-
marized as follows:

M i+1 q̈i+1 = hr,i+1 + hHD,i+1, (5.5)
(1− αm) ai+1 + αm ai = (1− α f ) q̈i+1 + α f q̈i, (5.6)

qi+1 = qi + ∆tq̇i + ∆t2 [(0.5− β) ai + β ai+1], (5.7)
q̇i+1 = q̇i + ∆t [(1− γ) ai + γ ai+1], (5.8)
q0 = q(0), q̇0 = q̇(0), (5.9)

q̈0 = M−1
0 (hr,0 + hHD,0), a0 = q̈0. (5.10)

Here, qi is the vector of generalized coordinates at time-step ti, q̇i is the vector of general-
ized velocities, q̈i is the vector of generalized accelerations, ai is the vector of acceleration-
like auxiliary variables and ∆t is the time-step size. Equations (5.5) to (5.8) have to be
solved in each time-step by considering the starting conditions Eqs. (5.9) and (5.10) at
t = 0.

By eliminating q̇i+1, q̈i+1 and ai+1, the four Eqs. (5.5) to (5.8) can be reduced to one
equation for the unknown discretized generalized coordinates qi+1. This leads to the
following nonlinear residual equation for qi+1 at the new time-step ti+1:

R1(qi+1) = M i+1q̈i+1(qi+1)− hr,i+1 − hHD,i+1 = 0, (5.11)

where ai+1, q̇i+1 and q̈i+1 are functions of qi+1:

ai+1 = f a(qi+1) =
1

∆t2β
[qi+1 − qi − ∆t q̇i − ∆t2 (0.5− β) ai], (5.12)

q̇i+1 = f q̇(qi+1) = q̇i + ∆t [(1− γ) ai + γ ai+1], (5.13)

q̈i+1 = f q̈(qi+1) =
1

1− α f
[(1− αm)ai+1 + αmai − α f q̈i]. (5.14)

The generalized-α scheme offers second order behavior by defining the coefficients

αm =
2ρ∞ − 1
ρ∞ + 1

, α f =
ρ∞

ρ∞ + 1
,

γ =
1
2
− αm + α f , β =

1
4
(1− αm + α f )

2,

where the numerical dissipation can be controlled by the spectral radius ρ∞ ∈ [0, 1] at the
high frequency limit.

For the residual (5.11), the Jacobian S1 (also known as iteration matrix) is calculated
as follows:

S1 =
∂R1

∂q
= M

1− αm

(1− α f )∆t2β
+ Ct

γ

∆tβ
+ Kt, (5.15)
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where Kt =
∂(Mq̈−hr−hHD)

∂q is the tangent stiffness matrix and Ct =
∂(−hr−hHD)

∂q̇ is the tan-
gent damping matrix. With the iteration matrix, the nonlinear residual Eq. (5.11) can be
solved by Newton-Raphson iterations with iteration index k:

Sk
1,i+1∆qk

i+1 = −Rk
1,i+1

qk+1
i+1 = qk

i+1 + ∆qk
i+1.

According to [8, 23], a scaled form S̄1∆q̄ = −R̄1 with S̄1 = DL1S1DR1, ∆q̄ = D−1
R1 ∆q and

R̄1 = DL1R1 can be used, where the preconditioning matrices

DL1 = β∆t2 I, DR1 = I

with the identity matrix I ensuring optimal conditioning of the Jacobian and avoiding
sensitivity to perturbations of the solution. For this formulation without algebraic equa-
tions, this scaling has no effect, but an extension of it will be outlined in Section 5.1.2.

Note that this formulation is called partitioned because the pressure is always cal-
culated for given position and velocity states qk

i+1 and q̇k
i+1, respectively, by solving the

complementarity problem. There is no strong coupling between the dynamic equations
of motion and the cavitation problem in a way that the change of position and velocity
states would affect the change of pressure. Due to this partitioned formulation, all the so-
lution techniques have in common that there is an outer global iteration loop for fulfilling
the dynamic equilibrium and an inner iteration loop for the solution of the steady-state
cavitation problem.

In the next two subsections, two alternative solution techniques beside the Newton-
Raphson method are presented in order to find the discretized dynamic equilibrium
in each time-step more efficiently. The first one is the well-known simplified Newton
method, the second one is a quasi Newton method.

Simplified Newton method

The simplified Newton method does not update the Jacobian in each iteration, meaning
Sk

i+1 = S0
i+1. Compared to the Newton-Raphson method, it has the benefit of calculating

the Jacobian only once per time-step. However, since for EHL problems a large number
of elastic DOFs at the interface is required, the calculation of the derivatives ∂hHD

∂qel
and

∂hHD
∂q̇el

of the hydrodynamic forces in Eq. (5.15) can be either cumbersome, if it is done
analytically, or time-consuming, if it is done numerically.

In the next subsection, a quasi-Newton method is applied in order to completely
avoid the calculation of derivatives wrt. the elastic degrees of freedom.

IQN-ILS method

In [43] a quasi-Newton method is proposed, which approximates the inverse Jacobian
from a least-squares model during the iteration and is therefore called IQN-ILS method.
Its application to the static solution of EHL contacts is shown in [154]. Here, it is applied
in a different form to the dynamic solution process. A matrix-free implementation is
described for the following form of the residual with its linearization:

R(q) = 0 → Sk∆qk + R(qk) = 0. (5.16)

From here on, the subscript i + 1 of the time step number is dropped to avoid lengthy
notations. In short, the IQN-ILS method can be described by the following steps:

1. Estimate q̃k = qk − R(qk) from the residual, i. e. by a steepest descent step.
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2. Set up matrices (by abbreviating Rk = R(qk))

V k = [∆Rk−1 ∆Rk−2 · · · ∆R1 ∆R0], where ∆Ri = Ri − Rk

W k = [∆q̃k−1 ∆q̃k−2 · · · ∆q̃1 ∆q̃0], where ∆q̃i = q̃i − q̃k

3. Calculate new direction ∆qk = W kαk − Rk with

αk = (V kT
V k)−1V kT

(−Rk)

corresponding to a least-square approximation. Note that this calculation is more
stable when using a QR-decomposition of V k.

4. Update qk+1 = qk + ∆qk and k = k + 1.

Note that without calculating αk in step 3 (i. e. αk = 0), the IQN-ILS method would result
in a steepest descent method. Hence, the original method of DEGROOTE enriches the
search direction of the steepest descent with search directions of previous iteration steps,
which are optimal in a least-squares sense.

In this work the author proposes to modify the original IQN-ILS method by consid-
ering a preconditioned or scaled residual and defines

Rk
scal =

(
S̃0
)−1

R(qk) (5.17)

to include information used in the simplified Newton. For that, the initial guess q̃k of
each IQL-ILS iteration is computed from the simplified Newton (and not from a steepest
descent estimate) using the form:

q̃k = qk − Rk
scal . (5.18)

For the residual (5.17), the incomplete Jacobian S̃1 contains all entries except the deriva-
tives ∂hHD

∂qel
and ∂hHD

∂q̇el
:

S̃1 = M
1− αm

(1− α f )∆t2β
+ C̃t

γ

∆tβ
+ K̃t, (5.19)

with the incomplete tangential stiffness matrix K̃t =
∂(Mq̈−hr)

∂q + ∂(−hHD)
∂qr

and the incom-

plete tangential damping matrix C̃t =
∂(−hr)

∂q̇ + ∂(−hHD)
∂q̇r

. This means that only the hydrody-
namic stiffness and damping coefficients related to the global rigid motion of the components are
considered. Due to the preconditioned residual (5.17), the convergence properties of the
quasi-Newton method are increased. A scheme of the quasi-Newton algorithm is pro-
posed in Algorithm 1. For the first quasi-Newton step a relaxation with factor ω for the
state vector q is used, as the matrices V k and W k need at least one column. If the global
tolerances cannot be fulfilled within kmax iterations, the algorithm is restarted with a re-
laxation factor ω/2. The prediction step of the original IQN-ILS method [43] is replaced
by the prediction step of the generalized-α scheme on position level [8], leading:

a0
i =

1
1− αm

(α f q̈i−1 − αm ai−1),

q0
i = qi−1 + ∆t q̇i−1 + ∆t2 [(0.5− β) ai−1 + β a0

i ].

With Algorithm 1, the calculation of the derivatives of the hydrodynamic forces with
respect to the elastic degrees of freedom at the interface is completely circumvented.
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Algorithm 1 IQN-ILS method for partitioned formulation

1: q0 = q(0), q̇0 = q̇(0)
2: a0 = q̈0 = M−1

0 (hr,0 + hHD,0)
3: k = 0
4: for i = 1 to number time-steps do
5: a0

i = 1
1−αm

(α f q̈i−1 − αm ai−1)

6: q0
i = qi−1 + ∆t q̇i−1 + ∆t2 [(0.5− β) ai−1 + β a0

i ]

7: Calculate Jacobian S̃0
i by Eq. (5.19) and Residual R0

i by Eq. (5.11)
8: Calculate R0

scal,i by Eq. (5.17)
9: Estimate q̃0

i by Eq. (5.18)
10: ω = 1
11: while ω ≥ ωmin do
12: q1

i = q0
i −ωR0

scal,i
13: k = 1
14: while |Rk−1| > tol and k ≤ kmax do
15: Calculate Residual Rk

i by Eq. (5.11) and scaled Residual Rk
scal,i by Eq. (5.17)

16: Estimate q̃k
i by Eq. (5.18)

17: Update Vk with Rk
scal,i and Wk with q̃k

i
18: Solve Vkαk = −Rk

scal,i using QR-decomposition
19: ∆qk

i = Wkαk − Rk
scal,i

20: qk+1
i = qk

i + ∆qk
i

21: k = k + 1
22: end while
23: ω = ω/2
24: if |Rk−1| ≤ tol and k ≤ kmax then
25: qi = qk

i
26: Update ai, q̇i, q̈i by Eqs. (5.12) to (5.14)
27: break
28: end if
29: end while
30: end for

5.1.2 DAE formulation by projection function

For a monolithic solution strategy, the projection formulation (2.64) of the steady-state
cavitation problem is used to couple the pressure by an additional algebraic equation
to the dynamic equations of motion. In contrast to the state-of-the-art formulation, the
pressure p is now an explicit system variable:

M(q) q̈ = hr(q, q̇, t) + W p(q) p, (5.20)
p = projR+

0
[p− r ((A(p, q) + B(p, q)) p− b(p, q, q̇))], r > 0. (5.21)

The resulting DAE is of index 1. With this formulation, the dynamic equilibrium of forces
and displacements and the solution of the cavitation problem can be found simultane-
ously in a monolithic iteration procedure. Applying the generalized-α scheme for time
integration leads to the following discretized system:

M i+1 q̈i+1 = hr,i+1 + W p,i+1 pi+1, (5.22)

(1− αm) ai+1 + αm ai = (1− α f ) q̈i+1 + α f q̈i, (5.23)

qi+1 = qi + ∆t q̇i + ∆t2 [(0.5− β) ai + β ai+1], (5.24)
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q̇i+1 = q̇i + ∆t [(1− γ) ai + γ ai+1], (5.25)
pi+1 = projR+

0
[pi+1 − r

(
(Ai+1 + Bi+1) pi+1 − bi+1

)
], r > 0, (5.26)

with similar starting conditions (5.9) and (5.10) and a consistent pressure starting con-
dition p(0) = p0. In contrast to Eqs. (5.5) to (5.8), the pressure pi+1 and the algebraic
Eq. (5.26) are now added explicitly. W p,i+1 is the direction matrix of the pressure. By
using Eqs. (5.12) to (5.14) for eliminating q̇i+1, q̈i+1 and ai+1, the following residual for
qi+1 and pi+1 has to be solved for a time-step ti+1:

R2(qi+1, pi+1) =

(
Rq

Rp

)
=

(
M q̈i+1(qi+1)− hr,i+1 −Wp,i+1 pi+1

pi+1 − projR+
0
[pi+1 − r ((A + B) p− b)i+1]

)
!
= 0,

(5.27)

with following row-wise evaluation of Rp (suppressing the index i + 1):

Rp

∣∣∣
row j

=

r ((A + B) p− b)
∣∣
row j if [p− r ((A + B) p− b)]

∣∣∣
row j

> 0,

p
∣∣
row j else

.

