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Abstract

The permanent bow deformation of fuel assemblies (FAs) in the core of pressurized water reactors (PWRs)

during irradiation may cause both safety and handling problems. The evolution of the FA bow deformation is

considered to be a complex process with a large number of in�uencing mechanisms and several unknowns due

to the limited knowledge about the boundary conditions and processes inside an operating nuclear reactor

core. Since the �rst occurrence of strongly bowed cores, computational tools to predict the FA deformation

have been developed to optimize the FA design and the FA loading pattern in the core. However, signi�cant

prediction errors persist, both regarding the bow amplitude and direction. The objective of this work

is therefore to approach the FA bow modeling from a novel point of view, namely setting the focus on

sensitivity and uncertainty analysis to assess the predictability of the FA bow patterns. To perform these

analyses, a �nite-element FA structural model is built up and is �nally extended to a coupled row model of

15 FAs in the reactor core. To estimate the distribution of lateral hydraulic forces within the core row, a

two-dimensional CFD (Computational Fluid Dynamics) model is created with a porous-medium approach.

In addition, creep, irradiation growth, and spring relaxation models are developed to predict the evolution of

the FA deformation during irradiation. The obtained in-laboratory and in-reactor FA model response is in

good qualitative agreement with what is observed for FAs deployed in nuclear reactors. The sensitivity and

uncertainty analyses, performed for both single FAs and a row of FAs, demonstrate that the uncertainties

about the creep rate and the hydraulic conditions have a considerable impact on the bow amplitudes and

directions. They may therefore fundamentally modify the bow pattern predicted with best estimate methods.

It is concluded that FA bow calculations should always be accompanied by an uncertainty analysis to estimate

the variability of the model predictions. To improve the predictions in the future, a speci�c e�ort must be

invested in decreasing the uncertainty range of the concerned parameters.
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Chapter 1

Introduction

1.1 Fuel assembly (FA) bow in pressurized water reactor (PWR)

power plants

FAs essentially form the core of any nuclear light water reactor (LWR). Figure 1.1 illustrates the position of

the FAs in the reactor pressure vessel (RPV) of a PWR. The FAs, Figure 1.2, consist of the FA structure

and a bundle of fuel rods (FRs), in which the nuclear fuel is enclosed. In addition to the FRs, the FAs

contain a number of control rod guide thimble tubes, or short, guide tubes (GTs). On the one hand, the

GTs are an essential part of the FA structure because they carry, by means of the spacer grids, the FR

bundle and connect the bottom and top nozzles, also denominated FA foot and head. On the other hand,

the GTs are designed to guide the single control rods of the rod control cluster assembly (RCCA). These

obtain neutron-absorbing materials to contain the �ssion reaction in the reactor core. Therefore, the design

of the GTs must ensure that the RCCA can be inserted or dropped into the core during operation. To slow

down the RCCA once it is nearly completely inserted, the bottom part of the GTs is designed to serve as a

hydraulic dashpot, see the dashpot region in Figure 1.2. The correct and quick insertion of the RCCA is of

crucial importance for safety since it serves to decrease the reactor power or to shut it down quickly, thereby

guaranteeing the control of the reactivity, which is one of the fundamental safety functions in operational

state. Since the 1990s several incomplete rod insertion (IRI) events have occurred which potentially put

this safety function at risk. The �rst event occurred in 1994 in the Ringhals 4 reactor (Andersson et al.,

2005), when one control rod failed to insert completely after a reactor scram and several others presented

increased drop times. In the following fuel inspection, FA bow was determined to be the reason for these

events. In particular, the FA causing the IRI exhibited an S-shaped bow with an amplitude of 20 mm.

Figure 1.3 illustrates that, due to the deformed GTs, increased friction drag forces act on the single rods

of the dropping RCCA, causing them to decelerate or to get stuck. In the following years, several other

IRIs and increased control rod drop times were detected in di�erent Western reactors (Roudier and Béraha,

1996). In the German LWR plants, increased permanent FA deformations have been observed since the year

2000 (RSK, 2015). Both the magnitude of the deformations and the frequency of occurrence had increased
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FA bow in PWR power plants

Figure 1.3: Schematic of the drag forces acting on a control rod traveling through a bowed GT (Aulló and
Rabenstein, 2005).

since then until the beginning of 2010s when several events related to FA bow were reported in di�erent

power plants. In one single case, an IRI event occurred. In several other cases, increased RCCA drop times

were measured, which partly exceeded the speci�ed maximum values. In most of the above cases, collective

assembly bow over the whole core was observed. The single FAs may exhibit bow amplitudes up to 25 mm

and are usually deformed in one of the �rst three characteristic modes, that is, in a C-shape, S-shape, or

W-shape. The bow shape might di�er in each of the two lateral dimensions. The occurrence of collective

bow over the entire core points out that FA bow cannot be analyzed individually for each FA. Instead,

the FAs are coupled mechanically over the entire core, leading to seemingly random bow patterns. Often,

the symmetry in the core is clearly broken, which corroborates that FA bow must be considered as a 3D

problem and therefore has a multitude of degrees of freedom (DOFs). Figure 1.4 gives examples of FA bow

measurements performed at the Ringhals power plant.

(a) Collective FA bow pattern mea-
sured at Ringhals 2.

(b) C-shape bow measured at Ring-
hals 3.

(c) S-shape bow measured at Ring-
hals 4.

Figure 1.4: Examples of FA bow measurements at Ringhals power plant (Andersson et al., 2005).

To understand the causes for the occurrence of bowed FAs since the 1990s, we need to consider the evolution

process of the design and management of nuclear fuel since the �rst deployment in PWRs. Initially, FAs

were deployed in the reactor core for a residence time of three cycles with a length of 12 months each.

The degree to which the �ssile material in the fuel is depleted, or �burnt�, is measured with the burnup
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(BU), which expresses the energy produced per mass of heavy metal in the fuel. At the same time, this

variable also represents a measure to which degree the fuel and the carrying structure have been damaged by

material degradation mechanisms due to irradiation. In the initial phase in the history of PWR operation,

FAs reached discharge BUs in the range of 30 GWd/tHM, depending on the speci�c power history. Over the

years, the economic incentive for optimizing core design lead to an extension of the residence time in the

reactor, that is, higher maximum discharge BUs. But not only the total residence time was increased, but also

the length of the single reactor cycles was often extended to 18 months to increase availability of the plants

and reduce the maintenance costs associated with the refueling shutdowns. Both evolutions place increasing

demands on the design performance of fuel. In particular, they require the consideration of new phenomena

which occur only for high BUs, that is, in the range from 40 GWd/tHM up to more than 60 GWd/tHM. In

conjunction with the introduction of a competitive market for the supply of fuel, operators and fuel vendors

reached a substantial improvement and diversi�cation of nuclear fuel and operational strategies in order to

obtain a safe and e�cient high-BU performance. To gain these advantages, several minor design changes

have been introduced in FAs. Although the adverse e�ect on fuel stability of these changes is usually judged

negligible, their cumulative impact might still destabilize the fuel structure. One of the many e�ects of

higher discharge BU and longer cycles, is the bowing of the GTs in PWR FAs. A general understanding of

the bow mechanisms appears often di�cult since due to the diversi�cation of management strategies and

reactor-speci�c modi�cations the issues have become more and more plant-speci�c. Distortions are reported

to be limited to certain power plants or reactors, for example high-temperature plants, and to FAs with

certain characteristics, for example certain power histories or design features. Often not only high-BU FAs

are concerned, but also FAs after the �rst reactor cycle. This can be explained by the fact that FA bow

propagates over several cycles and that the bowed FAs with higher BUs induce bow of the fresh FAs in their

�rst reactor cycle due to the core-wide mechanical coupling.

Since the occurrence of FA bow, operators and fuel suppliers have taken several measures to counteract

the problem. On the one hand, FAs with new features have been designed to prevent the occurrence of

the FA bow already at the design stage. New more creep-resistant materials were deployed for the GTs

and stress-reducing measures for the FA structure were taken in order to decrease the creep deformation

rates during operation. Stresses in the structures can mainly be reduced by decreasing external loads, such

as the holddown (HD) forces, and by increasing the FA sti�ness, by maximizing the GT wall thickness

or sti�ening the connection between GTs and spacer grids, for example. On the other hand, operators

attempted to account for the bow at the core planning stage, placing the bowed FAs so as to prevent a

further propagation of bow, or even to promote a reduction of bow. However, only simple measures can be

taken as long as no computational tool is available which reliably integrates the consideration of FA bow

into core planning. For example, bowed FAs can be set next to FAs which are not concerned or placed at

positions or angles, at which further bowing is judged the least probable to occur.

Thanks to these measures, FA deformations could be reduced in many instances (Gentet et al., 2012; Aulló

et al., 2012; RSK, 2015) and no new IRIs due to bowed assemblies have been reported in the most recent past.

Still, the bow amplitudes could not be decreased to the level before the occurrence of the di�culties and FA

bow continues to be observed. The bow problems can hence not be considered completely resolved, especially

as the joint e�ect of the multitude of in�uencing mechanisms is still not fully understood. Therefore, the

analysis of the causes of FA bow and the development of bow modeling approaches remains an important
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�eld of research. This is particularly relevant in the light of future developments or design changes to further

extend FA BU since these may bring out new safety concerns. After the introduction of new types of FAs, the

modi�cations might be in a sort of �latent state� (Roudier and Béraha, 1996) for a time and be revealed only

a few years after the changes have been made. It is hence primordial to procure that future design changes,

material choice and operating strategies be in accordance with the objective to limit FA deformations.

1.2 Problems related to FA bow

FA bow causes both safety-related problems during operation and FA handling issues during outage. Safety-

related problems mean that the FA bow potentially interferes, directly or indirectly, with one or several of

the three fundamental safety functions, which need to be ensured during operation, namely:

1. the control of the reactivity;

2. the heat removal from the core and, in particular, from the FRs; and

3. the con�nement of radioactive materials.

One direct e�ect concerns the control of the reactivity due to the previously discussed increased RCCA drop

times or IRIs. Other indirect e�ects of the FA deformations concern the thermohydraulics and the neutronics

of the reactor core. For straight FAs, a water gap of about 1.6 mm exists between two neighboring FAs during

operation, through which a certain amount of coolant bypasses the FAs. Due to the relative deformation of

FAs as a result of FA bow, the gap width changes locally. Increased water gaps may lead to an increase in

local power density due to a more e�ective moderation. Besides, modi�ed gaps size may cause a di�erent

coolant �ow distribution, potentially harming the heat transfer from the FRs. Moreover, in certain instances

operators detected a relationship between FA bow and increased amplitudes of the neutron �ux �uctuations

in the reactor core, which might also cause locally increased power or decreased heat transfer. For this

reason, the second fundamental function, the heat removal from the core, can also be a�ected by FA bow.

Finally, FA bow is a factor in the third safety function by facilitating FR failure, that is, by causing damages

to the FR cladding in a manner that radioactive materials are released into the coolant circuit. With the

increase of FA bow, a larger number of FAs damaged by spacer grid corner fretting, depicted in Figure 1.5a,

has been reported. Figure 1.5b illustrates a scenario in which contact of the spacer grid corners of two

diagonally opposite FAs is possible, increasing the risk of fretting wear. As an immediate cause of the corner

fretting, the FRs in the FA corner have been damaged in some cases. FR failure might also occur due to

the debris released due to fretting wear at the spacer grid corners. Finally, the deformed FA structure might

provoke di�erent vibration characteristics of the FAs, thus promoting fretting wear of the FR cladding.

FA damage due to FA bow is not only an issue during operation, but also forms part of the FA handling

problems during outage. When loading or unloading the reactor core, the probability of causing damage to

spacer grids or FR cladding is increased due to friction forces between the bowed FAs. To avoid damages,

special care or additional measures must be taken when loading or unloading deformed FAs, for example, by

following a speci�c loading strategy or inserting dummy FAs next to strongly deformed FAs. These handling

issues have a practical and economical relevance for the operator because such measures potentially increase

outage times. This means a decreased availability of the reactor, thus reducing its pro�tability.
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Impact on Fuel Assemblies and Fuel Operation (I)

� Fuel handling

� Grip of fuel assembly
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� Restrained control rod insertion
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6th-8th May 2014 6TÜV NORD                            Anual Meeting on Nuclear Technology 2014: Fuel Assembly Bow

Drop time characteristics and test on distributions

(a) Photograph of grid corner fretting damage (Spykman and
Pattberg, 2014).

(b) Con�guration of four FAs with increased
risk for grid corner fretting (RSK, 2015).

Figure 1.5: Spacer grid corner fretting.

1.3 Bow in�uencing mechanisms

Over the years, a multitude of mechanisms have been discussed to be at the origin of FA bow or to promote it.

In general, two di�erent kinds of in�uencing mechanisms must be distinguished, bow-inducing mechanisms

and bow-enhancing mechanisms. Bow-inducing mechanisms are those which are at the origin of bow by

creating bending moments in the structure. Bow-enhancing mechanisms are those which cannot trigger the

bow by themselves, but have an important in�uence on how and how fast it is promoted. The �nal bow

patterns are probably the result of the interaction between the various mechanisms so that it is di�cult to

determine and quantify the contribution of each single e�ect. This coupling between several mechanisms,

in addition to the mechanical coupling of the FAs in the core, can potentially have counter-intuitive and

self-amplifying e�ects and could explain the occurrences of strongly deformed cores with asymmetric bow

patterns. The coupling e�ect between a multitude of in�uencing factors and DOFs represents one of the

largest challenges in the modeling of FA bow. The following paragraphs present the di�erent in�uencing

mechanisms that have been identi�ed as potentially bow-inducing or bow-enhancing. On the one hand, they

cover material degradation mechanisms, which are physically speaking at the origin of the permanent FA

deformations by means of microstructural changes in the material. On the other hand, they discuss certain

reactor boundary conditions (BCs) on the FAs, which cause this material degradation to happen and might

therefore induce the bow. Figure 1.6 summarizes graphically the di�erent bow-in�uencing mechanisms.

Holddown (HD) force The FAs in the reactor core are compressed from the top by the upper core plate

to prevent the FA to lift o� from the lower core plate due to the e�ect of the upward coolant �ow. For this

purpose, the FA top nozzle is provided with HD springs, which are in contact with the upper core plate

and generate a compressive HD force on the FA. When higher than expected FA bow was �rst observed in

Ringhals in 1994, the occurrence of bow was ascribed to excessive HD force. GT buckling due to excessive

axial loads can, however, be excluded as root cause for the deformation since the GTs are designed to
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Figure 1.6: Graphical representation of in-reactor FA bow in�uencing mechanisms. Background drawing
from USNRC (2012).

o�er su�cient margin against buckling in highly demanding situations, such as design-basis accidents. The

maximum GT compressive load under normal operation is hence by far below the critical buckling load.

Nevertheless, the HD force can contribute to the occurrence of FA bow by means of the structural softening

e�ect of normal compressive stresses in slender structures. That is, the higher the axial compressive load

on the FA, the lower is the e�ective lateral sti�ness. High HD forces consequently enhance the FA elastic

lateral deformation due to external loads, and by this means also the lateral creep deformation rate, which

is one of the causes of the permanent FA deformation, see section 1.3.

Structural growth Structural irradiation growth is the root cause for increasing HD forces during oper-

ation. Due to the fast neutron irradiation in the reactor, the Zirconium-alloy GTs undergo a length increase

as a result of their anisotropic crystal lattice. This lengthening leads to an axial growth of the FA structure,

thus compressing the HD springs and potentially increasing the HD forces. By this means, irradiation growth

may indirectly enhance FA bow. In addition, structural growth may also directly induce FA bow by means

of the di�erential elongation of the single GTs. Each single GT might undergo a di�erent length increase

due to the e�ect of lateral gradients of the fast neutron �ux over the FA, thus creating bending moments in

the FA structure.

Structural creep The permanent deformation of the FAs is associated with the formation of plastic

strains in the FA structure. The materials of the FA structure are selected such that they o�er su�cient

margin between the mechanical stresses occurring during operation and the yield stress beyond which an

instantaneous plastic deformation occurs. The plastic strains causing FA bow must hence derive from long-
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term time-dependent plasticity e�ects without stress threshold such as creep or growth. In nuclear reactors,

creep is induced and enhanced by microscopic e�ects of the fast neutron irradiation on the crystal lattice

of the material, leading to plastic strain in the direction of the applied stress. Creep exists only in the

presence of internal material stresses, which are the result of external loads. The creep deformation is hence

an important contributor to FA bow; however, driving forces are required to induce this deformation.

FA sti�ness The lateral sti�ness of the FA determines the elastic deformation and therefore the stresses

in the FA structure. The higher the elastic deformation is under an external load, the higher will be the

creep deformation rate. Therefore, the susceptibility of the FA structure to lateral bow can be reduced by

increasing its sti�ness. Important in�uencing parameters on the FA sti�ness are: on the one hand, the

bending sti�ness and axial sti�ness of the single GTs and FRs; on the other hand, the structural coupling

between all GTs and FRs at the spacer grid levels, which provides an additional sti�ening e�ect to the FA

structure. The strength of the coupling e�ect is mostly determined by two factors; �rst, the sti�ness of the

connections between the spacer grids and the GTs and FRs; second, the cross-sectional positions of the FRs

and GTs, an e�ect known from Steiner's theorem.

Structural relaxation The lateral FA sti�ness does not remain constant during the operational life of

the FA. Before operation, the spacer grid springs are pre-stressed to maintain the FRs in position under

all transport and handling conditions. For fresh FAs, the FRs hence contribute strongly to the overall FA

sti�ness. During operation, the spring preload relaxes, thus reducing the coupling between the FR bundle

and the FA structure and therefore the overall FA sti�ness. The reduced sti�ness naturally leads to higher

stresses for a given load condition. This e�ect increases the creep deformation rate and, hence, promotes

the FA bow. The structural relaxation of the FA springs can therefore be regarded as a bow-enhancing

mechanism. In contrast, the relaxation of the HD spring decreases the HD force and therefore can reduce

the bow-enhancing e�ect of the HD force.

Thermal loads (Temperature) Like the fast neutron �ux, the material temperature is an important

parameter for the creep deformation of materials under mechanical stresses. As a result of lateral thermal

gradients, thermal loads might also induce permanent FA deformations by means of a laterally variable

build-up of creep strains. Important lateral temperature di�erences contributing to this e�ect are mostly

expected for the FRs, due to lateral power gradients over the FA. The FA structure, in turn, is well cooled by

the coolant �ow so that mainly axial temperature di�erences exist. Besides their in�uence on creep, lateral

thermal gradients over the FA can also induce FA deformations as an independent mechanism. This is due

to the di�erential thermal expansion of the FA components leading to internal bending moments. Although

this is a reversible process, which loses its e�ect when the gradient vanishes, it might introduce perturbations

into the system of coupled FAs. Finally, the axially variable coolant temperature along the FA may also

lead to axial di�erences in the grid spring relaxation. This may modify the axial center of rigidity of the FA,

leading to potentially di�erent deformation shapes.

Fast neutron irradiation The fast neutron irradiation plays a fundamental role for the permanent de-

formation of the FA structure in the reactor core. Fast neutrons are capable of creating damage to the

crystal lattice of the metallic alloys, thereby inducing irradiation creep and growth. Moreover, fast neutron
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irradiation enhances thermal creep mechanisms. Without the contribution of the fast neutron irradiation,

the creep and relaxation e�ects would be strongly reduced and practically no growth would occur. The

distribution of the fast neutron �ux in the reactor depends on the power pro�le and plays an important

role for the FA deformations. Depending on the position of the FA in the core, the magnitude of the �ux

will be di�erent, thus accelerating or decelerating the creep rate when compared to the average �ux. The

maximum-to-minimum �ux ratio can reach values up to 3, particularly for core loading patterns with low

neutron leakage at the core periphery. The power gradients in the core can lead to lateral fast �ux gradi-

ents over single FAs, thus causing di�erential creep and growth in the FA structure. These induce internal

bending moments in the FA structure, which add up to the bending produced by external loads.

Lateral mechanical coupling When the relative lateral deformation between two neighboring FAs is

larger than the initial gap between them, the gap is closed and inter-FA contact is established. In this

manner, the two FAs are coupled mechanically in the lateral translational DOF. In practice, most FAs in

the core are getting in contact to each other during operation at di�erent axial levels, creating a coupled

nonlinear mechanical system with a multitude of DOFs. That is, the bow deformation of single FAs may

propagate over the entire core, thus creating collective bow patterns. On the other hand, the mechanical

coupling also sets a limit to the deformation. When a deformed FA is coupled laterally to an undeformed

FA, the reaction force acting on the deformed FA at the point of contact might decrease its permanent

deformation over time. Moreover, the lateral coupling of the peripheral FAs with the core ba�e limits the

maximum deformation of the FAs in the reactor core. Within one FA row, the deformation is limited to the

cumulative gap size between the FAs of this row. Since the nominal gap size in hot condition between the

Zirconium alloy grids of two neighboring FAs is about 1.6 mm, the maximum deformation is limited to a

maximum of about 26 mm. This value is possibly decreased by the growth of the spacer grids during reactor

operation.

Lateral hydraulic loads Figures 1.6 illustrates that the coolant �ow follows a speci�c path through the

RPV: from the inlet nozzles down the downcomer to the lower plenum and then through the reactor core

and the upper plenum to the outlet nozzles. Due to the direction change of the �ow in the lower and upper

plena, a uniform �ow pro�le at the inlet and the outlet of the core cannot be guaranteed. Ulrych and Weber

(1983) o�ered a detailed description of the speci�c �ow conditions in the plena: The lower plenum consists

of the hemispherical bottom of the RPV and the internal structures installed for homogenizing the �ow

distribution, for example, a so-called �ow skirt. The �ow conditions in the lower plenum are complex and

depend on how the �ow developed in the downcomer. One in�uencing factor might be the start-up order of

the main coolant pumps, for example. Without the internal structures, the coolant �ows along the RPV wall

due to its inertia. A high-pressure region develops at the bottom of the lower plenum with �ow stagnation

in the lowest point. Due to this, the coolant is diverted and �ows upwards with a maximum in the center of

the core. At the same time, large eddies in the peripheral regions of the core would drag the �ow downwards

at the sides so that the peak-to-average velocity at the core inlet would become excessive without internal

structures. The purpose of these internal structures is therefore to force the coolant upwards already in

the peripheral regions, thus homogenizing the �ow. Still, a characteristic �ow pro�le with a maximum in

the core center develops in most cases. The exact pro�le shape depends on the design of the lower plenum

structures, which di�er signi�cantly among the di�erent PWR types. In the upper plenum, the suction e�ect
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of the coolant outlet nozzles produces a non-uniform lateral pressure distribution with increased pressures

in the central region and low pressure in the periphery close to the nozzles. The pressure distribution is

additionally in�uenced by the support structures in the upper plenum. Due to these speci�c conditions in

the upper plenum, a non-uniform �ow pro�le with increased velocities at the periphery develops also at the

core outlet.

Due to the non-uniform coolant �ow inlet and outlet pro�les at the lower and upper core plates, cross-�ow

is induced in the core as a result of lateral pressure gradients. In general, a certain amount of cross-�ow

may be desired to achieve improved heat transfer between hotter and colder areas in the reactor core. For

this purpose, the FA spacer grids are also equipped with mixing vanes to induce �ow swirls, thus increasing

cross-�ow and local heat transfer. At the FA scale, this local cross-�ow has normally no preferential direction

since the generated eddies are of the length scale of the FR pitch. In contrast, the cross-�ow generated by

the non-uniform distribution of the �ow at the core inlet and outlet induces cross-�ow over several FAs. In

this manner, unidirectional hydraulic loads on the single FAs are generated, thus creating bending moments

on the FA structures. Over short time scales, this transverse �ow may induce FA or FR vibrations whereas

over long time scales � such as an entire operating cycle � the hydraulic loads may induce permanent

FA deformations as a result of creep. These hydraulic loads are believed to be one of the major driving

mechanisms of FA bow.

1.4 Literature review of the modeling of FA deformations and of

related phenomena

This review is divided into three parts. The �rst part introduces the development of FA structural models,

the second part presents the e�orts in modeling the core-wide �ow distribution, and �nally recent approaches

which couple both the FA structures and coolant �ow are described.

FA structural models Since the �rst deployment of FAs in PWR cores, structural models have been

developed to evaluate the FA structural response. Barinka (1971) was one of the �rst to publish a theoretical

description of the general structural behavior of FAs, considering it as a particular case of a coupled tubular

structure. In this description, the spacer grids are so-called coupling stations, which are considered rigid

and to which the GTs and FRs are connected by means of nonlinear translational and rotational springs.

Based hereupon, Barinka developed an analytical computer model, consisting of linear Euler-Bernoulli beams

coupled with nonlinear springs. This allows to calculate the nonlinear de�ection response of the FA structure

due to mechanical loads. Since models of this type consider only the structural behavior of fresh FAs with

zero BU, they can easily be validated with experimental data from in-laboratory structural de�ection tests.

In this early stage, the modeling of the in-reactor FA material degradation e�ects � such as creep, growth,

and spring relaxation � was mostly of interest for the FR mechanical response. With this type of analysis,

operators predict the permanent diametral deformation of the FR cladding, referred to as creep-down, the

permanent axial elongation, referred to as growth, as well as the change of the vibration behavior of the

FR due to the relaxation of the grid springs which form the FR support. Before the occurrence of FA bow,

the relevance of the material degradation e�ects on the FA structural response was mostly limited to the

prediction of the axial FA growth. These calculations serve to guarantee su�cient HD force on the FA to

prevent lift-o� and to maintain su�cient margin for the FRs to elongate freely (Salaün et al., 1993, for
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example).

With the increasing relevance of FA bow to safety in the 1990s, several models to predict the lateral FA

deformation during operation have been created. These models were the �rst step to develop computational

tools to ultimately predict the FA bow deformation in the core in order to optimize the FA design and

core planning. Stabel and Hübsch (1995) and Salaün et al. (1997), for example, presented FA deformation

models based on an analytical approach. At the same time, FA structural models based on the Finite Element

Method (FEM) were also established (Levasseur et al., 2009; Aleshin et al., 2009; Morales et al., 2012). These

models use a completely numerical approach, which allows a higher �exibility in the implementation and

the use of widely available modular FEM software. By coupling the single FA models next to each other,

calculations over FA rows or the entire core became possible. Such models were described, for example, by

Marin et al. (2001). Figure 1.7 gives two examples for the typical output produced by such tools.

(a) Morales et al. (2012) (b) Hadºi¢ and Dressel (2016)

Figure 1.7: Examples for FA bow predictions by computational tools.

Core-wide lateral hydraulic �ow models In the initial phase of bow code development, researchers

concentrated on the thermal and neutron �ux loads to calculate the structural behavior of the FAs. It

became, however, clear that the bow could not be explained without an additional driving force. The lateral

hydraulic forces due to cross-�ow in the reactor core was hence judged to be a very important parameter

for FA bow. However, an accurate prediction of the �ow distribution in the core is di�cult to achieve. This

is both due to the large size of the resulting computational models and the lack of validation possibilities

because it is not realistic to perform reliable measurements of the �ow distribution inside the reactor core.

As a �rst approach, results from thermohydraulic codes were integrated into the bow models as constant BC

(Levasseur et al., 2009). Stabel et al. (2011) presented a hydraulic model developed speci�cally for FA bow

calculations which consists of a network of pipes with di�erent hydraulic parameters.

Using simpli�ed thermohydraulic models to predict the lateral loads presents, however, several weaknesses.

First, the hydraulic parameters necessary for the implementation of local pressure losses are di�cult to

obtain due to the small and complex geometry of the spacer grids and other relevant structures as well as

due to the strong dependence of the lateral drag forces on the angle of attack. Second, the �ow upstream and

downstream of the core can have an important in�uence on the �ow distribution inside the core, which is why

the core inlet and outlet BCs must be well known to reliably predict the hydraulic forces. Computational

Fluid Dynamics (CFD) simulations with resolved structures predicting the �ow evolution in the entire RPV
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� or at least from the lower to the upper plenum � would be necessary for this purpose. The length scales of

the �ow of the coolant through the reactor core extend over several orders of magnitude, from the core size

of several meters down to tenths of millimeters when considering the details of the spacer grids or the FR

deformations. When resolving the structure with a discretization grid, the resulting large model size requires

signi�cant computational resources and modeling e�ort. Although resolved CFD calculations over the entire

�ow path of the coolant in the RPV remain still out of reach, calculations over parts of the �ow path of

the coolant in the RPV have become possible with the quick evolution of computational performance. CFD

calculations with a resolved structure have recently been performed over speci�c core and plenum regions, see

the publications of Fournier et al. (2007), Karoutas et al. (2010), or Xu et al. (2012), for example. To verify

the validity of the prediction results, the authors mostly refer to experimental investigations on simpli�ed

and downscaled mock-ups, mostly operated with air as �ow medium.

Fournier et al. (2007) calculated the �ow in the lower plenum and the lower core region of a PWR using a

CFD model with resolved structures. The results con�rmed the non-uniform core inlet velocity distribution

observed with experimental �ow loops. Figure 1.8a gives an example output of the axial velocity distribution

under the �rst spacer grid. The CFD calculations by Karoutas et al. (2010) over one quarter of a PWR

core also predicted a non-uniform velocity pro�le in the lower portion of the core. The distribution of the

obtained core inlet velocities was in reasonable agreement with experimental data. Finally, Xu et al. (2012)

gave results of resolved CFD simulations over the upper plenum including the top of the reactor core and

the outlet nozzles and detected a clear in�uence of the outlet nozzles on the lateral �ows in the reactor core.

Figure 1.8b gives an example output of the pressure distribution in the upper core plate. Nonetheless, it

must be remembered that the coolant �ow in nuclear reactor cores is highly turbulent. Therefore, Large

Eddy Simulation (LES) techniques might be required to obtain reliable results. However, with the current

computational performance only LES simulations over a fraction of a single FA are feasible (Bieder, 2015).

(a) Axial velocity at core inlet (Fournier et al., 2007). (b) Pressure distribution at core outlet (Xu et al., 2012).

Figure 1.8: Example outputs for CFD calculations over partial core sections.
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Recent approaches including �uid-structure interaction (FSI) Experimental results published by

Stabel et al. (2011) have demonstrated the importance of �ow-induced FA bow due to FSI e�ects acting

between neighboring FAs. The experiments showed that bow may be induced on straight FAs due to the �ow

displacement e�ects caused by the deformation of neighboring FAs. Moreover, the speci�c FA and spacer

grid design proved to have an in�uence on the elastic deformation shape. Along with the experimental

results, Stabel et al. (2011) presented a FA bow model which o�ers a two-way coupling between the FA

structure and a simpli�ed hydraulic model. Horvath and Dressel (2013) undertook a �rst attempt to model

a two-way coupling between CFD calculations and a FA structural bowing code, considering one row of FAs

in the reactor core. Coupled CFD and structural simulations over the entire core require still a tremendous

computational expense and have not been realized so far. Lascar et al. (2015) published the most recent

description of bow modeling over the entire core, which uses simpli�ed hydraulic models validated with

local CFD simulations. When compared to end of cycle (EOC) bow measurements, the obtained results are

promising but underline, at the same time, that considerable prediction uncertainties remain, both regarding

the deformation amplitude and direction, see Figure 1.9.

(a) Comparison of EOC bow directions between
measurements (blue) and predictions (red).

(b) Deviation between EOC FA measured and predicted
quadratic bow normalized by the maximum quadratic bow.

Figure 1.9: Examples for recent bow predictions versus measurements (Lascar et al., 2015).

1.5 Motivation and objectives of this work

The so far presented bow modeling results show that still larger deviations exist between theory and the

�nal measurements of the free bow shapes at EOC despite the large modeling e�ort invested in making

reliable predictions. This raises the fundamental question about how reliable the prediction of the FA bow

shapes and amplitudes can be with the available modeling methods. There might be a more fundamental

reason for these discrepancies which cannot be solved by ever more re�ning the model, at least not with the

currently available computational methods and means for code validation. When considering most of the

presented in�uencing mechanisms, there is an important uncertainty about their actual value in the reactor.
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The only parameters that can be measured reliably are the out of pile (OP) sti�ness and deformation of

the fresh FA and the neutron �ux at certain positions in the reactor. The online measurement of other

parameters, such as the coolant cross-�ow velocity or the in-core deformation of the FAs, would require the

costly development of new measurement techniques and retro�ttings in the reactor to install the devices.

Moreover, the informative value of punctual �ow measurements is questionable since the global cross-�ow

can be overlaid by other e�ects such as local eddies. There is hence a fundamental epistemic uncertainty

about these parameters. To still obtain the required parameter values to feed the models, researchers have

created simpli�ed and down-sized experimental set-ups, which allow to estimate the probable parameter

values during operation. Examples are hydraulic �ow tests in RPV mock-ups or creep tests of speci�c FA

components performed in test or power reactors. However, the resulting irradiation test data often exhibit an

important scatter among several samples. While there may be deterministic reasons for this spread, they can

be described as aleatoric uncertainties since they often cannot be controlled by the experimentalist. Possible

reasons are di�erences in the microstructure or imperfections inherent to the manufacturing process.

To summarize, the intrinsic di�culty of bow modeling is that there are signi�cant epistemic and aleatoric

uncertainties about the BCs and material models. The uncertainties might even systematically add up due

to the multitude of in�uencing mechanisms. An additional detrimental e�ect may be caused by the core-wide

coupling of the mechanical system and the resulting large number of DOFs. Due to this, the uncertainties

might propagate over time and space, leading to unexpected results. Under these circumstances, it can be

very challenging to �nd a best estimate (BE) solution with a su�ciently small uncertainty width to obtain

meaningful predictions about the bow patterns to expect after one reactor cycle.

The objective of this work is therefore to approach the FA bow modeling from a novel point of view, namely

setting the focus on sensitivity and uncertainty analysis. For this purpose, a computer model needs to be

created as a �rst step to perform the analyses of the FA bow phenomena. The majority of the work on FA

bow and its modeling has been performed in the context of industrial research. Therefore, most of the models

are proprietary so that the possibilities to investigate speci�c model features and to verify their performance

are limited. By constructing a completely new model, a �rst step to the treatment of the highly complex

FA bow modeling problem in the framework of academic research shall be done. The objective is to build

up a generic model which is capable of reproducing the typical in-reactor structural behavior of PWR FAs.

The structural and hydraulic submodels are to be generated in such a �exible way that the most common

PWR FA designs can be simulated. Although several choices about the speci�c FA design must be made in

this thesis, the model should be adaptable to other designs by simply modifying the concerned parameters.

In this present work, the ANSYS software suite is used for the Computational Structural Mechanics (CSM)

and CFD applications. Despite the use of this speci�c software package, the modeling strategy of the single

features shall be described comprehensively from a general point of view. This guarantees the reproducibility

of the model for the purpose of further academic research using any software that o�ers an interface for the

implementation of the required model features.

The computer model is to be created as a modular tool, featuring all the in�uencing mechanisms which have

been identi�ed as possibly signi�cant for the FA bow, see section 1.3. With this tool sensitivity analyses

shall be performed to investigate the sensitivity of the modeled system to the di�erent in�uencing factors.

This serves to identify, on the one hand, the most important structural parameters of the FA model and,

on the other hand, the dominant mechanisms leading to the permanent FA bow. An important part of this
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sensitivity analysis will be the estimation of the uncertainty range of the di�erent model input parameters

based on the available data sources and the acquired knowledge about the system. After identifying the

most signi�cant uncertainty factors, the �nal objective is to evaluate the total e�ect of these uncertainties

on the outcome of the simulations. That is, we want to observe the variability of the bow predictions based

on the uncertainty about the most important in�uencing parameters. By this means, we can evaluate the

predictive power and reliability of bow prediction models and draw conclusions about the predictability of a

single FA bow pattern for a speci�c reactor cycle.

1.6 Outline of the thesis: modeling and simulation steps

The main part of this thesis can be subdivided into three blocks: theory, model description, and results.

Chapter 2 gives the theoretical basis for the modeling concepts used in this work. It describes the analytical

and numerical concepts necessary for the modeling of the structural and �uid mechanical problems.

The next block describes the set-up of the model and its BCs and is subdivided into three chapters. Chapter 3

describes the set-up of the FA structural model and justi�es the modeling choices that are made. The FA

structural model represents the �rst modeling step on the path to modeling the FA behavior in the reactor:
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(a) FA structural
model.

(b) Single FA in reactor. (c) Row of coupled FAs with lateral hydraulic loads.

Figure 1.10: Schematic of the modeling steps done in this thesis based on Figure 1.6. The black dashed
line encloses the modeled domain.
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the modeling and simulation of the structural response of an isolated FA in laboratory conditions, see

Figure 1.10a. Chapter 4 covers the modeling of all mechanisms in�uencing the deformation of FAs during

reactor operation except for the hydraulic loads, which are treated in a separate chapter. In particular, the

modeling of the material degradation mechanisms creep, growth, and relaxation is considered. Moreover,

the temperature and neutron �ux BCs are de�ned, which are essential for the calculation of the material

degradation. Chapter 5 then describes the hydraulic model, which is used to produce the distribution of

hydraulic forces on the FAs in the core, that is, the hydraulic load BC.

The last block, chapter 6, gives the entirety of the results for the simulations of the FA deformation during one

reactor cycle obtained with the presented model and of the associated sensitivity analyses. For this purpose,

several scenarios are described. First, only a single isolated FA in the reactor is considered, simulating its

response to all axial reactor loads as well as discrete lateral test loads, see Figure 1.10b. This represents an

intermediate modeling step since the realistic reactor loads and model components inducing lateral bow are

not yet accounted for. These loads are integrated in the last modeling step, illustrated in Figure 1.10c. The

FAs are set in a row and are coupled mechanically to each other. Then, an estimated distribution of lateral

hydraulic loads and power gradients are imposed on the model. For each of the modeling scenarios, reference

results are described based on the BE model parameters de�ned in the model description. Then, di�erent

sensitivity and uncertainty analyses are performed to investigate the sensitivity of the model to di�erent

in�uencing mechanisms based on the assumed uncertainty range for the concerned model parameters.

The �nal chapter 7 gives the conclusions obtained from the modeling process and the observed results. It

discusses further aspects and gives an outlook on future work.
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Chapter 2

Modeling Theory

2.1 Structural mechanics

2.1.1 Linear isotropic elasticity

The time scales of the permanent fuel assembly (FA) creep and growth deformation e�ects are very long

compared to the characteristic FA vibration frequencies. We can therefore limit this introduction to the

theory of elastostatic problems. Elastostatic problems are based on three fundamental relationships, the

strain-displacement equations, the stress-strain relationships, and the equilibrium equations (Szabó and

Babu²ka, 2011). The unknowns of any mechanical problem are the components of the displacement vector

ui at any position xi in the Euclidean space. Strain is a relative measure of the deformation at a certain

point of the continuum in relation to a reference length. For arbitrarily large displacements and strains, a

multitude of stress-strain relationships can be constructed, one of which is the Almansi strain tensor eij :

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂uk
∂xj

∂uk
∂xi

)
(2.1)

Since the bow deformations are small compared to the FA length scale, we can use the in�nitesimal strain

theory which assumes small displacements and rotations, ‖ui‖ � 1, as well as small strains, ‖ ∂ui∂xj
� 1‖.

This allows us to neglect the nonlinear term in equation 2.1, which results in the linear in�nitesimal strain

tensor εij :

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.2)

The mechanical stress σ is de�ned as force per unit area. In any externally loaded material there exists a

three-dimensional internal stress �eld, see Figure 2.1. The single components form together the stress tensor
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and the shear strain components are

ǫxy = ǫyx ≡
γxy

2
:=

1

2

(

∂ux

∂y
+

∂u y

∂x

)

ǫyz = ǫzy ≡
γyz

2
:=

1

2

(

∂u y

∂z
+

∂uz

∂y

)

(3.32)

ǫzx = ǫxz ≡
γzx

2
:=

1

2

(

∂uz

∂x
+

∂ux

∂z

)

where γxy , γyz , γzx are called the engineering shear strain components. In index notation,

the state of (infinitesimal) strain at a point is characterized by the strain tensor

ǫi j :=
1

2

(

ui, j + u j,i

)

. (3.33)

2. Stress–strain relationships. Mechanical stress is defined as force per unit area

(N/m2
≡ Pa). Since 1 pascal (Pa) is a very small stress, the usual unit of mechan-

ical stress is the megapascal (MPa) which can be interpreted either as 106 N/m2 or as

1 N/mm2.

The usual engineering notation for stress components is illustrated on an infinites-

imal volume element shown in Figure 3.6. The indexing rules are as follows: faces to

which the positive x-, y-, z-axes are normal are called positive faces, the opposite faces

are called negative faces. The normal stress components are denoted by σ , the shear

stresses components by τ . The normal stress components are assigned one subscript

only, since the orientation of the face and the direction of the stress component are the

same. For example, σx is the stress component acting on the faces to which the x-axis

is normal and the stress component is acting in the positive (resp. negative) coordinate

direction on the positive (resp. negative) face. For the shear stresses, the first index

refers to the coordinate direction of the normal to the face on which the shear stress

Figure 3.6 Notation for stress components.Figure 2.1: Notation for stress components on an in�nitesimal volume element (Szabó and Babu²ka, 2011).

σij , in which σ denominates normal stresses and τ denominates shear stresses:

σ =



σx τxy τxz

τyx σy τyz

τzx τzy σz


 (2.3)

Assuming that the material is not loaded by distributed moments, the stress tensor is symmetric, that is,

σij = σji. The stress tensor can be related to the strain tensor by the following constitutive equation:

σij = Cijklεij (2.4)

where Cijkl is the elasticity tensor of 4th order which consists of 81 components. For a linear, isotropic, and

elastic continuum, equation 2.4 can be reduced to a relationship between stress and elastic strain εel with

only two constants by introducing the Lamé coe�cients λ and µ:

σij = λεelkkδij + 2µεelij (2.5)

Equation 2.5 can be reshaped into Hooke's law, introducing the experimentally established Young's modulus

E and Poisson's ratio ν as constants:

εelij =
1 + ν

E
σij −

ν

E
σkkδij (2.6)

Due to the thermal expansion of the material, a thermal strain εth is introduced into the stress-strain

relationship. The thermal strain is de�ned as the relative shape change of the material when heating or

cooling it from a reference temperature Tref to temperature T so that ∆T = T − Tref.

εth =

∫ T

Tref

αtan(T̂ )dT̂ = αsec(∆T )∆T (2.7)
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In equation 2.7, αtan is the tangent, or instantaneous, coe�cient of thermal expansion and αsec is the secant,

or integrated, coe�cient of thermal expansion. For thermoelastic materials, the total strain εtot is the sum

of the elastic strain and the thermal strain.

εtot = εel + εth (2.8)

The thermoelastic constitutive equations are obtained by expanding Hooke's law:

εtotij =
1 + ν

E
σij −

ν

E
σkkδij + α∆T (2.9)

The �nal set of equations necessary for solving an elastostatic problem are the equilibrium equations. Consid-

ering the volume element in Figure 2.1, the elastostatic equilibrium of the internal stresses with an external

body force fB,i in the three spatial dimensions is given by the following equation:

∂σij
∂xj

+ fB,i = 0 (2.10)

The internal strain energy associated to the internal stresses and strains is obtained by integration over

the entire continuous domain Ω, see the �rst term in equation 2.11. The total internal energy U(ui) for a

kinematically admissible displacement �eld ui is composed of the internal strain energy of the continuum

and the energy of the translational and rotational springs with sti�ness ku and kθ:

U(ui) =
1

2

∫

Ω

σijεijdV +
1

2

∑

j

ku,ju
2
j +

1

2

∑

j

kθ,jθ
2
j (2.11)

The work W (ui) of the external forces, composed of the body force fB,i applied over Ω and the surface force

fS,i applied at the domain boundary ∂Ω, is given in equation 2.12:

W (ui) =

∫

Ω

fB,iuidV +

∫

∂Ω

fS,iuidS (2.12)

The potential energy Π is de�ned as:

Π = U −W (2.13)

2.1.2 Creep � a type of rate-dependent plasticity

The classical concept of plasticity describes time-independent inelastic deformations, assuming that the

deformation occurs instantaneously with the load application as soon as the stress in the material reaches a

speci�c yield stress σY. However, plastic �ow can also develop as time-dependent inelastic strain which may

occur for stresses below the yield stress. This phenomenon is referred to as creep and implies progressing

inelastic strains, leading potentially to creep rupture. Since the materials and structures in nuclear reactors

are designed to provide su�cient margin to yielding under normal operation, the only possible stress-induced

mechanism to permanently deform the structures is creep. The mathematical theory of the modeling of creep

is, for example, discussed by Koji¢ and Bathe (2005) and Naumenko and Altenbach (2007) and is introduced

in the following subsections. First, the general theory of plasticity models is introduced. The subsequent
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section describes more in detail the evolution of creep under speci�c loading conditions and the associated

creep laws.

2.1.2.1 Plasticity modeling

An important step in the theory of plasticity modeling is the de�nition of a yield criterion fY(σij) = 0, which

de�nes for which three-dimensional stress states yielding of the material occurs. As a 3× 3 tensor of second

degree, the stress tensor possesses three invariants Ji, which are independent of any base transformation:

J1 = σkk (2.14)

J2 =
1

2
(σiiσjj − σijσij) (2.15)

J3 =
1

3
σijσjkσki (2.16)

Supposing that the material is isotropic, plastic yielding can depend only on the magnitudes of the principal

stresses and not on their directions. Hence, any yield criterion must be expressible as a function fY of the

invariants of the stress tensor.

fY(J1, J2, J3) = 0 (2.17)

It is experimentally proven that the yielding of a metal is to a �rst approximation una�ected by a moderate

hydrostatic pressure or tension. The hydrostatic component of the stress tensor has the following form:

σhydij = δij
J1

3
(2.18)

Based hereupon, also a non-hydrostatic component of the stress tensor can be constructed, the so-called

deviatoric stress tensor σ′ij .

σ′ij = σij − σhydij (2.19)

It follows that the yield function depends only on the deviatoric stress tensor σ′ij and the associated invariants

J ′i = Ji(σ
′
ij):

J ′1 = 0 (2.20)

J ′2 =
1

2
σ′ijσ

′
ij (2.21)

J ′3 =
1

3
σ′ijσ

′
jkσ
′
ki (2.22)

Assuming that yielding does not involve J ′3, von Mises (1913) proposed the following yield criterion:

fY,von Mises(J
′
2) = J ′2 − k2 = 0 (2.23)

De�ning the e�ective stress of a material as

σe� =
√

3J ′2 =

√
3

2
σ′ijσ

′
ij =

√
1

2

(
(σx − σy)

2
+ (σy − σz)2

+ (σz − σx)
2

+ 6
(
τ2
yz + τ2

zx + τ2
xy

))
(2.24)
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the yield criterion in equation 2.23 reduces to

fY,von Mises(σe�) = σe� − σY = 0 (2.25)

with σY being the yield stress which can be obtained from uniaxial tensile testing. Once the yield criterion

is met for a speci�c stress state in the material, the evolution of plastic strains must be modeled. In analogy

to the constitutive equation 2.4, the relationship between the plastic strain increment dεpl and stress is

established, based on experimental evidence, by the Prandtl-Reuss equations:

dεplij = dλσ′ij (2.26)

where dλ is a scalar factor of proportionality, denominated the plastic multiplier, which is to be determined

for a speci�c case. Equation 2.26 states that the direction of plastic �ow is in the direction of the stress

state or normal to the yield surface, which is called the normality principle. The Prandtl-Reuss equations

can be generalized to the associated �ow rule, equation 2.27, in which the yield criterion fY(σij) represents

the plastic potential.

dεplij = dλ
∂fY(σij)

∂σij
(2.27)

For dλ we obtain by virtue of the hypothesis of the equivalence of plastic work under general and uniaxial

loading conditions:

dλ =
3

2

dεple�
σY

(2.28)

with dεple� being the increment of e�ective plastic strain de�ned as:

dεple� =

√
2

3
dεplijdε

pl
ij (2.29)

Since Zirconium alloys are anisotropic materials, the modeling of anisotropic plastic behavior is relevant for

the present work. The theory of plastic anisotropy is based on the work of Hill (1948) and is presented more

vastly in Hill (1983). For simplicity, Hill considers only states of anisotropy which possess three mutually

orthogonal planes of symmetry. Hill's approach is to create a yield criterion fY,Hill for anisotropic materials

as a generalization of the von Mises yield criterion for isotropic materials:

fY,Hill = F (σy − σz)2 +G(σz − σx)2 +H(σx − σy)2 + 2Lτ2
yz + 2Mτ2

zx + 2Nτ2
xy − σ2

Y = 0 (2.30)

where F,G, and H are anisotropy factors, which are to be determined for the speci�c anisotropic material.

For an isotropic material we have F = G = H = L/3 = M/3 = N/3 = 0.5 so that the anisotropy criterion

hence to von Mises' yield criterion, equation 2.25, when the anisotropy vanishes. By analogy with isotropic

materials, it is supposed that fY,Hill in equation 2.30 is the plastic potential. The strain-increment relations

are then given by inserting the yield criterion into the associated �ow rule, see also section 2.1.2.3.
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2.1.2.2 Creep evolution and laws

Under the e�ect of an initial strain ε0 and a constant stress and temperature, the creep strain increases with

time in three di�erent stages and adds up to the initial strain, see Figure 2.2. The total strain for a problem

including creep is then given as:

εtot = εel + εth + εcr (2.31)

In the primary stage, the creep strain rate is high and then decreases to a constant value in the secondary

stage. In this stage, stationary or steady-state creep is present. In the tertiary stage, the creep strain

increases again until the material bursts due to creep rupture. The length of each stage in the creep curve

depends on the material. For Zirconium alloys under normal reactor operation, generally only the secondary

creep stage is approached, and the tertiary stage is not reached.

Primary 

stage

Secondary

stage

Tertiary

stage
𝜀0

Strain 𝜀

Time 𝑡

𝜎 = const.

𝑇 = const.

Figure 2.2: Schematic of a creep curve.

The creep curves are strongly dependent on the stress level and the temperature. Under the common

assumption that the in�uencing variables are mutually independent, we obtain the following general equation

for the description of creep, the so-called creep law.

εcr = fσ(σ)ft(t)fT (T ) (2.32)

Over the years, a large array of creep laws has been proposed for various materials and applications. General

theory on creep laws for conventional applications can, for example, be found in Penny and Marriott (1995).

In the following paragraph, the most important conventional creep correlations for non-nuclear applications

are presented. These serve as a basis for the Zirconium alloy creep laws used for in-reactor applications,

which are discussed in section 2.4.6.

Most creep laws go back to Norton's (1929) law for high-temperature creep of steels which relates the

secondary creep rate to the stress by means of a power-law relationship with stress exponent nσ, also called

Norton's exponent, and the Norton constant CNorton(T ) which depends on temperature.