The Jacobian S2 of the residual (5.16) can be derived as follows:

S2 =
∂R2

∂(q, p)
=

M (1−αm)
(1−α f )∆t2β

+ Ct
γ

∆tβ + Kt −W p,i+1

∂Rp
∂q̇

γ
∆tβ +

∂Rp
∂q

∂Rp
∂p

 , (5.28)

where Kt =
∂(Mq̈−hr−W p p)

∂q is the tangent stiffness matrix and Ct =
∂(−hr)

∂q̇ is the tangent
damping matrix. The derivations of Rp have to be evaluated row-by-row and are given
in detail by:

∂Rp

∂q

∣∣∣
row j

=

r
(

∂((A+B) p−b)
∂q

) ∣∣
row j if [p− r ((A + B) p− b)]

∣∣∣
row j

> 0,

0 else
, (5.29)

∂Rp

∂q̇

∣∣∣
row j

=

r
(
− ∂b

∂q̇

) ∣∣
row j if [p− r ((A + B) p− b)]

∣∣∣
row j

> 0,

0 else
, (5.30)

∂Rp

∂p

∣∣∣
row j

=

r
(

∂((A+B) p)
∂p

) ∣∣
row j if [p− r ((A + B) p− b)]

∣∣∣
row j

> 0,

I
∣∣
row j else

. (5.31)

Motivated by [23], for the DAE formulation, following preconditioning matrices are pro-
posed:

DL2 =

[
β∆t2 I 0

0 β∆t2 I

]
, DR2 =

[
I 0
0 1

β∆t2 I

]
.

This rescaling is necessary, since the generalized displacements are chosen as the active
variables in the generalized-α scheme. If the generalized accelerations were to be cho-
sen as active variables, this rescaling would not be necessary, as both, the dynamic and
pressure equations would be on acceleration level. Further, for an optimal scaling of the
residual Rp, it is proposed to choose the projection parameter r = 1/σmax, with σmax being
the largest eigenvalue of matrix A.

In the following two subsections, two monolithic solution techniques are presented
for the DAE formulation: The simplified Newton method has again the drawback, that
the derivations of the pressure equation with respect to the elastic displacement and ve-
locity variables are computationally expensive. Therefore, a new solution technique is
proposed by applying the IQN-ILS method for the updating of the state increment.
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Simplified Newton method for DAE formulation

The iteration matrix is given by Eq. (5.28). For the simplified Newton method, following
iteration matrix is recommended at iteration step k:

Sk
2 =

[
S0

qq S0
qp

S0k
pq Sk

pp

]
, (5.32)

where the entries S0
qq and S0

qp as well as the derivatives
(

∂b
∂qel

)0
,
(

∂((A+B) p)
∂qel

)0
and

(
∂b

∂q̇el

)0

in the derivatives (5.29) and (5.30) of S0k
pq are calculated only once per time-step and only

the entries S0k
pq and Sk

pp (Eq. (5.31)) are updated in each iteration due to the change of the
if-else condition of the projection function.

The computationally expensive part is still the calculation of the derivatives ∂b
∂qel

,
∂((A+B) p)

∂qel
and ∂b

∂q̇el
, as vector b and square matrices A and B are calculated on the fluid

mesh and qel and q̇el include the large number of elastic DOFs at the interface.

IQN-ILS method for DAE formulation

An alternative monolithic solution technique using the IQN-ILS method is presented in
order to avoid the calculation of the derivations with respect to the elastic DOFs.

Similar to Eq. (5.18) of Algorithm 1, a linearization of the residual (5.16) with an in-
complete Jacobian is used for the estimation of (q̃k, p̃k):(

Rq
Rp

)
!
= 0 →

(
q̃k

p̃k

)
=

(
qk

pk

)
−
(

S̃k
2

)−1
Rk

2︸ ︷︷ ︸
R2,scal

. (5.33)

The author proposes the following incomplete Jacobian for the IQN-ILS method:

S̃k
2 =

S0
qq S0

qp

S̃0k
pq Sk

pp

 , (5.34)

where again information of the simplified Newton is included. In contrast to the iteration

matrix of Eq. (5.32), only the derivatives
(

∂b
∂qr

)0
,
(

∂((A+B) p)
∂qr

)0
and

(
∂b
∂q̇r

)0
wrt. the global

generalized coordinates (qr, q̇r) are used in the derivatives of Eqs. (5.29) and (5.30) of S̃0k
pq.

Using the incomplete iteration matrix (5.34), an algorithm for the DAE formulation
with the IQN-ILS method is outlined, see Algorithm 2. The scheme of the algorithm is
shown in Fig. F.1 of Appendix F.1 and has a framework similar to that of Algorithm 1.
During the iterations, only the parts S̃0k

pq and Sk
pp of the incomplete Jacobian are updated

due to the change of the if-else condition of the projection function. Once, a new estimate
q̃k is calculated, the state vector is updated by the IQN-ILS method. The pressure is
advanced simply by pk+1 = p̃k.

5.1.3 DAE formulation for mass-conservative cavitation condition

In the previous two subsections, only a steady-state cavitation condition is considered,
which is not mass-conservative in the cavitation region. In this subsection, the DAE
formulation of Section 5.1.2 is extended for the mass-conservative cavitation condition.
As shown in Sections 2.3.1 and 2.3.3, a mass-conservative formulation is achieved by
integrating the density and modifying the system of Eqs. (5.20) and (5.21) as follows:

M(q) q̈ = hr(q, q̇, t) + W p(q) p, (5.35)
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Algorithm 2 IQN-ILS method for DAE formulation

1: q0 = q(0), q̇0 = q̇(0), p0 = p0
2: a0 = q̈0 = M−1

0 hr,0
3: k = 0
4: for i = 1 to number time-steps do
5: a0

i = 1
1−αm

(α f q̈i−1 − αm ai−1)

6: q0
i = qi−1 + ∆t q̇i−1 + ∆t2 [(0.5− β) ai−1 + β a0

i ]
7: p0

i = pi−1

8: Calculate Jacobian S̃0
i by Eq. (5.34) and Residual R0

i by Eq. (5.27)
9: Calculate R0

scal,i by Eq. (5.33)
10: Estimate q̃0

i and p̃0
i by Eq. (5.33)

11: ω = 1
12: while ω ≥ ωmin do
13: q1

i = q0
i −ωR0

scal,i
14: p1

i = p̃0

15: k = 1
16: while (|Rk−1

q | > tolq or |Rk−1
p | > tolp) and k ≤ kmax do

17: Calculate Residual Rk
i by Eq. (5.27)

18: Update terms S̃0k
pq and S̃k

pp of Jacobian S̃k
i by Eq. (5.34)

19: Calculate scaled Residual Rk
scal,i = (S̃k

i )
−1Rk

i by Eq. (5.33)
20: Estimate q̃k

i and p̃k
i by Eq. (5.33)

21: Update Vk with Rk
scal,i and W k with q̃k

i
22: Solve V kαk = −Rk

scal,i using QR-decomposition
23: ∆qk

i = W kαk − Rk
scal,i

24: qk+1
i = qk

i + ∆qk
i

25: pk+1
i = p̃k

i
26: k = k + 1
27: end while
28: ω = ω/2
29: if |Rk−1

q | ≤ tolq and |Rk−1
p | ≤ tolp and k ≤ kmax then

30: qi = qk
i and pi = pk

i
31: Update ai, q̇i, q̈i by Eqs. (5.12) to (5.14)
32: break
33: end if
34: end while
35: end for

$̇ = −C$(q)−1 [A$(q, $) p + B$(q) $− b$(q, q̇, $)
]

, (5.36)
p = projR+

0
[p− r ( f $(p)− $)], r > 0, (5.37)

where now the density $ is a further state variable and the additional algebraic equation
for the pressure is formulated by the condition (5.4). The set of dynamic equations of
motion (5.35) is discretized by the generalized-α scheme and leads to similar Eqs. (5.22)
to (5.25). For the density, a time-discretization by the θ-rule is applied, where the pressure
is considered fully implicit. This leads to following two equations, which have to replace
Eq. (5.26) for a mass-conservative representation:

$i+1 = $i + ∆t ((1− θ)C−1
$,i+1 (b$,i+1 − B$,i+1 $i+1) + θ C−1

$,i (b$,i − B$,i $i))

− ∆t C−1
$,i+1 A$,i+1 pi+1, (5.38)
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pi+1 = projR+
0
[pi+1 − r ( f $(pi+1)− $i+1)], r > 0. (5.39)

This scheme can maintain the second order behavior of the generalized-α scheme for the
density by setting θ = 1/2. In order to ensure the non-smooth algebraic Eq. (5.39), the
pressure has to be considered fully implicit. This leads to a first order convergence of the
pressure12.

The discretized system with the unknown state vector qi+1, pressure pi+1 and den-
sity $i+1 can be solved efficiently when inserting Eq. (5.38) in Eq. (5.39), leading to the
following pressure residual R̂p:

R̂p = pi+1 − projR+
0
[pi+1 − r (Âi+1 pi+1 − b̂i+1)], r > 0, (5.40)

with the abbreviations

b̂i+1 = −
[

f $(pi+1)− $i − ∆t (1− θ)C−1
$,i+1 (b$,i+1 − B$,i+1 $i+1)

+ ∆t θ C−1
$,i (b$,i − B$,i $i)

]
,

Âi+1 = ∆t (C−1
$,i+1 A$,i+1).

Further, the following density residual R$ has to be solved:

R$ = $i+1 − $i − ∆t (1− θ)C−1
$,i+1 (b$,i+1 − B$,i+1 $i+1)

− ∆t θ C−1
$,i (b$,i − B$,i $i) + ∆t C−1

$,i+1 A$,i+1 pi+1.

During the solution process, the derivation ∂R̂p
∂$ can be neglected due to its small sensi-

tivity and an iteration matrix S3 similar to (5.28) can be used during the iterative solution
process, yielding:

S3 =
∂R3

∂(q, p)
=

M (1−αm)
(1−α f )∆t2β

+ Ct
γ

∆tβ + Kt −W p,i+1

∂R̂p
∂q̇

γ
∆tβ +

∂R̂p
∂q

∂R̂p
∂p

 .

As a result, the solution techniques presented in Sections 5.1.2 and 5.1.2 can be well ap-
plied, when the residual (5.40) instead of (5.26) is used. According to Eq. (5.38), the
density has to be updated hand-in-hand with the pressure:

$k+1
i+1 = $k

i+1 + ∆$k
i+1,

with the density increment

∆$k
i+1 =

(
∂Rk

$

∂$

)−1 (
−Rk

$,i+1 −
(

∂Rk
$

∂p

)
∆pk

i+1 −
(

∂R$

∂q̇
γ

∆tβ
+

∂R$

∂q

)
∆qk

i+1

)

being obtained from the linearization of the density residual in the Newton method.
Note that the scaling method of the previous subsection is still valid for the Jacobian

S3 and the residual R3. The only difference is that now the projection parameter has to be
chosen by r = 1/(∆t σ̂max) with σ̂max being the largest eigenvalue of the matrix (C−1A).

1
It is noted that besides the time discretization by the θ-method, also the generalized-α scheme for first order

systems as described by Jansen et. al. [94] and Bruels et. al. [30] or a Runge-Kutta scheme for DAE systems as

described by Hairer and Wanner [79] could be applied to the hydrodynamic equations.

2
The e�ect of the time discretization by the θ-scheme can be considered in the stabilization parameter of Eq. (2.78)

by se�ing σ(e) = h/(θ ∆t) with the fluid height h. However, practical examples showed that τ
(e)
$ becomes to small

for an e�ective stabilization, when considering the time-step size in σ(e)
, see Footnote 4 on page 29.
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5.2 Numerical Example

In this section, the two different cavitation models as well as the different formulations
(partitioned, DAE) with different solution techniques (simplified Newton, IQN-ILS) are
compared for the same simulation model of Section 3.4. However, now a dynamic analy-
sis is performed by considering the radial force of Fr =2.5 kN instead of the static force Fx.
Further, the shaft mass is set now to 10 kg and a compressibility of the density by a factor
a =1e-8 m2/N is added. Global outputs like the maximal pressure and the orbit of the
rotor are used to analyze the physical difference between the steady-state and the mass-
conservative cavitation model. For the numerical analysis of the different formulations
and solution strategies, the number of global iterations, the number of pressure iterations
and the simulation time are compared with each other.

At the beginning of the simulation, the rotor is situated in the center of the bearing
and rotates with constant angular velocity (ω1 =500 rad/s). Due to its weight, the radial
force and the pressure force, the rotor reaches a constant orbit in the bearing after a few
rotations. The simulation time is T =1.4 2π/ω1, a constant time-step size ∆t =1e-4 s is
used. All the simulations are performed with Matlab on a i3-3220 CPU (3,3 GHz, 8 GB
RAM).

In Fig. 5.1, the maximal pressure over time and the orbit of the rotor are plotted for
the steady-state as well as the mass-conservative cavitation model. It can be seen, that
mass conservation does not change the maximal pressure or the orbit significantly as
the change of density is small. However, a tendency to a weaker elasticity in the mass-
conservative cavitation model can be recognized in the orbit of Fig. 5.1 right. The reason
is, that the density wedge term (2.4) influences the mass-flow at the cavitation bound-
ary and as a consequence the maximal pressure differs slightly from the steady-state
cavitation model. In Fig. 5.1 left, it becomes evident, that the maximal pressure of the
mass-conservative model is less smooth. This could be avoided by a finer mesh for this
cavitation model, but it is not realized in order to allow a better comparison of the nu-
merical behavior. For the comparison at one time-step, the pressure distribution of the
steady-state cavitation model is shown in Fig. 5.2, whereas in Fig. 5.3, the pressure and
density distribution of the mass-conservative model are shown.

In the following subsections, the numerical behavior of the formulations and solution
methods are compared. For all the methods, both the complete and the incomplete Ja-
cobian are calculated once by an analytical, element-wise differentiation and once by a
numerical differentiation with a finite difference scheme. It is noted that, in the analytical
case, the calculation of the complete Jacobian is as time-consuming as the calculation of
the incomplete Jacobian.
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Figure 5.1: Maximal pressure (le�) and orbit (right) for steady-state and mass-conservative

cavitation model.
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Figure 5.2: Pressure distribution for steady-state cavitation model at t = 0.0067 s.
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Figure 5.3: Pressure (le�) and density (right) distribution for mass-conservative cavitation

model at t = 0.0067 s.
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5.2.1 Comparison of IQN-ILS and simplified Newton: partitioned formulation

According to Section 5.1.1, the partitioned formulation of a system with an EHL revo-
lute joint is used. The IQN-ILS method is compared with a simplified Newton method
for the solution of the nonlinearity between deformation and pressure. The steady-state
cavitation model is applied.

Figure 5.4 shows the number of iterations of the IQN-ILS and SN method (blue and
gray solid lines) as well as the iterations, which are needed to solve the cavitation prob-
lem of the pressure in the hydrodynamic force element (blue and gray dotted lines). In
Table 5.1, the statistics of the iterations as well as the simulation time are listed.

Comparing both iteration loops, the simplified Newton method needs fewer itera-
tions than the IQN-ILS method. In the case of an analytical calculation of the Jacobian,
the simplified Newton method needs also less simulation time, as the number of evalu-
ations of the pressure force is smaller and there is no difference in the time needed for
the calculation of the Jacobian. Indeed, even though the IQN-ILS uses the approximate
Jacobian (5.19), where only rigid body motion is considered for the hydrodynamic forces,
all elements need to be parsed before computing the tangent matrix for the rigid motion.
However, in the case of a numerical calculation of the Jacobian, the IQN-ILS needs much
less simulation time, as the time-consuming calculation of the derivatives wrt. the elastic
DOFs is avoided and only a finite difference with a rigid motion perturbation is required.
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Figure 5.4: Comparison of number of iterations of simplified Newton and IQN-ILS for parti-

tioned formulation.

number of SN/IQN-ILS iter. number of pressure iter. Sim. time

Sum Mean Min Max Sum Mean Min Max ana. J num. J

SN 498 2.8 1 10 1222 6.9 2 32 651 s 4786 s

IQN-ILS 1315 7.4 4 18 3176 17.9 8 54 1138 s 1350 s

Table 5.1: Comparison of the number of iterations and the computational time for the parti-

tioned formulation.
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5.2.2 Comparison partitioned formulation and DAE formulation: simplified

Newton

In this subsection, the partitioned formulation and the DAE formulation of Sections 5.1.1
and 5.1.2 are compared, respectively. The steady-state cavitation condition is applied.
For both formulations, the simplified Newton method is used as solution technique.

Figure 5.5 shows the number of global iterations for the two formulations (blue and
gray solid lines). For the partitioned formulation, also the iterations, which are needed
to solve the cavitation problem in the hydrodynamic force element, are plotted with blue
dotted lines. For the DAE formulation exists only one iteration loop, in which the dy-
namic equations as well as the cavitation problem are solved. In Table 5.2, the statistics
of the iterations as well as the simulation times are listed.

The results show that the DAE formulation needs approximatively the same number
of iterations in the global loop than the partitioned formulation. As no inner iteration
loop for the cavitation problem is necessary, the simulation time is smaller than for the
partitioned formulation, see Table 5.2. The avoidance of an inner iteration loop also out-
weighs the fact, that the system size of the DAE formulation is higher than the size of the
partitioned formulation.
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Figure 5.5: Comparison of partitioned formulation and DAE formulation using simplified New-

ton.

number of SN iter. number of pressure iter. Sim. time

Sum Mean Min Max Sum Mean Min Max ana. J num. J

part. 498 2.8 1 10 1222 6.9 2 32 651 s 4786 s

DAE 488 2.8 2 4 - - - - 516 s 4688 s

Table 5.2: Comparison of the number of iterations and the computational time for the parti-

tioned and DAE formulation with simplified Newton solution technique.
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5.2.3 Comparison partitioned formulation and DAE formulation: IQN-ILS

The previous Section 5.2.2 shows that a solution strategy, which solves the dynamic equi-
librium and the cavitation problem simultaneously, needs less simulation time. Besides,
Section 5.2.1 reveals that the application of the IQN-ILS method instead a simplified
Newton method works without needing the complete Jacobian. The presented solution
strategy for the DAE formulation of Section 5.1.2 combines these two aspects.

In the following, the IQN-ILS method for the partitioned formulation of Section 5.1.1
is compared with the IQN-ILS algorithm for the DAE formulation with steady-state cav-
itation condition.

Figure 5.6 shows the number of iterations of the IQN-ILS method for the two formu-
lations (blue and gray solid lines) as well as the number of pressure iterations for the
partitioned formulation (blue dotted line). In Table 5.3, the statistics of the iterations as
well as the simulation times are listed.

The results show that the DAE formulation needs a smaller number of global itera-
tions as the partitioned formulation. Further, by the DAE formulation, the pressure is
updated hand in hand with the deformation and needs no inner iteration loop like in
the partitioned formulation. These two effects lead to the smaller simulation time for the
DAE formulation.
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Figure 5.6: Comparison of number of iterations of partitioned formulation and DAE formulation

using IQN-ILS method.

number of IQN-ILS iter. number of pressure iter. Sim. time

Sum Mean Min Max Sum Mean Min Max ana. J num. J

part. 1315 7.4 4 18 3176 17.9 8 54 1138 s 1350 s

DAE 1211 6.8 4 18 - - - - 870 s 4688 s

Table 5.3: Comparison of the number of iterations and the computational time for partitioned

formulation and DAE formulation with IQN-ILS solution technique.
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5.2.4 DAE formulation with mass-conservative cavitation

The solution strategy with the IQN-ILS method for the DAE formulation of Section 5.1.2
is also applicable for the mass-conservative cavitation problem. In the following it is
compared with the simplified Newton method.

Figure 5.7 shows the numbers of global iterations for the two methods and Table 5.4
contains the statistics of the comparison.

As the simplified Newton method uses the complete Jacobian, it needs less global
iterations. When the Jacobian is calculated analytically, the simulation time of the simpli-
fied Newton method is smaller, as the number of evaluations of the pressure calculations
is smaller and there is no difference in the time needed for the calculation of the Jacobian.
The advantage of the IQN-ILS method becomes evident, when the Jacobian is calculated
numerically. Then, with the IQN-ILS method, the simulation time is reduced by more
than 80%.
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Figure 5.7: Comparison of the number of iterations of simplified Newton and IQN-ILS method

for DAE formulation with mass-conservative cavitation condition.

number of SN/IQN-ILS iter. Sim. time

Sum Mean Min Max ana. J num. J

SN 581 3.3 2 6 598 s 5621 s

IQN-ILS 1013 5.7 4 10 864 s 1101 s

Table 5.4: Comparison of the number of iterations and the computational time for simplified

Newton and IQN-ILS method for DAE formulation with mass-conservative cavitation condition.
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5.2.5 Time convergence and scaling

This section analyzes the convergence of the error of the time discretization schemes as
well as the effect of the scaling of the matrices during the solution process.

For the mechanical system with the steady-state SWIFT-STIEBER cavitation condition,
the generalized-α scheme is applied to the resulting DAE of index 1, see Section 5.1.2. Due
to the generalized-α scheme, a second order time-convergence of the system variables is
expected. Figure 5.8(a) shows the convergence of the error of the time discretization for
this simulation example. A solution, which is calculated with a very small time-step size,
serves as a reference solution. Clearly, the O(∆t2) convergence of both the generalized
coordinates and the pressure variable can be recognized.