ε̇cr = CNorton(T )σnσ (2.33)
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The e�ect of temperature is usually accounted for by introducing an Arrhenius term into equation 2.33:

CNorton(T ) = CArrhe
−QcrRT = CArrhe

−QTT (2.34)

where Qcr is the activation energy of creep deformation and R is the ideal gas constant. Both are often

merged to the activation temperature QT .

Sophisticated systems such as nuclear reactors require close dimensional tolerances on many components so

that also the small creep deformations in the primary stage are of interest. A time-dependent component

needs to be introduced to account for the e�ect of this primary creep component. Based on Bailey (1935),

a common approach is to approximate the combined integrated e�ect of primary and secondary creep by

a power-law relationship with time exponent nt. The resulting model is often referred to as Norton-Bailey

model. This model is particularly useful when the primary creep rate is dominant for a speci�c alloy and

considered span of time.

εcr = Ccrσ
nσ tnt (2.35)

Another approach is to account for the e�ects of primary and secondary creep separately by adding up their

contributions. The primary creep component is assumed to approximate asymptotically a saturated value

εcr,pri,sat expressed by an exponential decrease of the transient creep rate with an exhaustion rate of pcr,

which is to be de�ned for the speci�c case.

εcr = εcr,pri,sat(1− e−pcrt) + ε̇cr,sect (2.36)

Another common description of the asymptotic saturation of the primary creep is the use of a rational-

polynomial time behavior, see the report by Booker (1977), for example:

εcr = εcr,pri,sat
pcrt

1 + pcrt
+ ε̇cr,sect (2.37)

In both cases, pcr describes the slope of the time-dependent creep curve at t = 0, but the rational-polynomial

function converges signi�cantly slower than the exponential function.

Under a variable stress over time, there are two approaches to determine the creep strain, the time hardening

and the strain hardening approach. For the time hardening approach, there is assumed no in�uence of the

loading history on the creep strain. The creep strain rate is calculated by simply deriving the time function

ft.

ε̇cr = fσ(σ)ḟt(t)fT (T ) (2.38)

From a mechanistic point of view, it is more plausible that the instantaneous creep rate is not a function of

time itself, but of the creep strain accumulated so far. In the strain hardening approach, the creep rate is

determined as a function of the cumulative creep strain εcr.

ε̇cr = fσ(σ)fε(ε
cr)fT (T ) (2.39)
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To derive a strain hardening creep law from the general time-dependent form in equation 2.38, the so-called

hardening time th(εcr) must be determined by solving equation 2.32 for t. Inserting the result into the

di�erentiated form, equation 2.38, yields the strain hardening law as in equation 2.39. For the example of a

Norton-Bailey creep law, the strain hardening law reads as:

ε̇cr = C
1
nt
cr ntσ

nσ
nt (εcr)

nt−1
nt (2.40)

2.1.2.3 Multiaxial creep modeling

The laws for isotropic and anisotropic multiaxial creep can be derived in analogy to the laws for instantaneous

plasticity, considering the creep strain rate ε̇cr as the derivative of the time-dependent plastic creep strain

εcr.

ε̇cr =
∂εcr

∂t

!
=
∂εpl

∂t
(2.41)

In analogy to the Prandtl-Reuss equations 2.26, we obtain the following creep constitutive relation for the

isotropic case:

ε̇crij = λ̇σ′ij =
3

2

ε̇cre�
σe�

σ′ij (2.42)

where ε̇cre� is the e�ective creep strain rate:

ε̇cre� =

√
2

3
ε̇crij ε̇

cr
ij (2.43)

Using, for example, an arbitrary strain hardening creep law as de�ned in equation 2.39, the e�ective creep

strain rate is given as:

ε̇cre� = fσ(σe�)fε(ε
cr
e�)fT (T ) (2.44)

For the anisotropic case, Ross-Ross et al. (1972) derived the equations for the creep of Zirconium alloy

tubes or rods with a cylindrical coordinate system based on Hill's general theory of anisotropic plasticity.

Assuming that the axes of anisotropy of a Zirconium alloy pressure tube coincide with the axes of principal

stresses, we obtain, based on equation 2.30, the following de�nition for the stress state in the cladding:

σ2
e� = F (σz − σθ)2 +G(σθ − σr)2 +H(σr − σz)2 (2.45)

where σr, σθ, and σz are the radial, transverse, and axial stresses. The corresponding relationship between

stresses and creep strains was derived by Merkle (1967) based on the associated �ow rule, equation 2.27,

yielding the equations of the Prandtl-Reuss type for multiaxial creep:

ε̇r =
ε̇cre�
σe�

[H(σr − σz)−G(σθ − σr)] (2.46)

ε̇θ =
ε̇cre�
σe�

[G(σθ − σr)− F (σz − σθ)] (2.47)
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ε̇z =
ε̇cre�
σe�

[F (σz − σθ)−H(σr − σz)] (2.48)

2.1.2.4 Relaxation as a case of creep

The creep relaxation denominates the occurrence of creep under the speci�c loading condition that the total

strain is held constant. If, for example, a material is elastically strained by εel = εtot in a certain direction,

it undergoes an initial stress σ0 corresponding to the elastic strain, see Figure 2.3. When holding the total

strain constant for t > t0, the contribution of creep strain to the total strain will increase, thus decreasing

the elastic strain and stress. That is, the stress is being relaxed:

σ(t) = (εtot − εcr(t))E (2.49)

Di�erentiating the stress-strain relationship in equation 2.49 with respect to time, the following di�erential

equation is determined:

σ̇ = −ε̇crE (2.50)

With a known Norton-Bailey creep law, equation 2.50 becomes:

σ̇ = −Ccrσnσnttnt−1E (2.51)

Solving the di�erential equation, for example, for the common case nσ = 1 and an initial stress of σ0, we

obtain:

σ(t) = σ0e
−CcrEtnt (2.52)

Creep relaxation plays an important role regarding the relaxation of pre-stressed springs. In terms of the

force-displacement relationship commonly used for one-dimensional springs, equation 2.52 becomes:

F (t) = F0e
−CcrEtnt (2.53)

That is, the spring force decreases exponentially during the relaxation of a pre-stressed spring when nσ = 1.

Figure 2.3: Evolution of stress and strain during creep relaxation (Rust, 2011).
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2.1.3 Engineering structural mechanics of FA tubes and rods

Engineering structures often can be calculated by simpli�ed methods because they usually possess a well-

de�ned geometry which o�ers elastic resistance in speci�c directions according to the anticipated loading

state. The general three-dimensional stress and strain state introduced in section 2.1.1 can be reduced to

one- or two-dimensional problems composed of line or surface elements. The simpli�cation to line elements

is applicable to slender structures with a length greatly superior to its cross-sectional dimensions. A well-

known example are trusses. These are an assembly of bar elements connected by pin-joints without moment

transmission; that is, the bars only transmit axial forces. Likewise, nuclear fuel elements are assemblies

composed of slender structures, namely the guide tubes (GTs) and fuel rods (FRs). Unlike for trusses, joints

in FAs are designed to transmit moments in order to create a sti�er structure. The assumption of bars

hence does not hold for the FA GTs and FRs. Beams, on the other hand, transmit moments, and are ideal

to describe the FA GTs and FRs. In contrast to the GTs, FRs are actually slender closed pressure vessels

that withstand a pressure di�erence between the internal and the external �uids. As such, they can be

represented by pipe structures which combine the properties of beam structures and pressure vessels. The

simpli�ed modeling for both beams and pressure vessels will be introduced in this section. Moreover, the

coupling e�ect of the joints connecting the single GTs and FRs is described.

2.1.3.1 Euler-Bernoulli beam equation and stress sti�ening

The simplest description of beams goes back to the Euler-Bernoulli beam theory, which represents a fully

linearized model. In the present context, a beam describes an arbitrarily supported and loaded slender

structure with an axially uniform and homogeneous cross-section, Figure 2.4. The x-coordinate describes

the axial direction and y and z the transverse directions. This section presents the di�erential equations to

obtain the beam bending curve uz(x) as a result of the loading of the beam in the x-z plane by a distributed

transverse load q(x). A derivation of these equations is given in appendix A. Under the Euler-Bernoulli

assumptions, the bending curve uz(x) is given by the solution of the following linear di�erential equation,
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4.14.1 Einführung
Wir wollen uns in diesem Kapitel mit einem der wichtigsten Kon-

struktionselemente – dem Balken – befassen. Hierunter versteht

man ein stabförmiges Bauteil, dessen Querschnittsabmessungen

sehr viel kleiner sind als seine Länge und das im Unterschied zum

Stab jedoch senkrecht zu seiner Längsachse belastet ist. Unter der

Wirkung der äußeren Lasten deformiert sich der ursprünglich ge-

rade elastische Balken (Abb. 4.1a); man spricht in diesem Fall

von einer Biegung des Balkens. In den Querschnitten treten dabei

verteilte innere Kräfte – die Spannungen – auf, deren Resultie-

rende die Querkraft Q und das Biegemoment M sind (vgl. Band

1). Es ist Ziel der Balkentheorie, Gleichungen zur Berechnung der

Spannungen und der Deformationen bereitzustellen.
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Abb. 4.1

Wir betrachten zunächst einen Balken mit einfach-symmetri-

schem Querschnitt und führen ein Koordinatensystem ein (Abb.

4.1b). In Übereinstimmung mit Band 1 zeigt die x-Achse (Balken-

achse) in Balkenlängsrichtung und geht durch die Flächenschwer-

punkte S aller Querschnitte (eine Begründung hierfür werden wir
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(a) Beam under a uniform distributed load q(x) = q0. (b) Perspective view of beam cross-sectional cut.

Figure 2.4: Schematic views of a beam element (Gross et al., 2012).
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known as the Euler-Bernoulli beam equation:

EI
d4uz(x)

dx4
= q(x) (2.54)

where I is the second moment of area de�ned in equation A.7.

If the magnitude of the axial loads, leading to the normal cutting force N(x), is much higher than that of

the transverse loads, an additional term must be added to equation 2.54, resulting in the following nonlinear

di�erential equation:

EI
d4uz
dx4

− d

dx

(
N(x)

duz
dx

)
= q(x) (2.55)

The new term leads to an e�ective sti�ening of the structure if a normal tensile force is present, N(x) > 0.

This e�ect is called stress sti�ening. If a compressive load is applied, the sti�ness of the beam decreases

compared to the case without axial load, which is sometimes referred to as stress weakening. Due to the

potentially high compressive holddown (HD) force on the FAs and the heavy fuel, it is important to account

for this e�ect in the FA model to obtain conservative estimations.

2.1.3.2 Mechanical coupling of tube bundles

A FA consists of a bundle of GTs and FRs which can be modeled as beams. Without the spacer grids, the

sti�ness of the bundle would correspond to that of the sum of the single beams. The spacer grids couple

the beams mechanically at certain axial levels, thus increasing sti�ness. Barinka (1971) o�ered a theoretical

description of the coupling e�ect in tubular structures such as FAs. Based hereupon, the principle of the FA

sti�ening due to the grid coupling is described in this section. This description also provides the theoretical

basis for the model reduction in section 3.4. The following assumptions must be made for this theoretical

analysis.

1. All forces attack in the neutral axis of the FA or are equally distributed over all like tubes, that is, the

FRs or GTs.

2. All like tubes have an identical sti�ness are identically supported in the spacer grid.

3. All tubes are arranged symmetrically about the FA neutral axis. That is, for each tube at a certain

position xi there exists the same tube at −xi.

4. All spacer grid coupling structures can be considered rigid relative to the sti�ness of the tube bundle.

Therefore, they rotate as plane sections. In addition, the sti�ness of the lateral support of the tubes

in the spacer grids is also much larger than the sti�ness of the tubes.

To illustrate the working principle of the grid coupling, Figure 2.5 gives a minimum con�guration with two

equal tubes with a length of l, cross-sectional area A and �exural rigidity EI. The tubes with indexes j

and k are positioned symmetrically about the perpendicular bending axis at xj = x0 and xk = −x0 and

are coupled to each other at their top by means of a spacer grid. The connections (not visible) between the

spacer grids and the tubes are elastic and given by an axial spring with sti�ness kz and a rotational spring

with sti�ness kθ. If a lateral force Fx is applied centrally on the coupling structure, this force is equally

distributed over both tubes according to assumption (1). From assumptions (2) and (3), it results that all
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Tube 𝑘 Tube 𝑗

𝑥0−𝑥0

𝐹𝑧,𝑘

𝐹𝑧,𝑗

Grid

𝑀𝑗

𝑀𝑘

with coupling

without coupling

𝑙

Δ𝜃

Τ𝐹𝑥 2

Τ𝐹𝑥 2

𝑧

𝑥

FA neutral axis

Figure 2.5: Schematic of grid coupling e�ects.

like tubes undergo the same lateral and rotational deformations, ux,j = ux,k and θj = θk, according to the

Euler-Bernoulli beam equations. If kθ = kz = 0, no coupling is present and the tubes deform like single

isolated tubes. Since for the present case either tube undergoes a lateral load of Fx/2, the tube de�ection

according to the Euler-Bernoulli beam theory is (Wittenburg and Richard, 2012):

ux =
Fx
2

l3

3EI
(2.56)

For the general case with nFR FRs and nGT GTs, the total �exural rigidity of the FA without grid coupling

is given in equation 2.57. The Young's modulus E is omitted since it is constant for all tubes.

Itot = nFRIFR + nGTIGT (2.57)

If kθ, kz > 0, the rotation θ of the tubes will create a counter-moment M at the connection with the grid,

induced by the di�erential rotation ∆θ between the coupling structure and the tube:

M = kθ∆θ (2.58)

At the same time, the reaction moment rotates the grid in the load direction. In this manner, the tube at

x > 0 is compressed and the tube at x < 0 is under tension. The corresponding axial forces Fz on the tubes

are induced by the di�erential axial displacement ∆uz between the grid and the tube:

Fz = kz∆uz (2.59)
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Due to the coupling with the rotational degree of freedom (DOF) of the grid, the bending moment in the

tube is relieved by M , reducing the de�ection in equation 2.56 to:

ux =
Fx
2

l3

3EI
− Ml2

2EI
(2.60)

Instead, this moment is transmitted axially through the tubes by means of the grid rotation θ. This becomes

apparent when considering the equilibrium of moments at the grid.

∑

i

Mi = Mj +Mk − Fz,jxj − Fz,kxk = 2kθ∆θ − kz∆uz,jxj − kz∆uz,kxk = 0 (2.61)

For an arbitrary position i, the grid rotation is linked to the axial displacements by the following geometric

compatibility condition.

∆uz,i = ∆θxi (2.62)

For the general case with nFR FRs and nGT GTs, equation 2.61 becomes:

∑

i

Mi =

nFR+nGT∑

i=1

(Mi − Fz,ixi) =

nFR+nGT∑

i=1

(
kθ,i∆θ − kz,ix2

i∆θ
)

= 0 (2.63)

We can conclude that the higher the number ngrid of spacer grid coupling stations is along the bundle, the

higher is the sti�ening e�ect. The limiting case occurs when kz, kθ, ngrid → ∞. This means that the grid

connections are rigid and there is an in�nite number of coupling stations over the tube bundle. In this case,

the �exural rigidity of the bundle is given by Steiner's theorem.

Itot = nFRIFR + nGTIGT +

nFR+nGT∑

i=1

Aix
2
i (2.64)

2.1.3.3 Pressure vessels

Pressure vessels store liquid or gas under pressure. Common shapes of pressure vessels are cylinders or

spheres. In the case of long cylinders, one refers to pressure tubes. FRs pressurized with a �lling gas are an

example of pressure tubes. The stresses in pressure tubes are denoted in cylindrical coordinates (σr, σθ, σz),

where σr is the radial stress and σz is the axial or longitudinal stress. σθ is the stress in circumferential

direction, which is also referred to as hoop stress or membrane stress. Depending on the ratio of the tube

wall thickness and the radius, approximations can be made to deduce simpli�ed equations for calculating the

stresses in the tube wall based on the tube inner and outer pressures pi and po. Most authors in literature

refer to a pressure tube as thin-walled if the ratio of wall thickness ttube to inner radius ri is not greater

than 0.1, see Mubeen (2002), for example. For thin-walled pressure tubes, the circumferential stress can be

assumed constant over the wall thickness and the di�erence between inner and outer radius can be neglected

for the calculation of stresses, ri ≈ ro ≈ r. For thick-walled pressure tubes these assumptions do not hold

and the stresses must be calculated as a function of the radius r. Larger di�erences over the radius are,

however, only expected for ratios of thickness to radius greater than 0.2. pressurized water reactor (PWR)

FRs usually present a ratio of cladding thickness to inner radius of 0.13 to 0.16. In general, the formulation
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for thick-walled pressure tubes should be used, but the circumferential stress can still be assumed constant.

That is, we can use the equations for thick-walled pressure tubes and evaluate them at the mean radius rm.

Still, for rough estimations it is common to use the thin-wall approximation, which is given in equations 2.65

to 2.67.

σθ =
(pi − po)ri
ttube

(2.65)

σz =
(pi − po)ri

2ttube
=
σθ
2

(2.66)

Due to the thin wall, the radial stress is small compared to σθ and σz and is therefore assumed zero.

σr = 0 (2.67)

The stresses in a thick-walled pressure tube can be calculated using the so-called Lamé equations. The stress

components can be represented as a function of two reference stress terms, σA and σB(r).

σr = σA − σB (2.68)

σθ = σA + σB (2.69)

σz = σA (2.70)

with

σA =
pir

2
i − por2

o

r2
i − r2

o

(2.71)

σB(r) =
r2
i r

2
o(pi − po)

r2(r2
i − r2

o)
(2.72)

Evaluating equation 2.72 at the mean radius rm, provides a constant value for σB, which will be used in the

present work:

σB =
r2
i r

2
o(pi − po)

r2
m(r2

i − r2
o)

(2.73)

2.1.3.4 Axial stress state in FRs and GTs

Due to their slender structure, the axial stress component σz in FRs and GTs is the most relevant to

determine the structural deformation. In FAs, the GT and FR axial stress is composed of several terms

originating from di�erent loads. The axial stress σz,unif is due to axial loads which have a laterally uniform

distribution over the FA. These loads are produced, for example, by the HD force, gravity, or axial hydraulic

loads. σz,unif is associated to the normal cutting force in the tube, Nunif(z), which is a function of the

axial coordinate only and is independent of its lateral position in the FA, according to assumption (1) in

section 2.1.3.2. It follows:

σz,unif =
Nunif(z)

A
(2.74)
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The second component is the axial stress σz,cpl due to the axial force between grid and FRs resulting from

the grid coupling due to the grid rotation θ, see equations 2.59 and 2.62. This reaction generates a normal

cutting force Ncpl(z, xi) in the tubes which depends on the lateral position xi of the considered tube i inside

the spacer grid. For a linear system with a constant spring sti�ness kz, these forces are linearly proportional

to xi:

Ncpl(z, xi) = Ncpl,ref(z)
xi
xref

(2.75)

where Ncpl,ref is the normal cutting force for the reference tube positioned at xref. It follows:

σz,cpl =
Ncpl,ref(z)

A

xi
xref

(2.76)

We can sum up σz,unif and σz,cpl to form a general uniaxial stress component σz,uniax due to the total cutting

force N(z, xi):

σz,uniax = σz,unif + σz,cpl =
Nunif(z)

A
+
Ncpl,ref(z)

A

xi
xref

=
N(z, xi)

A
(2.77)

The third component is the axial bending stress σz,bend due to the bending moment Mbend(z) produced by

the lateral loads and the reactions between the grids and the tubes, see equation 2.63. Therefore, σz,bend is

independent of the lateral position of the tube, but according to equation A.9 has a linear pro�le over the

tube cross-section. If x̂i = x− xi is the distance from the neutral axis of the considered tube positioned at

xi, the bending stress is expressed as:

σz,bend =
Mbend

I
x̂i (2.78)

Finally, an additional stress component is added for the pressurized FRs, namely the axial stress due to the

biaxial stress state σz,biax resulting from the pressure di�erence between the inner and outer diameter, which

was previously de�ned in equation 2.70:

σz,biax =
pir

2
i − por2

o

r2
i − r2

o

(2.79)

2.2 Computational Structural Mechanics (CSM) and Finite

Element Method (FEM)

2.2.1 Fundamentals of the FEM

The FEM is considered as a standard numerical method of solving �eld problems for many applications, in

particular for structural analysis (Lemaitre and Chaboche, 1990; Szabó and Babu²ka, 2011). The FEM can

be derived from generic principles in structural mechanics, one of which is the principle of virtual work. By

multiplying the equilibrium equations 2.10 by a test function νi and integrating over the considered domain
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Ω, we obtain, mathematically speaking, a weak form of these equations:

∫

Ω

∂σij
∂xj

νidV +

∫

Ω

fiνidV = 0 (2.80)

Using the divergence theorem, this weak formulation can be recast into the following form:

∫

Ω

σij
∂νi
∂xj

dV =

∫

Ω

fB,iνidV +

∫

∂Ω

fS,iνidS (2.81)

The test function νi can be interpreted as an arbitrary �virtual� displacement δui, which is independent of

the applied body force fB,i and surface force fS,i at the domain boundary ∂Ω. With δεij being the virtual

strain associated to the virtual displacement, we get:
∫

Ω

σijδεijdV =

∫

Ω

fB,iδuidV +

∫

∂Ω

fS,iδuidS (2.82)

In this case, the term at the left represents the work done by the internal stresses and the term at the

right the work by the external forces due to any kinematically admissible virtual displacement. Equation

2.82 expresses the generic form of the principle of virtual work. By comparison with equation 2.13, the

principle of virtual work can be interpreted physically that a body deforms so that the total potential energy

is minimized, that is, δΠ = 0.

For the application of the FEM, the structure is decomposed into individual �nite elements to obtain a

discretized solution. The FEM consists in calculating the potential energy Π as the sum of all elements and

�nding a class of �elds for which the potential energy is minimized. The basic �nite element shapes are line,

surface, or volume elements, depending on the schematic representation of the structure. Before introducing

individual element types, the general methodology to construct a �nite-element model is presented. The

vertices of any �nite element are usually de�ned as the nodes of the discretization grid of the domain. The

displacements of these nodes are the DOFs of the elements. For convenience, we abandon the index notation

for this section and use matrix notation. All DOFs of a single element are included in the vector of nodal

displacements uN. Within each �nite element, the unknown displacement �eld u(x) is linearly related to

the nodal displacements by means of shape functions which are included in the matrix N :

u(x) = NuN (2.83)

Examples for di�erent shape functions are given in the descriptions of the bar and beam elements in the next

sections. As symmetric tensors, we can de�ne the stress and strain tensors as vectors with six components

each, σ and ε. The linear strain-displacement relationship in equation 2.2 can then be expressed by means

of the matrix of di�erential operators L.

ε = Lu (2.84)

The stress-strain relationship in equation 2.4 can be expressed de�ning the elasticity matrix D.

σ = Dε (2.85)
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The product of the matrix of shape functions N and the matrix of di�erential operators L is de�ned as B.

B = LN (2.86)

The product of the stress and virtual strain tensor results in the following formulation:

δεTσ = δεTDε = δuT
NB

TDBuN (2.87)

Inserting equation 2.87 into the principle of virtual work in equation 2.82, we obtain:

δuT
N

(∫

Ω

BTDBuNdV −
∫

Ω

NT fBdV −
∫

∂Ω

NT fSdS

)
= 0 (2.88)

Since this equation must be satis�ed for arbitrary δuN, the term inside the parentheses must be equal zero.

De�ning the sti�ness matrix

K =

∫

Ω

BTDBdV (2.89)

and the external force vector f ext of externally applied nodal forces,

f ext =

∫

Ω

NT fBdV +

∫

∂Ω

NT fSdS (2.90)

we obtain an algebraic system of equations:

KuN = f ext (2.91)

The last step of the FEM is to assemble the algebraic equations of each single �nite element to one large

system of equations by imposing equal displacements for nodes common to neighboring elements. The initial

problem which required the solution of a partial di�erential equation is hence replaced by a algebraic system

of equations, which can be solved for the unknown nodal displacements and reaction forces using algebraic

methods. After the solution step, the displacements within the elements can be calculated with equation

2.83 using the previously de�ned shape functions. Based on the displacement �eld, the stresses and strains

can be calculated in any point of the domain using equations 2.84 and 2.85.

2.2.2 Finite elements for FA structural analysis

To solve the FA structural problems in this work, the FEM computer code ANSYS Mechanical APDL is

used (ANSYS, 2013b). This code provides prede�ned �nite elements based on which the user can build a

FEM model. After the model implementation and de�nition of boundary conditions (BCs) by the user, the

ANSYS code performs automatically the matrix assembly and solution steps as well as the calculation of

the derived solution variables. This section presents the general properties of the �nite elements used in the

FA structural analysis.

2.2.2.1 Spring elements

Spring elements are the simplest class of elements used in this work. They present a simple relationship

between the nodal displacements, u1 and u2, and forces, F1 and F2, of two nodes connected by a sti�ness k
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illustrated in Figure 2.6 and expressed in equation 2.92.

38 3 Stabelement

3.2 Das Finite Element Zugstab

Der Zugstab sei definiert als prismatischer Körper mit einer Körperachse. An
den beiden Enden des Zugstabes werden Knoten eingeführt, an denen Kräfte
und Verschiebungen, wie in Abbildung 3.3 skizziert, positiv definiert sind.
Vorrangiges Ziel ist es, für dieses Element eine Steifigkeitsbeziehung in der
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Abb. 3.3 Definition für das Finite Element Zugstab

Form
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=
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(3.13)

zu gewinnen. Mit dieser Steifigkeitsbeziehung kann das Stabelement in ein
Tragwerk eingebunden werden. Weiterhin sind die Verschiebungen, die Ver-
zerrungen und die Spannungen im Element gesucht.

Zunächst wird ein einfacher Lösungsweg vorgestellt, bei dem der Stab als
lineare Feder modelliert wird.
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Abb. 3.4 Zugstab modelliert als lineare FederFigure 2.6: Schematic of the spring element (Merkel and Öchsner, 2010).

F2 = k(u2 − u1) and F1 = k(u1 − u2) (2.92)

The sti�ness matrix and nodal displacement vector for this element are given as:

K =

[
k −k
−k k

]
and uN =

[
u1

u2

]
(2.93)

This linear spring behavior can be modeled using the ANSYS element COMBIN14. To de�ne a nonlinear

spring response for which the sti�ness changes with the spring displacement, k = f(∆u), the ANSYS element

COMBIN39 can be used.

2.2.2.2 Bar element
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zu gewinnen. Mit dieser Steifigkeitsbeziehung kann das Stabelement in ein
Tragwerk eingebunden werden. Weiterhin sind die Verschiebungen, die Ver-
zerrungen und die Spannungen im Element gesucht.

Zunächst wird ein einfacher Lösungsweg vorgestellt, bei dem der Stab als
lineare Feder modelliert wird.

�

�
�

�
�

	
�

	
�

� �

Abb. 3.4 Zugstab modelliert als lineare Feder

Figure 2.7: Schematic of the �nite bar element (Merkel and Öchsner, 2010).

Although bar elements, Figure 2.7, are not explicitly used in the present FA model, its characteristics are

relevant for this work since the bar element formulation provides the axial properties of the beam elements

introduced in the next section. Assuming that the x-axis of the element local coordinate system is aligned

with the axial direction, only the scalar displacement function u(x) needs to be determined based on the

nodal displacement vector.

uN =

[
ux,1

ux,2

]
(2.94)
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A common approach is to use linear interpolation functions based on the Lagrangian polynomials as shape

functions:

N(x) =
[

1
L (x2 − x) 1

L (x− x1)
]

(2.95)

The matrix B(x) simpli�es to the following vector:

B(x) = LN(x) =
dN(x)

dx
=
[
−1
L

1
L

]
(2.96)

Using equation 2.96, the sti�ness matrix is �nally given as follows:

Kx =

∫

Ω

BTDBdV = EA

∫

L

BTBdx =
EA

L

[
1 −1

−1 1

]
(2.97)

The linear system for the bar element becomes:

KxuN = f extx (2.98)

2.2.2.3 Beam elements

For beam elements, there are two unknowns per node and bending axis, namely the nodal displacement and

the nodal rotation in perpendicular direction, for example, uz,1 and θy,1. Merkel and Öchsner (2010) give an

overview about di�erent approaches for shape functions and �nite-element formulations for beam elements

with and without shear deformation. Both separate and combined shape functions for displacements and

rotations are possible. For Euler-Bernoulli beams without shear deformation, shape functions combining the

displacements and rotations are often used. ANSYS provides the element BEAM188 for beam modeling

(ANSYS, 2013b), which models also the shear deformation based on the Timoshenko beam theory. For

Timoshenko beams, separate shape functions for displacements and rotations, Nu,i and Nθ,j , are usually

used:

uz(x) =

n∑

i=1

Nu,iuy,i (2.99)

θy(x) =

m∑

j=1

Nθ,jθz,j (2.100)

According to the order n− 1 and m− 1 of the shape function polynomials, additional internal interpolation

nodes are placed between the outer element nodes. For the present project, the use of quadratic interpolation

functions, BEAM188 key option KEYOPT(3)=2, was determined to o�er a good compromise between

accuracy and computational cost. The derivation of the beam structural sti�ness matrix K based on these

shape functions is somewhat cumbersome and is not covered in this work but is described at length in the

cited literature. If the stress sti�ening e�ect is to be accounted for, a stress sti�ness matrix S is added to the

structural sti�ness matrix K of the beam element (ANSYS, 2013b; Rust, 2011). The stress sti�ness matrix

is a function of the axial beam forces obtained from equation 2.98 and is therefore coupled to the nodal

solution of the problem, S = S(uN). The force-displacement relationship of the complete beam element is
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summarized by the following nonlinear system of equations:

[K + S(uN)]uN = f ext (2.101)

In the ANSYS model, the stress sti�ening term is invoked by including the option to model geometric

nonlinearities: LDGEOM,ON.

2.2.2.4 Frictional gap-contact elements

Frictional gap-contacts elements are an elementary part of the FA structural model. With these elements,

the frictional support of the FRs in the spacer grid and the inter-FA gaps can be modeled. ANSYS provides

the element CONTA178 for this purpose. These elements combine the properties of friction elements, gap-

contact elements, and spring elements.

The gap-contact property is active along the axial direction of the element, the local x-direction. Figure 2.8a

gives a schematic representation of the gap-contact element with normal spring. The force normal to the

gap Fnorm is determined by the relative axial displacement of the element nodes ux,1 and ux,2 and the initial

gap size bgap,ini, see equation 2.102.

Fnorm =





0, if bgap = bgap,ini + ux,2 − ux,1 > 0

knormbgap, otherwise
(2.102)

If the gap size bgap > 0, the contact is open, and no force is transmitted. If bgap ≤ 0, the contact is closed

and the contact force Fnorm is established as a function of the normal contact sti�ness knorm and the gap

interference bgap. The force-displacement response is hence status-dependent (open/closed) and therefore

nonlinear as illustrated in Figure 2.8b.
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Figure 2.8: Gap-contact element with normal spring.

The frictional property of the element acts in the direction tangential to the gap and is activated as soon

as the contact is closed. Figure 2.9a illustrates schematically the resulting friction element with a spring

representing the stick sti�ness. Equation 2.103 and Figure 2.9b represent the force-de�ection response of the
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element.

Ftang =





0, if bgap > 0

ktang∆utang, if bgap < 0 and ktang∆utang < µFnorm

µFnorm, if bgap < 0 and ktang∆utang = µFnorm

(2.103)

The maximum tangential friction force is limited by the slip condition of the frictional contact which depends

on the gap normal force Fnorm and the friction coe�cient µ. Before sliding, Ftang depends on the stick sti�ness

of the frictional contact ktang and the contact slip distance ∆utang after the contact was closed. Supposing no

relative tangential displacement of the nodes when the contact is open, the contact slip distance is given as the

norm of the relative displacement vector in tangential direction, ∆utang =
√

(uy,2 − uy,1)2 + (uz,2 − uz,1)2.

Equation 2.103 introduces an asymmetric element into the sti�ness term of the nonlinear system of equations.
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Figure 2.9: Friction element with spring representing stick sti�ness.

2.2.3 Solution methods

For FA structural analysis, speci�c solution methods beyond the simple solution of the linear algebraic

problem given in equation 2.91 are required due to the use of nonlinear elements and the need to calculate

the time-dependent creep evolution. This section presents the applied methods for the creep algorithm and

for the solution of the nonlinear system of equations.

2.2.3.1 Creep algorithm

One of the most important features of the FA bow analysis is the calculation of the in-reactor creep deforma-

tion. With the methods presented so far, only an elastostatic equilibrium of the structure can be calculated.

The creep introduces a time component into the problem. Since creep is a slow process compared to the

time scale of the inertial term, creep can be solved by a quasi-static simulation. That is, for each creep

increment after a certain time step, a new elastostatic equilibrium must be found. The following paragraph

presents the typical procedure for a creep algorithm over one time step (Boyle and Spence, 1983; Penny and

Marriott, 1995; ANSYS, 2013b). In section 2.2.1, only elastic strains are considered to calculate the virtual

work. Considering all strain e�ects, the total strain is:

εtot = εel + εth + εcr + εgr (2.104)
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where εgr is the growth strain. The modi�ed constitutive relation is:

σ =Dεel =D
(
εtot − εth − εcr − εgr

)
(2.105)

When applying the principle of virtual work using this modi�ed constitutive relation, additional arti�cial

force terms appear in equation 2.88 and therefore in the linear system in equation 2.91. The new terms are

the thermal force vector f th, the creep force vector f cr, and the growth force vector fgr:

f th =

∫

Ω

BTDεthdV , f cr =

∫

Ω

BTDεcrdV , fgr =

∫

Ω

BTDεgrdV (2.106)

The linear system to be solved becomes

KuN = f ext + f th + f cr + fgr = f tot (2.107)

The thermal and growth force vectors are not dependent on the element solution and can therefore be

calculated at the beginning of each time step using the nodal temperature and �ux values. However, the

creep strain increment for a certain time step, ∆εcr depends on the element stress during this time step. The

stress is a derived solution variable so that 2.107 becomes an implicit system of equations. Furthermore, the

stress in the element is a non-uniform distribution over the cross-section. To solve the integral in equation

2.106, the element cross-section at each node must be discretized into an arbitrary number n of integrating

points with index j distributed over the element cross-section. At these integration points, the local stress

σj needs to be determined, based on which the creep strain εcrj is calculated . Depending on the covered

area, each integrating point is associated to a weighting coe�cient cj . The creep force vector obtains the

following form:

f cr =

n∑

j=1

cjB
T
j Dε

cr
j (2.108)

To solve the implicit system of equations, a numeric time step method needs to be de�ned. The following

algorithm illustrates the sequence of necessary calculation steps for the creep algorithm, starting from a fully

established nodal solution. That is, all nodal displacements uN and stresses σj at the integration points are

de�ned.

1. Calculate the e�ective creep rate ε̇cre� at each integration point according to equation 2.44, that is,

based on the e�ective stress, equation 2.45, and the previously accumulated e�ective creep strain εcre�.

2. Calculate the components of the creep strain increments according to the Prandtl-Reuss equations

applied to creep, equations 2.46 to 2.48.

3. Determine the time step size ∆t. For the present work, the automatic time step algorithm provided

by ANSYS is used, see the AUTOTS command in ANSYS (2013b). Additionally, a creep criterion is

used if necessary, command CRPLIM, with which the size of the creep ratio CS can be limited. The

creep ratio relates the e�ective creep strain increment to the total e�ective strain.

CS =
∆εcre�
εtote�

(2.109)

38



CSM and FEM

4. Calculate the creep strain increments based on the time step size.

∆εcr = ε̇cr∆t (2.110)

5. Form the creep force vector f cr according to equation 2.108.

6. Solve the system in equation 2.107 to obtain the updated nodal displacements and forces. Based on

the nodal solution, the stresses at the integration points are to be updated.

The most straightforward method is the explicit Euler forward method, for which only information from

the previous time step is used to calculate the solution of the current time step. For this reason, only one

iteration over the presented calculation steps is required per time step, limiting the computing time per

time step. For many problems, however, the time step size using the explicit algorithm must be chosen

very small to obtain reasonable accuracy and a numerically stable solution. Implicit methods are inherently

stable; therefore, no limit must be set on the time step size. Using an implicit Euler algorithm, the presented

calculation steps must be repeated iteratively, updating each time the creep strain increment based on the

previous solution. The algorithm is converged when the maximum change in the creep strain increment

related to the previous iteration is smaller than some prescribed error tolerance ε. Implicit methods often

provide higher accuracy for a given time step size since they use also the information of the current time step

to obtain the creep strain increment in equation 2.110. Although implicit methods require several iterations

per time step, they are often computationally more e�cient because signi�cantly larger time steps may be

used. Therefore, an implicit creep algorithm is used in the present work to guarantee a computationally

e�cient solution while maintaining high accuracy and numeric stability.

2.2.3.2 Newton-Raphson method

The present �nite-element problem generates a nonlinear system of equations which is to be solved for the

unknown nodal displacements, see equation 2.111, where f(uN) is the vector of nonlinear functions of the

nodal displacements uN.

f(uN) = f tot (2.111)

Unlike for linear system of equations, for which an exact solution is possible, nonlinear systems need to be

solved with numeric methods, for example, the Newton-Raphson method. The Newton-Raphson method

generates iteratively approximated linear systems of equations based on the Taylor series until the required

accuracy is reached. The full Newton-Raphson procedure (ANSYS, 2013b), in which the sti�ness ma-

trix is updated at each equilibrium iteration, is used for all calculations performed in this work. Due to

the important role of friction for the FA sti�ness, the unsymmetric option is applied (ANSYS command

NROPT,UNSYM ), which uses unsymmetric matrices of elements where applicable. In this manner, we can

guarantee a robust solution of the system of equations. To solve the linear systems of equations generated

by the Newton-Raphson algorithm, both direct methods with an exact solution and iterative methods with

approximated solutions are available. In general, the larger the linear system of equations, the more e�-

cient are iterative solvers in terms of memory use and computational run time. The models in the present

applications are still su�ciently small to be solved e�ciently with a direct solver. For this purpose, a sparse
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direct solver based on the Gaussian elimination method with LU decomposition is used, ANSYS command

EQSLV,SPARSE.

2.3 Fluid mechanics

2.3.1 Navier-Stokes equations

For the simulation of the coolant �ow in the reactor, a �ow model based on a porous medium approach

is used in this work. The simulation of any �ow problem is based on the Navier-Stokes equations, which

comprise the balance equations for mass, momentum, and energy for �uid �ow. Equations 2.112 and 2.113

give the incompressible Navier-Stokes equations for adiabatic �ow of Newtonian �uids in their di�erential

form, which are derived in Todreas and Kazimi (2012), for example.

Balance of mass or continuity equation

∇ · v = 0 (2.112)

For incompressible �ow, the continuity equation states that the mass of the �ow entering a �uid volume

must be equal to the mass leaving the volume. Using Gauss's divergence theorem, this is expressed by the

fact that the divergence of the velocity v is zero.

Balance of forces or momentum equation

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ µ∆v + fB (2.113)

The momentum equation represents Newton's second law applied to �uid �ow. The �rst term accounts for

the unsteady e�ects and is called the transient term. The second term accounts for the moment transport

and is called the transport or convection term. The �rst two terms at the right are the pressure term and

the viscous term. The latter accounts for the shear stresses in the �uid due to its dynamic viscosity µ. The

last term describes the e�ect of distributed volumetric body forces fB which derive often from a potential,

such as gravity. This momentum source term can also be used to impose additional momentum losses on a

system when applying a porous medium approach, for example.

No general analytical solution has been discovered so far for the Navier-Stokes equations. Systems described

by equations 2.112 and 2.113 must usually be solved with numerical methods using computers. This �eld of

application is called CFD (Computational Fluid Dynamics).

2.3.2 Internal channel �ow

The study of internal channel �ow is a �eld of �uid mechanics referring to con�ned �ow inside channels

with speci�c geometries, for example, pipes, ducts, or tube bundles. By simpli�cation of the Navier-Stokes

equations and the use of correlations, the equations governing internal channel �ow can usually be solved

analytically. Due to the simple geometries under consideration, the �ow is usually two-dimensional with a

principal �ow direction, the streamwise direction, and a perpendicular component, the transverse direction.

In pipe �ow, for example, the axial component is the streamwise direction and the radial component is the

transverse direction. The transport equations established for pipe and duct �ow are usually one-dimensional,
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solving only for the streamwise direction, see the Bernoulli equations introduced in the next section. The

e�ect of the transverse direction is mostly accounted for by previously established empiric correlations

describing, for example, the e�ects of wall friction or the pressure loss due to obstructions to the �ow. These

correlations are usually derived from experimental tests with speci�c geometries and relate to dimensionless

constants which are characteristic for the respective problem. Idel'£ik (1994), Kast and Nirschl (2013), or

Todreas and Kazimi (2012), for example, provide a multitude of correlations established experimentally by

di�erent authors for various applications.

Bernoulli equations for channel �ow Bernoulli's principle states that an increase of the �uid pressure

or potential energy along one streamline is accompanied by a decrease in �uid speed and vice versa. The

Bernoulli equations are a class of equations which express this principle and are valid for inviscid �ows. They

can be derived from the Navier-Stokes equations by integration, see Todreas and Kazimi (2012). For the

particular case of steady-state pipe �ow, that is, incompressible �ow in the gravitational �eld with a single

�ow direction, we obtain the following form of the Bernoulli equation:

ṁ2

2ρA2
+ ρgz + p = constant (2.114)

where z is the coordinate in the direction opposed to gravity, ṁ is the mass �ow rate in the channel, and

A is the cross-sectional area perpendicular to the �ow. Since the viscous term has been neglected for the

integration, equation 2.114 is only applicable to inviscid �ow. In real channel �ow, however, the viscosity

introduces shear forces within the �uid due to the friction of the �ow with the con�ning wall, causing a loss

of driving pressure. These shear e�ects can be accounted for in the Bernoulli equation by a pressure loss

term. Equation 2.114, established between the points 1 and 2 along the �ow path, can be rewritten as:

ṁ2

2ρ

(
1

A2
2

− 1

A2
1

)
+ ρg(z2 − z1) + p2 − p1 + ∆ploss = 0 (2.115)

where ∆ploss is the irrecoverable pressure loss, which is expressed by empirically established correlations. It

is the sum of the form and friction losses along the �ow path, ∆pform and ∆pfric. The total pressure drop

along the �ow path can be represented as the sum of the single pressure drops due to channel cross-section

constriction or expansion, the gravitational head, and the viscous losses.

p1 − p2 = ∆pcross + ∆pgrav + ∆pform + ∆pfric (2.116)

The equations to determine the form and friction pressure losses are introduced in the following paragraphs.

For this purpose, the concept of the hydraulic diameter is to be de�ned �rst. The con�ned �ow inside a

channel with arbitrary geometry can be approximated by considering the �ow through a pipe with a diameter

equal to the hydraulic diameter dhyd of the channel given in equation 2.117, where A�ow is the area normal

to the �ow and Pwet is the wetted perimeter. The subchannel �ow along the FA structure in the reactor

core can also be considered as a type of channel �ow.

dhyd =
A�ow

Pwet
(2.117)
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Friction pressure losses The friction losses develop due to the formation of a boundary layer between

the �uid bulk and the structural wall, at which the �uid velocity is zero. Frictional losses are dominant for

the �ow along structures parallel to the �ow, for example, �ow inside pipes or along the GT and FR walls.

The corresponding pressure loss due to pipe wall friction along a pipe with length l is:

∆pfric =
fDl

dhyd

ρv2

2
=

fDl

dhyd

G2

2ρ
(2.118)

The pressure loss is proportional to the dynamic pressure of the �ow, pdyn = 1
2ρv

2, where v is the average �ow

velocity in the pipe. In �ow with a heat source, as in a nuclear reactor, it is often more convenient to refer to

the mass �ux, G = ρv, instead. fD is the Darcy friction factor which depends on several in�uencing factors,

such as the �ow regime and the surface roughness. The �ow regime in a pipe is generally characterized by

the non-dimensional Reynolds number Re:

Re =
ρ v dhyd

µ
=
Gdhyd
µ

(2.119)

The surface roughness is determined by the relative roughness λ
dhyd

. The values for fD(Re, λ
dhyd

) are charted

in the well-known Moody (1944) diagram. Based on the balance of forces in the momentum equation, the

pressure loss in equation 2.118 causes the following friction force on the pipe wall:

Ffric = ∆pfricA�ow =
fD
4
Pwetl

G2

2ρ
= CfricAfric

G2

2ρ
(2.120)

where Cfric = fD
4 is the friction coe�cient and Afric = Pwetl is the surface friction area.

Form pressure losses The form losses in channel �ow are usually due to inertial e�ects caused by obstacles

to the �ow path. In the reactor core, form losses are dominant for the �ow across structures, such as the

spacer grids and the ori�ce plates in the FA head and foot. These cause perturbations of the �ow �eld in

the wake after the obstacle, which generate a pressure di�erence between the upstream and downstream:

∆pform = ζ
ρv2

2
= ζ

G2

2ρ
(2.121)

where ζ is the �ow resistance coe�cient. The pressure loss in equation 2.121 causes the following drag force

on the structure:

Fform = ∆pformA�ow = ζA�ow
G2

2ρ
(2.122)

Form pressure loss in �ow over tube bundles Most correlations provided in textbooks for the pressure

loss in �ow across tube bundles have been established for transversal �ow with an angle of attack of θ = 90◦.

That is, they give the �ow resistance coe�cient for pure cross-�ow, ζ90◦ , as a function of the Reynolds

number in the narrow gap Reng:

Reng =
ρvngdo
µ

(2.123)

42



Fluid mechanics

In equation 2.123, do is the outer diameter of the rods in the array and vng is the velocity in the narrow gap

between two rods. The pressure drop over n rows of a rod bundle is then calculated as follows:

∆p = ζ90◦n
ρv2

ng

2
(2.124)

Cross �ow inside nuclear reactors, however, has an important axial component due to the high mass �ow rate

through the core. The �ow corresponds to an oblique �ow over a rod bundle with a small angle of a attack

θ � 90◦. With decreasing values of θ, the contribution of pressure drag to the �ow resistance decreases in

favor of friction drag, thus reducing the �ow resistance. To obtain the pressure drop of the oblique �ow,

a resistance reduction ratio ψ(θ) is applied to the �ow resistance coe�cient obtained from pure cross-�ow

(Idel'£ik, 1994):

ψ(θ) =
ζ(θ)

ζ90◦
< 1.0 (2.125)

Experimental values determining the values of ψ for di�erent angles θ are scarce in literature, particularly for

small angles θ < 30◦. In a �rst approach, one could assume that the �ow components which are perpendicular

and parallel to the rods are independent from each other, which is called the independence principle. This

would result in a resistance reduction ratio of ψ = sin2 θ. Groehn (1982, 1988) proved, however, by means

of experiments in a �ow channel with inclined rods that the independence principle is not applicable to

turbulent �ow over rod bundles and proposed a generalized relation ψ = sina θ, with a to be determined

experimentally. He also demonstrated that general relations for ψ, which depend only on the angle of attack,

are not reliable since ψ was detected to depend also on the �ow Reynolds number and the pitch-to-diameter

ratio. For a correlation to be reliable, a �ow resistance factor must be established and validated for the �ow

conditions and bundle geometry of interest.

2.3.3 Porous medium approach

In its classical application, the porous medium approach is used to model �ows inside porous solid media for

which the geometry is too complex to be resolved with a grid or is unknown. This is the case for classical

porous media, which consist of a solid with interconnected small interstitial pores which are random in size.

These media usually occur in nature, for example, in porous rocks or sediments. As a result of the small

scale of the pores, mostly laminar �ow is present in these porous media and the pressure gradient in �ow

direction x follows Darcy's law:

∂p

∂x
= −µ

κ
vx (2.126)

where κ is the permeability of the medium. Alternatively, porous medium modeling can be used to model

large-scale �ow in technical applications, passing through small-scale geometries with a regular repetitive

pattern, such as rod bundles or perforated plates. In these applications, the �ow is usually turbulent, and

the pressure gradient is related to the dynamic pressure of the �ow with a loss coe�cient K, similar to

equation 2.121:

∂p

∂x
= −Kρv2

x

2
(2.127)

43



Chapter 2. Modeling Theory

The �ow of the coolant through the reactor core represents such a large-scale turbulent �ow through a small-

scale geometry. Therefore, we can model this �ow by determining the loss coe�cients for the di�erent core

regions. Those will be derived in section 5.1. For this purpose, the necessary quantities for the de�nition of

the porous model are de�ned and di�erent modeling concepts are discussed in the following paragraphs.

The elementary quantity for the de�nition of a porous medium is the volume porosity γ. It represents the

ratio of the volume available to �ow V�ow and the total available volume including the solid Vtotal.

γ =
V�ow
Vtotal

=
A�ow

Atotal

(2.128)

Flow in porous media in ANSYS CFX can be calculated in two manners (ANSYS, 2013a). The �rst method

uses only so-called ��uid domains� in conjunction with a model for momentum loss. The e�ects of porosity

are accounted for only through this loss term while all other terms in the governing equations are not

modi�ed. For the example of a single FA, the �uid domain covers the entire volume of the FA subchannel in

the reactor core without subtracting the volume occupied by the FRs and other structures. The simulation

is hence solved for the super�cial velocity vsup, that is, the velocity of the �uid if no solid structures, but only

�uid, were present inside the reactor core. This method is called the �super�cial velocity formulation�. In

opposition to the super�cial velocity, the actual velocity of the �uid accounting for the presence of the solid

structures in the subchannel is called the �true velocity� v, represented without subscript. Both variables

are interrelated by the porosity γ:

vsup = γv (2.129)

For the second method, so-called �porous domains� are used instead of ��uid domains�. In this case, the

governing equations will be solved for the true velocity by introducing the porosity γ in all terms of the

equations. Porous domains also include dedicated models for the solid in the porous region. Models created

with �porous domains� are called �full porous models� since the solid is accounted for physically in the

governing equations. When modeling FAs in a reactor, however, using the full porous model complicates

the treatment of the gaps between the FAs. Therefore, the super�cial velocity formulation is chosen for the

porous medium model in this work. Analogously to the super�cial velocity, a super�cial relative pressure

must also be de�ned, which is the pressure solved for in the super�cial velocity formulation:

psup = γprel (2.130)

where prel = pabs − pref is the �true� relative pressure, which is the di�erence between the absolute pressure

pabs and the reference pressure pref. The latter is de�ned to be the nominal operating pressure psys of the

considered reactor.

Momentum losses in porous regions can be modeled in ANSYS CFX by implementing negative momentum

sources. Momentum sources act as volumetric forces distributed over a de�ned domain. They are hence

implemented as a part of the body force term of the momentum equation 2.113. The momentum losses in

an isotropic porous region can be formulated using one linear term, representing the viscous losses according

to Darcy's law, equation 2.126, and one quadratic term, representing the inertial losses from equation 2.127.