For the mechanical system with the transient JFO cavitation condition, the generalized-
α scheme for the mechanical system is combined with an additional time-discretization
of the REYNOLDS equation, see Section 5.1.3. In detail, a θ-scheme is applied to the den-
sity equation, where the pressure is considered always purely implicit. In Figs. 5.8(b)
and 5.9(a), the convergence of the errors in the state variables are analyzed for θ = 0.5 and
θ = 1, respectively. In addition, a time-discretization of the density by a purely second
order generalized-α scheme for first order systems, as described by BRUELS et. al. [30],
is analyzed and its error decays can be seen in Fig. 5.9(b). It becomes clear that inde-
pendently of using a first or a second order time-discretization scheme for the density
equation, the convergence of the density and the pressure variable is always O(∆t). The
reason for that is the complementarity condition between density and pressure, which
can be interpreted as a non-smooth right-hand-side of the density differential equation
and leads to jumps in the density variable. For such systems, the convergence order is al-
ways one, independently of the order of the time stepping scheme, as outlined by ACARY

and BROGLIATO [1]. Further, it becomes obvious that the O(∆t) convergence of the error
in the density and pressure variable respectively, affects also the convergence of the error
in the generalized coordinates.

The effect of the scaling of the matrices is demonstrated for this simulation example
by Fig. 5.10. For the system with the SWIFT-STIEBER cavitation condition, the condition
number of the Jacobian S2 is evaluated at a certain time point of the simulation, which
is reached by using different time-step sizes. Figure 5.10 shows that without scaling,
the condition number is high and increases with decreasing time-step size. In contrast,
when using the scaling method, the condition number remains constant with decreasing
time-step size and is much smaller than the condition number of the unscaled Jacobian.
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Figure 5.8: Decay of time discretization error for system with Swift-Stieber and JFO cavitation
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Figure 5.10: Condition number for system with Swift-Stieber cavitation condition.

5.2.6 Concluding remarks

In this chapter, the projection function is used to couple different cavitation conditions of
the hydrodynamic pressure to a MBS by a set of algebraic equations, leading to a DAE
of index 1. This new formulations enable a monolithic solution strategy for dynamic
equilibrium and cavitation zones and need no inner iteration loop for the pressure calcu-
lation like a partitioned formulation. By avoiding this inner iteration loop a reduction of
simulation time can be reached (Section 5.2.2).

Further, it is demonstrated how the calculation of the complete Jacobian of a simpli-
fied Newton method can be avoided by the use of a quasi-Newton method with a partial
linearized residual. As a consequence, in contrast to the simplified Newton method, the
quasi-Newton method is still efficient, when a numeric differentiation formula for the
(incomplete) Jacobian is used. Algorithms for the partitioned formulation as well as for
the DAE formulation with the projection function are proposed.

In conclusion, the projection formulation combined with the quasi-Newton method
(Section 5.1.2) is the most efficient solution strategy for the time-integration of the here
presented system with EHL revolute joint, when the Jacobian is calculated numerically.



Chapter 6

Numerical-experimental case studies

This chapter presents different case studies of mechanical systems with (elasto-)hydro-
dynamic lubricated contacts and is aimed at the discussion of differences in the physical
modeling but also in the numerical treatment of the systems. The outlined methods of
the previous chapters are applied during the simulation process and their capabilities are
highlighted.

In Section 6.1, a slider-crank mechanism is investigated as a first case study. Different
lubrication models, the influence of the flexibility of the structure or the effect of friction
and contact pressure are analyzed amongst other effects.

In Section 6.2, an experimental study of a rotor test rig with a journal bearing compo-
nent is presented. A special focus is placed on the identification of the misalignment of
the rotor axes by an adequate simulation model.

Section 6.3 treats the classical EHL point contact. A comparison with a reference so-
lution is given and the application of the quasi-Newton method is investigated.

6.1 Slider-crank mechanism revised

This section focuses on physical and numerical aspects of the slider-crank mechanism
simulation example, which is already introduced in Section 4.4.1. The aim is to show
the main differences in the fluid modeling and to give an understanding overview of the
effects, which influence the dynamics of the mechanical system. Further, the stabilization
technique of the FE discretization is demonstrated.

Figure 6.1 shows in the upper half the already described simulation model of the
slider-crank mechanism with the 3D elastic connecting rod, while it shows on the lower
half the same mechanism, but now with a rigid connecting rod. The parameters of the
simulation model are identical to those of Table 4.1, as far as they are not specified differ-
ently.

In the following, comparisons are given for the mechanical model with either an elas-
tic or a rigid connecting rod, for the fluid model with either the SWIFT-STIEBER or the
JFO cavitation condition as well as for the fluid model with either constant or pressure
dependent fluid properties. Further, the physical effect of the contact pressure and the
numerical effect of the SUPG stabilization for the JFO cavitation condition are demon-
strated.

Swift-Stieber and JFO cavitation condition with rigid or elastic connecting rod

This section outlines the difference between the steady-state SWIFT-STIEBER (Section 2.3.2)
and the mass conservative JFO (Section 2.3.3) cavitation condition for the slider-crank
mechanism for both cases of a rigid and an elastic connecting rod.

95
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Figure 6.1: Slider-crank mechanism with flexible connecting rod and lubricated joint.

In Fig. 6.2, the maximal pressure and the minimal height over the time for the first
rotation are shown for both cavitation and rod models. In Fig. 6.2(a), it can be seen that a
rigidly modeled connecting rod leads to higher pressures than an elastically modeled rod
does. The reason is that the flexibility of the surface has a smoothing effect on the local
pressure distribution, leading to smaller but wider pressure profiles than a rigid surface
does. Further, the minimal height is smaller in the case of the flexible rod than in the
case of the rigid rod, see Fig. 6.2(b). The reason is that due to the flexibility, the surface
deforms parabolically in axial direction, which leads to a small distance between crank
shaft and rod surface at the axial ends of the bearing.

The physical difference between the two cavitation models becomes also clear in
Fig. 6.2(a). For the model with the rigid rod, the JFO cavitation model gives at the high
pressure phase between t = 6 ms to t = 8 ms a higher maximum pressure value than
the SWIFT-STIEBER model. The reason is that in contrast to the SWIFT-STIEBER condi-
tion, the JFO condition fulfills mass-conservation at the fluid film reformation boundary.
This leads to a higher pressure gradient at the reformation boundary and consequently
to the higher pressure value in the highly loaded zone. This observation agrees with the
disadvantage of the SWIFT-STIEBER model of not modeling the reformation boundary
properly, as stated in Section 2.3.1.

A further difference between the two cavitation models arises in the low pressure
zone between t = 2 ms to t = 4 ms in Fig. 6.2(a). Figure 6.3 depicts the corresponding
pressure profiles of the two cavitation models at the middle of the unwrapped bearing
shell at t = 2.4 ms, correlating to a crank angle of about 68◦. For the JFO model, the den-
sity profile is also shown in Fig. 6.3(b). The JFO cavitation model shows two separated
cavitation zones. In contrast, the SWIFT-STIEBER model assumes the larger cavitation
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Figure 6.2: Comparison of simulation outputs for di�erent fluid and rod models.
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Figure 6.3: Comparison of pressure distributions of Swift-Stieber and JFO model at t = 2.4 ms.

zone already to be vanished, as can be recognized due to the positive pressure zone in
Fig. 6.3(a). As a consequence, the pressure profile in the JFO model has less space for
its development in angular direction than the profile of the SWIFT-STIEBER model and
hence, larger pressure values arise for the JFO model.

Swift-Stieber and JFO cavitation condition with pressure dependent fluid prop-

erties with rigid or elastic connecting rod

In the previous section, constant fluid properties are assumed. Now, the effect of pressure
dependent density and viscosity is investigated. Therefore, it is assumed that the density
depends on the pressure by the DOWSON-HIGGINSON formula (2.10) with coefficients
a = 0.6e− 9 m2/N and b = 1.7e− 9 m2/N and the viscosity depends on the pressure by the
ROELANDS formula (2.9) with coefficients Z1 = 0.39, cp = 1.03e8 N/m2 and η∞ = 6.31e−
5 kgm/s. The coefficient of both formulas are taken from the work of WIJNANT [199].

In Fig. 6.4, the maximal pressure and the minimal height for the two cavitation and
rod models respectively, are depicted for pressure dependent fluid properties. Figure 6.4(a)
shows the maximal pressure for the first rotation; its difference to the maximal pressure
of Fig. 6.2(a) is the largest when the pressure level is highest. Similarly, Fig. 6.4(b) shows
the minimal height for the first rotation; its difference to the minimal height of Fig. 6.2(b)
is the largest when the pressure level is highest. The explanation is as follows: Since, the
viscosity increases stronger with the pressure than the density, the diffusion coefficient κ
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of Eq. (2.13) of the POISEUILLE flow in Eq. (2.1) decreases with rising pressure. By means
of flow conservation it follows that the pressure gradient has to increase faster with rising
pressure as it does for constant fluid properties, since κ decreases. As a consequence, the
local pressure distributions are sharper for the pressure dependent fluid properties lead-
ing to higher pressure values. Further, since κ is in average smaller than it is for constant
fluid properties, the minimal height is usually larger.
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Figure 6.4: Comparison of simulation outputs with pressure dependent fluid properties.

Swift-Stieber cavitation condition with and without contact pressure with elas-

tic connecting rod

In this section, the effect of mixed lubrication, described in Section 2.5.1, is analyzed for
the slider-crank mechanism with elastic rod and SWIFT-STIEBER cavitation condition.

In the following, the contact pressure according to Eq. (2.89) is added to the fluid
pressure, which is solved by the modified REYNOLDS equation (2.88). The average fluid
height h̄t is described by a model of WU et. al. [207] by

h̄t =
h
2

(
1 + erf

(
h√
2 σ

))
+

h√
2π

exp
(
−1

2
(h/σ)2

)
,

where h is the nominal fluid height. The surface roughness is chosen as σ=1 µm and
the surface hardness as H = 900e6 N/m2. The tangential shear forces due to the contact
pressure are defined by τc = µc pc with µc = 0.1.

Figure 6.5 shows the maximal pressure without contact pressure as well as the max-
imal fluid and contact pressure respectively, when mixed lubrication is considered. It
becomes clear that the contact pressure becomes active only, when the fluid height is
very small and then, the load is carried both by the fluid and the contact pressure. In
Fig. 6.6, a contour plot of the maximal contact pressure in the bearing is given. By this,
highly loaded regions in the bearing can be determined.

JFO cavitation condition with and without numerical stabilization

This section demonstrates the effect of the SUPG stabilization, when using the JFO cavita-
tion model. As described in Section 2.3.3, an upwind stabilization of the FE discretization
is necessary, since the REYNOLDS equation degenerates in the cavitation zone to a pure
convection dominated equation for the density.
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Figure 6.7 shows a density profile in angular direction of the unwrapped bearing
housing with and without stabilization. It can be seen clearly that numerical oscillations
are avoided, when the SUPG stabilization is considered.
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Figure 6.5: Influence of contact pressure on simulation outputs.
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Figure 6.7: Density distribution with and without SUPG stabilization.
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6.2 Experimental validation of a rotor test rig

This section gives an experimental study of a rotor test rig with a journal bearing com-
ponent. It serves for the comparison of simulation and experimental results and shows
further a method on how to determine misalignment of the rotor shaft in the journal bear-
ing. The following sections are already published in the articles of KRINNER et. al. [105,
106].