SM = −µ
κ
v −Kρ

2
|v|v (2.131)
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In the case of rod bundles in a reactor core, viscous losses can be neglected since, unlike in a classical porous

medium with interconnected pores, the pressure drop due to the turbulent �ow in the reactor is based only on

�ow resistance coe�cients which are to be multiplied with the dynamic pressure term. We assume therefore

that κ → ∞. If K is constant in all directions, the loss model is isotropic. In many applications, the loss

coe�cient of the porous medium depends on the spatial orientation. FR bundles represent a special case of

anisotropic medium in which the loss properties di�er in the stream directions parallel and transverse to the

rod axis. The momentum sources in the parallel and transverse directions become:

SM,‖ = −K‖
ρ

2
|v|v‖ (2.132)

SM,⊥ = −K⊥
ρ

2
|v|v⊥ (2.133)

where K‖ and K⊥ are the pressure loss coe�cients parallel and transverse to the rod bundle. v‖ and v⊥ are

the �ow velocity components parallel and transverse to the rod bundle.

According to section 2.3.2, the angle of attack θ is an important quantity in the modeling of the pressure

loss over rod bundles inclined to the �ow. It must therefore be de�ned for the framework of the porous

model used in this work. For the sake of simplicity, the mathematical description for the de�nition of θ

is limited to the 2D case, which is used exclusively within this work. The rules for the 3D case ensue

analogously. Mathematically speaking, the angle of attack represents the rotation of the �ow velocity vector

v with reference to the axial rod bundle direction e‖ and can hence be derived as follows.

cos θ =
v · e‖
|v| =

v‖
|v| (2.134)

We can then stipulate the following relations for the previously de�ned velocity components.

v‖ = |v| cos θ (2.135)

v⊥ = |v| sin θ (2.136)

When de�ning a coordinate system (x, y, z) for the porous model in accordance with the orientation of the

structural coordinate system, z is de�ned as the vertical upward direction and x and y are the cross-sectional

components. As opposed to θ, the �ow angle θf represents the rotation of the �ow velocity with reference

to the vertical direction ez. When assuming straight FAs and no two-way �uid-structure interaction (FSI),

the rod bundle is aligned with the coordinate system (x, y, z) and θ = θf, see Figure 2.10a. For the more

general case with deformed rod bundles and two-way FSI, the rod axis direction varies in space. For any

point in the porous medium, we can then de�ne a local coordinate system (x′, y′, z′), in which z′ is the

component parallel to the structure (e‖) and x′ and y′ are the transversal components, see Figure 2.10b.

For the 2D case, the orientation of this coordinate system depends on the local rotations of the structure

about the cross-sectional y-axis. The new system is hence obtained with the coordinate transformation in

equation 2.137 using the structural rotation angle θy, which will be denoted as θ′ following the notation for

the rotated coordinate system.

[
x′

z′

]
=

[
cos θ′ − sin θ′

sin θ′ cos θ′

][
x

z

]
(2.137)
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From equation 2.134, we obtain by virtue of equation 2.137 and of the angle addition theorems the following

relationship for θ.

cos θ =
v · e‖
|v| =

v · ez cos θ′ − v · ex sin θ′

|v| = cos θ′ cos θf + sin θ′ sin θf = cos(θf − θ′) (2.138)

Explicitly speaking, the angle of attack becomes the di�erence between the �ow angle and the structural

rotation.

θ = |θf − θ′| (2.139)

(a) Straight FA. (b) Deformed FA.

Figure 2.10: Graphic representation of the angle of attack θ for the case of straight FAs or deformable FAs
when considering two-way FSI.

2.4 Zirconium alloys - metallurgy, in-reactor behavior, and

modeling

2.4.1 Generations of Zirconium alloys

Murty and Charit (2006), and Murty (2013) o�er good overviews of the history of the development and

use of Zirconium alloys in thermal light and heavy water reactors. Zirconium alloys are extensively used

in nuclear reactors primarily because of their unique combination of low neutron absorption cross-section

and good corrosion resistance. Examples are the fuel cladding and spacer grids, channels in boiling water

reactors (BWRs) or pressure and calandria tubes in heavy water reactors.

Table 2.1 lists the principal Zirconium alloys used in light water reactors (LWRs) and presents their alloying

components and their typical content used. The �rst Zirconium alloy to be used extensively in LWRs

was Zircaloy-2 (Zry-2) after Zircaloy-1 showed only poor corrosion resistance. To this date Zry-2 is widely

used in BWRs. Since the Nickel content showed to promote hydrogen embrittlement of Zry-2 under PWR

environment conditions, the development continued until with Zircaloy-4 (Zry-4) an alloy with almost as
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Table 2.1: Typical composition of Zirconium alloys for LWRs in wt.% (Murty and Charit, 2006). Only
selected components are given.

Alloy name Sn Fe Cr Ni Nb O

Zry-2 1.5 0.15 0.1 0.05 - 0.1
Zry-4 1.5 0.2 0.1 - - 0.1
Low-Sn Zry-4 1.3 0.2 0.1 - - 0.1
M5 - - - - 1.0 0.1
MDA 0.8 0.2 0.1 - 0.5 -
ZIRLO 1.0 0.1 - - 1.0 0.1
Opt. ZIRLO 0.7 0.1 - - 1.0 0.1

good steam corrosion resistance as Zry-2 but with reduced hydrogen absorption was found, which became the

standard for cladding fuel in PWRs. Zry-2 and Zry-4 have become widely used and accepted as the standard

for structural materials in LWRs and are given di�erent heat treatments depending on the application;

recrystallization-annealed (RXA) Zry-2 cladding is used in BWRs, while cold worked and stress-relieved

annealed (SRA) Zry-4 is used in PWRs. This is because the PWR FR cladding must resist higher pressure

di�erences and therefore must present a higher yield stress, which is obtained by the cold-working process.

Since PWR GTs are not internally pressurized, they undergo only smaller stresses so that RXA Zry-4 is

usually used.

Since these developments dating to the 1950s, processing techniques as well as heat treatments have primarily

been the only advances from the original design of the Zircaloy material for several decades. As FA burnup

(BU) increased, it was found that the Zry-4 no longer met corrosion and hydriding needs in PWRs. Therefore,

more recent developments include the use of low-tin Zry-4 with increased corrosion resistance and �nally

new alloys with added Niobium content. Amongst them �gure the M5 alloy developed by Areva, the MDA

alloy by Mitsubishi, and the ZIRLO and optimized ZIRLO alloys developed by Westinghouse.

2.4.2 Crystallography and texture of Zirconium alloys

This summary of the crystallography of Zirconium alloys is mainly based on Franklin et al. (1983), who gave

an extensive review on creep and other deformation processes of Zirconium alloys in nuclear reactors. Two

distinct crystal structures are known for pure Zirconium. For temperatures up to 862 ◦C, the equilibrium

phase is called α-phase and exhibits a hexagonal close-packed (hcp) crystal structure. Figure 2.11 depicts the

unit cell of the hcp crystal structure, pointing out the atom positions and the principal axes of the lattice.

Above 862 ◦C up to the melting point, the equilibrium phase is called β-phase with a body-centered cubic

(bcc) crystal structure. In the following, only the crystallography of α-Zirconium will be considered since it

is the stable phase under PWR operating conditions. Any statements made in this thesis about Zirconium

and its alloys refer to the α-phase.

Manufactured products from Zirconium alloys such as tubing are usually polycrystalline. That is, they

consist of many individual crystals or grains. Hence, if the tube were composed of a large number of

randomly oriented grains, the macroscopic properties could be expected to be isotropic despite the anisotropy

of the individual crystals. However, Zirconium grains develop a preferred crystallographic orientation, or

texture, with respect to the working directions in the thermomechanical fabrication process. As a result of

this preferred alignment, a macroscopic anisotropy develops in the properties of the manufactured material.

During deformation processing for tubing, the basal poles or c-directions of the individual hexagonal crystals
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tend to align with the compressive fabrication stresses and the perpendicular directions with the tensile

fabrication stresses, which corresponds to the axial direction in tubing. This distribution exhibits typically a

maximum at a certain angle φ to the tube radial direction. Figure 2.12 gives a schematic illustration of this

typical texture. To quantify this distribution, the Kearns factors fa, fr, and ft are used, which describe the

volume fraction of basal poles in the axial, radial and transverse directions. It follows that fa + fr + ft = 1.

Typical Kearns factors for cladding tubes are: fa = 0.05, fr = 0.6 to 0.8, and ft = 0.2 to 0.4 (Garzarolli

et al., 1996).

(a) Principal axes. (b) Atom positions in unit cell.

Figure 2.11: The hcp crystal structure (Franklin et al., 1983).

Figure 2.12: Typical texture of Zirconium tubing (Franklin et al., 1983).

2.4.3 Irradiation damage processes in microstructure

The degree of exposure of the material to fast neutron irradiation is essential in describing the irradiation

creep and growth of Zirconium alloys. This is linked to the formation of an irradiation-induced microstruc-

ture, which exhibits a strong in�uence on the mechanical properties. The fast neutron irradiation in a

nuclear reactor can be expressed in terms of the fast neutron �ux φ(En > 1 MeV), that is, the number of

fast neutrons with an neutron energy En greater than 1 MeV impinging on a certain area per unit time.

The total exposure of a material to fast neutron irradiation can be determined by means of the fast neutron
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�uence Φ(En > 1 MeV), which is the fast neutron �ux integrated over the time of exposure:

Φ(En > 1 MeV) =

∫

t

φ(En > 1 MeV)dt (2.140)

Since the thermal �ux is of only minor importance for the calculations in this project, φ(En > 1 MeV) and

Φ(En > 1 MeV) are henceforth referred to simply as φ and Φ.

Besides the fast neutron �uence, the microstructure is also a�ected by the material temperature, the stress

state, the neutron energy spectrum, and the metallurgical conditions. Incident high-energy particle radiation

can displace the regularly arranged atoms in a crystal lattice from their normal lattice position by means of

various interactions. In the primary interaction, the initially displaced atom, the so-called primary knock-

on atom (PKA), is given some initial kinetic energy. This energy is then transferred by the PKA to the

surrounding atoms, which might pass it to others, resulting in a displacement cascade. Most secondary

knock-on atoms come to rest within a short distance of their original lattice position. They are usually

forced to take up an interstitial position in the lattice, designated self-interstitial atom (SIA), leaving behind

a vacancy. SIAs and vacancies are types of point defects and a vacancy-interstitial pair is referred to as

a Frenkel pair. The typical immediate e�ect of the interaction of a high-energy particle with the crystal

structure is the creation of a displacement spike, see Figure 2.13a. This con�guration is unstable and usually

converts quickly into other patterns. First, a damage zone with a vacancy-rich core and an interstitial shell

is created, see 2.13b. Then, the vacancies and SIAs tend to migrate to sinks, such as grain boundaries

and dislocations, or combine together in planar arrays to form vacancy or interstitial dislocation loops, see

Figure 2.14. These dislocation loops formed in irradiated materials represent an important type of lattice

defect because they may propagate in preferential lattice directions according to the texture and stress state

in the material.

(a) Displacement spike (Chalmers, 1959). (b) Damage zone (Franklin et al., 1983).

Figure 2.13: Schematic of di�erent stages of irradiation damage.
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(a) Vacancy Loop. (b) Interstitial Loop.

Figure 2.14: Schematic drawings of dislocation loops (Franklin et al., 1983).

2.4.4 In-reactor creep

The macroscopic e�ect of the preferential propagation of dislocations under the e�ect of stress can be observed

as plastic creep strain. The permanent deformation induced directly by irradiation damages under the e�ect

of stress is referred to as irradiation-induced creep. Two of the most-discussed propagation mechanisms

for irradiation creep are stress-induced preferred nucleation (SIPN) and stress-induced preferred absorption

(SIPA). The SIPN mechanism proposes the preferred nucleation of interstitial dislocation loops between

atomic planes perpendicular to an applied tensile stress. Vacancy loops, in turn, may preferentially nucleate

on planes parallel to the applied stress. In total, this leads to a net elongation of the material in the direction

of the applied stress, as illustrated in Figure 2.15a. For the SIPA mechanism, it is not the nucleation but the

growth of dislocation loops which is biased. SIAs are assumed to be preferentially absorbed at dislocation

loops oriented perpendicular to the applied stress, leading to a material elongation in stress direction.

In addition to this irradiation-induced creep, thermally-activated creep exists in nuclear reactors. Thermal

creep is based on microscopical mechanism completely di�erent from those of irradiation-induced creep. One

example is the climb-and glide mechanism. It is suggested that the creep deformation rate is controlled by

(a) Stress-induced preferred nucleation (SIPN). (b) Dislocation climb and glide.

Figure 2.15: Schematic drawings of microstructural creep mechanisms (Franklin et al., 1983).
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the rate at which dislocations climb to surmount obstacles in their slip plane. Figure 2.15b illustrates this

process. Dislocations piled up at an obstacle in their slip plane may climb into a di�erent slip plane by

vacancy absorption, see dislocation A in the �gure. After surmounting the obstacle, dislocation B may glide

under the action of applied stress, providing an increment of plastic strain. While the thermal creep rate is

relatively low for the temperatures encountered in thermal reactors, irradiation damages may enhance the

thermal creep processes. One of the discussed mechanisms is an enhanced dislocation climb and glide, for

which it is assumed that the dislocation climb is enhanced by the increased production of point defects, such

as vacancies, during the irradiation.

Creep in nuclear reactors is hence the combined result of irradiation-induced creep and irradiation-enhanced

thermal creep. The relative contribution of either mechanism depends strongly on operating temperature.

Irradiation creep depends mainly on the fast neutron �ux and exhibits only a weak temperature dependence.

It is therefore often considered an athermal mechanism. Thermal creep, in turn, increases signi�cantly with

increasing temperature. In the low temperature region of thermal reactors, at about 300 ◦C, irradiation creep

is the dominant mechanism. For high temperatures of about 350 ◦C, as found in the FR cladding, thermal

creep becomes dominant, as illustrated in Figure 2.16.
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FIG. 3-—Arrhenius plot of in-reactor creep of stress-relieved cladding (fraction of thermal and

irradiation creep) [5]. '

parameters affect in-reactor creep and thermal creep. However, some of these parameters may
have only a small effect on in-reactor creep at low temperatures (in the temperature range of
BWR fuel rod operation). At least, this was observed for the grain size.

The results of many measurements of dimensional changes of PWR fuel rods and assemblies
up to 1984, also including other aspects not discussed in details here, were presented at an
IAEA Specialists’ Meeting [12].

For dry storage of spent fuel, it is also important to know how irradiation to high neutron
fiuences affects thermal post-pile creep. Experiments with pre-irradiated tubular samples (up
to four cycles) were performed at temperatures of 350 to 400°C and membrane stresses of 0.50
and 70 N/mm’ up to 8000 h [13]. These tests revealed that a small fraction of the creep
defonnation occurring during irradiation is recovered if annealed at 350 to 400°C. Besides this
recovery effect, post-pile creep was found to be substantially lower than thennal creep of
unirradiated material.

For analyzing hypothetical accident conditions, it is necessary to know the creep behavior
at high temperatures (600 to 900°C). Therefore, single and multiple rod investigations have
been perfomied to study the behavior of Zircaloy cladding tubes under simulated loss ofcoolant
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FIG. 4——Diameter decrease of experimental claddings with different Sn contents.

accident (LOCA) conditions [14]. It was found that the deformation and bursting behavior of
tubes with different metallurgical conditions (i.e., cold-worked, stress-relieved, or fully recrys-
tallized) and chemical composition can vary quite significantly under such tests. Therefore,
single-rod LOCA tests were also included in the material optimization programs to ascertain
that the modified cladding tubes behave like classical tubes [15].

Corrosion
General

Waterside zirconium corrosion results in the formation of an adherent protective oxide layer
on the exposed surface whereby a certain part of the corrosion hydrogen is absorbed by the
metal. The oxygen concentration profile shows a sharp step across the oxide/metal interface
that only becomes smeared at much higher temperatures than under discussion here. Laboratory
studies on waterside corrosion are done in water or steam autoclaves, and the corrosion kinetics
are determined by measuring the weight gain as a function of insertion time. In pool-site
investigation, for instance on fuel rods, the oxide thickness is measured directly using an eddy-
current distance probe [2] based on the fact that the ZrO2 layer has good electrical insulating
properties.

In high-temperature water or steam, normally a rather uniform oxide layer is fomied. Up to
an oxide thickness of about 2 to 3 ,u.m, the corrosion kinetics slows down according to a time-
dependence proportional to t”3. Then a transition occurs to an almost linear time dependence.
The temperature dependence of the linear post-transition corrosion rate as well as the time to
transition can be well described by an Arrhenius law, with an activation temperature, Q/R, of
1.42 E4 K.

Figure 2.16: Arrhenius plot of in-reactor creep of SRA cladding (Garzarolli et al., 1996).

2.4.5 In-reactor growth

Zirconium alloys tend to undergo a length increase during reactor operation. This phenomenon is usually re-

ferred to as growth and is a result of di�erent contributing mechanisms. Besides the fundamental mechanism

of irradiation growth, these include corrosion, anisotropic creep-down and mechanical interaction between

fuel and cladding. The last two are distinct features of FR growth since they occur only due to the biaxial

stress state and the presence of the fuel pellets in the FR.
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Irradiation growth The fundamental mechanism of material growth in nuclear reactors is the irradia-

tion growth due to the material anisotropy of Zirconium alloys. Irradiation growth denominates the axial

elongation of Zirconium alloy tubes due to fast neutron irradiation under absence of mechanical stresses.

The exact mechanisms of irradiation growth are still a �eld of research but, in general, irradiation growth

is attributed to di�erences in the distribution of sinks receiving a net �ux of vacancies and sinks receiving

a net �ux of SIAs due to the anisotropy of the crystal lattice (Holt, 1988). In a simplistic view, SIAs are

preferentially condensed on the prism planes and vacancies on the basal planes of the hcp crystal lattice.

The individual crystal shrinks consequently in the direction normal to the basal plane and expands in the

perpendicular directions, see Figure 2.17. Because of the typical texture of the Zirconium alloy tubes with a

volume fraction of basal poles in axial direction of only about fa = 0.05, a lengthening of the tubes occurs.

Holt et al. (1996) elucidate that irradiation growth is a staged process, which can be subdivided in to three

main stages. In the initial stage we observe rapid growth, which then saturates so that in the second stage

growth is relatively slow. After a certain threshold, the growth rate accelerates again, and the growth strain

increases quickly at nearly linear rates. This last stage is often referred to as breakaway growth. The length

and importance of the di�erent stages depends strongly on the degree of recrystallization. While for RXA

materials the three stages are well de�ned over the irradiation time in the reactor, SRA materials grow in

the third stage nearly from the beginning, see Figure 2.18.

Figure 2.17: Schematic of
texture-related irradiation growth
(Stehle et al., 1975).

Figure 2.18: Irradiation growth of Zircaloy at 300 ◦C (Garzarolli
et al., 1996).

Corrosion One possible contributor to growth, which is mostly discussed in the context of GT growth,

is corrosion (King et al., 2002). The related growth mechanisms are mainly the axial creep due to the

formation of oxidation-induced stress due to build-up of the oxidation layer and the volumetric increase

resulting from hydrogen pick-up due to the formation of a lower density hydride phase. Both King et al.

(2002) and McGrath and Yagnik (2011) detected a strong dependence of growth rates of RXA GTs on the

hydrogen uptake during irradiation, see Figure 2.19.
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Figure 2.19: Dimensional changes of ZIRLO and Zircaloy-4 tubing and strip as a function of hydrogen
content (King et al., 2002).

Anisotropic creep-down Anisotropic axial creep in the course of cladding creep-down, as discussed in

appendix B, may also contribute to FR growth. Due to anisotropic creep-down, the axial strain may be

increased or decreased, depending on the texture formation of the hexagonal crystal structure expressed by

the Kearns factors. For fr-to-ft ratios larger than 1, anisotropic creep-down leads to an additional elongation

of the FR and vice versa. Di�erent directions of anisotropic creep can be appreciated in Figure B.1. For

SRA Zry-4, a positive correlation exists between hoop strain and axial strain, causing a rod length reduction

during creep-down. In contrast, for recrystallized materials such as the M5 alloy the correlation is negative,

thus accelerating the FR growth during creep-down.

Mechanical interaction between pellet and cladding Finally, the mechanical interaction between

the fuel pellet and the cladding in�uences FR growth. During operation, local contact points between fuel

pellet and cladding develop as a result of cladding creep-down and fuel cracking and swelling. Due to the

fuel expansion, axial tensile stress is produced locally in the cladding, increasing the rod length due to the

resulting axial creep.

2.4.6 Modeling of the in-reactor creep of Zirconium alloys

The laws for thermal creep for conventional applications presented in section 2.1.2.2 also serve as a basis

for Zirconium alloy creep laws for reactor applications. For these applications, Franklin et al. (1983), Murty

(2013), or Was (2007) give a good overview. In creep laws for reactor applications, the in�uence of the fast

neutron �ux φ must be accounted for additionally to the stress, temperature, and time-dependent functions.

The in�uence of di�erent neutron �ux levels is generally expressed by the neutron �ux exponent nφ. The

most general formulation for an in-reactor creep law for Zirconium alloys is:

ε̇cr,irr = Ccr,irrσ
nσe

−QT
T φnφ [ft(t) or fε(ε

cr,irr)] (2.141)

According to whether a time or strain hardening formulation is used, ft(t) or fε(εcr,irr) must be de�ned.

If f(t) = g(εcr,irr) = 1, equation 2.141 becomes a steady-state or secondary creep law. Lucas and Pelloux

(1981) stated that for Zircaloy the strain hardening formulation describes best the creep behavior for varying
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stresses, see Figure 2.20. Still, most creep laws are based on experimental tests under constant stress and are

hence expressed in a time hardening formulation. For this reason, all in-reactor creep laws in this document

will be presented in their time hardening formulation, but will be implemented into the structural model

in their strain hardening formulation. Which time function ft(t) to use depends on the considered alloy

and application. Traditionally, in-reactor creep laws based on the Norton-Bailey equation 2.35 were used

to describe the in-reactor creep of Zircaloys since due to the large primary creep strains of older alloys and

shorter exposure to irradiation practically no secondary creep regime was exhibited (Franklin et al., 1983).

The Norton-Bailey-type creep laws are still much used today to describe the creep behavior of a speci�c

alloy experimentally tested under speci�c conditions of interest. For the in-reactor application, equation

2.35 becomes:

εcr = Ccrσ
nσe

−QT
T ΦnΦ (2.142)

The �uence dependence with nΦ = nt is substituted for the time dependence in equation 2.35 to account for

the integrated e�ect of irradiation. Note that nΦ does not introduce any dependence on the neutron �ux

level under which the irradiation takes place. If such a dependence is observed, Φ must be decomposed into

its components φ and t, using di�erent exponents for each, nφ 6= nt. In the di�erentiated notation equation

2.142 becomes:

ε̇cr = Ccrntσ
nσe

−QT
T φnt−1+nφtnt−1 (2.143)

Figure 2.21 illustrates the development of two di�erent creep correlations from the same data, one based on

a Norton-Bailey creep law with a power relationship and one based on a steady-state secondary creep law.

This second approach is, for example, used for the in-reactor creep models by Hoppe (1991) and Limbäck

and Andersson (1996), which consider primary and secondary creep separately. The total creep strain εcr at

a speci�c time t can then be expressed according to equations 2.36 or 2.37. The secondary irradiation creep

Figure 2.20: Time dependence of creep strain for
Zircaloy-2 obeying the strain-hardening rule at in-
creasing variable stress as compared to data with con-
stant stress (Lucas and Pelloux, 1981).

Figure 2.21: Linear versus power-law relationship
for the development of a creep correlation (Wood,
1975).

54



Zirconium alloys - metallurgy, in-reactor behavior, and modeling

rate is then given as:

ε̇cr,sec = Ccr,secσnσe
−QT
T φnφ (2.144)

The saturated primary creep strain εcr,pri,sat is sometimes indicated as a nonlinear function of the secondary

creep rate. According to Limbäck and Andersson (1996), the saturated primary creep strain appears to be

only weakly correlated to the secondary creep for small secondary creep rates, exhibiting small values with

relatively large scattering. For higher secondary creep rates, the saturated primary creep strain increases

strongly with increasing secondary creep rates. This behavior is represented in Figure 2.22.

Figure 2.22: Relationship between saturated primary creep strain and secondary creep rate (Limbäck and
Andersson, 1996).

Several authors have summarized, based on experimental evidence, typical reference values or value ranges

for the di�erent creep-law exponents for Zirconium alloys. As for the stress exponent nσ, values of from 1 to

2 are often reported in literature. According to Fidleris (1988), the stress exponent has a value of nσ = 1 at

stresses below about 1
3σY. With increasing stress, nσ gradually increases. For increasing temperatures, the

stress exponent also increases due to a higher contribution of thermal creep which always yields values nσ > 1.

As Murty (2013) points out, an analysis of extensive creep data has shown that, as a general approximation,

it can be assumed that the stress dependency of in-reactor creep is linear in the most relevant stress range

of <10 MPa to 200 MPa and temperatures of 275 ◦C to 390 ◦C. For the activation temperature QT , Fidleris

(1988) states that below about 300 ◦C the temperature dependence is weak and the QT has a value between

2000 K and 5000 K. At higher temperatures the dependence increases rapidly towards values of 25 000 K to

30 000 K. The temperature of transition from a weak to strong dependence varies, however, with alloying

content, metallurgical condition and stress. For nφ, pure irradiation-induced creep would predict a linear

dependence on �ux, but the inevitable contribution of thermal creep reduces nφ below 1. This leads to an

increase of creep strain in materials irradiated at lower neutron levels for the same �uence exposure. Data

analysis for PWR neutron �ux levels showed that typically nφ = 0.85, but might decrease down to nφ = 0.25

for low �uxes. Typical values for the �uence exponent are 0.4 < nΦ < 0.8.
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Fuel Assembly Structural Model

3.1 General properties

3.1.1 Reference fuel assembly (FA) design

Although the objective is to create a generic model, several choices about the speci�c FA design must be

made. This concerns the general features of any FA structure, such as the number of fuel rods (FRs), the

number and positions of guide tubes (GTs), or the number and positioning of the spacer grids. One of the

incentives of this work is the FA bow problem observed in German Vor-Konvoi pressurized water reactors

(PWRs) built by the former Kraftwerk Union (KWU). Therefore, the typical FA design for these reactors

was used as the reference for the present model. Figure 3.1 depicts the characteristic FA design used in Vor-

Konvoi plants. One distinctive feature of this FA type is the design of the bottom and top nozzles, elements 1

and 3 in Figure 3.1, usually referred to as FA foot and head. They consist of cuboidal stainless-steel frames,

which are laterally open to �ve of the six faces. On the remaining face, they feature a perforated ori�ce

plate (2 and 4), to which the control rod GTs are connected. The FA head also accommodates the holddown

(HD) springs, for which coil-type springs are used, as opposed to leaf-type springs in various other designs.

The spacer grids (7) provide a 16 × 16 lattice of positions, in which 20 positions are occupied by the GTs

(6) and the remaining positions by the FRs (5). In total, there are nine spacer grids holding the FRs and

providing additional structural sti�ness. Reference data for this FA can be found in NEI (2012) or Ziegler

(1984).

3.1.2 Set-up of the model

To obtain an as realistic as possible FA response, the sti�ening e�ect of the FR bundle is modeled mechanis-

tically. That is, the sti�ness increase due to the grid coupling described in section 2.1.3.2 is an intrinsic result

of the model con�guration. This special feature distinguishes this model from many other FA structural

models. Simplistic models often substitute one single central beam for the entirety of FRs or GTs. The

sti�ening e�ect of the grid coupling is added arti�cially by means of calibrated rotational springs between

the single spacer grids. However, in this manner it is di�cult to reproduce in detail the nonlinear features
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Figure 3.1: 16x16 KWU-type FA
(Garzarolli et al., 2000).
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Figure 3.2: Schematic of the wireframe structure of the FA struc-
tural model.
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of the coupling e�ect due to the nonlinear response of the FR support. To include the grid coupling e�ect,

the fundamental con�guration of the FA with four equal quarter sections must be maintained in order for

the spacer grid to transmit the moments as in equation 2.63. Therefore, we start the modeling process

with a full 3D FA model which considers each FR and GT individually. The 3D model takes automatically

into account that the deformations in the cross-sectional directions are not independent of each other. For

example, loading the FA simultaneously in both cross-sectional directions modi�es the FA lateral sti�ness

due to the characteristics of the frictional FR support: rotationally loading the grid-to-rod connection about

one axis a�ects the frictional behavior in the perpendicular direction. This behavior has been demonstrated

by Alós Díez (2015) using the present model. Moreover, when two bending load states are superposed in the

3D model, di�erent creep rates result than if independent 2D models for each direction were considered. This

is due to the fact that the evolution of the creep rate is often nonlinear in the strain or stress dependence.

After setting up the full 3D model, both a reduced 3D and a 2D model are developed in further steps, see

section 3.4.

The speci�c design of a FA, consisting of only slender structures or very sti� structures, allows a modeling

with 1D elements only. The real FA structure can hence be abstracted to a wireframe structure which is

composed of interconnected 1D elements, see Figure 3.2. The connection points of the elements are the

so-called nodes. The nodes are the degrees of freedom (DOFs) of the model, which are interrelated by the

sti�ness properties of the elements. The strategy for building up the FA model is to �rst de�ne the �nite

elements which are appropriate for modeling the di�erent structural elements in the FA, namely, the GTs,

the FRs, the spacer grids, and the FA foot and head, see sections 3.2.1 to 3.2.3. The second step is to de�ne

the nodalization of the model, that is, the number and positions of the DOFs. It is clear that, in theory, the

higher the number of nodes, the higher is the accuracy of the model, but also the longer is the computational

run time. Nodes must be provided at least at the positions at which di�erent structural elements are to be

connected, for example, at the interface between GTs or FR and spacer grids, see the GT-grid and FR-grid

joints in Figure 3.2. Between these nodes, the GTs and FRs may be subdivided into several individual

elements, creating additional nodes; however, in general, it is su�cient to represent the GTs and FRs by

one single 2-node or 3-node �nite element per span between two grid levels. When de�ning the model, the

nodes must be positioned at speci�c coordinates x0 in the Euclidean space; any nodal displacement during

the simulation will be measured with respect to these coordinates: uN(t) = x(t) − x0. The origin of the

coordinate system is placed centrally at the bottom face of the FA foot, that is, the bottom node of the FA.

The x- and y-axes form the cross-sectional or horizontal axes of the coordinate system. The z-axis indicates

the axial or vertical direction.

The next step is to characterize the properties of the connections between the di�erent structural elements,

produced by welds, screw �xings, springs, or frictional contact. These connections usually cannot be con-

sidered sti� since they allow, to a certain degree, a relative movement between two structural components.

Di�erent structural components hence do not share the same nodes since this would mean that the con-

cerning DOFs were fully coupled. Instead, two separate nodes are placed at the same position and their

DOFs are connected to each other by spring elements or other DOF constraints. These connection elements

have no dimensional length but represent a sti�ness relationship between two nodes in a certain dimensional

direction. If the model contains more than one FA, additional gap-contact elements between the individual

FAs are necessary to model the inter-FA gaps. In this manner, we can account for a potential contact be-
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tween the FAs when the gap closes. The modeling of the di�erent connections is described in sections 3.2.4

to 3.2.7.

The last step is to de�ne the boundary conditions (BCs), that is, to constrain the boundaries of the FA

model in order to obtain a well-de�ned problem. Figure 1.1 illustrates that the FA foot stands on the lower

core plate whereas the FA head is held down by the upper core plate. For the purpose of this model, the

core structures, including the core plates, the core barrel, and the core ba�e, are assumed to be sti� and to

be rigidly connected among each other. Based on this assumption, the limits of the structural model can be

drawn around the FAs, see the black dashed line in Figure 1.10c. That is, the core structures are considered

as BCs, which are described in section 3.3. This assumption also implies that the upper and lower core

plates remain horizontal, imposing the same constraint on all FAs. Likewise, the core ba�e remains vertical,

imposing the same BC on all outer FAs over their entire length. If a single FA is considered in a model

simulation, the lateral DOFs are only constrained at the top and bottom nodes of the FA. If FA row or the

entire core is considered, �xed nodes representing the core ba�e constrain the movement of the outer FAs,

see also section 3.2.4.

On the hardware side, serial runs using a single central processing unit (CPU) are usually used for performing

calculation on a single FA whereas shared-memory parallel processing on four CPUs is used for the entire

FA row.

3.2 FA structural elements

3.2.1 Guide tubes (GTs) and Fuel rods (FRs)

Thanks to their slender geometry the GTs and FRs can be modeled applying the Euler Bernoulli beam theory.

For this purpose, we use the ANSYS element BEAM188 (see section 2.2.2.3) with an annular cross-section,

see the detail view at the top of Figure 3.3. In the dashpot region, the GT beam inner diameter is decreased

by about 15%, see the cyan-colored part of the GT annulus. Figure 3.3 indicates also the cross-sectional

arrangement of the GTs and the FRs in the square lattice with a FR pitch pFR of 14.5 mm. The beam

sections are de�ned by 8 cells with 4 integration points per cell, at which the constitutive calculations, such

as the creep deformation, are performed (see section 2.2.3.1). All GT beams are spanned between two nodes,

one at each spacer grid level, see Figure 3.4. The FR beams have three nodes per grid for the modeling of

the FR support, see section 3.2.6. The creep and growth calculations are only performed in the active region

of the core. No neutron �ux is assumed outside this region. The top and the bottom of the active region are

hence marked by additional nodes to separate the irradiated and the unirradiated beam elements. A further

additional node separates the GT dashpot region from the rest of the GT. Due to the use of quadratic shape

functions to ensure high accuracy, one additional node per beam element is generated internally by ANSYS.

Table 3.1 introduces the most important structural parameters for this FA type and indicates the values

used in this work.

Since the GTs are open to the surrounding �uid, the internal pressure is equal to the external pressure

so that no hoop stresses are produced in the GT wall. The classical Euler Bernoulli theory with only

axial, shear, and bending stresses is hence su�cient to describe the GT behavior. The magnitude of shear

stresses can usually be neglected compared to the axial stresses. It is hence justi�ed to de�ne the GTs

with an isotropic material, having the mechanical properties of the considered Zirconium alloy in the axial

direction. In contrast, the FR cladding serves as a cylindrical pressure vessel. Due to the di�erence between

60



FA structural elements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

𝒙

𝒚

𝑑GT,dp,i

𝑑GT,i

𝑑GT,o
𝑑FR,i

𝑑FR,o

𝑝FR

Guide tube Fuel rod

Figure 3.3: Top views of the FR and GT bun-
dle.

Head

Holddown device

G
u

id
e 

tu
b

es

Spacer 
grid

D
as

h
p

o
t 

le
n

gt
h

 𝑙
d
p

A
ct

iv
e 

le
n

gt
h

 𝑙
a
c
ti
v
e

Foot

Fu
el

 r
o

d
s

FA
 le

n
gt

h
 𝑙
F
A

FA width 𝑏FA

Figure 3.4: FA front view. Schematic drawing (Ziegler,
1984) and ANSYS model.

61



Chapter 3. Fuel Assembly Structural Model

Table 3.1: FA reference data.

Variable Symbol Value

Assembly geometry npos × npos 16× 16
Number FRs nFR 236
Number GTs nGT 20
FA width bFA 228.6 mm
FA pitch pFA 230 mm
FR outer diameter dFR,o 10.75 mm
FR inner diameter dFR,i 9.3 mm
Fuel pellet outer diameter dpellet 9.11 mm
FR pitch pFR 14.3 mm
FR length lFR 4425 mm
FA length lFA 4827 mm
GT length lGT 4850 mm
Active length lactive 3900 mm
Dashpot length ldp 488 mm
GT outer diameter dGT,o 13.8 mm
GT inner diameter dGT,i 12.4 mm
GT dashpot inner diameter dGT,dp,i 10.59 mm

inner and outer pressure, membrane stresses appear in the FR cladding according to the equations given

in section 2.1.3.3. For this type of application, ANSYS provides the so-called pipe elements, which behave

like beam elements in their bending response but can evaluate hoop and radial stresses (σθ and σr) due to

pressurization e�ects as well. The disadvantage of the pipe element is that it adds new DOFs to the model,

as well as several new integration points for the creep calculations, slowing down the execution of the code.

The calculation of the azimuthal and radial components is not of particular interest for the bow analysis

since their e�ect on structural sti�ness is fully included in the grid spring relaxation model presented in

section 4.5.1. Therefore, the FRs are also modeled by BEAM188 elements. However, the knowledge about

the biaxial stress state, expressed by equations 2.68 to 2.70, is crucial for the calculation of the e�ective

stress σe�, which is the basis for the FR creep calculations. To not harm the validity of the model for FA

bow calculations, a particular strategy was developed to account implicitly for the biaxial stress state in the

creep calculations. This strategy is presented in appendix B.

All values of the mechanical and thermophysical properties of Zirconium alloys and the nuclear fuel are based

on Kim et al. (2006) and Whitmarsh (1962). The calculation of the structural mass of the GTs and FRs is

done implicitly by the code based on the beam cross-sectional data and the indicated material density. The

FR mass is composed of the FR structural mass and the fuel mass. The fuel pellet column inside the FR

rests on a support tube which reaches from the lower end plug to the bottom of the active region. The mass

of the fuel column is modeled by a lumped mass element, MASS21, applied at the FR bottom node and is

calculated as

mfuel,column = γUO2ρUO2 lactive
d2
pelletπ

4
(3.1)

where ρUO2 is the theoretical density of the UO2 fuel, γUO2 is the fuel porosity, lactive is the active length of

the fuel column, and dpellet is the pellet diameter. Note that for this approximation the pellets are assumed

cylindrical; that is, the pellet chamfers and dishes are neglected. The plenum spring force on the fuel column
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is also neglected.

3.2.2 Spacer grids

Spacer grids, Figure 3.5a, are lattice structures which are spaced along the FA at certain intervals to ful�ll

several functions. First, they support the FRs laterally and maintain the lateral spacing between them to

ensure the coolability of the rods. Moreover, they provide a sti�ening e�ect to the FA structure by me-

chanically coupling the individual GTs. Finally, the internal straps of the inner grids include mixing vanes

which project into the coolant �ow and promote the mixing of the coolant and, thereby, the heat transfer

from the rods downstream of the vanes. The spacer grids usually consist of individual slotted straps that

interlock to form a lattice in an �egg-crate� arrangement. The resulting square cells provide support for the

FRs at six contact points by a combination of support dimples and springs in the two perpendicular planes.

The modeling of the FR support in the spacer grid is treated separately in section 3.2.6. In the high �ux

region of the FAs Zirconium alloy straps are used as material due to its low neutron absorption properties.

Outside of the active region, Inconel is often chosen as material because of its corrosion resistance and high

strength. For the present FA design, only the bottom grid is made of Inconel while the top grid is also made

of a Zirconium alloy.

In the present model, spacer grids are modeled as rigid structures due to their high sti�ness compared to the

adjacent elements. Figure 3.5b gives a plot of the modeled con�guration of a single spacer grid in ANSYS.

The grid consists of one independent central node placed at each grid level at the intersection of the vertical

FA axis with the horizontal plane of the spacer grid. The number of dependent nodes depends on the number

of modeled GTs and FRs. If no simpli�cation is made, there is one dependent node placed in the center

of each grid cell. These nodes coincide with the GT and FR element nodes and are connected to them by

means of connection elements, see sections 3.2.5 and 3.2.6. Each dependent grid cell node is connected to the

central node by means of a rigid beam, ANSYS element MPC184. This con�guration creates the spacer grid

as a sti� planar structure with three translational and three rotational DOFs. By using rigid beam elements,

 

 
0199-3

Figure 3.1-22 Spring Grid Assembly

(a) Schematic drawing of a bottom grid (USNRC,
2012). At the GT positions, the grid includes sleeves
for the GT-grid connection.

(b) Spacer grid model in ANSYS. Black lines mark rigid beams,
blue and red stars mark GT and FR connection nodes.

Figure 3.5: Actual shape of spacer grid versus modeled con�guration.
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the dependent DOFs at the GT and FR positions are linked to the DOFs of the independent central grid

node by means of kinematic constraint equations, which are created internally using the direct elimination

method (ANSYS, 2013b). That is, the dependent nodes are eliminated from the solution matrix.

Since the MPC184 rigid beams are massless elements, the spacer grid mass must be accounted for addition-

ally. Therefore, a lumped mass element, MASS21, is placed at the central node of each spacer grid level. To

calculate the spacer grid volume Vgrid, it is assumed that the grid is only composed of massive grid straps

without slots or protrusions so that Vgrid = Agridlgrid, with Agrid being the projected grid cross-section:

Agrid =
(
n2
pos (2pFR − tgrid) + 2npospFR + tgrid

)
tgrid (3.2)

This approximation yields a grid mass of roughly mgrid = 1.5 kg for a Zirconium alloy grid. For the Inconel

grid, the same mass is assumed. Although the density of Inconel is higher, the grid straps can be fabricated

with a reduced thickness since Young's modulus is higher as well.

3.2.3 FA foot and head structures

The modeled structural con�gurations of the FA foot and head are composed of two parts, the ori�ce plates

and the structural frame. The ori�ce plates, that is the top plate of the FA foot and the bottom plate of

the FA head, are the parts to which the GT extremities are connected. They are modeled analogously to

the spacer grids. This means that for each GT additional nodes are placed coincident with the GT bottom

and top nodes. Each of these nodes is connected to the central node of the respective ori�ce plate by means

of rigid beam elements. The structural frames are modeled by single Euler-Bernoulli beams, creating the

connection between the ori�ce plates and the opposite face, that is, the FA foot bottom face and the FA

head top face. The beam is de�ned with a hollow rectangular cross-section out of type 304 stainless steel.

This simpli�cation is justi�ed by the fact that the structural rigidity of the frame is very high compared to

the rest of the FA. The mechanical and thermophysical properties of stainless steels are given, for example,

in Davis (1994).

3.2.4 Inter-assembly gaps

The single FA models in the core are coupled to each other by gap-contact elements, ANSYS element

CONTA178, which is described in section 2.2.2.4. Since inter-FA contact usually takes place between adjacent

spacer grids, one contact element connects the neighboring spacer grid nodes at each axial grid level. If the

relative FA displacement in lateral direction is larger than the indicated reference gap size bgap,ref (real

constant GAP in ANSYS), then contact is established and the FAs are mechanically coupled in the lateral

translational direction. Only lateral coupling forces are transmitted in the modeled contact elements. That

is, only forces normal to the contact surface are considered, but no tangential forces due to friction are

assumed. Based on the normal force-displacement relationship of the gap-contact element in equation 2.102,

equation 3.3 expresses the lateral force Fx,cont transmitted through the i-th gap in the FA row at the j-th

grid level. Fx,cont is determined by the relative lateral displacement ux of the i-th and (i− 1)-th FA at this

axial level. For a row of 15 FAs, i = 0 and i = 16 represent the core ba�e to the left and right of the FA
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row. Since the core ba�e is assumed sti�, we have ux,0,j = ux,16,j = 0.

Fx,cont,i,j =





0, if bgap,i,j = bgap,ref + ux,i,j − ux,i−1,j > 0

kcontbgap,i,j , otherwise
(3.3)

For the inter-assembly gaps, kcont is chosen very large compared to the remaining structure. This implies

that the interference remains very small in relation to the displacements of the structure, that is, bgap,i,j ≈ 0.

Fx,cont,i,j is obtained based on the mechanical equilibrium of the coupled structure. The reference gap size

reads as

bgap,ref = bgap,ini −
∆bgrid,i,j + ∆bgrid,i−1,j

2
(3.4)

where ∆bgrid,i,j stands for the lateral growth of the grid j of the i-th FA and bgap,ini is the initial gap size under

operation between two fresh and perfectly straight FAs. FA design criteria normally enforce bgap,ref > 0.

For the time being, the reference gap size is assumed not to be in�uenced by the grid growth during burnup

(BU), that is, ∆bgrid,i,j = 0 and bgap,ref = bgap,ini. The nominal initial gap size under operating conditions

is about bgap,ini = 1.6 mm (RSK, 2015). In cold condition (CC), the gap size is somewhat lower due to the

larger thermal expansion coe�cient of the core support plate and FA nozzles as opposed to the Zircaloy

grids. In the present model, bgap,ini is assumed constant for all inter-assembly gaps at all temperatures and

fresh FAs are assumed to be initially perfectly straight. Gap-contact elements are also used to model the

rod-nozzle gaps between the FR extremities and the foot and head in order to limit the axial movement of

the FRs.

3.2.5 GT connections
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the spacer grid structure, as a whole, does not 

significantly influence on this simulation. This is the 

major assumption for all the finite element models 

built. 

The numerical model was built using shell elements, 
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The third column of Table 2 presents a stiffness 
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Figure 3.6: Example schematics of the
spot-weld connections between GTs and
spacer grids (Mattos Schettino et al., 2014).

GT to Zircaloy spacer grid The connection between the

GTs and Zircaloy spacer grids is commonly realized by means

of spot welds, sometimes with a sleeve as intermediate piece,

depending on the FA design. Figure 3.6 shows a schematic

of di�erent spot-weld strategies for the GT-grid connection in-

cluding the classical four-spot weld. These joints must pro-

vide an intact connection between the GTs and grids during

operation, shipping, and handling in order to maintain the di-

mensional stability of the FA under all conditions. Due to the

welds, the lateral translational connection can be considered

as sti�, which means that the lateral DOF of the spacer grids

and GTs are fully coupled in the model. The axial connection

is also relatively sti�; however, to allow the model to be su�-

ciently �exible for a posterior calibration, the axial connection

sti�ness is modeled by a spring element with very high sti�ness

kz,GT-grid. The rotational direction of the GT-grid connection

usually exhibits the lowest resilience to loading. Mattos Schettino et al. (2014), for example, presented a

study on the important in�uence of the number of spot welds on the rotational sti�ness of the GT-grid
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connection. GTs and spacer grids being both essential parts of the FA skeleton, the rotational sti�ness

kθ,GT-grid is hence a crucial parameter for the dimensional stability of the FA structure and consequently for

the structural model.

Bottom spacer grid to bottom nozzle or foot For the reference FA design, the bottom grid is not

attached to the GTs but is supported directly by the FA foot by means of insert sleeves. An example

schematic drawing of this con�guration is given in Figure 3.7a. By this means, a large fraction of the weight

of the FRs is supported directly by the FA foot without loading the GTs. This implies that no moment can

be transmitted by the bottom grid to the GTs; hence, no rotational springs are placed at these positions.

The insert sleeves are modeled by linking the concerned grid nodes with the corresponding nodes of the FA

foot by means of axial springs with a sti�ness kz,sleeve:

kz,sleeve =
EInc(p

2
FR − d2

gt,o)π

4lsleeve
(3.5)

The inner diameter of the insert sleeve is hence assumed to be equal to the GT outer diameter and the sleeve

outer diameter is assumed to be equal to the FR pitch. EInc is the Young's modulus of the sleeve material

Inconel. Note that lsleeve marks in this context the distance between the lower ori�ce plate and the axial

center of the bottom grid, not the actual length of the sleeve.

(a) Screwed connection of a guide tube with the bottom nozzle
of FA foot (Weihermiller and Allison, 1979).

(b) Example for the guide tube (4) connection with
the top nozzle (5) (Berglund, 1995).

Figure 3.7: Cross-sectional cuts through the guide tube connections with the nozzles.

GT to bottom nozzle or FA foot For the connection between the GTs and the FA foot, an internally

threaded end plug is usually welded to the lower portion of the GTs. The GT is then connected to the ori�ce
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plate of the FA foot by means of a GT screw inserted from the lower side of the plate and threaded into

the GT end plug placed on the upper side of the plate. Figure 3.7a shows an example of the screwed GT

connection at the FA foot. Due to the tight connection by means of screws, the lateral DOFs of the GTs

and the FA foot are considered fully coupled. The axial and rotational connections can also be assumed

nearly sti�. Therefore, axial and rotational linear spring elements with very high sti�ness, kz,GT-nozzle and

kθ,GT-nozzle, model the GT-foot connection. This allows a posterior calibration of the sti�ness parameters.

GT to top nozzle or FA head The connection between the top nozzle and the GT is usually designed

to allow separation of the top nozzle from the rest of the FA. The speci�c connection strategy depends

strongly on the FA design, consisting in general of a system of interconnected sleeves with welding spots and

a locking device to guarantee both a safe connection during handling, shipping, and operation and a quick

disconnection and reinstallation when removal of the top nozzle is necessary. An example for the GT-head

connection is given in Figure 3.7b. The connection is modeled in the same way as the GT-foot connection.

3.2.6 FR support

Analytical description The support of the FRs is provided due to frictional contact with the spacer

grids. The frictional support allows the sliding of the FRs along the contact points. This feature is necessary

due to their dimensional change as a result of the in�uence of temperature and neutron �ux. Thanks to the

absence of �xed supports, the risk of FR bow and high vibration amplitudes can be substantially diminished.

A drawback of the frictional contact is, however, the possible occurrence of fretting wear at the FR to grid

contacts, often as a result of �ow-induced FR vibrations. The frictional support is typically provided by the

spacer grids by means of a system of one spring and two dimples in each perpendicular direction of the grid.

In conventional designs, the spring is placed in the axial center of the spacer grid cell and the dimples are

US 8,693,612 B2 Sheet 4 0f 16 Apr. 8, 2014 US. Patent 

F IGURE 4 

(a) Isometric view.

US. Patent Apr. 8, 2014 Sheet 5 0f 16 US 8,693,612 B2 

FIGURE 5 

(b) Grid strap.

US 8,693,612 B2 Sheet 3 0f 16 Apr. 8, 2014 US. Patent 

(c) Top view.

Figure 3.8: Views of a 5× 5 section cut of the inner part of a spacer grid (Lee et al., 2014). 11: Fuel rod.
15: Grid strap. 25: Grid cell. 28: Grid spring. 29: Grid dimple.
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(a) FR support con�guration and parameters (based
on Billerey, 2005).

(b) E�ect of rod sliding and lift-o� on the moment-rotation
relationship.

Figure 3.9: Schematics of FR support.

placed symmetrically above and below the spring, in a distance b from each other. For such designs, springs

and dimples mostly provide point contacts, provoking fretting wear due to high contact pressures. More

recent grid designs often provide line or area contacts, which makes them less prone to fretting wear due to

decreased contact pressures. Figure 3.8 gives di�erent views of a 5×5 section cut of a spacer grid illustrating

how the FR is supported by the system of springs and dimples and how they are positioned. Figure 3.9a gives

a more schematic illustration of the spring and dimples in one rotational plane of the FR and represents the

most important parameters. Due to the constraints provided by the exact geometric position of the grid cell

springs and dimples, the spring is compressed after insertion of the FR into its grid cell. As a result, the FR

is braced against the two dimples in the same rotational plane as the corresponding spring. The magnitude

of the lateral support force FN is mainly controlled by the spring due to its signi�cantly lower normal sti�ness

ks,n than that of the dimples, kd,n. This normal preload determines, for a given Coulomb friction coe�cient

µ, the axial threshold force above which sliding occurs for a certain contact spot. Before sliding, the stick

contact of the rod with the spring and dimples is characterized by a tangential stick sti�ness kt. When

the FR support is loaded axially or rotationally under the e�ect of an external load, the load-de�ection

characteristics are determined by the di�erent and stick and sliding processes and the di�erent sti�ness

values of the spring and dimples. Figure 3.9b gives a schematic representation of the processes occurring in

the FR support, as well as their implication on the moment-rotation curve when the FR support is loaded

by rotating the FR about the perpendicular axis. According to Billerey (2005) four loading phases can be

distinguished when applying an external moment on the grid-to-rod connection. Based on these four loading

phases, we can add �ve unloading phases until the external moment is back to zero again. The loading

and unloading phases are described in Table 3.2. Depending on the maximum de�ection from which the

FR is unloaded, several of the cited unloading phases may be omitted. Figure 3.10 illustrates the di�erent
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Table 3.2: Description of the loading and unloading phases of the grid-to-rod joint which are represented
in Figure 3.10.

Loading:
Phase 1 The FR is in sticking contact with the dimples and the spring which are sitting perpendicular

to the plane of rotation. In the rotation plane, one dimple is compressed, the other one is
decompressed from its preload. The loading is symmetric about the center of the grid cell.

Phase 2 The rod starts sliding over the two dimples in the perpendicular plane.
Phase 3 The rod has lifted o� from the decompressed dimple, the symmetry of the con�guration is

broken as the FR compresses the grid spring. The rod remains in sticking contact with the
perpendicular grid spring.

Phase 4 The FR starts sliding over the spring in the perpendicular plane.
Unloading:
Phase 5 As unloading starts, the rod is in sticking contact with all dimples and springs in the perpen-

dicular plane.
Phase 6 The rod starts sliding, in opposite direction, over the dimple which is perpendicular to the

dimple from which it lifted o� in phase 3.
Phase 7 The rod slides, in opposite direction, over both dimples. This phase is equivalent to the

con�guration of phase 3 in Figure 3.10.
Phase 8 The rod slides, in opposite direction, over the spring in the perpendicular plane. This phase

is equivalent to phase 4.
Phase 9 The gap closes again between the FR and the dimple from which it lifted o� in phase 3. This

phase is equivalent to phase 2; however, the spring does not necessarily return to its initial
position.

Figure 3.10: Representation of the loading and unloading phases of the grid-to-rod joint. Black continuous
line: spring is loading or unloading; grey continuous line: spring is at rest; black dotted line: rod slides over
perpendicular spring/dimple.

loading and unloading phases schematically. The dimples and springs in the rotation plane are represented by

spring elements with a gap (lower elements). The dimples and springs perpendicular to the rotation plane

are represented by a spring element with frictional slider (upper elements). The moment-rotation curve

can be established analytically by solving for each phase the force and moment equilibria of the illustrated

mechanical system. The resulting rotational sti�ness kθ,FR-grid has the general form given in equation 3.6.

kθ,FR-grid =
b2

4
f(ks,n, kd,n, kt) (3.6)

Besides the slippage due to rotational loading, axial slippage of FRs is possible at higher BUs due to the

relaxation of the FR support springs or under the e�ect of a very high HD force. The grid spring relaxation
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is considered in the chapter about the BU-dependent modeling in section 4.5.1. If slippage occurs at all grid

levels for a certain FR, it slides downwards axially through the grids. The bottom nozzle then provides a

barrier to stop slippage and o�ers additional support.

FR support model Figure 3.11 gives a schematic representation of the modeled FR support. In the

present model, the grid-to-rod connection is modeled by point contacts, represented by node-to-node con-

tact elements. For this purpose, ANSYS provides the prede�ned �nite element type CONTA178, see sec-

tion 2.2.2.4. For a closed contact, the so-called penalty method (ANSYS, 2013b) is chosen for the element

response in the normal direction. That is, the element behaves like a translational spring element: the ele-

ment normal force is related to the relative displacement of the nodes by means of a normal sti�ness kn. The

evident choice for kn are the respective normal spring and dimple sti�ness values, ks,n and kd,n. Regarding

the tangential response perpendicular to the closed contact, the contact element acts like a friction element.

That is, one must distinguish between sticking and sliding contact. The sticking contact is characterized

by a stick sti�ness kt relating the tangential forces and displacements. This value represents the elasticity

of the frictional contact. The sliding contact occurs when the tangential forces reaches a value equal the

product of the element's normal force and the Coulomb friction coe�cient for sticking. The normal force is

determined by the initial spring or dimple preload before operation (FN or FN/2), the current FR rotation,

and the degree of relaxation during operation. For the present analysis, it is assumed that the spring's

axial position is mid of the corresponding dimples and that the dimples and springs are positioned at the

same axial levels for both rotational planes. Table 3.3 summarizes the values of the parameters related to

the FR support used in this model based on a literature analysis. The values for the sti�ness of the grid

spring and dimples are based on Lee (1980). The grid spring usually exhibits a nonlinear force-de�ection

relationship. Figure 3.12 gives a representative example for the typical force-de�ection curve of the grid
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Figure 3.11: Modeled con�guration of FR support. Figure 3.12: Measured grid spring characteristic
(Kim, 1993).

70



FA structural elements

Table 3.3: FR support parameter values.

Variable Symbol Value

Cold spring normal sti�ness ks,n 35 N/mm
Cold dimple normal sti�ness kd,n 546 N/mm
Cold spring and dimple tangential sti�ness kt 1000 N/mm
Axial distance between dimples b 20 mm
Initial cold spring preload FN 25 N
Friction coe�cient µ 0.55
Grid thickness tgrid 0.6 mm
Grid length lgrid 45 mm

spring. Modeling this nonlinear behavior would raise the model complexity and might have adverse e�ects

on convergence. Therefore, we linearize the spring sti�ness around the value of the initial spring preload.

Lee (1980) gives a value of ks,n = 35 N/mm for the spring normal sti�ness at ambient temperature in this

range. For the dimple normal sti�ness, a value of kd,n = 546 N/mm is given. The measurement of the static

tangential sti�ness value is very di�cult to achieve. Therefore, Lee (1980) derived the tangential sti�ness

value using a semi-empirical method based on the measurement of the natural frequency and obtained a

value of kt = 1000 N/mm. The grid spring is designed to provide su�cient preload to maintain the FRs

axially in position under all transport and handling conditions before operation and to minimize possible

fretting during operation. At the same time, the friction force must be low enough to not overstress the

cladding at the points of contact between the grids and FRs and to allow growth of the FRs during operation

with su�cient margin against buckling due to excessive compressive forces. Based on these requirements,

the preload is usually adjusted to values of about FN = 25 N (Park et al., 2003).

The value of the friction coe�cient depends on several factors, like the mating materials (Zirconium alloy

or Inconel), the surface condition (polished or oxidated), and temperature. Makarov et al. (2011) published

several reference values that are speci�c to Zirconium alloys for FR cladding. They indicate an average

friction coe�cient of µ = 0.55 for polished Zirconium alloy cladding as delivered from the manufacturing

plant for sliding contact with spacer grid springs of the same mating material. This value will be used for

all frictional contacts in the present model for the sake of simplicity. However, it must be kept in mind that

this value might be substantially decreased in the case of oxidized surfaces.

Figure 3.13a depicts a schematic of an experimental set-up to test the moment-rotation behavior of the FR

support. A lateral force is applied on a sti� rod at some distance from its support in the grid and the resulting

de�ection is measured. Figure 3.13b gives the resulting normalized force de�ection curve. We perform now a

similar test with the FR support model from Figure 3.11 to guarantee a realistic response of the model when

compared qualitatively to the results of the experiment. For this purpose, we apply a stepwise increasing

moment at the rod in the grid cell until the minimum sti�ness is reached. Then the moment is reduced again

until it is back to zero. Figure 3.14 gives the resulting moment-rotation curve for this test using friction

coe�cients of 0.55 and 0.35. Figure 3.15 shows for the case with µ = 0.55 the tangential and normal dimple

and spring forces which determine the moment on the FR. The plotted forces represent the variation of the

spring and dimple forces ∆F with respect to the initial values when the FR support is not loaded by an

external force or moment, that is, ∆F = F −F0. The sign of the forces in the plots is chosen such that pos-

itive forces have a moment-increasing e�ect. The di�erent loading and unloading phases described in Table
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(a) Sketch of test facility. (b) Force-de�ection curve.

Figure 3.13: Experimental record of a fuel rod supported by a spacer grid and laterally loaded by a force
F in distance L (Stabel and Hübsch, 1995).

Figure 3.14: FR support rotational loading test.

(a) Tangential forces. (b) Normal forces.

Figure 3.15: Spring and dimple force variation ∆F as a function of rotation during the FR support loading
test with µ = 0.55 in Figure 3.14. ∆F > 0 means positive contribution to grid-to-rod moment and vice
versa.
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3.2 are well appreciable in the plots. Markers in all �gures highlight the transitions between the di�erent

phases. Phase 1 of the FR support loading ends when both dimples reach the maximum tangential friction

force, see particularly the �rst marker in Figure 3.15a. At the same time, the sti�ness of the FR support

decreases. Phase 2 ends when the upper dimple is decompressed, ∆F = 0.5FN, see the second marker in

Figure 3.15b. The FR support sti�ness continues to decrease accordingly. As phase 3 starts, the grid springs

are loaded in normal and tangential directions. The third marker highlights the start of phase 4, when the

FR slides over the grid spring. From this point, the sti�ness would remain constant if the loading continued.

Therefore, the loading is stopped, marker 5, and the unloading phase is started. Since sticking contact sets

in again, the total FA sti�ness is signi�cantly higher than when loading stopped so that a load hysteresis

develops. The next three markers show the end of phases 5, 6, and 7, when the rods slide over the springs

and dimples with their negative maximum friction force. The FR support sti�ness decreases accordingly.

Phase 8 starts when the FR starts compressing dimple 2 again at a rotation close to zero so that the sti�ness

increases again.

Comparing the model results in Figure 3.14 with the experimental record in Figure 3.13b, a good qualitative

agreement can be observed. The general curve evolution for both loading and unloading phases is well �t. It

is remarkable that for the experimental test the curve evolution is much smoother and no pronounced phases

are distinguishable. We can associate this to several e�ects which occur in the real experiment but have been

neglected in the model. First, the real grid spring sti�ness evolution is nonlinear with gradually decreasing

values for high deformations, see Figure 3.12. Furthermore, the frictional contacts have been modeled with

simple stick/slip point contact elements with a constant stick sti�ness when the slip condition has not been

reached yet. That is, we obtain a linear elastic response when the loading is initiated, and a break-away

when the load reaches a critical value. In more realistic systems, partial slip occurs due to the presence of an

elasto-plastic shear layer at the contact surface (Menq et al., 1986). This means that one part of the surface

still sticks while the rest has already slipped, causing a much smoother curve evolution.

3.2.7 Holddown (HD) device

The HD device provides a nonlinear relationship between the axial FA de�ection and the HD force. This

guarantees su�ciently high HD forces to prevent the FA from lift-o� while being able to accommodate

dimensional changes of the FAs due to irradiation growth or thermal expansion without generating consider-

able reaction forces and moments. The HD device of the considered FA design is described, for example, in

Steinke (1981) and is depicted in Figure 3.16. This HD device is composed of in total eight spring elements,

which protrude from the frame of the FA head on both sides of each corner of the upper face, see the ele-

ments marked with the number 4 in Figure 3.16a. Figure 3.16b shows a cut illustrating one spring element

in detail. Each spring element of the HD device contains a coil-type spring or spring package, marked with

number 41. The spring is mounted around a pin, number 4, which is slidably inserted in the bores marked

with the numbers 11 and 12. The lower part of the spring is braced against the bottom of the FA head

while the top is braced against a stop, number 42, which is connected to the pin. In this manner, the pin is

forced upwards, bracing the stop against the upper bar of the FA head. The left side of Figure 3.17 gives a

schematic drawing of the mechanical HD system with one representative spring.

Based on this con�guration, the working principle of the HD device can be deduced. Let the variables

kz,HD be the sti�ness of the represented spring, Fspring the compressive spring force, and lHD the current
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(a) Front view. (b) Cut II-II.

Figure 3.16: Schematic drawings of FA head with holddown
springs (Steinke, 1981).
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Figure 3.17: Schematics of the mechanical
holddown system.

spring length. lHD,0 is the spring's length in the unloaded state while lHD,1 stands for its length when it is

compressed between the lower and upper bar of the FA head frame. The spring preload corresponding to

this compression is given as:

Fpre = kz,HD(lHD,0 − lHD,1) (3.7)

The reaction of this preload is a tensile load in the vertical bar of the FA head frame. No external HD force is

exerted on the pin so far so that the e�ective HD force FHD, that is, the axial downward force exerted by the

FA head on the fuel element, is zero. Let now the top of the pin be gradually loaded by an external downward

axial force, for example, due to the upper core plate. In a �rst phase, the spring force will remain constant,

Fspring = Fpre since the pin force must be greater than the spring preload for the spring to be pushed further

down by the pin. Instead, the tensile reaction load in the vertical bars of the FA head frame will be gradually

relieved. E�ectively, the HD force is not transmitted through the spring element but through the FA head

frame. The e�ective sti�ness of the HD device in this phase corresponds to the axial sti�ness of the vertical

bars, which is substantially higher than the sti�ness of the HD springs, kz,bars > kz,HD. Once the HD force is

equal to the spring preload, FHD = Fpre, the tensile load in the vertical bars vanishes and the spring preload

is exclusively counteracted by the HD force. When the HD force is increased further, the pin will start to

compress the spring beyond its preload reducing its length, lHD < lHD,1. The additional HD force is now

transmitted through the spring with sti�ness kz,HD. In total, an bilinear relationship between the axial FA

de�ection and the HD force is produced due to the described con�guration, see the graph at the right in

Figure 3.17. The de�ection after which the second phase is reached is uz,pre = Fpre/kz,bars. Hypothetically,

a third phase exists, in which the pin is pushed down so much that the upper core plate touches the FA

head. In this phase, the compression of the HD spring would stop and the force would be transmitted again
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Table 3.4: HD device parameter values.

Variable Symbol Value

Number of HD spring packages nHD 8
HD spring package sti�ness kz,HD 20 N/mm
HD spring package preload Fpre 500 N

through the vertical bars of the FA head frame. This case is not considered in the presented model since the

length of the pins is designed long enough to accommodate FA growth during normal operation within the

second phase. To reduce the complexity of the model, the HD device is not modeled with contact elements

as represented on the left side of Figure 3.17. Instead, a simpli�ed con�guration is used as illustrated on the

right side of Figure 3.17. The simpli�ed mechanical system consists of two single spring elements placed at

the central FA axis, one for the axial response and one for the rotational response. The axial response of

the HD device is modeled by a nonlinear spring element, ANSYS element COMBIN39. For the de�nition of

the element, the bilinear curve given in Figure 3.17 is speci�ed.

To calculate the rotational sti�ness of the HD device for the rotational spring element, the distance of the

single spring packages from the rotational axis must be known. The spring packages are arranged in pairs of

two in two rows at each side of the rotational axes, with a distance of xHD,1 and xHD,2 from the axis. The

rotational sti�ness of the HD device kθ,HD in both x and y directions is given by equation 3.8, where θ is the

rotation of the FA top and Mi are the single moments developed at the FA top due to each spring package.

kθ,HD =

nHD∑

i=1

Mi

θ
= 4 kz,HD

(
x2
HD,1 + x2

HD,2

)
(3.8)

Table 3.4 indicates the parameter values assumed for the modeled HD device. For each of the HD spring

packages of the presented device, a sti�ness of kz,HD = 20 N/mm is assumed. The preload of the spring

packages should be high enough to present enough margin for decreasing forces within the second phase;

hence, a value of Fpre = 500 N is assumed, which gives a preload of FHD,pre = 8 × 500 N = 4000 N for

the entire HD device. For the spring package positions, the following rough estimation is made based on

Figure 3.16a. The radial distance to the rotation axis of the springs closer to the axis is xHD,1 = 5.5 bFA and

the radial distance of the springs further away is xHD,2 = 7.5 bFA.

3.3 Structural constraint boundary conditions (BCs)

3.3.1 Displacement BCs

Axial support Neither the FA foot nor the FA head are fastened to the core structures. Ideally, the axial

connection is to be modeled by contact elements because theoretically the contact can open, for example,

in the case of a FA lift-o� if upward forces are greater than the sum of HD and gravitational forces. Since

design guidelines prevent such events during normal operation, the bottom and top of the FAs are assumed

to be connected to the lower and upper core plates. This is realized by axial displacement constraints. The

lower core plate is used as axial reference so that for the bottom node the axial displacement is imposed

as zero, uz = 0. The top node represents the connection between the upper core plate and the pins of the

HD device. The displacement constraint on this node will be adjusted according to the initial compression
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of the HD device in CC, the thermal expansion of the core structures, and the HD spring relaxation. The

displacement constraint is hence variable over simulation time. Its calculation is presented in section 4.5.2.

Lateral support Bores are provided in each corner of the bottom face of the FA foot and the top face of

the FA head. The FA head bores are marked with the number 9 in Figure 3.1. The FAs are horizontally

aligned by adjustment pins which extrude from the lower and upper grid plates and are inserted into the

bores at the bottom and top of the FA, o�ering lateral support. This horizontal alignment and support is

modeled by displacement constraints of the bottom and top nodes in the cross-sectional x and y directions,

ux = 0 and uy = 0. In the particular case of a 2D model in the x-z plane, the displacement DOFs of all FA

nodes are fully constrained in y-direction, uy = 0.

3.3.2 Rotational BCs

Torsion Moments can be transmitted from the FA to the core plates about all three dimensions. In the

model, the FA is always loaded centrally, that is, in a manner that the resultant force vector acts on the

central axis of the FA. This implies that no torsional moments, that is, moments about the vertical z-axis,

appear in the FA. Therefore, the torsional degree of freedom is constrained for all nodes, θz = 0.

Bending angle The lower face of the FA foot is pressed against the lower core plate by the HD force and

the FA weight. In accordance with the assumption that the lower core plate is rigid and horizontal, the

rotation of the lower face of the FA foot about the cross-sectional axes must be zero since overlapping is not

possible. The imposed rotation angles for the FA bottom nodes are θx = 0 and θy = 0, which corresponds

to a clamped connection. In contrast to the lower core plate, the upper core plate is not in contact with

the upper face of the FA head during normal operation. Instead, lateral forces are transmitted through the

alignment pins and axial forces through the HD spring element pins. The upper face of the FA may hence

have a rotation angle di�erent from zero. However, this rotational DOF is not free as for a simple support,

but is constrained by the moment transmitted to the upper core plate through the HD springs. Section 3.2.7

speci�es the properties of the rotational spring element implemented in the model to this end.

3.4 Model reduction

The FA structural model has initially been designed as a full 3D model composed of all individual FRs

and GTs. In this section, a model reduction shall be performed with the objective of accelerating the run

execution without substantially impairing the quality of the results. To reduce the model size, we substitute

equivalent rods for groups of FRs, taking special care of maintaining the mechanistic features of the model.

Both a reduced 3D model and reduced 2D model are developed. The reduced 3D model maintains all features

of the full 3D model. That is, it is able to model simultaneous bowing of the FA in both cross-sectional

directions. The 2D model, in turn, serves only for the calculation of FA bow in a single cross-sectional

direction, assuming that no loading occurs in the third dimension.

3.4.1 FR reduction method

The largest potential in model reduction lies in diminishing the number of modeled FRs, for several reasons:

• The number of FRs is more than ten times larger than the number of GTs.

76



Model reduction

• Each FR consists of three independent nodes at each grid level as opposed to one node for the GTs.

• The FR grid cell consists of nonlinear gap elements which may require more iterations to converge.

• FA bow is mainly associated to the creep deformation of the FA skeleton while the grid cell springs

relax over BU so that the in�uence of the FRs on the FA skeleton is reduced.

It is hence reasonable to reduce the model size by replacing the totality of nFR FRs by a reduced number of

neq equivalent rods. That is, each equivalent rod substitutes nsubst FRs:

nsubst =
nFR
neq

(3.9)

These rods are designed and positioned in such a manner that a mechanical system is created as if all

single FRs were present. To maintain the mechanistic modeling of the coupling between FA skeleton and FR

bundle, there must be at least one equivalent rod per FA quadrant. In this manner, the fundamental modeling

con�guration with four symmetry axes is maintained. This reduction method would also be applicable to

the GTs; however, due to the low number of GTs per FA the reduction potential is limited. Moreover, it is

preferable to model every single GT since their creep response is crucial for the FA bow.

To realize a model reduction, we need to develop a criterion which is able to verify if the reduced model is

equivalent to the full model, regarding the deformations due to both thermoelastic and inelastic strains. For

this purpose, an energy criterion is proposed that stipulates that the potential energy Π in the structure,

de�ned in equation 2.13, remain equal for the reduced model. Hence also its components, the internal elastic

strain energy U and the external work W must remain equal. For the criterion of the equivalence of external

work it must be reminded that all external loads are assumed to attack in the neutral axis of the FA at a

certain axial level k, such as the forces on the grids and the nozzles, or are distributed equally over all rods

and tubes with index i, such as the hydraulic loads. If we assume only discrete forces F , the total increment

of work done by the external loads reads as:

∆WFA =
∑

k

(
nFR+nGT∑

i=1

(Fi,k∆ui,k) + Fk∆ui,k

)
(3.10)

The work increment in the equivalent con�guration, ∆Weq must be equal to the original value, that is:

∆Weq
!
= ∆WFA (3.11)

This condition must hold for each FA quadrant to maintain the characteristic features of the FA structure.

The external work on the spacer grids and GTs remains equal in the equivalent con�guration; hence, equation

3.11 can be reduced to equation 3.12, which must be valid for any axial force attacking point k.

nFR/4∑

i=1

Fi,FR∆ui,FR =

neq/4∑

i=1

Fi,eq∆ui,eq (3.12)
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To obtain equivalent deformations, it is required that the displacements be equal for both con�gurations at

each point of the displacement �eld inside the FA; hence, we can reduce equation 3.12 to:

Feq,tot =
nFR
neq

FFR,tot = nsubstFFR,tot (3.13)

This expresses the trivial condition that when substituting one equivalent rod for nsubst FRs, the equivalent

rod must bear nsubst times the load of a single FR. Therefore, also the sti�ness of the equivalent rods and

the adjacent spring elements must be increased nsubst times to produce equivalent displacements, which is

expressed in equation 3.14. For the beam elements, this condition determines the geometry of the equivalent

cross-section, equations 3.15 and 3.16. The axial dimensions and the modulus of elasticity of the equivalent

rods remain unchanged.

nsubstkFR = keq (3.14)

nsubstAFR = Aeq (3.15)

nsubstIFR = Ieq (3.16)

With equations 3.13 to 3.16, the distribution of the equivalent loads and the sti�ness of the equivalent rods

and the adjacent spring elements are fully de�ned. Due to the grid coupling, the lateral positions xi,eq of

the equivalent rods also play an important role to obtain an equivalent FA sti�ness. To determine xi,eq, the

condition of the equivalence of internal strain energies in equation 3.17 can be exploited.

Ueq
!
= UFA (3.17)

The internal energy of the GT bundle and the nozzles does not need to be considered since their con�guration

remains unchanged. Therefore, only the equivalence of the strain energy of the rods and of the spacer grids,

including the FR support, need to be established to obtain xi,eq. The spacer grid being a rigid structure, it

stores strain energy only through the springs in the FR support. The internal strain energy of the grid in

one FA quadrant after a rotation θ and an axial translation uz,grid at the neutral axis is:

Ugrid,quadrant =
1

2

nFR/4∑

i=1

(Fz,i,FRuz,i +Mi,FRθ) (3.18)

with uz,i being the axial translation at the lateral position xi. Based on the geometric compatibility condition

in equation 2.62, we have uz,i = uz,grid + xiθ. The condition for the equivalent internal strain energy of the

reduced system is then:

1

2

nFR/4∑

i=1

(
kz,i,FR (uz,grid + xi,FRθ)

2
+ kθ,i,FRθ

2
)

=
1

2

neq/4∑

i=1

(
kz,i,eq (uz,grid + xi,eqθ)

2
+ kθ,i,eqθ

2
)

(3.19)

Equation 3.19 can be reduced to equations 3.20 and 3.21, making use of equation 3.14 and under the assump-

tion that kz and kθ are equal for all positions. This represents an approximation since the instantaneous
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spring sti�ness may slightly di�er between the lateral positions due to the nonlinearity of the FR support.

nsubst

neq/4∑

i=1

xi,eq =

nFR/4∑

i=1

xi,FR (3.20)

nsubst

neq/4∑

i=1

x2
i,eq =

nFR/4∑

i=1

x2
i,FR (3.21)

That is, to obtain an equivalent grid strain energy in each FA quadrant, the linear sum and the sum of

squares of the lateral positions xi must remain constant between the full model and the reduced model. The

equivalence of the sum of squares represents the stronger criterion for the equivalence of both models. It can

be considered as a speci�c form of Steiner's theorem which guarantees the equivalence of the FA sti�ness.

As the �nal step, the equivalence of the internal strain energy of the FR bundle quarter sections UFR,tot

needs to be ensured.

Urods,quadrant =

nFR/4∑

i=1

Ui,FR
!
=

neq/4∑

i=1

Ui,eq (3.22)

The theoretical derivation of the resulting condition for this equivalence is somewhat lengthy and is described

in appendix C. It results that to ful�ll the energy criterion in equation 3.22, the conditions in equations 3.20

and 3.21 must be complemented with a third condition for the equivalence of the sum of cubes of xi.

nsubst

neq/4∑

i=1

x3
i,eq =

nFR/4∑

i=1

x3
i,FR (3.23)

The general equivalence of the reduced model has hence been proved theoretically under the given conditions

and is con�rmed with a test simulation in section 3.4.4. First, the speci�c set-up of di�erent reduced models

with equivalent rods is described.

3.4.2 Reduced 3D Model

For the 3D reduced FA model, the symmetry axes of the FAs must be maintained so that the bending

sti�ness of the FA IFA remains constant for the bending about all symmetry axes. Therefore, the equivalent

rods should be arranged in an array pattern and have an annular cross-section, that is, Ieq is constant in all

cross-sectional directions. Equations 3.15 and 3.16 become:

nsubstAFR = Aeq =
(
r2
eq,o − r2

eq,i

)
π (3.24)

nsubstIFR = Ieq =
(
r4
eq,o − r4

eq,i

)
π (3.25)

The solution to the system of equations is:

req,o =

√
2IFR
AFR

+
nsubstAFR

2π
(3.26)

req,i =
√
r2
eq,o − nsubstAFR (3.27)
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Due to the root term in equation 3.27, a real solution can only be obtained if the number of equivalent rods

is above the limit given in equation 3.28.

neq > nFR
r2
FR,o + r2

FR,i

r2
FR,o − r2

FR,i

(3.28)

Moreover, neq must be a multiple of 4 to have the same number of equivalent rods in each quadrant. For

the present FA design, a minimum of nine equivalent rods per quadrant is necessary, that is, neq = 4×9. To

meet the criteria established in section 3.4.1, the system composed of equations 3.20, 3.21, and 3.23 must be

solved for x1,eq to x3,eq. In this manner, the equivalent rod array in each FA quadrant is fully de�ned for the

3D case because yi,j = xj,i, with j being the index for the lateral positions in the y-direction. Figure 3.18a

illustrates the cross-sectional cut of the reduced 3D model. The cross-sections of the equivalent rods and

GTs overlap in the graphics but are not in actual physical contact.

𝑥1 𝑥2 𝑥3

𝑦1

𝑦2

𝑦3

𝑥

𝑦

𝑥1 𝑥2 𝑥3

ℎrec

𝑏
re
c

𝑥
𝑦

(a) Reduced 3D model. (b) Reduced 2D model.

Figure 3.18: Top view of the FR and GT bundles for reduced models.

3.4.3 Reduced 2D Model

The studies in this work are limited to the analysis of FA rows. Therefore, a further reduction to a 2D-only

model is possible since only the solution in the axial direction and in one lateral direction is required. If,

for example, only the lateral deformations in x-direction are to be solved, we can cut the FA in two along

the x-axis, not considering all structures at y > 0. For the solution, the displacements and rotations in the

third dimension are blocked, uy = 0 and θx = 0, to remove these DOFs from the solution matrix. For the

2D case, all external loads acting on the entire FA must be reduced by one half in the preprocessing before

the solution step. After solving, the concerned reaction forces are doubled again to obtain the results for

an entire FA. An additional advantage of the 2D calculations is that the number of equivalent rods can be

further reduced since Ieq does not need to be constant in all directions since no bending is considered in

the third dimension. Therefore, a rectangular cross-section with Iy,eq = nsubstIy,FR and an arbitrary Ix can
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be used. For each lateral position xi of the FA quarter section, the three equivalent annular rods can be

combined to one rectangular beam so that only six beams need to be modeled in total, neq = 2 × 3. The

following equations determine the side length of the rectangle, where brec is the length parallel to the bending

axis and hrec is the length in perpendicular direction, see Figure 3.18b.

nsubst =
nFR
2neq

(3.29)

hrec =

√
12Iy,FR
AFR

(3.30)

brec =
nsubstAFR

hrec
(3.31)

3.4.4 Performance of reduced models

Table 3.5 compares the performance of the reduced models and the full model in terms of the modeling error

and in terms of the memory requirements and the elapsed simulation run time for a serial run including the

pre- and postprocessing procedures. As test case, the single-FA creep de�ection test described in section 6.2.1

is used; however, the duration of the run is limited to the reactor operating cycle and an additional power

gradient is imposed on the structure. In this manner, the simulation contains all relevant model features,

that is, elastic, thermal, creep, and growth deformations, as well as the e�ect of gradients over the FA. The

FA mid-grid de�ection under operation at end of cycle (EOC) is used as reference output. The maximum

modeling error is close to 1% and is therefore negligible in view of the large uncertainties about the creep

rate and the lateral hydraulic loads. For the 3D case, the model reduction with equivalent rods decreases

the elapsed run time to about one �fth of the original value. The memory expenses decrease almost to the

same degree. For the 2D cases, the reduction potential is even larger. With the full model, more than half

the computational time can be saved by exploiting the symmetry of the model. When reducing the model

further by using six rectangular equivalent rods, the run time is reduced by 91% compared to the full model.

This model is used as the standard model for all 2D calculations performed in this work for both single FAs

and for an entire FA row.

Table 3.5: Comparison of elapsed simulation times on a single CPU and errors for di�erent tests with the
reduced models.

Model
FA de�ection Run time Memory used

Error [%] [s] Decrease [%] [MB] Decrease [%]
3D Full - 2245 - 1430 -
3D neq = 4× 9 0.93 469 79 476 67
2D Full 0.11 1040 54 633 56
2D neq = 2× 9 1.04 238 89 242 83
2D neq = 2× 3 1.04 195 91 185 87

3.5 Laboratory de�ection tests

To verify the axial and lateral sti�ness of any FA design before being deployed in the reactor, fuel suppliers

perform experimental de�ection tests in a laboratory environment. In general, the experiments take place

at ambient temperature with air as ambient medium. These tests are performed to characterize the static

81



Chapter 3. Fuel Assembly Structural Model

axial and lateral structural response of the FA. Furthermore, the de�ection tests are useful to verify the

performance of computational FA structural models. For the modeling of FA bow, this represents one of the

only means of veri�cation besides the measurements of the of bow shapes at EOC because it is very di�cult

to realize an experimental set-up measuring the FA deformation under reactor conditions. Therefore, it is

of preliminary importance to compare the mechanical response of the created FA structural model to the

results of in-laboratory FA de�ection tests.

3.5.1 De�ection test set-up and description

Figure 3.19a gives an example for a typical experimental set-up for the mechanical testing of FAs. Fig-

ure 3.19b gives a schematic representation of the recorded variables during the de�ection tests. In the

experiment, the same constraints as exerted by the lower and upper core plates on the FA foot and head

are recreated. The axial compression test is performed by loading the FA head with an axial compressive

force Fax while recording the downward axial displacement response uax. No lateral force Flat is applied.
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(a) Typical experimental set-up (Yoon et al., 2006).
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(b) Recorded variables.

Figure 3.19: FA de�ection test schematics.
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For the lateral de�ection test, the FA is laterally de�ected along one axis to a displacement ulat at the mid

grid of the FA. At the same time, a constant HD force Fax is applied at the top of the FA. The lateral

force Flat required to de�ect the FA is measured continuously to obtain the evolution of the relationship

between force and de�ection. Due to slippage processes in the FR support, this relationship exhibits usually

nonlinearities and a hysteresis for both axial and lateral de�ection tests. Therefore, the unloading phase is

recorded as well. In many experiments, the cycles are repeated several times, increasing the maximum force

after each cycle. All loading and unloading processes are performed slowly to rule out dynamic e�ects and

ensure the quasi-static behavior of the FA structure. The measurement data obtained from FA de�ection

tests are speci�c to a certain FA design by a FA vendor and are usually proprietary and not disclosed.

However, the generic behavior of PWR FAs is vastly discussed in literature and normalized curves describing

the force-de�ection relationship have been published on several occasions (Salaün et al., 1997; Yoon et al.,

2007; Levasseur et al., 2009; Morales et al., 2012).

In the next sections, we will �rst perform computational axial and lateral de�ection tests with the generated

FA structural model. In this manner, we can investigate the performance of the model compared to the

general response of PWR FAs observed in experimental tests. Since an overall good qualitative agreement

is found, the created model can be used as a generic model for the purpose of the analyses in this work, that

is, to assess the e�ect of parameter changes. If a good �t to a speci�c set of data is required, the model can

be calibrated by adjusting speci�c sti�ness parameters. Such a calibration is performed in the last section of

this chapter. This demonstrates the �exibility of the model to be calibrated to measurement data obtained

with a speci�c design although not all features have been modeled meticulously, for example, the details of

the FR support.

3.5.2 Axial de�ection test

Figure 3.20a gives an example of the typical force-de�ection response in a FA axial compression test ex-

periment. The axial compression test represents an important validation step for the present FA structural

model since it demonstrates the ability of the model to reproduce the sliding processes in the FR support.

This test highlights the nonlinear and dissipative properties of the model. For the test, the FA head frame

will be loaded with an axial compressive force. The force is applied directly on the FA head to better il-

lustrate the FA structural behavior without the in�uence of the HD springs, whose sti�ness is signi�cantly

lower than that of the remaining FA structure. To activate the axial sliding processes in pure axial loading,

the applied compressive force must be substantially higher than during normal reactor operation. Therefore,

the FA is axially loaded up to Fax,max = 60 kN. The test procedure consists in loading the FA gradually

with a compressive axial force in load steps of ∆Fax = 5 kN until the maximum force is reached, solving for

the static equilibrium after each load step. Then, the FA is unloaded completely using the same load step

size. Figure 3.20b gives the results of the axial de�ection test simulated with the FA structural model and,

for comparison, the linear curve obtained when loading the FA skeleton only, which illustrates the in�uence

of the FRs on the results. Comparing the FA axial de�ection curve with the normalized experimental mea-

surement data in Figure 3.20a, a good qualitative agreement is found. Both the nonlinear evolution in the

loading phase and the development of a hysteresis when unloading are well matched.

To better understand the represented curve evolution, the single sliding processes occurring in the FR sup-

ports during loading and unloading will be described. For this purpose, the axial force transmitted per grid
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(a) Experimental record by Morales et al. (2012). (b) Simulation results with the FA structural model.

Figure 3.20: Axial de�ection test: qualitative comparison of simulation results versus measurements.

Figure 3.21: Axial force transmitted per grid cell at grid levels 1 to 9 during the axial de�ection test.

cell through the FR support is plotted over the single load steps in Figure 3.21. The force is normalized

by the maximum transmissible friction force per grid cell 4µFN. At the beginning of the simulation, an

initial state is calculated including only the e�ect of gravity without any additional axial load. This state is

represented as load step 0. The initial axial displacement of the FA top node due to the FA weight uax,grav

has a value of about 1 mm. This deformation is intrinsic to the real FA after inserting the FRs during the

manufacturing process. To not bias the results, it is automatically subtracted from the code output during

the postprocessing. Figure 3.21 indicates that the FR weight is mostly carried by grids 1 and 2 which are

the only grids that transmit an appreciable axial force for load step 0. After this initial load step, a linear

relationship between axial force and de�ection is observed in the initial loading phase with a FA sti�ness

signi�cantly superior to that of the skeleton. Between the top and the bottom grid, a certain fraction of the

axial load is hence redistributed from the GTs to the FR bundle via the spacer grids, compressing the FRs. In

the initial linear phase, all grid-to-rod contact elements are in sticking contact and are loaded continuously.
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Between 15 kN and 20 kN, the instantaneous FA axial sti�ness, that is, the slope of the de�ection curve,

decreases. This is because the FR supports at the extremities, spacer grids 1 and 9, reach the maximum

friction force 4µFN. That is, only sliding contact exists between the FRs and the springs and dimples of

these grids. Consequently, the FR bundle will continue to be loaded only between grids 2 to 8. No additional

force is transmitted through grids 1 and 9 and therefore the lower and upper FR bundle spans. The total FA

sti�ness decreases accordingly. In the further course of the loading process, the contact elements of the other

grids start to slide one after another, decreasing gradually the FA axial sti�ness. When the maximum force

is reached, the instantaneous FA axial sti�ness approaches the FA skeleton sti�ness since the contribution

of the FRs to the FA sti�ness has nearly vanished. In the unloading phase, the loading direction of the

frictional elements is reversed so that stick contact is restored. Therefore, the axial sti�ness is increased

again to the initial value and the evolution is nearly linear until slippage starts in opposite direction at load

step 20. From this point, the FA axial sti�ness decreases again. When the FA is completely unloaded, a

permanent axial displacement of about half the maximum de�ection remains.

3.5.3 Lateral de�ection test

Figure 3.22a gives an example of the typical force-de�ection response in a FA lateral de�ection test experi-

ment. Figure 3.22b gives the results of the lateral de�ection test simulated with the FA structural model and,

for comparison, the linear curve obtained when loading the FA skeleton only. The test starts with an unde-

formed FA which is then is laterally de�ected by steps of ulat = 1 mm until reaching a lateral displacement of

ulat = 10 mm. The lateral de�ection test is performed with a constant axial preload of Fax = 7470 N, which

is a typical value for the initial HD force in CC. Again, we see a good qualitative agreement between the

model results and the experimental record concerning the particular features of the FA load-de�ection curve,

that is, the nonlinearity and the hysteresis. Like for the axial de�ection test, the nonlinear force-de�ection

relationship with hysteresis can be explained by the processes occurring in the FR support when loading and

unloading the FA. Figure 3.23 gives the normalized moment transmitted per grid cell by the FR support as

a function of the lateral de�ection for all grid levels. It can be observed that the slippage and gap-opening

behavior of the grid-to-rod connection plays an important role for the lateral response of the FA. When

(a) Experimental record by Morales et al. (2012). (b) Simulation results with the FA structural model.

Figure 3.22: Lateral de�ection test: qualitative comparison of simulation results versus measurements.
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de�ecting the FA, the evolution of the FR support follows the loading and unloading phases described in

section 3.2.6. The lateral FA response is directly linked to the moment evolution at the grid levels 2 to 4 and

6 to 8. At these levels the highest rotations of the tubes about the perpendicular axis occur as a result of the

lateral de�ection, see also Figure 3.24, which depicts the lateral deformation shape for the state of maximum

de�ection. The curve is slightly asymmetric since the displacements are higher in the upper part of the FA

than in the lower part. This is due to the higher sti�ness in the lower part because of the clamped condition

at the bottom end and the thicker GT walls in the dashpot region. A more detailed description of the e�ect

of the FR support on the evolution of the lateral de�ection curve is given in Wanninger et al. (2016a,c). In

conclusion, the nonlinear curve evolution with a decreasing sti�ness during loading and a hysteresis is well

reproduced for both axial and lateral de�ection tests. The generated model can hence be employed as a

generic model to assess the e�ect of parameter changes and will be used for the analyses in the present work.

Figure 3.23: Normalized grid-to-rod moment at grid levels 1 to 9
during the lateral de�ection test.

Figure 3.24: Lateral de�ection
shape.

3.6 Model calibration

In this section, we perform a calibration of the structural model to a set of reference data typical for

the modeled FA design. Based on the knowledge acquired about the FA model mechanical response in

the previous section, certain model parameters in�uencing the FA sti�ness must be de�ned as calibration

parameters. The sti�ness of the GTs and FRs in the model is �xed by their known geometric dimensions

and material choice and is therefore not useful for a calibration process. In contrast, the sti�ness values

for the connection spring elements used for the generic model were mostly based on values obtained from

literature for di�erent FA designs. Therefore, it is appropriate to use the sti�ness of these spring elements

as calibration parameters.
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The applied calibration procedure is a stepwise process based on di�erent reference data for the axial and

lateral response of the FA and the skeleton. For each reference value, a di�erent spring element sti�ness will

be de�ned as calibration parameter.

3.6.1 Axial response

In a �rst step, the axial response of the model is calibrated. For the considered FA design, approximate

reference values for the initial linear axial sti�ness are kax,skel = 10 000 N/mm for the FA skeleton and

kax,FA = 30 000 N/mm for the FA with FRs. The results of the axial de�ection test presented in Figure 3.20b

exhibit a higher FA sti�ness than given by these reference values. This is probably related to the fact that

several components are assumed rigid in the generic model although they exhibit a certain elasticity. The

cumulative e�ect of these simpli�cations can lead to a non-negligible sti�ening of the modeled structure.

Therefore, the sti�ness values of certain axial spring elements must be selected as calibration parameters

in order to adjust the model response to the reference values. For the calibration of the FA skeleton axial

sti�ness, the axial spring sti�ness parameter kz,GT-nozzle is used, which models the connection between GTs

and the top and bottom nozzles. For the purpose of the calibration, these springs are assumed to cover

the joint e�ect of all unaccounted axial elasticities. The skeleton model is linear and the additional springs

are connected in series with the sti�ness of the uncalibrated model, kax,skel,0. Therefore, the calibrated

kz,GT-nozzle can be calculated analytically as a function of the targeted skeleton axial sti�ness kax,skel, see

equation 3.32.

kz,GT-nozzle =
2kax,skel,0kax,skel

nGT(kax,skel,0 − kax,skel)
= 5954

N

mm
(3.32)

Regarding the axial response of the complete FA, the initial linear FA sti�ness before the �rst FR slippage

can be calibrated. For this calibration, the axial spring sti�ness parameter kz,GT-grid is used, which models

the connection between GTs and spacer grids. To obtain the calibrated value, the root-�nding problem

f(kz,GT-grid)− kax,FA = 0 must be solved iteratively, using the secant method, for example. kz,GT-nozzle is

used as initial guess for the �rst iteration. Already after two iterations the true relative error drops below

0.1% and we obtain a value of kz,GT-grid = 4531 N/mm as result.

3.6.2 Lateral response

The next step is the calibration of the model lateral response. Again, �rst the skeleton response and then

the FA response is calibrated. For the skeleton lateral sti�ness, we can identify the rotational sti�ness of

the connection between GTs and grids, kθ,GT-grid, as the most relevant parameter, which is therefore ideal

for the calibration of the linear model. The used reference value for the lateral sti�ness of the FA skeleton

is klat,skel = 20 N/mm. Again, the iterative secant method is applied. As an initial guess, the rotational

sti�ness values established experimentally by Mattos Schettino et al. (2014) for the four- and eight-spot-weld

con�guration are chosen, with values of 2950 N/mm and 8150 N/mm. The numerical calibration algorithm

estimates a calibrated value of kθ,GT-grid = 3852 N/mm after 4 iterations with an error below 0.1%.

For the full FA, for which the lateral sti�ness decreases with increasing de�ection, a systematic calibration

is more complex than for the FA skeleton only. For a thorough calibration, a good �t to the reference set of

data must be found, minimizing the sum of the squares of the residuals. We can hence use the normalized

root mean square error (NRMSE) to determine the goodness-of-�t. Usually, regression methods are used

87



Chapter 3. Fuel Assembly Structural Model

to �nd the minimum of this measure. For the present nonlinear model, a nonlinear regression would be

necessary, which consists in iteratively �nding the best �t. However, it is more time-e�cient to rely on the

model user's expert judgment to calibrate the model based on the knowledge about the in�uence of the FR

grid cell parameters on the FA sti�ness.

Figure 3.25: Lateral de�ection plot before the �nal calibration step compared to experimental record.

Figure 3.25 gives the calculated force-de�ection curve using the generic model including the previous cali-

bration steps, as well as a experimental data record of a lateral FA de�ection test to which the calibration

is performed. This experimental test consists of two hysteresis cycles. Starting with an initially straight FA,

the FA is de�ected up to half the maximum de�ection in the �rst loading phase. Then, it is unloaded and

de�ected up to the same displacement in the opposite direction and �nally the �rst cycle is �nished. Subse-

quently, a second cycle is started in which the FA is de�ected up to the maximum de�ection in both positive

and negative directions. Since the nonlinear behavior is mainly due to the FR slippage in the grid cell, the

FR support parameters in Table 3.3 are considered for the calibration. Di�erent parameters are dominant

in di�erent phases of the rotation of the FR in the grid cell. It is apparent that a good agreement exists

between measurement and model prediction for the shape and width of the hysteresis loop, which represents

the dissipated energy during the hysteresis. This behavior is governed by the frictional parameters of the

grid cell, namely the stick sti�ness kt and the maximum friction force µFnorm,ini. It can hence be assumed

that these parameters are well estimated in the �rst approximation. Therefore, we can concentrate on the

normal spring sti�ness values of the grid spring and dimples for the calibration. Considering the di�erent

phases when loading the FR support, we determine that the dimple normal sti�ness kd,n plays a signi�cant

role for all loading phases and is hence selected as main calibration parameter. From Figure 3.25 it is clear

that the model results overpredict the FA sti�ness. It can be deduced that by a substantial decrease of

the normal dimple sti�ness kd,n, we can decrease the FA sti�ness in all phases. Therefore, we try to �nd

a good model �t by gradually decreasing kd,n, down to a value of 10% of the original value. Figure 3.26

demonstrates that a good �t is established with the applied calibration method. The NRMSE of the lateral

forces takes a value of under 4%. This modeling error is acceptable for the present application since the

estimated uncertainties about other in�uencing parameters on FA bow during reactor operation are sub-

stantially higher. Figure 3.26b gives the distribution of the residuals and shows that the highest deviations

88



Model calibration

can be expected after the initially applied load is reversed. A possible scenario for this to happen in the

reactor is, for example, that before operation a FA is bent into one certain direction by its neighboring FAs.

When operation starts, the FA is bent into the opposite direction due to lateral hydraulic forces. Due to

the high uncertainty about the lateral hydraulic forces, also the maximum normalized error of 10% can be

judged acceptable. If an optimized �t with this model were required, a nonlinear calibration based on the

Gauss-Newton method could be performed to minimize the modeling error. However, to better reproduce the

particularities of the nonlinear curve evolution, a more detailed modeling of the spacer grid cell is required,

which accounts for speci�c features of the considered spacer grid.

(a) Predictions with the calibrated model versus reference
data.

(b) Residual plot of model results versus measurement
data.

Figure 3.26: Calibration of FA lateral response.
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Chapter 4

In-Reactor Model

To run a in-reactor simulation of one or several fuel assemblies (FAs), the in-reactor boundary conditions

(BCs) must be de�ned. We can distinguish between structural BCs and power-related BCs. The structural

BCs are those necessary to fully de�ne any structural mechanics problem, that is, the structural constraints

and load BCs. The power-related BCs are indispensable for the modeling of the material degradation e�ects

under irradiation, which were introduced in chapter 2: creep, growth, and spring relaxation.

In the �rst part of this chapter, the typical reactor cycle is described and the general properties of the BCs

in the di�erent simulation steps are introduced. The remaining sections concentrate on the description of

the power-related BCs and material degradation models. The structural constraint BCs have been described

previously in section 3.3.1. The load BC is due to the coolant �ow in the reactor and is treated separately

in chapter 5.

4.1 Modeling of reactor cycle: start-up, operation and shutdown

4.1.1 General description of reactor cycle

Table 4.1 illustrates the loads and physical phenomena a�ecting the FAs in the reactor over one reactor

cycle, including the start-up and shut-down. After the insertion into the reactor, the weight load on the FAs

is somewhat relieved by the buoyancy in the water coolant. The �rst step of any reactor cycle is closing the

reactor pressure vessel (RPV) in cold condition (CC) at about T = 50 ◦C. By closing the RPV, the FAs are

constrained in all translational and rotational degrees of freedom (DOFs) as described in section 3.3.1. In

particular, the upper core plate is resiliently braced onto the holddown (HD) springs of the individual FAs,

thus creating compressive HD forces. As the next step, the pumps are started, thus gradually increasing

pressure and temperature until the hot condition (HC) with a temperature of about T = 300 ◦C and an

operating pressure of about 15.8 MPa is reached. The temperature increase has two e�ects on the structure,

namely the thermal expansion and a change in the mechanical properties. Since di�erent materials are

involved, thermal strains and elastic strains develop di�erently for distinct components. During heat-up,

the FA guide tubes (GTs) made of Zirconium alloy expand less than the reactor internals, which are usually

made of stainless steel. This leads to a decrease of the HD force when compared to the CC. Moreover, the
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Table 4.1: Processes over the reactor cycle (based on Salaün et al., 1993).

Elements
Phases

Nozzles
Guide
tubes
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grids
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modulus of elasticity of the materials decreases, thus decreasing the sti�ness of the structural components.

In the following step, the reactor is made critical and power operation starts. During normal operation,

di�erent irradiation-induced or irradiation-enhanced processes prevail for the di�erent components. Creep

is important for all structures in the active core region that are put under stress by external loads, that is,

mostly the fuel rod (FR) cladding and the GTs. For the pre-stressed spring components, such as the HD

springs and the spacer grid springs, stress relaxation plays an important role. Finally, structural growth is

relevant for all structural components made of Zirconium alloys, namely GTs, FR cladding, and spacer grids.

After operation, the reactor is stopped and transited to HC, thus terminating all �ux-dependent processes.

Then the reactor is gradually cooled down and depressurized into CC. Before �nally opening the reactor

vessel, the pumps are shut down, thus removing the hydraulic loads from the FAs. After reshu�ing the FAs

in the core, the same procedure is repeated in the next cycle.