Introduction

The dynamic behavior of a rotor system with journal bearings, which operates at steady-
state conditions like a constant rotational speed, strongly depends on its equilibrium po-
sition. At low rotational speeds, the equilibrium between gravity force, stiffness force
and fluid force is found at a larger eccentricity than for higher rotational speeds, mean-
ing that the rotor moves to the bearing center with increasing rotational speed. This fact
is illustrated in Fig. 6.8(a) for the case of a vanishing stiffness force. Figure 6.8(a) shows
the equilibrium eccentricity e between shaft and bearing center in dependency of the
rotational speed Ω, when vertical gravity force and the fluid force are the only acting
forces in the bearing with clearance h0. The well-known GUEMBEL curve arises, see for
instance [64, 68, 174]. In an idealized rotor bearing system, the rotor axis is assumed to be
perfectly aligned with the bearing axis. In this case, the equilibrium position can be calcu-
lated by the equality of gravity, stiffness and fluid force. However, in reality, the rotor axis
can be misaligned in the bearing housing, resulting in a different equilibrium position,
since an additional misalignment force has to be considered in the static force equilib-
rium. As a consequence, misalignment affects the dynamic behavior of the rotor system
and hence, it also needs to be considered in simulation models. To illustrate this fact,
Fig. 6.8(b) sketches the equilibrium eccentricity in dependency of the rotational speed Ω
for the case, in which the rotor stiffness and additionally, a misalignment a between rotor
shaft and bearing axis are considered. It occurs a different curve of equilibrium positions
compared to the curve of Fig. 6.8(a).

Several contributions to a misaligned rotor system can be found in literature: The in-
teraction between misalignment and wear is investigated by an analytical model in [128]
and an experimental study on this interaction is given in [32]. In [182], a theoretical study
on a misaligned shaft due to an external preload force is outlined. Angularly misaligned
bearings are numerically investigated in [15]. In [86], a design of a test rig with a rotor
supported by four journal bearings suitable for the prediction of misalignment is pro-
posed. In [144], simulation models and results for a flexible rotor system with angular
and parallel misalignment are presented.

In the following sections, a rotor test rig with journal bearings is investigated with
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Figure 6.8: Equilibrium eccentricity e in dependency of rotational speed Ω.
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respect to parallel misalignment of rotor and bearing axis. First, a simple rotor model is
applied in order to analyze the misalignment and in a next step, the dynamic behavior of
the test rig due to unbalance can be investigated by further rotor models.

Rotor test rig with two journal bearings

At the Institute of Applied Mechanics, a rotor test rig exists for the investigation of the
interaction of the rotor dynamics with fluid forces coming from a journal bearing or a
seal. In Fig. 6.9, the experimental setup is shown. It consists of an elastic rotor, which
is supported by stiff roller bearings at the two ends. In the middle of the rotor, a rigid
disk rotates in a pressurized journal bearing component system. This system consists
of two identical journal bearings with external pressure support in the center of the two
bearings, see Fig. 6.9. An oil distribution ring ensures an uniform oil flow through the
bearings.

When pressurizing the journal bearing system at zero rotational speed, the rotor is
lifted in an equilibrium position. In the following, this equilibrium position at zero ro-
tational velocity is denoted by the misalignment parameter a. Further, it is assumed for
simplicity that the lifting force due to the external pressure support remains constant in
both its value and directions.

The main properties of the rotor test rig and the journal bearings are listed in Table 6.1.
The bending stiffness of the dry rotor was identified by an operational modal analysis by
determining the first bending eigenfrequency.

pext

bearing housing

oil

journal

rotor

bearings

Figure 6.9: Rotor test rig with journal bearings.

Table 6.1: Properties of the test rig.

parameter value parameter value

rotor mass m 5.0 kg radius bearing R2 50 mm
stiffness rotor c 295 kN/m clearance bearing 170 µm
length rotor 0.60 m length bearing 20 mm
1. eigenfrequ. (dry) 38.6 Hz dyn. viscosity η 0.021 kg m/m2

diameter shaft 15 mm fluid density ρ 880 kg/m3

external pressure pext 2.5 bar

Rotor modeling

In this section, different rotor models are presented for the validation of the experimental
results. As the rotor axis in the test rig is not aligned concentrically to the bearing axis,
misalignment is considered for all models. Further, it will be assumed that the gravity
force is always compensated due to the external pressure support.
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Figure 6.10: Laval rotor with misalignment, preload force and fluid forces.

Four different complex rotor models are introduced. The first one is a LAVAL rotor
with misalignment and fluid forces. This model will be used for the experimental valida-
tion of equilibrium positions of the rotor bearing system at different rotational speeds.

The further models are a LAVAL rotor with linearized fluid forces, a complete elas-
tic rotor model with nonlinear and linearized fluid forces, respectively. These models
will be used for comparisons with the first rotor model in order to discuss their model
discrepancies with respect to experimental measurements.

Model A1: Laval rotor with misalignment and fluid forces

The first model is a LAVAL rotor as depicted in Fig. 6.10. The rotor is characterized by
the mass m and the stiffness c and its deflection r is described in the inertia frame, which
is located in the center of the undeformed shaft. The misalignment is considered by
the vector a as relative alignment between bearing axis and rotor axis at zero rotational
speed. Then, following dynamic equations can be stated:

m r̈ + c r = 2 F f (r, ṙ, Ω, a) + F p + Fg + Fext, (6.1)

where F f is the nonlinear fluid force of one journal bearing depending on the rotational
speed Ω and the misalignment a, F p is the preload force coming from the external pres-
sure support and Fg is the gravity force. In addition, external forces Fext can act on the
rotor.

As mentioned in Section 6.2, the preload force is assumed to be constant. For that
reason and when no further forces are acting, the force F p has to compensate the gravity
force all the time, in order to fulfill the definition of the misalignment a at zero rotational
speed; it gives F p = −Fg.

For the model validation, the static equilibrium points at given rotational speeds Ω
are considered. For the static deflection r̄, following nonlinear equation has to be solved:

c r̄ = 2 F f (r̄, Ω, a). (6.2)

Model A2: Laval rotor with misalignment and linearized fluid forces

For this rotor model, the LAVAL rotor is still used and the fluid forces are linearized
around the equilibrium position r̄, which is determined by the solution of Eq. (6.2) for a
given rotational speed and a known misalignment, leading to:

F f (r, ṙ, Ω, a) ≈ F f (r̄, Ω, a)− K f (r̄, Ω, a) (r− r̄)− D f (r̄, Ω, a) ṙ, (6.3)
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with the linearized matrices K f and D f for the fluid stiffness and damping, respectively.
They are assumed to have the following form:

K f = −
∂F f

∂r

∣∣∣
r=r̄

=

[
Kxx kxy
kyx Kyy

]
, D f = −

∂F f

∂ṙ

∣∣∣
r=r̄

=

[
Dxx dxy
dyx Dyy

]
, (6.4)

where K is the direct stiffness, k the coupling stiffness, D the direct damping and d the
coupling damping coefficient. Inserting Eq. (6.3) in Eq. (6.1) and using Eq. (6.2) gives the
dynamic equations of the LAVAL rotor with misalignment and linearized fluid forces:

m r̈ + c (r− r̄) + 2 K f (r̄, Ω, a) (r− r̄) + 2 D f (r̄, Ω, a) ṙ = Fext. (6.5)

Model B1: Elastic rotor with misalignment and fluid forces

In a more detailed simulation model, the elastic deformation of the rotor is described
by a set of mode shapes (Ritz ansatz). These mode shapes come from a finite element
discretization of the rotor by using Bernoulli beam elements. For a better distinction from
the LAVAL rotor, the elastic deformation is now described by the vector q representing the
modal coordinates. The dynamic behavior of the rotor is then characterized by the modal
mass matrix M and the modal stiffness matrix C, leading for the rotor bearing system to:

M q̈ + C (q− q̄) = F f ,1(q, q̇, Ω, a) + F f ,2(q, q̇, Ω, a) + Fext. (6.6)

The fluid forces F f ,1 and F f ,2 of the two bearings as well as the external forces Fext rep-
resent forces projected on the modes, although the same notation as in Eq. (6.1) is used.
Similar to the rotor models A1 and A2, q̄ is the equilibrium position. Damping or gyro-
scopic effects of the rotor are not considered.

Model B2: Elastic rotor with misalignment and linearized fluid forces

Similar to model A2, the fluid forces are linearized like in Eq. (6.3). Considering this in
Eq. (6.6), following linear differential equation for the elastic rotor is obtained:

M q̈ + C (q− q̄) + [K f ,1 + K f ,2] (q− q̄) + [D f ,1 + D f ,2] q̇ = Fext, (6.7)

which describes the motion of the rotor around the equilibrium position q̄.

Experimental validation

In this section, an experimental validation of the rotor system of Section 6.2 is given by
applying adequate simulation models of Section 6.2 depending on the specific accuracy
requirements. A first experiment (static rotor equilibrium positions) is performed in or-
der to determine the parallel misalignment between rotor and bearing axis. After having
analyzed the misalignment, measurement data of a second experiment (rotor orbit at
unbalance) is validated by simulation results of the four different simulation models of
Section 6.2.

Experiment 1: Static rotor equilibrium positions

The first experiment serves to determine the misalignment a between rotor and bearing
axis, which can not be identified by an absolute measurement.

On the test rig, the relative equilibrium positions of the rotor in the bearing can be
measured for different rotational speeds Ω. Since the absolute position of the rotor can
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Figure 6.11: Measured and simulated curve of equilibrium positions with misalignment param-
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Figure 6.12: Calculated and measured sti�ness and damping coe�icients for di�erent rotational

speeds.

not be measured, the equilibrium positions are measured with respect to a reference po-
sition. The latter is chosen as the equilibrium position at high rotational speed, since
it is known from theory that the rotor will be centered in the bearing housing for high
rotational speeds [64].

The LAVAL-rotor model A1 with Eq. (6.2) for the equilibrium position r̄ is used for the
experimental validation. With this model, an optimal misalignment parameter a can be
determined in such a way that the relative curve of equilibrium positions of the experi-
ment is well approximated by the equilibrium positions calculated by Eq. (6.2).

In Fig. 6.11, the curve of equilibrium positions of the experiment and of the simulation
can be seen. The misalignment parameter is chosen as a = [−0.15 mm, 0.07 mm]. The
measurement and the simulation start at Ω1 = 3 rps and move with increasing rotational
speed to the reference position identical with the bearing center at Ω2 = 100 rps.

When the equilibrium positions r̄ for different rotational speeds are known, the stiff-
ness and damping coefficients of Eq. (6.4) can be calculated in a next step. Here, they



Experimental validation of a rotor test rig 105

are computed by a finite difference scheme and following mean coefficient can be deter-
mined:

K =
Kxx + Kyy

2
, k =

kxy − kyx

2
, D =

Dxx + Dyy

2
, d =

dxy − dyx

2
.

The calculated as well as the measured mean coefficients are shown in Fig. 6.12. In the
experiment, the coefficients are determined by exciting the rotor at different frequencies
and measuring the rotor displacements and bearing reaction forces in the frequency do-
main. A fitting of the measured data by a reduced rotor bearing model gives the mean
coefficient. The detailed measurement concept is described by WAGNER et. al. [195].

The dependency of the measured coefficients on the rotational speed shows good
agreement with the simulation results for the direct stiffness, direct damping and cou-
pling stiffness coefficients (K, D and k). However, for the coupling damping coefficient
d, a discrepancy is observed. The reason could be an angular misalignment of the rotor
shaft in the experiment.

Experiment 2: Rotor orbit at unbalance

After having determined the parallel misalignment, a second experiment is performed
in order to discuss the accuracy and efficiency of the four presented simulation models.
Therefore, an unbalance is added at the middle of the rotor and the orbit of the rotor is
measured at a constant rotational speed Ω = 21 rps. The measured and simulated orbits
are depicted in Fig. 6.13.