4.1.2 Load steps and BCs for reactor cycle runs

Based on the di�erent reactor states presented in the previous section, the BCs representing the di�erent

physical �elds and constraints acting on the FAs must de�ned. For this purpose, we distinguish between

operation, HC, and CC for the in-core condition. In addition, one ex-core condition is de�ned which considers

hanging FAs after being lifted out of the core. Table 4.2 summarizes the FA BCs used for the di�erent

simulation steps. The gravitational load is always imposed on the FA structure and is not mentioned

separately in the description. For all in-reactor simulations, the buoyancy force due to the surrounding

coolant after the insertion of the FAs into the reactor is accounted for. It is described in appendix D along

with the modeling of the axial hydraulic forces. The start-up steps in Table 4.1 do not have a signi�cant

in�uence on the �nal result if the core only consists of initially straight FAs. In this case, the start-up

steps are omitted and the in-reactor FA analysis over one cycle starts immediately with a reactor under

operation. During operation, all DOFs at the FA head and foot are �xed, except for the axial and rotational
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Table 4.2: Constraints and loads for di�erent simulation steps.

Condition
Constraints Loads Result

FA foot FA head
Temp Flux Hydraulic

step
ux uz θy ux uz θy #

In-core, Initial step at BOC 0 0 0 0 f(kHD, T, BU) T (x) 0 f(x) 0,24
In-core, Operation 0 0 0 0 f(kHD, T, BU) T (x) φ(x) f(x) 1-16
In-core, Hot condition (HC) 0 0 0 0 f(kHD, T, BU) 300 ◦C 0 0 17,23
In-core, Cold condition (CC) 0 0 0 0 f(kHD, T, BU) 50 ◦C 0 0 18,22
Ex-core, Hanging FAs 0 0 - 0 WFA - 50 ◦C 0 0 19-21

displacement DOFs at the FA head. These result implicitly from the connection of the FA head with the HD

spring by means of the HD device with HD spring sti�ness kHD, see section 3.2.7. The axial compression of

the HD springs due to the core plate is additionally in�uenced by the di�erential axial expansion of the FAs

and core structures as a function of temperature T and the HD spring relaxation over burnup (BU), described

in section 4.5.2. Before activating the creep and growth calculations during operation, one initial load step is

simulated at the beginning of cycle (BOC). This load step sets up an initial thermoelastic equilibrium under

reactor operating conditions. The same thermal and hydraulic loads as under operation are applied. That

is, they are imposed as a function of the lateral and axial position, T (x, z) and f(x, z), according to the

axial and lateral pro�les determined in section 4.4 and chapter 5. Based on the thermoelastic equilibrium

obtained from this initial step, the operation load step is started. This load step includes creep and growth

calculations depending on the lateral and axial distribution of the fast neutron �ux φ(x, z) and extends over

the entire cycle from BOC to end of cycle (EOC) over 330 full-power days or 7920 hours. For simulations

without two-way �uid-structure interaction (FSI), the operation step is performed in one single load step,

that is, ∆tload = 7920 h. This load step is divided into several time steps or substeps, in which equilibrium

iterations are performed to obtain a converged solution after each substep. Details about the applied creep

algorithm and time-step procedure are given in section 2.2.3.1. The total number of substeps depends on

the time step size of the single steps. Usually automatic time stepping is used, applying an initial time step

of ∆tsub = 0.1 h and limiting the time step size to a maximum of ∆tsub,max = 100 h. The �nal operation

state gives the deformation state at EOC under operating conditions, that is, including all reactor operation

loads.

After the operation cycle, di�erent shut-down load steps can be performed in order to �nally obtain the

free FA deformation without external loads or constraints. In the simulations, these steps represent an

attempt to illustrate the e�ect of the di�erent loads on the deformation and do not necessarily correlate

exactly to the conditions in the reactor. Therefore, the hydraulic loads are already withdrawn entirely in

the course of the transition to HC, which represents the �rst load step after reactor operation. In this

manner, we can appreciate the mechanical equilibrium based on the plastic deformation of the FAs without

the in�uence of external hydraulic loads and temperature gradients. During the following transition to

CC, the temperature is decreased to 50 ◦C, resulting in di�erent thermal strains and a di�erent modulus of

elasticity of the materials. The ex-core BC represents the last load step of the analysis over one cycle. It

simulates isolated hanging FAs to obtain the unconstrained FA deformation, which is measurable during the

outage. Mechanically speaking, the FAs are laterally decoupled from each other and all rotational and HD

constraints modeling the e�ect of the core plates are removed, thus creating a statically determinate system
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without external loading. When the FA is lifted out of the core, its weight is supported from the FA top

instead of from the FA bottom. To account for the resulting tensioning e�ect in the FA, an upward force

about equal to the FA weight force WFA is imposed on the top of the FA.

Figure 4.1 gives a �ow chart of the general FA bow calculation procedure. For all runs, a script is initially

executed which controls the calculation procedure. After de�ning the respective BC from Table 4.2 and the

load step time as input arguments, the ANSYS Mechanical APDL code is started. In the initial run, the

material models, nodes, and elements must be de�ned in the ANSYS preprocessor /PREP7. The applied

loads and solution parameters are de�ned in the ANSYS solution processor /SOLU, which is started for all

runs. After the solution process, the ANSYS time-stepping postprocessor /POST26 is started to print the

output variables of interest. Then, ANSYS is stopped and the control is given back to the master process.

If further load steps are required, ANSYS is restarted from the previous load step, usually using di�erent

BCs. Otherwise, the procedure is stopped. Technische Universität München

Control script

16.03.2016 Andreas Wanninger - Präsentation bei E.ON Kernkraft 1

Run ANSYS

Stop

Set boundary

condition type

Set load step time

Last load step?

ANSYS

Mechanical

APDL

Solution processor /SOLU

• Define loads

• Define solution parameters

• Solve current load step

Restart?

Postprocessor /POST26

• Print output variables

no

Preprocessor /PREP7

• Define material models

• Define nodes

• Define elements

FINISH ANSYS APDL

yes

no

yes

Start

Figure 4.1: Flow chart of the FA bow calculation procedure.

4.2 Creep of structures

Two di�erent generations of Zirconium alloys for FR cladding and GT materials are investigated in the

framework of this thesis; �rst, Zircaloy-4 (Zry-4), which has been the conventional material in pressurized

water reactors (PWRs) for several decades; second, advanced Zirconium alloys with Niobium content, which

have become the standard in most Western PWRs in recent years. As for Zry-4, no di�erence will be

made between the conventional Zry-4 and other further developments, such as low-tin Zry-4. As for the

advanced alloys, di�erent alloys with several particularities in the alloy composition have been developed

by di�erent fuel vendors. Since the availability of data for this type of alloys is limited and the di�erent
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alloys are all reported to exhibit an optimized performance, no di�erence will be made between the di�erent

types of advanced alloys with Niobium content. This facilitates deriving correlations from experimental and

performance data since a larger database is available.

Furthermore, it is important to distinguish between GT and FR materials. The operating conditions are very

di�erent for GTs and FRs, concerning the stress and temperature range, as well as the loading state. When

compared to GTs, FRs must resist higher stresses and temperatures. Moreover, FRs are loaded in a biaxial

stress state with hoop and axial stresses while GTs mostly sustain only axial stresses due to compression,

traction, or bending. To optimize their use for the respective applications, GTs and FRs rely on di�erent

fabrication processes. An important feature is the �nal heat treatment. Zry-4 GTs are usually deployed in

a recrystallization-annealed (RXA) state whereas stress-relieved annealed (SRA) Zry-4 is used for the FR

cladding. As for the advanced alloys, the di�erences in fabrication depend on the speci�c alloy. For example,

ZIRLO GTs are delivered in a recrystallized condition (King et al., 2002) and exhibit hence a reduced creep

rate compared to partially recrystallization-annealed (pRXA) or SRA ZIRLO FRs, see Figure 4.2.

It is hence important to distinguish between GT and FR materials and use dedicated GT and FR creep tests

as a basis for the creep laws used for the FA structural model. In the next sections, �rst GT creep data and

the derived laws will be discussed. As an elementary part of the FA structure, the GT creep is expected to

have the largest in�uence on the FA deformations. Then, FR creep data are analyzed and corresponding

creep correlations are deduced.

Figure 4.2: Irradiation creep rates for ZIRLO depending on the �nal heat treatment (Foster et al., 2015).

4.2.1 GT creep

4.2.1.1 RXA Zircaloy-4 GTs

The creep of GTs is usually considered less critical for reactor applications than that of the FR cladding.

While the latter may be at the origin of serious performance problems like FR failure, the consideration of

GT creep only has become more important after the occurrence of strong FA bow. Correspondingly the

creep database in open literature about the in-reactor creep of FR claddings is signi�cantly larger than that

of GT materials under their typical operating conditions. As a result of the research related to the FA bow

problem, a few publications with such experimental data have become available, which as a total, can serve

to de�ne a creep law which represents the typical creep behavior of RXA Zry-4. One set of experimental
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data of Zry-4 GT creep was published by Yvon et al. (1998) in combination with a creep law derived from

those data. In the experiments di�erent samples of fully recrystallized Zirconium alloys in the α-phase

were submitted to uniaxial stresses from 76 MPa to 102 MPa at temperatures from 297 ◦C to 315 ◦C and

fast neutron �uxes between 1× 1014 n cm−2 s−1 and 2× 1014 n cm−2 s−1. From the obtained data, a creep

correlation of the Norton-Bailey type, equation 2.142, was derived.

εcr = Ccrσ
nσe

−QT
T ΦnΦ (4.1)

The coe�cients of equation 4.1 resulting from the data analysis are given in Table 4.3. The unit of Ccr is

such that the creep strain εcr is dimensionless. In the experimental tests, no speci�c in�uence of the neutron

�ux level was observed; hence, the neutron �ux exponent nφ appearing in the di�erentiated form, equation

2.143, equals unity.

Table 4.3: Coe�cients for the GT creep law by Yvon et al. (1998).

Ccr nσ QT nΦ

1.5× 10−24 1.0 4700 K 0.8

The creep tests by Yvon et al. (1998) were executed with uniaxial tensile stress which is uniform over

the tube cross-section. For the analysis of FA deformations, however, the e�ect of bending moments on

the creep deformation is of particular interest to predict the FA bow. When FAs undergo lateral loads,

the cross-sectionally uniform axial stresses due to axial loads are superposed by axial bending stresses,

which have a non-uniform distribution over the GT cross-section. For this purpose, bending creep tests can

be performed. These tests necessitate, however, a more elaborate experimental set-up and are hence not

performed as frequently as simple compressive or tensile tests. One such bending test with RXA Zry-4 GTs

was described by Pettersson (2002). This test has been performed under pure bending with a maximum

stress in the outer �bre of about 70 MPa and a temperature of 317 ◦C. Further sets of data were published

by McGrath and Yagnik (2011) and Seibold et al. (2000). McGrath and Yagnik (2011) investigated the

in-reactor creep of axially compressed and preirradiated (Φ = 1× 1022 n cm−2) GT specimens with di�erent

tin and initial hydrogen contents. Seibold et al. (2000) published data for the long-term irradiation up to

Φ = 4.7× 1021 n cm−2 of low-tin Zry-4 under the for GTs typical low axial compressive stresses between

7 MPa and 20 MPa.

All discussed data are summarized in Figure 4.3. Since Yvon et al. (1998) is the only publication to provide a

creep law correlated to the experimental data, the validity of this law for the other experiments is investigated.

For this purpose, equation 4.1 is evaluated for the respective test conditions and compared with the measured

creep data. Figure 4.3 displays the resulting curves in the same color as the corresponding experimental

data. For Yvon's data, evidently a good agreement exists between model and experiment since these data,

amongst others, form the basis for the creep law. Figure 4.3 demonstrates as well that Yvon's creep law

predicts Pettersson's results very well despite the fact that the deformation mode was di�erent: axial traction

for Yvon's data and bending for Pettersson's data. The applicability of Yvon's law for bending problems

such as FA bow has hence been proved. The experimental creep data obtained by McGrath and Yagnik

(2011) are somewhat overpredicted by Yvon's correlation. Besides the possible e�ects of the slightly di�erent

alloying con�gurations and fabrication processes, this might be linked to the pre-irradiation of the samples

and the associated hardening e�ects. On the other hand, Yvon's creep law somewhat underpredicts Seibold
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et al.'s results. An explanation for this could be the limitation of Yvon's creep data base to a maximum

�uence of Φ = 2× 1021 n cm−2. Irradiation creep laws of the Norton-Bailey type tend to underpredict the

creep strain for �uences above the validated domain since the calculated creep rate decreases continuously

over time due to the negative time exponent. For high �uences, however, the transient components are

mostly saturated and pure steady-state irradiation creep with a linear dependence on time is present. For

better predicting creep strain for high �uences, a linear dependence on �uence might be more appropriate.

Besides, the fact that Seibold's values were obtained at a relatively low temperature of 290 ◦C might be the

reason for the underprediction since the activation temperature further decreases for temperatures below

300 ◦C, see section 2.4.6. Still, it is demonstrated that Yvon's creep law is valid with a reasonable error also

for a stress level well below the tested one between 76 MPa and 102 MPa.

We can conclude that a good agreement of Yvon's creep response predictions exists with experimental data

for traction, compression, and bending problems of RXA Zry-4 for a wide range of stresses from 7 MPa to

102 MPa and the temperatures of interest. Yvon's law can hence be used to model the creep response of

Zry-4 GTs in the context of FA bow problems.
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Figure 4.3: GT axial creep strain as a function of �uence for conventional or low-tin RXA Zry-4 for di�erent
experimental data by Yvon et al. (1998), Pettersson (2002), McGrath and Yagnik (2011), and Seibold et al.
(2000).

4.2.1.2 Advanced-Alloy GTs

Analogously to Pettersson's tests with Zry-4, bending tests �nanced by SKI and the Swedish nuclear industry

research co-operation (BFUK) were performed with two widely used GT materials. The experiments inves-

tigated GTs in two di�erent material conditions, fresh material (FM) and pre-irradiated material (IM) up

to about Φ = 1× 1021 n cm−2, both in pile (IP) and out of pile (OP), see Figure 4.4. For the fresh material

condition, both alloys exhibit similar creep strains. Considering, however, the pre-irradiated samples, the

creep response is opposite between the two materials. For GTs made from alloy 1, the pre-irradiated sample

exhibits less creep strain than the fresh sample whereas the pre-irradiated alloy 2 GT material exhibits a

signi�cantly higher creep than the fresh material. It is di�cult to draw conclusions about the root of the

di�erent creep strains of the pre-irradiated material without a detailed microstructural investigation. The
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(a) Alloy 1.

Fluence [n cm-2] #1020
0 1 2 3 4 5

C
re

ep
 s

tr
ai

n
 [

%
]

0

0.02

0.04

0.06

0.08

0.1

0.12
Alloy 2 GT bending creep, T=317°C, <

max
=70MPa

Regression Mean
Zircaloy-4
FM IP
FM OP
IM IP
IM OP

(b) Alloy 2.

Figure 4.4: Axial creep strain as a function of �uence obtained from bending creep tests with two widely
used GT alloys in fresh material (FM) and pre-irradiated material (IM) condition tested in pile (IP) and
out of pile (OP). Data kindly provided by Vattenfall originating from bending tests �nanced by SKI and the
Swedish nuclear industry research co-operation (BFUK).
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Figure 4.5: Best estimate (BE) creep curve with lower and upper bounds developed based on the GT
bending creep test data given in Figure 4.4.

pre-irradiation �uence is not particularly high so that the di�erence may at least partially be a result of

experimental scatter.

To use the presented data in the FA structural model, a creep law must be derived. Due to the limited

scope of the data which were only obtained for a single specimen, a unique temperature and stress, as well

as a up to a maximum �uence of 5× 1020 n cm−2, several assumptions must be made. The �rst issue to

be addressed is up to which �uence the transient creep delivers a relevant contribution to the total creep

rate. In biaxial creep tests, Foster and McGrath (2007) observed that transient creep terminates after sev-

eral hundred hours in a �ux of about φ = 3× 1013 n cm−2 s−1, which corresponds to a saturated �uence of

Φpri,sat = 4× 1019 n cm−2. The corresponding transient strain is in the order of magnitude of 10−4. These

observations suggest that the transient creep is saturated at the �uence of Φ = 1× 1020 n cm−2, at which the
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�rst data points were obtained in the bending creep tests. Transient creep being mostly linked to thermal

creep, this assumption is corroborated by the fact that the OP thermal creep rate strongly decreases after this

lapse of time. All data points are hence assumed to lie in the secondary creep regime so that a steady-state

creep rate can be obtained by performing a linear regression. The intersection of the linear curve with the

y-axis then represents the saturated primary creep strain. In this manner a combined primary and secondary

creep law, presented in equation 4.2, can be obtained, summing up the in�uences of both contributions. The

time dependence of the primary creep is represented with a rational polynomial, see also equation 2.37.

εcr =

(
Ccr,pri

pcrt

1 + pcrt
+ Ccr,secφ

nφt

)
σnσe

−QT
T (4.2)

Since the rational polynomial function converges slowly, a value of 90% is considered su�cient for primary

creep to be considered saturated, yielding the following value for the exhaustion rate:

pcr =
9

tsat
=

9φ

Φpri,sat

(4.3)

The linear regressions obtained for the di�erent material conditions are represented by dashed lines in

Figure 4.4. Table 4.4 lists the values obtained for the creep coe�cients in equation 4.2 for the di�erent

materials and material conditions. Since no clear tendency was recognized between the di�erent material

conditions, an average regression is also represented for both materials. This regression mean of fresh and pre-

irradiated materials yields similar values for the secondary creep rate of both alloys. As an approximation,

the total mean is hence suited for representing the typical creep response for advanced-alloy GTs and will

be used as a BE law for the subsequent analyses. The di�erent creep rate levels can serve as a reference for

a sensitivity analysis. The correlation obtained for the pre-irradiated alloy 2 can be considered as an upper

bound (UB) for GT creep. As the lower bound (LB), the correlation obtained for fresh alloy 2 material

can be used. Figure 4.5 shows the �nal curves obtained for the BE advanced-alloy GT creep law and the

upper and lower bounds along with the underlying data. To reach a better �t and comprise all data points,

Φpri,sat was increased to 1.5× 1021 n cm−2 for the LB law and to 2× 1020 n cm−2 for the UB law. Moreover,

Ccr,pri was increased by 20% for the UB law. As for the stress and temperature dependency, the values

from Yvon's creep law are assumed. That is, a linear stress dependence and an activation temperature of

QT = 4700 K are applied. Table 4.5 �nally summarizes the parameters other than the creep coe�cients of

the advanced-alloy GT creep law.

Table 4.4: Creep coe�cients for equation 4.2 derived from linear regression.

Alloy 1 Alloy 2 Total
FM IM mean FM IM mean mean

Ccr,pri × 108 1.64 0.56 1.10 1.86 2.11 1.98 1.54
Ccr,sec × 1029 3.93 4.97 4.45 2.58 6.16 4.37 4.41

Table 4.5: Parameters for the advanced-alloy GT creep law in equation 4.2.

nσ QT pcr Φpri,sat Φpri,sat,LB Φpri,sat,UB

1.0 4700 K 9φ/Φsat,pri 4× 1019 n cm−2 1.5× 1021 n cm−2 2× 1020 n cm−2
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4.2.2 FR creep

In reactor analysis, FR creep mostly plays a role for the analysis of FR diameter creep-down to ensure the

integrity of the fuel. Hence, FR creep data are usually obtained in a biaxial creep state as a relationship

between hoop stress and diametral creep strain. In contrast, for the present structural model only the e�ect

of axial strain on the structure is of interest because the impact of creep-down has been taken into account in

the grid spring relaxation model. The e�ect of the FR axial deformation and bending may play an important

role during the �rst reactor cycle before the grid springs relax. Due to the restricted availability of axial creep

data, the FR axial creep response must be derived from diametral creep data despite the limited knowledge

about Hill's anisotropy coe�cients. For the modeling of the FR cladding creep due to pure axial stress, the

hoop-stress creep laws need to be corrected for the in�uence of the biaxial stress state. This correction term

is derived in appendix B. For a linear stress dependence, equation B.11 stipulates that

Ccr,z = Ccr,biax
(F +H)

rσ(2G+ F )
, (4.4)

where Ccr,biax is the creep coe�cient for the diametral creep under a biaxial stress state and Ccr,z the

coe�cient for axial creep due to axial or bending stresses. For the time being, we use as an approximation

the correction factor for an isotropic material and zero BU, that is, F = G = H = 0.5 and rσ = 0.4.

4.2.2.1 SRA Zircaloy-4 FRs

A well-known and accepted model for the diametral creep of SRA Zry-4 was published by Limbäck and

Andersson (1996), relying on an extensive creep measurement database. The model takes into account

separately the di�erent components of primary creep, secondary irradiation creep, and secondary thermal

creep with an irradiation hardening term. The elaborate structure of this model requires, however, a complex

implementation using subroutines, which exhibits numerical di�culties in the solution process. For this

reason, the SRA Zry-4 FR creep model used in this work is based on data for low-tin SRA Zry-4 published
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Figure 4.6: FR cladding hoop creep strain as a function of �uence for low-tin SRA Zry-4 and new Zirconium
alloys with Niobium content.

100



Creep of structures

by Soniak et al. (2002). This publication contains a relatively wide array of data and derived easy-to-

implement dependencies on stress, temperature and �uence for the use in a Norton-Bailey creep law, see

equation 2.142. Compared to the model by Limbäck and Andersson (1996), this allows a more straightforward

implementation into the structural model and proved, as a result, a higher numerical stability. A further

advantage is that Soniak et al. (2002) tested an optimized low-tin SRA Zry-4, which was fabricated using

upgraded manufacturing and inspection processes whereas the irradiation creep model by Limbäck and

Andersson (1996) is based on older experiments with standard Zry-4 summarized by Franklin et al. (1983).

The results with the model based on Soniak et al.'s data are compared with those from Limbäck and

Andersson's model to ensure a good performance despite the lower complexity of the model. Figure 4.6 gives

the evolution of hoop creep strain of a pressurized SRA Zry-4 pressure tube under typical PWR operating

conditions (σ = 90 MPa, T = 350 ◦C, and φ = 7× 1013 n cm2− s−1) based on Soniak et al.'s experimental

data. Since these measurements exhibit a clear dependence of the creep rate on the neutron �ux level at

which the material is irradiated, the data were normalized to the neutron �ux level of φ = 7× 1013 n cm2− s−1

by introducing a �ux exponent with the widely used value of nφ = 0.85, see also section 2.4.6. The model

predictions by both Limbäck and Andersson (1996) and Soniak et al. (2002) lie close together and predict

the experimental data with a reasonable error. We can hence use the model based on Soniak et al.'s data

for modeling the creep of SRA Zry-4 FRs. Table 4.6 summarizes the corresponding coe�cients for the SRA

Zry-4 FR creep law referring to the di�erentiated Norton-Bailey equation 2.143. Compared to the values

proposed by Soniak et al., some minor modi�cations are applied. In particular, the generally agreed-upon

linear dependence on stress is used instead of the published stress exponent of nσ = 1.61.

Table 4.6: Parameters for the SRA Zry-4 FR creep law based on Soniak et al. (2002).

Ccr nt nσ QT nφ
3.14× 10−12 0.573 1.0 9313 K 0.85

4.2.2.2 Advanced-Alloy FRs

As for advanced Zirconium alloy cladding, such as M5, ZIRLO, or MDA, Soniak et al. (2002), Gilbon

et al. (2000), and Kido et al. (2002) con�rm an increased creep and growth resistance when compared to

conventional SRA Zry-4. For comparison, creep test data for M5 and its experimental precursor M5-0,

which were irradiated under the same condition as the SRA Zry-4, are shown in Figure 4.6. The data

demonstrate that particularly the primary creep strain is strongly reduced for the advanced alloys and that

it saturates at a very early irradiation stage, exhibiting values in the order of 10−4. To obtain a creep

correlation from these data, we can use the same approach as in section 4.2.1.2, that is, by deriving a linear

regression curve from all data points to obtain a secondary creep law. The primary creep law is then based

on the resulting saturated primary creep in conjunction with a saturating time function. In this manner

a creep law of the type of equation 4.2 is obtained. Table 4.7 summarizes the coe�cients of the M5 FR

creep law obtained by linear regression as well as the other relevant parameters. This creep law will be used

representatively for all advanced alloys. The unit of the creep coe�cients is such that a strain rate of 1/h

is obtained. For the dependence on stress, neutron �ux level, and temperature only insu�cient data are

available and assumptions are made. In agreement with the standard behavior of Zirconium alloys under

the considered conditions, a linear stress dependence is assumed. Based on the detected �ux dependence

101



Chapter 4. In-Reactor Model

in Soniak et al.'s tests, a �ux exponent of nφ = 0.85 is applied. As for the temperature, the fact that the

primary creep strain is small suggests a small contribution of thermal creep and hence a weak temperature

dependency. This is, for example, con�rmed by the data published by Gilbon et al. (2000), who did not

detect a signi�cant temperature dependence for the M5-0 alloy. The fact that the advanced alloys are

deployed in recrystallized or partially recrystallized condition supports the supposition that the transition

temperature to a strong temperature dependence is above the temperatures encountered in normal PWR

operation. Hence, the mean value of the activation temperature range for a weak temperature dependence

indicated in section 2.4.6 is used: QT = 3500 K.

Table 4.7: Parameters for the M5 FR creep law representative for all advanced alloys.

Ccr,pri Ccr,sec nσ QT nφ pcr Φpri,sat

4.74× 10−9 1.59× 10−27 1.0 3500 K 0.85 9φ/Φpri,sat 4× 1019 n cm−2

4.3 Growth of Structures

The in-reactor growth of Zirconium alloys depends strongly on the alloying composition and heat treatment.

Moreover, depending on if GT or FR operating conditions are considered, di�erent growth mechanisms are

relevant leading to variable results, see section 2.4.5. With the use of advanced alloys, irradiation growth can

be reduced compared to the performance of conventional alloys. It is hence necessary to distinguish between

GT and FR growth models, as well as between conventional and advanced alloys.

4.3.1 FA or GT growth

The GT growth model is based on performance data published by Wikmark et al. (2009), which had in part

been published before by King et al. (2002). The data are represented in Figure 4.7. GTs being recrystallized
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Figure 4.7: Derived laws for the modeling of best estimate (BE) and upper bound (UB) GT growth of
Zircaloy-4 and advanced alloys with underlying FA growth performance data by Wikmark et al. (2009).
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material, the three-stage process of irradiation growth is well perceptible from the presented data. Equation

4.5 is proposed to reproduce this behavior.

εgr = εgr,ini
(
e
− Φ
τgr + eCgrΦ

)
(4.5)

The �rst exponential function represents the saturating growth in the initial stage expressed by an expo-

nentially decreasing growth rate. This growth rate component appears to saturate at a �uence of about

Φ =2× 1021 n cm−2. According to the rule of thumb that the exponential decay is nearly terminated after

�ve times the exponential time constant τgr, we obtain:

τgr =
2× 1021

5

cm2

n
(4.6)

The second exponential function in equation 4.5 represents the gradually increasing growth rate in the second

stage and produces very low growth rates in the initial phase that are increasing steadily for higher BUs

or �uences. Again, the exponential coe�cient Cgr must be based on experimental data. The transition

between the �rst and second growth stages is marked by the �saturated growth� strain εgr,ini of the initial

stage. The scattering of growth performance data is relatively high, which is evident from Figure 4.7. For

Zry-4, an average value of εgr,ini = 0.05% can be estimated from this data, which is in agreement with

other less extensive data published by Gilbon et al. (2000) and Garzarolli et al. (1996). As a simple means

to obtain a correlation, Garzarolli's data for RXA Zry-4 in Figure 2.18 are used to de�ne an exponential

curve f = εgr,ini exp (CgrΦ) by means of regression analysis. Using εgr,ini = 0.05%, the blue dashed curve

in Figure 4.7 is created, which represents a good estimation of the average growth of Zry-4 over the entire

�uence range when compared with the underlying data.

For advanced-alloy GTs, Mardon et al. (2005) published data for M5 and Wikmark et al. (2009) for standard

and optimized ZIRLO. The latter are more extensive and will hence be used as reference. Wikmark et al.

(2009) also provided a BE curve for the growth of standard ZIRLO in Figure 4.7, which can be used to

generate a curve f = εgr,ini exp (CgrΦ) by means of regression analysis. The red dashed curve in Figure 4.7

shows the curve created with the obtained parameters. This curve also represents well the order of magnitude

of the values published by Mardon et al. (2005) for the assembly growth of M5.

Due to the high scattering of measurement data, the sensitivity and uncertainty analysis of the in�uence of

growth on the structural FA behavior plays an important role in the framework of this thesis. Particularly

for high BUs, large di�erences in growth performance are detected depending on when breakaway growth

with increased constant growth rates sets in. This sudden increase in growth rate is not covered by the

model based on equation 4.5. To test the in�uence of the UB growth strains on the structural model, a

linear UB growth law is also implemented for the use with high-BU FAs. McGrath and Yagnik (2011)

measured a growth rate of ε̇gr,UB = 1.22× 10−24 cm2 n−1 for a Zry-4 GT specimen pre-irradiated up to

Φ = 10× 1022 n cm−2 under average PWR coolant temperature conditions (T = 307 ◦C). The high growth

rate is reported to be mainly a result of the hydrogen uptake during pre-irradation. For illustration, the

blue dotted curve in Figure 4.7 represents growth at this rate. This curve is in good agreement with other

underlying Zry-4 high-BU data in Figure 4.7, which are also reported to have undergone accelerated growth

due to high hydrogen uptake (King et al., 2002).

For advanced alloys, the rate increase towards end of life is usually not as fast as for conventional materials.
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A representative UB linear growth rate half of that of Zry-4 is assumed, which is in good agreement with the

maximum measurement data for ZIRLO in Figure 4.7. The �nally used parameters for both conventional

and advanced alloys for BE and UB growth are summarized in Table 4.8.

Table 4.8: Parameters de�ned for the BE GT growth model based on equation 4.5 and for the linear UB
growth.

Parameter Unit Zry-4 Advanced alloy
εgr,ini % 0.019 0.05
Cgr

cm2

n 1.210× 10−22 1.434× 10−22

τgr
cm2

n 4× 1020 4× 1020

ε̇gr,UB cm2

n 1.22× 10−24 0.61× 10−24

4.3.2 FR growth

Performance data of the growth of both the conventional FR cladding material SRA Zry-4 and advanced

cladding alloys have been published by Gilbon et al. (2000) and Mardon et al. (2005) for M5, Wikmark et al.

(2009) for di�erent ZIRLOs, and Nakano et al. (2008) for MDA. SRA Zry-4 is observed to exhibit a rela-

tively constant growth rate over BU with a typical average growth rate of ε̇gr,SRA Zry-4 = 1× 10−24 cm2 n−1

(Mardon et al., 2005), that is 1 % after a �uence of Φ = 1× 1022 n cm−2. From the di�erent data published

for advanced alloys, it can be concluded that for low �uences up to about Φ = 3× 1021 n cm−2 the growth

strain rate appears to be roughly constant with only a slightly lower average strain rate than that of SRA

Zry-4. For this phase, a value of ε̇gr,advanced = 0.75× 10−24 cm2 n−1 is estimated. For higher �uences, the

growth rate decreases gradually while that of SRA Zry-4 remains roughly constant, see Figure 4.8. Since the

e�ects of FR growth are only transmitted to the FA structure for low �uences when the grid springs are not

yet relaxed, a linear growth law with the cited constant growth rates is implemented for both conventional

and advanced cladding materials.

Figure 4.8: FR growth for di�erent cladding materials (Gilbon et al., 2000).
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4.4 Reactor operating conditions

Table 4.9 de�nes the operating conditions and other characteristic parameters of the considered reactor.

Based on these parameters, we derive the structural temperatures and the fast neutron �ux in this section

and the hydraulic loads in chapter 5.

Table 4.9: Reference reactor data.

Variable Symbol Value

Mass �ow in core for heat transfer ṁcore 18 000 kg/s
FA pitch pFA 230 mm
Number of FA in core nFA 193
Operating pressure psys 15.8 MPa
Thermal power Qth,core 3900 MW
Core inlet temperature Tin 292 ◦C
Core outlet temperature Tout 326 ◦C
Axial pressure drop in core ∆pcore 0.188 MPa

4.4.1 Power distribution

For an ideal cylindrical, homogeneous, and unre�ected reactor core, the power distribution can be calculated

analytically. The solution is given by a Bessel function of order zero in radial direction and a cosine distri-

bution in axial direction. In practice, reactor operation is limited by maximum permissible values for power

density to avoid a boiling crisis and to eliminate the conditions which could cause fuel pellet melt. For an

e�cient use of the fuel, operators are also interested in a BU of fuel elements which is as uniform as possible.

By partial refueling and charging fuel of di�erent enrichments and poison concentrations to di�erent zones in

the reactor, it is possible to �atten the power distribution to a more uniform pro�le. More recent strategies

seek for cores with low neutron leakage to increase fuel e�ciency and to reduce neutron �ux at the RPV

wall to mitigate neutron embrittlement. To optimize this so-called fuel management, operators calculate

the power density distribution in the core by reactor simulation codes. Figure 4.9 depicts the typical radial

power distribution in an operating KWU-type PWR calculated by such a code. There is a high radial power

gradient over the �rst two or three FAs at the core periphery and a slight depression in the core center. An as

uniform as possible pro�le is also sought in axial direction. These calculations result in a speci�c core loading

pattern de�ning the positions of all involved FAs for the following cycle. Figure 4.10 gives an example of

such a FA loading arrangement in the reactor core. Based on this characteristic power distribution and core

loading pattern, we de�ne a typical 2D power pro�le and FA BU pro�le in one of the central FA rows. The

local linear power density q′(x, z) within the FA row is determined by the core-averaged linear power density

q′ave times a radial factor ar(x) and an axial factor az(z), which are independent of each other:

q′(x, z) = ar(x)az(z)q
′
ave (4.7)

In the framework of this thesis, we consider no evolution of the power density as a function of BU or due

to changes in the inter-assembly water gaps. Moreover, no gradients over single FRs are assumed. The

core-averaged linear power density is calculated from the thermal power of the core Qth,core and the heat
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Figure 3.1-5 Core Loading Arrangement

Figure 4.9: Typical power distribution in an op-
erating KWU-type PWR (Fabry, 2014).

Figure 4.10: Example of a FA core loading plan (US-
NRC, 2012).

deposition factor in the FR γheat = 0.974 (Todreas and Kazimi, 2012):

q′ave =
γheatQth,core

nFAnFRlactive
(4.8)

The radial factor ar(x) is the sum of two components; �rst, the averaged radial power factor of the respective

FA ar,i de�ned by its position i in the FA row; second, the local power distribution inside the respective FA

de�ned by the linearized lateral gradient, glat,i. The resultant radial factor is then a function of the local

cross-sectional coordinate xi of the considered FA with origin in the FA central axis.

ar(x) = ar,iFA + glat,iFAxiFA (4.9)

By averaging over a large set of power distribution data, the typical radial and axial power pro�les are

determined. Figure 4.11a gives the de�ned lateral power pro�le over the FA row used for the analyses in

the present work. When no gradients are assumed, we have glat,i = 0. Figure 4.11b gives the de�ned axial

power pro�le composed of piecewise linear functions between the spacer grid nodes.
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(a) Lateral power and BU pro�le. (b) Axial power pro�le. (c) Temperature [◦C]
distribution.

Figure 4.11: Lateral and axial distribution of the boundary conditions.

4.4.2 Burnup (BU) pattern

Over the FA row a heterogeneous BU con�guration is implemented according to a typical loading pattern

in the central core row. For this purpose, three di�erent FA BU conditions are de�ned for the simulations:

fresh (F), medium BU (M), and high BU (H). Table 4.10 gives the initial conditions for the di�erent BU

cases. For the high-BU FAs, additionally a case with UB growth is considered to account for the high

scattering of FA growth at high �uences, see section 4.3.1. The table indicates the initial parameter values,

which form the starting values for the di�erent material evolution laws. The e�ective growth describes the

combined e�ect of the accumulated growth reduced by the HD spring relaxation. The grid spring relaxation

and gap size values indicate which grid spring state is considered according to section 4.5.1. The evolution

of a decreasing grid spring force is only taken into account for fresh FAs. For FAs with higher BU, the grid

spring state is assumed constant since no major in�uence on the FA sti�ness is observed, see section 6.1.3.

The BU condition used at the respective position is marked in Figure 4.11a.

Table 4.10: Initial Parameters for di�erent BU conditions.

Case BU E�ective growth Grid relaxation
[GWd/tHM] Zry-4 Advanced Alloy law Zr-alloy Inconel Evolution

Fresh (F) 0 0 mm BE 0% 0% decreasing
Medium(M) 15-40 0 mm BE 99% 25% constant

High (H) >40
5 mm 2.5 mm BE 99% 25% constant
10 mm 5 mm UB 99% 25% constant

For the use in the present model, some data must be converted from BU-dependent data into time-dependent

or �uence-dependent data. For this purpose, the linear heat rate q′ is related to the linear mass density of

heavy metal m′HM in one FR:

BU =
q′

m′HM
t =

1

cφm′HM
Φ (4.10)
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Equation 4.11 derives m′HM from equation 3.1, using the mass enrichment emass and the masses of the oxygen

molecule and the Uranium isotopes. cφ is de�ned in section 4.4.4.

m′HM =
mfuel,column

lactive

mU235
emass +mU238

(1− emass)
mO2 +mU235 emass +mU238(1− emass)

(4.11)

4.4.3 Temperature distribution in structures

FA skeleton and core structures For any structures except for the FR cladding, we can assume that

the temperature is equal to that of the surrounding coolant, Tcoolant. Heat transfer from these structures to

the coolant is hence assumed to be su�ciently e�cient to neglect the heat transfer to these structures from

the FR cladding by conduction or radiation and the heat deposition in these structures by gamma heating

and neutron scattering. To obtain the temperature in the concerned structures, the axial and radial coolant

temperature pro�le needs to be determined. Assuming a constant speci�c heat capacity cp, the axial coolant

temperature pro�le has a sigmoidal shape in a homogeneous reactor. For a more realistic, nearly uniform

power distribution, the pro�le approaches a linearly increasing curve. For the sake simplicity, it is assumed

in this context that the mass �ow rate is distributed uniformly over the core and that the coolant is heated

equally in all FA radial positions. Under these conditions, it is reasonable to linearly interpolate between

the core inlet and outlet temperatures Tin and Tout from the bottom to the top of the active region at the

coordinates zactive,bot and zactive,top. The following temperature conditions hold for the coolant and the FA

skeleton and other core structures.

Tcoolant(z) = Tin for z < zactive,bot (4.12)

Tcoolant(z) = Tin +
(z − zactive,bot)(Tout − Tin)

zactive,top − zactive,bot
for zactive,bot ≤ z ≤ zactive,top (4.13)

Tcoolant(z) = Tout for z > zactive,top (4.14)

The inner tubes in Figure 4.11c give the corresponding temperature distribution in the GTs for the coolant

inlet and outlet temperatures given in Table 4.9.

FR cladding The FR cladding temperature is usually calculated based on the one-dimensional radial heat

equation, neglecting the axial heat conduction (Todreas and Kazimi, 2012). To solve for the FR cladding

outer temperature TFR,o, we use the heat transfer from the FR cladding outer surface to the coolant with

the heat transfer coe�cient hth as a Robin BC:

TFR,o(z) = Tcoolant(z) +
q′(z)

πdFR,ohth(z)
(4.15)

The presence of an oxide layer at the outer surface is neglected. For the temperature at the cladding inner

surface facing the fuel pellet, TFR,i, we use the local linear heat generation rate q′(z) as a Neumann BC,

under the assumption that all heat is released inside the pellet:

TFR,i(z) = TFR,o(z) +
q′(z)

2πkth(TFR,o(z))
ln

(
dFR,o
dFR,i

)
(4.16)
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To avoid the need for iterative solutions, TFR,o is chosen as the reference temperature to determine the

thermal conductivity kth(T ) inside the cladding. Due to the good heat conductivity of Zirconium, the

resulting error for the conduction term is well below 1 %. Based on equations 4.15 and 4.16, we calculate

�nally the approximate FR cladding average temperature TFR,ave.

TFR,ave(z) =
TFR,i(z) + TFR,o(z)

2
(4.17)

Prior to solving equation 4.15, the heat transfer coe�cient hth(z) must be determined. A typical procedure

for this is described by Todreas and Kazimi (2012) and shortly presented here. The heat transfer coe�cient

is based on the Nusselt number of the bulk for fully developed �ow Nu∞, which in turn can be written as

a function of the Reynolds and Prandtl numbers, Re and Pr. For the conditions encountered in a nuclear

reactor, the well-known Dittus-Boelter correlation can be used. To account for the di�erent geometry in rod

bundles, a correction factor Ψ for square-array lattices is used. The heat transfer coe�cient then reads as

follows:

hth(z) =
ΨNu∞kth
dhyd

=
Ψ0.023Re0.8Pr0.4kth

dhyd
(4.18)

The outer tubes in Figure 4.11c give the calculated temperature distribution in the FR cladding for the

core-averaged heat generation rate.

4.4.4 Fast neutron �ux

Creep and growth experimental data are generally indicated as a function of fast reactor �ux or �uence

with neutron energies En above 1 MeV. To calculate the creep and growth rate of the di�erent structures,

the fast �ux values φ = φ(En > 1 MeV) must be known for the di�erent positions in the core. Based on

the fact that every �ssion produces an average amount of fast neutrons, we assume that the fast �ux of

neutrons is proportional to the power generation under steady-state conditions, using a conversion factor cφ

as proportionality constant:

φ(En > 1 MeV) = cφ q
′, with cφ = 3× 1013

n
m2s
W
m

(4.19)

The speci�ed value of cφ is a typical value used for fuel performance analyses, see Hales et al. (2013), for

example. No decrease of the fast �ux is assumed at the GT positions, which can be justi�ed by the fact that

the mean free path of a fast neutron is approximately equal to the FR pitch.

4.5 Spring relaxation models

4.5.1 Grid spring relaxation

Billerey (2005) presented calculation results for the spring force evolution at mid-grid level over BU, Fig-

ure 4.12a, which were validated by experimental measurements of the residual grid spring force, Figure 4.12b.

The results were obtained taking into account three e�ects; �rst, the relaxation of the grid spring due to

creep; second, the diametral creep-down of the FR cladding as a result of the pressure di�erence between

coolant and the FR �lling gas; and third, the increase of the grid strap width due to grid growth as a result
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(a) Calulation Results. (b) Validation of spring force decrease.

Figure 4.12: Relaxation of mid-grid spring (Billerey, 2005).

of hydrogen uptake. According to the results, the spring force relaxes after about the �rst cycle of operation,

see the blue curve. If only creep relaxation were present, the spring force would decrease asymptotically

towards zero because the relaxation rate decreases with decreasing spring force, see equation 2.51. Due to

the additional e�ect of cladding creep-down and grid growth, a gap opens between the cladding and the grid

spring, see the red curve. With increasing BU, the creep-down rate decreases because the �ssion gas release

elevates the FR internal pressure. The maximum gap size is usually in the range of 10 µm to 20 µm. For high

BUs, the gap size may decrease and �nally close again due to the further increasing rod internal pressure

and the swelling of the fuel, which may invert the direction of the diametral creep.

The validated model data given in Figure 4.12 are taken as a basis for the grid relaxation model in this

work. For this purpose, a thorough analysis of the contribution of the di�erent e�ects to the total grid

spring relaxation has been made within the present project, presented by Alós Díez (2015). It was concluded

that for the grid spring force decrease, the creep relaxation is the dominant process at the beginning. Only

for reduced grid spring forces and relaxation rates, the relative contribution of creep-down becomes more

important. The least contribution can be attributed to grid growth. Therefore, it is appropriate to represent

the initial force decrease in Figure 4.12a by a creep relaxation law. In this manner, the decrease can be gen-

eralized and applied to various positions depending on local �uence and temperature. For this purpose, �rst

the creep law representing the best �t for the model must be found. Assuming a linear relationship between

BU and �uence according to equation 4.10, an irradiation creep law of the Norton-bailey type is sought for,

equation 2.142. The strategy for modeling the grid spring relaxation is to decrease the compression ugrid of

the grid springs and dimples from the initial value uini as a function of �uence. The elastic spring force data

published by Billerey can be represented by a relaxation function depending on BU, f(BU), and the initial

grid spring force Fini = ks,nuini:

Fgrid = ks,nugrid = f(BU)Fini (4.20)

In analogy to equation 2.53, the relaxation function is given as:

f(BU) = y = eaBU
b

(4.21)

110



Spring relaxation models

with the two �tting parameters a and b. Since no original data could be obtained, data points were retrieved

from the graph with a certain interval using graphical grabbing, see Figure 4.13. The �tting method used

is a linear least-squares regression (Chapra, 2012) of equation 4.22, which represents the linearized form of

equation 4.21.

log10(ln(y)) = b log10(BU) + log10(a) = βξ + α (4.22)

Figure 4.13 demonstrates the good �t between the obtained model function with coe�cients a = −0.64 and

b = 0.68 and the originally grabbed data points. The root mean square (RMS) error is given as 2.16%. In

fact, the calculated exponent b lies within the value range from other RXA Zry-4 creep laws, such as those

by Yvon et al. (1998) and Soniak et al. (2002).

To account for the di�erent temperatures at the di�erent axial grid levels, an Arrhenius term with the

activation temperature obtained by Yvon et al. (1998) for Zry-4 GTs is applied, see also section 4.2.1. This

is reasonable because the alloys and heat treatments used for the spacer grids in the active region are similar

to those for the GTs. In accordance with section 4.4.3, the spacer grid temperature is assumed equal to the

coolant temperature at the respective level, neglecting heat conduction through the contact surface between

the cladding and the spring or dimples. Since the derived correlation is valid for the mid-grid position, the

coolant average temperature Tave is used as the reference temperature. As for the �ux distribution, the axial

and radial factors az(z) and ar,i in equations 4.7 and 4.9 are accounted for by the model. However, only

lateral variations between the di�erent FAs are considered, that is, glat,i = 0. The relaxation law used in the

model can hence be generalized to the following form:

f(BU) = e−CcrEe
−4700 K

T Φb with Ccr =
a

Ee
−4700 K
Tave (cφm′HM )b

(4.23)

Ccr is the creep coe�cient for the corresponding creep law in the form of equation 2.142.
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Figure 4.13: Linear least-squares regression to de�ne creep relaxation law.

4.5.2 Holddown (HD) spring compression and relaxation

After the vessel closure in CC, the HD springs are loaded by imposing an initial downward spring displacement

∆uHD,CC,ini determined by the FA height and the reactor internals geometry. In the model, ∆uHD,CC,ini
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is chosen such that an initial HD force of about FHD,CC,ini = 7500 N is generated at BOC 1 in CC. The

modeling of the axial thermal expansion from cold to hot or operating conditions is treated separately for

the FAs and the core structures. The evolution of the thermal strains εth of the FA structure is included in

the structural solver solution. The thermal expansion of the core structures ∆uth,core is calculated separately

using equation 2.7. To account for the di�erential expansion of FA and core structure, ∆uth,core is subtracted

from ∆uHD,CC,ini, which gives the modi�ed downward axial displacement ∆uHD,ini applied on the HD device

for hot or operating conditions.

∆uHD,ini = ∆uHD,CC,ini −∆uth,core (4.24)

The HD springs are located within a certain distance outside the active core region. Therefore, the neutron

�uence load is substantially decreased in comparison to other core components closer to or within the active

region. Still, high-energy neutrons are able to travel far so that creep relaxation of the HD springs must

be considered in the FA design to guarantee su�cient margin against FA lift-o�. Therefore, highly creep-

resistant alloys, such as Inconel X-750, are used, for which, however, in-reactor relaxation data are di�cult

to obtain. A conservative value for the estimation of the HD spring relaxation can be derived from Jeon

et al. (2007), who published deterministic calculations of the minimum HD forces over three reactor cycles.

The results indicate that at EOC 3 the minimum HD force is decreased by 10 %. Although the model

by Jeon et al. accounts also for the minimum growth e�ects, it serves as a good estimate for the typical

HD force decrease. Since the HD springs relax only up to about 20% during FA life, the relaxed spring

compression ∆uHD,relax can be approximated by a linear evolution as a function of BU and the initial HD

spring displacement under operation uHD,ini. The following relationship is assumed:

∆uHD,relax = 0.1 ∆uHD,ini
BU

50 GWd/tHM
(4.25)

The relaxation of the HD force during the calculation run is controlled based on the relaxed spring compres-

sion, that is, the relative displacement of spring nodes. To this end, the displacement constraint imposed by

the upper core plate is corrected for the HD spring relaxation during the run:

∆uHD = ∆uHD,ini −∆uHD,relax (4.26)
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Hydraulic Model

The �ow of the coolant through the reactor core produces hydraulic pressure losses that are associated

with a resistance force on the �uid due to the presence of the structure. The corresponding reaction forces

generate hydraulic loads on the fuel assembly (FA) structure. Besides the principal axial �ow component,

also a lateral �ow component exists in the reactor core due to cross-�ow. Both axial and lateral hydraulic

loads have a signi�cant impact on the stress state in the FA structure and must be accounted for in the

FA structural model. The calculation of the axial hydraulic forces in this work is based directly on pressure

loss correlations for the axial coolant �ow along the FA components. The di�erent force terms are derived

in appendix D. Unlike the axial forces, which can be derived by correlations only, the lateral forces are

much more complex to determine and need to be calculated with numerical methods. Sections 1.3 and 1.4

provide a general discussion of the e�ects of lateral �ow in the reactor core as well as a literature review

over computational models designed for simulating the coolant �ow distribution in the reactor. Within the

present framework, the objective is not to predict the lateral hydraulic forces as accurately as possible, but

to investigate the relative e�ect of parameter changes. Therefore, it is not necessary to create a highly

detailed Computational Fluid Dynamics (CFD) model with resolved structures, but it is su�cient to design

an approximate model to simulate the coolant �ow path in the reactor core. To obtain an approximation of

the �ow �eld, we can resort to a porous medium approach, which has been introduced in section 2.3.3. With

this approach, distributed negative momentum sources induce the pressure gradient due to the frictional

and form drag e�ect of the structures. Consequently, the geometry of the structures does not need to be

resolved anymore with a mesh so that the control volumes of the mesh can be sized much larger than when

resolving the actual structure. In the present work, only a row of FAs is simulated. Therefore, we can use

a structured 2D mesh composed of only rectangular cells, which further accelerates the code execution. To

de�ne the porous domain, the model must be provided with loss coe�cients for the momentum sources.

These coe�cients must be determined previous to the model de�nition by means of experiments or resolved

CFD simulations over the geometries of interest. For the present model, we rely on literature to obtain the

necessary values.
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5.1 Derivation of the loss coe�cients for the porous model

Figure 5.1: As-fabricated FA (MHI, 2016)
and corresponding schematic of porous model
regions with loss coe�cients.

For the present model, the axial and transverse loss coe�-

cients for both rod bundle and spacer grid regions need to be

determined, namely K‖,rods, K‖,grid, K⊥,rods, and K⊥,grid,

which are represented schematically in Figure 5.1 with their

corresponding porous rods and grid regions.

5.1.1 Axial loss coe�cients

The axial loss coe�cients are based on the correlations pre-

sented in appendix D. To derive the values of K‖, we need to

establish an equivalence between K‖ and the �ow resistance

coe�cients and friction factors given in literature. Since

the model is in super�cial velocity formulation (see section

2.3.3), the reference velocity for K‖ is the super�cial velocity

whereas for the coe�cients in literature the true velocity is

the reference. The momentum in the streamwise direction

parallel to the rod bundle axis is given based on equations

2.132 and 2.135:

SM,‖ = −K‖
ρ

2
v2
sup cos θ (5.1)

Integrating the distributed momentum loss SM,‖ over the to-

tal area Atotal,FA and an arbitrary reference length lref gives

the �ow resistance force Fres,‖ exerted by the porous medium

on the �ow in this domain. Equation 5.2 stipulates that this

force must equal the integrated pressure gradient ∂p
∂z′ over

the actual �ow area A�ow,FA, which is derived from �ow re-

sistance coe�cients given in literature. By virtue of equation

2.128, we then derive equation 5.3. Expanding equation 5.3

based on equations 5.1, 2.127, and 2.121 yields equation 5.4.

For nearly axial �ow and small deformations, as they are present in nuclear reactors, we have cos θ ≈ 1. SM,‖
hence remains constant for the observed small variations in the angle of attack so that we can put vsup = γvz′ ,

which gives equation 5.5. Solving for K‖ yields �nally equation 5.6, which describes the condition for the

equivalence between the loss coe�cient K‖ in super�cial velocity formulation and any axial �ow resistance

coe�cient ζ. For the case of friction, ζ
lref

= fD
dhyd

.

Fres,‖ =

∫

Atotal,FA

SM,‖lrefdA
!
=

∫

A�ow,FA

∂p

∂z′
lrefdA (5.2)

SM,‖ = γ
∂p

∂z′
(5.3)

K‖
ρv2

sup cos θ

2
= γ

ζ

lref

ρv2
z′

2
(5.4)
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K‖
ρv2
z′γ

2

2
= γ

ζ

lref

ρv2
z′

2
(5.5)

K‖ =
1

γ

ζ

lref
=

1

γ

fD
dhyd

(5.6)

Axial loss coe�cient rods The loss coe�cient due to friction of the axial �ow along the rod bundle

K‖,rods is calculated by inserting the McAdams correlation in equation D.7 into equation 5.6.

K‖,rods =
1

γ

0.184Re−0.20

dhyd
(5.7)

Axial loss coe�cient grid To calculate the loss coe�cient for axial �ow along the grid, K‖,grid, �rst the

�ow resistance coe�cient per grid length, ζ‖,grid/lgrid, must be derived from the expression for the pressure

drop over one grid in equation D.24:

∂p

∂z′
=

∆pgrid
lgrid

=
Fz,grid

A�ow,FAlgrid
=
ζ‖,grid
lgrid

G2

2ρ
(5.8)

Solving for ζ‖,grid and inserting into equation 5.6, the loss coe�cient K‖,grid for the porous model is obtained:

K‖,grid =
1

γ

Fz,grid

A�ow,FAlgrid
G2

2ρ

(5.9)

Inserting the single force terms of equation D.23 we get:

K‖,grid =
1

γ

(
Cdrag,gridεgrid
(1− εgrid)2

1

lgrid
+
Cdrag,mvεmv
(1− εmv)2

1

lgrid
+

+
0.184Re−0.20

grid

(1− εgrid)2

1

dhyd
+
Cfric,plate,turb
(1− εgrid)2

4n2
pos(pFR − tgrid)

A�ow,FA

)
(5.10)

5.1.2 Lateral loss coe�cients

Lateral loss coe�cient rods Section 2.3.2 discussed the di�culties in establishing a reliable correlation

for the resistance reduction ratio ψ(θ) to determine the loss coe�cient for cross-�ow in nuclear reactors.

Peybernès (2005) published one of the only correlations available in literature which was speci�cally developed

for pressurized water reactor (PWR) �ow conditions and geometry. Similar to the experimental tests by

Groehn (1982), Peybernès developed a correlation for the resistance reduction ratio ψ based on measurements

of the pressure drop in unidirectional air �ow over a PWR rod bundle in the so-called EOLE test section.

The rod bundle in the test section can be inclined, thus creating unidirectional cross-�ow with angles of

attack from 30◦ to 90◦. Figure 5.2 shows a picture of the EOLE test section. The particularity of Peybernès'

correlation is that it has been validated with experimental tests inside a water �ow loop with a FA mock-up

and the possibility to inject cross-�ow, the MISTRAL test section. This allows to verify the validity of

the correlation in more realistic PWR �ow conditions than with the EOLE test section because the �ow in

the MISTRAL test section features bidirectional �ow and substantially smaller angles of attack, which are

dominant in PWRs due to the strong axial component. In the following paragraphs, �rst the loss coe�cient

115



Chapter 5. Hydraulic Model

Figure 5.2: Picture of EOLE test section (Peybernès, 2005).

for the lateral �ow in the porous medium model is derived from Peybernès' EOLE correlation. Then the

validity of using the correlation in the framework of a porous medium model is tested by modeling the

MISTRAL test section with a porous medium and comparing the simulation results with the experimental

measurements. Finally, the applicability to real hot PWR operating conditions is discussed.

To establish the resistance reduction ratio ψ(θ), Peybernès de�ned a loss coe�cient ζ(θ) for the pressure

drop over one row ∆prow in the test section:

ζ(θ) = ψ(θ)ζ90◦ =
∆prow
1
2ρv

2
ng

(5.11)

with ζ90◦ being the �ow resistance coe�cient in cross-�ow:

ζ90◦ = 1.85Re−0.2
ng (5.12)

Based on the measurements of the pressure drop over the rod bundle for narrow-gap Reynolds numbers Reng

from 7000 to 37 000 and di�erent angles of attack in the EOLE test section, the following correlation was

established for the resistance reduction ratio, henceforth called the EOLE correlation.

ψ(θ) =

(
sin θ

cos
(

90◦−θ
2

)
)1.7

(5.13)

The pressure gradient in the direction of the transversal �ow component x′ is then:

∂p

∂x′
= −∆prow

pFR
= −ψ(θ)ζ90◦

pFR

ρv2
ng

2
(5.14)

Equating the transverse momentum loss term from equation 2.133 with the pressure gradient from equation

5.14, we can calculate the loss coe�cient Krods,⊥ for the model input, see equations 5.15 to 5.18.

SM,⊥
!
=

∂p

∂x′
(5.15)

−K⊥,rods
ρ|vsup|vsup,⊥

2
= −ψ(θ)ζ90◦

pFR

ρv2
ng

2
(5.16)

K⊥,rods
ρv2

sup sin θ

2
=
ψ(θ)ζ90◦

pFR

(
δ

δ − 1

)2 ρv2
sup

2
(5.17)
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K⊥,rods =
ψ(θ)ζ90◦

sin θ pFR

(
δ

δ − 1

)2

(5.18)

In equation 5.17, the velocity in the narrow gap was transformed into the super�cial velocity by means of

the pitch-to-diameter ratio δ = pFR/dFR,o:

vng =
δ

δ − 1
vsup (5.19)

To con�rm the validity of the presented equation within the porous model environment, a model simulating

the MISTRAL experimental set-up is to be created. Figure 5.3a shows the schematic set-up of the MISTRAL

test section. The MISTRAL test section accommodates a FA mock-up with a 8 × 8 rod array. It is about

1.9 m in total height, simulating three PWR FA spans between four spacer grids, see Figure 5.3b. The

generated mesh, Figure 5.3c, comprises the test section from the lower face of the bottom grid to the upper

face of the top grid. The dimensions used for the mesh are summarized in Table 5.1. Since no explicit

measures of the test section are given by Peybernès (2005), the typical dimensions of FAs as present in

French PWRs were assumed as given, for example, in NEI (2012). To simulate the bidirectional �ow in the

MISTRAL test section in a porous medium environment, only a planar domain is necessary, covering the

axial direction and the lateral direction in which the �ow is injected. The third dimension is meshed one

cell deep, thus creating a 2D model. At the bottom face of the mesh an inlet boundary condition (BC) is

established based on the axial velocity values indicated by Peybernès. At the outlet a pressure BC with a

static reference pressure of 0 bar is set. Over the entire left boundary of the second span, an inlet BC with a

uniform normal velocity is set, representing the lateral �ow injection. Over the entire right boundary of the

second span, an outlet BC is set enforcing an extraction of that amount of �ow that is injected laterally into

the section. At all other domain boundaries, a no-slip wall BC is set up. Walls in the third dimension are

represented by a symmetry BC. The reference thermodynamic state is set to ambient pressure and ambient

temperature. The axial and lateral loss resistance coe�cients for the rods and grid regions applied in the

model are those derived in this and the previous section, equations 5.7, 5.10, 5.18, and 5.23.

Table 5.1: Geometric dimensions used for meshing the MISTRAL test section.

Geometric measure Value
Rod outer diameter 9.5 mm
Rod pitch 12.6 mm
Section width 100.8 mm× 100.8 mm
Grid height 40 mm
Span length 550 mm

The experimental tests in the MISTRAL test section were performed for di�erent axial and cross-�ow rates

and are to be simulated with the generated porous model. The �rst test consists in measuring the lateral

hydraulic force on the FA mock-up for di�erent cross-�ow rates, keeping the axial �ow at a constant true

inlet velocity of vax = 5 m/s. The maximum injected cross-�ow rate is V̇lat = 40 m3/h. In the model, this

corresponds to a super�cial cross-�ow velocity of vlat,sup = 0.2 m/s. For the measurements, the cross-�ow

injection was increased from zero to the maximum value in steps of V̇lat = 5 m3/h, that is, vlat,sup = 0.025 m/s

in the model. The second test consists in measuring the lateral hydraulic force for di�erent axial �ow rates

with a constant ratio between the axial �ow rate and the cross-�ow rate in the test section. Starting from
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(a) Schematic of entire set-up. (b) Picture of MISTRAL
test section.

(c) Meshed domain with
BCs (not to scale).

Figure 5.3: MISTRAL test section (Peybernès, 2005).

vax = 5 m/s and vlat,sup = 0.2 m/s, the axial and lateral inlet velocities are decreased stepwise by one �fth.

Figure 5.4 compares the experimental results for the lateral hydraulic force on the FA mock-up obtained

with the MISTRAL test section with the simulation results with ANSYS CFX using the EOLE correlation.

Figure 5.4a gives the results for a constant axial �ow rate of 125 m3/h and variable cross-�ow rates. The

results in Figure 5.4b are given for di�erent axial �ow rates with a constant ratio between the axial �ow

rate and the cross-�ow rate and in the test section. The simulation results with the EOLE correlation are

(a) Constant axial �ow. (b) Constant ratio axial �ow vs. cross-�ow.

Figure 5.4: Comparison of CFX simulation results using the EOLE correlation with the experimental
results with the MISTRAL test section.

118



Derivation of the loss coe�cients for the porous model

in very good agreement with the experiment. This proves that the results obtained with the simple EOLE

set-up, with air as medium and only one inlet and outlet, remain valid in the MISTRAL test section, which

represents the �ow in a PWR core much more realistically. The results demonstrate in particular that the

correlation remains valid for small angles of attack. The good agreement may also be related to the fact that

the �ow conditions in the MISTRAL test section with a narrow-gap Reynolds number of about Reng = 105

di�er not too strongly from those in the EOLE test section with Reng values up to 37 000. In PWR operating

conditions, however, the narrow-gap Reynolds number may be more than one order of magnitude higher,

potentially leading to diminished values of ψ according to the experimental observations of Groehn (1982).

On the other hand, Bieder (2015) stated that, based on Large Eddy Simulation (LES) CFD analyses for

PWR core conditions, the EOLE correlation underestimates the pressure drop by a factor of about six. This

discrepancy is ascribed to the e�ect of the open unbounded �ow in the core as opposed to the bounded �ow in

a test section channel. Despite these uncertainties, the EOLE correlation can be judged su�ciently reliable

to provide a good estimation of the lateral pressure drop in PWR cross-�ow within the present project.

Lateral loss coe�cient grid LES analyses of the coolant �ow through spacer grids performed by Bieder

(2015) have shown that the �ow leaves the spacer grid nearly vertically even if cross-�ow was present when

entering the spacer grid, see Figure 5.5. As an approximation, we can assume that the grid directs the �ow

completely into the axial direction after entering into the grid region with an arbitrary angle of attack θ. The

resulting transverse force F⊥ is analogous to the force due to the impingement of a �uid beam on an inclined

wall and corresponds to the inertial force of the �uid �ow component in the direction perpendicular to the

grid. Integrating the momentum equation in transverse direction, the following relation can be established

for the transverse force F⊥:

F⊥ = −ṁv⊥ = −ρ|v|Abeamv⊥ (5.20)

The �beam� entering the grid cell has a cross-section of Abeam = (p2
FR −

d2
FR,oπ

4 ) cos θ. Assuming that

the transverse force is uniformly distributed over the volume of the grid cell in super�cial formulation,

V = lgrid p
2
FR, we can derive for the momentum source in transverse direction that:

SM,⊥ = −K⊥,grid
ρ

2
|vsup|vsup,⊥ =

F⊥
lgrid p2

FR

= −ρ|v|v⊥Abeam

lgridp2
FR

(5.21)

By virtue of equation 2.128 and assuming small angles, cos θ ≈ 1, we have:

Abeam

lgridp2
FR

=
(p2
FR −

d2
FR,oπ

4 ) cos θ

lgridp2
FR

≈ A�ow,FA

Atotal,FA

= γ (5.22)

Solving for K⊥,grid and applying equation 2.129, we obtain �nally the following value for the transversal loss

coe�cient of the grid:

K⊥,grid =
1

γ

2

lgrid
(5.23)
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Figure 5.5: Streamlines for a LES anal-
ysis over a FA section (Bieder, 2015).

Figure 5.6: Isometric view of meshed domain. Black arrows
indicate the mass �ow inlet and outlet BCs and red arrows the
symmetry BC.

5.2 Model pre- and postprocessing

5.2.1 Mesh and �ow model

In the scope of this work, only a row of 15 FAs in the reactor core is modeled. A 2D model is hence su�cient

to describe the approximate behavior of the �ow over this row of FAs. Since ANSYS CFX is a 3D-only code,

2D conditions must be created arti�cially. To model a planar 2D geometry, a 3D mesh is created, which is

only one element thick in the third direction. For the present mesh, the mesh depth is arbitrarily chosen

to be 0.1 m in this direction. The entire meshed domain is based on individual meshes representing one FA

each. One individual FA mesh has a width of pFA = 230 mm. In its length, each FA mesh is composed of

individual rectangular cuboids which represent either the grid region, reaching from the lower to the upper

edge of one grid, or the rods region away from the grids, see also Figure 5.1.

To design the mesh, the knowledge about the expected �ow conditions can be very helpful. Although

the model is supposed to investigate the lateral �ow inside the reactor core, we can expect the axial �ow

component to remain signi�cantly larger than the lateral component due to the high mass �ow rate through

the PWR core. Since the main �ow direction is well known, it is convenient to create a structured, hexagonal

mesh to ensure that the faces of the mesh volumes are close to perpendicular to the principal �ow direction,

which improves the convergence behavior. This allows us to stretch the mesh volume cells along the axial
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direction, that is, to create cells with a large axial-to-lateral ratio, known as aspect ratio. The overall number

of cells can hence be reduced in favor of computational e�ciency. Large aspect ratios also lead to a higher

node density in the lateral direction, which is of speci�c interest for the present analysis. It is well known

that meshes are to be re�ned in regions where large gradients are expected in order to improve accuracy.

Velocity gradients are expected to be large close to the lateral and axial boundaries of the rods and grid

regions. At the lateral boundaries, a region with low �ow resistance will be created in order to model the

in�uence of the inter-assembly gaps. At the axial boundaries, the �ow transits from the rods region with

moderate �ow resistance to the grid region with comparably high �ow resistance. Therefore, the mesh is

gradually re�ned from the center of one region towards its boundaries. The �nal mesh describing the entire

�ow domain of the 15-FA row is created as a compound of 15 adjacent individual FA meshes in a row.

Figure 5.6 gives an isometric view of the entire meshed domain.

The equations solved to simulate the modeled system are the Reynolds-averaged Navier-Stokes equations.

The in�uence of turbulence is accounted for with the standard k − ε model. It must be noted, however,

that the additional turbulence induced by speci�c structural elements, such as the mixing vanes, is not

modeled in the porous model. Simulation tests showed that the di�erences between isothermal simulations

and simulations including the heat equation and a buoyancy term are su�ciently small to be neglected

for the framework of this thesis. Therefore, isothermal conditions are used for all �ow simulations, using

the average coolant temperature Tave which is de�ned as the arithmetic mean of the core inlet and outlet

temperatures:

Tave =
Tin + Tout

2
(5.24)

5.2.2 Boundary conditions (BCs)

The meshed domain represented in Figure 5.6 is a cuboid with six faces, for which BCs must be applied. At

the left and right faces of the domain a wall BC is applied, accounting for the fact that the FAs in the core

are surrounded by the core ba�e. This lateral vertical wall is set as a non-slip wall BC with smooth surface.

The created mesh is, however, too coarse as to resolve the wall boundary layer so that ANSYS CFX will rely

on the logarithmic wall function approximation to model the boundary layer. To create conditions equivalent

to a 2D model, a symmetry BC must be applied to the front and back faces of the planar one-cell-deep mesh.

Finally, the lower and upper faces serve as inlet and outlet for the coolant �ow through the core. The inlet

BC can be de�ned as normal speed BC or mass �ow rate BC. When modeling also the heat generation by

the FA, it is convenient to use the mass �ow rate BC for both inlets and outlets which facilitates ensuring

continuity. The turbulence intensity at the inlet is assumed to be 5%. For the outlet BC, a constant pressure

BC is used when an open outlet is assumed. If, however, a nonuniform pro�le is to be imposed due to the

assumed in�uence from the downstream �ow, a nonuniform mass �ow outlet BC is easier to handle than a

nonuniform pressure BC. Speci�c nonuniform inlet and outlet BCs will be discussed in the next paragraphs.

Nonuniform core inlet pro�le As discussed in section 1.3, the hydraulic loads due to nonuniform core

velocity inlet and outlet pro�les are likely to be one of the drivers of FA bow. To simulate the cross-�ow

distribution in the core � and consequently obtain the lateral hydraulic forces on the FA structures � a

core inlet and outlet pro�le must be assumed to create the associated lateral pressure gradients. A general
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literature analysis about the in-reactor cross-�ow and its modeling is given in section 1.4. Based hereupon,

the �ow pro�les de�ned in the present section are based on the speci�c observations made in experimental

tests and numerical simulations on the �ow distribution in PWR reactor cores. Figure 5.7 gives di�erent

results for core inlet velocity pro�les.

(a) Relative velocity distribution at the core inlet mea-
sured by Ulrych and Weber (1983). The positions of the
cold legs and the �ow skirt are indicated.

(b) Core inlet velocity pro�le calculated with CFD (con-
tinuous) compared to test section measurements (bars)
(Fournier et al., 2007).

Figure 5.7: Di�erent core inlet velocity pro�les established by measurements or calculations.

Ulrych and Weber (1983) investigated experimentally the �ow in Kraftwerk Union (KWU) PWRs. In their

investigations, they measured the relative �ow velocity at the entrance into the core after the lower core plate

with a downscaled RPV mock-up which represents a KWU-type PWR with �ow skirt in the lower plenum.

Air was used as �ow medium. Figure 5.7a shows the distribution of the inlet �ow velocity. Depending on

the FA position in the core, the �ow inlet velocity varies ±10% around the mean value. In the center, a

large region with inlet velocities above average develops, which is due to the �ow inertia as described in the

last paragraph of section 1.3. The in�uence of the �ow skirt, which is marked by a circle in Figure 5.7a is

clearly visible. In the core periphery, two regions can be distinguished: �rst, the region outside the �ow skirt

annulus, where the �ow velocity is mostly above average; second, the region comprising the �rst FAs inside

the �ow skirt annulus, where the lowest velocities occur. From this region, the velocities increase gradually

towards the core center. Finally, it can be observed that the �ow distribution is not perfectly symmetric

although all four loops are in full operation. This con�rms that the distribution might depend on how the

�ow develops in the downcomer, which imposes an uncertainty on the �ow distribution.

Fournier et al. (2007) calculated the �ow in the lower core of a PWR using a CFD model with resolved

structures. Figure 5.7b con�rms a good agreement of the calculated core inlet pro�le with experimental

values. The results corroborate the observations by Ulrych and Weber (1983) as for the general shape and

the slight asymmetry of the �ow pro�le. Only the �ow distribution in the periphery is di�erent from what

was measured by Ulrych and Weber (1983) due to the di�erent design of the lower plenum structures for this

reactor type. Fournier et al. (2007) also state that a heterogeneous core con�guration with modi�ed �ow

resistance in some FAs has almost no in�uence on the �ow under the lower core plates while it has a major

in�uence on the lower core. This justi�es using the same inlet �ow pro�le without regard to the speci�c FA
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designs used in the core. It is reasonable to assume that this assumption remains valid for the core outlet

pro�le. Finally, Karoutas et al.'s (2010) CFD calculations over a quarter PWR core predict a reduction of

axial velocity of approximately 15% between the core center and the periphery. This di�erence between the

maximum and the minimum is in good agreement with what was measured by Ulrych and Weber (1983).

From the results of the cited studies, a hypothetical symmetric inlet �ow pro�le is de�ned for the porous

medium model as a reference case, see Figure 5.8. Note that the mean value of the pro�le is not necessarily

1.0, which accounts for the fact that in the central row the inlet mass �ow is higher than the core average.

Additionally, also a possible asymmetric pro�le is de�ned. It is based on the symmetric pro�le, but the

maximum is shifted a distance of two FA pitches. At the periphery, some adaptions are made to obtain the

same mass �ow as for the symmetric pro�le. The represented outlet pro�le is introduced in the next section.
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Figure 5.8: De�ned relative mass �ow pro�les over one FA row at inlet and outlet.

Nonuniform core outlet pro�le As Xu et al. (2012) indicate in a CFD study about the �ow in the upper

plenum of an AP1000 reactor vessel, a sharp increase of lateral velocities is possible in the zone reaching

from the top grid to the upper core plate due to the in�uence of the outlet nozzle on the upper plenum

�ow. At the mid-plane of the upper core plate, Xu et al.'s results, given in Figure 1.8b, show a decreasing

pressure from the center of the core towards the periphery, with a minimum at the FA position closest to

the outlet nozzle. An outlet �ow pro�le is estimated based on these observations. It is evident that the �ow

redistribution initiated from the indicated pressure di�erence will lead to higher outlet �ow at the periphery

than in the core center. Since the results published by Xu et al. (2012) are not quanti�ed, a similar ratio

between the maximum and minimum �ow as for the inlet is assumed. The in�uence on the axial �ow pro�le

of the support columns and the control rod channels is neglected. The �ow pro�le assumed at the domain

outlet is illustrated in Figure 5.8. The outlet mass �ow is relatively uniform in the central core region but

is assumed to increase gradually towards the core periphery.

5.2.3 Postprocessing

The CFD solver provides the solution for the distributed values of the unknown variables velocity and

pressure. However, structural model requires as an input the distributed force on the structure. In the
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porous medium model, the �ow resistance imposed by the structure is modeled by de�ning a distributed

body force on the �uid. The force on the structure is hence the corresponding reaction force. To extract the

lateral forces on the FA from the porous medium model, several assumptions are made. The �rst assumption

is that for any FA the force is uniformly distributed over the FA cross-section. For the forces on the tube

bundle, this means that the load is equally distributed over all fuel rods (FRs) and guide tubes (GTs). For

the grid forces, the entire �ow force attacks in the grid center. The second assumption is that the force is

uniformly distributed in axial direction over a rod bundle span and is a point force for the grid. E�ectively, a

uniformly distributed line force acts then on each FR and GT. The �rst assumption can easily be justi�ed by

the strong lateral coupling of the tubes at the grid levels which would, in any case, lead to a load distribution

over the FA cross-section. The second assumption represents an approximation since a modi�cation of the

axial points of attack has an e�ect on the bending moment created in the FA tubes, but is justi�ed by the

nature of the results presented in section 5.3. These assumptions allow to extract the lateral force on the

structure in a certain rods or grid region by integrating over lateral the body force fB,x(x, z) in this region

given by the CFD model solution. In this manner, the lateral force on each de�ned region is obtained.

Fx,i,k,grid =

∫

Vi,k,grid

fB,x(x, z) dV (5.25)

Equation 5.25 calculates the force on the k-th grid of FA i and is directly applied on the corresponding

central grid node in the structural model. In turn, the lateral loads in the rods region must be applied as a

distributed line force on all FRs and GTs. According to the second assumption, this line force flin,x,i,k,rods

is obtained by equally distributing the integrated force Fx,i,k,rods over all n2
pos tube positions and the length

lk of the respective span minus the grid length lgrid.

flin,x,i,k,rods =

∫
Vi,k,rods

fB,x(x, z) dV

n2
pos(lk − lgrid)

(5.26)

Below the �rst and above the ninth grid, only the GTs are accounted for since the FRs in the model are

assumed to reach from the �rst to the last grid only.

To estimate the e�ect of the �ow on the FA structure, the lateral hydraulic force is an inappropriate measure

because the lateral FA deformation strongly depends on the point of attack. Forces which attack more

centrally will induce higher bending moments, and therefore an increased de�ection, than forces which

attack closer to the extremities. To better estimate the e�ect on the FA deformation, the concept of the

�equivalent force� is de�ned. For this purpose, we assume the FA as a simple Euler-Bernoulli beam clamped

at its extremities, see Figure 5.9 (Wittenburg and Richard, 2012). Then, we consider the maximum de�ection

ux,max caused by the force F applied at a distance a from the further extremity and a distance b from the

closer extremity with b = l − a:

ux,max =
2

3

Fa3b2

EIl2

(
1

1 + 2a
l

)2

(5.27)

Finally, we calculate the centrally applied equivalent force which is necessary to obtain the same de�ection:

Feq =
192EIux,max

l3
=

128Fa3b2

l5

(
1

1 + 2a
l

)2

(5.28)
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Figure 5.9: Schematic of the loading of a doubly-clamped beam with a force F (Wittenburg and Richard,
2012).

The sum of lateral forces on all rods and grid regions of FA i results in the total lateral hydraulic force:

Fx,i =

ngrid∑

k=1

Fx,i,k,grid +

ngrid+1∑

k=1

Fx,i,k,rods (5.29)

The total equivalent force is given as:

Feq,i =

ngrid∑

k=1

Feq,i,k,grid +

ngrid+1∑

k=1

Feq,i,k,rods (5.30)
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5.3 Analysis of model results

5.3.1 Uniform inlet and outlet pro�les

First, the results with a uniform mass �ow at the inlet and outlet are presented. The inlet mass �ux is chosen

equal to the average mass �ux obtained with the inlet pro�les presented in Figure 5.8 to create comparable

conditions. The plot in Figure 5.10 shows that the axial velocity is roughly constant inside the FA bundles.

In the gaps between the FAs, the �ow is accelerated due to the lower �ow resistance. Substantially higher

than average velocities can be observed especially in the gaps between the spacer grids, where the red color

indicates velocities between vz = 5.5 m/s and the maximum of vz = 7.12 m/s whereas the average velocity

in the domain is about vz = 4.9 m/s. The legend limits do not represent the minimum and maximum values

but were de�ned for an optimal representation of the results. The �ow redistribution towards the gaps can

also be observed in the plot representing the lateral velocity in the calculated domain, Figure 5.11a. It is

particularly visible from the bottom up to the second spacer grid. At the �rst spacer grid level, but also

in the following span, a �ow towards the closest gap is clearly noticeable in the fuel bundles. The same

e�ect is visible close to the wall gaps and the outlet and, to a lesser extent, at all spacer grid gaps. Apart

from these regions, the lateral velocity is zero since no other lateral gradients exist. Again, the minimum

and the maximum of the legend were rede�ned for better clarity. The actual minimum and maximum

(a) True velocity distribution. (b) Velocity pro�le at di�erent elevations.

Figure 5.10: Axial velocity for uniform inlet and outlet pro�les.
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(a) Lateral velocity. (b) Lateral pressure gradient.

(c) Axial pressure gradient. (d) Relative pressure psup with reference to inlet.

Figure 5.11: Pressure gradient plots for uniform inlet and outlet conditions.
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is vx = ±0.076 m/s. The �ow redistribution is the result of locally increased values of the lateral pressure

gradient near the FA gaps, particularly at the grid levels, see Figure 5.11b. In Figure 5.11c the axial pressure

gradient is plotted over the entire domain. In this plot, we see very well the higher �ow resistance in the nine

spacer grid regions, where the gradient is about ∂psup/∂z = −82 500 Pa/m whereas in the rods regions it is

about ∂psup/∂z = −4500 Pa/m. Figure 5.11d shows additionally the pressure drop ∆psup with reference to

the domain inlet. Since the gravity term was omitted in the momentum equation, the hydrostatic pressure

is not accounted for.

5.3.2 Symmetric inlet and outlet pro�les

When using the symmetric inlet and outlet pro�les presented in Figure 5.8 as BC, both pressure and velocity

distributions in the entire domain change. As for the axial velocity in the domain, Figure 5.12, the initially

marked pro�le becomes uniform towards the center of the core. Figure 5.12b shows the velocity pro�les at

the inlet and outlet as well as at di�erent elevations. In the middle of the core, in the span between 5th

and 6th spacer grid, the pro�le is practically uniform over the FA row cross-section. Somewhat upwards,

the in�uence of the outlet becomes visible. We can derive that the inlet and outlet BC do not a�ect each

other but can be seen as independent for the considered pro�les. The redistribution of the �ow in the core

due to the in�uence of the outlet only starts at roughly the elevation of grid level 7. As a result of the

non-uniform axial velocities, the pressure distribution in the entire domain will change. The �rst e�ect is

(a) True velocity distribution. (b) Velocity pro�le at di�erent elevations.

Figure 5.12: Axial velocity for non-uniform symmetric inlet and outlet pro�les.
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(a) Axial pressure gradient. (b) Lateral pressure gradient.

(c) Lateral velocity.

(d) Lateral velocity at FA 12 and 13 central axes.

(e) Body force charts at FA 12 and 13 central axes.

Figure 5.13: Flow solution for non-uniform symmetric inlet and outlet pro�les.
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Figure 5.14: Hydraulic forces on FAs for non-uniform symmetric inlet and outlet pro�les.

that the axial pressure gradient changes with the lateral position due to di�erent velocity heads over the

FA row, see Figure 5.13a. The second e�ect is the occurrence of signi�cant lateral pressure gradients over

several FAs, as opposed to local lateral pressure gradients in the proximity of the FA gaps, see Figure 5.13b.

Note that the legend limits have been rede�ned compared to Figure 5.11b. It can be noticed that the lateral

pressure gradients are maximum near the domain inlets and outlets at those positions at which also the

mass �ow gradient is highest. Then the lateral gradients decrease towards the core center. This is due to

the redistribution of the �ow as a result of the pressure gradient. The redistribution becomes apparent when

considering the lateral velocity distribution in the domain, Figure 5.13c. The lateral velocity is highest where

the highest lateral gradients occur; however, it decreases suddenly at the grid levels, where the lateral �ow

resistance is so high that the �ow is redirected in axial direction. After the grid, the lateral �ow redevelops

from nearly zero until it reaches its maximum before the next grid level. This behavior is illustrated in

Figure 5.13d, in which the lateral velocity along the central axes of FAs 12 and 13 is plotted. The absolute
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maximum is somewhat above vx = 0.25 m/s near the outlet. In the lower core, it reaches values of about

vx = 0.20 m/s.

For FAs 12 and 13, Figure 5.13e shows the lateral component of the user-implemented volumetric body force

representing the porous medium. The force in the rods regions tends to be higher at the top of one span

than at the bottom as a result of increased lateral �ow at the top; however, the di�erence is small enough

to assume a uniformly distributed force over each span. This facilitates extracting the force from the �uid

model and imposing it on the structural model. Also, the assumption of a discrete point force at the grids

is justi�ed by the peaks at the grid levels. Figure 5.14a gives the corresponding distribution of line forces

over each FA obtained from the postprocessing described in section 5.2.3. This distribution serves as the

data source for the lateral hydraulic forces in the structural model. Figure 5.14b �nally compares the total

lateral force on each FA with the equivalent force. Due to the concentration of the line forces close to the

FA extremities, the equivalent force is only less than half the total force for most FAs.

5.3.3 Asymmetric inlet and symmetric outlet pro�les

Figure 6.20 gives, for comparison with the symmetric case, the solution of the �ow �eld for the case with

the shifted, asymmetric inlet pro�le and unmodi�ed symmetric outlet pro�le. The axial velocity distribution

and pro�les in Figure 5.15a and 5.15b demonstrate that the symmetry is broken in the lower core due to

the asymmetric inlet. Furthermore, the redistribution of the �ow due to the inlet gradient has not �nished

before the in�uence of the outlet sets in at grid level 7 since the number of FAs over which the �ow must be

redistributed in one direction is increased. The resulting lateral pressure gradients are plotted in Figure 5.15c.

Due to the shifted pro�le, the pressure gradient absolute values to the left of the pro�le maximum are

signi�cantly decreased while to the right higher values than before are observed. It can be noticed that the

region with a lateral pressure gradient of −2500 Pa/m and below grew signi�cantly, particularly towards the

center of the core. In the lower core, the lateral velocity reaches values of about vx = 0.26 m/s at the right

and about vx = 0.10 m/s at the left, see 5.15d. The �ow conditions at the outlet are nearly unchanged. The

lateral forces on the porous medium are represented in Figure 5.16. As opposed to the symmetric case, the

symmetry is clearly broken. Since the redistribution of the �ow has not terminated in the lower core, the

forces in the center of the core are signi�cantly higher, see Figure 5.16a. This increases both the total lateral

forces and the ratio of equivalent force and total force at the right side of the domain while it decreases at the

left, see Figure 5.16b. An increase in the amount of �ow to be redistributed has hence a twofold detrimental

e�ect on the FA structures at the right. Not only the total lateral force increases, but also the e�ect on the

FA structure is increased more than linearly due to a redistribution of forces towards the axial center.
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(a) Axial velocity distribution. (b) Axial velocity pro�les at di�erent elevations.

(c) Lateral pressure gradient. (d) Lateral velocity distribution.

Figure 5.15: Flow solution for shifted, asymmetric inlet pro�le and symmetric outlet pro�le.
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Figure 5.16: Hydraulic forces on FAs for shifted, asymmetric inlet pro�le and symmetric outlet pro�le.

5.4 Fluid-structure interaction (FSI)

FSI e�ects in the reactor core have a non-negligible in�uence on the FA bow response, see section 1.4.

Therefore, a two-way �uid-structure coupling has been established to account for the feedback of the FA

structural deformation on the coolant �ow. Figure 5.17 gives a �ow chart of the implemented coupling

procedure. Initially, in the zeroth load step at time t0 = 0 h, the �ow �eld is calculated with the hydraulic

ANSYS CFX model based on the undeformed structure. Then, the structural calculations over the �rst

load step are performed with ANSYS Mechanical APDL. Since no dynamic e�ects such as FA vibrations are

considered, the FA structure deforms only slowly so that an explicit coupling approach is the most e�cient.

This means that the modi�ed hydraulic loads are updated at the end of each structural solver load step

at time tn; however, no iterations are performed to obtain a tight convergence between the �ow �eld and

the structural deformations. In contrast, an implicit coupling would provide a fully converged solution at

time tn (Benra et al., 2011; Busch, 2012). The load transfer from the �uid to the structure was described
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in section 5.2.3. To obtain a two-way coupling, the displacement transfer from the structure to the �uid

needs to be incorporated into the model as well. This is done by adapting over time the position and

size of the gaps, grid and rods regions in the modeled domain according to the FA structural deformation.

Ruiz Antón (2016) presented the details of the displacement transfer and �rst results. FA bow calculation

results including the �uid-structure coupling are presented in section 6.3.6.

Technische Universität München
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Figure 5.17: Flow chart of implemented explicit two-way �uid-structure coupling procedure.
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Chapter 6

In-Reactor Simulation Results and

Sensitivity Analyses

6.1 Single-FA de�ection tests

The objective of this �rst analysis part is to focus on the e�ects of the reactor conditions and the irradiation

environment on the fuel assembly (FA) structural behavior. This means that the corresponding hydraulic

loads, thermal loads and the e�ects of neutron irradiation described in the two previous chapters 4 and 5 are

imposed on the model. So far, no creep, relaxation, or growth calculations are performed, but the objective

is to investigate the FA structural performance for di�erent operation and burnup (BU) states.

As a �rst step, the axial stress state of the di�erent FA components for di�erent reactor conditions is

investigated, in particular during start-up. Since the axial stresses can have an important in�uence on the

FA sti�ness due to the stress sti�ening e�ect, this analysis facilitates the comprehension of the impact of

the di�erent operation states on lateral sti�ness. Correspondingly, the second part of this section consists

in predicting the lateral FA sti�ness performance by means of the same lateral de�ection test as described

in section 3.5, but under reactor conditions. In the last part of the section, a screening sensitivity analysis

as described in appendix E is performed, investigating the sensitivity of the FA sti�ness to di�erent FA

structural parameters for di�erent BUs and operating states.

6.1.1 De�nition of operation and BU states

Six di�erent simulation cases are established to de�ne the underlying operation and BU states for the sub-

sequent analyses, see Table 6.1. The �rst focus, cases 1 to 3, lies on the di�erent start-up conditions that

a fresh FA undergoes before reactor operation, which are described in section 4.1.1. Fresh FAs are those

operating in their �rst cycle in the reactor at their beginning of life (BOL). For these FAs, the structural

response in cold condition (CC), hot condition (HC), and under operation at beginning of cycle (BOC) 1 is

investigated. To better appreciate the di�erent contributing e�ects, the axial hydraulic �ow forces are only

accounted for in the operation state, but not in cold and hot conditions.
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Table 6.1: Simulation cases with constant parameters for di�erent BU conditions.

Case BU state BU E�ective Grid relaxation Gap Axial
# [GWd/tHM] growth Zr-alloy Inconel size �ow

1 BOL CC 0 0 mm 0 0 0 µm no
2 BOL HC 0 0 mm 0 0 0 µm no
3 BOL (BOC 1) 0 0 mm 0 0 0 µm yes
4

BOC 2 to EOC 3 15-40
0 mm 99% 25% 0 µm yes

5 0 mm 100% 25% 12 µm yes
6 EOL > 40 15 mm 99% 50% 0 µm yes

The FAs represented by cases 4 and 5 exhibit medium BUs ranging from about 15 GWd/tHM to 40 GWd/tHM,

that is, approximately from BOC 2 to end of cycle (EOC) 3. In this BU range, the e�ect of the neutron

�uence on the FA structural sti�ness is approximately constant. The grid springs are practically relaxed for

all Zirconium alloy grid levels and the �rst growth stage has practically saturated so that only moderate

changes in growth can be expected. The axial guide tube (GT) growth rate is approximately compensated

for by the holddown (HD) spring relaxation rate. Hence, the e�ective growth rate is zero and no change

in HD force is assumed. However, it is di�cult to predict the grid spring state in this medium BU range.

The fact if a small grid spring residual force remains or a gap opens depends mostly on the local creep-down

of the fuel rod (FR) cladding, which is di�cult to determine. To verify the sensitivity to a potential gap

opening, two cases are tested: case 4, in which the grid spring relaxation for all Zr-alloy grids is 99%, and

case 5 with only open gaps of 12 µm.

Case 6 represents high-BU FAs approaching their end of life (EOL) with BUs greater than about 40 GWd/tHM.

For these FAs, growth rates gradually increase, which might have a non-negligible e�ect on FA sti�ness by

means of the HD force. In certain cases, breakaway growth with high linear growth rates is also observed,

possibly giving rise to signi�cant deformations due to the build-up of excessive of HD forces. To account for

the combined e�ect of GT growth, HD spring relaxation, and the axial compressive creep of the GTs, an

e�ective growth of 15 mm is assumed. This value is composed of an upper bound (UB) growth of Zry-4 at

EOL of 20 mm, see Figure 4.7, and a HD spring relaxation and GT compressive creep of in total 5 mm. As

for the grid spring, a residual force of 1% is assumed since for high BU it is likely that a possible FR-spring

gap closes again due to the increasing FR internal pressure as a result of �ssion gas release.

6.1.2 Investigation of axial stress states

In this section the distribution of axial stresses in the GTs and FRs for di�erent reactor conditions is

investigated. For a better visualization only two GTs and two FRs are shown in the plots in Figure 6.1,

one for each FA half. Since no lateral loads are imposed, the stress distribution is symmetric about the FA

z-axis for the represented cases. The ratio between height and width is reduced by a factor of 4 and the GT

and FR diameters are increased by a factor of 2. The spacer grids are marked by non-dimensional horizontal

lines. Note that, as discussed in section 3.2.1, the axial stress due to the di�erence between FR internal and

external pressure is not accounted for in the model.

Figure 6.1a gives the axial stress distribution in the GTs and FRs in CC due to the HD force of about 7500 N

and without the e�ect of axial hydraulic forces. The spots with the maximum axial compressive stresses

below −13 MPa are in the GTs below the 2nd spacer grid, where the dashpot region has ended, and above the
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9th grid. In the middle spans, the HD force is distributed over GTs and FRs through the grid-to-rod spring

connections, thus reducing the load on the GTs. Towards the lower spans, the stress is increasing because

of the partial redistribution of the loads from the FRs back to the GTs. The fuel weight has no major e�ect

on the GTs outside the dashpot region since it is assumed to rest on the FR bottom end plugs. In the lower

part of the GTs, the stress-reducing e�ect of the GT dashpots is well appreciable. Due to the more than

doubled cross-section, the axial load is reduced by more than one half when compared to the portion after

the dashpot ends. The FRs undergo only small compressive axial stresses of around −1 MPa due to the

loading with the HD force and with their own weight. Note that because of the use of beam elements for

the FRs, the model does not account for the elastic deformation due to the internal pressurization. If the

pressurization was accounted for, the FRs would remain under tension.

After the transition to HC, case 2 given in Figure 6.1b, two major e�ects are important. First, the HD

force decreases to about 5000 N due to the di�erential expansion between the Zirconium-alloy GTs and

FRs and the stainless-steel core barrel. Second, the increased temperature in HC reduces the FA sti�ness

because the modulus of elasticity decreases. The decrease in the axial compressive load is more signi�cant

than the decrease in the modulus of elasticity of the FA structure. Therefore, the maximum compressive

stress in the GT top decreases to −9.2 MPa. However, the decrease in the modulus of elasticity also reduces

the grid spring forces and, as a result, less axial load is deviated through the grid springs into the FRs.

Therefore, although the axial compressive load is decreased, the maximum compressive GT stress increases

to −18.8 MPa just above the dashpot region. Again, it must be pointed out that the model does not account

for the change in the FR axial deformation due to the transition from CC at ambient pressure to HC at

psys = 15.8 MPa. If the pressurization was accounted for, the FRs would be contracted due to the resulting

axial compressive stresses. This contraction would also be transmitted to the GTs, thus increasing the GT

compressive stress in the middle spans.

When operating conditions at BOL are considered, case 3 given in Figure 6.1c, the thermal expansion of

the GTs, and with it the HD force, remains nearly unchanged. Only the FRs expand strongly as a result of

increased cladding temperatures due to the heat generation, see Figure 4.11c. As a result of this di�erential

expansion, the GTs are put under tension with a maximum axial stress of 14 MPa due to the coupling

through the grid-to-rod connection. In reality, this tensioning e�ect is somewhat weaker than represented

due to the previously mentioned additional FR contraction.

Figures 6.1d and 6.1e �nally give the axial stress distribution in operational states with practically no axial

coupling between FRs and GTs. In this state, nearly the entire HD force rests on the GTs. As a result of

the supporting e�ect of the upward axial hydraulic force, the compressive force on the GTs decreases from

the top to the bottom. The maximum is hence found at the top with a compressive stress of −5.55 MPa for

case 5 and −9.26 MPa for case 6. The increased compressive stress for the EOL case will have a detrimental

e�ect on lateral sti�ness, see the following section.

6.1.3 In-reactor lateral de�ection tests

Figure 6.2a gives the results of the in-reactor de�ection tests based on the test matrix in Table 6.1, which

were �rst presented in Wanninger et al. (2016a,c). Case 1 is the result for a fresh FA in CC. Since no

axial hydraulic forces are considered, it is very similar to the result of the in-laboratory axial de�ection

test. For case 2, the increased temperature in HC reduces the FA sti�ness due to the decreased modulus of
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elasticity. Since this causes a decrease in the grid spring forces, the transmitted moment at the grid level

is reduced, as can be observed in Figure 6.2b. Under operating conditions at BOL, case 3, the FA lateral

sti�ness is slightly increased again. This is mainly a result of the stress sti�ening of the FA structure due

to the di�erential expansion of the FRs and GTs (see Figure 6.1c), which outweighs the further decrease of

the modulus of elasticity as a result of the somewhat higher average structural temperatures. As a matter

of fact, the moment transmitted at grid 3 is slightly reduced due to the in average somewhat lower grid

spring compression. For BUs greater than zero, cases 4 to 6, irradiation e�ects decrease the FA sti�ness.

As the grid force decreases due to grid spring relaxation, the moment threshold values for the transition

between the di�erent phases presented in section 3.2.6 decrease. This is because the maximum dimple force

before lifting o� from the decompressed dimple and the maximum friction force decrease. The FA sti�ness

decreases accordingly, and the hysteresis loop narrows due to lower friction forces. For case 4 the spring force

is close to zero and nearly no friction occurs. In this case the FRs lift o� almost instantly from one dimple

upon loading since the dimples are completely decompressed. The moment-de�ection graph consists almost

exclusively of phase 4, that is, the FR is supported by one spring and one dimple in normal direction. The

force-de�ection relationship of the FA nearly loses its hysteresis (for better clarity, the unloading phase is

only shown for case 6) and becomes close to linear and elastic since there are practically no frictional or other

nonlinear e�ects except for the Inconel grid. Still, the FRs sti�en the FA structure when compared to the

force-de�ection curve of the FA skeleton without FRs. For case 5 with open gaps, the grid-to-rod connection

is only loaded after a certain threshold value, which corresponds to the rotation which is necessary for the

FR to touch both the dimple and the spring at the same time. Due to the gap width of only 12 µm there is

only a minor e�ect of the gap on the FA sti�ness. For case 6 the moments at the grids are similar to case

4 and hence not shown. The decrease in FA sti�ness is entirely due to the higher compressive HD force.

In conclusion, the in-reactor irradiation e�ects decrease FA sti�ness almost by half when compared to BOL

conditions in this model scenario.
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6.1.4 Sensitivity Analysis of FA lateral sti�ness increase with structural

parameters

The presented structural model already includes most of the optimized features with which fuel vendors

have equipped their FAs to decrease FA deformation amplitudes, such as an increased GT outer diameter

compared to earlier designs and a massive dashpot. The objective of this �rst sensitivity analysis, which was

�rst published in Wanninger et al. (2016b), is to screen the FA design for sti�ness parameter optimizations

which can provide a further increase in sti�ness. To this end, a screening sensitivity analysis is performed

with the in-reactor FA lateral sti�ness test from the previous section as test experiment. For this analysis,

both BOL and EOL conditions, cases 3 and 6, are considered. The monitored output variable for the

analysis is the lateral reaction force Flat for the maximum de�ection of ulat = 20 mm. The input factors for

the screening analysis are selected based on the principal structural parameters of the presented FA model

in Tables 3.1 and 3.3. A crucial step for the analysis is the de�nition of the investigated range of values

for the input parameters. For the purpose of this analysis the value range is extended in the direction for

which an increase in overall FA lateral sti�ness is expected. Table 6.2 presents the investigated sensitivity

parameters and the chosen range of values, which are described in the following paragraph.

The geometric FA parameters, given in Table 3.1, represent the �rst class of parameters which are important

for the FA sti�ness. Modi�cations of the parameters related to FRs, such as the FR cross-section or pitch,

would impair the fuel performance and are not considered. As for the GT geometry, sensitivity parameter

1 in Table 6.2, the potential for modifying the inner diameter dGT,i is limited by the margin for a proper

insertion of the control rods while the outer diameter dGT,o is limited by the size of the grid cell. In the

present model, dGT,o is roughly equal to the pitch pFR minus the grid strap thickness tgrid, limiting a further

increase. Nevertheless, we assume a slight modi�cation in the order of magnitude of the manufacturing

tolerances. This may still have large e�ects on sti�ness since the bending rigidity is a function of the 4th

power of the diameters. Parameter 2 in Table 6.2 investigates the in�uence of a decrease of the GT dashpot

inner diameter dGT,dp,i.

The next set of parameters capable of providing a FA sti�ness increase are those linked to the grid connection

sti�ness, given in Table 3.3. The FR support model comprises several independent in�uential parameters.

The �rst group of input parameters (4 to 6), are the normal and tangential sti�ness of the springs and

dimples. For these parameters, an increase of 20 % compared to the nominal values is chosen as a maximum

for the analysis. Parameter 7, the distance between the dimples, provides a good potential for sti�ness

increase since it has a quadratic in�uence on kθ,FR-grid according to equation 3.6. On the other hand, a

modi�cation of b is limited by the spacer grid design and height. An increase of 10 % compared to the

nominal values is considered as a maximum. The maximum increase in the instantaneous rotational sti�ness

is hence 45.2 % (1.2 × 1.12 = 1.452). For parameters 8 and 9, a maximum increase of 20 % is assumed.

The margins against FR buckling due to axial forces are su�ciently high to accommodate such an increase.

Analogously to kθ,FR-grid, the rotational connection sti�ness between GTs and spacer grids, parameter 3,

can be sti�ened by increasing the vertical distance between the spot welds or by modifying the properties

and number of spot welds. Altogether a similar increase as for the FR support is feasible, so that we assume

an increase by 45.2 % as well. The last considered parameter is the initial axial HD force, parameter 10. A

decrease in the order of 1000 N, or 20 %, is feasible if additional measures are taken to ensure the margin

against a potential lift-o� of the FA due to upward hydraulic forces.
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Table 6.2: Sensitivity analysis input parameters for the FA sti�ness test.