In Fig. 6.13(a), the measured and the simulated orbits are shown at their equilibrium
positions. It has to be mentioned that the misalignment a determined by the first experi-
ment is added to the measured orbit in order to get the absolute position of the orbit. The
reason for that is that, as already mentioned, the absolute reference point of the measure-
ment is unknown. For the simulation, rotor model A1 is used.

In Fig. 6.13(b), the form of the measured orbit is compared with the orbits obtained
by the four simulation models. Note that all orbits are shifted to the origin in order
to compare their forms. It can be seen that all four simulation models give nearly the
same rotor orbit, meaning the model accuracy is good for all simulation models. The
elliptical form of the simulated orbits are characteristic for a rotor, which has an eccentric
equilibrium position in the journal bearing. However, the form of the measured orbit
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Figure 6.13: Rotor orbits due to unbalance at Ω = 21 rps.
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has a tendency to a squared form. The reason could be that next to the unbalance an
excitation with the third harmonic is present, which could cause a squared form, see for
instance [188]. A physical source for a third harmonic excitation is the three-jaw chuck
during manufacturing of the rotor shaft.

When looking at the simulation time of the models in Table 6.2, it can be seen that
the fastest model is model A2 – the LAVAL rotor model with linearized fluid forces. It
is followed by the elastic rotor model B2, where the fluid forces are also linearized. A
relatively long simulation time is needed for the full elastic rotor model B1 with nonlinear
fluid forces. All the four simulation models are integrated with the ode15s solver of
MATLAB, which uses a variable step size. The absolute and relative tolerances are set to
1e − 6. For the elastic description of the rotor shafts of models B1 and B2, twelve RITZ

modes are used.

Table 6.2: Simulation time for the di�erent rotor models.

model sim. time rel. time

A1 11.7 s 100 %
A2 0.124 s 1.06 %
B1 1343 s 11478 %
B2 4.46 s 38.1 %

Conclusion

In this section, a rotor test rig with two journal bearings is validated by adequate simu-
lation models. It becomes evident that the misalignment of rotor and bearing axis has to
be considered in the simulation models.

When using simulation models with nonlinear fluid forces (models A1 and B1), the
misalignment has to be known for the dynamic simulation in order to ensure that the
rotor moves in the simulation to the right equilibrium position.

When using simulation models with linearized fluid forces (models A2 and B2), an
important step for the dynamic analysis is the determination of the equilibrium posi-
tion, which again requires the misalignment parameter. When the equilibrium position
is known, the fluid forces can be linearized around this equilibrium position.

With respect to the accuracy of the simulation models, the LAVAL rotor model is ac-
curate enough for the experimental validation for the here analyzed test rig. The use of
an elastic rotor is not necessary for the described experiments, it only requires a larger
modeling effort than the simple LAVAL rotor model.

The simulation costs can be saved significantly, when the fluid forces are linearized,
as the evaluation of the FE solution of the nonlinear fluid forces are the most time-
consuming part. However, the linearization has to be performed in a preprocessing step
as well as the calculation of the equilibrium position. Note that here the amplitude of
the rotor motion in the bearing is about 0.01mm for a clearance of 0.17mm. It is to be
expected that the linearized model will lose their validity when the motion of the rotor
in the bearing becomes large.

Outlook

For the model of the fluid forces, the classical REYNOLDS equation is applied, where
effects of the fluid inertia are neglected. This assumption has to be analyzed further and
comparisons with the bulk flow equations, usually applied for seals, should be made.
Further, the effect of the preload force has to be investigated in more detail.
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In this section, only mean stiffness and damping coefficients are determined in the
experiment. Their practical relevance is only given for a vanishing eccentricity of the
shaft. Usually the anisotropic coefficients have to be determined for a precise dynamic
analysis, see the work of GLIENICKE [68] or SOMEYA [174].

The model based determination of the parallel misalignment as described in the first
experiment could be further used for rotor diagnostics, similar to concepts described
in [162, 188].

6.3 EHL point contact

This section outlines the classical simulation example of an EHL point contact. Such sim-
ulations may deliver nonlinear stiffness and damping characteristics for the ball contact
in full dynamic ball bearing models like [196]. For more details, it is referred to the work
of WIJNANT [199]. In the following, the static solution is calculated in order to analyze
the developed numerical methods.

The kinematics of the EHL point contact is already introduced in Section 2.4.1. In
the following, according to WIJNANT [199], the dimensionless problem is considered. It
is characterized by the dimensionless lubricant parameter L and the dimensionless load
parameter M, as originally defined by MOES [125]:

L = ξE′
(

ηp=0 us

E′Ry

)1/4

, M =

(
f

E′ R2
y

)(
E′ Ry

ηp=0 us

)3/4

,

with the pressure viscosity coefficient ξ of Eq. (2.8), the reduced modulus of elasticity E′,
the sum velocity us, the reduced radius Ry of curvature in y-direction and the nominal
load f . For the complete set of dimensionless equation it is referred to WIJNANT [199].
The parameter of the simulation example are chosen similar to those of the article of
AHMED et. al. [2]. They are listed in Table 6.3.

The elastic deformation in the point contact is calculated by an elastic half-space
(equivalent modulus of elasticity Eeq = E′/2), similar to HABCHI et. al. [78] and AHMED

et. al. [2]. The symmetry of the problem is utilized and only half of the problem is cal-
culated. The unreduced body with the dimensions −30 ≤ x̄ ≤ 30, −30 ≤ ȳ ≤ 30
and −30 ≤ z̄ ≤ 0 can be seen in Fig. 6.14. By a CRAIG-BAMPTON reduction, the elas-
tic half-space is reduced to the nodes of the fine inner mesh with typical dimensions
−4.5 ≤ ȳ ≤ 1.5 and −3 ≤ z̄ ≤ 0.

The solution is calculated on a structured mesh with 32 elements in ȳ- and 16 elements
in z̄-direction, respectively. As shape functions the Quad8Mod for the pressure and the
Quad8 for the deformation respectively, are chosen. Further, the projection formulation
in combination with the Newton-Raphson method as solution technique is used for the
calculation.

Table 6.3: Parameter for simulation example of EHL point contact.

parameter value

lubricant parameter L 10
load parameter M 20
viscosity index ξ 2.2e-8 m2/N

viscosity ηp=0 0.04 Ns/mm2

sum velocity us 1.6 m/s

reduced modulus of elasticity E′ 1.05e11 N/m2

maximum HERTZian pressure pH 4.95e8 N/m2
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Figure 6.14: Elastic half space for EHL point contact.

Figure 6.15 shows the profiles of the pressure and the fluid film height at z̄ = 0. The
solution agrees well the solution of AHMED et. al. [2]. In Fig. 6.16, the 3-dimensional
pressure distribution is depicted as well as the elastic deformation of the half-space.

In Fig. 6.17, the convergence of the non-smooth Newton-Raphson method is depicted.
It can be seen, that the norm of the residual oscillates for the first iterations. The reason
is that at the beginning, the cavitation zone is not yet fully converged. After that, linear
convergence can be observed.

For this simulation example, also the quasi-Newton method of Section 5.1.2, adapted
for the static case, is tested. However, no convergence is achieved. The reason is the
strong influence of the elastic deformation on the pressure distribution.
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Figure 6.15: Profiles of pressure and fluid film height at z̄ = 0 for EHL point contact.
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Figure 6.16: Pressure distribution and elastic deformation of EHL point contact.
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Chapter 7

Conclusion and outlook

This work treats the modeling and simulation of mechanical systems with EHL contacts.
Conformal EHL contacts are addressed in the same way as non-conformal contacts. Nu-
merical methods are developed in order to improve the simulation process of such sys-
tems. Hereafter, Section 7.1 shortly summarizes this work and Section 7.2 points out
its important contributions. Section 7.3 highlights the main conclusions of this research.
Finally, Section 7.4 outlines shortcomings and gives recommendations for future work.

7.1 Summary

This work starts with the outline of the REYNOLDS equation and gives a numerical dis-
cretization by the FEM. Two state-of-the-art cavitation conditions – the steady-state SWIFT-
STIEBER and the mass-conservative JFO condition – are outlined and their formulation
as a complementarity problem is given. Since their describing equations are different, for
each model an individual FE treatment is stated. Further, this work describes the fun-
damental aspects of the fluid film kinematics and forces as well as the incorporation of
inertia, temperature and roughness effects into the lubrication theory.

A focus of this work is the numerical coupling of non-conforming meshes in the con-
text of EHL contacts. Existing coupling strategies (consistent, conservative) and transfer
methods (nearest neighbor, nearest neighbor projected, weighted residual) are outlined
and their convergences are investigated for a numerical example.

As a further topic, this work investigates reduction methods for elastic structures with
lubricated interfaces. Two existing CMS-based reduction methods are outlined as well as
a load dependent reduction approach is specified for EHL bearings. The three reduction
methods are compared for two classical simulation examples with EHL bearings.

This work also deals with different solution strategies and techniques for the coupled
system. It compares a state-of-the-art partitioned solution strategy with a monolithic so-
lution strategy. It applies the Newton method as a state-of-the-art solution technique
as well as a quasi-Newton method to the solution of the nonlinear equations resulting
from the time-discretization. For the quasi-Newton solution technique, appropriate al-
gorithms are developed for both the partitioned and the monolithic solution strategy.
The different methods are analyzed for a numerical example.

Finally in this work, numerical and experimental case studies are treated. A detailed
study of the physical and numerical behavior of a slider-crank mechanism is outlined.
Different fluid and rod models are compared as well as the effect of a contact pressure or
the numerical stabilization are demonstrated. An experimental study of a rotor system
with journal bearings serves as verification of the simulation tool. A static simulation of
a EHL point contact illustrates the applicability of the projection function and the mono-
lithic solution strategy during the solution process.

111
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7.2 New contributions

This work puts for the first time the different existing ways of cavitation treatment into
one context. Besides, it shows for the first time that the concept of bi-orthogonal element
shape functions is applicable to the steady-state cavitation problem. A further novelty of
this work is the application of a projection formulation to the complementarity problem
of the SWIFT-STIEBER and the JFO cavitation model.

This work also contributes to a thorough analysis of existing interface coupling meth-
ods of non-conforming meshes for the EHL problem.

A further novel contribution of this work is a load-dependent reduction method in
order to reduce the elastic interface DOFs of flexible journal bearings.

As a new contribution, this work states out a full monolithic formulation for a me-
chanical system coupled with hydrodynamic equations by using the projection formula-
tion of the cavitation problem.

Further, this work applies the first time the quasi-Newton method of DEGROOTE

et. al. to the EHL problem. It modifies the original IQN-ILS method by using a scaled
residual and incorporating an incomplete Jacobian. The developments have resulted in
new solution algorithms for the discrete equations of motions of a MBS coupled either in
a monolithic or a partitioned way with either the steady-state or the mass-conservative
cavitation problem.

Finally, this work contributes to a profound understanding of exemplary mechanical
system with EHL journal bearings. For instance, the dynamic behavior of slider-crank
mechanism with an EHL journal bearing is investigated numerically or a misaligned ro-
tor in journal bearings is investigated numerically as well as experimentally.