Param.
#

Variable Minimum
multiplier

Maximum
multiplier

Description

1
dGT,i 1 0.995 Inner GT diameter
dGT,o 1 1.005 Outer GT diameter

2 Cdp 1 0.95 Factor for inner GT diameter in dashpot
3 kθ,GT-grid 1 1.452 Rotational sti�ness of GT-grid connection
4 ks,n 1 1.2 Zircaloy grid spring sti�ness
5 kd,n 1 1.2 Zircaloy grid dimple sti�ness
6 kt 1 1.2 Grid spring and dimple tangential sti�ness
7 b 1 1.1 Vertical distance between grid dimples
8 FN 1 1.2 Grid spring preload at BOL
9 µ 1 1.2 Friction coe�cient
10 Fax,BOL 1 0.8 Holddown force at BOL

Figure 6.3 gives Morris' sensitivity measures for the di�erent input parameters in Table 6.2 for BOL and

EOL conditions. The µi measures are about an order of magnitude higher than the σi measures. This

means that the input parameters have a mostly linear e�ect on the output parameter Flat of the simulation

experiment. Despite the small input range, the GT diameter, parameter 1, plays an important role when it

comes to optimizing FA sti�ness. An increase of the dashpot wall thickness, parameter 2, would only have

a minor in�uence on the FA sti�ness. The in�uence of every individual grid cell sti�ness input parameter

(4 to 6) is comparatively small since each parameter accounts only for a part of the moment transmission

in the grid cell. In contrast, parameter 7, which has a quadratic in�uence on kθ,FR-grid, is signi�cantly more

in�uential. The grid spring preload, parameter 8, has the largest in�uence on the solution of all parameters

for BOL conditions. The preload determines both the maximum friction force and the maximum dimple

moment whereas parameter 9 only accounts for the friction force and is hence less in�uential. Finally,

the relative in�uence of a decrease of the HD force, parameter 10, is small for BOL conditions. For EOL

conditions, Figure 6.3b, the absolute values of µi for the skeleton-related parameters 1 to 3 remain nearly

constant; hence, their in�uence on the solution remains nearly the same. The grid-cell related parameters (4

to 9) show signi�cant di�erences compared to the BOL condition. The parameters related to the nonlinear

behavior of the FR cell and in particular to friction, parameters 6, 8, and 9, lose their in�uence on the

solution. Also, parameters 4, 5, and 7, which account for the linear rotational sti�ness of the FR support for

EOL conditions, have become much less in�uential than for BOL conditions. The in�uence of the HD force

remained nearly constant in absolute terms, but gained in relative importance, becoming the third-most

in�uential parameter at EOL. In conclusion, considering both BOL and EOL conditions the skeleton-related

parameters 1 and 3 o�er the most potential for optimization. A decrease of the HD force also sti�ens the FA,

albeit to a minor extent. The grid-cell related parameters show a large dependence on BU. Modi�cations

may sti�en the FA signi�cantly initially. But during BU their in�uence on the FA sti�ness decreases so that

the overall potential for optimizations is small.
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Figure 6.3: Morris' |µ| and σ measures for the input parameters in Table 6.2.

6.2 Single-FA creep deformation analysis

In this section, the deformation of a single FA after irradiation in the reactor core during one reactor cycle is

analyzed. That is, the creep, growth, and relaxation models presented in chapter 4 are used to determine the

permanent deformation after the cycle. For the time being, only the creep and growth models for conventional

Zircaloy-4 (Zry-4) are applied for both GTs and FRs. The di�erent solution load steps to obtain the �nal

deformation state are described in section 4.1.2. The results are given in terms of result steps. The start-up

load step is numbered 0. During the operation load step, intermediate results are written to the results �le

in an interval of approximately 500 h, producing n = 16 result steps for the reference cycle length of 7920 h.

All indications of step numbers in this chapter refer to these result steps and not to the actual time steps

used in the numeric simulation. Table 4.2 gives the operational states corresponding to each result step.

In the �rst analysis of this section, a FA undergoing lateral hydraulic forces in the reactor core is considered.

The second analysis investigates the deformation of FAs at the core periphery due to di�erential creep

and growth as a result of lateral power gradients, neglecting the e�ect of lateral hydraulic forces. Finally,

we perform a systematic sensitivity analysis of the permanent FA deformation due to di�erent in�uencing

parameters.

6.2.1 Creep deformation due to lateral hydraulic forces

For this analysis, the hydraulic load boundary condition (BC) on the FA is based on the lateral hydraulic

force distribution obtained with the non-uniform symmetric inlet �ow pro�le, Figure 5.14. Speci�cally, the

FA at position 12 is simulated since it undergoes high hydraulic loads and has a relatively high power level,

see Figure 4.11a.

Operation Figure 6.4a gives the evolution of the lateral displacement at grid levels 5 and 6. Initially the

maximum de�ection occurs at the mid-grid level 5. During operation, the relaxation of the upper grids is

faster than for the lower grids, see Figure 6.5; therefore, the position of maximum de�ection shifts from

the 5th to the 6th level. Figure 6.4b gives the lateral reaction forces and reaction moments on the FA

constraints as a result of the external loading. The sum of the bottom and top lateral reaction force results

in the total lateral hydraulic force of Flat = 286 N. Although the loading is roughly symmetric about the

142



Single-FA creep deformation analysis

 0

 2

 4

 6

 8

 10

 0  4  8  12  16  20  24

EOC

L
a
te
ra
l 
D
is
p
la
c
e
m
e
n
t 
[m
m
]

Result Step

Lateral Deflection

Grid 5 Grid 6

(a) Lateral de�ection.

-40

 0

 40

 80

 120

 160

 200

 0  4  8  12  16  20  24

EOC

F
o
rc
e
 [
N
] 
o
r 
M
o
m
e
n
t 
[N
m
]

Result Step

Lateral Forces and Moments on Constraints

Fx bottom Fx top My bottom My top

(b) Reaction moments and forces.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.25 0.5 0.75  1

G
ri

d
 n

u
m

b
e
r 

[-
]

Normalized deflection [-]

Lateral bending shape

BOC

EOC

EOC CC

(c) Lateral bending shapes.

Figure 6.4: Single-FA creep test over one cycle with hydraulic load of FA 12 in Figure 5.14.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1000 2000 3000 4000 5000 6000 7000 8000

N
o
rm

a
li
ze
d
 F
o
rc
e
 F
/F
N
 [
-]

Time [h]

Normalized grid spring forces of FA 12

Grid 1

Grid 2

Grid 3

Grid 4

Grid 5

Grid 6

Grid 7

Grid 8

Grid 9

Figure 6.5: Normalized grid spring forces at the di�erent grid levels over the reactor cycle during the
single-FA creep test with FA 12.

143



Chapter 6. In-Reactor Simulation Results and Sensitivity Analyses

(a
)
S
tress

[P
a
]
step

1
6
.

(b
)
C
reep

stra
in

[-]
step

1
6
.

(c)
S
tress

[P
a
]
step

1
9
.

(d
)
S
tress

[P
a
]
step

2
0
.

(e)
S
tress

[P
a
]
step

2
2
.

F
ig
u
re

6
.6
:
D
istribution

of
selected

distributed
variables

in
selected

G
T
s
and

F
R
s
for

the
single-FA

creep
de�ection

test.

144



Single-FA creep deformation analysis

horizontal middle axis, the bottom constraint exhibits a higher reaction force. This is due to the higher

sti�ness of the lower part of the FA which can accommodate higher loads. As for the rotational constraints,

a signi�cant reaction moment only builds up at the bottom where a clamped condition is assumed whereas

the rotational sti�ness of the HD spring is relatively small in comparison, leading to a very reduced reaction

moment. During operation, the moment at the bottom increases signi�cantly in the �rst 2500 hours and

the ratio between bottom and top lateral reaction force also increases further. This is because the upper

half of the FA yields more during operation due to increased creep and relaxation rates as a result of higher

temperatures. Afterwards, the reaction forces and moments remain roughly constant. Only the reaction

moment at the top increases further since the increasing de�ection leads to higher rotation angles θy of the

top nozzle. The shift in the axial sti�ness distribution is also well appreciable considering the lateral bending

shapes in Figure 6.4c. At EOC the bending shape is clearly shifted upwards when compared to the elastic

deformation at BOC. Since the Zirconium alloy grid springs are nearly relaxed, the relative in�uence of the

GT dashpots is much more pronounced than at BOC. Figure 6.6a gives the distribution of the stress in

selected GTs and FRs at EOC under operation or result step 16. The plot represents the deformed FA shape

scaled by a multiplication factor of 5. As discussed in section 2.1.3.4, the stress at any point in the GT or

FR is the result of the joint e�ect of the uniaxial stress at the neutral axis and the bending stress; hence, it

is non-uniform over both the GT and FR cross-sections. Moreover, the stress plot illustrates di�erent axial

stress levels in the two depicted GTs as a result of the coupling at the spacer grid levels. Figure 6.6b gives

the corresponding distribution of the creep strain. Since the creep strain derives from the stress distribution,

it can also be decomposed into the sum of a uniaxial creep strain component, which is constant over the

beam cross-section, and a bending creep strain component. The axial loading of the GTs and FRs, which

is mostly tensile for GTs and compressive for FRs according to section 6.1.3, causes a uniaxial creep strain

in the order of magnitude of 1× 10−4. The bending creep strain is one order of magnitude lower. This

demonstrates that, despite the signi�cant de�ection of nearly 10 mm, the bending creep strain causing this

deformation is in the order of only 1× 10−5 after one reactor cycle. This is, for example, signi�cantly smaller

than the hoop strains expected for the FR cladding creep-down. The order of magnitude of the saturated

primary strain being 1× 10−4, this demonstrates also that the primary strain is an important component

for the calculation of the FA creep deformation which must be accounted for.

Shutdown After removing the hydraulic loads and transition to HC, result step 17, the de�ection is

reduced by more than 3 mm. As predicted in Figure 6.2a, the FA lateral sti�ness decreases strongly due to

the grid relaxation. Therefore, the elastic de�ection has more than doubled when compared to the BOC

condition. In CC, result step 18, the de�ection increases somewhat due to the increased HD force and

the related stress weakening e�ect. The following transition from the in-core to the ex-core condition is

subdivided into three single steps in order to better distinguish the di�erent e�ects. First, the HD force is

released in step 19. That is, the axial displacement constraint is removed from the FA top. Although no

external lateral loads are imposed anymore, the reaction forces and moments in this phase are non-zero.

That is, the support reactions are associated with the internal stress state, which is given in Figure 6.6c for

result step 19. To appreciate only internal stresses, the e�ect of gravity is turned o� (g = 0) for this plot and

the following plots in this paragraph. In step 20, the rotational constraints are also removed from the FA

top and bottom. In this manner, the system is transformed into a statically determinate system releasing
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the internal stress in equilibrium with external reactions. As a result, only the residual stress due to the

plastic creep deformation remains in the FA structure, see the stress plot in Figure 6.6d. This step leads to a

further reduction of de�ection amplitude. Finally in step 21, the FA is lifted out of the core by applying an

upward force WFA at the FA head. Due to the resulting stress sti�ening, the amplitude is reduced further.

This is the state in which the FA de�ection is usually measured and can be validated.

Start-up of following cycle As the �nal part of the analysis, the FA is now re-inserted into the core to

investigate possible structural e�ects happening between the transition from EOC n to BOC n + 1. When

constraining the FA again in CC, step 22, a somewhat di�erent equilibrium than at EOC is reached, see

Figure 6.6e. The reaction forces and moments are somewhat increased and the maximum de�ection in this

state is reduced by 3.3%. This discrepancy persists also after transforming the FA again into HC and the

operational state, steps 23 and 24. This means that the FA does not exhibit the same state that it had at

the end of a speci�c cycle at the beginning of the following cycle, probably due to hysteresis e�ects. That is,

the evolution path of the loads and the deformations has still an impact on the instantaneous FA sti�ness

although the Zirconium alloy grid springs are nearly relaxed.

6.2.2 Deformation of peripheral FAs due to di�erential creep and growth

In this second analysis, the lateral response of the two peripheral FAs in Figure 4.11a, FAs 1 and 2, is

simulated in their fresh state under the e�ect of the given power gradients and neglecting lateral hydraulic

forces. Figure 6.7a gives the evolution of the lateral de�ection of both FAs at grid level 6 where the

maximum amplitude occurs. Result step 0 represents the initial thermoelastic equilibrium at BOC resulting

in de�ections of 1.21 mm and 0.84 mm. The bending of the FA structure can be explained by means of

the total axial strain gradient ∆εtotz /∆x between the outer GTs in lateral x-direction. Figure 6.8 gives the

evolution of the di�erent strain gradient components over the reactor cycle for the GTs and FRs. For the

BOC state, the GT total strain gradient results completely from a positive elastic strain gradient over the

GTs, see Figure 6.8a and 6.8b. This is due to the di�erential thermal expansion of the FRs, see the chart

of strain gradients over the FRs in 6.8c and 6.8d at BOC. This positive thermal gradient in the FRs is

transmitted to the FA structure by the FR-to-grid connections leading to a positive stress gradient in the

GTs, thus bending the FA structure in positive x-direction. Since the thermal gradient is somewhat higher

for FA 1, it presents a higher de�ection at BOC.

Under operation, result steps 1 to 16, the de�ection amplitude increases in the direction of the increasing

gradient due to the joint e�ect of creep and growth mechanisms. In the initial phase of the operation cycle, a

positive GT growth strain gradient is the main contributor to the increasing total strain gradient, and hence

the de�ection amplitude, until the �rst-stage growth saturates according to the implemented GT growth

law. Then, di�erential creep becomes more important. It is remarkable that the de�ection of FA 1 increases

during the entire cycle while FA 2 reaches its maximum after about 2000 hours of operation. This behavior

can be explained by the relaxation of the grid spring force during the irradiation given by Figure 6.7b. Due

to the low average neutron �ux level, the coupling between the FRs and GTs is maintained signi�cantly

longer for FA 1 than for FA 2. This implies that in FA 2 the coupling forces between the FRs and the GTs

decrease signi�cantly in the �rst operation phase, thus decoupling the FA structure from the FRs. For FA

1, in turn, the relatively high di�erential FR growth, see Figure 6.8c, continues to be transmitted to the FA

structure. This causes two e�ects. First, the GTs are bent by the coupling forces, leading to an increasing
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Figure 6.7: Single-FA creep test over one cycle of FA 1 and FA 2 in Figure 4.11a under the e�ect of power
gradients without lateral hydraulic forces.
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Figure 6.8: Lateral strain gradients ∆ε/∆x at grid 5 over the peripheral FAs 1 and 2.
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elastic strain gradient. Second, the GTs remain under tension over the entire cycle due to these coupling

forces. Creep is always faster at the hotter side of the FAs so that under tension a positive creep strain

gradient is present over the FA structure, promoting the deformation in the direction of the gradient. For FA

2, the compressive HD and weight forces on the GTs quickly exceed the tensile grid coupling forces. Under

this compression, a negative creep strain rate gradient develops over the GTs so that the creep counteracts

the initial deformation, causing a strong decrease of the amplitude. For FA 1, such an e�ect becomes only

visible shortly before EOC. After transition to HC and CC, steps 17 and 18, the thermal gradient over the

FRs disappears so that the de�ection of FA 1 decreases. The de�ection of FA 2 remains relatively constant

because almost no coupling e�ect between the FRs and the FA structure is present anymore.

In conclusion, the permanent deformation of FAs under the e�ect of power gradients is often the result

of several coupled mechanisms in the GTs, the FRs and the spacer grid structure. Which mechanism is

dominant depends on several parameters, such as the value of the power gradient, the neutron �ux level,

and the relative importance of the creep, growth, and relaxation rates, and must be determined for the

speci�c FA conditions. However, it is unlikely that the highly deformed cores observed in pressurized water

reactors (PWRs) are only due to di�erential creep and growth because the FA deformations are limited to

the peripheral regions with high gradients and the deformation amplitudes are relatively moderate compared

to the potential deformation due to lateral hydraulic forces observed in the previous analysis.

6.2.3 Sensitivity analysis of FA creep deformation with uncertainty

parameters

This analysis, which was �rst published in Wanninger et al. (2016b), investigates the sensitivity of the FA

creep deformation to di�erent in�uencing parameters over the entire FA life. For this reason, the previous

de�ection analysis of a single isolated FA over one reactor cycle is extended over the equivalent duration

of four reactor cycles, corresponding to a BU of approximately 50 GWd/tHM. The hydraulic loads and the

heat generation are assumed constant over the FA lifetime for this simulation experiment and for the test

a constant lateral force of Flat = 50 N is applied at the FA mid grid. This discrete force is assumed to be

representative of the e�ect of the distributed lateral hydraulic loads at a certain point in the reactor. The

monitored output variable for the sensitivity analysis is the evolution of the FA lateral de�ection ulat at

grid 5. Figure 6.9 gives the calculated evolution over BU of the lateral FA de�ection ulat for the simulation

experiment with best estimate (BE) parameters.

In this second sensitivity analysis we set the potential sti�ness increase obtained from the �rst analysis in

section 6.1.4 in relation to other input parameters by means of the described FA creep deformation simulation

experiment. These parameters are usually linked to relatively high uncertainties which must be assessed �rst.

The �rst objective of this analysis is to investigate how e�cient the deterministic potential sti�ness increase

is in view of the uncertainties of other in�uential parameters. At the same time, this analysis allows to

evaluate the relative in�uence of the di�erent uncertainty parameters on FA bow. Table 6.3 speci�es the

sensitivity input parameters for the FA creep deformation simulation experiment. The sti�ness parameters

of the previous analysis in Table 6.2 are grouped into one input factor, parameter 1, assuming that all

proposed modi�cations can be implemented. The other input parameters can be divided into two groups:

(1) boundary conditions (BCs), parameters 2 to 4, and (2) material evolution laws, parameters 5 to 7. The

BC group comprises the lateral force representing the cross-�ow, material temperatures and fast neutron �ux.
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Figure 6.9: Evolution over BU of the monitored output
variable (lateral FA de�ection ulat) for the simulation ex-
periment with BE parameters.

Figure 6.10: Example for predicted versus
measured secondary creep strain (Limbäck and
Andersson, 1996)

.

During reactor operation, the temperature and fast neutron �ux are relatively well controlled. The input

uncertainty for the fast neutron �ux is assumed to be ±3% around the nominal value. The uncertainty about

temperature is assumed to be approximately ±3 ◦C. For the lateral force, an uncertainty of ±20% around

the nominal value is assumed as a �rst approach. The second group is associated to the material evolution

laws due to creep and growth processes. Experimental measurements usually show a substantial spread

for the creep and growth strains of Zirconium alloys under neutron irradiation. The best estimate (BE)

models based hereupon are consequently linked to modeling uncertainties due to this spread. Figure 6.10

gives a comparison between the predictions of the steady-state creep model by Limbäck and Andersson

(1996) and measurements of secondary creep strain of Zircaloy claddings under constant conditions. Based

on these values, we estimate an uncertainty of ±20% about the BE Zry-4 creep constants, parameter 5,

which are derived in section 4.2. Creep processes are also the main drivers of the grid spring relaxation

and the opening of the grid-cladding gap, expressed jointly by parameter 6. Accordingly, we also assume

an uncertainty of ±20% about the nominal value for the exponential grid spring relaxation constant, which

Table 6.3: Sensitivity analysis input parameters for the FA creep deformation test.

Param.
#

Variable Minimum
multiplier

Maximum
multiplier

Description

1 FA sti�ness increase, see Table 6.2
2 Flat 0.8 1.2 Applied lateral force at mid grid
3 φ 0.97 1.03 Fast neutron �ux (>1 MeV)
4 T 0.99 1.01 Temperature
5 Ccr 0.8 1.2 Constant for GT and FR creep

6
Cgrid 0.8 1.2 Constant Zr-alloy grid spring relaxation
dgap 0 2 Gap size between Zr-alloy grid and cladding

7
Cgr,FA 0.25 2 Constant for FA growth
Cgr,FR 0.8 1.2 Constant for FR growth
Chd 0.95 1.05 Factor for HD spring residual force
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is derived in section 4.5.1. For the gap-opening behavior, we assume that for a slow grid spring relaxation

the FR creep-down is completely accommodated during the grid spring relaxation and no gap opens. For

a fast grid spring relaxation, the gap opens up to a maximum value of 20 µm. Both extremal cases are

represented graphically in Figure 6.11. The evolution of the HD force, parameter 7, is mainly linked to the

FA growth and the relaxation of the HD springs. The parameter range for Cgr,FA
1 is estimated based on the

measurement data spread of Zry-4 FA growth in Figure 4.7. For FR growth, the same parameter spread as

for creep is used because the data scattering appears not to be as high as for GT growth, see Figure 4.8. As

for the HD spring, residual forces at EOL of ±5% around the nominal value de�ned by equation 4.25 are

assumed.
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Figure 6.11: Literature values (Billerey, 2005, in blue) and
deduced model nominal (nom.), minimum (min.) and maxi-
mum (max.) values for the normalized spring force and gap
size of Zry-4 mid grids.

Figure 6.12: Morris' |µ| and σ measures for
the last time step of the FA creep deformation
simulation experiment for the input parame-
ters in Table 6.3.

Figure 6.12 gives Morris' elementary e�ect measures for the last time step of the creep deformation simulation

experiment. We can identify parameters 1, 2, and 5 as the predominant parameters for the selected input

range. As for the linear e�ects, expressed by the measure µi, the largest in�uence on the solution can be

attributed to the uncertainty about the GT and FR creep, parameter 5. This parameter even has a larger

in�uence than the de�ection-inducing lateral force, parameter 2. The third-most in�uential parameter is

due to the proposed sti�ness increase, parameter 1. Then parameters 7, 6, 3, and 4 follow, in the order of

decreasing in�uence. The σi measures, that is, the nonlinear e�ects and the parameter interactions, play

a more important role for the creep deformation than for the previous analysis, but are still inferior to the

linear e�ects. For σi, parameters 1, 2, and 5 have similar magnitudes of importance. To better compare the

relative in�uence of the di�erent parameters between di�erent BUs, the normalized measures µ′i(BU) and

σ′i(BU) are de�ned.

µ′i(BU) =
µi(BU)∑7
i=1 µi(BU)

(6.1)

σ′i(BU) =
σi(BU)∑7
i=1 σi(BU)

(6.2)
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Figures 6.13a and 6.13b give the BU-dependent evolution of these normalized measures. Both �gures indicate

that parameters 1 and 2, the sti�ness increase and the applied lateral force, are the predominant factors for

the BOL condition since no radiation e�ects are considered. During the �rst cycle, particularly parameters

5 and 6 become important while the relative contribution of 1 and 2 decreases. Parameter 6 is especially

in�uential during the �rst cycle when the FR creep-down determines the grid spring relaxation. With

higher BU, after about 2 cycles, parameter 7 outweighs parameter 6. This can be attributed to the fact

that neutron-induced growth shows its e�ect particularly for high BUs. Similarly, parameter 5 becomes

more important than parameters 1 and 2, making it the most in�uential parameter in this analysis. Most

other parameters remain relatively constant after the �rst cycle. We conclude that for reducing the creep

deformation an increase in FA sti�ness plays an important role, but the uncertainties about the lateral force

and the creep rate can outweigh the e�ect of an increased FA sti�ness.
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Figure 6.13: BU-dependent evolution of the normalized Morris measures for the input parameters in
Table 6.3.

6.3 In-reactor creep deformation of FA rows over one cycle

In the previous sections, only one single isolated FA has been investigated, neglecting the coupling between

neighboring FAs which occurs when the relative deformation is larger than the gap size. In this section, the

investigation is extended to a row of 15 FAs in the reactor core, interconnected by structural gap elements

as described in section 3.2.4. Figure 6.14a depicts the entire system as represented by the ANSYS Graphical

User Interface (GUI). To better appreciate the FA deformations, the FAs in the result plots are reduced to

a line de�ned by the displacements at the grid levels. Figure 6.14b gives the undeformed con�guration of

the FA row. For the in-core condition, the left and right borders of the plots mark the left and right reactor

walls formed by the core ba�e, which is assumed sti�. For the ex-core condition, the plot width is increased

such that all FAs �t into the plot without overlapping. Each major tick corresponds to the initial gap size

between undeformed hot FAs of 1.6 mm. The major ticks are subdivided into four minor ticks corresponding

to a distance of 0.4 mm.

The objective of this section is to investigate the sensitivity of the considered mechanical system of one

FA row to the di�erent in�uencing mechanisms presented so far: thermal and �ux gradients, the alloying

condition, the hydraulic condition, the creep and growth processes, and the interaction with initially bowed

FAs. We want to assess the in�uence of the uncertainty about the discussed parameters on both the bow
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Figure 6.14: Considered system of a row of 15 FAs in the reactor core.

amplitudes and the bow patterns. Unlike for the case of a single FA, it is more di�cult to judge the e�ect

of a parameter change by monitoring a single output variable due to the large number of degrees of freedom

(DOFs) in the FA row. The deformation state is not only characterized by the average magnitude of the

deformation amplitudes, but also by their directions and the FA distortion. A deformed core may exhibit a

very di�erent deformation shape despite having the same nominal average deformation amplitude. Moreover,

FA row creep calculations over one reactor cycle have a signi�cantly increased computational cost compared

to a single FA. For these reasons, a systematic sensitivity analysis as performed in sections 6.1.4 and 6.2.3

is not appropriate to investigate the sensitivities of the FA row. Instead, a more simplistic approach is

chosen. Departing from a reference case, we introduce extremal parameter changes within the previously

de�ned uncertainty bounds or parameter ranges. This reduces, on the one hand, the number of simulation

runs to be executed. On the other hand, applying this strategy we can demonstrate the possible e�ect of

uncertainties on the �nal bow pattern, rather than concentrating on the deformation amplitude only. The

considered uncertainty parameters can be limited to those that have proved to be the most in�uential in

the previous sensitivity analysis over a single FA. The outcome of this analysis shows that it is essential

to consider possible uncertainties about the evolution of the structural creep and the distribution of the

hydraulic forces. Both parameters exhibit an important in�uence on the solution over the entire operational

life of the FAs, see Figure 6.13a. Besides, two other parameters proved to have a non-negligible in�uence

for certain BU conditions. First, uncertainties about the grid relaxation rate should be considered in the

simulation of FAs in the �rst operation cycle, that is, for initially fresh FAs. Second, uncertainties about the

FA growth should be considered for high-BU FAs. This concerns not only the evolution of the HD force but

also the di�erential growth. Therefore, a preliminary analysis is �rst performed without hydraulic forces to

investigate the e�ect of the breakaway growth on the FA deformation due to �ux gradients, see section 6.3.1.

Then, the actual reference analysis is performed in section 6.3.2, including BE creep, growth, and relaxation

laws, as well as a symmetric hydraulic condition. Starting from this reference case, the sensitivity of the

simulation results to di�erent parameter changes is investigated. First, the hydraulic condition is switched

from the symmetric distribution in Figure 5.14 to the asymmetric distribution in Figure 5.16, see section 6.3.3.
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Then, the uncertainties about the creep, growth, and relaxation models are included in section 6.3.4. In

addition, the e�ect of initially bowed elements on the FA row will be investigated in section 6.3.5. Finally,

we perform simulation runs including a two-way �uid-structure interaction (FSI) between the coolant and

the FA structure in order to investigate the e�ect of the backcoupling of the deformed structure on the �ow,

see section 6.3.6.

Due to their symmetric con�guration, we can use the �rst two cases to verify the sensitivity of the system to

the alloying condition. For this purpose, the FAs to the left (1 to 7) are de�ned to be made of conventional

Zry-4 whereas the FAs to the right (8 to 15) are made of advanced alloys for these symmetric cases. For all

following calculations with asymmetries, only FAs with advanced-alloy GT and FR materials are modeled

because they have become the standard in most Western PWRs. First results of the analyses over a FA row

have been published in Wanninger et al. (2017, 2018).

6.3.1 Preliminary analysis: e�ect of thermal and neutron �ux gradients

without hydraulic forces

The single-FA analysis performed in section 6.2.2 demonstrated that a certain amount of the FA deformation

can be explained by di�erential creep and growth particularly in regions with high gradients. To illustrate

the e�ect of these gradients, a run without lateral hydraulic lateral forces is done using the lateral power

and BU pro�les presented in Figure 4.11a. Figure 6.15a gives the thermoelastic equilibrium at BOC. Since

the highest gradients are found at the core extremities, larger e�ects can only be appreciated near the core

ba�e. The FAs bend in the direction of increasing thermal gradients at the outer FA positions. A clear

di�erence between the fresh FAs and the high-BU FAs becomes visible although a similar thermal gradient

is present over the two outer FAs. The bending is much stronger for the fresh FAs since the FRs are still

tightly coupled to the FA structure while for the high-BU FAs the Zr-alloy grid springs are nearly relaxed

and transmit hardly any coupling forces on the structure. At EOC, Figure 6.15b, a permanent FA bow

in the direction of increasing gradients is appreciable. This is due to the di�erential GT growth causing

a positive total strain gradient in the direction of increasing �ux, see Figure 6.16a, which gives the lateral

strain gradients over the GTs at grid 5 for FA 1 with BE growth. Still, only relatively small bow amplitudes

below 1 mm are observed. This is because during operation the di�erential growth is compensated for by the

di�erential creep of the compressed GTs. The total strain gradient takes consequently relatively low values.

Figure 6.15c gives the results after one cycle of operation for the case with UB growth rates. The FAs exhibit

a signi�cantly stronger permanent deformation at EOC when compared to the BE case. This is due to the

high di�erential growth as a result of the accelerated growth rate, which exceeds signi�cantly the di�erential

creep in the opposite direction, see Figure 6.16b. In addition, the de�ection amplitudes are promoted by the

decreased sti�ness of the FAs as a result of quickly increasing HD forces due to the accelerated axial growth,

but only to a minor extent. For the conventional-alloy FAs at the left, the maximum de�ection reached

under operation is of about 5.6 mm for FA 1, for the advanced-alloy FAs with roughly half the growth

rate the maximum de�ection is somewhat over 3.3 mm for FA 15. Figure 6.15d illustrates additionally the

deformation shapes obtained for the high-growth case in the hanging ex-core condition, that is, after releasing

the FAs from all mechanical constraints and lifting the FAs out of the core. In the ex-core condition, the

maximum bow amplitude, FA 1, increases to 5.92 mm since the lateral support provided previously by the

neighboring FAs is released. On the other hand, the de�ection of FAs 2 to 4, 6, and 14 decreases since

153



Chapter 6. In-Reactor Simulation Results and Sensitivity Analyses

(a
)
B
O
C
u
n
d
er

o
p
era

tio
n
.

(b
)
E
O
C
in
-co

re
u
n
d
er

o
p
era

tio
n
u
sin

g
B
E
g
row

th
law

s.

(c)
E
O
C
in
-co

re
u
n
d
er

o
p
era

tio
n
u
sin

g
U
B
g
row

th
law

s.
(d
)
E
O
C
ex
-co

re
u
sin

g
U
B
g
row

th
law

s.

F
ig
u
re

6
.1
5
:
FA

deform
ations

for
di�

erent
op
eration

states
under

the
e�
ect

of
therm

al
and

�ux
gradients

w
ithout

hydraulic
forces.

FA
s
1
to

8
consist

of
Z
ry-4

m
aterials

and
FA

s
9
to

15
of

advanced
Z
irconium

alloys.

154



In-reactor creep deformation of FA rows over one cycle

their deformation resulted mostly due to the mechanical coupling with a neighboring FA. Furthermore, the

stress sti�ening e�ect contributes to the amplitude decrease. This is because after removing the HD force

and lifting the FAs, tensile stresses are present in the GTs. Therefore, also the de�ection of FA 9 is reduced

although it has not been in contact with neighboring FAs. In conclusion, UB di�erential growth can cause

signi�cant FA bow amplitudes at FA positions with high �ux gradients. The overall e�ect on the remaining

FAs in the core is, however, rather small.

Comparing the conventional-alloys FAs at the left with the advanced-alloy FAs at the right, it can be

concluded that the de�ection can be reduced by half using FAs with advanced alloys. This demonstrates the

importance of the alloying condition for the bow problem. Moreover, the results illustrate the signi�cance

of uncertainty analysis for bow problems. When using BE laws, only moderate bow is observed for both

Zry-4 and advanced materials. Using UB laws, the deformation amplitudes increase signi�cantly due to high

di�erential growth in regions with high �ux gradients.
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Figure 6.16: Lateral strain gradients ∆ε/∆x at grid 5 over the GTs of FA 1 for BE and UB GT growth.

6.3.2 Reference case: symmetric hydraulic forces with best estimate (BE)

creep and growth

To create the reference case, the symmetric hydraulic load distribution from Figure 5.14 is imposed on

the FAs additionally to the thermal and �ux gradients and BE creep and growth laws are used for the

simulation. Figure 6.17a depicts the thermoelastic equilibrium in the FA row at BOC. While the medium-

BU and high-BU FAs are clearly deformed in the direction of the hydraulic force, the fresh FAs exhibit

only little deformation. Although these FAs undergo an important outwards-directed hydraulic load, both

directly due to the applied hydraulic forces and indirectly due to the contact forces from the two neighboring

FAs, the inward thermal bending nearly cancels out this e�ect since the thermal gradient acts in the opposite

direction of the hydraulic load. As operation advances and the sti�ening e�ect due to the grid-to-rod coupling

diminishes in the fresh FAs, more and more contacts are gradually closed between the outer FAs, forming a

cluster of mechanically coupled FAs. This cluster of FAs moves slowly towards the core ba�e. At middle of
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cycle (MOC), Figure 6.17b, the contact with the core ba�e is closed for the conventional-alloy FAs and is

about to close for the advanced-alloy FAs. At EOC, Figure 6.17c, the six outer FAs and the core ba�e are

coupled when using the conventional-alloy FAs. For the advanced-alloy FAs, the deformation rate is only

about half as fast. After releasing the hydraulic forces and transition to HC, Figure 6.17d, only a minor

change in amplitude is appreciated for FAs 2 to 5. This means the hydraulic lateral load was �nally mainly

supported by the core ba�e and the outer FA and not by the elastic straining of the FAs. After transition to

CC, Figure 6.18a, the deformation increases somewhat due to the increased HD forces. Figure 6.18b �nally

gives the ex-core condition. It becomes clear that before opening the gaps, the outer FAs have supported

the inner FAs since the de�ection of the outer FAs 1 and 15 decreases while that of the neighboring FAs

increases. The FA de�ection amplitudes generally decrease compared to the in-core CC due to the stress

sti�ening e�ect when lifting the FAs. FA 6 undergoes the largest de�ection of nearly 6 mm or more than

three times the initial FA gap size.

To summarize, Figure 6.19 gives the evolution of the maximum and root mean square (RMS) displacements

over the entire cycle including the reactor shutdown steps depending on the used alloy. During operation,

a stepwise increase is observed for the maximum amplitudes due to the nonlinear e�ects introduced by

the gaps. The RMS amplitudes increase continuously with a decreasing deformation rate because the core

ba�e places a strong constraint on the total FA deformation. After the transition to HC following the

�nal operation step 16, the de�ection of the FAs decreases because the hydraulic forces are removed. With

temperature decrease to CC, step 18, the deformation increases somewhat because of increased HD forces

in this state. In the ex-core condition, the FA amplitudes �nally decrease due to the stress sti�ening e�ect

when lifting the FAs. It can be concluded that the use of advanced alloys has the potential to reduce the

maximum and average deformations by about one quarter to one third.

6.3.3 First parameter change: asymmetric hydraulic forces with BE creep and

growth

For the symmetric cases, the de�ection amplitudes are limited by the symmetry BC in the middle of the row.

Under perfect symmetry the de�ection is limited to a value equivalent to seven gap sizes, that is 11.2 mm

in the present case. In reality, asymmetric bow patterns and bow amplitudes up to more than 20 mm have

been observed. This indicates that the hydraulic driving force might also exhibit an asymmetric distribution

in the core. Accordingly, a asymmetric �ow pro�le has been assumed at the core inlet by shifting to the

left the maximum in the middle of the symmetric pro�le by a distance of two FA pitches, see section 5.2.2.

Due to the asymmetric force distribution as a result of the shifted inlet pro�le, the maxima for the elastic

de�ection occur for the FAs at the right, see Figure 6.20a. Due the increased forces and due to the fact

that the forces attack more centrally, the elastic de�ections are higher than for the symmetric case with

a maximum of 7.61 mm for FA 10. The plot shows also the importance of the concept of the equivalent

force introduced in section 5.2.3. Although FA 6 undergoes a clearly smaller total lateral force than FA 4

according to Figure 5.14b, its maximum de�ection is larger. This is linked to the fact that the equivalent

force, which is larger for FA 6, is more relevant for an estimation of the maximum de�ection. Due to the

higher elastic deformation and the inherently higher stresses, also creep will be faster than for the symmetric

case. At EOC under operation, Figure 6.20b, at least one contact is closed from FA 9 to 15. Due to the

unilateral force on most FAs, mostly C-shapes are created. Only the FA 5 undergoes forces in opposite
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direction at the bottom and the top and exhibits consequently a S-shape. Figures 6.20c and 6.20d �nally

give the deformation states at EOC in CC and ex-core.

6.3.4 Second parameter change: creep and growth uncertainties

With the second parameter change, we account additionally for the e�ect of the uncertainty in the creep and

growth models. To assess the variability of the solution due to the uncertainty about the creep and growth,

two extremal cases are de�ned which create maximum and minimum deformations in the core. That is, we

seek to create one simulation with maximum positive (+) amplitudes and one with maximum negative (−)
amplitudes, only by modifying the creep and growth rates within the uncertainty bounds de�ned in sections

4.2.1 and 4.3.1 and without changing the hydraulic condition. As �ow BCs, the asymmetric hydraulic

condition due to the shifted inlet �ow pro�le is chosen. That is, the results in Figure 6.20 represent the BE

case.

Table 6.4: Creep and growth models used for the di�erent FAs in the core row for the two extremal cases:
lower bound (LB), best estimate (BE), or upper bound (UB).

Case FA #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(−) Creep UB BE LB
Growth BE UB BE UB

(+)
Creep LB BE UB
Growth UB BE UB BE

Table 6.4 summarizes the creep (including creep relaxation) and growth conditions assumed for the di�erent

FAs to generate the di�erent bow patterns. As for the growth, only UB and BE conditions are distinguished

to di�erentiate between FAs which undergo or not breakaway growth. The UB conditions are assumed for

those high-BU FAs that will bend in the respective direction due to di�erential growth. As for the creep, UB

conditions are assumed for the FAs with prevailing lateral force in the respective direction and lower bound

(LB) creep in the opposite direction, see the force histogram in Figure 5.16b. For FA 5, which is loaded

similarly in both directions, BE conditions are assumed.

Figure 6.21 gives the di�erent results. Important di�erences exist between the (−) case and the (+) case,

regarding both the FA deformation amplitude and pattern. For the FA exhibiting the maximum bow

amplitude, at grid level 6 of FA 9, a variation of approximately ±25% about the value obtained for BE creep

and growth can be observed. That is, the maximum amplitude may be increased by almost 50% merely

due to the uncertainty about the creep law. As for the deformation pattern, a particularly strong e�ect

becomes evident for the peripheral FAs undergoing UB growth. The inward bow due to the accelerated

di�erential growth signi�cantly outweighs the bow due to creep as a result of the outward hydraulic forces.

The deformation amplitude and shape of the concerned FAs change strongly when compared to the BE

case. That is, there is a high uncertainty about the �nal deformation pattern for the high-BU FAs placed

at positions with high �ux gradients.

Figure 6.22 gives the total deviation of the lateral displacements ux due to the joint e�ect of both parameter

changes. That is, it compares the results of the reference case with symmetric hydraulic forces with the

results of the extremal case with a shifted coolant inlet velocity pro�le and UB creep for the FAs at the

right. In this extremal case, there is a maximum deviation in de�ection amplitudes of 6.88 mm while the

maximum displacement in the reference case was 4.52 mm. The RMS variability of the displacements is
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Figure 6.22: Deviation of ex-core lateral displacements ux at EOC between the reference case and the case
with extremal parameter changes.

2.81 mm while the RMS of displacements of the reference is 2.04 mm. The variability of the results due to

the uncertainties in the modeling are hence of the same order of magnitude as the deformations themselves.

That is, the bow pattern may be modi�ed fundamentally under unfavorable circumstances. Certainly, the

given results represent an extremal case; but they demonstrate that a good knowledge of the speci�c creep

behavior and the core hydraulic condition is crucial for making reliable predictions.

6.3.5 Analysis with initially bowed elements

The objective of this analysis is to investigate the e�ect of initially bowed elements on the FA row as compared

to the system under the same conditions without initial bow. It is important to analyze this e�ect in order to

estimate how in�uential the initial deformation state at BOC is on the outcome of the bow pattern at EOC.

This provides, for example, an idea to which degree highly precise measurement techniques for measuring

the FA bow are necessary and how much e�ort needs to be invested in the accurate prediction of the in-core

FA deformation at BOC. The evident e�ect of setting bowed FAs next to straight FAs is that contact with

the neighboring FAs is established at least at the grid level with maximum amplitude if the bow amplitude

is larger than the gap size. The bowed FAs then exert lateral loads on the neighboring FAs, thus modifying

the strain distribution and consequently the creep rate and direction. It is expected that, if no other lateral

loads are present, the initially straight FAs will be permanently deformed according to the shape of the

neighboring initially bowed FA. Inversely, the bow amplitude of the initially bowed FA itself will be reduced

due to the reaction force as a result of the contact with its neighbors.

The analysis consists of two reactor cycles. In the �rst cycle, initial plastic bow shapes are imposed on three

FAs. The bow shapes and amplitudes to be created are de�ned according to the typical observations in

PWRs with deformed cores, namely:

• one FA with an S-shape, placed at position 5;

• one FA with a C-shape and high deformation, placed at position 11; and
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• one FA with a C-shape with reduced deformation, placed at position 14.

For sake of simplicity, discrete lateral forces are applied at those grid levels which are to exhibit the maximum

amplitude. For the C-shape, the force is exerted at grid level 5; for the S-shape, forces are applied in opposite

directions at grid levels 3 and 7. To obtain an S-shape with similar amplitudes at the top and bottom, the

absolute value of the force at grid level 3 is chosen twice as high than at grid level 7 to account for the fact

that the FA sti�ness is higher in the lower part of the FA and the creep is increased in the upper part. In

this �rst cycle, no contact between neighboring FAs is considered. That is, the initial gap size is chosen

large enough so that no contact between the FAs occurs. The unloaded � and not to be bowed � FAs form

already part of this cycle, but no creep and growth calculations are performed. In the following second cycle,

contact is established between the pre-bowed FAs and the straight FAs and creep and growth is activated

for all FAs.

Figure 6.23a depicts the elastic deformation of the initially considered FAs as a result of the applied forces.

All FAs are assumed to be medium-BU FAs with an average �uence of Φ = 4× 1021 n cm−2.The resulting ex-

core bow shapes after one cycle are given in 6.23b. Figure 6.23c gives the equilibrium in CC at the beginning

of the following cycle once the pre-bowed FAs are coupled to the other straight FAs. The initially bowed

FAs are restrained by their neighboring FAs, thus inducing lateral reaction forces at the contact levels. Due

to the structural support by the neighboring FAs, the de�ection amplitude of the pre-bowed FAs decreases.

This e�ect is most pronounced for FA 11, for which the de�ection is reduced by more than one third. Due

to the coupling, nearly the entire FA row is deformed previous to operation of cycle 2. In this second cycle

two cases are analyzed. The �rst case considers no lateral hydraulic forces. That is, a uniform core inlet and

outlet velocity pro�le is assumed. In this manner, the e�ect of the initially bowed FAs can be analyzed as

an isolated phenomenon. In the second case, hydraulic forces from the symmetric pro�le are imposed during

the second cycle, resulting in the deformation state depicted in Figure 6.23d at BOC 2.

For the �rst case, no major movements are detected during the reactor cycle due to the lack of additional

forces, see Figure 6.24a, which gives the deformation state at EOC 2. Due to the constant deformation state,

a typical relaxation process progresses during operation. The elastic strain is gradually converted into plastic

creep strain while the total strain remains nearly constant. Figure 6.24b gives the �nal ex-core deformation

shapes. Due to the mechanical coupling between the FAs, the de�ection amplitude of the FAs with initial

bow is reduced, up to nearly one half for FA 11. On the other hand, the FAs neighboring the pre-bowed

assemblies remain permanently deformed due to the interaction.

For the second case, the deformation during operation is dominated by the hydraulic forces; however, the

pre-bowed FAs introduce additional perturbations and modify the bow pattern. Figure 6.24c shows the �nal

operation state at EOC. As for FAs 3 and 14, the hydraulic loads appear to outweigh the pre-bow e�ect. For

FA 11, the deformation shape is still strongly in�uenced by the initial bow. The �nal ex-core deformation

can be appreciated in Figure 6.24d. Due to the e�ect of the unilateral hydraulic forces, the S-shape of FA 3

has transformed into a C-shape with a maximum in the lower portion of the FA. FA 11 forms now a W-shape

and the amplitude is reduced to less than a quarter of the original value whereas the initial bow direction of

FA 14 has been inversed by the creep deformation due to the hydraulic loads. Altogether, a clear di�erence

in the �nal bow pattern can be observed when comparing the deformation to the reference state with only

initially straight advanced-alloy FAs in the right half of Figure 6.18b. This con�rms a strong e�ect of the

initial bow on the �nal bow patterns.
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6.3.6 The e�ect of �uid-structure interaction (FSI)

So far, only a one-way coupling from the �uid to the structure has been considered. That is, the coolant �ow

acts on the FA structure by means of a hydraulic force distribution but not vice versa. An additional e�ect

is added when considering a two-way FSI between the coolant and the FA structure. That is, the feedback

of the deformed structure on the �ow is accounted for. Due to the bowed FAs, the gap sizes between the

FAs are modi�ed. This can lead to a redistribution of the �ow in the core and therefore to a modi�ed lateral

force distribution on the FAs. Details about the applied FSI modeling method are given in section 5.4 and

by Ruiz Antón (2016).

The reference case chosen for this simulation is the �rst run case described in section 6.3.5 which includes

initially bowed FAs but no lateral hydraulic forces. In this manner, we can investigate the isolated e�ect

of the lateral hydraulic forces resulting from the �ow redistribution due to the deformed core. The initial

con�guration for the FSI calculation is hence the one given in Figure 6.23c, in which the deformation of the

core is plotted after coupling the initially straight FAs and the FAs with initial bow. This deformation state

represents the initial condition for the porous-medium CFD calculation. Figure 6.25a gives the resulting �ow

forces on the deformed FAs due to �ow redistribution in the core. The �ow forces are maximum over the most

deformed FAs and their orientation indicates that the �ow is pushed away from closing gaps towards their

neighboring gaps that are opening up. Figure 6.25b gives the resulting thermoelastic equilibrium at BOC 2

accounting for the hydraulic forces due to the deformed core. The arrows emphasize schematically the path

of the �ow redistribution causing the hydraulic forces in Figure 6.25a. However, the predicted forces due to

FSI are about one order of magnitude smaller than the hydraulic forces due to the non-uniform �ow pro�les

at the inlet and outlet. Note that, for example, a scale of 400 N/m per FA distance is used in Figure 5.14

while in 6.25a it is 100 N/m per FA distance. Therefore, only minor deformations are induced due to the

�ow redistribution. Due to the small feedback of the structural deformation on the �ow �eld, a large load

step size of ∆tload = 1000 h can be used for the operation load steps. Figure 6.25c gives the �nal ex-core

deformation of the FAs after performing eight load steps according to the coupling scheme in Figure 5.17.

Only small changes can be appreciated when comparing the bow shapes with those obtained without FSI

in Figure 6.24b. To highlight the e�ect of FSI, Figure 6.25d gives the displacement deviation ∆ux between

the cases with and without FSI. Although the absolute e�ect on the �nal deformation is rather small, it

can be appreciated that FA 3 has been pushed somewhat to the left because of the outward cross-�ow over

the central FA section. For the same reason, FAs 11 and 14 have been pushed somewhat to the right.

The outward �ow forces on the two outer FAs induce additional outward bow. These hydraulic loads are,

however, a result of the boundary e�ect of the �ow at the core ba�e and not due to the �ow redistribution.

In conclusion, the FSI has only a minor e�ect on the �nal bow shapes. Due to the �ow redistribution, both

loads counteracting the initial deformation are generated, mostly in the lower part of the domain, and loads

enhancing the initial deformation, mostly close to the outlet. Due to the coolant advection, the former loads

attack more centrally and, consequently, outweigh the e�ect of the latter. Consequently, FSI with deformed

FAs tends to decrease the bow amplitudes of strongly deformed FAs.
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Chapter 7

Conclusions and Outlook

This �nal chapter summarizes and discusses the particularities of the developed FA bow model, the obtained

analysis results, and the conclusions that can be drawn. In this context, an outlook on possible future work

is also given with the objective to further develop the FA bow model.

7.1 Summary of achievements

7.1.1 Development of a computational FA bow model

FA structural model The �rst major step in this work was the set-up of a structural model of a generic

PWR FA with the FEM code ANSYS Mechanical APDL, described in chapter 3. The most important model

features can be summarized as follows:

• The FA structural model has been designed as a full 3D model, taking into account that the defor-

mations in the cross-sectional directions are not independent of each other due to the nonlinearities in

the fuel rod (FR) support and the creep laws. Common 2D-only FA structural models neglect these

nonlinearities and calculate separately the deformation of each FA row in each lateral direction of the

reactor core.

• A model reduction method was developed, which decreases the run time and memory expenses by

more than two third for the 3D model and more than 80% if only two dimensions are considered, see

section 3.4.

• The axial and lateral out of pile (OP) structural response of the generic FA model used in this work

has been validated qualitatively with de�ection tests of fresh fuel assemblies (FAs), see section 3.5.

• The generic FA structural model can be adapted �exibly to any common PWR FA design of interest

by modifying the concerned structural parameters. As an example, a model parameter calibration

procedure was presented in section 3.6. With this method, a very good �t to OP de�ection test data

of a speci�c FA design could be obtained.
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• Based on the validated OP structural model, the in-core FA response can be predicted by applying

creep, growth, and relaxation models.

• By laterally coupling the FAs with gap-contact elements at the grid levels, a FA row model can be

created, which may also be extended to a 3D full-core model.

Several in-reactor simulation test cases demonstrated the capabilities of the model and served as best estimate

(BE) simulation experiments for the sensitivity and uncertainty analyses, whose results are summarized in

the following section 7.1.2. The observed in-reactor FA model response is in good agreement with what is

observed for reactor FAs:

• A majority of C-shapes was detected for the permanent bow after one reactor cycle in the FA row

calculations in section 6.3, but also S- and W-shapes were observed.

• A collective movement of the FAs in the simulated FA row was observed under the e�ect of the lateral

hydraulic forces, creating characteristic bow patterns after one cycle which depend on the speci�c

hydraulic force distribution, see sections 6.3.2 and 6.3.3. This is very similar to the collective bow

patterns observed in real reactor cores, see Figures 1.4a or 1.9a, for example.