7.3 Conclusions

Following main conclusions can be derived from this work:

• Applying the projection formulation to the complementarity problem of each cavi-
tation model, results in a nonlinear algebraic equation for each cavitation problem.
Its solutions are obtained by a non-smooth Newton scheme, resulting in new cav-
itation algorithms. The advantage of these new algorithms is that there is no need
for pivot-based operations like in the existing cavitation algorithms. A further ad-
vantage becomes evident, when focusing on the discretized coupled system: the
cavitation condition can be added to the mechanical system by an algebraic equa-
tion and a monolithic solution strategy for the coupled system is possible1.

• Following a monolithic instead of a partitioned solution strategy for the discretized
coupled problem, leads to a faster convergence of the solution. The reason is that
the monolithic solution strategy solves the dynamic equilibrium and the cavitation
problem simultaneously in one iteration loop. In contrast, the partitioned strategy
has an inner iteration loop, which always solves the cavitation problem, even if the
outer loop is not yet converged.

• Within the modified IQN-ILS method proposed in this work, an incomplete Jaco-
bian is used when solving the nonlinear equations of the coupled system. This
incomplete Jacobian inherits only the parts of the full Jacobian, which are related to
the global motion of the body. By this, the complete calculation of the full Jacobian,
which is extremely time-consuming, if it is performed numerically, can be avoided.

1
As far, this was possible only when using a penalization of the cavitation condition; however, in that case, the

cavitation condition is not fulfilled mathematically exactly.
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• Concerning the different interface coupling methodologies, it follows from a con-
vergence study that a consistent transfer of surface tractions and deformations by
either fulfilling the coupling conditions in a weak sense (mortar method) or pro-
jecting the field values leads to coupling errors, which do not affect the global dis-
cretization errors. In the same way, a conservative transfer by fulfilling the coupling
conditions in a weak sense leads to coupling errors, which do not affect the global
discretization errors. Other investigated transfer methods like a nearest neighbor
method or a conservative transfer by projecting the field values lead to coupling
errors, which deteriorate the global discretization error. The conservative transfer
with the weighted residual method would be the favorite transfer methodology for
long-time simulations, where no artificial energy shall be created nor annihilated.

• Concerning the interface reduction methods, it can be concluded that the load de-
pendent approach is the most suitable to cover the deformation due to the pressure
forces. This is logical since the deformation of the elastic interface results from
pressure distributions. Further, the load dependent approach allows the incorpora-
tion of eventually known pressure distributions during the reduction process. For
instance, the infinitely long and short bearing solution can be used for the reduc-
tion of the interface DOFs of a finite flexible bearing. In the example of the flexible
slider-crank mechanism, the load dependent approach needs much less interface
modes compared to the CMS-based approaches.

• The simulation example of the flexible slider-crank mechanism verifies the existing
simulation tool and figures out the sensitivities in the modeling process. From the
results, it can be concluded that the mass-conservative cavitation model should be
used for the dynamic simulation with changing loads. Further, the dependency of
the viscosity on the pressure becomes important especially at high pressures. The
SUPG stabilization of the FE solution in the cavitation zone avoids oscillations in
the density distribution.

• Concerning the simulation and experimental validation of a rotor system, it be-
comes clear that the parallel misalignment of the rotor axis strongly influences the
static equilibrium position and has to be considered in the simulation model. The
experimental validation of the the rotor system with misalignment can be achieved
by using a LAVAL rotor simulation model with nonlinear fluid forces.

• The simulation example of the EHL point contact emphasizes the applicability of
the monolithic solution strategy with the projection function. The convergence of
the semi-smooth Newton scheme can be demonstrated.

7.4 Recommendations for future work

Due to occasional shortcomings, this work offers possible topics for future work.
As outlined at the beginning of Chapter 2, temperature effects as well as effects due to

non-NEWTONian fluid behavior or fluid inertia are not treated in this work. Even though
some basic modeling concepts are outlined in Section 2.5, the detailed modeling and
numerical treatment of such effects would be a topic of future work. Especially, the effect
of the temperature on the fluid parameters is usually not negligible. The effect of the
fluid inertia may play an important role, when dealing with high velocities in tangential
or fast changing velocities in normal direction. The non-NEWTONian fluid behavior has
to be usually considered for the EHL point contact.

Further, the modeling and simulation of the run-up of mechanisms with bearings
should be investigated in more detail. In that case, the transition between dry and lu-
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bricated contact plays a fundamental role. For the modeling, simulation and also experi-
mental validation of imperfect joints, it is referred for instance to [60, 104, 187].

Concerning the interface coupling methodologies, the numerical example deals only
with an one-sided EHL problem. Even though the theory is outlined for the general case,
a convergence study for the two-sided EHL problem should be analyzed in a future work.
In the same way, the interface reduction methods are only investigated for one-sided EHL
problems. Again, although the theory is valid for the two-side case, a numerical example
should proof that.

Concerning the monolithic and partitioned solution strategy, the size of the coupled
system is an aspect, which has to be also considered, when comparing simulation times:
as the partitioned strategy deals with smaller system matrices, this could be an advantage
when analyzing large systems with several EHL contacts. A detailed numerical study of
such systems could be topic of a future work.

The simulation example of the EHL point contact of Section 6.3 reveals that the quasi-
Newton method does not converge for this simulation example. The reason is the strong
influence of the elastic deformation on the pressure distribution. Hence, the quasi-Newton
method, outlined in this thesis, is well applicable in bearing simulation, meaning confor-
mal EHL contact problems. However, for non-conformal EHL contact problems, the fast
convergence is still an open issue. Further, the analysis of reduction methods like the
load dependent method for the non-conformal EHL contact could be an outstanding task
for future works.



Appendix A

Derivation of the Reynolds equation

For a better understanding, the derivation of the REYNOLDS equation from the NAVIER-
STOKES equations is outlined. A more detailed derivation is given for instance in the
textbook of HAMROCK et. al. [81]. In the following, the notations in the fluid film accord-
ing to Fig. 2.1 are used.

When neglecting convective terms and volume forces and further assuming a small
fluid height compared to the characteristic lengths in y- and z-direction respectively, the
NAVIER-STOKES equations reduces to:

0 = −∂ p
∂x

, (A.1)

0 = −∂ p
∂y

+
∂

∂x

(
η

∂v
∂x

)
, (A.2)

0 = −∂ p
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+
∂

∂x

(
η

∂w
∂x

)
. (A.3)

Equation (A.1) leads to a constant pressure in x-direction of the fluid height. Equa-
tions (A.2) and (A.3) can be integrated twice in x-direction from x = h1 to x = h2. Then,
one obtains parabolic velocity profiles for the velocity components v and w respectively,
over the fluid height:
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1

2η

∂ p
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x2 +
C1

η
x + C2, (A.4)

w =
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2η
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η
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with integration constants still to be determined. Setting the non-slip boundary condi-
tions v(x = h1) = v1, v(x = h2) = v2 and w(x = h1) = w1, w(x = h2) = w2 respectively,
yields:

v =
1

2η

∂ p
∂y
(
x2 − (h1 + h2) x + h1h2

)
+

v1 − v2

h1 − h2
(x− h1) + v1,

w =
1

2η

∂ p
∂z
(

x2 − (h1 + h2) x + h1h2
)
+

w1 − w2

h1 − h2
(x− h1) + w1.

With them, the corresponding volume fluxes per unit length in y- and z-direction respec-
tively can be determined. With the film height h = h2 − h1, they are defined as:

q′y =
∫ h2

h1

v dx = − h3

12η

∂ p
∂y

+
v1 + v2

2
h, (A.6)

q′z =
∫ h2

h1

w dx = − h3

12η

∂ p
∂z

+
w1 + w2

2
h. (A.7)
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116 Derivation of the Reynolds equation

The conservation of mass in a control volume can be stated as following flux balance:

∂

∂y
($q′y) +

∂

∂z
($q′z) +

∂(h$)

∂t
= 0, (A.8)

which ensures that the temporal change ∂(h$)
∂t is caused by the local changes of the corre-

sponding fluxes. Inserting Eqs. (A.6) and (A.7) into Eq. (A.8) gives the REYNOLDS equa-
tion:

−∇
(

h3$

12η
∇p
)

︸ ︷︷ ︸
POISEUILLE

+
∂

∂y

(
$h

v1 + v2

2

)
+

∂

∂z

(
$h

w1 + w2

2

)
︸ ︷︷ ︸

COUETTE

+ $
∂h
∂t︸︷︷︸

squeeze

+ h
∂$

∂t︸︷︷︸
loc. exp.

= 0,

in similar form as Eq. (2.1) by distinguishing the different fluxes.



Appendix B

Finite element shape functions

B.1 Dual bi-linear Lagrange shape functions

Figure B.1 shows the first two of the four dual bi-linear LAGRANGE shape functions. They
are bi-orthogonal to the Lin4 element shape functions.
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Figure B.1: Dual bi-linear Lagrange shape functions.

B.2 Modified bi-quadratic serendipity shape functions

Figure B.2 shows the first two of the modified bi-quadratic serendipity shape functions
(Quad8Mod).
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Figure B.2: Modified bi-quadratic serendipity shape functions.
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B.3 Dual bi-quadratic serendipity shape functions

Figure B.3 shows the first two of the dual bi-quadratic serendipity shape functions. They
are bi-orthogonal to the modified bi-quadratic serendipity shape functions of Fig. B.2.
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Figure B.3: Dual bi-quadratic serendipity shape functions.



Appendix C

Finite element discretization of the mass-con-

servative cavitation problem

C.1 Standard-Galerkin discretization

The FE discretization of the strong form of Eqs. (2.67) to (2.73) is given.
The solution and weighting functions of the pressure are defined by the same function

spaces S+ and W+ as in Eqs. (2.44) and (2.45). The solution space D+ of the density $ is
defined similarly to the already defined space Q+, see Eq. (2.46) :

D+ = {$ ∈ H−1(Ω) | $ = $̂ on Γp,
∫

Ω
( f$(p)− $) (p− pc) dΩ ≥ 0, p ∈ S+}. (C.1)

With these function spaces, following weak form can be stated: Find p ∈ S+ and
$ ∈ D+ such that∫

Ω
κd(p, $)∇w

T∇p dΩ +
∫

Ω
w

(
uT

d ∇$ + h $̇
)

dΩ =

−
∫

Ω
w (qstat + qsqu) dΩ +

∫
Γq

w q̂ dΓ, ∀w ∈W+, (C.2)∫
Ω

(
q−

(
f$(p)− $

))
(p− pc) dΩ ≥ 0, ∀ q ∈ Q+. (C.3)

Here, the GAUSS divergence is already applied. The second equation represents the VI of
the complementarity condition, similar to Eq. (2.53).