• The model also demonstrates a good performance concerning the prediction of the stress sti�ening

e�ect. As observed for FAs in the reactor core, a signi�cantly lower sti�ness is obtained under a

compressive holddown (HD) force than under a tensile lifting force when unloading the core.

Creep, growth, and relaxation models An extensive literature analysis for available creep, growth and

relaxation data has been performed in the context of the de�nition of the in-reactor model parameters in

chapter 4. Both experimental data obtained from irradiated specimens and performance data of real FAs

deployed in a reactor core were used. Based hereupon, existing material model laws were examined for their

performance and new laws were developed for the description of the in-reactor evolution of creep, growth

and relaxation processes. Moreover, characteristic uncertainty bounds were de�ned for the di�erent model

laws based on this data analysis.

Reactor core hydraulic model A hydraulic model based on a porous-medium approach was developed

with the CFD code ANSYS CFX to estimate the distribution of lateral hydraulic forces on the FAs in the

reactor core, see chapter 5. In this context, di�erent core inlet and outlet velocity pro�les were discussed as

boundary condition (BC) to demonstrate the uncertainty in the prediction of FA bow.

7.1.2 Analysis of the FA bow model sensitivities and uncertainties

Di�erent sensitivity and uncertainty analyses were performed to investigate the sensitivity of the model to

di�erent in�uencing mechanisms based on the assumed uncertainty range for the concerned model parame-

ters. This section is subdivided according to the most important in�uencing mechanisms on FA bow, which

have been determined in the results section of this thesis.

FA sti�ness The �rst sensitivity analysis in section 6.1.4 screened the FA design for sti�ness parameter

optimizations which can provide an increase in the lateral FA sti�ness. After performing the analysis for
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both beginning of life (BOL) and end of life (EOL) conditions, it was shown that the highest overall potential

for a FA lateral sti�ness increase lies in the modi�cation of skeleton-related sti�ness parameters. The largest

potential for a FA sti�ness increase was attributed to the rotational sti�ening of the connection between

guide tubes (GTs) and the spacer grid. In addition, even small increases of the GT diameter can signi�cantly

increase the FA lateral sti�ness at all burnups (BUs).

HD force and FA growth It is well known that increased HD forces decrease the FA lateral sti�ness as a

result of increased compressive stresses. The occurrence of FA bow has often been ascribed to excessive HD

forces due to accelerated FA growth. In the single-FA sensitivity analysis it was found that the sensitivity of

the �nal bow amplitude to increased growth rates, by means of the HD force, is relatively low compared to

the in�uence of lateral hydraulic forces and the creep rates, see section 6.2.3. That is, smaller modi�cations

in the core hydraulics or the use of somewhat di�erent materials causing a potentially higher creep rate

are much more likely to cause increased FA bow. This was con�rmed in the calculations over one FA row,

section 6.3, in which the uncertainty about the hydraulic and creep conditions resulted to have a much higher

impact on the solution than the uncertainty about FA growth. A very signi�cant e�ect of growth on the

bow amplitude can only be expected when accelerated FA growth occurs in high-BU FAs at positions with

high neutron �ux gradients, see section 6.3.1. However, since this e�ect can be limited to a very reduced

number of FAs in the reactor core, the impact on the remaining FAs is rather small.

Creep The sensitivity analysis performed with the single-FA creep deformation test showed that the un-

certainties about the creep rate have a signi�cant impact on the �nal bow amplitude. The FA row structural

analysis demonstrated that under unfavorable conditions a variation of approximately ±25 % about the BE

simulation results can be expected, mostly due to the uncertainty about creep.

In addition, the sensitivity of the solution to the creep resistance of di�erent materials was demonstrated.

We observed an important bene�cial e�ect on the FA bow amplitudes when updating the GT materials from

conventional Zirconium alloys, such as Zircaloy-4, to more advanced alloys with Niobium content. The use

of these advanced alloys in recent years might be one of the reasons that bow amplitudes have become more

moderate and excessively bowed cores are only rarely observed anymore. However, this does not eradicate

the direct causes for the bow, which is probably due to increased lateral hydraulic forces as a result of a

di�erent hydraulic design.

Hydraulic Forces The lateral hydraulic forces appear to be the principal driving force of FA bow. In the

sensitivity analyses, the uncertainties about the lateral hydraulic force were shown to account for a large

part of the solution variability for both a single FA and the FA row. In addition, the hydraulic forces control

for the most part the �nal bow pattern in the FA row. As a bow-driving mechanism, the di�erences in the

hydraulic loads do not only act on the deformation rate by means of the magnitude of the loads, but also

on the bow direction by means of the load distribution. Therefore, changes in the hydraulic condition may

fundamentally modify the bow pattern and it is important to further develop the hydraulic model in order

to predict the �ow as accurately as possible.

Fluid-structure interaction (FSI) Only minor changes have been observed between calculations with

two-way FSI and calculations with only a one-way coupling from the �uid to the structure, see section 6.3.6.
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The trend of the results, indicating that FA bow amplitudes decrease when applying two-way FSI, is in

agreement with the results by Horvath and Dressel (2013) who simulated the FSI between FAs and the

coolant �ow with a more detailed �ow model. However, their calculations predict a substantially higher

impact of FSI on the bow amplitude than observed with the present porous-medium model. Experiments by

Stabel et al. (2011) also predict a more signi�cant impact of the two-way FSI. Therefore, a further re�nement

of the present model should be considered to verify the reliability of the model results. Recommendations

are given in the last paragraph of section 7.2.

Initial bow Section 6.3.5 presented simulation runs over two reactor cycles, in which only certain FAs

were deformed in the �rst cycle and then coupled to the other straight FAs in the second cycle of the same

run. This illustrated how bow patterns can propagate over several cycles. It indicates, furthermore, that if

the bow shapes are not measured after each cycle, the initial bow imposes another source of uncertainty for

the predictions.

7.1.3 Final conclusions

This thesis demonstrates the important challenges in FA bow modeling. The variability of the results due to

the uncertainties in the modeling is of the same order of magnitude as the deformations themselves. That

is, under unfavorable circumstances the bow patterns observed in the reactor may di�er fundamentally from

the bow patterns predicted with BE modeling methods. For a full-core 3D system, that will be implemented

in the future, it can be expected that the variance of the bow patterns increases further due to the higher

number of degrees of freedom (DOFs). Given the limited knowledge about the processes and the BCs inside

an operating core, it appears to be a challenge to predict a speci�c unique bow pattern. Instead, it is more

realistic to determine a distribution of potential bow patterns. To characterize the spread of the model

predictions, statistical measures can be introduced in the future to quantify more accurately the expected

deviations and their probability of occurrence.

In conclusion, it is recommended that bow calculations be always accompanied by an uncertainty analysis to

estimate the variability of the model predictions. Provided that the uncertainties are accounted for, FA bow

prediction models may o�er in the future important support to operators about the expected bow patterns

for a speci�c core loading plan. For this purpose, the next section proposes new further developments of the

presented bow model. In this context, additional measurement data must be acquired for model validation.

Moreover, any further development needs to be combined with a continuous e�ort to decrease the uncertainty

range for the mentioned BCs and model parameters. To reach these goals, a joint e�ort of reactor operators,

fuel suppliers, and academic institutions is required.

7.2 Towards a validated full-core FA bow model

There is a continuously strong interest by reactor operators for tools o�ering a reliable prediction of the FA

bow. Speci�c �elds of interest are, for example:

• the estimation of the impact of future hardware changes. The analysis of these e�ects can help to

avoid strongly deformed cores in the future or even to further reduce FA bow amplitudes.

• the prediction of the water gap distribution in the operating core. The FA bypass water gaps are an im-
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portant input parameter for reactor neutronics codes to predict modi�cations in the power distribution

due to opened or closed inter-FA gaps.

It is therefore of great interest to further develop the present bow model to provide an accurate prediction

of the bow amplitudes. For this purpose, a larger focus needs to be set on the model validation. That is,

the generic model results need to be validated quantitatively with in-reactor measurements to verify the

performance of the predictions. The following paragraphs present a possible roadmap for the development of

a validated tool for FA bow predictions. A stepwise validation and calibration strategy is o�ered, making it

possible to gradually extend the functionality of the model by adding new model features and simultaneously

adjusting the model performance to provide more and more realistic simulation results. The steps are

arranged in the order of increasing complexity, both regarding the implementation of new features and the

e�ort necessary for the validation or calibration. This roadmap represents one of many ways of proceeding

and has the necessary condition that the mentioned validation data are available.

Adaption to a speci�c FA design To provide reliable results, the �rst step is to adapt the FA model

to the FA design of interest by modifying the number of FRs and GTs, the geometric dimensions, and all

available sti�ness parameters. Speci�c design features, such as the material models and the details of the FR

support, should also match the considered FA type. Finally, the good �t of the model results to experimental

data of OP de�ection tests is to be veri�ed and, if necessary, a calibration is to be performed. Section 3.6

presents an example of such a calibration procedure.

FA EOL lateral sti�ness In addition to the de�ection tests of fresh FAs, FA lateral de�ection tests at

EOL are sometimes performed to assess the sti�ness decrease of the FA during the residence time in the

reactor. Such measurements can con�rm that the grid-spring relaxation and gap-opening model o�ers a good

prediction of the FA sti�ness decrease during BU. Calculation results of this type are given in section 6.1.3.

Such a validation would be the �rst step to gain more con�dence in the bow calculations because prediction

errors of the lateral FA sti�ness act directly on the stress distribution in the FA and therefore on the creep

rate.

Creating bow shapes as initial condition As a preliminary step to any validation based on initially

bowed FAs, a methodology must be developed to create permanently bowed FAs with similar deformations

to the measured ones. This is because the deformation must not be due to external loads but due to plastic

creep and growth strains. That is, the elastic stresses in the structure must be converted into creep strains

over several irradiation time steps so that the desired geometric shape is �burnt� in. A similar procedure was

applied in section 6.3.5 where a con�guration of lateral forces has been estimated to create FAs with initial

bow.

Transition ex-core to in-core Since most bow measurements are performed ex-core, the transition from

the ex-core bow to the in-core bow is one of the crucial steps in bow modeling and remains one of the large

unknowns. This relates to the change in bow shape and amplitude between the completely unconstrained

state ex-core and the strong constraints inside the reactor, that is, the axial HD constraint, the lateral and

rotational constraints at the FA bottom and top, as well as the inter-FA contacts. The HD constraint acts on

173



Chapter 7. Conclusions and Outlook

the FA lateral sti�ness by means of the stress sti�ening e�ect. Con�rming the good prediction of the stress

sti�ening behavior of the FA represents therefore a �rst important step towards validating the transition

between the in-core and ex-core condition. For bowed FAs after irradiation, the stress sti�ening causes, for

example, a decrease of the bow amplitude between the unconstrained FA standing in the core at end of cycle

(EOC) and the hanging state after the FA has been lifted out of the core, see the transition from step 20 to

step 21 in Figure 6.4a. Based on FA bow measurements performed in both standing and hanging conditions,

we can validate that the code predicts reliably the e�ect of the HD force on the FA bow amplitude and the

FA sti�ness.

In few cases, measurements are also performed for certain FAs at EOC both in-core in cold condition (CC)

and ex-core. With this data, the full e�ect of releasing the structural constraints on the FAs in the reactor

core can be validated. That is, we can assess how well the code predicts the displacement decrease due to

the release of the in-reactor rotational constraints and the HD forces, which corresponds to the transition

from step 18 to step 21 in Figure 6.4a. However, in a strongly deformed core, the inter-FA forces acting

on the FAs in-core at EOC could signi�cantly modify the in-core deformation. That is, the row model, or

potentially a full-core model, would need to be used for the validation and the measurements would need to

be done at least over one FA row in the core.

Full-core water gaps at BOC or EOC Once a good performance for the transition between the ex-

core and in-core conditions has been con�rmed for single FAs, we can proceed to the next validation step,

namely the prediction of the water gaps between the FAs in the core at beginning of cycle (BOC) and

EOC. Increased water gaps in some regions, and decreased gaps in others, potentially increase the quadrant

power and neutron �ux tilt in nuclear reactors (Andersson et al., 2005). Since the in-reactor neutron �ux

is measurable online during operation, such changes might be detectable. If the predicted power tilt agrees

with the measured values, this con�rms that the water gaps have been indicated accurately. By this means,

an indirect validation of the accurate prediction of the in-core deformation state might be possible.

A full-core model, which is discussed in the next paragraph, is necessary in most cases to predict the water

gaps. At BOC, high inter-assembly coupling forces are likely to occur between the FAs since after the

reshu�ing FAs with di�erent bow amplitudes and directions are placed next to each other. At EOC, in

turn, the bow shapes usually roughly �t together so that the coupling forces should be signi�cantly lower

and might even be negligible. Moreover, the simulation results presented in this thesis suggest that we

cannot generally neglect the elastic deformation due to lateral hydraulic forces, neither at BOC nor at EOC.

This is illustrated, for example, in Figure 6.17 for the EOC case and in Figure 6.23 for the BOC case. This

potentially complicates the predictions of both BOC and EOC water gaps because we would always need

the information about the hydraulic forces to make a reliable prediction.

Full-core calculations from BOC to EOC Once the calculations of the two previous steps perform

satisfactorily, the �nal objective in bow modeling can be tackled: the prediction and validation of the full-

core bow development from BOC to EOC. For the validation of such calculations, a larger database exists

because many bow measurement data have been collected for the ex-core FA deformation since the �rst

occurrence of FA bow. The implemented FA structural model has already been designed as a full 3D model

accounting for deformations in both cross-sectional dimensions. To obtain a full-core con�guration, we

must only de�ne additional FA nodes and elements at the di�erent FA positions. However, this substantial
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ampli�cation of the model size also implies a strong increase in computational expense and will require new

solutions to enhance performance. To determine the full-core water gap distributions at BOC, the current

shared-memory parallel processing on four central processing units (CPUs) may be su�cient because only

the elastostatic equilibrium without creep needs to be calculated. However, for full-core creep calculations

from BOC to EOC, it is recommended that distributed parallel processing with an increased number of

CPUs is implemented since the required memory and run time would increase strongly. In addition to a

full-core structural model, a powerful full-core hydraulic model is required. Recommendations for a further

development of the present hydraulic model are given in the last paragraph of this section.

FA reshu�ing When bow calculations over one single cycle deliver accurate results, there is a strong

interest in performing also the bow calculations for the following cycle based on these results. To be able

to perform such calculations with the present model, an e�cient FA reshu�ing functionality needs to be

implemented. For this purpose, the bow state from previous cycles obtained from previous calculation

runs must be transferred to the next one-cycle run. The �nal bow deformation is the result of the structural

equilibrium between the elastic, thermal, creep, and growth strain and the external constraints. In particular,

internal stresses form as a result of the plastic deformation processes, that is, creep, growth, and frictional

sliding. To reproduce accurately the initial bow from previous cycles, exactly this internal stress and strain

state must be imposed as an initial condition for the following one-cycle run. In addition, grid growth

should be accounted for by modifying the initial gap size of the contact elements as a function of the �uence

and temperature. In this manner, the propagation of bow patterns can be simulated �exibly for any FA

reshu�ing plan.

Re�ned full-core hydraulic model The 2D porous-medium �ow model for a FA row that was used in

the present work can be extended to a full-core 3D model by expanding the mesh over the entire reactor

core. Due to this expansion, the number of mesh cells would be roughly squared so that more powerful

computational methods must be applied to cope with this increase. For the full-core 3D model, a re�ned

modeling of the �ow resistances might be necessary to better track the �ow redistribution in the 3D space,

where the �ow has more DOFs. The FSI calculations with the current model appear to underestimate the

impact of the deformed FA structure on the distribution of the hydraulic loads. The currently used EOLE

correlation accounts only for the drag inside the rod bundle, neglecting �ow resistance e�ects at the entrance

and exit of the bundle. Therefore, the observed discrepancy might originate from a not su�ciently detailed

description of the entrance and exit e�ects when the �ow passes from the FA bypass gaps to the FA interior

and back. In two-way FSI calculations, the local pressure increases in regions where a gap closes between two

FAs whereas in regions with opening gaps a lower local pressure is expected. An increased �ow resistance

between the bypass and the FA interior leads therefore to higher local pressure gradients; that is, a higher

impact of the structural feedback on the hydraulic loads can be expected.

It is therefore recommended to re�ne the porous medium hydraulic model by using dedicated �ow coe�cients

in regions where these entrance and exit e�ects occur. However, hardly any experimental data are available

in literature for the estimation of the entrance and exit e�ects for di�erent angles of attack. One opportunity

to obtain such data could be to perform resolved CFD calculations on a local scale. These local domains

could, for example, cover two FA halves over the length of one grid span, similar to the calculation domain

depicted in Figure 5.5. The �ow resistance at the entrance and exit can be determined by imposing �ow
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at di�erent angles of attack over the domain and calculating the pressure drop. To account for structural

deformation, the relative angle between the tube bundle axes of the two FA halves can be modi�ed. In this

manner, the �ow resistance of a closing gap can be simulated. The same exercise can be repeated for the

spacer grid region. This might lead to important improvements since the lateral loss coe�cient of the spacer

grid used in this present work is based on a relatively simplistic approach.
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Appendix A

Derivation of the Euler-Bernoulli beam

equations

We depart from the assumption of an arbitrarily supported beam with an axially uniform and homogeneous

cross-section, see Figure 2.4, which is only loaded only within the x-z plane. For this case of uniaxial beam

bending, the strains in the perpendicular y-direction are exclusively due to the Poisson e�ect of transverse

dilation or constriction and can be neglected. Discarding the perpendicular component of the displacement

vector leaves us with the axial component ux and the transverse component uz. The resulting strains

according to equation 2.2 are:

εx =
∂ux
∂x

, εxz = εzx =
1

2
(
∂ux
∂z

+
∂uz
∂x

), εz =
∂uz
∂z

(A.1)

Let us consider an undeformed in�nitesimal beam element of length dx with central axis at z = 0, which is

set under pure bending by a bending moment M , see Figure A.1. The Euler-Bernoulli beam theory is based

on the assumption of small displacements and rotations and small strains. Therefore, no normal strain in

transverse direction is expected and the slopes of the cross-section and the neutral axis are equal to the

rotation angles ψ and θ:

∂uz
∂z

= 0,
∂ux
∂z

= ψ,
∂uz
∂x

= −θ (A.2)

The Euler-Bernoulli theory requires that the beam cross-section remains planar (ψ = constant) and perpen-

dicular to the slope of the neutral axis at any time during the deformation, see Figure A.2. This normality

assumption can be expressed by equation A.3.

∂uz
∂x

= −∂ux
∂z

or θ = ψ (A.3)

With the normality principle, the deformed section becomes a circular arc with constant angle dψ over the

cross-section. Considering only small deformations, the element length remains approximately constant at
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4.3 Grundgleichungen der geraden Biegung 111

Da wir das Koordinatensystem so gewählt haben, dass die y-Achse

eine Schwerachse des Querschnitts ist, verschwindet das statische

Moment Sy =
∫
z dA. Die zweite Gleichung liefert damit (wie

vorausgesetzt) N = 0. Hier liegt der Grund für die spezielle Wahl

des Koordinatensystems (vgl. Abschnitt 4.1). Die erste Gleichung

lässt sich mit dem Flächenträgheitsmoment I = Iy =
∫
z2 dA in

der Form

M = EI ψ′ (4.24)

schreiben. Danach ist die Änderung dψ des Drehwinkels über die

Länge dx proportional zum wirkenden Moment M . Die entspre-

chende Verformung eines Balkenelements der Länge dx unter der

Wirkung eines Moments ist in Abb. 4.13a dargestellt. Man be-

zeichnet (4.24) als das Elastizitätsgesetz für das Biegemoment; die

Größe EI nennt man Biegesteifigkeit.

Gleichung (4.23b) liefert eine über die Querschnittsfläche kon-

stante Schubspannung τ . Dies ist eine Folge der vereinfachenden

Annahmen a) und b) und trifft in Wirklichkeit nicht zu. In Ab-

schnitt 4.6.1 wird vielmehr gezeigt, dass sich τ über die Quer-

schnittsfläche ändert und insbesondere am oberen und am unte-

ren Rand Null ist. Letzteres lässt sich mit Hilfe der zugeordneten

Schubspannungen leicht begründen. Danach müssen die Schub-

spannungen in zwei senkrecht aufeinander stehenden Schnitten

gleich sein. Da am oberen und am unteren Rand keine Schubspan-

nungen in Balkenlängsrichtung wirken (keine äußere Belastung

in dieser Richtung), müssen dort auch die Schubspannungen im

ba
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ψ, w. Sie lassen sich vereinfachen, wenn man annimmt, dass die

Schubsteifigkeit sehr groß ist. Für κGA → ∞ folgt dann bei end-

licher Querkraft Q aus (4.25)

w′ + ψ = 0 . (4.29)

Ein Balkenelement erfährt unter der Wirkung der Querkraft in

diesem Fall keine Winkeländerung. Einen solchen Balken nennt

man schubstarr. Geometrisch bedeutet (4.29), dass Balkenquer-

schnitte, die vor der Deformation senkrecht auf der Balkenachse

standen, auch nach der Deformation senkrecht auf der deformier-

ten Balkenachse stehen (Abb. 4.17). Man nennt dies und die An-

nahme vom Ebenbleiben der Querschnitte (vgl. (4.22b)) nach Ja-

kob Bernoulli (1655–1705) die Bernoullischen Annahmen. Sie sind

für schlanke Balken hinreichend genau und für reine Biegung (Q

= 0) sogar exakt.

z

x

w

−ψ

w′

Abb. 4.17

Mit (4.18), (4.24) und (4.29) stehen nun die vier Differential-

gleichungen erster Ordnung

Q′ = − q, M ′ = Q, ψ′ =
M

EI
, w′ = − ψ (4.30)

zur Bestimmung von Q, M , ψ, w bei gegebener Belastung q zur

Verfügung. Durch Eliminieren von ψ erhält man aus den letzten

beiden die Differentialgleichung der Biegelinie

w′′ = − M

EI
. (4.31)

Figure A.1: In�nitesimal beam cross-
section forming circular arc with open-
ing angle dψ (Gross et al., 2012).

Figure A.2: Schematic of Bernoulli's normality assumption
(Gross et al., 2012). w = uz stands for the beam de�ection and
w′ = ∂uz

∂x = −θ stands for the slope of the bending curve.

the neutral axis. Away from the neutral axis, the in�nitesimal displacement is dux = zdψ. The axial strain

is then:

εx = z
dψ

dx
= −zd2uz

dx2
(A.4)

With the simpli�ed Hooke's law, we obtain the bending stress σx:

σx = Eεx = −Ezd2uz
dx2

(A.5)

The bending stress at the surface dA (see Figure 2.4b) creates an in�nitesimal bending moment dM =

zσxdA = zdFx about the neutral axis, with dFx being the in�nitesimal axial force associated with the

bending stress. By integrating dM over the cross-sectional surface A, we �nd the bending moment M over

the entire beam section:

M =

∫

A

dM =

∫

A

zdFx =

∫

A

zσxdA = −E d2uz
dx2

∫

A

z2dA (A.6)

The remaining integral term is de�ned as the second moment of area I:

I =

∫

A

z2dA (A.7)

The bending moment becomes:

M = −EI d2uz
dx2

(A.8)
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Inversely, the bending stress σx results from the moment by the following equation:

σx =
M

I
z (A.9)

So far only the axial equilibrium originating from a hypothetical moment applied at the cross-section has

been considered. In many applications, a transverse linear load q =
∫
A
fB,zdA is applied. Figure A.3a gives

the force and moment equilibrium over an in�nitesimal beam element, where Q is the transverse cutting

force in the beam resulting from the integrated shear stress (see also Figure A.3b):

dQ =

∫

A

∂τxz
∂x

dxdA (A.10)

Equation A.11 expresses then the force equilibrium over the beam cross-section in transverse direction.

dQ = −qdx (A.11)

The transverse force Q exerts a moment dM on the opposite face of the in�nitesimal element, resulting in

the following moment equilibrium:

dM = Qdx (A.12)

Combining equations A.6, A.11, and A.12, we obtain the fundamental equilibrium equation of the Euler-

Bernoulli beam theory, from which the bending curve uz(x) along the beam can be calculated for an axially

uniform beam cross-section.

EI
d4uz
dx4

= q (A.13)

If the beam is also loaded by a uniform axial load Fx, the normal cutting force N appears in x-direction.

N =

∫

A

σxdA = Fx (A.14)
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Sie auch mit dem TM-Tool
”
Bestimmung von Querschnittskenn-
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mit einer Reihe weiterer TM-Tools unter http://www.tm-tools.de
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Wir wollen nun die Grundgleichungen aufstellen, die eine Bestim-

mung der Spannungen und der Deformationen bei der Biegung

eines Balkens ermöglichen. Dabei beschränken wir uns zunächst

auf die gerade oder einachsige Biegung. Hierbei wird vorausge-

setzt, dass die Achsen y und z Hauptachsen des Querschnitts sind

(Iyz = 0) und dass die äußeren Lasten nur Querkräfte Q in z-

Richtung und Momente M um die y-Achse hervorrufen. Dies ist

zum Beispiel der Fall, wenn der Querschnitt symmetrisch zur z-

Achse ist und die äußeren Kräfte in der x,z-Ebene wirken.
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(a) Force and moment equilibrium of an in�nitesimal beam
cross-section.

(b) In�nitesimal volume element in beam.

Figure A.3: In�nitesimal beam elements (Gross et al., 2012).
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Due to the integration
∫
A
zdA = 0, this term does not contribute to the bending moment based on equa-

tion A.6. The de�ection equation A.13 is hence fully decoupled from the axial state. If the equilibrium

equations are, however, established considering a deformed beam element, Figure A.4, the normal cutting

force induces an additional moment about the bending axis. In the equilibrium equations of the Euler-

Bernoulli beam theory, these moments are neglected since only small deformations occur. However, if the

magnitude of the axial loads is much higher than that of the transverse load, an additional term must be

added to equation A.11:

dQ = −qdx+Ndψ (A.15)

Inserting equation A.15 into equation A.12, the new di�erential equation for the bending curve becomes:

EI
d4uz
dx4

− d

dx

(
N

duz
dx

)
= q (A.16)

268 7 Knickung

Nach (7.8) ist dieser kritischen Last wegen A = 0 eine Knickform

w1 = B sin λ1 x = B sin π
x

l

zugeordnet. Der Stab knickt in Form einer Sinus-Halbwelle aus,

wobei die Amplitude B unbestimmt bleibt. Man nennt solch eine

Lösung eine Eigenform.

Wenn man wissen will, wie weit sich der Stab nach Überschrei-

ten der Knicklast ausbiegt, muss man die Hypothese kleiner Aus-

lenkungen fallen lassen und eine Theorie höherer Ordnung aufstel-

len (siehe Band 4, Abschn. 5.4.1). Im Rahmen dieses Grundkurses

können wir hierauf nicht eingehen.

∼Ndψ

N

b

dψ

M

Q+dQ

C
Q

w

x

dx

a

z

∼Q+dQ

∼ Qdψ

dψ

Q+dQ

∼N+dN
dψ

N+dN

N+dN

M+dM

c Abb. 7.3

Mit Hilfe der Differentialgleichung (7.7a) und ihrer Lösung (7.8)

lässt sich nur das Knicken eines gelenkig gelagerten Balkens be-

schreiben. Um die Knicklasten von Stäben für beliebige Lagerun-

gen bestimmen zu können, müssen wir eine allgemeine Knickglei-

chung ableiten. Dabei ist zu beachten, dass dann auch Querkräfte

auftreten können. Wir schneiden ein Balkenelement dx in der aus-

geknickten Lage w �= 0 nach Abb. 7.3a aus dem Balken und tragen

alle Schnittkräfte ein (Abb. 7.3b). Beim Aufstellen der Gleichge-

wichtsbedingungen am verformten Element wird vorausgesetzt,

dass die Verformungen klein sind; insbesondere ist der Neigungs-

winkel w′ = −ψ klein, und die Länge des verformten Elementes

stimmt näherungsweise mit der des unverformten überein. Unter

Beachtung der Komponenten Ndψ bzw. Q dψ, die infolge der un-

terschiedlichen Richtungen von N bzw. Q auf beiden Schnittufern

Figure A.4: Deformed in�nitesimal beam element with cutting forces (Gross et al., 2012).
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Appendix B

Modeling of the anisotropic creep of

Zirconium alloy fuel rods (FRs)

Due to the internal pressurization of FRs, the FR cladding exhibits a biaxial stress state with hoop and

axial stresses, see section 2.1.3.3, leading to multiaxial creep. Due to the material anisotropy of Zirconium

alloys, Hill's anisotropy factors F , G, and H in equation 2.45 need to be determined for the modeling of

multiaxial creep. Ideally, creep tests in all three principal directions are to be performed. In practice,

researchers mostly use a combination of uniaxial creep tests in longitudinal direction and biaxial creep tests

by internally pressurizing the tube. Due to the large scope of necessary irradiation samples, only very

few experimental investigations have been published for Zirconium alloys, from which F,G, and H can

be completely determined. Examples are those by Ross-Ross et al. (1972), Hunt (1975), Ibrahim and Holt

(1980) and Erbacher et al. (1982). Table B.1 summarizes their results based on the notation used in equation

2.45. Since the anisotropy factors always appear as ratios in any mechanical test, an additional condition is

required. Based on the approach by Ross-Ross et al. (1972), the condition F +G+H = 1.5 was chosen to

calculate the values in Table B.1. Unlike these multiaxial tests, most creep tests for FR cladding materials

Table B.1: Anisotropy Factors F , G, and H for cold-worked Zircaloy-2 (Zry-2) or
Zircaloy-4 (Zry-4) in α-phase published by di�erent authors.

Hill's Isotropy Ross-Ross et al. Hunt a Ibrahim and Holt a Erbacher et al.
factor Zry-2 Zry-4 Zry-4 Zry-4
F 0.5 0.50 0.408 0.665 0.304
G 0.5 0.25 0.221 0.111 0.240
H 0.5 0.75 0.871 0.723 0.956

F+H
2G+F 0.67 1.25 1.50 1.51 1.61
a The factors were averaged from a matrix of values.

are performed only under a single loading condition, which is normally generated by internally pressurizing

tube specimens. The magnitude of creep is mostly established by measuring the diameter change of the

investigated tube as a function of the hoop stress σθ. The derived FR creep models relate the hoop creep
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strain rate ε̇θ to the hoop stress σθ:

ε̇θ = Bbiaxσ
nσ
θ (B.1)

In its generalized form a creep law relates the e�ective strain to the e�ective stress.

ε̇e� = Be�σ
nσ
e� (B.2)

Inserting the stresses for a thick-walled pressurized tube in equations 2.68 to 2.70 into equation 2.45, we

obtain:

σe� = |σθ − σz|
√
F + 4G+H = |σB|

√
F + 4G+H (B.3)

Introducing equations B.2 and B.3 into 2.47, the hoop creep strain is related to the hoop stress σθ as follows:

ε̇θ = Be�(F + 4G+H)
nσ−1

2 (2G+ F )rnσσ σnσθ , (B.4)

where rσ is the stress ratio:

rσ =
σθ − σz
σθ

=
σB

σA + σB
(B.5)

For a fresh PWR FR under operating conditions, rσ is about 0.4. This value decreases slowly as the pressure

di�erence diminishes as a result of the �ssion gas release. Under the approximation of a thin-walled pressure

tube, rσ has a constant value of 0.5. From equations B.1 and B.4, we deduce that:

Bbiax = Be�(F + 4G+H)
nσ−1

2 (2G+ F )rnσσ (B.6)

Based on Table B.1, the term (2G + F ) yields a value close to 1 for Zry-4 according to most authors. For

the common case of n = 1, Bbiax is hence about 40% of Be�. Section 2.1.3.4 points out that the axial stress

in the FR can be represented as the sum of several components: the axial stress due to the biaxial stress

state as a result of pressurization σz,biax in equation 2.79, the axial stress as a result of bending moments

σz,bend in equation 2.78, and the uniaxial stress σz,uniax in equation 2.77. For solving the structural behavior

of the fuel assembly (FA), the last two axial stress components are of speci�c interest. Let us assume

for the moment that the magnitude of the additional axial stresses due to external FR loads, σz,bend and

σz,uniax, does not signi�cantly modify the e�ective stress σe� due to the biaxial stress state. In other words,

equation B.3 remains valid regardless of the additional axial stress. Applying the approximations for a

thick-walled pressure tube, the axial creep strain rate from equation 2.48 becomes:

ε̇z = Be�σ
nσ−1
e� [F (σz − σθ)−H(σr − σz)] =

=
ε̇e�
σe�

[(H − F )(σθ − σz,biax) + (F +H)(σz,uniax + σz,bend)]
(B.7)

The axial anisotropy factor (H − F ) due the biaxial stress is zero for isotropic creep and usually provides

relatively small contributions to the total axial strain for anisotropic creep of Zirconium alloys. The ori-

entation depends on the microstructural texture of the cladding material. Figure B.1 shows experimental
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data for the axial creep strain component in a biaxial stress state for di�erent materials. For pressurized

Figure B.1: Axial strain as a result of anisotropic creep of Zirconium alloys under a biaxial stress state
(Soniak et al., 2002).

tubes, its e�ect cannot be separated from that of irradiation growth. Therefore, its magnitude is usually

included in the FR growth measurement data and the derived models, see section 4.3. This term can hence

be neglected for the present creep calculations, reducing the creep law to the second term only. However,

the biaxial stress still appears in the e�ective stress term σe�:

ε̇z = Be�σ
nσ−1
e� (F +H)(σz,uniax + σz,bend) (B.8)

Inserting equation B.3 yields:

ε̇z = Be�(F + 4G+H)
nσ−1

2 |σB|nσ−1(F +H)(σz,uniax + σz,bend) (B.9)

Applying equation B.6 to equation B.9, a creep law for ε̇z depending on Bbiax is obtained:

ε̇z = Bbiax|σB|nσ−1 F +H

rσ(2G+ F )
(σz,uniax + σz,bend) (B.10)

Di�erent values for F+H
2G+F depending on the author are tabulated in Table B.1. If, �nally, the creep law is

linear in its dependence on stress, that is, n = 1, then the relationship between axial stress and axial creep

strain becomes independent of the biaxial stress state:

ε̇z = Bbiax
(F +H)

rσ(2G+ F )
σz (B.11)

Equation B.11 hence represents the creep law to use for modeling the bow deformation of the FRs based on

creep laws from biaxial creep tests.

183





Appendix C

Equivalence of the fuel rod (FR) internal

energy for the full and reduced models

This section derives the conditions for the positioning of the equivalent rods in order to obtain an equivalent

FR internal strain energy for the full and reduced models. To calculate the strain energy of a single FR,

the distribution of stresses σ and strains ε needs to be analyzed. For Euler-Bernoulli beams under the given

conditions, only stresses and strains in axial beam direction need to be considered, σ = σz and ε = εtotz .

Note that against the general convention in beam theory, the beam axis in the present model is aligned with

the z-direction of the coordinate system and not with the x-direction. The internal strain energy of a single

fuel rod UFR reads then as:

UFR =
1

2

∫

V

σε dV =
1

2

∫

V

σzε
tot
z dAdz (C.1)

According to equation 2.104, we have εtotz = εelz + εthz + εcrz + εcrz , where ε
el
z = σz/E. As a next step, the

distribution of the thermal, creep, and growth strain is to be determined. Section 4.4.1 de�nes a linear power

pro�le over each FA, on the basis of which the temperature T and the fast neutron �ux φ are calculated.

The thermal, creep, and growth strains are dependent on these two �eld variables by means of di�erent

models introduced in chapter 2. If we assume additionally that the lateral di�erences in T and φ over a

single FA are su�ciently small, we can also linearize the physical models on which they are based over the

lateral coordinate. Equations C.2 and C.3 represent the linearized formulations for the thermal and growth

strain with the average value εavg and the lateral gradient glat for a certain FA inside the reactor core at a

certain point of time and axial height z.

εth = εthavg + gthlatxi (C.2)

εgr = εgravg + ggrlatxi (C.3)
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For the creep strain, we need to account additionally for the e�ect of the linear dependence of the creep on

stress according to section 2.4.6.

εcr = (acravg + gcrlatxi)σ (C.4)

The creep and growth strain in equations C.4 and C.3 are a linear combination of the integrations of the creep

and growth rate over each time step, thus maintaining the linearity of the model. With the assumptions

from equations C.2 to C.4, equation C.1 becomes:

UFR,i =
1

2

∫

V

1

E
σ2
z + σz

(
εthz + εcrz + εgrz

)
dAdz (C.5)

=
1

2

∫

V

σ2
z

(
1

E
+ acravg + gcrlatxi

)
+ σz

(
εthavg + εgravg +

(
gthlat + ggrlat

)
xi
)

dAdz (C.6)

Since the axial con�guration remains the same for the reduced model, it is more convenient to use the linear

internal strain energy UFR,lin,i as the criterion, which must be ful�lled for any z. The axial stress σz in the

FRs can be expressed by means of the normal cutting force N(xi) and the bending moment Mbend, see also

section 2.1.3.4. It follows:

UFR,lin,i =
∂UFR,i
∂z

=

(
1

E
+ acravg + gcrlatxi

)∫

A

(
N(xi)

A

)2

+
2N(xi)Mbend

AI
x̂i +

(
Mbend

I
x̂i

)2

dx̂i+

+ (εthavg + εgravg +
(
gthlat + ggrlat

)
xi)

∫

A

(
N(xi)

A
+
Mbend

I
x̂i

)
dx̂i (C.7)

After solving the integrals, all terms linear in x̂i disappear, keeping in mind that
∫
A

dx̂i = A,
∫
A
x̂idx̂i = 0,

and
∫
A
x̂2
i dx̂i = I:

UFR,lin,i =

(
1

E
+ acravg + gcrlatxi

)(
N(xi)

2

A
+
M2

bend

I

)
+
(
εthavg + εgravg +

(
gthlat + ggrlat

)
xi
)
N(xi) (C.8)

After expanding N(xi) according to equation 2.77, equation C.9 shows that the strain energy is a polynomial

of third degree in xi.

UFR,lin,i =

(
1

E
+ acravg + gcrlatxi

)(
N2
unif

A
+
M2

bend

I
+

2NunifNcpl,ref

xref
xi +

N2
cpl,ref

x2
ref

x2
i

)
+

(
εthavg + εgravg +

(
gthlat + ggrlat

)
xi
)(

Nunif +
Ncpl,ref

xref
xi

)
(C.9)

That is, to ful�ll the energy criterion in equation 3.22, the conditions in equations 3.20 and 3.21 must be

complemented with a third condition for the equivalence of the sum of cubes of xi, equation 3.23.
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Appendix D

Pressure drop correlations to determine

axial hydraulic forces

The calculation of the axial hydraulic forces in this work is based on the axial pressure losses along the

coolant �ow path in the reactor core obtained from correlations given in literature. The total axial pressure

drop across the core, given in Table 4.9, can be decomposed into the gravitational pressure drop and the

irrecoverable form and friction losses along the �ow path.

∆pcore = ∆pgrav,FA + ∆ploss,FA = ρ(Tave) g lFA + ∆pform + ∆pfric (D.1)

The axial hydraulic force on the fuel assembly (FA) is proportional to the irrecoverable pressure loss. With

Atotal,FA = p2
FA being the �ow area away from the FR bundle, the total axial hydraulic force on the FA is:

Fz,hyd = ∆ploss,FAAtotal,FA = (∆pcore −∆pgrav,FA)Atotal,FA (D.2)

The single terms of the axial hydraulic force are estimated based on the theory about internal channel �ow

in section 2.3.2 using correlations given in literature. First, some fundamental reference values need to be

introduced. Equation D.3 gives the mass �ux G in the FA subchannel with �ow area A�ow,FA, which is

de�ned in equation D.4. To calculate A�ow,FA, it is assumed that the �ow inside of the guide tubes (GTs) is

negligible.

G =
ṁcore

nFAA�ow,FA

(D.3)

A�ow,FA = p2
FA − nFR

d2
FR,o

4
π − nGT

d2
GT,o

4
π (D.4)

The Reynolds number in the fuel bundle, equation D.5, is determined by means of the mass �ux G and

the hydraulic diameter dhyd, which is de�ned in equation D.6. For dhyd and all other geometry-related
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thermohydraulic parameters in this section, it is assumed that all GTs have the same outer diameter as the

fuel rods (FRs), dFR,o.

Re =
Gdhyd
µ

(D.5)

dhyd =
4p2

FR − d2
FR,oπ

dFR,oπ
(D.6)

Friction forces on GTs and FRs The Darcy friction factor fD can be determined based on the Reynolds

number and the FR cladding surface roughness. The surface roughness λ of conventional Zircaloy cladding

tubes is between 0.3 µm and 0.5 µm, resulting in a relative roughness of λ/dFR,o < 5× 10−5. The Moody

(1944) chart shows that for the considered Reynolds number, the tubes with such roughness can be approxi-

mated as smooth. Since the Reynolds number Re is within the range from 3× 104 to 1× 106, the McAdams

relation can be used to approximate the Darcy friction factor (Todreas and Kazimi, 2012):

fD,FR = 0.184Re−0.20 (D.7)

Correction factors for diabatic �ow, �ow in rod bundles, and due to initially developing �ow only slightly

a�ect the friction factor for the considered conditions and are therefore neglected. The resulting terms for

the pressure loss due to friction is:

∆pfric,FR = 0.184Re−0.20 lFR
dhyd

G2

2ρ
(D.8)

Based hereupon, the following linear tangential force is applied on the GTs and FRs in the structural model:

flin,z,fric =
0.184Re−0.20

4
dFR,oπ

G2

2ρ
(D.9)

Force on spacer grids The pressure drop over the spacer grids is one of the largest contributors to the

overall pressure drop in the core. The �ow constriction in the spacer grid region is the main contributor to

this pressure drop. Due to the complex geometry, accurate predictions of pressure drop call for experimental

tests in �ow loops using the speci�c spacer grid design of interest. Still, several authors developed general

correlations to estimate the approximate pressure drop over the spacer grids. In particular, In et al. (2002)

developed a relatively elaborate model which estimates the force on the spacer grid Fz,grid as the sum of four

terms: the form drag forces on the grid and the mixing vanes, Fform,grid and Fform,mv, and the frictional drag

forces on the grid straps and the FRs in the spacer region, Ffric,strap and Ffric,FR. To calculate these forces,

equation D.10 de�nes the mass �ux in the grid region Ggrid based on the relative plugging factor of the �ow

cross-section due to the presence of the grid εgrid, given in equation D.11. The projected grid cross-section

area Agrid was de�ned previously in equation 3.2.

Ggrid = G
A�ow,FA

A�ow,FA −Agrid

= G
1

1− εgrid
(D.10)
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εgrid =
Agrid

A�ow,FA

(D.11)

In et al. (2002) use the drag coe�cient Cdrag,grid to estimate the hydraulic drag force due to form pressure

loss in the �ow over the grid:

Fform,grid = Cdrag,grid
G2
grid

2ρ
Agrid (D.12)

The drag coe�cient at the grid is correlated to experimental measurements and is given as:

Cdrag,grid = 2.75− 0.27 log10(Re) (D.13)

To obtain the drag force term as expressed in equation 2.122, the reference reference velocity and area must

be modi�ed using equation D.11 and D.10:

Fform,grid = ζdrag,gridA�ow,FA
G2

2ρ
= Cdrag,grid

εgrid
(1− εgrid)2

A�ow,FA
G2

2ρ
(D.14)

The hydraulic drag force due to the mixing vanes is calculated in a similar manner, using the plugging factor

for the mixing vanes εmv and the drag coe�cient of the mixing vanes Cdrag,mv:

Fform,mv = Cdrag,mv
εmv

(1− εmv)2
A�ow,FA

G2

2ρ
(D.15)

Based on experimental tests, In et al. (2002) recommend a constant value for the drag coe�cient, Cdrag,mv =

0.72. The value of εmv depends on the speci�c design of the mixing vanes. In et al. (2001) indicate a value

of εmv = 0.22 for a spacer grid design similar to that of the reference FA.

Finally, the friction losses along the grid remain to be determined. In et al. (2002) distinguish between the

developed �ow along the FRs and the developing �ow at the grid straps to calculate Ffric,FR and Ffric,strap.

Both values are determined based on frictional drag coe�cients Cfric and the corresponding surface friction

area Afric, see equation 2.120. For the developed �ow along the FRs, the frictional drag coe�cient Cfric,FR

equals one quarter of Darcy's friction factor fD. Again, fD is determined with the McAdams correlation, but

is based on the Reynolds number in the grid region Regrid in the present case. The frictional drag coe�cient

for the FR then becomes:

Cfric,FR =
fD
4

=
0.184

4
Re−0.20

grid (D.16)

with

Regrid =
Ggriddhyd,grid

µ
(D.17)

and

dhyd,grid =
4(pFR − tgrid)2 − d2

FR,oπ

dFR,oπ + 4(pFR − tgrid)
(D.18)
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The total friction force on all FRs in the grid region is then:

Ffric,FR = n2
posCfric,FRdFR,oπlgrid

G2
grid

2ρ
(D.19)

The frictional drag coe�cient on the grid strap Cfric,strap is derived from the correlations for a developing

boundary layer on a �at plate, consisting of one laminar coe�cient for the boundary layer before the transition

to turbulent �ow and one turbulent coe�cient for the �ow after the transition. Since the transition length

as proposed by In et al. (2002) is much smaller than the grid length, ltrans = 3× 104µGgrid � lgrid, we can

approximate the frictional drag coe�cient with the turbulent coe�cient only:

Cfric,strap = Cfric,plate,turb =
0.523

ln2 0.06ReL
(D.20)

with ReL being the Reynolds number based on the turbulent length L = lgrid − ltrans ≈ lgrid:

ReL =
Ggridlgrid

µ
(D.21)

The total friction force on all grid straps in the grid region becomes:

Ffric,strap = n2
posCfric,strap4(pFR − tgrid)lgrid

G2
grid

2ρ
(D.22)

Altogether, the hydraulic force on one spacer grid resolves to the sum of the four presented terms.

Fz,grid = Fform,grid + Fform,mv + Ffric,FR + Ffric,strap (D.23)

The value of Fz,grid is applied on each spacer grid central node as axial force boundary condition (BC). Based

on an equilibrium of forces over one grid, we can derive the following equation for the associated pressure

loss.

∆pgrid =
Fz,grid
A�ow,FA

(D.24)

Other axial hydraulic force terms Since all spacer grids are assumed to induce the same pressure loss,

the total pressure loss over the FR bundle is:

∆pFR = ∆ploss,FR + ∆pgrav,FR = ∆pin + ∆pout + ngrid∆pgrid + ∆pfric + ∆pgrav,FR (D.25)

where ∆pin and ∆pout are the pressure losses at the FR bundle inlet and outlet. These loss terms can be

approximated by the loss coe�cients for a sudden sharp contraction or expansion in a pipe given by Idel'£ik

(1994). At the inlet, the pressure loss is

∆pin = 0.5εFR
G2

2ρin
(D.26)
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while at the outlet it is

∆pout = ε2FR
G2

2ρout
(D.27)

with

εFR =
d2
FR,oπ

4p2
FR

(D.28)

being the relative plugging of the �ow inside the core due the presence of the FR bundle. Due to the pressure

drop along the FR bundle, there is a pressure di�erence between the FR top and bottom faces, leading to

the following resultant axial force Fz,FR,face on the FR faces:

Fz,FR,face = (∆ploss,FR + ∆pgrav,FR)
d2
FR,oπ

4
= ∆ploss,FR

d2
FR,oπ

4
+ ρ g lFR

d2
FR,oπ

4
(D.29)

This upward axial force is imposed on every FR bottom node in the model. The second term in equation

D.29 represents the buoyancy force on the FRs in the coolant. The buoyancy forces on the other structural

elements are calculated accordingly by multiplying the volume of the displaced coolant with the average

coolant density and are applied at the bottom nodes of the respective elements.

The axial hydraulic force on the FA head and foot is �nally deduced from the di�erence between the total

pressure loss across the core and the pressure loss over the FR bundle. For both head and foot, an equal

pressure loss is assumed.

Fz,nozzle =
∆ploss,FA −∆ploss,FR

2
Atotal,FA (D.30)

For sake of simplicity, all axial hydraulic forces are calculated assuming constant core-averaged thermo-

dynamic state variables. This reference state is de�ned by the system pressure psys and the core average

temperature Tave. That is, the buoyancy force and hydraulic loads are not modi�ed as a function of tem-

perature but are always based on the density at the coolant average temperature under operation ρ(Tave).

This is reasonable since, on the one hand, it will not introduce a considerable error for the buoyancy forces

and, on the other hand, the reactor state in cold condition with running pumps is not of speci�c interest for

the present analyses.
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Appendix E

Screening sensitivity analysis

Screening sensitivity analysis is the identi�cation of the few most in�uential model input parameters from

numerous potential contributors to the model outcome variability. This method is also useful to gain knowl-

edge on the type of relation existing between the input and the output. One possible design of screening

analysis is that of the one-at-a-time experiments, in which the impact of changing each input factor included

in the sensitivity analysis is evaluated. Based on a control scenario with nominal values for each parameter,

two extreme boundaries are proposed to represent the range of likely values. The sample size is in the order

of the number of input parameters k. The low computational cost is hence one of the main advantages of the

one-at-a-time design. It is ideal for a �rst approach before performing more extensive quantitative sensitivity

and uncertainty analyses. Morris' elementary e�ects method, described by Saltelli et al. (2000), is a one-at-

a-time design widely used for screening analysis and helps to determine which factors have negligible e�ects,

linear and additive e�ects, or nonlinear and interaction e�ects. This method is based on the de�nition of

trajectories with k + 1 points, for which the value of only one input factor is modi�ed between subsequent

points and each factor is only changed once. A common approach is the use of r = 8 trajectories. Equations

E.1 to E.3 show the statistical measures proposed by Morris and the measures derived thereof.

EEi,j =
Y (xi,j + ∆i,j)− Y (xi,j)

∆i,j
(E.1)

µi =
1

r

r∑

j=1

EEi,j (E.2)

σi =


1

r

r∑

j=1

(EEi,j − µi)2




1
2

(E.3)

In equation E.1, EEi,j denotes the elementary e�ect and Y the monitored output parameter. xi,j is the

value of the i-th input factor out of k for the trajectory with index j. ∆i,j denotes a perturbation of the
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input value xi,j within the de�ned input range. In equation E.2, µi denotes the mean value of the elementary

e�ect for a given input factor i. It accounts for the linear e�ect of the associated input factor. In equation

E.3, σi denotes the standard deviation of the elementary e�ect for a given input factor i, thus accounting

for nonlinear e�ects and/or interactions between model input factors. For a normalized input space, the

dimension of the elementary e�ects is the dimension of the monitored output Y . This implies that the

statistical measures increase as a result of the increase of the underlying output parameter.
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