The discretization is performed on the discrete fluid domain Ωh by using the dis-
crete spaces W+

h and S+
h . The weighting function and the pressure are approximated like

in Eqs. (2.22) and (2.23). In addition, the discrete spaces Q+
h and D+

h are defined and
both the density $ and the weighting function q are described by the LAGRANGE shape
functions Mk, leading:

$(y, z) ≈ $h(y, z) =
n f ree

∑
i=1

Mi $ f ree,i +
ndbc

∑
j=1

Mj $dbc,j, (C.4)

q(y, z) ≈ qh(y, z) =
n f ree

∑
k=1

Mk q f ree,k, (C.5)

For the following discretization, the discrete solution space

S+
h = {ph ∈ Sh | (p f ree,i − pc) ≥ 0 ∀ i ∈ {1 . . . n f ree}}

is chosen.
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120 Finite element discretization of the mass-conservative cavitation problem

Then, the discretization leads to following discretized weak form:

n f ree

∑
k=1

[
wk

{ ∫
Ωh

(
κ$(ph, $h)∇N

T
k

n f ree

∑
i=1
∇Ni p f ree,i + Nk uT

$

n f ree

∑
i=1
∇Mi d f ree,i

)
dΩ

+
∫

Ωh

h Nk

n f ree

∑
i=1

Mi $̇ f ree,i dΩ = −
∫

Ωh

Nk(qstat,h + qsqu,h) dΩ +
∫

Γq,h

Nk q̂ dΓ

−
∫

Ωh

(
κ$,h∇N

T
k

ndbc

∑
j=1
∇Nj pdbc,j + Nk uT

$,h

ndbc

∑
j=1
∇Mj $dbc,j

)
dΩ

}]
, (C.6)

n f ree

∑
k=1

[ ∫
Ωh

Mk
(

f$,k − $ f ree,k
) n f ree

∑
i=1

Ni
(

p f ree,i − pc
)

dΩ

]
= 0, (C.7)

n f ree

∑
k=1

[
qk

∫
Ωh

Mk

n f ree

∑
i=1

Ni
(

p f ree,i − pc
)

dΩ

]
≥ 0, (C.8)

n f ree

∑
k=1

[
wk

∫
Ωh

Nk

n f ree

∑
i=1

Mi
(

f$,i − $ f ree,i
)

dΩ

]
≥ 0, (C.9)

with the unknown values p f ree,i and $ f ree,i, which in the following, belong to the i-th
component (i = 1 . . . n f ree) of the discrete vectors p and $, respectively. The discretized
weak form has to be valid for every nonnegative value of wk. As the solution space S+

h
is chosen such that the discrete pressure values (p f ree,i − pc) are nonnegative, following
matrix-vector representation can be stated:

A$(p, $) p + B$ $ + C$ $̇ = b$(p, $)

0 ≤ p− pc ⊥ N
(

f $(p)− $
)
≥ 0.

In summary, these are two sets of equations for the two unknown vectors p and d. It
becomes clear, that the Eqs. (C.7) to (C.9) of the discrete weak form of the complementar-
ity problem lead to complementarity problem for the discrete values. The matrices and
vectors are calculated and assembled element-wise. They are defined as:

A$ =
nele

A
e=1

A(e)
k,i , A(e)

k,i =
∫

Ω(e)
κ$(ph, $h)∇N

T
k ∇Ni dΩ,

B$ =
nele

A
e=1

B(e)
k,i , B(e)

k,i =
∫

Ω(e)
Nk uT

$ ∇Mi dΩ,

C$ =
nele

A
e=1

C(e)
k,i , C(e)

k,i =
∫

Ω(e)
h Nk Mi dΩ,

b$ =
nele

A
e=1

b(e)k , b(e)k = −
∫

Ω(e)
Nk (qstat,h + qsqu,h) dΩ +

∫
Γ(e)

q

Nk q̂ dΓ

−
∫

Ω(e)
κ$,h∇N

T
k

ndbc

∑
j=1
∇Nj pdbc,j dΩ

−
∫

Ω(e)
Nk uT

$,h

ndbc

∑
j=1
∇Mj $dbc,j dΩ,

N =
nele

A
e=1

N(e)
k,i , N(e)

k,i =
∫

Ω(e)
Nk Mi dΩ.
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C.2 Petrov-Galerkin discretization

The SUPG method is applied to stabilize the FE discretization of the strong form of
Eqs. (2.67) to (2.73).

In contrast to the standard BUBNOV-GALERKIN method of the previous subsection,
following streamline upwind modified weighting functions for the discretization of the
function space W+

h are used:

w̃$,h = wh + v$,h = wh + τ$ uT
$,h∇wh, (C.10)

with the stabilization parameter τ$. The modified weighting function w̃$,h is applied to
the discretization of Eq. (C.2) of the weak form. For the discretization of Eq. (C.3) still the
standard-GALERKIN method with the weighting function q is used. For the first equation
of the stabilized discrete weak form follows for ph ∈ Sh and $h ∈ Dh:∫

Ωh

κ$(ph, $h)∇w
T
h ∇ph dΩ +

∫
Ωh

wh

(
uT

$,h∇$h + h $̇h

)
dΩ =

−
∫

Ωh

wh (qstat,h + qsqu,h) dΩ +
∫

Γq,h

wh q̂ dΓ

+
nele

∑
e=1

∫
Ω(e)

h

v
(e)
$,h R(e)

$,h dΩ, ∀wh ∈W+
h . (C.11)

The last term represents the stabilization term. The discrete residuum R$,h is given ac-
cording to Eq. (2.67):

R$,h = −∇
(
κ$(ph, $h)∇ph

)
+ uT

$,h∇$h + h $̇h + qstat,h + qsqu,h. (C.12)

The further discretization of the stabilization term gives matrices and vectors, which are
used to update the original matrices and vectors of the standard-GALERKIN method:

A$ ← A$ + A$,SUPG, B$ ← B$ + B$,SUPG, C$ ← C$ + C$,SUPG, b$ ← b$ + b$,SUPG.





Appendix D

Kinematics for cylindrical joint

With the eccentricity e and the radial deformation δr, the local geometric and kinematic
relations in the cylindrical elastic joint can be derived (Fig. 2.7 of Section 2.4.1). Due to the
assumption of a thin fluid film h � R2, the order of geometric and kinematic properties
is characterized as follows:

0. order: R1, R2, ω1, ω2, (D.1)

1. order: h, e, er, et, δr, ė, ėr, ėt, δ̇r, δ̇t, δ̇z (D.2)

2. order: h̄1 = −1
2

e2
t

R1
+O(e3

t ), v̄1. (D.3)

At a point (y, z) of the fluid domain, the local heights can be evaluated as follows:

h1 = er + r1 = er + R1 + h̄1, (D.4)
h2 = R2 + δr, (D.5)
h = h2 − h1 = R2 − R1 − er + δr + h̄1, (D.6)

where h̄1 is a second order term, see (D.3). For the derivatives with respect to y and z
follows with (2.82):

∂h1

∂y
=

∂er

∂y
+

∂ h̄1

∂y
=

et

R2
+

∂ h̄1

∂y
=: tan (α), (D.7)

∂h2

∂y
=

∂δr

∂y
, (D.8)

∂h1

∂z
= 0,

∂h2

∂z
=

∂δr

∂z
. (D.9)

The absolute velocities in local tangential and normal directions can be calculated as fol-
lows, where δ̇t and δ̇z are the velocities in local tangential and z direction, respectively:

u1 = ẋB1 cos(ϕ) + ẏB1 sin(ϕ) + ω1R1 sin (α), (D.10)

u2 = ẋB2 cos(ϕ) + ẏB2 sin(ϕ) + δ̇r, (D.11)
v1 = −ẋB1 sin(ϕ) + ẏB1 cos(ϕ) + ω1R1 cos (α) (D.12)

= −ẋB1 sin(ϕ) + ẏB1 cos(ϕ) + ω1R1 + v̄1, (D.13)

v2 = −ẋB2 sin(ϕ) + ẏB2 cos(ϕ) + ω2h2 + δ̇t, (D.14)

w1 = 0, w2 = δ̇z, (D.15)

where v̄1 is a term of second order, see (D.3). Derivation of the velocities yields:

∂v1

∂y
=

1
R2

(−ẋB1 cos(ϕ)− ẏB1 sin(ϕ)) +
∂v̄1

∂y
, (D.16)
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∂v2

∂y
=

1
R2

(
−ẋB2 cos(ϕ)− ẏB2 sin(ϕ) + ω2

∂h2

∂y

)
+

∂δ̇t

∂y
, (D.17)

∂w1

∂z
= 0,

∂w2

∂z
=

∂δ̇z

∂z
. (D.18)

The kinematic equations (D.5) to (D.18) can be inserted into the flux terms (2.5) to (2.6) of
the Reynolds equation (2.2). After neglecting all second order terms by using the order
analysis (D.1) to (D.3), the following term qstat,b for the flexible bearing remains:

qstat,b = −ρ

[ (
∂δr

∂y
− ∂er

∂y

)
ω1R1 + ω2R2

2
−ω2R2

∂δr

∂y
+ ėr + δ̇r

]
. (D.19)

It is worth noting that the velocity ω1R1 due to the rotation of the shaft cancels out in
the source term ∂hi

∂t of Eq. (2.3). This agrees with the fact that a velocity in the tangential
direction of a surface (like it is the velocity ω1R1) causes only a COUETTE flow, but no
squeeze effect.



Appendix E

Parameter for simulaton examples

E.1 Simulation example of Section 2.6.1

Figure E.1 shows the simulation example and Table E.1 lists the simulation parameter.

L

x
y ϕ

ω1

Figure E.1: Simulation example of journal bearing with fixed eccentricity.

Table E.1: Parameter for simulation example of journal bearing with fixed eccentricity.

parameter value parameter value

R2 2.25 cm ρp=0 800 kg/m3

L 2.2 cm ηp=0 5e-3 kgm/s

h0 17 µm a 0.6e-9 m2/N

ω1 500 rad/s b 1.7e-9 m2/N

ex 0 µm α0 5.93e-8 m2/N

ey −0.5 h0 pc 0 N/m2

E.2 Simulation example of Section 2.6.2

Figure E.2 shows the simulation example and Table E.2 lists the simulation parameter.

E.3 Simulation example of Section 2.6.3

Figure E.1 shows the simulation example and Table E.3 lists the simulation parameter.
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L

x
y ϕ

ω1

Figure E.2: Simulation example of grooved journal bearing with fixed eccentricity.

Table E.2: Parameter for simulation example of grooved journal bearing with fixed eccentricity.

parameter value parameter value

L/R2 2 ā 1/40
ex/h0 -0.6 b̄ 0
ey/h0 0 p̄c 0

Table E.3: Parameter for simulation example of journal bearing with fixed eccentricity.

parameter value parameter value

R2 2.25 cm ρp=0 839 kg/m3

L 2.2 cm ηp=0 0.414 kgm/s

h0 17 µm a 0.6e-9 m2/N

ω1 500 rad/s b 1.7e-9 m2/N

ex 0 µm Z1 0.43
ey −0.245 h0 cp 1.96e8 N/m2

pc 0 N/m2 η∞ 6.31e-5 kgm/s



Appendix F

Solution techniques

F.1 Scheme of solution strategy for DAE formulation with IQN-

ILS method

Predict p0 = pi−1 and q0

Calculate Residual R0 for q0, p0 (Eq. (5.27))
Calculate Jacobian S̃0 for q0, p0 (Eq. (5.34))

Calculate R0
scal and estimate q̃0, p̃0 (Eq. (5.33))

pi = pk, qi = qk

Calculate Residual Rk for qk, pk (Eq. (5.27))
Update Jacobian S̃k for qk, pk (Eq. (5.34))

Calculate Rk
scal and estimate q̃k, p̃k (Eq. (5.33))

Calculate ∆qk using IQN-ILS method
qk+1 = qk + ∆qk

pk+1 = p̃k

q1 = q0 −ω R0
q,scal

p1 = p̃0

|Rk
q| > tolq || |Rk

p| > tolp
|Rk

q| ≤ tolq && |Rk
p| ≤ tolp

k = 1

k ≥ kmax ω = 1ω ← ω/2

k < kmax k← k + 1

Figure F.1: Scheme of solution strategy with IQN-ILS method and reduced Jacobian for DAE

formulation for a given time step.
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